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∗IRMAR, Université de Rennes I, 35042 Rennes cedex, France.
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1 Introduction

This paper is concerned with the existence and stability of multi-dimensional
large amplitude high frequency waves associated to a linearly degenerate
field. They are families {uε; ε ∈ ]0, 1]} of solutions of a hyperbolic system of
conservation laws on a fixed domain independent of ε, such that

intro1 (1.1) uε(t, x) ∼
ε→0

Uε
(
t, x, ~ϕ(t, x)/ε

)
, ∂θU

ε(t, x, θ) = O(1) .

These O(1) rapid variations are anomalous oscillations in the general context
of nonlinear geometric optics, where the standard regime concerns O(ε)
oscillations:

intro1b (1.2) uε(t, x) ∼
ε→0

u0(t, x) + εUε
1

(
t, x, ~ϕ(t, x)/ε

)
.

However, when the oscillations are associated to linearly degenerate modes,
the equations for U1 are linear, suggesting that, in this case, oscillations of
larger amplitude can be considered.

A strong motivation for studying waves (
intro1
1.1) is the existence of simple

waves associated to linearly degenerate modes (see
Ma
[20]). They are solutions

of the form

intro2 (1.3) V
(
h(k · x− ω t)

)
,

with V ∈ C1(I; RN ) and (ω,k) ∈ R1+d suitably chosen, and h is an arbitrary
function in C1(R; I). Fix any h ∈ C1(R; I). The functions

intro3 (1.4) uε(t, x) = U
(
ϕ(t, x)/ε

)
, U = V ◦ h, ϕ(t, x) = k · x− ω t

are exact solutions of the equations, of the form (
intro1
1.1).

In one space dimension, under assumptions which are satisfied by many
physical examples, there are quite complete results at least for solutions
which are local in time. The first informations were obtained by W. E

E
[7] for

the Euler system of gaz dynamics in Lagrangian coordinates, and extended
by A. Heibig

Hei
[13] to the case of systems admitting a good symmetrizer. More

recently, these results have been generalized by A. Corli, O. Guès
CG
[6] and A.

Museux
Museux
[22] up to the setting of stratified weak solutions, which contains for

example the case of solutions (
intro2
1.3) when h is only L∞, still assuming the

existence of a good symmetrizer. Concerning global weak solutions let us
quote Peng’s results

Peng
[23] for the Euler system of gaz dynamics.
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In several space dimensions, the situation is much more delicate. A first
step in the analysis is to determine a set of sufficient conditions leading to
formal WKB solutions

intro4 (1.5) uε(t, x) ∼
ε→0

∞∑
j=0

εj Uj

(
t, x, ~ϕ(t, x)/ε

)
, ∂θU0(t, x, θ) 6≡ 0 .

A second step is to determine a set of sufficient conditions, which are in
general strictly stronger, insuring the stability of these solutions (see

JMR1
[16] for

such an approach in the semilinear case). None of these steps is easy.
There are strong obstructions to the construction of WKB solutions. For

instance, D. Serre has shown in
Se
[26] that, for the isentropic gaz dynamics,

an expansion like (
intro4
1.5) leads to modulation equations for the Uj , that are ill

posed with respect to the initial value problem ; more precisely the linearized
equations deduced from the modulation equations are not hyperbolic.

Moreover, strong instabilities can be present. For example, in the case
of compressible or incompressible isentropic gaz dynamics, the explicit solu-
tions (

intro3
1.4) are strongly unstable, because of Rayleigh instabilities, as shown

in the works of M. Artola, A. Majda
AM
[2], S. Friedlander, W. Strauss, M.

Vishik
FSV
[8] and E. Grenier

Gr
[9]. These results indicate that in space dimension

d > 1, the existence of a good symmetrizer adapted to a linear degener-
ate eigenvalue, is in general not sufficient to guarantee the stability of large
amplitude high frequency waves.

The recent paper
CGM
[5] gives a better understanding of the problem. First,

it contains a discussion on the magnitude of oscillations, between (
intro1
1.1) and

(
intro1b
1.2), that can be expected. Assuming the existence of a good symmetrizer

corresponding to some linear degenerate eigenvalue, we proved in
CGM
[5] that

there always exist formal WKB solutions

intro5 (1.6) uε(t, x) ∼
ε→0

u0(t, x) +
∞∑

j=1

εj/2 Vj

(
t, x, ϕ(t, x)/ε

)
where u0 is any given smooth local solution of the quasilinear system. Here,
the oscillations are of amplitude O(

√
ε). The resulting equations for the

profiles Vj are well posed. Moreover, the equation for the profile V1 has non
linear features, which means that the expansion (

intro5
1.6) is a relevant regime

for the chosen context. More striking is the instability result obtained in
CGM
[5]:

in general, the approximate solutions obtained by stopping the expansion
(
intro5
1.6) at an arbitrarily order k, are strongly unstable. In fact the linearized

evolution may produce exponential amplifications of small disturbances of
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the data (see
JMR1
[16] for a similar situation in the semilinear case). This confirms

the instability of large amplitude oscillating waves (
intro1
1.1), since the regime

(
intro1
1.1) is more singular than (

intro5
1.6) which is already unstable.

However, we also proved in
CGM
[5] that in some very particular cases, the

strong oscillations (
intro5
1.6) are linearly and nonlinearly stable. For instance,

this is true if the linearly degenerate eigenvalue is stationary on the state u0

(see
CGM
[5]). But this condition is very restrictive and never satisfied for Euler

equations. We also give in
CGM
[5] less restrictive conditions that insure the weak

linear stability of waves (
intro5
1.6). This means that the amplification’s rate of

the solution is polynomial in t/ε instead of being exponential. In the case of
the Euler system of entropic gaz dynamics, these conditions mean exactly
that the oscillations are polarized on the entropy. This result indicates that
the polarization of the oscillations is a strong factor in the stability analysis.

In this paper we push further this idea of looking at waves which have
a particular polarization. In situations which extend the case of entropy
waves, we prove the existence and the non linear stability large amplitude
waves (

intro1
1.1).

• Large entropy waves for Euler equations. In the case of the
entropic Euler equations, we prove the existence and the stability of non
trivial solutions uε = (vε,pε, sε) (velocity, pressure, entropy) of the form

eq17 (1.7)

vε(t, x) = v0(t, x) + ε V(t, x, ϕ(t, x)/ε) +O(ε2)

pε(t, x) = p0 + ε P(t, x) +O(ε2)
sε(t, x) = S

(
t, x, ϕ(t, x)/ε

)
+O(ε)

where v0 satisfies the overdetermined system

simsalabim (1.8) ∂tv0 + (v0 · ∇x)v0 = 0, divx v0 = 0 .

Here p0 is a constant and the phase ϕ is a smooth real valued function
satisfying the eiconal equation ∂tϕ+ (v0 · ∇x)ϕ = 0. An example with the
Euler equations is detailed in the subsection

The example of Euler equations
3.4 while the subsection

The overdetermined system for Euler
2.3

is devoted to the system (
simsalabim
1.8). For solutions (

eq17
1.7), the main oscillations are

of order O(1) and polarized on the entropy.
• General systems. It is interesting to understand what are the struc-

ture conditions on a general system that allow the construction of solutions
similar to (

eq17
1.7). We consider a N ×N symmetrizable hyperbolic system of

conservation laws in space dimension d ≥ 1

systofc (1.9) ∂tf0(u) +
d∑

j=1

∂jfj(u) = 0 .
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The flux functions fj(u) are defined in a neighborhood O of 0 ∈ RN . We
assume that det f ′0(u) 6= 0 for all u ∈ O. We note

Aj(u) := f ′0(u)
−1 f ′j(u), A(u, ξ) :=

d∑
j=1

ξj Aj(u) .

Let λ(u, ξ) be a given eigenvalue of the matrix A(u, ξ). We introduce

F(u, ξ) := ker
(
A(u, ξ)− λ(u, ξ) Id

)
⊂ RN .

We suppose that λ(u, ξ) is linearly degenerate with constant multiplicity

F00003000 (1.10) r · ∇uλ(u, ξ) = 0, ∀ r ∈ F(u, ξ), ∀ (u, ξ) ∈ O× (Rd \ {0}) .

F00000000 (1.11) ∃ Ñ > 0 ; dim F(u, ξ) = Ñ , ∀ (u, ξ) ∈ O × (Rd \ {0}) .

We consider the vector space

F(u) := ∩ξ 6=0 F(u, ξ) ⊂ RN .

For Euler equation, this space is exactly the polarization space of the en-
tropy. Our main assumptions are first that F(u) is non trivial has constant
dimension

F (1.12) ∃N ′ > 0 ; dim F(u) = N ′, ∀u ∈ O

and second that the system (
systofc
1.9) admits a good symmetrizer with respect

to the field u 7→ F(u). This last requirement has an intrinsic meaning that
we briefly describe. It means that there exists a smooth symmetric positive
definite matrix S(u) such that the matrix

L(u, ξ) := S(u)
(
A(u, ξ)− λ(u, ξ) Id

)
is symmetric for all (u, ξ) ∈ O×Rd (i.e. S is a symmetrizer) and that, view-
ing the symmetric matrix L as a two times covariant tensor, for all smooth
vector field V on O satisfying V(u) ∈ F(u) for all u ∈ O, the Lie derivative
of L along V is 0 (see also

CGM
[5]). All these assumptions are introduced in the

section
position du probleme
2, where we show that the system can be put in a canonical form

similar to that of the Euler equations, by using suitable non linear change
of dependent variables.
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• Oscillations with several phases. We will also consider the case of
oscillating waves with several phases

*pourq (1.13) uε(t, x) ∼
ε→0

Uε
(
t, x, ~ϕ(t, x)/ε

)
, ~ϕ = (ϕ1, · · · , ϕ`) .

The framework is the one introduced by Joly, Métivier and Rauch
JMR1
[16]-

JMR2
[17] in the study of weakly non linear geometrical optics. In particular we
make coherence assumptions on the phases ϕj , together with small divisor
assumptions which are used to get high order WKB approximate solutions.
New difficulties appear in this context, especially concerning the justification
of the asymptotic expansion (

*pourq
1.13). This is the subject of the section

Oscillating solutions and the WKB expansions
3.

• ε-stratified and ε-conormal waves. We will pay a special attention
to the case of single phase high frequency waves (~ϕ = ϕ). In order to allow
more general fluctuations, we consider the larger class of ε-stratified waves.
Roughly speaking, it means that uε(t, x) satisfies on an open set Ω of R1+d,
a condition like

scamorza fumicata (1.14) (ε ∂)α T1 · · · Tk u
ε ∈ L2(Ω), ∀α ∈ N1+d , ∀ k ∈ N

for any vector fields Tj on Ω with C∞b (Ω) coefficients1, which are tangent to
the foliation {ϕ = cte}. In other words, we impose T1 ϕ = 0, · · · , Tk ϕ = 0.
Waves like (

intro4
1.5) with ~ϕ = ϕ provide a natural example of such ε-stratified

waves. The ε-stratified waves were introduced in
G2
[11] in the context of weakly

non linear geometric optics. They are inspired from the classical stratified
waves introduced by J. Rauch and M. Reed in

RR
[24] and Métivier in

Met
[21] for

the study of singular solutions to non linear hyperbolic systems.
In the same spirit, we also treat the case of ε-conormal waves which

correspond to the case where the vector fields in (
scamorza fumicata
1.14) are required to

be tangent to only one hypersurface, say Σ = {ϕ = 0}. It means that :
(T1 ϕ)|Σ = 0, · · · , (Tk ϕ)|Σ = 0. Hence, it is a special case of ε-stratified
wave but where uε may vary rapidly in a region which is closed to Σ, like
an inner layer. For example it may converge to a discontinuous fonction as
ε goes to zero. A function like χ(t, x) arctan

(
ϕ(t, x)/ε

)
with χ ∈ C∞0 (R1+d)

is an example of ε-conormal wave converging to a discontinuous function.
Since we study the Cauchy problem for such ε-stratified or ε-conormal

waves, we are lead to the question of the compatibility conditions required
on the initial data. We show that there actually exist compatible initial data
(see theorem

existence de donnees compatibles
4.4). All this matter is treated in the section

solutionsstratifiees
4.

1By C∞b (Ω) we mean that the functions are in C∞(Ω) and are bounded with bounded
derivatives at any order.
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2 Position of the problem
position du probleme

2.1 Structure assumptions
Structure assumptions

Let us consider the N ×N symmetrizable hyperbolic system of conservation
laws (

systofc
1.9) in space dimension d ≥ 1. The framework is the one described in

(
F00003000
1.10)-(

F00000000
1.11)-(

F
1.12). It implies other properties.

lemme1 Lemma 2.1. Under the condition (
F
1.12), the function λ(u, ξ) is linear with

respect to ξ. Moreover the field u 7→ F(u) is locally integrable.

Proof. We select r(u) 6= 0 belonging to F(u). Differentiating in ξj the
relation A(u, ξ) r(u) = λ(u, ξ) r(u), yields

Aj(u) r(u) = ∂ξj
λ(u, ξ) r(u) .

The left hand side is independent of ξ. Thus ∂ξj
λ(u, ξ) does not depend

on ξ which proves the linearity. Furthermore, by
B
[3], for all ξ 6= 0 the field

F(·, ξ) : u 7→ F(u, ξ) is locally integrable. Since this property is preserved by
intersection, the result follows for u 7→ F(u). 2

Example 2.1. Let us consider the Euler system of entropic gaz dynamics,
in space dimension d = 2

euler(v,rho,s) (2.1)


∂tv + (v · ∇x)v + ρ−1∇xp = 0
∂tρ+ (v · ∇x)ρ+ ρ divx v = 0

∂ts + (v · ∇x)s = 0

with p = P (ρ, s). For the unknown u = (v,ρ, s) ∈ R4 we have

(2.2) A(u, ξ) =


v · ξ 0 a ξ1 b ξ1
0 v · ξ a ξ2 b ξ2
ρ ξ1 ρ ξ2 v · ξ 0
0 0 0 v · ξ


where a := ρ−1 P ′

ρ(ρ, s) and b := ρ−1 P ′
s(ρ, s). It is assumed that a(ρ, s) > 0

for all ρ and all s. The linear degenerate eigenvalue is λ(u, ξ) = v · ξ and
the corresponding eigenspace is the plane of R4 defined by{

(v′, ρ′, s′) ∈ R4 ; a ρ′ + b s′ = 0, ξ1 v
′
1 + ξ2 v

′
2 = 0

}
.

We find that F(u) is the line of R4 defined by

(2.3)
{

(0, ρ′, s′) ∈ R4 ; a ρ′ + b s′ = 0
}
.

The same calculation with the 3-D equations gives again N ′ = 1. •
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We denote by (e1, · · · , eN ) the canonical basis of RN . Let N ′′ := N−N ′.
Since F is locally integrable, there exists a smooth diffeomorphism χ ∈
C∞(Õ;O) between two open sets Õ and O of RN both containing 0, with
χ(0) = 0, and such that the change of coordinates maps the vector fields
eN”+1, · · · , eN onto a basis of F. In other words, the N ′ vectors

∂χ

∂ũN”+1
, · · · , ∂χ

∂ũN

form a basis of the linear space F(χ). The conditions to impose on the new
variable ũ = χ−1(u) are

systemetildeconservatif (2.4) ∂tf̃0(ũ) +
d∑

j=1

∂j f̃j(ũ) = 0 , f̃j = fj ◦ χ .

For C1 solutions, this system is equivalent to the quasilinear system

systemetilde (2.5) ∂tũ+
d∑

j=1

Ãj(ũ) ∂j ũ = 0 , Ãj := Dχ−1Aj(χ)Dχ .

We introduce the decomposition

ũ = (v, w) , v := (ũ1, · · · , ũN”) , w := (ũN”+1, · · · , ũN ) .

The fact that λ(u, ξ) is linearly degenerate implies that the new eigenvalue
λ̃(ũ, ξ) := λ

(
χ(ũ), ξ

)
of the matrix

Ã(ũ, ξ) :=
d∑

j=1

ξj Ãj(ũ)

does not depend on w. Since we already know that λ̃ is linear with respect
to ξ, it remains

(2.6) λ̃(ũ, ξ) = µ(v) · ξ , ∀ (u, ξ) ∈ RN × Rd .

In all the sequel we will note Xv the corresponding characteristic field

reduitavantsym (2.7) Xv := ∂t + µ(v) · ∇x .

Furthermore, the linear space

F̃(ũ) := ∩ξ 6=0 F(ũ, ξ) , F(ũ, ξ) := ker
(
Ã(ũ, ξ)− µ(v) · ξ × Id

)
8



becomes the constant linear subspace of RN with equation {v = 0}.
Now on, we drop the ”̃ ”. For example we call again u the unknown ũ.

The system (
systemetilde
2.5) can be put in the following form

reduit (2.8) Xv u+M(u, ∂x)u = 0

where M(u, ∂x) is the N ×N first order linear operator

M(u, ∂x) = M1(u) ∂1 + · · · +Md(u) ∂d .

By construction, the matrix M(u, ξ) satisfies

danslenoyau (2.9) {v = 0} ⊂ ker M(u, ξ) , ∀ (u, ξ) ∈ O × Rd .

The system (
systofc
1.9) being symmetrizable, the same is true for the system (

reduit
2.8).

Hence we can find a symmetric positive definite matrix S(u) with C∞ coef-
ficients such that

symetriseur (2.10) S(u)M(u, ξ) is symmetric for all (u, ξ) ∈ O × Rd .

To summarize, we consider a system of the form (
reduit
2.8) satifying (

danslenoyau
2.9) and

we make the following hypothesis.

hyp 1.1 Assumption 2.2. There exists a good symmetrizer (
symetriseur
2.10) such that the co-

efficients of the skew symmetric differential operator S(u)M(u, ∂x) are in-
dependent on w. We will note in the sequel L(v, ∂x) := S(u)M(u, ∂x).

The system (
reduit
2.8) is equivalent to

reduitsymetrique (2.11) S(u)Xv u + L(v, ∂x)u = 0

and it follows from the symmetry of L and from the property (
danslenoyau
2.9) that L

has the following form

MatriceB (2.12) L(v, ξ) =
[

L[(v, ξ) 0
0 0

]
where the block L[(v, ξ) is symmetric, of size N ′′ × N ′′. For all (v, ξ) ∈
RN”×(Rd \{0}), we will note P(v, ξ) the matrix of the orthogonal projector
of RN onto ker L(v, ξ) written in the canonical basis of RN , and we will
note P[(v, ξ) the matrix of the orthogonal projector of RN” onto ker L[(v, ξ)
written in the canonical basis of RN”. These two operators are linked by

(2.13) P(v, ξ) =
[

P[(v, ξ) 0
0 Id

]
.
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The assumption (
F00003000
1.10) implies that L(v, ξ) has a constant rank when (u, ξ)

varies in O× (Rd \ {0}) so that its range and its kernel depend smoothly on
(u, ξ). We will make a repeated use of this property.

Lemma 2.3. The mapping (u, ξ) 7→ P(v, ξ) is a C∞ function on the open
set O × (Rd \ {0}).

Example 2.2. The entropic Euler equations. We consider Euler equa-
tions of gaz dynamics as it is written in (

euler(v,rho,s)
2.1). A suitable change of dependent

coordinates χ consists in choosing the unkown u = (v,p, s), which means to
express ρ in terms of (p, s) by a relation of the form ρ = ρ(p, s). In that
case, and after being symmetrized, the system writes

euler(v,p,s)* (2.14)


ρ

(
∂tv + (v · ∇x)v

)
+ ∇xp = 0

α
(
∂tp + (v · ∇x)p

)
+ divx v = 0

∂ts + (v · ∇x)s = 0

with α(p, s) = ρ′p(p, s)/ρ(p, s) > 0. We still have λ(u, ξ) = v · ξ but now
F(u) is the constant linear subspace of R4

F =
{

(0, 0, 0, s′) ; s′ ∈ R
}
.

In this example, the variables v and w are given by v = (v,p), w = s, and

Xv ≡ ∂t + v1 ∂1 + v2 ∂2 ≡ ∂t + v · ∇x .

The system (
euler(v,p,s)*
2.14) is actually of the form (

reduitsymetrique
2.11) with

S(u) =


ρ 0 0 0
0 ρ 0 0
0 0 α 0
0 0 0 1

 , L(u, ξ) =


0 0 ξ1 0
0 0 ξ2 0
ξ1 ξ2 0 0
0 0 0 0

 .

Observe that S is a good symmetrizer since the matrix L(u, ξ) = L(v, ξ) does
not depend on the entropy w = s. This analysis extends to any dimension.

2.2 Setting of the problem and motivations

There exists very particular solutions of (
reduitsymetrique
2.11) with large amplitude fluctu-

ations. These are solutions u0 = (v0, w0) of the overdetermined system

conditionsurdeterminee (2.15) Xv0 u0 = 0 , L(v0, ∂x)u0 = 0 .
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In view of the form of the matrix L, this is equivalent to say that

∂tv0 + µ(v0) · ∇xv0 = 0 , L[(v0, ∂x)v0 = 01.9 (2.16)

and that

∂tw0 + µ(v0) · ∇xw0 = 0 .1.10 (2.17)

The condition (
conditionsurdeterminee
2.15) splits into the two parts (

1.9
2.16) and (

1.10
2.17). On

the one hand, a non linear overdetermined system on v0. On the other
hand a linear transport equation on w0, with coefficients depending on v0.
The system (

1.9
2.16) being overdetermined, it is ill posed for the initial value

problem. It admits however solutions like for example the constant solutions
or some simple waves (see the following remark). In the special case of
the Euler equations, the system (

1.9
2.16) will be studied with more details in

subsection
The overdetermined system for Euler
2.3.

remarqueondessimples Remark 2.4. The dimension of the linear subspace ker L[(v, ξ) is indepen-
dent on (v, ξ). When it is not 0, the system (

1.9
2.16) admits non constant

simple wave solutions. In that case, let us fix ξ0 ∈ Rd \ {0} such that
µ(0) · ξ0 = 0, and consider v 7→ r(v) a C∞ vector field on a neighborhood of
0 in RN” such that r(v) ∈ ker L[(v, ξ0) \ {0}. Let γ be an integral curve of
r. It is a local smooth solution in a neighborhood J of 0 ∈ R of

courbeintegraleder (2.18)
d

ds
γ(s) = r

(
γ(s)

)
, γ(0) = 0 , s ∈ J .

Hence, the function v0(t, x) := γ(ξ0 · x) is a local solution (which is not
constant) on a neighborhood of 0 ∈ R1+d of the system (

1.9
2.16). Indeed, the

fact that L[(v0, ∂x)v0 = 0 follows directly from (
courbeintegraleder
2.18). For the other relation,

the fact that the eigenvalue µ(v) · ξ0 is linearly degenerate implies that

d

ds

{
µ
(
γ(s)

)
· ξ0

}
= ∇v(µ · ξ0)

(
γ(s)

)
· r

(
γ(s)

)
= 0 .

It follows that

µ
(
γ(s)

)
· ξ0 = µ(0) · ξ0 = 0 , ∀ s ∈ J .

It implies that Xv0 v0 = 0 and shows that v0 is a solution of (
1.9
2.16).

We fix a v0 satisfying (
1.9
2.16). One can choose

1.12 (2.19) w0(t, x) = w
(
t, x, ϕ(t, x)/ε

)
11



where

∂tϕ+ µ(v0) · ∇xϕ = 0 , ϕ ∈ C1([0, T ]× Rd; R) .
∂tw + µ(v0) · ∇xw = 0 , w ∈ C1([0, T ]× Rd × T; RN ′

) .

It gives an example of large amplitude oscillating solution, with just
one phase. One can also consider examples with several phases like

1.15 (2.20) wε
0(t, x) = w

(
t, x, ϕ1(t, x)/ε, · · · , ϕ`(t, x)/ε

)
,

with again

∂tϕj + µ(v0) · ∇xϕj = 0 , ∀ j ∈ {1, · · · , `} .
∂tw + µ(v0) · ∇xw = 0 , w ∈ C1([0, T ]× Rd × T`; RN ′

) .

It is an example of a several phase oscillating solution generalizing (
1.12
2.19).

Let us insist on the fact that all the phases φj are eiconal for the same field.

One can also vary the nature of the profiles, and consider jump profiles
instead of periodic profiles. For example, one can choose a function w having
limits in +∞ and in −∞

1.14 (2.21) wε
0(t, x) = w

(
t, x, ϕ(t, x)/ε

)
, lim

z→±∞
w(t, x, z) = w±(t, x)

where we impose

∂tw + µ(v0) · ∇xw = 0 , w ∈ C1([0, T ]× Rd × R; RN ′
) .

∂tw± + µ(v0) · ∇xw± = 0 , w ∈ C1([0, T ]× Rd; RN ′
) .

Suppose that Ω+ := {ϕ > 0} and Ω− := {ϕ < 0} are two connected
open subsets of Ω separated by the smooth (and connected) hypersurface
{ϕ = 0}. Denote by u± the function in L2

loc(Ω) whose restriction to Ω± is
(v0,w±). When the limits w+ and w− are different, u± has a discontinuity
along the hypersurface {ϕ = 0}. Observe now that the function uε

0 =(
v0(t, x),w(t, x, ϕ/ε)

)
is an exact C∞ solution of the system (

reduit
2.8), which

converges to u± in L2
loc(Ω) as ε goes to 0. It follows that u± is solution in the

sense of distributions of the system of conservation laws (
systemetildeconservatif
2.4), discontinuous

across the characteristic hypersurface {ϕ = 0}. It is a contact discontinuity.
In the sense of the space L2

loc(Ω), the solution uε
0 is a small perturbation

of this contact discontinuity. It is important to note that the contact dis-
continuities obtained in this way are preserved by the change of dependent
variables χ introduced after the lemma

lemme1
2.1. Indeed χ(u±) is still a contact

discontinuity solution of (
systofc
1.9) in the sense of distributions. Actually, for all

ε 6= 0 the smooth function χ(uε
0) is an exact solution of (

systofc
1.9), and one can

pass to the limit as before since χ(uε
0) converges to χ(u±) in L2

loc(Ω).

12



One important question we discuss in this paper is the stability of these
various solutions (

1.12
2.19), (

1.15
2.20) and (

1.14
2.21). As a matter of fact, one of our

goals is to construct non trivial solutions of (
reduit
2.8) which are perturbations of

such kind of particular solutions.

Notations. We fix once for all T0 > 0 and we note Ω := ]− T0, T0[×Rd.
For every T > −T0, we will note

ΩT := ]− T0, T [×Rd

and for all T > 0 we will note

ωT := ]0, T [×Rd .

Let v0 ∈ H∞(Ω; RN”) be a given function satistying the system (
1.9
2.16) on a

neighborhood Ω[ of 0 ∈ R1+d. To fix our mind, we will assume that

(2.22) Ω[ =
{

(t, x) ∈ Ω ; |t|+ |x| < r
}
, r > 0

where | · | is the Euclidian norm in Rd. The symbol H∞ is for the usual
Sobolev space of order ∞.

The results contained in this paper provide essentially with local in-
formations. One more reason for this is the overdetermined system (

1.9
2.16)

which has in general no global solution in the whole domain Ω (excepted
the constants). However, in order to simplify the exposition and to avoid
the introduction of local domains of determination of the data, we prefer to
give results which are global in space. If necessary, the local versions of the
theorems can be easily deduced using the local uniqueness and finite speed
of propagation. To sum up, we are given for all the sequel a global solution
u0 := (v0, w0) ∈ H∞(Ω; RN ) of (

reduit
2.8), such that v0 is subjected to (

1.9
2.16) in

Ω[, and such that w0 ≡ 0 in Ω[. Such a framework can be obtained by a
usual procedure2.

Let a and b be real numbers such that a ≤ b. We introduce the space

(2.23)
Wm(a, b) :=

{
u ∈ C

(
[a, b];Hm(Rd)

)
;

∂j
t u ∈ C

(
[a, b];Hm−j(Rd)

)
, ∀ j ∈ {1, . . . ,m}

}
.

2Let v0 be a smooth solution of (
1.9
2.16) in a neighborhood of 0 in R1+d. We can extend

v0(0, ·) into ṽ0(0, ·) ∈ H∞(Rd; RN”). Since (
reduit
2.8) is symmetric hyperbolic, we can solve the

Cauchy problem corresponding to (
reduit
2.8) associated with the initial data (ṽ0(0, ·), 0). The

wished conditions are then fulfilled by picking T0 and r small enough.

13



For all fixed ε > 0, the classical theory of muldidimensional quasilinear hy-
perbolic systems applies. Let us recall that for every function u0 ∈ Hm(Rd)
with m > d/2 + 1, there is T > 0 such that the equation (

systofc
1.9) has a unique

solution u ∈ Wm(0, T ) satisfying the initial condition u(0, ·) = u0.

2.3 The overdetermined system for Euler
The overdetermined system for Euler

This subsection is devoted to a more precise analysis of the overdetermined
system (

1.9
2.16), in the case of the Euler equations of gaz dynamics. We note

v the velocity, p the pressure and s the entropy. The system (
1.9
2.16) writes

∂tv + (v · ∇x)v = 0 , divx v = 0 , ∇xp = 0

which means that the pressure p is a constant say p, and that v is a solution
of the system

Burgersincompressible (2.24) ∂tv + (v · ∇x)v = 0 , divx v = 0 , v(0, x) = h(x) .

Suppose that v is a C1 solution of (
Burgersincompressible
2.24) in a neighborhood of the origin

of Rd. Hence, in a neighborhood of the origin, v is constant along the
integral curves of the field (1,v). This implies in turn that this vector field
is constant along this curves which hence are straight lines, and the classical
relation follows

solutionimplicite (2.25) v
(
t, x+ t h(x)

)
= h(x)

which holds in a neighborhood of 0. Conversely, if h ∈ C1(Rd) is given, this
relation defines v ∈ C1(O) in an implicit way on a neighborhood O of 0
sufficiently small so that χ(t, x) :=

(
t, x+ t h(x)

)
is a C1-diffeomorphism in

a neighborhood of 0 onto O.
We want now to investigate which condition(s) on the data h will imply

that the local solution v
(
defined by (

solutionimplicite
2.25)

)
satisfies also the divergence free

condition of the system (
Burgersincompressible
2.24).

Let us note Dxv the d × d Jacobian matrix of v(t, ·) and h′ that of h.
The formula (

solutionimplicite
2.25) leads to

Dxv (2.26) (Dxv)(t, y) = h′(x)
(
Id + t h′(x)

)−1
, (t, y) = χ(t, x) .

Taking the trace of each side we obtain

divergencedev (2.27) divx v(t, y) = Tr
(
h′(x)

(
Id + t h′(x)

)−1
)
.

This trace can be evaluated with the following lemma.

14



Lemma 2.5. Let A be a d× d matrix with complex entries. The following
formula holds

Tr
(
A (Id + tA)−1

)
= Q′

A(t)/QA(t)

with QA(t) := det (Id+tA). Moreover, the polynomial QA is constant if and
only if A is a nilpotent matrix, and in that case QA ≡ 1.

Proof. Let us note λ1, · · · , λd the eigenvalues of A, repeated according
to their multiplicity. There exists an invertible matrix P such that A =
P−1 T P where T is a triangular matrix with diagonal (λ1, · · · , λd). Hence
we have

traexpl (2.28) Tr
(
A (Id + tA)−1

)
= Tr

(
T (Id + t T )−1

)
.

detexpl (2.29) QA(t) = det (Id + t T ) =
d∏

j=1

(1 + t λj) .

It follows that

Tr
(
A (Id + tA)−1

)
=

d∑
j=1

λj

1 + t λj
= Q′

A(t)/QA(t) .

Observe that QA(t) = td PA(−1/t) where PA(τ) is the characteristic polyno-
mial of A, that is PA(τ) = det (A− τI). Hence QA is a constant if and only
if PA(τ) ≡ (−τ)d which means that A is nilpotent. The lemma is proved.

By the way, let us point out that expanding each side of the equa-
lity (

detexpl
2.29) leads to QA(t) =

∑d
j=1 cj(A) tj where the coefficients cj(A) are

polynomial functions of the entries of A. The cj(A) can be formulated as
cj(A) = σj(λ1, · · · , λd) where σj(·) is the elementary symmetric polynomial
of degree j of d variables

c1 =
d∑

i=1

λi , c2 =
∑
i<j

λiλj , c3 =
∑

i<j<k

λiλjλk , · · · , cd = λ1 · · ·λd .

Hence the condition Q ≡ cte is equivalent to the relations

conditiondenullitedessigma (2.30) cj(A) = 0 , ∀ j ∈ {1, · · · , d} .

As a matter of fact, the condition for j = 1 means TrA = 0 and that for
j = d means det A = 0. 2
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It follows from this lemma and from the formula (
divergencedev
2.27) that divx v(t, x)

is 0 in a neighborhood of 0 in R1+d if and only if the polynomial Q′
h′(x)

is 0 for all x in a neighborhood of 0, i.e. if and only if the matrix h′(x)
is nilpotent on a neighborhood of 0 in Rd. This shows that the condition
Dxv is nilpotent is propagated by the C1 solutions of the multidimensional
Burgers equation. In other words, it is satisfied around 0 in R1+d if and only
if it is satisfied at t = 0 in a neighborhood of the origin of Rd. To sum up,
we have proved the following result.

theoremenilpotence Theorem 2.6. Let h ∈ C1(Rd; Rd) and let v be a local C1 solution on a
neighborhood of 0 of the Cauchy problem

pbdecauchypourburgers (2.31) ∂tv + (v · ∇x)v = 0 , v|t=0 = h .

The following properties are equivalent
(1) divxv = 0 in a neighborhood of 0 in R1+d,
(2) Dxv is nilpotent in a neighborhood of 0 in R1+d,
(3) h′(x) is nilpotent in a neighborhood of 0 in Rd.

When d = 2, the condition (
conditiondenullitedessigma
2.30) writes merely

trdet (2.32) divx h = 0 , det h′(x) = 0 .

A generic situation where det h′(x) ≡ 0 (with a non constant h) is when h
takes its values in a (strict) submanifold of R2 (i.e. on a curve). One can
construct such h in the following way. Let F and G be two functions in
C1(R; R) and let a be a local solution of the scalar conservation law

∂1F (a) + ∂2G(a) = 0 .

We take h(x) :=
(
F ◦a(x)

)
, G◦a(x)

)
which satisfies actually the two relations

required in (
trdet
2.32). The solution of the corresponding Cauchy problem will

hence satisfy the divergence free condition.
When d ≥ 3, the conditions (

conditiondenullitedessigma
2.30) are more complicated to deal with.

Nevertheless, the previous construction is still valid and gives again initial
data h with nilpotent h′.

Corollary 2.7. For all H ∈ C∞(R; Rd), if a(x) is a Ck local solution around
0 of the scalar conservation law divx (H ◦ a) = 0, the function h := H ◦ a
satisfies (

conditiondenullitedessigma
2.30), and the local solution of the corresponding Cauchy problem

(
pbdecauchypourburgers
2.31) satisfies divx v = 0.
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Proof. By Theorem
theoremenilpotence
2.6, it is sufficient to check that the differential of h

is nilpotent. Since h = H ◦ a, for all x in a small neighborhood of 0, the
matrix h′(x) has rank 1. There is at most one non zero eigenvalue of h′(x).
Since the trace of h′(x) is also 0, all the eigenvalues of h′(x) must be zero.
2

When d = 3, there is another generic situation. The condition det h′ = 0
is also satisfied when h takes its values in a submanifold Σ of dimension
2. For example, assuming that Σ is locally given by the equation w =
f(u, v), one looks for h =

(
u, v, f(u, v)

)
where u(x, y, z) and v(x, y, z) are

C∞ functions of (x, y, z) with values in R. In that case, the condition h′

nilpotent is equivalent to the following non linear system of two equations
with two unknowns

kovalevsky1 (2.33) ∂xu+ ∂yv + ∂zf(u, v) = 0 ,

kovalevsky2 (2.34) det

 p ∂xu ∂xv
q ∂yu ∂yv
−1 ∂zu ∂zv

 = 0 ,

where p(u, v) := ∂uf(u, v) and q(u, v) := ∂vf(u, v). By Cauchy-Kovalevsky
theorem, there are local real analytic solutions of the system (

kovalevsky1
2.33)-(

kovalevsky2
2.34).

More precisely, let a(y, z) and b(y, z) be two analytic functions from a neigh-
borhood of 0 in R2 with values in R. Suppose that

q
(
a(0), b(0)

)
∂za(0) + ∂ya(0) 6= 0 .

Then, the initial surface {x = 0} is non characteristic for the system (
kovalevsky1
2.33)-

(
kovalevsky2
2.34) with initial data (u, v)|x=0 = (a, b). Therefore, there exists a real

analytic solution (u, v) on a neighborhood of 0 in R3.

We end this section with another result involving the polynomial Qh′(x).
It concerns the life span of the classical solutions of the equation (

pbdecauchypourburgers
2.31). Let

us introduce

B(0,M ] :=
{
x ∈ Rd ; |x| ≤M

}
,

Ck
b (Rd) :=

{
h ∈ Ck(Rd; Rd) ;

∑k
j=0 ‖h(k)‖L∞(Rd) <∞

}
, k ∈ N .

life span Theorem 2.8. Let h ∈ C0
b (Rd)∩C1(Rd) and T > 0. The following properties

are equivalent
(1) the Cauchy problem

etalors (2.35) ∂tv + (v · ∇x)v = 0 , v|t=0 = h
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has a solution v(t, x) defined on [0, T ]×Rd and this solution v(t, x) belongs
to the space C1

(
[0, T ]× Rd; Rd

)
.

(2) For all M ∈ R+, the following minoration holds

min (2.36) inf { |Qh′(x)(t)| ; (t, x) ∈ [0, T ]×B(0,M ] } > 0 .

Theorem
life span
2.8 has the following consequence. If in addition, h ∈ C0

b (Rd)∩
C1(Rd) satisfies

(2.37) h′(x) is nilpotent for all x in Rd,

then the solution v is global in time. Indeed, in that case Qh′(x) ≡ 1 and the
condition (

min
2.36) is verified for all T .

The proof below shows that Theorem
life span
2.8 has an analogue when h is

defined only locally in space, replacing [0, T ]×Rd by an appropriate domain
of determination.

Proof. Assume first that (1) is satisfied. Let us consider the system of
ordinary differential equations

d

dt
χ(t, x) = v

(
t, χ(t, x)

)
, χ(0, x) = x .

The solution is defined (and C1) on [0, T ]. For all t ∈ [0, T ], the application
χ(t, ·) is a C1 diffeomorphism of Rd. For all M ∈ R+, we have

inf
{
|detDxχ(t, x)| ; (t, x) ∈ [0, T ]×B[0,M ]

}
> 0 .

Since by construction χ(t, x) = x+ t h(x), we find

det Dxχ(t, x) = det
(
Id + t h′(x)

)
= Qh′(x)(t)

and the condition (
min
2.36) follows.

Conversely assume that (2) holds. Fix any M ∈ R+. Let T ∗ be the
supremum of the T̄ such that (

etalors
2.35) has a solution on the domain

D(T̄ ,M) :=
{

(t, x) ; |x|+ t ‖ h ‖L∞(Rd)≤M , t ∈ [0, T̄ ]
}
.

For t ∈ [0, T ∗[ and y = χ(t, x) the formula (
Dxv
2.26) can be written

diffcal (2.38) Dxv(t, y) = Qh′(x)(t)
−1 h′(x) co

(
Id + t h′(x)

)
where co(M) is the co-matrix of M . Then (

min
2.36) and (

diffcal
2.38) imply

majochi (2.39) sup
{
|Dxv(t, x)| ; (t, x) ∈ D(T̄ ,M) } < ∞ .

This estimate contradicts the definition of T ∗, because it allows to extend
the solution v beyond T ∗ (see

Ma
[20]). Therefore T ∗ = T . Since M is arbitrary,

this implies (1).
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2.4 Reduction of the system
reduction

We consider the equation (
reduit
2.8). By using the property (

danslenoyau
2.9), we get

(2.40) M(u, ∂x) =
[
M1(u, ∂x) 0
M2(u, ∂x) 0

]
.

Let S(u) be a symmetrizer for the system (
reduit
2.8). We have

(2.41) S(u) = tS(u) =
[
E(u) tF (u)
F (u) G(u)

]
>> 0 .

The matrices E(u) and G(u) are symmetric positive definite, thus invertible.
Moreover, by (

symetriseur
2.10),

M2is (2.42) FM1 +GM2 = 0 , EM1 + tFM2 is skew symmetric.

Thus

M2is* (2.43) M2(u, ∂x) = −C(u)M1(u, ∂x) , C := G−1 F .

By construction, the operator L[(v, ∂x) involved in (
reduitsymetrique
2.11)-(

MatriceB
2.12) is

L[(v, ∂x) = (EM1 + tFM2)(v, ∂x) .

Therefore, (
M2is*
2.43) implies:

L[(v, ∂x) = Σ(u) M1(u, ∂x) with Σ := (E − tF G−1 F ) = tΣ � 0 .

In this paper, we are interested in solutions uε which can be put in the
form uε = (v0 + ε V ε,W ε) where

(2.44) the supports of V ε and W ε are contained in Ω[ .

Since v0 is fixed, the true unknown is the couple (V ε,W ε). It turns out that
the system (

reduitsymetrique
2.11) is equivalent to

euler(v,p,s) (2.45)


E Xv0+εV V + L[(v0 + εV, ∂x)V + ε−1 tF Xv0+εV W

= − ε−1
{
E Xv0+εV v0 + L[(v0 + εV, ∂x) v0

}
,

ε C Xv0+εV V +Xv0+εV W = −G−1 F Xv0+εV v0 .

Since v0 satisfies (
1.9
2.16), we have

(2.46)
Xv0+εV v0 = ε

(∫ 1
0 (V · ∇v)µ(v0 + ε s V ) ds

)
· ∇xv0 .

L[(v0 + εV, ∂x) v0 = ε
∫ 1
0 (V · ∇v)L[(v0 + ε s V, ∂x) v0 ds .
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The second equation in (
euler(v,p,s)
2.45) yields

ε−1 tF Xv0+εVW = − tF G−1 F Xv0+εV V

− tF G−1 F
(∫ 1

0 (V · ∇v)µ(v0 + ε s V ) ds
)
· ∇xv0 .

We can use this last identity in order to interpret the first equation in (
euler(v,p,s)
2.45).

Then we can put (
euler(v,p,s)
2.45) in a symmetric form to get

5.1 (2.47)
Sε(v0 + εV,W )Xv0+εV U +L(v0 + εV, ∂x)U

+Kε(v0, ∂v0, U)U = 0 .

Here, the matrix Kε is a C∞ function of its arguments, including ε. The
operator L(v, ∂x) is as in (

reduitsymetrique
2.11). The matrix Sε(u) is given by

(2.48) Sε(u) :=
[

Σ(u) + ε2 tC C ε tC
ε C Id

]
.

Observe that, for ε small enough, the matrix Sε(u) is still symmetric positive
definite. In all the sequel we will note Hε(t, x, U, ∂) with U = (V,W ) the
linear first order symmetric operator

zorglonde (2.49)
Hε(t, x, U, ∂) := Sε(v0 + εV,W )Xv0+εV

+L(v0 + εV, ∂x) + Kε(v0, ∂v0, U) .

3 Oscillating solutions and the WKB expansions
Oscillating solutions and the WKB expansions

The goal of this section is to construct solutions uε(t, x) of (
reduit
2.8) admitting

an asymptotic expansion of the form

developpementmultiphase (3.1) uε(t, x) ∼
ε→0

∑
n≥0

εn Un

(
t, x, ϕ1(t, x)/ε, · · · , ϕ`(t, x)/ε

)
where the profiles Un(t, x, θ1, · · · , θ`) are smooth functions which are (2πZ)`-
periodic with respect to the fast variable θ = (θ1, · · · , θ`)

Un(t, x, θ) ∈ H∞(Ω× T`; RN ) , T := R/2πZ, ∀n ≥ 0 .

The phases ϕ1(t, x), · · · , ϕ`(t, x) are real valued functions in C∞b (Ω; R).
They are all solutions of the same eiconal equation

Xv0 ϕk ≡ 0 , ∀ (t, x) ∈ Ω , ∀ k ∈ {1, · · · , `} .

Introduce the notations ~ϕ := (ϕ1, · · · , ϕ`) ; 〈α · α′〉 denotes the Euclidian
scalar product in R` ; accordingly, α · ∂x~ϕ = ∇x〈α · ~ϕ〉 where the term on
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the left is the usual product of the line matrix α and the Jacobian matrix
of the mapping ~ϕ(t, ·).

We call Φ the R-linear subspace of C∞(Ω,R) generated by {ϕ1, · · · , ϕ`}.
It follows from the assumptions that for all ψ ∈ Φ, we have Xv0ψ ≡ 0.
We add conditions which are usual in the context of multiphase geometrical
optics (see

HMR
[15],

JMR1
[16] and

JMR2
[17]).

Assumption 3.1. (strong coherence) We have 1 /∈ Φ. Moreover, for allstrong coherence
ψ ∈ Φ, ∂xψ(t, x) nowhere vanishes in Ω or is identically 0 in Ω.

The first assumption is satisfied in most applications. If Φ contains non-
trivial constants, then extra factors eic/ε, with c constant, have to be added
in the expansions below. Here, we avoid this unessential technicality. On
the contrary, the second part of the assumption is essential to the construc-
tion of WKB solutions. When there is only one phase ϕ, it means that ∂xϕ
never vanishes on Omega. In general, Φ is a finite dimensional subspace of
C∞

b (Ω), of dimension `′ ≤ ` . Taking a basis {ψ1, . . . , ψ`′}, the second con-
dition means that the differential ∂xψ1, . . . , ∂xψ`′ are linearly independent
in Rd at every point of Ω. In particular, `′ ≤ d.

It was shown in
JMR1
[16],

JMR2
[17],

JMR3
[18] that a small divisor condition is necessary

for the contruction of arbitrary order asymptotic WKB solutions. Therefore
we include :

Assumption 3.2. (small divisors) There are two constants c > 0 andpetits diviseurs
ρ ≥ −1 such that for all α ∈ Z` \ {0}, there holds for all (t, x) ∈ Ω:

sd (3.2) |α · ∂x~ϕ(t, x) | ≥ c / |α|ρ .

This assumption involves only the phases α ·∂x~ϕ with α ∈ Z`. There are
two parts in this assumption: first, for all α 6= 0, α ·∂x~ϕ(t, x) never vanishes
on Ω, which by Assumption

strong coherence
3.1 means that α · ~ϕ is not a constant and thus

not zero; this implies that the ϕj are linearly independent over Q. Second,
taking a basis {ψ1, . . . , ψ`′} of Φ and writing the ϕj in this basis, that is,
with obvious notations, ϕj = kj · ~ψ, (

sd
3.2) is an arithmetic condition on the

kj ∈ R`′ .

Example 3.1. When ` = 1, there is only one phase ϕ. The strong coherence
and small divisor assumptions reduce to the constraint

inf
(t,x)∈Ω

|∇xϕ(t, x)| > 0 .

21



Example 3.2. Suppose that ~ϕ satisfies

conditions tres fortes (3.3) α · ∂x~ϕ(t, x) 6= 0 , ∀α ∈ R` \ {0} , ∀ (t, x) ∈ Ω .

Then the strong coherence Assumption
strong coherence
3.1 is fullfiled. Moreover, by homo-

geneity, the small divisor Assumption
petits diviseurs
3.2 holds with ρ = −1.

Example 3.3. Suppose that v0 is constant and consider linear phases

ϕj(t, x) = aj t+ kj · x ∀ j ∈ {1, · · · , `} .

The Assumption
strong coherence
3.1 is satisfied, since for all ψ ∈ Φ, ∂xψ is a constant. The

condition (
conditions tres fortes
3.3) are satisfied if and only if the vectors k1, · · · , k` are linearly

independent in Rd.
The small divisors condition

petits diviseurs
3.2 means that the vectors kj , · · · , k` in Rd

are linearly independent over Q, and satisfy an arithmetic condition. It is
generically satisfied when the kj are independent over Q (see e.g.

JMR1
[16]).

In the expansion (
developpementmultiphase
3.1) the profiles Un can be decomposed into (Vn,Wn)

with Vn(t, x, θ) ∈ RN ′′
and Wn(t, x, θ) ∈ RN ′

. We assume that the first
profile satisfies the relation V0 = v0 where v0 satisfies (

1.9
2.16). In particular,

V0 does not depend on θ.
It is also interesting to consider oscillatory source terms. Hence we con-

sider the following system.

systemeavecsecondmembremultiphase (3.4) S(uε)Xvε uε + L(vε, ∂x)uε =
[
εf̃ε

εg̃ε

]
with f̃ε(t, x) = f̃ ε(t, x, ~ϕ/ε) and g̃ε(t, x) = g̃ε(t, x, ~ϕ/ε). Here the profiles f̃ ε

and g̃ε are C∞ functions of the parameter ε ∈ ]0, 1] with values respectively
in the spaces H∞(Ω× T`; RN ′′

) and H∞(Ω× T`; RN ′
).

3.1 Formal solutions

The first interesting result is the existence of formal or WKB solutions of
the system (

systemeavecsecondmembremultiphase
3.4) of the form (

developpementmultiphase
3.1). Let us first explain what is meant by

formal solutions. Plugging the expansion (
developpementmultiphase
3.1) into the system (

systemeavecsecondmembremultiphase
3.4), using

by Taylor expansions and ordering the terms in powers of ε, we obtain a
formal expansion in power series of ε:

∞∑
j=−1

εj Fj(t, x, ~ϕ/ε)
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with profiles Fj in H∞(Ω× T`; RN ). We say that (
developpementmultiphase
3.1) is a formal solution

when all the resulting Fj are indentically zero.
Introduce first some notations. Every function u(t, x, θ) in the space

H∞(ΩT × T`; RN ) has a Fourier expansion

fourier expansion (3.5) u(t, x, θ) =
∑
α∈Z`

ûα(t, x) ei〈α·θ〉

where ûα ∈ H∞(ΩT ; RN ) for all α ∈ Z` and

sommable (3.6)
∑

|α|p ‖ûα‖Hq(ΩT ) < ∞ , ∀ p > 0 , ∀ q > 0 .

Conversely, the property (
sommable
3.6) and the formula (

fourier expansion
3.5) characterize the ele-

ments of H∞(ΩT ×T`; RN ). We remark that û0 is the averaged value (in θ)
of u, that is

û0(t, x) =
1

(2π)`

∫ 2π

0
· · ·

∫ 2π

0
u(t, x, θ) dθ1 · · · dθ` .

Recall that P[(v, ξ) is the matrix for the orthogonal projector of RN ′′

onto ker L[(v, ξ), in the canonical basis of RN ′′
. By For (t, x) ∈ Ω and

α ∈ R`, we will note

Π[
α(t, x) := P[

(
v0(t, x), α · ∂x~ϕ(t, x)

)
.

Following Joly, Métivier and Rauch
JMR1
[16], we introduce the operator E(t, x, ∂θ)

defined by the following formula applied to V ∈ H∞(ΩT × T`; RN”)

(3.7) E(t, x, ∂θ)V(t, x, θ) := V̂0 +
∑

α∈Z`\{0}

Π[
α V̂α(t, x) ei〈α·θ〉 .

prop33 Proposition 3.3. E(t, x, ∂θ) is a linear continuous operator from H∞(ΩT×
T`; RN ′′

) into itself.

It is a consequence of the more general Proposition
operationdeEE
3.6 below.

The following theorem states that the system (
systemeavecsecondmembremultiphase
3.4) has formal solutions

of the form (
developpementmultiphase
3.1), and that one can prescribe arbitrary initial values to Wn

(for n ≥ 0) and to EVn ( for n ≥ 1 ).

solutionsformelles Theorem 3.4. Let {ak(x, θ)}k∈N∗ in H∞(Rd×T`; RN ′′
)N∗ and {b`(x, θ)}l∈N

in H∞(Rd×T`; RN ′
)N be two sequences of profiles, such that E(0, x, ∂θ)ak =

ak for all k. There exist T > 0 and a sequence of profiles {Un}n∈N in
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H∞(ΩT × T`; RN )N with Un = (Vn,Wn), satisfying V0 = v0 together with
the initial conditions

(3.8)
(
E(t, x, ∂θ)Vk

)
|t=0

= ak , W`|t=0 = b`,

and such ∑
n≥0

εn Un

(
t, x, ϕ(t, x)/ε

)
is a formal solution of (

systemeavecsecondmembremultiphase
3.4) on ΩT . Moreover, the profile V1 satisfies the

polarization condition

polardeV1 (3.9) E(t, x, ∂θ)V1 = V1 , ∀ (t, x) ∈ ΩT × T .

We refer to the section
The example of Euler equations
3.4 for an example related to the Euler equations

of gaz dynamics.

3.2 Proof of the theorem
solutionsformelles
3.4

The material used in the analysis of the profile equations is closed to that
of the paper

JMR1
[16]. However, since the hypothesis are not exactly the same,

we give a self contained demonstration of the technical lemmas.
We start with formulating the problem in terms of the new unknown

U ε = (V ε,W ε) such that uε = (v0 + εV ε,W ε). Using the notations in
(
zorglonde
2.49), the new system reads

systemereduitoscillant (3.10) Hε(t, x, U ε, ∂)U ε = hε , hε :=
[
fε

gε

]
=

∑
n≥0

εn hn .

We are looking for formal solutions of (
systemereduitoscillant
3.10) of the form

developpementnouvelleinconnue (3.11) U ε(t, x) =
∑
n≥0

εn Un(t, x, ~ϕ/ε)

where the profiles Un(t, x, θ) belong to H∞(ωT × T`; RN ) for some T >
0. Plugging the expansion (

developpementnouvelleinconnue
3.11) into the system (

systemereduitoscillant
3.10), and ordering the

resulting expansion in powers of ε, one gets formally

Hε(t, x, U ε, ∂)U ε − hε =
∑

j≥−1

εj Φj(t, x, ~ϕ/ε) .

We want to solve the cascade of equations {Φj ≡ 0}j≥−1. By a first order
Taylor expansion in ε, the hyperbolic operator Hε(t, x, U, ∂x) reads

Hε(t, x, U, ∂t,x) ≡ H0(t, x, U, ∂t,x) +
d∑

j=1

Bε
j(v0, U) ε ∂j + εMε(v0, ∂v0, U) .
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Here H0(t, x, U, ∂t,x) means Hε(t, x, U, ∂t,x) with ε = 0, that is

H0(t, x, U, ∂t,x) = S0(v0,W )Xv0 + L(v0, ∂x) + K0(v0, ∂v0, v0, U) .

Moreover Bε
j(v, U) and Mε(v, v′, U) are N × N matrices depending in a

C∞ way on their arguments ε, v, v′, U (up to ε = 0), the matrices Bε
j being

symmetric. To write the profile equations, we need the following notations

B(t, x, U, ∂θ) :=
d∑

j=1

∑̀
k=1

∂jϕk B0
j

(
v0(t, x), U

)
∂θk

L(t, x, ∂θ) :=
∑̀
k=1

L
(
v0(t, x), ∂xϕk(t, x)

)
∂θk

,

L(v0, ∂x) :=
d∑

j=1

Lj(t, x) ∂xj ,

H(t, x, U, ∂t,x,θ) := H0(t, x, U, ∂t,x) + B(t, x, U, ∂θ) .

With these notations, there holds:

(3.12) Φ−1(t, x, θ) ≡ L(t, x, ∂θ)U0,

(3.13) Φ0(t, x, θ) ≡ H(t, x,U0, ∂t,x,θ)U0 + L(t, x, ∂θ)U1 − h0,

and for j ≥ 1,

(3.14) Φj(t, x, θ) ≡ H0(t, x, ∂t,x,θ)Uj + L(t, x, ∂θ)Uj+1 − qj(t, x)

where H0(t, x, ∂t,x,θ) means the linearized operator of H(t, x, U, ∂t,x,θ) with
respect to U on the state U0, and qj is a term depending only on the right
hand side hε and on the profiles Uk with k ≤ j − 1. More precisely

(3.15) qj = Qj(v0, ∂v0,Uk, ∂Uk ; k ≤ j − 1) +
1
j!

(∂jhε

∂εj
)
|ε=0

.

The averaging operator. For all (v, ξ) ∈ RN ′′ ×Rd, recall that P(v, ξ) is
the matrix of the orthogonal projector of RN onto ker L(v, ξ) written in the
canonical basis of RN . For (t, x) ∈ Ω and α ∈ R`, we note

Πα(t, x) := P
(
v0(t, x), α · ∂x~ϕ(t, x)

)
.
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Lemma 3.5. For all α ∈ Z`, the entries of the matrix Πα(·, ·) belong to the
space C∞b (Ω). Moreover the following inequality holds

majorationdePi (3.16) ‖ ∂β
t,xΠα(·, ·) ‖L∞(Ω) ≤ cβ , ∀β ∈ N1+d

where cβ is a constant independent on α.

Proof. Since P(·, ·) is C∞ on O × (Rd \ {0}), the Assumption
petits diviseurs
3.2 implies

that Πα(t, x) is C∞ in Ω for all α in Zd \ {0}. Let us introduce an R-basis
ψ1, · · · , ψ`′ of Φ, and denote ~ψ the function (ψ1, · · · , ψ`′) from Ω to R`′ , so
that

|α′ · ∂x
~ψ| ≥ C |α′| , ∀α′ ∈ Rl′ .

Moreover, we can write

(ϕ1, · · · , ϕ`) = (ψ1, · · · , ψ`′)R

where R is a constant real (`′× `)-matrix. According to these notations, we
have α · ∂x~ϕ = α tR · ∂x

~ψ. From the coherence Assumption
strong coherence
3.1, we deduce

α′ · ∂x
~ψ(t, x) 6= 0 , ∀ (t, x) ∈ Ω , ∀α′ ∈ R`′ \ {0} .

The function P is homogeneous of degree zero with respect to ξ (as well as
Πα with respect to α). Thus

Πα(t, x) = P
(
v0(t, x),

α′ · ∂x
~ψ(t, x)

|α′ · ∂x
~ψ(t, x)|

)
= Π α

|α|
(t, x)

with α′ = α tR. Therefore the image of Ω× (R`′ \ {0}) by the mapping

(t, x, α′) 7→
(
v0(t, x),

α′ · ∂x
~ψ(t, x)

|α′ · ∂x
~ψ(t, x)|

)
is contained in a compact set of RN × S`′ (S`′ means the unit sphere of
R`′). It yields the inequality (

majorationdePi
3.16) for β = 0. For β 6= 0, we compute

with the chain rule the quantity ∂β
t,xΠα(t, x). By using again arguments of

homogeneity, we can then obtain (
majorationdePi
3.16). 2

For all α ∈ R`, it holds

L(t, x, ∂θ) ei〈α·θ〉 = iL(v0, α · ∂x~ϕ) ei〈α·θ〉
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and it follows that for all u ∈ H∞(ωT × T`; RN )

actiondeB (3.17) L(t, x, ∂θ)u =
∑

α∈Z`\{0}

iL(v0, α · ∂x~ϕ) ûα(t, x) ei〈α·θ〉

where the serie is summable in the sense of (
sommable
3.6). One can deduce from the

relation (
actiondeB
3.17) that L(t, x, ∂θ)u = 0 if and only if all the Fourier coefficients

L(v0, α · ∂x~ϕ)ûα(t, x) vanish. In other words

noyaudeB (3.18)
(
Id−Πα(t, x)

)
ûα(t, x) = 0, ∀α ∈ Z` \ {0}, ∀ (t, x) ∈ ΩT .

Let us introduce the mean operator

(3.19) E(t, x, ∂θ)u(x, θ) := û0 +
∑

α∈Z`\{0}

Πα(t, x) ûα(t, x) ei〈α·θ〉 .

operationdeEE Proposition 3.6. E(t, x, ∂θ) is a linear continuous operator from H∞(ωT×
T`) into itself. It is the projector on the kernel of L(t, x, ∂θ) parallel to
the range of L(t, x, ∂θ). Moreover E(t, x, ∂θ) extends as a linear continuous
operator on L2(ωT × T`), which is an orthogonal projector on L2(ωT × T`).
Extended in this way, E maps continuously Hs(ωT × T`) into itself for any
real s ≥ 0.

Proof. The fact that Πα(t, x) depends on (t, x) in a C∞b way together with
the uniform inequalities (

majorationdePi
3.16) implies that for any integer m and for all

u ∈ H∞(ωT × T`)

Eestcontinu (3.20) ‖Παûα‖Hm(ωT ) ≤ cm ‖ûα‖Hm(ωT ) , ∀α ∈ Z`

where cm is a constant depending only on m (and not on α). This proves
the continuity of E(t, x, ∂θ) on H∞(ωT × T`). By density of H∞(ωT × T`)
in Hm(ωT × T`) for any m ∈ N, the inequality (

Eestcontinu
3.20) shows that E(t, x, ∂θ)

extends as a linear continuous operator on Hm(ωT ×T`) for any m ∈ N. The
fact that Πα(t, x) ◦Πα(t, x) = Πα(t, x) implies that E(t, x, ∂θ) ◦E(t, x, ∂θ) =
E(t, x, ∂θ). Therefore E(t, x, ∂θ) is a projector on H∞(ωT × T`). We also
deduce from the relation (

noyaudeB
3.18) that for all u in H∞(ωT × T`)

(3.21) L(t, x, ∂θ)u = 0 if and only if E(t, x, ∂θ)u = u .

When m = 0 in (
Eestcontinu
3.20), one can take c0 = 1 and the fact that the Πα

are orthogonal projectors shows that E(t, x, ∂θ) is symmetric for the inner
product of L2(ωT ×T`). Again, the density of H∞(ωT ×T`) in L2(ωT ×T`),
shows that E extends as an orthogonal projector on L2(ωT × T`).
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It remains to prove that the range of Id − E is exactly the range of L.
Let u ∈ H∞(ωT ×T`) such that Eu = 0. We want to show that there exists
v ∈ H∞(ωT × T`) such that L v = u. Passing to Fourier coefficients and
noting Π⊥

α := Id−Πα, this is equivalent to

L(v0, ∂x〈α · ~ϕ〉) v̂α = ûα

which is again equivalent, since Π⊥
α ûα = ûα, to solve

partieelliptique (3.22)
(
Π⊥

α L(v0, ∂x〈α · ~ϕ〉) Π⊥
α + Πα

)
Π⊥

α v̂α = ûα .

For all (v, ξ) ∈ O × (Rd \ {0}) the determinant of the matrix

P⊥(v, ξ)L(v, ξ)P⊥(v, ξ) + P(v, ξ)

where P⊥ := Id−P, calculated in a basis of the form (basis of ImP⊥, basis
of ker P⊥) is

det
[
M(v, ξ) 0

0 Id

]
= detM(v, ξ)

where M(v, ξ) is an invertible matrix of size r = rankL with coefficients in
C∞

(
RN”×(Rd\{0})

)
homogeneous of degree 1 in ξ. Hence this determinant

is subjected to
|det M

(
v0(t, x), ξ

)
| ≥ c |ξ|r

where c is a constant independent on ξ.
For all α ∈ Zd \{0}, we deduce from the small divisor hypothesis

petits diviseurs
3.2 and

from the definition of Πα(t, x), that the determinant dα(t, x) of the matrix

matriceelliptique (3.23) Π⊥
α L(v0, ∂x〈α · ~ϕ〉) Π⊥

α + Πα

is in C∞b (Ω) and do satisfy

minorationdudeterminant (3.24) | dα(t, x) | ≥ c0 / |α|ρ r > 0

for all (t, x) ∈ Ω, the constant c0 in the inequality (
minorationdudeterminant
3.24) being independent

on α ∈ Zd \ {0}. Hence, for all α ∈ Zd \ {0}, there is a matrix Rα(t, x),
whith coefficients in C∞b (Ω), such that

(3.25) v̂α = Rα(t, x) ûα

is the unique solution of the equation (
partieelliptique
3.22). The relations (

matriceelliptique
3.23) and (

minorationdudeterminant
3.24)

imply that for all β ∈ N1+d, the matrix Rα satisfy the estimates

‖ ∂β
t,xRα ‖L∞(Ω) ≤ cβ (1 + |α|)m(β) , ∀α ∈ Zd
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where the constant cβ does not depend on α. Using (
sommable
3.6), we see that

v(t, x, θ) :=
∑

α∈Zd\{0}

Rα ûα(t, x) ei〈α·θ〉

belongs to H∞(Ω× T`). It is the unique solution of the problem

L(t, x, ∂θ)v = u, E(t, x, ∂θ)v = 0 .

The proposition is proved. 2

inversionelliptique Corollary 3.7. For every f ∈ H∞(ωT × T`) such that E f = 0, there is a
unique U ∈ H∞(ωT × T`) such that

L(t, x, ∂θ)U = f , E(t, x, ∂θ)U = 0 .

Denoting by U := Q(t, x, θ) f the solution, this defines a continuous operator
Q from ker E ≡ ImL into itself, for the topology of H∞.

The next theorem states that there exist sequences of profiles Un satisfy-
ing all the equations Φj ≡ 0, together with arbitrary given initial values for
(EUn)|t=0. The theorem

solutionsformelles
3.4 is then a direct consequence of this result, since

the profiles Vn+1, Wn (n ≥ 0) and Un are related by (Vn+1,Wn) = Un.

solutionsformellespourU Theorem 3.8. Let {an(x, θ)}n∈N be a sequence in H∞(Rd × T`; RN )N of
profiles satisfying E(0, x, ∂θ)an = an. There exist T > 0 and a unique
sequence of profiles {Un}n∈N in H∞(ωT × T`; RN )N satisfying the initial
conditions

(3.26) (EUn)|t=0 = an , ∀n ∈ N

and such that Φj ≡ 0 on ωT × T` for all j ≥ −1.

For the proof we show that the infinite sequence of systems

(3.27) (Id− E) Φn−1 = 0 , E Φn = 0 , (EUn)|t=0 = an , n ∈ N

can actually be solved by induction.
We start with n = 0. We get the first profile U0 by the following result

which also determines the time T > 0 of the theorem
solutionsformelles
3.4.
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theo equation du premier profil Theorem 3.9. Let h ∈ H∞(ω×T`; RN ) and a ∈ H∞(Rd×T`; RN ). There
exist T > 0 and a unique U0 ∈ H∞(ωT × T`; RN ) satisfying on ωT × T`

equation du premier profil (3.28)
{

(Id− E)U0 = 0
E H(t, x,U0, ∂t,x,θ)U0 = Eh

with the initial condition

U0(0, ·) = E(0, x, ∂θ) a0 .

The proof of this theorem relies on classical arguments in non linear
geometrical optics (see for example

JR
[19],

JMR1
[16] or

JMR2
[17]). In fact, for all U

in H∞(ωT × T`; RN ), the linear operator E H(t, x, U, ∂t,x,θ) coincides on
ker (Id − E) = Im E with the operator E H(t, x, U, ∂t,x,θ) E, and acts like a
(non local) symmetric hyperbolic operator. More precisely, one can solve
uniquely the linear Cauchy problem with initial data in Im E, together with
usual energy estimates, according to the following proposition.

Proposition 3.10. (see
JMR1
[16],

JMR2
[17] and

JR
[19]) Fix any U ∈ H∞(ωT0×T`) withprop6.3

‖U‖W m(0,T ) ≤ R. Let u0 ∈ H∞(Rd × T`) such that E(0, x, ∂θ)u0 = u0. Let
h ∈ H∞(ωT0 × T`) satisfying E(t, x, ∂θ)h = h. Then, there exists a unique
U ∈ H∞(ωT0 × T) such that (Id− E)U = 0 and

E H(t, x, U, ∂t,x,θ) E U = h, U|t=0 = u0 .

Furthermore, for all m ≥ m0 where m0 is big enough, we have

(3.29) ‖U‖W m(0,T ) ≤ cm(R) (T ‖h‖W m(0,T ) + ‖u0‖Hm(Rd) )

where cm(·) is an increasing function on [0,+∞[ and

‖V ‖W m(0,T ) := sup
0≤t≤T

sup
j≤m

‖∂j
t V (t, ·)‖Hm(Rd×T`) .

The non linear problem can then be solved classically by a simple Pi-
card iterative scheme, the convergence following from the estimations of the
proposition

prop6.3
3.10. The other profile equations are linear (steps n ≥ 1), and

can be solved by induction using the proposition
prop6.3
3.10 to determine EUn,

and the elliptic inversion of corollary
inversionelliptique
3.7 to get (I − E)Un.
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3.3 Exact oscillating solutions
solutionsexactesoscillantes

In this section we are interested in the existence of exact oscillating solutions,
asymptotic to the formal solutions constructed in the previous section. We
assume that ∑

n≥0

εn Un(t, x, ~ϕ/ε)

is a formal solution on ωT = ]0, T [×Rd given byTheorem
solutionsformelles
3.4, with Un =

(Vn,Wn) ∈ H∞(ωT × T`) and V0 = v0. We obtain approximate solutions

uε
app = (vε

app, w
ε
app) = (v0 + εV ε

app,W
ε
app)

of the system (
systemeavecsecondmembremultiphase
3.4), choosing

it is my the choice (3.30)
V ε

app(t, x) =
∑M

n=1 ε
n−1 Vn

(
t, x, ~ϕ(t, x)/ε

)
.

W ε
app(t, x) =

∑M
n=0 ε

n Wn

(
t, x, ~ϕ(t, x)/ε

)
.

They satisfy

systeme verifie par la sol approchee (3.31) S(uε
app)Xvε

app
uε

app + L(vε
app, ∂x)uε

app −
[
εfε

gε

]
= εM

[
εRε

I

Rε
II

]
with Rε(t, x) := t(Rε

I , R
ε
II) = Rε(t, x, ~ϕ/ε) and profiles Rε(t, x, θ) bounded

in H∞(ωT × T`).

Let us now consider the Cauchy problem for (
systemeavecsecondmembremultiphase
3.4) with the initial data

donneesinitialesoscillantes (3.32) uε
|t=0 = uε

app|t=0 .

thm solutions exactes I Theorem 3.11. Define

M0 := min
{
d+ 2 ; (d+ `+ 2)/2

}
.

There exists ε0 > 0 small enough such that, if M ∈ N with M > M0,
and if 0 < ε < ε0, the Cauchy problem (

systemeavecsecondmembremultiphase
3.4) − (

donneesinitialesoscillantes
3.32) has a local solution

uε = (v0 + εV ε,W ε) ∈ H∞(ωT ). Moreover, for all s > 0, the components
V ε and W ε satisfy

‖V ε − V ε
app‖Hs(ωT ) = O(εM−s) , ‖W ε −W ε

app‖Hs(ωT ) = O(εM−s) .

When M0 = d + 2, the proof is based on estimates in the domain ωT

with suitable weighted norms involving the Xk
v0

(ε ∂x)α derivatives. The
demonstration is in the spirit of the approximation theorem given in

G3
[12].

When M0 = (d + ` + 2)/2 the proof relies on a singular system approach
with Sobolev estimates on the enlarged domain ωT × T`. It is in the spirit
of

BK
[4] and

JMR2
[17]. It relies on the special structure of the approximate solution

and especially on the coherence assumption.
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Theorem
thm solutions exactes I
3.11 concerns the Cauchy problem with oscillatory data. Com-

patibility conditions on the initial data are necessary to kill the oscillations
on the other modes. These compatibility conditions are hidden in the choice
of the Cauchy data (

donneesinitialesoscillantes
3.32). The larger isM , the more compatible are the data

and the higher we can take Sobolev index s. When dealing with continuation
results from the past to the future, one can work under the weaker assump-
tion M > d/2 + 1. This is the aim of the next theorem. First introduce the
following conditions imposed on the exact solutions uε = (v0 + εV ε,W ε)

control1 (3.33)
‖Xk

v0
∂α

x (V ε − V ε
app,W

ε −W ε
app)‖L2(ωt) = ©(εM−|α|) ,

for all (k, α) ∈ N× Nd such that k + |α| ≤M

and

control2 (3.34)
‖Xk

v0
∂α

x (V ε − V ε
app,W

ε −W ε
app)‖L∞(ωt) = ©(ε1−|α|) ,

for all (k, α) ∈ N× Nd such that k + |α| ≤ 1 .

thm solutions exactes II Theorem 3.12. Assume M ∈ N and M > d/2 + 1. Let τ be such that
0 < τ < T . Suppose that for all ε ∈ ]0, 1], uε ∈ H∞(ωτ ) is an exact
solution of (

systemeavecsecondmembremultiphase
3.4) on ωτ , of the form uε = (v0 + εV ε,W ε) where (V ε,W ε)

satisfies (
control1
3.33) and (

control2
3.34) with t = τ . Then, there is ε0 > 0 such that for

all ε ∈ ]0, ε0] the solution uε extends as a solution ũε ∈ H∞(ωT ) of (
systemeavecsecondmembremultiphase
3.4) on

ωT . Moreover, ũε = (v0 +εṼ ε, W̃ ε) where (Ṽ ε, W̃ ε) satisfies the estimations
(
control1
3.33) and (

control2
3.34) with t = T .

3.4 The example of Euler equations
The example of Euler equations

Consider the entropic Euler equations, for simplicity of notations, in space
dimension two. We use the variables (v,p, s) as in (

euler(v,p,s)*
2.14). To fix the ideas,

we take v0 = 0 and p0 = p
0
. Then Xv0 ≡ ∂t and and we choose a single

phase function ϕ(t, x) ≡ x1, which is linear. Then, we have

L
(
v0, (ξ1, 0)

)
=


0 0 ξ1 0
0 0 0 0
ξ1 0 0 0
0 0 0 0

 , P
(
v0, (ξ1, 0)

)
=


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 ,

and

L(t, x, ∂θ) =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 ∂θ .
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Moreover, the averaging operator E(t, x, ∂θ) is

E(t, x, ∂θ)


V1(t, x, θ)
V2(t, x, θ)
P(t, x, θ)
S(t, x, θ)

 =


〈V1〉(t, x)
V2(t, x, θ)
〈P〉(t, x)
S(t, x, θ)


where the notation 〈u〉 means the average value in θ of the function u(t, x, θ)

〈u〉(t, x) :=
1
2π

∫ 2π

0
u(t, x, θ) dθ .

The general results of the previous section provide non trivial large ampli-
tude oscillating exact solutions of the system (

euler(v,p,s)*
2.14). By the polarization

condition (
polardeV1
3.9), they satisfy

(3.35)

vε
1(t, x) = ε V1(t, x) +O(ε2),

vε
2(t, x) = ε V2(t, x, x1/ε) +O(ε2),

pε(t, x) = p0 + ε P (t, x) +O(ε2),
sε(t, x) = S(t, x, x1/ε) +O(ε).

The profiles V1(t, x), V2(t, x, θ), P (t, x) and S(t, x, θ) are given by the quasi-
linear integro-differential hyperbolic system (

equation du premier profil
3.28):

exempled’equationdeprofil (3.36)



〈ρ(p0, S)〉 ∂tV1 + ∂1P = 0 , V1|t=0 = a1(x) ,

ρ(p0, S) (∂tV2 + V1 ∂θV2) + ∂2P = 0 , V2|t=0 = a2(x, θ) ,

〈α(p0, S)〉 ∂tP + ∂1V1 + 〈∂2V2〉 = 0 , P|t=0 = a3(x) ,

∂tS + V1∂θS = 0 , S|t=0 = a4(x, θ) .

Theorem
theo equation du premier profil
3.9 implies that we can solve locally (

exempled’equationdeprofil
3.36) for all data a1 and a3

in H∞(R2) and a2 and a4 in H∞(R2 × T).

3.5 Proof of the theorem
thm solutions exactes I
3.11 when M0 = d + 2.

We prove a slightly more general result, forgetting the origin of the ap-
proximate solutions and the assumptions used for their constructions. We
assume that uε

app = (v0 + εV ε
app,W

ε
app) satisfies the equation (

systeme verifie par la sol approchee
3.31) with an
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error term Rε = (Rε
I , R

ε
II) and that (V ε

app,W
ε
app, R

ε) satisfy the estimates :
for all k ∈ N and for all β ∈ Nd, there is ck,β such that forall ε ∈ ]0, 1]

controle de la sol approchee (3.37) ‖Xk
v0

(ε ∂x)β
(
V ε

app,W
ε
app, R

ε
)
‖L2(ωT )∩L∞(ωT ) ≤ ck,β .

The space L2(ωT ) ∩ L∞(ωT ) is equipped with the norm ‖ · ‖L2 + ‖ · ‖L∞ .
Since Xv0~ϕ = 0, these estimate are satisfied by any family Uε(t, x, ~ϕ/ε) ,
if Uε is bounded in H∞(Ω × T`). In particular, the approximate solution
defined by (

it is my the choice
3.30) satisfy (

controle de la sol approchee
3.37). Thus Theorem

thm solutions exactes I
3.11 follows from the next

result.

solutionsexactes Theorem 3.13. Let M > d + 2. Assume that for all ε ∈]0, 1], uε
app :=

(v0+εV ε
app,W

ε
app) and Rε = (Rε

I , R
ε
II) satisfy (

systeme verifie par la sol approchee
3.31), and the estimate (

controle de la sol approchee
3.37).

Then there exists ε0 > 0 such that for all ε ∈ ]0, ε0], the Cauchy problem
(
systemeavecsecondmembremultiphase
3.4) − (

donneesinitialesoscillantes
3.32) has a unique solution uε ∈ H∞(ΩT ) which, for all s > 0,

satisfies uε = (v0 + εV ε,W ε) and

‖V ε − V ε
app‖Hs(ωT ) = O(εM−s) , ‖W ε −W ε

app‖Hs(ωT ) = O(εM−s) .

First, we reformulate the problem in terms of the unknown U ε = (V ε,W ε).
With notations as in (

5.1
2.47) (

zorglonde
2.49), the equation for U ε reads

systrd (3.38) Hε(t, x, U ε, ∂)U ε = hε .

where hε = t(fε, gε). Define U ε
a = (V ε

app,W
ε
app). It is an approximate solu-

tion of the problem in the sense that

mozarella e prosciuto (3.39) Hε(t, x, U ε
a , ∂)U ε

a = hε + εM Rε .

We look for a solution U ε of the form U ε = U ε
a + εuε

err. The equation for
uε

err reads

systemepourl’erreur (3.40)


Hε(t, x, U ε

a + εuε
err, ∂)uε

err + Jε(aε,uε
err)u

ε
err = εM−1Rε

uε
err |t=0 = 0

where J is some N ×N matrix with C∞ entries (up to ε = 0), and

(3.41) aε :=
(
t, x, v0, ∂xv0, U

ε
a ,Xv0U

ε
a , ε ∂xU

ε
a

)
.

Using the notations

H̃ε(aε,uε, ∂) := Hε(t, x, U ε
a + εuε, ∂) + Jε(aε,uε)

the proof of Theorem
solutionsexactes
3.13 is based on priori estimates for the linear problem

systemeerreurlineaire (3.42)

{
H̃ε(aε,uε, ∂)uε = εM−1Rε ,

uε
|t=0 = 0 .

34



3.5.1 Weighted norms and anisotropic regularity
Weighted norms and anisotropic regularity

Consider the ε dependent vector fields on Ω

X0,ε := Xv0 , X1,ε := ε ∂1 , · · · , Xd,ε := ε ∂d .

For all multi-index α ∈ N1+d, Xα
ε := Xα0

0,ε · · ·X
αd
d,ε. Note that the commutator

of two such fields is a linear combination with C∞b (Ω) coefficients of the Xj,ε.
This property is due to the fact that the coefficient of ∂t in Xv0 is constant.
There holds:

[Xi,ε;Xj,ε] = Xi,ε ◦ Xj,ε − Xj,ε ◦ Xi,ε =
∑

0≤k≤d

ak Xk,ε , ak ∈ C∞b (Ω) .

For λ > 0 we define the weighted norms ‖u‖0,λ := ‖e−λt u‖L2(ωT ) and for
ε ∈ ]0, 1] and m ∈ N

‖u‖m,λ,ε :=
∑
|α|≤m

λm−|α| ‖Xα
ε u‖0,λ

and

(3.43) |u|∗,ε :=
∑
|α|≤1

‖Xα
ε u‖L∞(ωT ) .

To estimate the traces on t = 0 we also use the following norms

|v|m,λ,ε :=
∑
|α|≤m

λm−|α| ‖(ε ∂x)α v‖L2(Rd) .

We use the following Gagliardo-Nirenberg estimates.

Lemma 3.14. Let m ∈ N∗. There is cm > 0 such that for all u ∈ L∞(ΩT )∩
Hm(ωT ), for all ε ∈ ]0, 1] and for all α ∈ N1+d such that |α| ≤ m

(3.44) ‖e−λt Xα
ε u‖L2m/|α|(ωT ) ≤ cm ‖u‖1−|α|/m

L∞(ΩT ) ‖u‖
|α|/m
m,λ,ε .

Proof. It is a special case of inequality (Ap-II-3) given in
G1
[10], p. 643. 2

This implies the following Moser’s type inequality.

MoserI Lemma 3.15. Let m an integer. There is cm > 0 such that for all ε ∈ ]0, 1]
and for all functions a1, · · · , ap in Hm(ωT ) ∩ L∞(ωT )

(3.45) λm−k ‖Xα
ε a‖0,λ,ε ≤ cm

∑
k

( ∏
j 6=k

‖aj‖L∞(ΩT )

)
‖ak‖m,λ,ε

where α = (α1, · · · , αp) ∈ Np and

Xα
ε a := Xα1

ε a1 × · · · × X
αp
ε ap , |α1|+ · · ·+ |αp| ≤ k ≤ m.
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lemme Sobolev I Lemma 3.16. For all m > d/2+1 there is csob > 0 such that for all ε ∈ ]0, 1]
and for all u ∈ Hm(ωT )

plongement de Sobolev (3.46) |u|∗,ε ≤ csob ε
−d/2 eλT ‖u‖m,λ,ε , ∀λ ≥ 1 .

Proof. It is a consequence of the usual Sobolev embedding applied to the
function x 7→ u(t, ε x). 2

3.5.2 Traces estimates on the exact solution

For all fixed ε ∈ ]0, 1], there is T ε > 0 such that to the Cauchy problem
(
systrd
3.38) has a solution U ε ∈ H∞(ωT ε) . In particular, the terms (Xk

v0
U ε)|t=0

are well defined in H∞(Rd). Our main objective is to show that T ε = T .
We start the analysis by looking at the traces of U ε at t = 0.

ilfallaitleno Lemma 3.17. For all m ∈ N, there is an increasing function pm : R+ 7−→
R+
∗ such that for all ε ∈ ]0, 1], all k and m′ such that k + m′ ≤ m and for

all λ ∈ [1,+∞[, the following estimate holds:

estimtraces (3.47) |
(
Xk

v0
(U ε − U ε

a)
)
|t=0

|m′,λ,ε ≤ pm(λ) εM−k+1.

Proof. By construction, we have (U ε − U ε
a)|t=0 ≡ 0 thus (

estimtraces
3.47) is trivial for

m = 0. We prove (
estimtraces
3.47) for k = 1. The equation (

systrd
3.38) on U ε can be

formulated as

Xv0U
ε = G

(
ε, t, x, (∂α

xU
ε)|α|≤1

)
+ T(ε, t, x, U ε)hε

where G is a smooth function of its arguments. It implies that(
Xv0U

ε
)
|t=0

= G
(
ε, 0, x, (∂α

xU
ε
a)|α|≤1

)
|t=0

+ T(ε, 0, x, U ε
a)(hε)|t=0

Since U ε
a satisfies the equation (

mozarella e prosciuto
3.39) which only differs by the additional

source term εMRε, we have(
Xv0 (U ε − U ε

a)
)
|t=0

= εM T(ε, 0, x, U ε
a)(Rε)|t=0 .

Estimating the L2−norm of the right hand side, as well as the L2−norm of
its ε ∂x−derivative, implies (

estimtraces
3.47) when k = 1.

The other cases k > 1 are proved by induction. applying Xk−1
v0

to the
equations above, causing a loss of ε−k+1 in the right hand side.

36



3.5.3 A priori estimates for the linear problem

In this paragraph we prove the following result.

propestimationapriori,I Proposition 3.18. For all m ∈ N, there is λm ≥ 1 and there is a positive
function Cm : R+ 7−→ R+

∗ such that the following holds. For all ε ∈ ]0, 1], for
all λ ≥ λm, and for all functions u and u which belong to Hm(ωT )∩Lip(ωT )
and satisfy the system (

systemeerreurlineaire
3.42), one has

estimationaprioriI (3.48)
‖u‖m,λ,ε ≤ Cm(|u|∗,ε)

λ1/2

(
‖u‖m,λ,ε + ε−d/2 eλT ‖u‖m,λ,ε ‖u‖m,λ,ε

+ εM−1 ‖Rε‖m,λ,ε +
∑

k+m′≤m λm−k−m′ | (Xk
v0

u)|t=0|m′,λ,ε

)
.

Proof. The proof is in several steps.
• step 1: the L2 estimate. Expanding by the Taylor formula the

coefficients of the operator H̃ε(aε,uε, ∂), we get

(3.49)
H̃ε(aε,uε, ∂) ≡

∑
0≤j≤d

Sε
j(a

ε,uε) Xj,ε

+ L(v0, ∂x) + J̃ε(aε,uε)

where the matrices Sε
j and J̃ε are C∞ functions of their arguments ε, a and

u. Moreover, the Sε
j are symmetric, with Sε

0 positive definite. Introduce the
new unknown ũ := e−λt u which satisfies

equationpourutilde (3.50)

∑
0≤j≤d

Sε
j(a

ε,uε) Xj,εũ + L(v0, ∂x)ũ

+ λ Sε
0(a

ε,uε)ũ + J̃ε(aε,uε)ũ = εM−1 e−λtRε .

Forming the product of ũ with the equation (
equationpourutilde
3.50), integrating by parts

on ωT and using the symmetry of the matrices Sj and Lj , we obtain the
following inequality, exact for λ ≥ λ0 and λ0 big enough

estimationL2,I (3.51) ‖u‖0,λ,ε ≤
C0(|u|∗,ε)
λ1/2

(
‖u‖0,λ,ε + |u(0)|0,λ,ε + εM−1 ‖Rε‖0,λ,ε

)
.

• step 2: end of the proof when v0 is constant. It is interesting to
treat the special case v0 is constant because the proof is simpler, involving
however some commutator estimates that will be useful in the general situ-
ation. So, suppose that v0 is a constant vector in RN . We want to estimate
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the higher derivatives of u, i.e. the ‖Xα
ε u‖0,λ,ε for |α| ≤ m. As usual, we

compose (
equationpourutilde
3.50) on the left with Xα

ε and we perform energy estimates

estimI,1 (3.52)

λm−|α| ‖Xα
ε u‖0,λ,ε ≤ C0(|u|∗,ε)

λ1/2

×
(
λm−|α| ‖ [ H̃ε(aε,u, ∂);Xα

ε ]u ‖0,λ,ε

+ ‖u‖m,λ,ε + λm−|α| |Xα
ε u(0)|0,λ,ε + εM−1 ‖Rε‖m,λ,ε

)
.

We are lead to estimate the commutator in the right hand side of (
estimI,1
3.52).

lemme ccommutateur cas constant Lemma 3.19. Let α ∈ N1+d such that |α| ≤ m. Suppose that v0 is constant.
Then for all ε ∈ ]0, 1], for all λ ∈ [1,+∞[, and for all u and u in H∞(ωT ),
one has

estimation commutateur cas constant (3.53)
λm−|α| ‖ [ H̃ε(aε,u, ∂); Xα

ε ]u ‖0,λ,ε ≤
c(|u|∗,ε)

(
‖u‖m,λ,ε + |u|∗,ε ‖u‖m,λ,ε

)
.

Proof. Since v0 is constant

(3.54) [L(v0, ∂x);Xα
ε ] = 0 , ∀α ∈ N1+d .

Thus the commutator that we want to estimate writes∑
[Sε

j(a
ε,u) Xj,ε;Xα

ε ] + λ [Sε
0(a

ε,u);Xα
ε ] + [ J̃ε(aε,u);Xα

ε ] .

With this simplification, the estimate (
estimation commutateur cas constant
3.53) is a classical estimate for com-

mutator and follows from Moser’s estimates of Lemma
MoserI
3.15. 2

Using estimate (
estimation commutateur cas constant
3.53) in (

estimI,1
3.52) and Lemma

lemme Sobolev I
3.16 to control |u|∗,ε, we get

the inequality (
estimationaprioriI
3.48) and the proposition is proved in this special case.

• step 3: reduction to the case where the field X0,ε is constant.
We perform a change of variables which reduces Xv0 to ∂t. Since Xv0v0 = 0,
v0 is constant along the the integral curves of the field and the integral curve
s 7→

(
s, γ(s; t, x)

)
issued from (t, x) at time s = t is

γ(s; t, x) =
(
t, x+ (s− t)µ(v0(t, x))

)
.

We perform the change of variables (t, x) 7→ Φ(t, x) :=
(
t, γ(0; t, x)

)
with

Φ(t, x) =
(
t, x− t µ(v0(t, x))

)
, Φ−1(t, x) =

(
t, x+ t µ(v0(0, x))

)
.

This is a C∞ diffeomorphism from Ω and DΦ and DΦ−1 belong to C∞b (Ω).
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In the new coordinates

(t′, x′) := Φ(t, x) =
(
t,Φ1(t, x), · · · ,Φd(t, x)

)
the functions f(t, x) become f ′(t′, x′) with f ′ is defined by f(t, x) = f ′

(
Φ(t, x)

)
.

The system (
systemeerreurlineaire
3.42) is transformed to

systemepourutilde’ (3.55)
S′0(a

′,u′) ∂t′u′ +
d∑

j=1

S′j(a
′,u′) ε ∂x′j

u′ + L(t′, x′, ∂x′)u′

+ J′(a′,u′)u′ = εM−1(Rε)′

where

(3.56) L(t′, x′, ∂x′) =
d∑

j=1

Lj ∂x′j
, Lj :=

d∑
k=1

L′k (∂xk
Φj) ◦ Φ−1 .

L(t′, x′, ∂x′) is the differential operator with symbol

(3.57) L(t′, x′, i ξ) = i L
(
v′0 , (ξ · ∂xΦ) ◦ Φ−1

)
.

The new system (
systemepourutilde’
3.55) obtained in the new coordinates (t′, x′) has the same

structure as (
systemeerreurlineaire
3.42), with L(t′, x′, ∂x′) in place of L(v0, ∂x) and ∂t′ in place of

X0,ε. It is equivalent to prove the estimates for u or for u′. Thus, dropping
the ′, it is sufficient to prove a priori estimates for the solutions of

systemeredresse (3.58)

∑
0≤j≤d

Sj(a,u) Xj,ε u + L(t, x, ∂x)u

+ J(a,u)u = εM−1Rε

when X0,ε ≡ ∂t.
• step 4: reduction to the case where L(t, x, ∂x) has constant

coefficients. Since Φ is a diffeomorphism

(3.59) ξ · ∂xΦ−1(t, x) 6= 0 , ∀ (t, x, ξ) ∈ Ω× (Rd \ {0}) .

It follows that the matrix L(t, x, ξ) has a constant rank on Ω × (Rd \ {0}).
Hence there is a N × N matrix Ψ(t, x, ξ) with real entries in C∞b (Ω × Rd),
which is invertible for all (t, x, ξ) ∈ Ω× Rd, which is homogenous of degree
0 in ξ for |ξ| large enough (say for |ξ| > r � 0), and which is such that for
all (t, x, ξ) ∈ ωT × Rd

reductiondusymboledeL (3.60) tΨ(t, x, ξ) L(t, x, ξ)Ψ(t, x, ξ) = p(ξ) L + ρ(t, x, ξ)
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where L is a constant N×N real symmetric matrix, the function p(·) belongs
to C∞b (Rd; R) and is homogenous of degree 1 in ξ for |ξ| > r, and ρ(·) is a
N ×N symmetric matrix whose coefficients are in C∞b (ωT ×Rd; R) and are
supported in {|ξ| ≤ r′} for some r′ > 0.

The functions Ψ(t, x, ξ) and p(ξ) are symbols of pseudo-differential op-
erators on Rd, depending in a C∞b way on the parameter t ∈ ]− T0, T0[. The
symbol Ψ(t, x, ξ) is of order 0, p(ξ) of order 1 and ρ(t, x, ξ) is a symbol of
order −∞. For the corresponding operators, the relation (

reductiondusymboledeL
3.60) implies that

(3.61) Ψ(t, x,Dx)∗ L(t, x,Dx)Ψ(t, x,Dx) = L p(Dx) + r(t, x,Dx)

where we use the notation Dx ≡ −i∂x, Ψ(t, x,Dx)∗ denotes the adjoint
of the operateur op (Ψ) and r is a pseudo-differential operator of order 0,
depending smoothly on the parameter t). Moreover, Ψ(t, x,Dx)∗ is also a
pseudo-differential operator of order 0; we denote by Ψ′(t, x, ξ) its symbol,
so that Ψ(t, x,Dx)∗ = Ψ′(t, x, ∂x). Let us emphasize the fact that, by
construction, there exists a constant c > 0 such that

minoration uniforme de gamma (3.62) 0 < c < | detΨ(t, x, ξ) | < c−1 , ∀ (t, x, ξ) ∈ Ω× Rd .

Denote by Hε(aε,u,X) the operator defined by

(3.63) Hε(aε,u,X) ≡
∑

0≤j≤d

Sj(aε,u) Xj,ε + J(aε,u) .

We still note u the unknown of the system (
systemeredresse
3.58) obtained at the step

3. The idea is to introduce a new function u ∈ H∞(Ω) which is defined by
u = Ψ(t, x,Dx)u and which satisfy the system

systemepseudo (3.64)
op(Ψ′) Hε(aε,u,X) op(Ψ)u + i L op(p)u =

− op(r)u + εM−1 op(Ψ′)Rε

and the condition u|t=0 = 0.

lemme choix de Psi Lemma 3.20. For all m ∈ N, one can choose the function Ψ(t, x, ξ) such
that Ψ(t, x, ∂x) is an isomorphism from Hm(ωT ) to Hm(ωT ).

Proof. Let Ψ(t, x, ξ) satisfy (
reductiondusymboledeL
3.60) and (

minoration uniforme de gamma
3.62). In general, the corresponding

operator Ψ(t, x, ∂x) is not invertible in L2(ωT )
(
or in Hm(ωT ) for a given

m
)
. But, with Ψδ(t, x, ξ) := Ψ(t, x, δ ξ), (

minoration uniforme de gamma
3.62) implies that Ψδ(t, x∂x) is

an isomorphism of Hm(ωT ) for δ > 0 small enough, (see for example
AG
[1],

40



exercise 5.14, p.75). Since L is homogenous of degree 1 in ξ, the following
relation holds

(3.65) tΨδ(t, x, ξ) L(t, x, ξ)Ψδ(t, x, ξ) = δ−1 p(δ ξ) L + δ−1 ρ(t, x, δ ξ)

and this shows that the function Ψδ solves the question. 2

From now on, we fix a function Ψ such that the conclusion of Lemma
lemme choix de Psi
3.20 holds.

Let v ∈ H∞(ΩT ) such that v|t=0 = 0 and

f := op(Ψ)∗ Hε(aε,u,X) op(Ψ)v + i L op(p)v .

If we note v = op(Ψ)v, the symbolic calculus shows that

inversion de Psi (3.66) v = op(Ψ−1)v + op−1v

where op−1 is a pseudo-differential operator of degree −1. Applying the
energy estimate of the step 1 to v = op(Ψ)v and using the relation (

inversion de Psi
3.66),

we deduce that v satisfies

estimL2poursystemepseudo (3.67) ‖v‖0,λ,ε ≤
C0(|u|∗,ε)
λ1/2

(
‖v‖0,λ,ε + |v(0)|0,λ,ε + ‖f‖0,λ,ε

)
for all λ ≥ λ0, λ0 being fixed large enough, and for some positive increasing
function C0(·).

In order to estimate the derivatives of v we apply the energy estimate
(
estimL2poursystemepseudo
3.67) to Xα

ε v. Since by construction

(3.68) [ op(p);Xα
ε ] = 0 ,

we get

estimordrempoursystemepseudo (3.69)

λm−|α| ‖Xα
ε v‖0,λ,ε ≤ C0(|u|∗,ε) λ−1/2

×
(
‖v‖m,λε + λm−|α| |Xα

ε v(0)|0,λ,ε + ‖f‖m,λ,ε

+ λm−|α| ‖ [ op(Ψ′) Hε op(Ψ) ; Xα
ε ]v ‖0,λ,ε

)
.

lemmedemajorationducommutateur,II Lemma 3.21. Let α ∈ N1+d such that |α| ≤ m. Then

majoration du commutateur,I (3.70)
‖ [ op(Ψ′) Hε op(Ψ) ; Xα

ε ] v ‖0,λ,ε ≤
C(|u|∗,ε)

(
‖v‖m,λ,ε + |op(Ψ)v|∗,ε ‖u‖m,λ,ε

)
.
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Proof. The commutator writes as the sum

sommedescommutateurs (3.71)
op(Ψ′) [Hε;Xα

ε ] op(Ψ)v + op(Ψ′) Hε [op(Ψ);Xα
ε ]v

+ [op(Ψ′);Xα
ε ] Hε op(Ψ)v .

1) The first term satisfies

‖op(Ψ′) [Hε;Xα
ε ] op(Ψ)v‖o,λ,ε ≤ c ‖[Hε;Xα

ε ] op(Ψ)v‖0,λ,ε.

The term on the right can be treated as was the commutator [ H̃ε;Xα
ε ]u in

step 2. This implies that it is controlled by the right hand side of (
majoration du commutateur,I
3.70).

2) The second term satisfies

(3.72)
‖op(Ψ′) Hε [op(Ψ);Xα

ε ]v‖0,λ,ε ≤ c ‖Hε [op(Ψ);Xα
ε ]v‖0,λ,ε

≤ C(|uε|∗,ε)
∑

0≤j≤d

‖Xj,ε [op(Ψ);Xα
ε ]v‖0,λ,ε.

Using the notation Xα
ε = ∂α0

t (ε∂x)β , the commutator [op(Ψ);Xα
ε ] writes as

a sum

sommedesPj (3.73)
∑

0≤j≤α0

ε|β|Ψj(t, x,Dx) ∂j
t v

where the Ψj(t, x,Dx) are pseudo-differential operators on Rd, depend-
ing as before on the parameter t, of order pj such that pj ≤ |β|−1. It follows
that for Ξε = hε or Ξε = Xj,ε

(3.74) λm−|α| ‖op(Ψ′) Ξε [op(Ψ);Xα
ε ]v‖0,λ,ε ≤ C(|uε|L∞(ωT )) ‖v‖m,λ,ε .

This quantity is obviously dominated by the right hand side of (
majoration du commutateur,I
3.70).

3) The third term is similar to the second. The commutator [op(Ψ′),Xα
ε ]

is a sum (
sommedesPj
3.73) and it is sufficient to estimate terms of the form

troisiemeterme,I (3.75) λm−|α| ‖ε|β| Ψj(t, x;Dx) ∂j
t H

ε op(Ψ) v‖0,λ,ε .

Each of these terms (
troisiemeterme,I
3.75) is controlled by

‖Hε op(Ψ)v ‖|α|−1,λ,ε ≤ ‖Hε op(Ψ)v ‖m−1,λ,ε

which can be estimated using again Gagliardo-Nirenberg estimates as in step
2. The lemma is proved. 2

Using lemma
lemme Sobolev I
3.16, we replace the term |op(Ψ)v|∗,ε in the right hand side

of (
majoration du commutateur,I
3.70) by

c ε−d/2 eλT ‖op(Ψ)v‖m,λ,ε ≤ c′ ε−d/2 eλT ‖v‖m,λ,ε.

Pluging the result in the right hand side of (
estimordrempoursystemepseudo
3.69), we obtain the claimed

estimation. The proposition
propestimationapriori,I
3.18 is proved. 2
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3.5.4 End of the proof of theorem
solutionsexactes
3.13

End of the proof of theorem I
Let uε ∈ H∞(ωT ) such that

∃ τ ∈ ]0, T ] ; uε(t, x) = uε
err(t, x) , ∀ (t, x) ∈ ]0, τ ]× Rd .

We consider the solution uε ∈ H∞(ωT ) of the linear system (
systemeerreurlineaire
3.42). By

uniqueness, we are sure that

uε(t, x) = uε
err(t, x) = ε−1 (U ε − U ε

a)(t, x) , ∀ (t, x) ∈ ]0, τ ]× Rd .

By applying lemma
ilfallaitleno
3.17, we get∑

k+m′≤m

λm−k−m′ |(Xk
v0

uε)|t=0|m′,λ,ε ≤ pm(λ) εM−m .

By assumption M > d+ 2. Therefore, we can find m ∈ N such that

d/2 + 1 < m < M − d/2 .

Let δ > 0 be a given arbitrary positive real number, and fix λ ≥ 1 such that
λ−1/2Cm(δ) < 1/2. We define the application

σ : λ 7−→ σ(λ) := 4 Cm(δ) λ−1/2
(
‖Rε‖m,λ,ε + pm(λ)

)
+ 1 .

lemme schema de Picard borne,I Lemma 3.22. There is ε0 > 0 such that if uε satisfies

(3.76) |uε|∗,ε ≤ δ , ‖uε‖m,λ,ε ≤ σ(λ) εM−m , ∀ ε ∈ ]0, ε0] ,

then uε satisfies the same estimates

jgcdfajk (3.77) |uε|∗,ε ≤ δ , ‖uε‖m,λ,ε ≤ σ(λ) εM−m , ∀ ε ∈ ]0, ε0] .

Proof. It follows from Proposition
propestimationapriori,I
3.18, absorbing in the left hand side the

term λ−1/2Cm(δ) ‖uε‖m,λ,ε. This implies

inegalix (3.78)
‖uε‖m,λ,ε ≤ 2 Cm(δ) λ−1/2

(
σ(λ) εM−m−d/2 eλT ‖uε‖m,λ,ε

+ εM−1 ‖Rε‖m,λ,ε + pm(λ) εM−m
)
.

Since M −m− d/2 > 0, we can find ε0 > 0 small enough such that

2Cm(δ)λ−1/2 σ(λ) eλT ε
M−m−d/2
0 < 1/2 .

We absorb again in the left hand side the term ‖uε‖m,λ,ε which yields

‖uε‖m,λ,ε ≤ 4Cm(δ)λ−1/2
(
εM−1 ‖Rε‖m,λ,ε + pm(λ) εM−m

)
≤ σ(λ) εM−m .
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It gives the second control in (
jgcdfajk
3.77). Then, decreasing ε0 if necessary, we

find
csob e

λT εM−m−d/2 σ(λ) ≤ δ , ∀ ε ∈ ]0, ε0] .

Lemma
lemme Sobolev I
3.16 implies

|u|∗,ε ≤ csob e
λT εM−m−d/2 σ(λ) ≤ δ .

This finishes the proof of Lemma
lemme schema de Picard borne,I
3.22. 2

Theorem
solutionsexactes
3.13 is now a classical consequence of Lemma

lemme schema de Picard borne,I
3.22. The exact

solution u is obtained on [0, Tε] by a simple Picard iteration scheme, taking
un as u and un+1 as u and starting the induction with u0 ≡ 0. Since u0

obviously satisfies the estimates of Lemma
lemme schema de Picard borne,I
3.22, all the un satisfy the same

estimates, implying that the limit u exists on the whole interval [0, T ] and
also satisfies the estimates.

3.5.5 Proof of the theorem
thm solutions exactes II
3.12

It is similar to the proof of Theorem
solutionsexactes
3.13, thus we only give the key ingre-

dients and point out where the new condition on M is used. Let m ∈ N
such that d/2+1 < m ≤M . Without loss of generality, we can assume that
the approximate solution is defined on the whole domain Ω =]−T0, T0[×Rd,
and that the exact solution is known in the past Ω ∩ {t < 0}. ΩT denotes
the strip ]− T0, T [×Rd for all T > 0.

As in the proof of Theorem
solutionsexactes
3.13, we look for U ε = U ε

app + εuε
err, where

uε
err is now given in the past Ω0 instead of being given at {t = 0}. We are

lead to find a priori estimates for the problem (
systemeerreurlineaire
3.42) where the condition

uε
|t=0 ≡ 0 is now replaced by uε

|t<0 = εM−1 rε with rε = ε−1 (U ε − U ε
a)|Ω0

given and satsifying

sup
0<ε≤1

∑
|α|≤m

‖Xα
ε r

ε‖L2(Ω0) + sup
0<ε≤1

∑
|β|≤1

‖Xβ
ε r

ε‖L∞(Ω0) < ∞ .

We replace the norms ‖.‖m,λ,ε defined in section
Weighted norms and anisotropic regularity
3.5.1 by the following ones.

|||v|||m,λ,ε :=
∑
|α|≤m

λm−|α| ‖e−λt Xα
ε v‖L2(Ω) ,

‖v‖∗,ε :=
∑
|α|≤1

λm−|α| ‖e−λt Xα
ε v‖L∞(Ω) ,

rε(λ) :=
∑
|α|≤m

λm−|α| ‖e−λt Xα
ε r

ε‖L2(Ω0) .
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The substitute for (
estimationaprioriI
3.48) is :

estim prol (3.79)
|||u|||m,λ,ε ≤ λm εM−1 rε(λ) + Cm(‖u‖∗,ε)

λ1/2

(
|||u|||m,λ,ε

+ ε−d/2 eλT |||u|||m,λ,ε |||u|||m,λ,ε + εM−1 |||Rε|||m,λ,ε

)
.

for all λ ≥ λm with some λm large enough. The proof is a consequence of the
estimates (

estimationaprioriI
3.48). Indeed, suppose first that rε ≡ 0. Then the estimate (

estim prol
3.79)

follows from (
estimationaprioriI
3.48) since all the terms (Xk

v0
u)|t=0

vanish. In the general case
we use a cut-off function χ ∈ C∞(R,R) such that χ(t) = 0 if t < −2T0/3
and = 1 if t > −T0/3. We write uε = χ(t)uε + (1 − χ(t))uε, and we can
apply the previous case to χ(t)uε since it vanishes in the past t < −2T0/3,
and this gives the estimate, up to a translation in the t coordinates.

The difference between (
estim prol
3.79) and (

estimationaprioriI
3.48) is that the terms involving the

traces (Xk
v0

u)|t=0
have been replaced by εM−1 rε(λ) = O(εM−1). This is

a gain since, for a fixed λ, the terms involving the traces are O(εM−m).
Now, we can prove by induction a lemma similar to Lemma

lemme schema de Picard borne,I
3.22, where the

conditions

labruteltruan (3.80) ‖uε‖∗,ε ≤ δ , |||uε|||m,λ,ε ≤ σ(λ) εM−1 , ∀ ε ∈ ]0, ε0]

imply that u satisfies the same estimate. Indeed, to prove this, we use the
a priori estimate (

estim prol
3.79) which implies the following substitute for (

inegalix
3.78)

inegalix’ (3.81)
|||uε|||m,λ,ε ≤ 2 Cm(δ) λ−1/2

(
σ(λ) εM−1−d/2 eλT |||uε|||m,λ,ε

+ εM−1 ‖Rε‖m,λ,ε

)
+ cλ ε

M−1 .

Taking ε > 0 small enough, we can now absorb in left hand side the term
|||uε|||m,λ,ε and obtain the expected bound for |||uε|||m,λ,ε. The control of
‖uε‖∗,ε follows then from Lemma

lemme Sobolev I
3.16. Theorem

thm solutions exactes II
3.12 follows, along the lines

developed at the end of the section
End of the proof of theorem I
3.5.4.

3.6 Proof of theorem
thm solutions exactes I
3.11 whith M0 = (d + ` + 2)/2.

We set the problem in the general context of singular equations as treated
by G. Browning and H.O. Kreiss

BK
[4]or by J.-L. Joly, G. Métiver and J.

Rauch
JMR2
[17]. We prove first the existence of solutions and justify next their

asymptotic expansions.
We consider again the problem for the unknown U ε = (V ε,W ε) defined

by uε = (v0 + εV ε,W ε). The equations are

eq383 (3.82) Hε(U ε, ∂)U ε = hε
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with the initial condition

(3.83) U ε(0, x) = Uε
0

(
x, ~ϕ0(x)/ε

)
where ~ϕ0(x) := ~ϕ(0, x) and

(3.84) Uε
0 =

∑
0≤n≤M

εn (Vn+1,Wn)|t=0 .

We look for a solution U ε(t, x) as Uε
(
t, x, ~ϕ(t, x)/ε

)
. A sufficient condition

for U ε to be a solution of (
eq383
3.82) is that Uε(t, x, θ) be a solution of a Cauchy

problem that can be written in the condensated form

7.3 (3.85) Hε(Uε, ∂′)Uε +
1
ε
L(t, x, ∂θ)Uε = hε,

with

7.4 (3.86) Uε
|t=0 = Uε

0,

oublicau (3.87) hε :=
[

f ε

gε

]
.

Here, Hε(U, ∂′) denotes a first order symmetric hyperbolic operator of the
form

Hε(U, ∂′) ≡
d′∑

j=0

Aε
j

(
v0,U

)
∂j + Cε(v0,U) .

In this formula, ∂j with j > d denotes the derivative with respect to the
variables θk:

∂d+k = Dθk
, 1 ≤ k ≤ ` .

The matrices Aε
j(v, U) and Cε(v, U) are N × N and are C∞ functions of

ε, v, U up to ε = 0. The matrices Aε
j(v, U) are symmetric with Aε

0(v, U)
positive definite. Introduce

Uε
app :=

M∑
j=0

εj (Vj ,Wj)

which is bounded in H∞(ωT × T`) and satisfies

7.3app (3.88) Hε(Uε
app, ∂

′)Uε
app +

1
ε
L(t, x, ∂θ)Uε

app = hε + εMRε .
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thm323 Theorem 3.23. Let m ∈ N with (d + `)/2 + 1 < m ≤ M . There is T > 0
such that for all ε ∈ ]0, 1] the solution Uε of the Cauchy problem (

7.3
3.85) −

(
oublicau
3.87) exists on ωT × T` in C

(
[0, T ];Hm(Rd × T`)

)
. Moreover, for all j ∈

{0, · · · ,m}, we have

eq389 (3.89) sup
t∈[0,T ]

‖∂j
t (U

ε −Uε
app)(t)‖Hm−j(Rd×T`) = ©(εM−j) .

Proof. Consider the linear singular system

7.5 (3.90) Hε(Uε, ∂′)U +
1
ε
L(t, x, ∂θ)U = h , Uε

|t=0 = Uε
0 .

We look for a priori estimates in the space

Wm(T ) :=
⋂

0≤j≤m

Cj
(
[0, T ],Hm−j(Rd × T`)

)
endowed with its natural norm ‖ · ‖W m(T ). Fix m with m > (d + `)/2 + 1.
Suppose that Uε ∈Wm(T ) and we choose a constant R >‖ Uε ‖W m(T ). We
fix a bounded neighborood K of 0 in RN such that Uε and Uε

0 take their
values in K. We also assume that Uε satisfies

traceiterecompatible (3.91) Uε
|t=0 = Uε

0 .

1) L2 estimate. By symmetry and integration by parts, using the fact
that the coefficients of L(t, x, ∂θ) do not depend on θ, we get

(3.92) ‖Uε‖C([0,T ];L2) ≤ C(R) T ‖h‖C([0,T ];L2) + c0 ‖Uε
0‖L2

where C(R) is a function of R and c0 is a constant independent on R.

2) Estimates of the derivatives. Here the analysis relies strongly on
the small divisor Assumption

petits diviseurs
3.2 and on the relation (

traceiterecompatible
3.91). Since L(v, ξ)

has a constant rank for ξ 6= 0, there exists a N×N invertible matrix Γ(v, ξ),
defined for all (v, ξ) ∈ RN” × Rd, homogeneous of degree 0 in ξ and C∞ on
RN ′′ × (Rd \ {0}), such that Γ(v, 0) = IdN×N and

tΓ(v, ξ)L(v, ξ)Γ(v, ξ) = |ξ| L , ∀ (v, ξ) ∈ RN ′′ × Rd .

Here L is a constant symmetric matrix. For (t, x) ∈ Ω and α ∈ Z`, let

γ(t, x, α) := Γ
(
v0(t, x), α · ∂x~ϕ(t, x)

)
.
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We denote by γ(t, x, ∂θ) the corresponding Fourier multiplier. It is defined
on L2(Ω× T`; RN ) by

operateurgamma (3.93)
γ(t, x, ∂θ)U(t, x, θ) := Û0(t, x)

+ i
∑

α∈Zd\{0}

γ(t, x, α) Ûα(t, x) ei〈α·θ〉 .

The properties of γ(t, x, ∂θ) are summarized in the next proposition. Note
that the small divisors assumption

petits diviseurs
3.2 implies that γ(t, x, α) is invertible for

all (t, x) ∈ Ω and for all α ∈ Z`.

Proposition 3.24. The operator γ(t, x, ∂θ) is an isomorphism from Hs(Ω×
T`; RN ) onto itself for all s ≥ 0. Its inverse is the Fourier multiplier
γ−1(t, x, ∂θ) defined by

γ−1(t, x, ∂θ)U(t, x, θ) := Û0(t, x)

+ i
∑

α∈Zd\{0}

γ(t, x, α)−1 Ûα(t, x) ei〈α·θ〉 .

Moreover, the operators (∂β
t,xγ)(t, x, ∂θ) and (∂β

t,xγ
−1)(t, x, ∂θ) are continu-

ous from Hs(Ω× T`; RN ) into itself, for all β ∈ N1+d and s ≥ 0.

Proof. Since Γ(v, ξ) is homogeneous of degree 0 with respect to ξ, there is
c > 0 such that

c < |detγ(t, x, α)| < c−1 , ∀ (t, x, α) ∈ Ω× (Z` \ {0}) .

Hence the entries of the inverse matrix γ−1(t, x, α) are bounded on the
domain Ω× (Z` \ {0}). This implies that γ(t, x, ∂θ) is an isomorphism from
L2 to L2 with inverse γ−1(t, x, ∂θ). That γ(t, x, ∂θ) and γ(t, x, ∂θ)−1 map
Hs to Hs when s > 0 is a consequence of the homogeneity of Γ and of the
coherence assumption, as shown for the the operator E in Proposition

operationdeEE
3.6;

we do not repeat the details here. 2

Introducing the new unknown V := γ(t, x, ∂θ)−1 U yields for V the
equation

7.8 (3.94) γ∗(t, x, ∂θ) H(U, ∂′) γ(t, x, ∂θ)V +
1
ε

L |∂θ|V = f .

Applying ∂k
t ∂

α
x ∂

β
θ to the equation (with k + |α| + |β| ≤ m) and using that

L is constant, we prove the following estimate

(3.95)
‖V‖W m(T ) ≤ Cm(R) T (‖V‖W m(T ) + 1)

+ c0 sup
0≤j≤m

‖∂j
tγ(t, x, ∂θ)−1 Uε

|t=0‖Hm−j(Rd×T`) .
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To obtain the desired energy estimate for V and thus for U it remains to
show that for all j ∈ {0, · · · ,m},

(3.96) ‖∂j
t U

ε‖|t=0‖Hm−j = O(1).

This is proved by induction on j, as a consequence of the estimates

‖∂j
t (U

ε −Uε
app)|t=0‖Hm−j = O(εm−j) .

When j = 0 it is obvious. For the higher order derivatives, we use (
7.3
3.85) to

replace the time derivatives by ∂x and ∂θ derivatives. There is a loss of at
most one power ε at each step, because of the factor ε−1L in the equation
and the estimate follows.

Going back to the unknown U, this shows that

(3.97) ‖U‖W m(T ) ≤ C̃m(R) T (‖U‖W m(T ) + 1) + c̃0

for some new constants c̃0 and C̃m(R) independent on ε and T .
Applying this inequality with U ≡ U, with R > 0 large enough and T

small enough, we obtain ‖U‖W m(T ) ≤ R, for all ε ∈ ]0, 1]. This implies the
existence of Uε on the time interval [0, T ], for all ε ∈ ]0, 1]. Furthermore, if
the initial data is in the spaceH∞(Rd×T) the solution is also inH∞(ΩT×T).

Once the existence of Uε is proved, we can compare Uε and Uε
app. The

difference Vε := Uε −Uε
app satisfies

(3.98) Hε(Uε, ∂′)Vε +
1
ε
L(t, x, ∂θ)Vε + GVε = − εM Rε

with

G =
d+∑̀
j=0

Gj(Uε,Uε
app) ∂jUε

app

and the Gj are smooth matrices. Moreover, Vε
|t=0 = 0. Using the energy

estimates already proved for the operator

Hε(Uε, ∂′) +
1
ε
L(t, x, ∂θ) .

one obtains the estimates (
eq389
3.89) and Theorem

thm323
3.23 is proved.
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4 ε-stratified and ε-conormal waves
solutionsstratifiees

In this section, we consider expansions with a single phase ϕ ∈ C∞(Ω; R),
which is fixed and satisfies the eiconal equation Xv0ϕ = 0. Moreover, we
assume that dϕ ∈ C∞b (Ω; R1+d) and infΩ |∂xϕ| > 0.

Inspired by the one dimensional analysis of
CG
[6] we want to treat more

general fluctuations such as almost periodic oscillations or jump profiles
(
1.14
2.21), which enter in the more general context of ε-stratified or ε-conormal

waves.
We introduce first several notations. Let T0, · · · , Td−1 denote smooth

vector fields on Ω tangent to the foliation {ϕ = cte} which means that
Tjϕ ≡ 0 for all j. We assume that the family has a constant rank d. We
also assume that the fields Tj have bounded coefficients, together with all
their derivatives, that is Tj ∈ C∞b (Ω; Rd).

We denote by Td a vector field on Ω, tangent to the hypersurface {ϕ = 0},
with coefficients in C∞b (Ω; R). We assume that the family T0, · · · , Td−1, Td

is a generator of vector fields tangent to {ϕ = 0}, and that this family has
rank d+ 1 when {ϕ(t, x) 6= 0}.

Example 4.1. When the phase ϕ(t, x) is linear or more generally can be
reduced to ϕ = xd after a change of coordinates, we can choose, in the new
coordinates,

T0 = ∂t, Tj = ∂j for j ∈ {1, · · · , d− 1}, Td = h(xd) ∂d,

where h ∈ C∞b (R; R), |h(xd)| = 1 if |xd| ≥ 2, h(xd) = xd if |xd| ≤ 1 and
h(xd) 6= 0 if xd 6= 0.

Because ϕ satisfies the eiconal equation, we can choose

eq41 (4.1) T0(t, x, ∂t, ∂x) = ∂t + µ(v0) · ∇x

and assume that the other fields T1, · · · , Td contain only x-derivatives:

tangent to t=0 (4.2) Tj = Tj(t, x, ∂x) = τj(t, x) · ∇x , τj ∈ C∞b (Ω; Rd) , 1 ≤ j ≤ d .

4.1 ε-stratified and ε-conormal regularity.

We consider two sets of vector fields Zε. When dealing with the ε-stratified
case, we take

derivees eps tangentielles (4.3) Zstrat
ε :=

{
T0 , · · · , Td−1 , ε ∂0 , ε ∂1 , · · · , ε ∂d

}
.
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To describe ε-conormal smoothness, we consider

derivees eps conormales (4.4) Zcon
ε :=

{
T0 , · · · , Td−1 , Td , ε ∂0 , ε ∂1 , · · · , ε ∂d

}
.

Usually, we simply use the notation Zε, the choice being clear from the
context.

In both cases, an important property is that the commutator of two
elements of Zε is a linear combination of elements of Zε with coefficients in
C∞b (Ω) :

X ∈ Zε , Y ∈ Zε =⇒ [X;Y ] = XY − Y X =
∑
Z∈Zε

aZ Z , aZ ∈ C∞b (Ω) .

For all k ∈ N the notation Zk
ε will denote the set of all the operators

Z1 ◦ · · · ◦ Zk such that Zj ∈ Zε for j ∈ {1, · · · , k}. We will also note Zk
ε a

general element in the set Zk
ε .

• Interior regularity. For all reals a, b such that −T0 < a < b < T0, we
define the space Am(a, b) of families of functions uε(t, x), 0 < ε ≤ 1 such
that ∂j

t ∂
α
xu

ε ∈ C
(
[a, b];L2(Rd)

)
for j + |α| ≤ m and such that∑

0≤k≤m

∑
Zk

ε ∈Zk
ε

sup
0<ε≤1

‖Zk
ε u

ε‖C([a,b];L2) < ∞ .

In a similar way, replacing L2 by L∞ we define the space Bm(a, b) of (families
of) functions uε such that ∂j

t ∂
α
xu

ε ∈ C
(
[a, b];L∞(Rd)

)
for j + |α| ≤ m and

such that ∑
0≤k≤m

∑
Zk

ε ∈Zk
ε

sup
0<ε≤1

‖Zk
ε u

ε‖C([a,b];L∞) < ∞ .

We also introduce the spaces

(4.5) Λm(a, b) := Am(a, b) ∩ B1(a, b) .

• Regularity of initial data. Because of (
tangent to t=0
4.2), every field Zε in Zε ex-

cepted T0 and ε ∂0, is tangent to the hypersurfaces {t = cte} and in particular
to {t = 0}. Thus if Z ∈ Zε \ {T0, ε ∂0}, the first order operator Z|t=0 is a
well defined vector field on Rd. Let us denote by I(Zε) the set of such fields

I(Zε) :=
{
Zε |t=0 ; Zε ∈ Zε \ {T0, ε ∂0}

}
.

We denote by Am
0 the space of families of functions uε ∈ Hm(Rd) such that

initial norms 1 (4.6)
∑

0≤k≤m

∑
{Z1,··· ,Zk}∈I(Zε)k

sup
0<ε≤1

‖Z1 ◦ · · · ◦ Zku
ε‖L2(Rd) < ∞ .
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According to the choice of the set Zε, the functions belonging to Am
0 have

an ε-stratified (resp. ε-conormal) regularity with respect to the foliation
{ϕ = cte} ∩ {t = 0} of Rd (resp. the hypersurface {ϕ = 0} ∩ {t = 0}).

Similarly, we denote by Bm
0 the space of the uε(x) such that

initial norms 2 (4.7)
∑

0≤k≤m

∑
{Z1,··· ,Zk}∈I(Zε)k

sup
0<ε≤1

‖Z1 ◦ · · · ◦ Zku
ε‖L∞(Rd) < ∞ .

We will note Λm
0 := Am

0 ∩ B1
0.

4.2 The Cauchy problem and compatibility conditions.
section3.3

Our goal is to solve, locally in time, the Cauchy problem for ε-stratified
or ε-conormal initial data. We also include source terms and consider the
equation

problemedecauchystratifie (4.8)

S(uε)Xvεuε + L(vε, ∂x)uε =
[
εfε

gε

]
, (t, x) ∈ ωT

uε
|t=0 = uε

0,

where the data hε := t(fε, gε) and uε
0 belong to Λm(0, T0) and Λm

0 respec-
tively. The goal is to show that, if m is large enough the problem (

problemedecauchystratifie
4.8) has

a solution in Λm(0, T ) for some T > 0 independent on ε > 0. But, in gen-
eral, this requires compatibility conditions, which ensure that the solutions
do not develop singularities associated to other modes of the system and
propagating in other directions.

First, we describe these necessary compatibility conditions. Assume that
uε = (v0 + ε vε, wε) ∈ Λm(0, T ) is a solution of

systemeavecsecondmembre (4.9) S(u)Xv0+εv u + L(v, ∂x)u =
[
ε fε

gε

]
.

Introduce V ε := (vε, wε) and hε := (fε, gε). Since Xv0+εvε −Xv0 does not
contain time derivatives and because of (

conditionsurdeterminee
2.15, V ε satisfies an equation

(4.10) Xv0V
ε = F1

(
ε, t, x, (∂α

xV
ε)|α|≤1 , h

ε
)
.

By induction, for 1 ≤ k ≤ m

expressiondesderiveesentemps (4.11) Xk
v0
V ε = Fk

(
ε, t, x, (∂α

xV
ε)|α|≤k , (∂β

t,xh)|β|≤k−1

)
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where the functions Fk

(
ε, t, x, (Vα)|α|≤k , (Hβ)|β|≤k−1

)
are C∞ functions of

their arguments, up to ε = 0. Using the special structures of the Fk, we see
that for all V ε ∈ Λm(0, T ), all real numbers a, b such that 0 ≤ a < b ≤ T
and for all k such that 1 ≤ k ≤ m, there holds

(4.12) Fk

(
ε, t, x, (∂α

xV
ε)|α|≤k , (∂β

t,xh)|β|≤k−1

)
∈ Am−k(a, b) .

Moreover
F1

(
ε, t, x, (∂α

xV
ε)|α|≤1 , h

ε
)
∈ B0(a, b) .

In particular, taking a = b = 0 and denoting by V ε
0 = V|{t=0}, we have

3.11 (4.13) F1

(
ε, 0, x, (∂α

xV
ε
0 )|α|≤1 , h

ε
|t=0

)
∈ Am−1

0 ∩ B0
0 ,

and for k such that 2 ≤ k ≤ m

3.12 (4.14) Fk

(
ε, 0, x, (∂α

xV
ε
0 )|α|≤k , (∂β

t,xh
ε
|t=0)|β|≤k−1

)
∈ Am−k

0 .

compatible Definition 4.1. Let hε = (fε, gε) be given in Λm(0, T0). Consider a family
of Cauchy data uε

0 of the form uε
0 = (v0|t=0 + ε aε, bε) where V ε

0 := (aε, bε) is
in Λm

0 . We say that the data uε
0 and hε are compatible up to order m if

the m conditions (
3.11
4.13) and (

3.12
4.14) are satisfied.

If uε = (v0 + ε vε, wε) is a solution of (
systemeavecsecondmembre
4.9) with (vε, wε) ∈ Λm(0, T ), the

trace uε
|t=0 is necessarily compatible up to order m. Conversely, the next

theorem asserts that these compatibility conditions are also sufficient to
solve the Cauchy problem in Λm(0, T ) for some T > 0 (independent on ε).

theo 1.2 Theorem 4.2. Let m ∈ N such that m > d/2 + 2. For all hε = t(fε, gε) in
Λm(0, T0). and (aε, bε) in Λm

0 such that the data uε
0 = (v0|t=0 + ε aε, bε) and

hε are compatible up to order m, there exists T > 0 such that for all ε ∈ ]0, 1]
the Cauchy problem (

problemedecauchystratifie
4.8) has a (unique) solution uε ∈ C

(
[0, T ];Hm(Rd)

)
in

ωT . Moreover, uε has the form uε = (v0 +ε vε, wε) with (vε, wε) ∈ Λm(0, T ).

A consequence of the nessary and sufficient character of the compatibility
conditions is the propagation of the Λm regularity for solutions of the form
uε = (v0 + ε vε, wε). For all T > T0, we denote ΩT := ]− T0, T [×Rd.

etpourqpas Corollary 4.3. (m > d/2 + 2). Let hε = (fε, gε) be given in Λm(−T0, T0).
assume that uε = (v0 + ε vε, wε) is a family of solutions of (

systemeavecsecondmembre
4.9) in Ω0, such

that (vε, wε) ∈ Λm(−T0, 0). Then there exists T > 0 such that, for all ε ∈
]0, 1], uε extends (in a unique way) as a solution ũε ∈ C

(
[−T0, T ];Hm(Rd)

)
of system (

systemeavecsecondmembre
4.9) on ΩT . Moreover, ũε has the form ũε = (v0 + ε ṽε, w̃ε) with

(ṽε, w̃ε) ∈ Λm(−T0, T ).
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For a given τ > 0, consider ũ0(t, ·) := u0(t−τ, ·). We can apply Corollary
(
etpourqpas
4.3) to ũ0 as unperturbed state and data(

vε

wε

)
=

(
0
0

)
∈ Λm(−T0, 0) , hε =

(
fε

gε

)
∈ Λm(−T0, T0)

where hε is chosen such that

hε(t, ·) ≡ 0 , ∀ t ∈]− T0, 0] and hε(τ, ·) 6≡ 0 .

The solution ũε(·, ·) has a non trivial trace ũε(τ, ·) at time t = τ , which
necessarily satisfies the compatibility condition. This remark shows that
Corollary (

etpourqpas
4.3) can be used to construct the existence of non trivial initial

compatible datas. In the framework of oscillations discussed in section 3,
BKW formal solutions is another source of compatible data.

In the more general context of stratified or conormal waves, non trivial
compatible initial data can be explicitly constructed, as shown in the next
result. Let C be a given compact set in Rd. We denote by JC(Rd; Rk) the
set of functions u(x, z) ∈ C∞b (Rd

x × Rz; Rk) such that u(x, z) = 0 if x /∈ C.
Let us recall that the function ϕ(t, x) is scalar. We introduce

Π[
0(x) := P[

(
v0(0, x), ∂xϕ(0, x)

)
.

existence de donnees compatibles Theorem 4.4. Let {aj}j∈N ∈ JC(Rd; RN”)N and {bj}j∈N ∈ JC(Rd; RN ′
)N

be two given sequences of profiles, the first one satisfying the polarization
condition Π[

0 aj = aj for all j ∈ N. For any given m ∈ N∗ there exists a
function (V ε

0 ,W
ε
0 ) ∈ Λm

0 satisfying

Π[
0(x)V

ε
0 (x) =

∑
0≤j≤m

εj aj

(
x, ϕ(0, x)/ε

)
W ε

0 (x) =
∑

0≤j≤m

εj bj

(
x, ϕ(0, x)/ε

)
and such that the initial data uε

0 := (v0 +ε V ε
0 ,W

ε
0 ) is compatible up to order

m (in the sense of Definition
compatible
4.1).

Remark 4.5. In general, there are no approximate WKB solution corre-
sponding to such initial data, except in the case of periodic profiles aj(x, ·)
and bj(x, ·) discussed in section 3. But, for almost periodic profiles, or
jump profiles, or more general cases, the WKB construction is not available.
Hence, Theorem

theo 1.2
4.2 proves the existence of solutions containing large am-

plitude variations, even if a high order asymptotic expansion of the solution
is unknown.
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4.3 Proof of the theorem
theo 1.2
4.2

Estimations

The key ingredient is to prove uniform estimates for the solutions U ε of the
following linear Cauchy problem, where the operator Hε(U, ∂) was intro-
duced in (

zorglonde
2.49)

pblineaire (4.15) Hε(U, ∂)U = hε , U|t=0 = U ε
0

with U ε
0 := (aε, bε). For all ε 6= 0 fixed, the linear symmetric hyperbolic

problem (
pblineaire
4.15) has obviously a unique solution U ε ∈ Wm(0, T0). The corre-

sponding estimates are given by proposition
prop 2.3
4.10 (high order L2 estimates)

and proposition
lem 2.7
4.14 (L∞ estimates) of this section, which is mainly con-

cerned with proving them. The last paragraph of subsection 4.3 is devoted
to the end of the proof of theorem

theo 1.2
4.2.

We recall that, by assumption, U ε
0 ∈ Λm

0 and hε ∈ Λm(0, T0) are given
data which satisfy the compatibility conditions (

3.11
4.13) and (

3.12
4.14).

4.3.1 Norms

For m ∈ N and ε 6= 0, introduce the notations

(4.16) |v‖m,ε,T :=
∑

0≤k≤m

∑
Zk

ε ∈Zk
ε

sup
0≤t≤T

‖Zk
ε v(t, ·)‖L2(Rd) ,

and

(4.17) |v|∗m,ε,T :=
∑

0≤k≤m

∑
Zk

ε ∈Zk
ε

sup
0≤t≤T

‖Zk
ε v(t, ·)‖L∞(Rd) .

Similarly, we denote by ‖v‖Am(0,T ) and |v‖Bm(0,T ) the supremum with respect
to ε ∈]0, 1] of |v‖m,ε,T and |v|∗m,ε,T respectively.

We also use similar notations for initial datas and denote respectively by
‖v‖Am

0 (0,T ) and ‖v‖Bm
0 (0,T ) the supremum with respect to ε ∈]0, 1] of the left

hand side of (
initial norms 1
4.6) and (

initial norms 2
4.7) respectively.

4.3.2 L2 estimate

For all T ∈ [0, T0], ωT denotes the strip ]0, T [×Rd.

Lemma 4.6. Let R > 0 and U = (v, w) such that ‖ U ‖B1(0,T0)≤ R. Then,
there is a constant C0(R) such that for all U ∈ C∞0 (R1+d), for all ε ∈ ]0, 1],
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and for all T ∈ [0, T0]

labelle (4.18)
|U‖0,ε,T ≤C0(R)

∫ T

0
‖H(U, ∂)U(s)‖L2(Rd) ds

+ C0(R) |U‖0,ε,0 .

Proof. A Taylor expansion shows that

2.7 (4.19) µ(v + ε v′) = µ(v) + ε µ̃(ε, v, v′) , ∀(v, v′, ε) ∈ (RN ′′
)2×]0, 1]

where µ̃(·, ·, ·) is a C∞ function of its arguments. It follows that

(4.20)
Xv0+εv = Xv0 + µ̃(ε, v0, v) · ε∇x

= T0 +
∑

1≤j≤d

µ̃j(ε, v0, v) ε∂j .

Therefore, the field Xv0+εv is a linear combination of fields in Zε. Using a
similar Taylor expansion of the coefficients of the operator L(v0 + εv, ∂x),
we write the equation in the following form:

boucherie sanzot (4.21)
∑
Zε∈Zε

SZε(ε, v0, U)ZεU + L(v0, ∂x)U + K(v0, ∂v0, U)U = h

where the matrices SZ(ε, v, U) are C∞ functions of their arguments ε, v, U
up to ε = 0. Now we proceed in the usual way, taking the product of U
and of the equation (

boucherie sanzot
4.21) and integrating by parts. Because of the special

form (
boucherie sanzot
4.21) and because ‖U‖B1(0,T0) ≤ R, we get a uniform control of the

derivatives of the coefficients, and therefore

(4.22)
|U‖0,ε,T ≤ c(R)

∫ T

0
|U‖0,ε,s ds

+
∫ T

0
‖H(U, ∂)U(s, ·)‖L2 ds + |U‖0,ε,0 .

Note that the estimate above strongly relies on the existence of a good sym-
metrizor : the coefficients of L(v0, ∂x) have bounded derivatives because the
operator L does not involve the variable w. Using the Gronwall lemma we
deduce

(4.23) |U‖0,ε,T ≤
∫ T

0
ec(R)(T−s) ‖H(U, ∂)U(s)‖L2 ds + ec(R)T |U‖0,ε,0

which implies (
labelle
4.18) with c0(R) = ec(R)T0 . 2
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4.3.3 Gagliardo-Nirenberg-Moser inequalities

To estimate the derivatives of U we will use Gagliardo-Nirenberg’s and
Moser’s estimates. Let us introduce some notations. For all open subset
O of Ω, all m ∈ N and all p ∈ [1,∞], we note

‖u‖Lm,p
ε (O) :=

∑
0≤k≤m

∑
Zk

ε ∈Zk
ε

‖ Zk
ε u‖Lp(O)

and
Lm,p(O) :=

{
uε ∈ L2(O) ; sup

0<ε≤1
‖uε‖Lm,p

ε (O) < ∞
}
.

Recall that for all T > −T0, we note ΩT := ] − T0, T [×Rd. The following
Galiardo-Nirenberg estimates hold.

Lemma 4.7. Let m ∈ N with m ≥ 1. For all T ∈ [0, T0] and for all u in
the space L∞(ΩT ) ∩ Lm,2(ΩT )

(4.24) ‖Zk
ε u‖L2m/k(ΩT ) ≤ cm ‖u‖1−k/m

L∞(ΩT ) ‖u‖
k/m

Lm,2
ε (ΩT )

for all k ∈ {0, · · · ,m}, for all Zk
ε ∈ Zk

ε and for all ε ∈ [0, 1].

Proof. It is a special case of the inequality (Ap-II-3), of
G1
[10], p. 643. 2

The following Moser’s estimates follow.

Moser Lemma 4.8. Let m ∈ N. There is cm > 0 such that for all T ∈ [0, T0], for
all functions a1, · · · , ap in Hm(ΩT ) ∩ L∞(ΩT ), and for all ε ∈ ]0, 1]

(4.25) ‖Zk1
ε a1 · · · Z

kp
ε ap‖L2(ΩT ) ≤ cm

∑
k

( ∏
j 6=k

‖aj‖L∞(ΩT )

)
‖ak‖Lm,2

ε (ΩT )

where k1 + · · ·+ kp ≤ m and Zkj
ε ∈ Zkj

ε if j ∈ {1, · · · , p}.

4.3.4 Higher order estimates

Next we want estimates for the derivatives Zk
εU . As usual, we apply the L2

estimate (
labelle
4.18) to the term Zk

εU which satisfies the equation

Hε(U, ∂)Zk
εU = Zk

ε h + [Hε(U, ∂);Zk
ε ]U .
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Therefore,

(4.26)
|U‖m,ε,T ≤C0(R) T |h‖m,ε,T

+C(R) T 1/2 ‖[Hε(U, ∂);Zk
ε ]U‖L2(ωT ) + C0(R) |U‖m,ε,0 .

Hence, we are lead to estimate in L2(ωT ) the commutator [Hε(U, ∂);Zk
ε ]U .

Here we make use, for the first time, of the compatibility assumption on the
data. Let us begin with a lifting lemma.

relvt Proposition 4.9. Let v0 ∈ Λm
0 , v1 ∈ Am−1

0 ∩ B0
0, v2 ∈ Am−2

0 , · · · , vm ∈ A0
0.

There exists V ∈ Λm(−T0, T0) such that

traces (4.27)
(
(Xv0)

k V
)
|t=0

= vk , ∀ k ∈ {0, · · · ,m} .

Proof. We show that there is V ∈ Λm(0, T0) satisfying (
traces
4.27). There is

a similar lifting to [−T0, 0], and since the traces are equal on {t = 0}, the
two functions can be glued together. We follow the proof of classical lifting
theorem for Ck spaces (

Horm
[14], Corollary 1.3.4, p. 18). Let m ∈ N be fixed.

We show by induction on r = 0, · · · ,m that there exists V r ∈ Λm(−T0, T0)
satisfying (

traces
4.27) for 0 ≤ k ≤ r. For r = 0 we take V 0(t, x) = v0(x). For

1 ≤ r ≤ m, assuming that V r−1 is known, we look for V r of the form
V r = V r−1 + U where we want U ∈ Λm(−T0, T0) to satisfy on t = 0

(4.28)
(Xv0)

k U = 0 , ∀ k ∈ {0, · · · , r − 1} .
(Xv0)

r U = vr − (Xv0)
r V r−1 := w ∈ Am−r

0 .

Let us introduce a function j ∈ C∞0 (Rd) such that
∫
j(x) dx = 1, and note

jγ(x) := γ−d j(x/γ) for all γ ∈ R∗. We are going to show that if δ is fixed
small enough in the interval ]0, 1], the function

U(t, x) :=
tr

r!
jtδ ∗ w

satisfies the desired conditions. Denote by ̂ the Fourier transformation
with respect to the variables x ∈ Rd. We have

Û(t, ξ) =
tr

r !
ĵ(tδξ) ŵ(ξ)

∂tÛ(t, ξ) =
tr−1

(r − 1) !
ĵ(tδξ) ŵ(ξ) + δ tδ

tr−1

r !
(ξ · ∇ξ ĵ)(tδξ) ŵ(ξ)

which implies
| ∂tÛ(t, ξ) | ≤ c1 t

r−1 j(1)(t
δξ) | ŵ(ξ) |
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where c1 ∈ R+
∗ and j(1) ∈ S(Rd; R+). By induction we also get that for all

p ∈ N such that p ≤ r

| ∂p
t Û(t, ξ) | ≤ cp t

r−p j(p)(t
δξ) | ŵ(ξ) |

for some constant cp ∈ R+
∗ and j(p) ∈ S(Rd; R+). It follows that

| ξα ∂p
t Û(t, ξ) | ≤ c′p t

r−p−δ|α| | ŵ(ξ) | , ∀α ∈ Nd

where c′p = cp supξ

(
|ξ||α| j(p)(ξ)

)
. Using the theorem of dominated con-

vergence, we deduce that ∂p
t U belongs to

C
(
[−T0, T0];H(r−p)/δ

)
and is bounded uniformly with respect to ε ∈ ]0, 1] in this space (remember
that U as w depend on ε). We select δ ∈ ]0, 1/m[. It is then obvious that
U belongs also to Am(−T0, T0). Moreover, choosing δ small enough in order
that (r − 1)/δ > d/2, the Sobolev embedding theorem implies that U is
contained in B1(−T0, T0). It follows that U is indeed in Λm(−T0, T0) and
that the traces satisfy the expected relations. 2

An important consequence of this proposition and of the compatibility
conditions is that the functions U and U extend to t < 0 as functions Ũ and
Ũ which both belong to Lm,2(ΩT ) ∩ L1,∞(ΩT ) and such that

coincidencedanslepasse (4.29) Ũ |t<0 = Ũ|t<0 = V

where V is given by the proposition
relvt
4.9 and depends only on the Cauchy

data U0 (and on the choice of the lifting operator in proposition
relvt
4.9). Since

ωT is contained in ΩT we have

(4.30) ‖ [Hε(U, ∂);Zk
ε ]U ‖L2(ωT ) ≤ ‖ [Hε(Ũ , ∂);Zk

ε ] Ũ‖L2(ΩT ) .

The commutator [Hε(Ũ , ∂);Zk
ε ] Ũ writes

(4.31)

∑
Z∈Z

[SZ(ε, v0, Ũ)Z;Zk] Ũ + [L(v0, ∂x);Zk
ε ] Ũ

+ [K(v0, ∂v0, Ũ);Zk
ε ] Ũ .

Each term of the form [SZ(ε, v0, Ũ)Z;Zk]Ũ is a sum of terms like

Φ(ε, v0, Ũ) Zk1Ũ i1 · · · Z
kpŨ ip Z

kp+1Ũip+1
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where Zkj ∈ Zkj for 1 ≤ j ≤ p+ 1, with k1 + · · ·+ kp+1 ≤ k + 1, kp+1 ≤ k,
k1 ≥ 1, . . . , kp+1 ≥ 1. We write this term as

Φ(ε, v0, Ũ) Zk′1(ZŨ i1) · · · Z
k′p(ZŨ ip) Z

k′p+1(ZŨip+1)

and with the lemma
Moser
4.8, we get

‖ [SZ(ε, v0, Ũ)Z;Zk] Ũ ‖L2(ΩT ) ≤

C(R)
(
‖Ũ‖Lm,2(ΩT ) + (1 + ‖Ũ‖L1,∞(ΩT )) ‖Ũ‖Lm,2(ΩT )

)
.

By using (
coincidencedanslepasse
4.29), we deduce the following inequality where ρ is some > 0

constant depending only on ‖V‖Lm,2(Ω0) and ‖V‖L1,∞(ΩT ), or in other words
only on the norm of the initial data U ε

0 in Λm
0

‖[SZ(ε, v0, Ũ)Z,Zk] Ũ‖L2(ΩT ) ≤ C(R)
(
‖U‖Lm,2(ωT )5.19 (4.32)

+ ρ + (ρ+ ‖U‖L1,∞(ωT )) (ρ+ ‖U‖Lm,2(ωT ))
)
.

Let us also quote the obvious estimate

CS (4.33) ‖v‖Lm,2
ε (ωT )

≤ T 1/2 |v‖m,ε,T , ∀ v ∈ Hm(ΩT ) , ∀ ε ∈ ]0, 1] .

We deduce from (
5.19
4.32) and (

CS
4.33) the following control, which is uniform

with respect to ε ∈ ]0, 1], where ρ is again a constant depending only on U ε
0

(4.34)
‖ [SZ(ε, v0, Ũ)Z;Zk] Ũ ‖L2(ΩT ) ≤ C(R)

(
T 1/2 |U‖m,ε,T + ρ

)
+C(R)

(
ρ+ |U |∗1,ε,T ‖U‖L1,∞(ωT )

)
(ρ+ T 1/2 |U‖m,ε,T ) .

The control of [L(v0, ∂x);Zk
ε ]U is less easy. Let us note

N (t, x, ∂x) := |∇xϕ|−1
d∑

j=1

(∂jϕ) · ∂j , (t, x) ∈ Ω .

The vector field N (t, x, ∂x) is transverse to the characteristic foliation {ϕ =
cte}. It can also be seen as a vector field in Rd, parametrized by t, and
normal to the hypersurfaces {ϕ(t, ·) = cte} of Rd. We recall that ∂xϕ(t, x) 6=
0 for all (t, x) ∈ Ω, and that the coefficients of N belong to C∞b (Ω). For all
v ∈ RN ′′

, the operator L(v, ∂x) writes

L(v, ∂x) = L
(
v,

∂xϕ

|∂xϕ|
)
N (t, x, ∂x) +

∑
1≤j≤d

Mj(v) Tj(t, x, ∂t, ∂x)
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where the Mj(v) are symmetric with C∞ coefficients. The matrix L(v, ξ) is
symmetric and has a constant rank p with p ≤ N − 1, on RN ′′ × (Rd \ {0}).
Hence there exists a C∞ invertible matrix Φ(t, x) such that

tΦ(t, x) L
(
v0,

∂xϕ

|∂xϕ|
)

Φ(t, x) = Γ

where Γ is the constant N ×N matrix

MatriceGamma (4.35) Γ =
(

Γ[ 0
0 0

)
.

Introduce the unknown U ′(t, x) = Φ(t, x)−1 U(t, x). Then express through
the equation (

pblineaire
4.15) the quantity N (∂) ΓU ′ in term of the ZεU

′ and of the
right hand side h. Finally, we get the following result.

prop 2.3 Proposition 4.10. Let m ∈ N with m > d/2 + 1. For all R > 0, there
is a constant Cm(R) satisfying what follows. Suppose that U ∈ Wm(0, T0)
satisfies the relations

(Xk
v0
U)|t=0 = Fk

(
ε, 0, x, (∂α

xV
ε
0 )|α|≤k , (∂β

t,xh
ε
|t=0)|β≤k

)
for 0 ≤ k ≤ m, together with |U |∗1,ε,T0

< R. Then, the solution U of the
linear problem (

pblineaire
4.15) satisfies the following estimate

(4.36)
|U‖m,ε,T ≤Cm(R) T

(
|h‖m,ε,T + (1 + |U |∗1,ε,T ) |U‖m,ε,T

)
+ Cm(R) T 1/2 (1 + |U |∗1,ε,T ) + Cm(R) |U‖m,ε,0

for all T ∈ [0, T0] and for all ε ∈ ]0, 1].

4.3.5 L∞ estimates

For v ∈ RN ′′
and ξ ∈ Rd \ {0}, we denote by Q(v, ξ) the pseudo inverse of

L(v, ξ), that is the matrix such that

(4.37) Q(v, ξ)L(v, ξ) = L(v, ξ)Q(v, ξ) = Id−P(v, ξ) .

To simplify notations, set

P0 := P
(
v0(t, x), ∂xϕ(t, x)

)
, Q0 := Q

(
v0(t, x), ∂xϕ(t, x)

)
.

Lemma 4.11.

P(v, ξ)L(v, η)P(v, ξ) = 0 , ∀ (v, ξ, η) ∈ RN” × (Rd \ {0})× Rd .
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Proof. The matrices satisfy

P(v, ξ)L(v, ξ) = 0 , L(v, ξ)P(v, ξ) = 0 , ∀ (v, ξ) ∈ RN” × Rd .

Differentiating the relation PLP = 0 with respect to ξj gives

(∂ξj
P)LP + P (∂ξj

L)P + PL (∂ξj
P) = 0 .

Since the first term and the third term in this sum are nul, it only remains
the second term. And since the matrix L has the form

L(v, ξ) = ξ1B1(v) + · · · + ξdBd(v) ,

we get
P(v, ξ)Bj(v)P(v, ξ) = 0 , ∀ (v, ξ) ∈ RN” × Rd .

This relation being true for j = 1, · · · , d, the lemma is proved. 2

Using a Taylor expansion of the matrix L(v0 + ε v, ∂xϕ/|∂xϕ|) and mul-
tiplying the equation by Q0 on the left, we find that U satisfies

(4.38)
N (t, x, ∂x)

(
Id−P0

)
U = Q0h+

∑
Zε∈Zε

MZ(ε, t, x, U) ZεU

+ N(ε, t, x, U)U

where the matrices MZ and N are C∞ functions.

2.4 Lemma 4.12. Let m ∈ N such that m0 > d/2. There is c > 0 such that for
all T ∈]0, T0], all u ∈ Am0(0, T ) the following inequality holds

|u|∗0,ε,T ≤ c (|u‖m0,ε,T + |N (t, x, ∂x)u|m0−1,ε,T ) , ∀ ε ∈ ]0, 1] .

It follows from lemma
2.4
4.12 that

‖(Id−P0)U(t, .)‖L∞ ≤ c(R) |U‖m0,ε,T

+ c(R)
(
|h‖m0,ε,T + |U‖m0,ε,T ‖U(t, ·)‖L∞

)
.

Repeating the arguments for the ε-tangent (or ε-conormal) derivatives gives:

lem2.6 Lemma 4.13. Let m0 > d/2 + 2. For all Zk
ε ∈ Zk

ε and for all k ∈ {0, 1, 2},
the following holds

‖Zk
ε (Id−P0)U(t)‖L∞ ≤ cq(R) |U‖m,ε,T

+ cq(R)
(
|h‖m,ε,T + |U‖m,ε,T ‖U(t)‖L∞

)
.
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Let us write U = UI + UII with

(4.39) UI := P
(
v0+ε v,

∂xϕ

|∂xϕ|
)
U , UII :=

(
Id−P

(
v0+ε v,

∂xϕ

|∂xϕ|
))
U .

Multiplying on the left the equation (
5.1
2.47) by the matrix

P
(
v0 + ε v,

∂xϕ

|∂xϕ|
)

leads to the following equation for UI :

(4.40)

SI(v0 + ε v, w)Xv0+εv UI = P
(
v0 + ε v,

∂xϕ

|∂xϕ|
)
h

−
∑

1≤j≤d

P
(
v,

∂xϕ

|∂xϕ|
)
Mj(v0 + ε v) TjUII

−Xv0UII − µ̃(ε, v) · ε∂xUII

where µ̃ is defined in (
2.7
4.19) and we have used the notations for U = (v, w)

(4.41) SI(U) := P
(
v,

∂xϕ

|∂xϕ|
)
S(U) P

(
v,

∂xϕ

|∂xϕ|
)
.

The matrix S being positive definite, the matrix SI(U) is invertible on the
range of P(v, ∂xϕ

|∂xϕ|). Therefore, writing P instead of P(v0 + εv, ∂xϕ
|∂xϕ|), there

holds:

(4.42) PXv0+εv UI = TI(ε, v0, U) SI(v0 + εv, w) Xv0+εv UI

where T is a pseudo inverse of SI(U), C∞ function of its arguments (ε, v0, U).
Moreover, since

Xv0+εv UI = P Xv0+εv UI +
(
Xv0+εv(P)

)
· UI

we deduce that UI satisfies

2.18 (4.43)
Xv0+εv UI = F (ε, t, x, U) h

+
∑
Z∈Zε

CZ(ε, t, x, U) ZUII + C0(ε, t, x, U)U

where F , CZ and C0 are again C∞ matrices, bounded with all their deriva-
tives on [0, 1]ε × Ω × K, for all compact subset K of RN . By integration

63



along the vector field Xv0+εv, and using the assumption ‖U‖B1(0,T0) ≤ R, we
deduce the following L∞ inequality

(4.44) |UI |∗0,ε,T ≤ c(R) T
(
|h|∗0,ε,T + |U |∗0,ε,T + |UII |∗1,ε,T

)
+ |UI |∗0,ε,0 .

Applying the field Zε ∈ Zε to the equation (
2.18
4.43) gives

(4.45)

Xv0+εv ZεUI = f + coeff · Zεh

+ coeff · ZεU +
∑
Z∈Zε

coeff · ZU

+
∑

Z2
ε∈Z2

ε

coeff · Z2
εUII

where the notation coeff means a matrix with entries C∞ in ε, t, x, U , as in
the equation (

2.18
4.43). The following equation follows

|UI |∗1,ε,T ≤ c(R) T
(
|h|∗1,ε,T + |U |∗1,ε,T + |UII |∗2,ε,T

)
+ |UI |∗1,ε,0 .

In order to estimate |UII |∗2,ε,T , we write

(4.46) UII =
(
P0 −P

(
v0 + ε v,

∂xϕ

|∂xϕ|
) )

U + (I −P0)U .

The second term of this sum is controled by Lemma
lem2.6
4.13. A Taylor expansion

shows that in order to control the derivatives in Z2 in the first term of the
sum, it is sufficient to find a bound in L∞ of terms of the form, using obvious
notations,

2.22 (4.47) ε U Z2U , ε ZU ZU , ε Z2U U .

This last point follows from the standard Sobolev embedding theorem which
implies that for m0 > d/2 there is a constant c > 0 such that for all T ∈
[0, T0], and for all ε ∈ ]0, 1]:

(4.48) |ε v|∗0,ε,T ≤ c |v‖m0,ε,T , ∀ v ∈ Am0(0, T ) .

Hence, if |U |∗1,ε,T ≤ R, each one of the terms (
2.22
4.47) is bounded by

c(R) (|U‖m0+2,ε,T |U |∗0,ε,T + |U‖m0+2,ε,T ) .

Hence we have proved that

(4.49) |UII |∗2,ε,T ≤ c(R)
(
|U‖m,ε,T + |h‖m,ε,T + |U‖m,ε,T |U‖∗0,ε,T

)
.

Furthermore, integrating along the characteristics of the field Xv0 gives

|UII |∗1,ε,T ≤ T |UII |∗2,ε,T + |UII |∗1,ε,0 .

Summarizing, we have proved the following result.
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lem 2.7 Proposition 4.14. Let m > d/2 + 2. The following estimates hold

|UI |∗1,ε,T ≤ c(R) T
(
|h|∗1,T + |U |∗1,T + |UII |∗2,ε,T

)
+ |UI |∗1,ε,0 ,

|UII |∗1,ε,T ≤ T |UII |∗2,ε,T + |UII |∗1,ε,0 ,

|UII |∗2,ε,T ≤ c(R)
(
|U‖m,ε,T + |h‖m,ε,T + |U‖m,ε,T |U |∗0,ε,T

)
.

4.3.6 End of the proof of theorem
theo 1.2
4.2

Observe that

5.35 (4.50)

‖U‖m,ε,0 ≤ κ
∑

0≤k≤m

‖
(
Xk

u0
U

)
|{t=0}‖Am−k

0
+ κ ‖U ε

0‖0,ε,0

+κ
∑

1≤k≤m

‖Fk

(
ε, 0, x, (∂α

xU
ε
0

)
|α|≤k

, (∂β
t,xh

ε
t=0)|β|≤k−1

)
‖Am−k

0
,

and

5.36 (4.51)
‖U‖∗1,ε,0 ≤ κ′

∑
0≤k≤1

‖
(
Xk

u0
U

)
|{t=0}‖B1−k

0

≤ κ′
(
‖U ε

0‖B1
0

+ ‖F1

(
ε, 0, x, (∂α

xU
ε
0

)
|α|≤1

, hε
t=0

)
‖B0

0

)
.

The constants κ and κ′ only depend upon the choice of the vector fields Tj

and on m, but not on U nor on ε. It follows then from the estimates (
5.35
4.50)-(

5.36
4.51) and from the compatibility conditions satisfied by the Cauchy data,
that the quantities ‖U‖m,ε,0 and |U |∗1,ε,0 are uniformly bounded with respect
to ε ∈ ]0, 1]. Now, choosing T > 0 small enough, Theorem

theo 1.2
4.2 follows as a

classical consequence of Propositions
prop 2.3
4.10 and

lem 2.7
4.14.

4.4 proof of theorem
existence de donnees compatibles
4.4

Let us call U ε
0 := (V ε

0 ,W
ε
0 ). We look for U ε

0 of the form

stracciatela (4.52)
U ε

0 (x) = U0
0

(
x, ϕ(x)/ε

)
+ ε U1

0

(
x, ϕ(x)/ε

)
+ · · · + εM UM

0

(
x, ϕ(x)/ε

)
where the profiles Uj

0(x, z) belong to the space C∞(Rd × R; Rd). Since ev-
erything is local, making a smooth change of independent coordinates, we
can assume that in the compact C the phase ϕ(t, x) is xd. Recall that

L(v, ξ) = L1(v) ξ1 + · · · + Ld(v) ξd , Ld(v0) = L(v0, ∂xϕ) .
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We work with the unknown U ε = (V ε,W ε). Multiplying on the left the
equation (

zorglonde
2.49) by Sε(v0+εV,W )−1, and using a first order Taylor expansion,

the equation (
zorglonde
2.49) writes

spaghetti frutti di mare (4.53) Xv0U = N(v0,W ) ∂dU +
∑
Z∈Z

Aε
Z(v0, U)ZU + Qε(v0, ∂v0, U)U

where the matrices N,A,Q are C∞ functions of their arguments up to ε up
to ε = 0, and

N(v0, w) =
(
S0(v0, w)

)−1 Ld(v0) .

Since Ld(v0) has a constant rank there exists some N × N matrix with
C∞b entries such that the matrix Ld(v0) Φ(t, x) has a constant kernel in RN .
Replacing U by Φ(t, x)Ũ and forgetting the ” ˜ ”, we can assume that the
matrix N has a constant kernel iand that N = MΓ where Γ in the constant
N ×N matrix

Γ =
[

Id 0
0 0

]
and M is some N×N invertible matrix. It is sufficient to prove the theorem
after all these reductions are done. In particular we assume that Π0(x) does
not depend on x, implying that

(Id− Γ)U = t
(
Π0(x)V,W

)
, ∀U = (V,W ) ∈ RN ′′ × RN ′

.

Our goal is to find profiles Uj
0 satisfying

gongonzola (4.54) (Id− Γ)Uj
0 = t(aj ,bj)

and such that the local smooth solution U ε(t, x) of (
spaghetti frutti di mare
4.53) with initial data

(
stracciatela
4.52) satisfies (when ε goes to 0)

Brunello di Montalcino (4.55)
(
Xj

v0
U ε

)
|t=0

= O(1) , ∀ j ∈ {1, · · · ,m} .

Here, O(1) means that the Am
0 ∩Bm

0 norm is bounded, for allm ∈ N. Because
of (

gongonzola
4.54), the problem is reduced to determine

ΓU0
0 , · · · , ΓUM

0 .

In a first step, we solve this problem in the sense of asymptotic series in
powers of ε. Next, we check that the conditions (

Brunello di Montalcino
4.55) are satisfied.

For j = 1, the condition reduces to (Γ ∂dU
ε)|t=0 = O(1). Thus, Γ ∂zU

0
0 =

0, and
ΓU0

0 (x, z) = c0(x)
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is a solution for all c0 ∈ C∞0 (Rd; RN ) which is supported in the compact set
C.

Assuming that the condition is satisfied for j = 1, · · · , k, we find that

Xk+1
v0

U ε = Xk
v0

(
M(v0,W ε)Γ ∂dU

ε +
∑

AZ(U ε)ZU ε + Q(U ε)U ε
)

Xk+1
v0

U ε
|t=0 = Xk

v0

(
M(v0,W ε)Γ ∂dU

ε
)
|t=0 + ©(1)

=
(
M(v0,W ε

0 )Γ ∂d Xk
v0
U ε

)
|t=0

+ ©(1)

and the condition
(
Xk+1

v0
U ε

)
|t=0

= O(1) reduces to

(4.56) Γ ∂dXk
v0
U ε

|t=0 = O(1) .

Now Xk
v0
U ε
|t=0 is a function of the form

Xk
v0
U ε
|t=0 =

0∑
j=−k

εj F k
j

(
x, ϕ(0, x)/ε

)
+ O(ε)

and since by induction hypothesis all the terms F k
j with j < 0 are zero, we

just have to solve

Xk
v0
U ε
|t=0 = F k

0

(
x, ϕ(0, x)/ε

)
+ O(ε)

which yields

Γ ∂d Xk
v0
U ε

|t=0 = ε−1 Γ ∂zF
k
0

(
x, ϕ(0, x)/ε

)
+ O(1) .

Hence we are lead to solve the equation

izabel (4.57) Γ ∂zF
k
0 ≡ 0 .

The function F k
0 (x, z) has the following form

F k
0 =

(
M(v0,W 0

0 )Γ ∂z

)k Uk
0 + Gk−1

0

where the term Gk−1
0 depends only on the profiles Uj

0 with j ≤ k − 1

Gk−1
0 = Gk−1

0

(
Dαv0|t=0 , ∂

βj

t,x∂
pj
z Uj

0 ;

0 ≤ j ≤ k − 1 , |α| ≤ k , |βj |+ pj ≤ k , pj ≤ k − 1) .

Hence the equation (
izabel
4.57) can be written as

elabet (4.58) Γ ∂z

(
M(v0,W 0

0 )Γ ∂z

)k ΓUk
0 = −Γ ∂zG

k−1
0
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where the unknown is ΓUk
0. This equation can be solved through k + 1

repeated integrations with respect to z, and multiplications by the matrix
M−1(v0,W 0

0 ), the solution depending on the choice of k + 1 arbitrary C∞
functions ck

0(x), · · · , ck
k(x) (the constants of integration) that we can all

choose supported in the compact C. This shows that the problem can be
solved from a formal point of view with ΓUk ∈ C∞(Rd; RN ) supported in
C× R. But the same induction shows that |ΓUk

0(x, z)| ≤ cte (1 + |z|k) and
more generally for all α ∈ Nd and j ∈ N

(4.59) |∂α
x ∂

j
z ΓUk

0(x, z)| ≤ ck,α,j (1 + |z|k−j) , ∀ (x, z) ∈ Rd × R .

This implies that

εk ΓUk
0(x, xd/ε) ∈ Am

0 ∩ Bm
0 , ∀m ∈ N .

We already know that the function (Id − Γ)Uk
0 = t(aj ,bj) is prescribed in

the space JC(Rd; RN ) which implies that

(Id− Γ)Uk
0(x, xd/ε) ∈ Am

0 ∩ Bm
0 , ∀m ∈ N .

Therefore, U ε
0 is actually a compatible initial data, and the proof is complete.

2
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BK [4] G. Browning, H.O. Kreiss, Problems with different time scales for non-
linear partial differential equations, SIAM J. Appl. Math. 42 (1982) 704-
718.

CGM [5] C. Cheverry, O. Guès, G. Métivier, Oscillations fortes sur un champ
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hyperboliques quasilinéaires, Asymptotic Anal. 6 (1993), no. 3, 241–269.

Hei [13] A. Heibig, Error estimates for oscillatory solutions to hyperbolic sys-
tems of conservation laws, Com. P. D. E. 18 (1993) 281-304.
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