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1 Introduction

This paper is concerned with the existence and stability of multi-dimensional
large amplitude high frequency waves associated to a linearly degenerate
field. They are families {u®;e €]0, 1]} of solutions of a hyperbolic system of
conservation laws on a fixed domain independent of &, such that

(1.1) u®(t, x) ~, U°(t,z,p(t,z)/e), OpU* (t,z,0) = O(1).
£—

These O(1) rapid variations are anomalous oscillations in the general context
of nonlinear geometric optics, where the standard regime concerns O(e)
oscillations:

(1.2) u(t, x) ~ uo(t,z) +eU5 (¢, 2, 8(t, x)/e) .
E—

However, when the oscillations are associated to linearly degenerate modes,
the equations for U; are linear, suggesting that, in this case, oscillations of
larger amplitude .can'be con51dere(.i. introl ' .

A strong motivation for studying waves (IT.1 ; is the existence of simple
waves associated to linearly degenerate modes (see %ZO]) They are solutions
of the form

(1.3) V(h(k-x—wt)),

with V € C1(I;RM) and (w, k) € R4 suitably chosen, and A is an arbitrary
function in C1(R; I). Fix any h € C}(R;I). The functions

(1.4) u(t,z) = U(p(t,x)/e), U=Voh, ot,z) =k -x—wt

introl
are exact solutions of the equations, of the form (.1 ;

In one space dimension, under assumptions which are satisfied by many
physical examples, there are quite complete results at least for solytions
which are local in time. The first informations were obtained by W. E [7] for
the Euler sys@%n of gaz dynamics in Lagrangian coordinates, and extended
by A. Heibig [I3] to the case of systems admitting a good symmetrizer. More
recently, IPS%%% results have been generalized by A. Corli, O. Gués?ﬁ% and A.
Museux g? up to the setting o i%tcr%t%ﬁed weak solutions, which contains for
example the case of solutions (I.3) when h is only L*°, still assuming the
existence of a good gymmetrizer. Concerning global weak solutions let us

quote Peng’s results for the Euler system of gaz dynamics.



In several space dimensions, the situation is much more delicate. A first
step in the analysis is to determine a set of sufficient conditions leading to
formal WKB solutions

(1.5) u'(t,e) ~ Y & Uyt @(ta)fe),  Oplo(t,z,0) 0.
j=0

A second step is to determine a set of sufficient conditions, which i in
general strictly stronger, insuring the stability of these solutions (see for
such an approach in the semilinear case). None of these steps is easy.
There are strong obstructions to the construction of WKB solutions. For
instance, D. Serre has shown in %B] that, for the isentropic gaz dynamics,
an expansion like (%ads to modulation equations for the U}, that are ill
posed with respect to the initial value problem ; more precisely the linearized
equations deduced from the modulation equations are not hyperbolic.
Moreover, strong instabilities can be present. For example, in the case
of co ngsg&ble or incompressible isentropic gaz dynamics, the explicit solu-
tionsn&ﬁf%re strongly unstable, becausge of Rayleigh instabilities, as shown
in the SQ}rks of M. Artol% A. Majda [2], S. Friedlander, W. Strauss, M.
Vishik [8] and E. Grenier [9]. These results indicate that in space dimension
d > 1, the existence of a good symmetrizer adapted to a linear degener-
ate eigenvalue, is in general not sufficient to guarantee the stability of large
amplitude high frequepcy waves.
The recent paper %ﬁgives a better understanding of the proble lﬁthlist,
it contains a discussion on the magnitude of oscillations, between (r%ﬁnd
2;, that can be expected. Assuming the existence of a good symmetrizer
corresponding to some linear degenerate eigenvalue, we proved in that
there always exist formal WKB solutions

o
(1.6) w(tr) ~ uotw) + Y &P Vi(ta et a)/e)
j=1
where ug is any given smooth local solution of the quasilinear system. Here,
the oscillations are of amplitude O(y/€). The resulting equations for the
profiles V; are well posed. Moreover, the equation ﬁ%t‘%l%g profile V1 has non
linear features, which means that the expansion (I.6) is a relevant regj
for the chosen context. More striking is the instability result obtained in [5]:
im%egfral, the approximate solutions obtained by stopping the expansion
(I.6) at an arbitrarily order k, are strongly unstable. In fact the linearized
evolution may produce exponential amplifications of small disturbances of
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the data (see H%lfor a similar situation in the semilinear %ag(iz). This confirms
tlgtir(}%tability of large amp f}g%dgs oscillating waves (.lej,Ls,ince the regime
(.1 is more singular than (IT. ich is already unstable.

However, we als mgc)rgged in that in some very particular cases, the
strong oscillations (ffé'hre linearly and nonlinearly stable. For instance,
this js true if the linearly degenerate eigenvalue is stationary on the state ug
(see }?5(%[ But this condition is very restrictive and never satisfied for Euler
equations. We also give i k) (lj%ss restrictive conditions that insure the weak
linear stability of waves (Igé ['his means that the amplification’s rate of
the solution is polynomial in /e instead of being exponential. In the case of
the Euler system of entropic gaz dynamics, these conditions mean exactly
that the oscillations are polarized on the entropy. This result indicates that
the polarization of the oscillations is a strong factor in the stability analysis.

In this paper we push further this idea of looking at waves which have
a particular polarization. In situations which extend the case of entropy

waves, we_prove the existence and the non linear stability large amplitude
waves (IT.1 %

e Large entropy waves for Euler equations. In the case of the
entropic Euler equations, we prove the existence and the stability of non
trivial solutions u® = (v¢, p¢,s®) (velocity, pressure, entropy) of the form

ve(t,z) = vo(t,x) + & V(t, 2, 0(t,x) /) + O(?)
(1.7) p(t,x) = po +¢ P(t,2) + O(e”)

s°(t,z) = S(t,z,¢(t,z) /) + O(e)
where v satisfies the overdetermined system
(1.8) Ovo + (vo - Vz)vg =0, divyvg =0.

Here pg is a constant and the phase ¢ is a smooth real valued function

satisfying the eiconal equation 9y + (v - Vz%xge:e)pamég example éﬁﬁg}%% overdetermined system for |

Euler equations is detailec} in thle g.ubsection ﬁ.éil_lwhile the subsection 2.
(31msa apim (e

is devoted to the system . For solutions , the main oscillations are
of order O(1) and polarized on the entropy.

e General systems. It is interesting to understand what are the struc-
ture condit'é)nis] on a general system that allow the construction of solutions
similar to (I.7). We consider a N x N symmetrizable hyperbolic system of
conservation laws in space dimension d > 1

d
(1.9) Orfo(u) + > 9ifi(u) = 0.
j=1

4
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The flux functions f;(u) are defined in a neighborhood O of 0 € RY. We
assume that det fj(u) # 0 for all u € O. We note

d

Aj(u) = folw) ™ fi(u),  Alu€) =) & Aj(u).

j=1
Let A(u,&) be a given eigenvalue of the matrix A(u,§). We introduce
F(u,§) :=ker (A(u, &) — A(u,§)1d) C RY .
We suppose that A(u,§) is linearly degenerate with constant multiplicity

(1.10) - Vu\u,€) =0, Vr e F(u,f), V(u, &) € O x (R4 {0}).

(1.11)  3IN>0; dimF(u,&) =N, VY(u,é) e O xR\ {0}).
We consider the vector space
F(u) := MNe=£o F(u,&) C RN .

For Euler equation, this space is exactly the polarization space of the en-
tropy. Our main assumptions are first that F(u) is non trivial has constant
dimension

(1.12) IN'>0; dim F(u) = N/, VueO

systofc
and second that the system (ﬁmmits a good symmetrizer with respect
to the field u +— F(u). This last requirement has an intrinsic meaning that
we briefly describe. It means that there exists a smooth symmetric positive
definite matrix S(u) such that the matrix

L(u,&) == S(u) (A(u, &) — A(u, £)1d)

is symmetric for all (u, &) € O x R? (i.e. S is a symmetrizer) and that, view-
ing the symmetric matrix L as a two times covariant tensor, for all smooth
vector field V on O satistying V(u) € F(u) for all u € O, the Lie derivative
of L aloqgog/i hEI} (d%eep algen]). All these assumptions are introduced in the
section 2, where we show that the system can be put in a canonical form
similar to that of the Euler equations, by using suitable non linear change
of dependent variables.




e Oscillations with several phases. We will also consider the case of
oscillating waves with several phases

(113) U’E(t7m) :0 Ua(t,a;,c,b'(t,x)/&?) ) ()B = (@17 o 7‘)05) .

€

framework is the one introduced by Joly, Métivier and Rauch H%]l—
%@%in the study of weakly non linear geometrical optics. In particular we
make coherence assumptions on the phases ¢;, together with small divisor
assumptions which are used to get high order WKB approximate solutions.

New difficulties appear in this gontext, especially concerning the Justlﬁch%%qllating solutions and the W

of the asymptotic expansion (l.l3i. This is the subject of the section 3.

e e-stratified and e-conormal waves. We will pay a special attention
to the case of single phase high frequency waves (¢ = ¢). In order to allow
more general fluctuations, we consider the larger class of e-stratified waves.
Roughly speaking, it means that (¢, z) satisfies on an open set  of R+,
a condition like

scamorza fumicata| (1.14) (£0)* Ty - Thu® € L*(Q), Va e N VkeN

for any vector fields 7; on Q with C;°(€) coefficients’, which are tangent to
the foliationi\;gg = cte}. In other words, we impose 77 o =0, -+ , T, ¢ = 0.
Waves like (mith @ = o provide a natural example of such e-stratified
waves. The e-stratified waves were introduced infﬁél] in the context of weakly
non linear geometric optics. They are inspired from the classical stratified
waves introduced by J. Rauch and M. Reed in F}éﬂ and Métivier in %T] for
the study of singular solutions to non linear hyperbolic systems.

In the same spirit, we also treat the case of 5—conor0r£12a€} gvu%\lfggt;vhich
correspond to the case where the vector fields in (I.14) are required to
be tangent to only one hypersurface, say ¥ = {¢ = 0}. It means that :
(Tip))s =0, ,(Typ)s = 0. Hence, it is a special case of e-stratified
wave but where u® may vary rapidly in a region which is closed to X, like
an inner layer. For example it may converge to a discontinuous fonction as
£ goes to zero. A function like x(t,z) arctan(p(t, z)/e) with x € Cg°(R'+)
is an example of e-conormal wave converging to a discontinuous function.

Since we study the Cauchy problem for such e-stratified or e-conormal
waves, we are lead to the question of the compatibility conditions required

on the initial e%‘{zsxte}li\gg %%OX‘{) I‘gllllgetst@oergga%%lfggly exist Corr.lpatﬂsl%%lcg% lal data;, oo
(see theorem ¥.4). All this maftfer is treated in the section 4.

By C£°(92) we mean that the functions are in C*°(2) and are bounded with bounded
derivatives at any order.
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2 Position of the problem

2.1 Structure assumptions

Let u Scons%'der the N x N symmetrizable hyperbolic system of conservation
1 s 8 8?) 09 %ce dimension d > 1. The framework is the one described in
(T.10)- 2). It implies other properties.

Lemma 2.1. Under the condition 2[7.12), the function A(u, &) is linear with
respect to £&. Moreover the field u — F(u) is locally integrable.

Proof.  We select r(u) # 0 belonging to F(u). Differentiating in ; the
relation A(u, &) r(u) = M u, &) r(u), yields

Aj(u) r(u) = 0g;Mu, &) r(u)

The left hand side is independent of {. Thus g A(u,§) does not depend
on & which proves the linearity. Furthermore, by %3 for all £ # 0 the field
F(-,€) : u— F(u, &) is locally integrable. Since this property is preserved by
intersection, the result follows for u +— F(u). O

Example 2.1. Let us consider the Euler system of entropic gaz dynamics,
i space dimension d = 2
v+ (V-Vo)v+p 'Vep=0
(2.1) hp+ (v-Vy)p+pdivyv=0
s+ (v-Vy)s=0

with p = P(p,s). For the unknown u = (v, p,s) € R* we have

v-g 0 a&s b&
0 v-§& al b&
p&1 p& v-§¢ 0
0 0 0 v-¢

(2.2) A(u,§) =

where a := p~! P)(p,s) and b := p~' Pl(p,s). It is assumed that a(p,s) >0
for all p and all s. The linear degenerate eigenvalue is A(u,&) = v - & and
the corresponding eigenspace is the plane of R* defined by

{W,p,s) e RY: ap' +bs =0, &)+ &) =0}.
We find that F(u) is the line of R* defined by
(2.3) {(0,p’,5’)€R4; ap’+b5’:()}‘

The same calculation with the 3-D equations gives again N' = 1. .
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We denote by (eq, - - - ,en) the canonical basis of RY. Let N” := N —N'.
Since F is locally integrable, there exists a smooth diffeomorphism y €
COO(@; O) between two open sets @ and O of RN both containing 0, with
x(0) = 0, and such that the change of coordinates maps the vector fields

env11,° -+ ,en onto a basis of F. In other words, the N’ vectors
Ix Ix
81~LN”+1 ’ ’ 81~LN

form a basis of the linear space F(x). The conditions to impose on the new
variable @ = x~!(u) are

d

(2.4) Ocfo@) +>_ 9;fi(@) =0,  fi=fiox.

Jj=1

For C! solutions, this system is equivalent to the quasilinear system
d ~ ~
(2.5) O+ Aj(@) 0;i =0,  Aj:=Dx ' Aj(x) Dx.
j=1

We introduce the decomposition

= (v,w), vi= (U, - ,aN7), w = (UN?4+1, "+ ,UN) -

The fact that A(u, &) is linearly degenerate implies that the new eigenvalue
M@, &) == A(x(@), &) of the matrix

d
A, &) == & A(@)
j=1

does not depend on w. Since we already know that ) is linear with respect
to &, it remains

(2.6) N, €) = p(v)-¢,  V(u,§) e RV xR

In all the sequel we will note X, the corresponding characteristic field

(2.7) Xy == 0 + p(v) - V.

Furthermore, the linear space

F(@) := Nego F(@,€),  F(a,8) == ker (A(@,&) — pu(v) - & x 1d)

8



becomes the constant linear subspace of R with equation {v = 0}.

Now on, Ses(tigggt the 7™ For example we call again u the unknown .
The system (;.5) can be put in the following form

reduit| (2.8) Xyu+ M(u,0z)u=0

where M(u, d;) is the N x N first order linear operator
M(u, ;) = Mq(u) 01 + -+ + Mg(u) 04
By construction, the matrix M (u, §) satisfies

danslenoyau| (2.9) {v=0} C ker M(u,§), vV (u,&) € O x R?.

reduit

systofc
The system (II .9) being symmetrizable, the same is true for the system (bS J.
Hence we can find a symmetric positive definite matrix S(u) with C*° coef-

ficients such that

symetriseur | (2.10) S(u) M(u,&) is symmetric for all (u,§&) € O x R? .

danslenoyau

. . reduit |
To summarize, we consider a system of the form (b.g) satifying (2.9) an
we make the following hypothesis.

symetriseur
hyp 1.1| Assumption 2.2. There exists a good symmetrizer (b 10) such that the co-
efficients of the skew symmetric differential operator S(u) M(u,0y) are in-
dependent on w. We will note in the sequel L(v,0,) := S(u) M(u, d,).

reduit
The system (b.gi is equivalent to

(2.11) S(u) Xy u + L(v,0;)u = 0

reduitsymetrique

. danslenoyau
and it follows from the symmetry of L and from the property (2. a

has the following form

b
212) vwo = [ Y59 0]

where the block L°(v, &) is symmetric, of size N” x N”. For all (v,£) €
RN x (R?\ {0}), we will note P (v, £) the matrix of the orthogonal projector
of RY onto ker L(v, &) written in the canonical basis of RY, and we will
note P’ (v, £) the matrix of the orthogonal projector of RY" onto ker L’ (v, £)
written in the canonical basis of R™Y". These two operators are linked by

b
(2.13) P(v,¢) — [P(g’f) 1(21]'
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The assumption (I.10) implies that L(v, ) has a constant rank when (u, &)
varies in O x (R%\ {0}) so that its range and its kernel depend smoothly on
(u,&). We will make a repeated use of this property.

Lemma 2.3. The mapping (u,&) — P(v,£) is a C* function on the open
set O x (R?\ {0}).

Example 2.2. The entropic Euler eglﬁ%gi((‘),nrsh.o IgV%e consider Euler equa-

tions of gaz dynamics as it is written in ( . A suitable change of dependent
coordinates x consists in choosing the unkown u = (v, p,s), which means to
express p in terms of (p,s) by a relation of the form p = p(p,s). In that
case, and after being symmetrized, the system writes

p(Ov+ (v-Vo)v) + Vop =0
(2.14) o ((%p + (v Vz)p) + div,v=0
s+ (v-Vy)s=0

with a(p,s) = pp(P,s)/p(p,s) > 0. We still have A(u,§) = v - & but now
F(u) is the constant linear subspace of R*

F= { (0,0,0,5"); s € R}.
In this example, the variables v and w are given by v = (v,p), w =s, and

Xy, = 01 +v10,+vedy = 01 +Vv-V,.

euler (v,p,s)* reduitsymetrique
The system (2. 15 actually of the form (2. wi
p 0 0 0 0 0 & 0
o p 00 o o0 & o
S(u)_ 00 o 0 ) L(uaé)_ 51 52 0 0
0 0 0 1 0 0 0 O

Observe that S is a good symmetrizer since the matriz L(u, &) = L(v, &) does
not depend on the entropy w =s. This analysis extends to any dimension.

2.2 Setting of the problem and motivations

. . X reduitsymetrique X
There exists very particular solutions of (2.11) with large amplitude fluctu-
ations. These are solutions uy = (vg, wg) of the overdetermined system

(2.15) Xvo ug = 0, L(UQ, Ox)uo =0.

10
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1.

12

In view of the form of the matrix L, this is equivalent to say that

(2.16) 0o + w(vg) - Vyvg = 0, L’ (vo, 8,)vo = 0
and that
(2.17) dywo + p(vg) - Vewo = 0.

The condition (B?fgitéf)llllstusrcﬁgc%m’%lg %two parts (HG) and (H) On
the one hand, a non linear overdetermined system on vg. On the other
hand a linear ,transport equation on wg, with coefficients depending on vy.
The system (2.16) being overdetermined, it is ill posed for the initial value
problem. It admits however solutions like for example the constant solutions
or some simple waves (see the f ll Wlng remark). In the special case of
the Euler egllllatlons the sYS em @) Wél]lbe studled with more details in

overdeterm sys
subsection [ z 3.

Remark 2.4. The dimension of the linear subspgcg ker Lb(v, €) is indepen-
dent on (v,€). When it is not 0, the system (2.16) admits non constant
simple wave solutions. In that case, let us fix €0 € R\ {0} such that
w(0) - €% =0, and consider v — r(v) a C* vector field on a neighborhood of
0 in RN" such that r(v) € ker L’(v,£°) \ {0}. Let v be an integral curve of
r. It is a local smooth solution in a neighborhood J of 0 € R of

(2.18) di; v(s) =7r(7(s)), ~7(0) =0, seJ.

Hence, the function vo(t,z) := v(£° - ) is a local solu jog (which is not
constant) on a neighborhood of 0 € R4 of ¢ ¢ susten jZPaiGE)derIndeed, the
fact that L’ (vy, 0y )vg = 0 follows directly from ( or the other relation,
the fact that the eigenvalue p(v) - €0 is linearly degenemte implies that

d

() - €} = Vol - ) (4(9) - 7(3(5)) = 0.
It follows that

n(3(s)) € = p(0) - € =0,  VselJ.

1.9
It implies that X, vo = 0 and shows that vg is a solution of (h6)

1.9
We fix a vy satistying (bm) One can choose
(2.19) wo(t,z) = w(t,z, o(t, x) /)

11
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where
A + p(vo) - Voo =0, ¢ € C'([0,T] x R R).
ow + p(vg) - Vow =0,  we CY[0,T] x R x T;RN').

It gives an example of large amplitude oscillating solution, with just
one phase. One can also consider examples with several phases like

(220) w(%(ta $) = W(ta xz, QDl(t, {L‘)/E, T 7@((2&) :L’)/{—j) )
with again
8t90j+u(00>'vw§0j:07 vje{Lvé} ,
Ow + p(vg) - Vow =0, w € C1([0,T] x R? x T RNV").

1.12
It is an example of a several phase oscillating solution generalizing (bTQ)
Let us insist on the fact that all the phases ¢; are eiconal for the same field.

One can also vary the nature of the profiles, and consider jump profiles
instead of periodic profiles. For example, one can choose a function w having
limits in 400 and in —oo

(2.21) w(t, z) = w(t, z, p(t, z)/e), lim w(t,z,2) = w(t,x)

z—+o00

where we impose

Ow + p(vg) - Vyw =0, w e CH([0,T] x R? x R;RY").
owE + p(vg) - Vowt =0,  weCY[0,T] x RERN).

Suppose that Q@ = {¢ > 0} and Q_ := {¢ < 0} are two connected
open subsets of {2 separated by the smooth (and connected) hypersurface
{¢ = 0}. Denote by u* the function in L? (€2) whose restriction to Q4 is
(vo, wE). When the limits w and w™ are different, u* has a discontinuity
along the hypersurface {¢ = 0}. Observe now that the fungrgié)uritug =
(vo(t,z),w(t,z,¢/e)) is an exact C* solution of the system (2.8), which

converges to uT in LZQO () as e goes to 0. It follows that %:v sl,% esncl)el%ti'gn in the

econservatif

sense of distributions of the system of conservation laws (2.4), discontinuous
across the characteristic hypersurface {¢ = 0}. It is a contact discontinuity.
In the sense of the space L7 (), the solution u is a small perturbation
of this contact discontinuity. It is important to note that the contact dis-
continuities obtained in this way are pr gmrr}lfeeld by the change of dependent
variables x introduced after the lemma %c [. Indeed y(u®) is still a contact
discontinuity solution of (T.9) in the sense of distribution; 5 éccotf%ally, for all
¢ # 0 the smooth function x(ug) is an ezact solution of (jI.IU),THd one can

pass to the limit as before since y(u§) converges to x(u*) in L2 ().

12



One important q%zsti n e discu 5 i this paper is the stability of these
1 -1 i
various solutions (b 19), &ZU) and (BZT

). As a.matter of fact, one of our
goals is to construct non trivial solutions of (2.8) which are perturbations of

such kind of particular solutions.

Notations. We fix once for all Ty > 0 and we note Q :=] — Tp, To[xR?.
For every T' > —Tjy, we will note

QT ::] — T(),T[X]Rd
and for all T > 0 we will note
wr =10, T[xR?.

9 1 . 9
Let vg € H®(;RN") be a given function satistying the system (beS) on a
neighborhood € of 0 € R*%. To fix our mind, we will assume that

(2.22) O = {(t,x)eQ; |t|+|zl<r}, r>0

where | - | is the Euclidian norm in R?. The symbol H* is for the usual
Sobolev space of order co.

The results contained in this paper provide essentially with loc%l;gr -
formations. One more reason for this is the overdetermined system (2.16)
which has in general no global solution in the whole domain Q (excepted
the constants). However, in order to simplify the exposition and to avoid
the introduction of local domains of determination of the data, we prefer to
give results which are global in space. If necessary, the local versions of the
theorems can be easily deduced using the local uniqueness and finite speed
of propagation. To sum up, we {«Edﬂ%e" for all the sequel a global sofution
ug = (vo,wp) € H®(QRN) of (2.8), such that vy is subjected to (12.16) in
O, and such that wo = 0 in . Such a framework can be obtained by a
usual procedure?.

Let a and b be real numbers such that a < b. We introduce the space

W™ (a,b) == {ueC([a,b]; H"(RY));

(2.23) . e .
%ueC([a,b];Hm ](R)), V]E{l,...,m}}.

2L . E_r% . . . 1+d

et vo be a smooth solution of (2°16) i A deighborhood of 0 in R"™%. We can extend
v0(0, -) into 5p(0, ) € H® (R4 RY” ).r%%:letr(]]'z.@%}flissymmetric hyperbolic, we can solve the
Cauchy problem corresponding to (EB)Tssociated with the initial data (90(0,-),0). The
wished conditions are then fulfilled by picking 7o and r small enough.

13



1ined system for Euler

Burgersincompressible ‘

solutionimplicite ‘

divergencedev‘

For all fixed € > 0, the classical theory of muldidimensional quasilinear hy-
perbolic systems applies. Let us recall that for every functisogtggce H™RY)
with m > d/2 + 1, there is T' > 0 such that the equation (Hgﬁ?as a unique
solution u € W™(0, T) satisfying the initial condition u(0,-) = u°.

2.3 The overdetermined system for Euler

This sub§e8tion is devoted to a more precise analysis of the overdetermined
system (2.16), in the case of the Euler equations of gaz dyna icsg We note
v the velocity, p the pressure and s the entropy. The system (2.16) writes

v+ (v-Vy)v=0, div,v =0, V.p=0

which means that the pressure p is a constant say p, and that v is a solution
of the system

(2.24) v+ (v-Vy)v=0, div,v=0, v(0,z) = h(z).

1 Burgersincompressible .
Suppose that v is a C* solution of (b 25) in a neighborhood of the origin

of R%. Hence, in a neighborhood of the origin, v is constant along the
integral curves of the field (1,v). This implies in turn that this vector field
is constant along this curves which hence are straight lines, and the classical
relation follows

(2.25) v(t,z +th(z)) = h(z)

which holds in a neighborhood of 0. Conversely, if h € C*(R?) is given, this
relation defines v € C'(O) in an implicit way on a neighborhood O of 0
sufficiently small so that x(¢,z) := (t,z + t h(x)) is a C'-diffeomorphism in
a neighborhood of 0 onto O.
We want now to investigate whic C?ndition f} on the data h will imply
that the local solution v (Bdeﬁn c'y (p satisfies a so the divergence free
ersincompressib
condition of the system (2.27).
Let us note Py the d > d Jacobian matrix of v(t,-) and h’ that of h.
1on1mp11c
The formula (u 25) leads to

(2.26) (Dyv)(t,y) = K (x) (Id + th'(x))_l , (t,y) = x(t,x) .

Taking the trace of each side we obtain

(2.27) divy v(t,y) = Tr (h/(x) (Id+th’(x))_1).

This trace can be evaluated with the following lemma.

14



detexpl

tiondenullitedessigma \

Lemma 2.5. Let A be a d x d matriz with complex entries. The following
formula holds

Te (A(Id+14)7) = Q4(1)/Qa(t)

with Q4 (t) := det (Id+tA). Moreover, the polynomial Q 4 is constant if and
only if A is a nilpotent matriz, and in that case Qa = 1.

Proof.  Let us note A1,---, g the eigenvalues of A, repeated according
to their multiplicity. There exists an invertible matrix P such that A =
P~'T P where T is a triangular matrix with diagonal (Ag,---,\g). Hence
we have
(2.28) Tr(A(Id+tA) ™) =Tr (T (Id+tT)™).
d

(2.29) Qa(t) =detMd+tT) =[] (1+tA;)

7=1

It follows that

Aj

d .
Tr(A(Id+tA)7") =Y v Q4 (t)/Qa(t).
j=1 !

Observe that Q4(t) = t?P(—1/t) where P4(7) is the characteristic polyno-

mial of A, that is Pa(7) = det (A —7I). Hence Q4 is a constant if and only

if Pa(7) = (—7)¢ which means that A is nilpotent. The lemma is proved.
the way, let us point out that expanding each side of the equa-

t :
lity (b?ZQei leads to Qu(t) = E?zl ¢j(A)t) where the coefficients c;(A) are
polynomial functions of the entries of A. The ¢;j(A) can be formulated as
¢j(A) = oj(A1,- -+, A\q) where o(-) is the elementary symmetric polynomial
of degree j of d variables

d
0122)\1‘, CQ:Z)\Z')\]‘, 0322 NN, oo, ca=A g

=1 i<j i<j<k
Hence the condition Q = cte is equivalent to the relations

As a matter of fact, the condition for j = 1 means Tr A = 0 and that for
j = d means det A = 0. a

15



theoremenilpotence‘

pbdecauchypourburgers‘

. divergencedev
It follows from this lemma and from the formula (2. at div, v(t, x)

is 0 in a neighborhood of 0 in R if and only if the polynomial Q,h/(:c)
is 0 for all z in a neighborhood of 0, i.e. if and only if the matrix h'(x)
is nilpotent on a neighborhood of 0 in R¢. This shows that the condition
D,v is nilpotent is propagated by the C' solutions of the multidimensional
Burgers equation. In other words, it is satisfied around 0 in R if and only
if it is satisfied at t = 0 in a neighborhood of the origin of R%. To sum up,
we have proved the following result.

Theorem 2.6. Let h € C'(R%:R?) and let v be a local C' solution on a
neighborhood of 0 of the Cauchy problem

(2.31) O+ (V-Vv=0,  Vi—g=h.

The following properties are equivalent

(1) divyv = 0 in a neighborhood of 0 in R4,

(2) Dyv is nilpotent in a neighborhood of 0 in R4,
(8) B (x) is nilpotent in a neighborhood of 0 in R.

lconditiondenullitedessigma

When d = 2, the condition (2.30) writes merely

(2.32) div, h =0, det W' (z) =

A generic situation where det h’'(z) = 0 (with a non constant h) is when h
takes its values in a (strict) submanifold of R? (i.e. on a curve). One can
construct such h in the following way. Let F' and G be two functions in
C!(R;R) and let a be a local solution of the scalar conservation law

81F(a) + 82G(a) =

We take h(x Foa( )), Goa(z)) which satisfies actually the two relations
required in b.SZi The solution of the corresponding Cauchy problem will
hence satisfy the divergence free ?On(i]j.ttllon denullitedessigma

When d > 3, the conditions (u 30) are more complicated to deal with.
Nevertheless, the previous construction is still valid and gives again initial

data h with nilpotent h'.

Corollary 2.7. For all H € C*(R;R%), if a(x) is a C* local solution around

0 of the scalgr, conseruation, law div, (H o a) = 0, the function h := H oa
! conditiondenullitedess .
saé@sg@ggcgE.So(uI!, &nderfsﬁe local solu%zon of the corresponding Cauchy problem
(%.5’2 ] saizsﬁes div, v =0.

16



[theoremenilpotence

Proof. By Theorem 2.6, it is sufficient to check that the differential of h
is nilpotent. Since h = H o a, for all x in a small neighborhood of 0, the
matrix A'(z) has rank 1. There is at most one non zero eigenvalue of h'(z).
Since the trace of h'(x) is also 0, all the eigenvalues of A'(z) must be zero.
O

When d = 3, there is another generic situation. The condition det h' = 0
is also satisfied when h takes its values in a submanifold ¥ of dimension
2. For example, assuming that X is locally given by the equation w =
f(u,v), one looks for h = (u,v,f(u,v)) where u(z,y,z) and v(z,y, z) are
C® functions of (z,y,z) with values in R. In that case, the condition A’/
nilpotent is equivalent to the following non linear system of two equations
with two unknowns

(2.33) O+ 0,0+ 0. f(u,v) = 0,

P Oyu  Opv
(2.34) det | ¢ Oyu Oyv | =0,
-1 9d,u O

where p(u,v) := 9, f(u,v) and q(u, v) = quf(u, v). By Cauchxiggggmvskﬂ
theorem, there are local real analytic solutions of the system (2.33)-(2.34).
More precisely, let a(y, z) and b(y, z) be two analytic functions from a neigh-
borhood of 0 in R? with values in R. Suppose that

q(a(0),b(0)) 8-a(0) + dya(0) # 0.
kovalevskyl
hen, the initial surface {x = 0} is non characteristic for the system (2.33)-
( ova, eVVVS1

initial data (u,v)j,—o = (a,b). Therefore, there exists a real
analytic solution (u,v) on a neighborhood of 0 in R3.

We end this section with another result involving the polyno i%&%&ﬁ@ﬂ' ourburgers
It concerns the life span of the classical solutions of the equation (5.31 ). ot
us introduce

B(0,M] :=={zeR%; |z| <M},
CERY) := {h e CERERY); 30 B pooay <00},  kEN.

Theorem 2.8. Let h € C)(R)NCHRY) and T > 0. The following properties

are equivalent
(1) the Cauchy problem

(2.35) Ov+(v:-Vo)v=0,  vpo=h

17




has a solution v(t,x) defined on [0,T] x R? and this solution v(t,x) belongs
to the space C'([0,T] x R%RY).
(2) For all M € R", the following minoration holds

min] (2.36) inf { Qe ()] (t,2) € [0,T] x B0, M]} > 0.

1if

Theorem b.lgeﬁzsxsanfhe following consequence. If in addition, h € CJ(R?)N
C'(RY) satisfies
(2.37) W (z) is nilpotent for all z in R?,
then the solution v is global in time. Indeed, in that case Qp/(,) = 1 and the

in
condition (53'6) is verified for all T 14
ife span
The proof below shows that Theorem b.S has an analogue when h is

defined only locally in space, replacing [0, T] x R? by an appropriate domain
of determination.

Proof. Assume first that (1) is satisfied. Let us consider the system of
ordinary differential equations

%X(t,x) = V(t,x(t, ac)), x(0,z) =x.
The solution is defined (and C') on [0,7]. For all ¢ € [0,T], the application
x(t,-) is a C! diffeomorphism of R?. For all M € R*, we have
inf {|det Dyx(t,z)|; (t,x) € [0,T] x B[0,M]} > 0.
Since by construction x(¢,z) = z + t h(z), we find
det Dyx(t, @) = det (Id + t h'(x)) = Qpr(z)(t)
and the condition (5%6) follows.

Conversely assume that (2 et}}i%(llg Fix any M € RT. Let T* be the
supremum of the T such that (2. as a solution on the domain

D(T,M) = {(t,z); |z|+t || h [Loo@@ey< M, t € [0,7]}.
D
For t € [0,T*[ and y = x(¢, z) the formula (}‘2}%6) can be written

(2.38) Dyv(t,y) = Qu(a) )~ W (x) co(Id + t h'(z))

i diffcal
where co(M) is the co-matrix of M. Then (%6) and ( p caunply

(2.39) sup { |Dyv(t,z)|; (t,z) € D(T, M)} < oo.

This estimate contradicts the caleﬁnition of T%, because it allows to extend
the solution v beyond T* (see FFZU]) Therefore T* = T'. Since M is arbitrary,
this implies (1). O

18



reduction

euler(v,p,s)

2.4 Reduction of the system
duit dans1
We consider the equation (E?SH).I By using the property (}‘Z?ngsi, We g?élt

(2.40) M(u, ;) = [ ﬁ;gzgz; ’ }
Let S(u) be a symmetrizer for the system (Efegl)l.i—t\Ve have
(2.41) S(u) = S(u) = [ ?EZ; g((S)) ] 0.

The matrices m) %nlcsl G(u) are symmetric positive definite, thus invertible.
Moreover, by (

(2.42) FMi+GMy =0, E M +'F My is skew symmetric.
Thus

(2.43) Mso(u,0y) = — C(u) My(u,0,), C:=GF.

. b i i reduit rdefie
By construction, the operator L’(v,d,) involved in (2.11)-(2.12) 18

L’(v,0,) = (EMy+'F My)(v,0,).

2is*x .
Therefore, (2.43) implies:

L’(v,0,) = B(u) Myi(u,d,) with X:=(E—-'FG'F)='2>0.

In this paper, we are interested in solutions u® which can be put in the
form u® = (vg + e Ve, W¢) where

(2.44) the supports of V< and W¢ are contained in .

Since vp Is fixed, tths(% H‘%yrelémknown is the couple (V¢, W*€). It turns out that

the system (2.11) 1S equivalent to

E Xogrev V + L0 (00 +eV,0:)V + eV IF Xygyov W
(2.45) = —¢1 {E Xoygtev vo + L2 (vg + €V, 0,) vo} ,
£ C Xppyev V4 Xpgrev W = =G HF Xyqev 0o -
Since vy satisfies (%6), we have

Xpgtev Vo = € (fo (V- Vy)u(vg +esV) ds) - Vaug.

2.46
(246) L’ (vo 4+ €V, 0,) vg = € fo (V- V)L (vo +e5V,0;) vo ds .
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.. euler(v,p,s)
The second equation in (2. yields
e M P XyyrevW = —'FG7LF XyyievV
—PFGTVF ([ (V- Vo)ulvg +esV) ds) - Vg

euler(v,p,s)

We can use this lasg &iléen(tvlt}g 1513 order to interpret the first equation in (2.45).

Then we can put (2. in a symmetric form to get

SE(UO + SV, W) Xvo—i—sV U+ L(UO + 5V» 8:1:) U
(2'47) +K5(v0,6v0, U) U=0.

Here, the matrix K¢ is a C* function, of its arguments, including ¢. The
reduitsymetrique

operator L(v, 0;) is as in (2.11). The maftrix S¢(u) is given by
Y(u)+e2tCC etC
€ —
(2.48) Se(u) := [ e C THE

Observe that, for € small enough, the matrix S¢(u) is still symmetric positive
definite. In all the sequel we will note H®(¢,z,U,0) with U = (V, W) the

linear first order symmetric operator
HE(t,z,U,0) = S(vg + eV, W) Xyytev
1 2.4 R . 0
(2:49) +L(vo +£V,0,) + K= (vo,dvo, U) .

3 Oscillating solutions and the WKB expansions

aind the WKB expa_nsions‘

. . . . reduit L
The goal of this section is to construct solutions u®(t,z) of (b.Si admitting
an asymptotic expansion of the form

aveloppementmultiphase‘ (3.1) u(t, x) ~ Z " Uy(t,z,o1(t,z) /e, -, pu(t, x)/¢)
>0
where the profiles U, (¢, z, 61, - - - , 0;) are smooth functions which are (27Z)*-

periodic with respect to the fast variable 8 = (61,--- ,6y)
U, (t,z,0) €e H(Q x T4 RY),  T:=R/27Z, V¥Yn>0.

The phases @1(t,x), -+, @o(t,x) are real valued functions in C;°(2;R).
They are all solutions of the same eiconal equation

Xy 0k =0, Y (t,x) € Q, VEke{l,---,¢}.

Introduce the notations @ := (¢1, - ,¢y¢) ; (a- ') denotes the Euclidian
scalar product in R ; accordingly, a - 0,@ = V. (a - @) where the term on
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strong coherence‘

petits diviseurs‘

the left is the usual product of the line matrix « and the Jacobian matrix
of the mapping @(t, -).

We call @ the R-linear subspace of C*°(£2, R) generated by {®1, -, pe}.
It follows from the assumptions that for all v € ®, we have X, 3 = 0.

We add congdjtio hich usual in the context of multiphase geometrical
optics (see {rGR i l{: ).

Assumption 3.1. (strong coherence) We have 1 ¢ ®. Moreover, for all
Y € @, Op1p(t, x) nowhere vanishes in Q or is identically 0 in €.

The first assumption is satisfied in most applications. If ® contains non-
trivial constants, then extra factors e¢'“/¢, with ¢ constant, have to be added
in the expansions below. Here, we avoid this unessential technicality. On
the contrary, the second part of the assumption is essential to the construc-
tion of WKB solutions. When there is only one phase ¢, it means that 0,¢
never vanishes on Omega. In general, ® is a finite dimensional subspace of
C;°(82), of dimension ¢ < ¢ . Taking a basis {¢1,...,9¢}, the second con-
dition means that the differential 0,11,..., 0,1y are linearly independent

in R¢ at every poin tlcular 4 < d.
It was shown in that a small divisor condition is necessary

for the contruction of arbltrary order asymptotic WKB solutions. Therefore
we include :

Assumption 3.2. (small divisors) There are two constants ¢ > 0 and
p > —1 such that for all a € Z\ {0}, there holds for all (t,x) € Q:

(3.2) la- Opp(t, )| = ¢/lal”.

This assumption involves only the phases -0, with o € Z¢. There are
two parts in this assumptlon[ ﬁrstg} for all o £ 0, o 0 4(t, ) never vanishes
on 2, which by Assumption B.T means that « - @ is not a constant and thus
not zero; this implies that the ¢; are linearly independent over Q. Second,
taking a basis {¢1,...,¢p} of ® andsgvriting the ¢; in this basis, that is,
with obvious notations, ¢; = k; - 0, (B2) is an arithmetic condition on the
kj € RY.

Example 3.1. When £ = 1, there is only one phase . The strong coherence
and small divisor assumptions reduce to the constraint

inf  |Veo(t,z)| > 0.
oot |Vaep(t, o)l
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Example 3.2. Suppose that @ satisfies

onditions tres fortes| (3.3) a-0;@(t,x) #0, Va e R\ {0}, V(t,z) € Q.

. strong coherence
Then the strong coherence Assumption |3.1 1s jullfiled. Moreover, by homo-
i o ) etits” diviseurs
geneity, the small divisor Assumption 3.2 holds with p = —1.

Example 3.3. Suppose that vy is constant and consider linear phases

pj(t,x) =ajt+kj-x Vjie{l,---,t}.

|strong coherence

The Assun}%@gﬂcu.l 1§ satished, since for ally € ®©, 0,4 is a constant. The

o lons tres ) )
condition (B.3) are satisfied if and only if the vectors ky,--- , k¢ are linearly

independent in RY.

o .. |petits diviseurs . d
The small divisors condition 3.2 means that the vectors kj, --- , kg in R
are linearly independent over Q, and satisfy an arithmetic condit Al It is
generically satisfied when the k; are independent over Q (see e.g. ).

developpementmultiphase
In the expansion (bﬂjTﬁ%ﬁﬁTm be decomposed into (V,, W)
with Vi, (t,z,60) € RN and W, (t,z,0) € RN We assyme that the first
profile satisfies the relation Vo = vg where vg satisfies (2.16). In particular,
Vg does not depend on 6.

It is also interesting to consider oscillatory source terms. Hence we con-
sider the following system.

re
;econdmembremultiphase‘ (3.4) S(u®) Xye 1€ + L(v, 0 )u’ = [ iga }

with f5(t,x) = f(t, z, @/e) and §°(t,z) = g°(t, z, $/e). Here the profiles f
and g° are C* functions of the parameter ¢ €10, 1] with values respectively
in the spaces H®(Q x T RN") and H>®(Q x TG RY).

3.1 Formal solutions

The first int?restinga result is tQE eﬁigtenge of forrﬁqal or WKB solutions of

h tem (Gyiteglt tvﬁésfgror?ldmb I, Let u nrl t’cme)?L plain hat is meant b

the sys o ) . (B.1). . :%evéioppé%entmaytlp as@ystemeavéésecondmembremultiphase
formal solutions. Plugging the expansion (B.1) info the system (B.4), using

by Taylor expansions and ordering the terms in powers of €, we obtain a

formal expansion in power series of e:

o0

> Ftx, @le)

j=—1
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fourier expansion ‘

solutionsformelles‘

eveloppementmultiphase

with profiles F; in H>(Q x T RY). We say that ( 1) 1s a formal solufion
when all the resulting F; are indentically zero.

Introduce first some notations. Every function u(¢,z, ) in the space
H>®(Qr x T RY) has a Fourier expansion

(3.5) ult,z,0) = Y Ualt,z) )

a€Zt

where 2, € H®(Qp; RN) for all o € Z¢ and

(36) Dl l[@allmien < oo,  ¥p>0,  Vg>0.

sommable fourier expansion
Conversely, the property (3. and the formula (B.5) characterize the ele-
ments of H*°(Qr x T RN). We remark that @ is the averaged value (in )
of u, that is

2 2

ﬂo(t, a;) = u(t, Z, 9) d@l cee dgg .

Recall that Pb(v,f) is the matrix for the orthogonal projector of RN"
onto ker L”(v,£), in the canonical basis of RN, By For (t,z) € Q and
a € RY, we will note

ID,(t, z) == P’ (vo(t, x),a - B B(t,x)) .

M
Following Joly, Métivier and Rauch 16R , we introduce the operator £(t, x, dy)
defined by the following formula applied to V € H®(Qr x T RN")

(3.7)  E(tw,dp) V(t,0):=Vo+ Y T Vu(ta) el
a€Z\{0}

Proposition 3.3. &(t,z,0p) is a linear continuous operator from H>(Qr x
T4 RN") into itself.

operationdeEE
It is a consequence of the more general Propos*tslro;cl 8.0 RelOW.  smembremultiphase

The follo 1n§ltheorem Siateﬁ that the system (3.4) has formal solutions

ntmu
of the form (3.1), and that one can prescmbe arbitrary initial values to Wy,

(forn >0) and to EV,, ( forn>1).

Theorem 3.4. Let {a;(z,0) pen, in HX(RIXTH RN )N and {by(x, 0) }en
in H®(RY x T RN/)N be two sequences of profiles, such that £(0,xz,0p)ay =
ay for all k. There exist T > 0 and a sequence of profiles {Uy}nen in
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polardeV1

systemereduitoscillant‘

)ementnouvelleinconnue‘

H>®(Qr x T RN with U, = (V,, W,,), satisfying Vo = vg together with
the initial conditions

(3.8) (E(t,2,00)Vi),_, = ak, Wji—o = by,

|t=0

and such

Z e" U, (t, x, o(t, :c)/e)

n>0
. ) |systemeavecsecondmembremultiphase .
is a formal solution of (3.4) on Q. Moreover, the profile V1 satisfies the

polarization condition

(3.9) 5(t, x, 69)V1 =V, v (t, l’) eQprxT.

. The example of Euler equations X
We refer to the section 3.4 for an example related to the Euler equations

of gaz dynamics.

[solutionsformelles

3.2 Proof of the theorem 3.4

The material d in the analysis of the profile equations is closed to that
of the paper . However, since the hypothesis are not exactly the same,
we give a self contained demonstration of the technical lemmas.

We start with formulating the problem in terms of the new unknown

I(Ezir: JLVE W) such that u® = (vo + eV, W*). Using the notations in

, the new system reads

€
(3.10) HE(t,z, U5, 0) U = h®,  hf := [ ga ] = " hn.
n>0

. X |systemereduitoscillant
We are looking for formal solutions of (3.10) of the form

(3.11) Us(t,z) = > " Un(t, 2, B/e)

n>0

o0 . N
where the profiles Un(t, z,0), belong to H™(wr x TR ) for some T >

. . n
0. Plugging the expansion (B.1T) mnfo the system 1E§. iffi, and ordering the
resulting expansion in powers of ¢, one gets formally

Ho (2, US,0)U° —h° = Y & ®;(t,z,@/e).
j>-1

We want to solve the cascade of equations {®; = 0};>_1. By a first order
Taylor expansion in &, the hyperbolic operator He(t, z, U, d,) reads

d
HE(t,2,U,00) = HOt,2,U,010) + Y B5(00,U) 205 + £ M*(vg,000,U).
j=1
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Here HO(t,z, U, 8; ;) means H(t,z,U, O ,) with € = 0, that is
Ho(t,x, U, O z) = So(vo, W)Xy, + L(vo, 0z) + KO(UO,avo,vg, U).
Moreover BS(v,U) and M®(v,v’,U) are N x N matrices depending in a

C™ way on their arguments ¢, v,v’,U (up to € = 0), the matrices B§ being
symmetric. To write the profile equations, we need the following notations

4
Z 0ok BO vo (t,z), ) 0Op,

M=

B(t,:L‘,U, 8,9) =
J=1 k=1
4
ﬁ(t,ib‘, 89) = L(vo(tvx)aar@k(ta I’)) 69k7
k=1
d
L(vo,0,) = Lj(t,x) Oq;,

<.
Il

1
H(t,z,U, 0 20) = Ho(t z,U,0 ) + B(t,z,U,0).

With these notations, there holds:

(3.12) q)_l(t,l',g) = ﬁ(t,x,ag)U(],
(3.13) Dy(t,x,0) = H(t, x,UO,atJ?g)uO + L(t,x,09)Ur — ho,
and for j > 1,

(3.14) <I’j(t,a:,9) = Hg(t,x,at@,g) U + L(t,z,09) Ujp1 — qj(t,:v)

where Hy(t, x,0; z0) means the linearized operator of H(t,z,U, 0y 49) with
respect to U on the state Uy, and ¢; is a term depending only on the right
hand side h® and on the profiles U with k& < j — 1. More precisely

1 0h
(315) QQ(U078U07Z/I1€76U/€’ k<j-— 1) + ( Oed )\z—::O ’

The averaging operator. For all (v,£) € RV x RY, recall that P (v, £) is

the matrix of the orthogonal projector of RY onto ker L(v, £) written in the
canonical basis of RY. For (¢,2) € Q and o € R, we note

I, (t, ) :=P(vo(t,z), - 0, B(t, @) .
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majorationdePi ‘

Lemma 3.5. For all a € 7%, the entries of the matriz I1,(-,-) belong to the
space Cp°(€2). Moreover the following inequality holds

(3.16) 187 Mo (-, ) |y < s, V3N

where cg is a constant independent on c.

petits diviseurs

Proof. Since P(-,-) is C>® on O x (R%\ {0}), the Assumption 8.2 implies
that Iy (¢, 2) is C* in Q for all o in Z*\ {0}. Let us introduce an R-basis
W1, , e of @, and denote 1/; the function (1, --- ,¥p) from  to RY
that

a0, > C ], Vo' e RV,

Moreover, we can write

((1013"' 7(105):(71117"' ﬂl)ﬁ’)R

where R is a constant real (¢ x £)-matrix. According to these notgtlo S e

have o - 0, = a'R - 0, 1[) From the coherence Assumption Li 1, we deduce

o - Op(t, ) £0,  V(ta)eQ, Va eRY\{0}.

The function P is homogeneous of degree zero with respect to £ (as well as
I1, with respect to «). Thus

a - ax'lz;(ta .T)
"o - Optp(t, @)

with o/ = a*R. Therefore the image of Q x (R \ {0}) by the mapping

mmmzp@w@) ):nﬁ@@

(t,z, ') — (vo(t7$)’o/-éigikt,aﬁ‘)

o/ - 0u3(t, )
is contained in a compact set of ]RA; s depgsf means the unit sphere of
RY). Tt yields the inequality (E% I6) for 7 = 0. For 8 # 0, we compute

with the chain rule the quantity 8E H% gt,lm)l delr:}iy using again arguments of

homogeneity, we can then obtain O
For all o € RY, it holds

E(t, x, a@) ei<a.9> = ’iL(’UO, (e 81‘(75) ei<a'9>
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operationdeEE‘

and it follows that for all u € H®(wr x T4 RY)

(3.17) L(t,x,0p)u = Z i L(vo, @ - 0, @) Ta(t, ) i)
a€z\{0}

sommable
where thi serie Is summable in the sense of (}'35 i One can deduce from the
actiondeB

relation ( at L(t,x,0p)u = 0 if and only if all the Fourier coefficients
L(vo, @ - 0;@)Uq(t, z) vanish. In other words

(3.18)  (Id —Ha(t,2))Ua(t,z) =0, VaeZ'\{0}, V(tz)er.
Let us introduce the mean operator

(319) Bt d)u(e,0) =g+ S Talt,e) dalt,z) €07
acZ\{0}

Proposition 3.6. E(t,x,dy) is a linear continuous operator from H (wp X
TY) into itself. It is the projector on the kernel of L(t,z,0q) parallel to
the range of L(t,xz,0p). Moreover E(t,x,0y) extends as a linear continuous
operator on L?(wy x TY), which is an orthogonal projector on L?(wp x TY).
Extended in this way, E maps continuously H*(wr x TY) into itself for any
real s > 0.

Proof. The fact that Il (f, x) depends.on (¢,2) in a Cj° way together with

the uniform inequalities (% 6} implies that for any integer m and for all
u € H®(wp x TF)

(3.20) ||Haﬁa||Hm(wT) < Cm HaaHHm(wT) ) VaeZt

where ¢, is a constant depending only on m (and not on «). This proves
the continuity of E(t,z,dp) on H>®(wy x T). 3, density of H*(wp X T*)
in H™(wy x TY) for any m € N, the inequality (EK.ZU) shows that E(¢,x,0p)
extends as a linear continuous operator on H™(wy x T) for any m € N. The
fact that I, (¢, ) o I14 (¢, x) = 1, (¢, ) implies that E(t, z, 0p) o E(t,x,0g) =
E(t,z,09). Therefore E(¢,z Qﬁgeiés a projector on H*®(wy x T). We also

deduce from the relation (n? at for all v in H>®(wy x T*)

(3.21) L(t,x,0p)u =0 if and only if E(t,z,00)u = u.

When m = 0 in (E?%%%)irlfglcan take ¢ = 1 and the fact that the II,
are orthogonal projectors shows that E(¢,x,dp) is symmetric for the inner
product of L?(wr x T). Again, the density of H>(wp x T%) in L?(wy x TY),
shows that E extends as an orthogonal projector on L?(wr x TY).
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partieelliptique‘

matriceelliptique‘

Lnorationdudeterminant‘

It remains to prove that the range of Id — [E is exactly the range of L.
Let u € H®(wr x TY) such that Eu = 0. We want to show that there exists
v € H®(wr x T*) such that Lv = u. Passing to Fourier coefficients and
noting IL} := Id — II,, this is equivalent to

L(vo, 0z (0 - @) Vo = Uq
which is again equivalent, since I} @, = g, to solve
(3.22) (I3 L(vo, 0x{a - @) Mo +11,) Iy T = g -
For all (v,£) € O x (R%\ {0}) the determinant of the matrix
P (v, &) L(v,6) PH(v,6) + P(v,¢)

where P+ := Id — P, calculated in a basis of the form (basis of Im P+, basis
of ker P1) is

det [ M%”f) 1(21 ] = det M (v, £)

where M (v,€) is an invertible matrix of size r = rank L with coefficients in
C>® (RN x (R%\{0})) homogeneous of degree 1 in . Hence this determinant
is subjected to

|det M (vo(t,z),&)| > ¢ [¢]"

where c is a constant independent on &. ) .
d L. . [petits diviseurs
For all a € Z*\ {0}, we deduce from the small divisor hypothesis 8.2 and
from the definition of II, (¢, z), that the determinant d,(t, ) of the matrix

(3.23) T, L(vo, Ox{a - @) T + 1L,
is in Cp°(€2) and do satisfy

(3.24) |do(t,z)| > co /]|’ > 0

inorationdudeterminant

for all (¢,x) € Q, the constant ¢y in the inequality (§.24) being independent
on a € Z4\ {0}. Hence, for all a € Z¢\ {0}, there is a matrix R,(t,z),
whith coefficients in C;°(€2), such that

(3.25) o = Ral(t,z)Ts

. . . i artieelliptique matriceellimingnetiondudeterminant
is the unique solution of the equation (E%.ZZ $ Fhe relations (B:23) and (3.24)
imply that for all 8 € N9, the matrix R, satisfy the estimates

| atB,xRa o) < ep (1+ |a|)m(ﬂ) , Va e Z4
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inversionelliptique

)lutionsformellespourU‘

sommable
where the constant cg does not depend on «. Using (ES%;, we see that

v(t,z,0) = Z R T (t, ) €0
a€z4\{0}

belongs to H>®(2 x T). It is the unique solution of the problem
E(t,x,ag)v =u, E<t7x7 69)1) =0.

The proposition is proved. O

Corollary 3.7. For every f € H®(wp x T) such that E f = 0, there is a
unique U € H*®(wr x TY) such that

£(t,1’,8@)u:f, E(t7w789)u:()

Denoting by U := Q(t,x,0) f the solution, this defines a continuous operator
Q from ker E = Im L into itself, for the topology of H*.

The next theorem states that there exist sequences of profiles U, satisfy-
ing all the equations ®; 1:§oQﬁ g?d%%%%e‘ﬂte}sl arbitrary given 1n1't1al Values. for
(EUpn)jt=o- The theorem B.471s then a direct consequence of this result, since
the profiles V11, W,, (n > 0) and U, are related by (V,41, Wy) = U,.

Theorem 3.8. Let {a,(z,0)}nen be a sequence in H®(R? x TERNN of
profiles satisfying E(0,x,0p)a, = an. There exist T > 0 and a unique
sequence of profiles {Uptnen in H®(wp x TGERMNN satisfying the initial
conditions

(3.26) (EUn)ji—0 = an, VneN
and such that ®; =0 on wr x T for all j > —1.
For the proof we show that the infinite sequence of systems
(3.27) (Id-E)®, 1=0, E®,=0, (EUn)y—o=an, neN

can actually be solved by induction.
We start with n = 0. We get the first profile U b%/oiﬁllg
which also determines the time T > 0 of the theorem 3.4.

Tfollpwing_result
ionsformeX®les
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>ion du premier profil‘

>ion du premier profil‘

Theorem 3.9. Let h € H®(w x T RY) and a € H®(R? x T;RY). There
exist T > 0 and a unique Uy € H®(wr x T RY) satisfying on wr x T

(Id—E)lUy = 0
(328) { EH(t,x,U0,6t7x79)L{0 =Eh

with the initial condition
u0(07 ) = E(Ov €, 89) ap

The proof of this theorem relies classjcal ments in non linear
geometrical optics (see for example ﬁ’g], 1%’?6&]101" . In fact, for all U
in H®(wp x T4 RY),  the linear operator EH(t,x,U,d,.4) coincides on
ker (Id — E) = ImE with the operator EH(t,z,U, 0;,4) E, and acts like a
(non local) symmetric hyperbolic operator. More precisely, one can solve
uniquely the linear Cauchy problem with initial data in ImE, together with
usual energy estimates, according to the following proposition.

Proposition 3.10. (see % %and %9]) Fiz any U € H*®(wr, x T*) with
1Ullwmo,ry < R. Let ug € H>®(R? x T%) such that E(0,x, p)ug = ug. Let
h € H®(wr, x T satisfying B(t,z,09)h = h. Then, there exists a unique
U e H®(wr, x T) such that (Id —E)U =0 and

EH(t, x,Q, 8,5@,9) E Z/{ = h, U\t:O = Uup .
Furthermore, for all m > mqg where myq is big enough, we have
(3.29) [Ulwmor) < em(R) (T [hllwmor) + luollgmway)

where ¢y, (+) s an increasing function on [0, 4+o00| and

[Vilwmor) = sup sup 107V (t, )| grm (Rt ey -
0<t<T j<m

The non linear problem can then be solved classically by a simple Pi-
card iterativerscl”éegle the convergence following from the estimations of the
proposition E% t5.“The other profile equations are lwnealé ;teps n > 1), and

can be solved by induction using the, l]larollgosm o determine EUf,,
L . inve 1one tiqu
and the elliptic inversion of corollary ,3.7 to get | = é;a
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3.3 Exact oscillating solutions

.onsexactesoscillantes ‘

In this section we are interested in the existence of exzact oscillating solutions,
asymptotic to the formal solutions constructed in the previous section. We
assume that

Z " Un(ta Z, 95/5)

n>0

. . . [solutionsformelles
is a formal solution on wy =]0, T[xR? given byTheorem 3.4, with U,, =

(Va, W) € H®(wr x TY) and Vo = vy. We obtain approximate solutions
0
upr - (vtazpp7 wfzpp) - (U + 6Vvagp;m ngp)

|systemeavecsecondmembremultiphase
of the system (3.4), choosing

Vapp(t: ) = ZnMA:/I1 et Vot z, @(t x)/e) .
Wapp(t, ) = 3252 € W (t, 2, &(t, ) /¢) .

it is my the choice‘ (3.30)

They satisfy

(3 3
> par la sol approchee‘ (3.31) S(tapp) Xz, Uapp + L(Vpp: Oy, — [ 59fE } — M { eRS }

€
17

with Re(t,z) :='(R5, R5;) = R°(t,x, $/c) and profiles R¢(¢, z, §) bounded

in H>®(wr x T*).
|systemeavecsecondmembremultiphase

Let us now consider the Cauchy problem for (3.4) with the initial data

asinitialesoscillantes‘ (3.32) u‘at:() = uzpp|t=0'

m solutions exactes I| Theorem 3.11. Define
My := min {d+2; (d+(+2)/2}.
There exists eg > 0 small enough such é@gm"t’emgaa{w S Ni'%&@e%ﬂcﬁb%%és

CNBEES
and if 0 < & < &g, the Cauchy problem (8.4) — (B.32) has a local solution
u® = (vg + Ve, We) € H*®(wr). Moreover, for all s > 0, the components

Ve and W¢ satisfy
IVE = Vappllrsry = OEY %), W =W llmsor) = O ).

When My = d + 2, the proof is based on estimates in the domain wp
with suitable weighted norms involving the X% (£0,)® derivatives. The
demonstration is in the spirit of the approximation theorem given in %2]
When My = (d + ¢ + 2)/2 the proof relies on a singular system approach
wi% Sobo S estimates on the enlarged domain wy x T¢. Tt is in the spirit
of [4] and . It relies on the special structure of the approximate solution
and especially on the coherence assumption.
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[thm solutions exactes
Theorem B.1T concerns the (/a,uchy problem with oscillatory data. Com-

patibility conditions on the initial data are necessary to kill the oscillations

on the other modes. These Com]pé_il_tlblh 5 fOHdlthHS are hidden in the choice
|[donneesinit esoscil

of the Cauchy data (b 32). The larger 1s M, the more compatible are the data

and the higher we can take Sobolev index s. When dealing with continuation

results from the past to the future, one can work under the weaker assump-

tion M > d/2+ 1. This is the aim of the next theorem. First introduce the

following conditions imposed on the exact solutions u® = (vg + eV, W¢)

k aa _ M—|«
cay RV = Vo W= Woy)liay = OEMT,
for all (k, o) € N x N% such that k + |a| < M

and

(334

IXE 82 (VE = Vi WE = Wi oy = Oe1oh),
for all (k,a) € N x N such that &k + |a| < 1.

1 solutions exactes II| Theorem 3.12. Assume M € N and M > d/2 + 1. Let T be such that
0 <7< T é'unpepose that  for. all LO 1], v* € H®(w;) is an exact

avecs COIl bremu t

solution 1@ 4110n cgﬁtogléhe jorm Ut = (U() + Ve, We) where (VE,W¢)
satisfies E3 33) a ; 34y with t = 7. Then, there is g > 0 such ?

hat
jmeavecsecondmembremultlphase

all € €10, 9] the solutwn u® extends as a solution u® € H*(wr) of (B 4) on

g € (3] g
gantroqreovcght 12 vo —|—€V w ) where (VE, W*) satisfies the estimations
E3 33) a E 34) wit

3.4 The example of Euler equations

Consider the entropic Euler equations, for SlmpllClt)E of n?ta’mo}ls in space

dimension two. We use the variables (v, p,s) as in ( 0 fix the ideas,
we take vg = 0 and py = P, Then X,, = 0; and and we choose a single
phase function (¢, ) = x1, which is linear. Then, we have

le of Euler equations‘

0 0 & 0 0000
000 0 0100
L (v, (61,0)) = & 0 0 0] P(w, (6,0)=| ¢ o ¢ o |
000 0 0001
and
0010
0000
£t = || o o o0
0000
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Moreover, the averaging operator E(t, x, 9p) is

Vl(tvxae) <V1>(t,$)
Va(t,z,0) | Va(t,z,0)
ECn0) | By | | P
S(t,z,0) S(t,z,0)

where the notation (u) means the average value in 6 of the function u(¢, x, )

1 2

(u)(t,z) = u(t,z,6) do .

21 Jo

The general results of the previous section prov'e(%lleien%l trisxgi*al large ampli-
tude oscilleﬁtoi{légr £xgct solutions of the system (EIZU lﬁy the polarization

condition (3.9), they satisfy

% eVi(t,x) + O(e?),
3 VQ(t> x, $1/€) + 0(62)7
po + & P(t,z) + O(c?),

S(t,z,z1/e) + O(e).

(t,z)
(t,z)
(t,z)
(t,z)

\%

15
1
g
(3.35) 2

8

p
S

The pr'oﬁles Vl(.t, x), V? (t,z,8), P(.t, x) and S lg%llg,c@naﬁ(% ggl\r/grn{ll by I;crk%) quasi-
linear integro-differential hyperbolic system (B.28):

(p(P0,S)) Vi + P =0,  Vig—g=a1(x),

p(Po, S) (0 Vo + V1 0gVa) + 2P =0, Voo = az(z,0),

ipled’ equationdeprofil ‘ (3.36)

(a(po, S)) OP 4+ 01 V1 + (02Va) =0, Py = a3(z),

8755 + V1395 = 0, S|t:0 = a4(1:, 0) .

[theo equation du premier profil exempled’equationdeprofil
Theorem B.9 implies that we can solve locally (3. or all dafa a; and ag
in H*(R?) and ay and a4 in H®(R? x T).

[thm solutions exactes I

3.5 Proof of the theorem 3.11 when M, =d + 2.

We prove a slightly more general result, forgetting the origin of the ap-
proximate solutions and the assumptions used for their cons‘ﬁgysctions. Wi

. K systeme veriieie par la sol approchee
assume that ug,, = (vo + eV, Wg,,) satisfies the equation (3:3T) with an
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le de la sol approchee‘

solutionsexactes‘

mozarella e prosciuto‘

systemepourl’erreur‘

systemeerreurlineaire‘

error term R® = (R, R7I) and that (V[ , WS ., R°) satisfy the estimates :

app> 'V app>
for all k € N and for all 3 € N, there is cj g such that forall £ €]0, 1]
k
(337) ||Xv0 (5 8Z)B(Va6pp7 W(Z)p? Ra) HL2(wT)ﬂL°°(wT) < Chg-

The space L?(wr) N L>®(wr) is equipped with the norm || - |72 + || - || ze.
Since X, = 0, these estimate are satisfied by any family U®(¢,z, @/¢c) ,
. £ . 00 Z . . .
if U® s bounded in B2 D) I particular, the approximate sohytion
defined by (3.30) safisty (8.37). Thus Theorem B.II follows from the next
result.

Theorem 3.13. Let M > d + 2. Assume fsl‘Ly%l%e]fnor all.gig]p(;,rl]yausfw =

renmiechize la sol approchee

e ve
(vo+eViap, Wapp) and R® = (R7, R7I) satisfy (15.31), and the estumale B37)-

Thepdhars, Sl Snrontatiplindlal for all € €100, the Cauchy problem
(8:4) —(B-32) has a umque solution u® € H*>(Qr) which, for all s > 0,

satisfies u® = (vg + Ve, W¢) and
IV = Vapllms@ry = OEY" ), W =W llsr) = OEY ).

First, we reformulage fhe problem in terms of the unknown U® = (V=, W¢).
With notations as in (2.47) (2.49), the equation for U¢ reads

(3.38) HE(t, 2, US, 9)U° = he .
where h® = '(f€, ¢°). Define US = (VE  ,WE

app> "V app
tion of the problem in the sense that

(3.39) HE(t, 2, US,0)US = h° + M R*.

We look for a solution U*® of the form U® = U; + cug,,. The equation for

3
u:,, reads

). It is an approximate solu-

HE(t, z, US + e s, 0)us,, + J¢(af,us,,us,, = e~ Re

err? err err

(3.40)

e, |t=0 =
where J is some N x N matrix with C* entries (up to ¢ = 0), and
(3.41) a® = (t,z,v0, 0yv0, Uy, Xy Us, € 0,U) .

Using the notations
He(af,uf,0) == HE(t,2,US + e u,0) + J(a°, uf)

lsolutionsexactes | X X
the proof of Theorem .13 is based on priori estimates for the linear problem

{ fﬁ}(as’g‘s?a)u‘s — €M—1 Rs7

3 —
U, = 0.

(3.42)
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nisotropic regularity

3.5.1 Weighted norms and anisotropic regularity
Consider the ¢ dependent vector fields on §2
3605 = Xvo y %175 :2881, s %d,g ZZEad.

For all multi-index a € N'*, X2 := %09 .- . Note that the commutator
of two such fields is a linear combination with Cg’o(ﬂ) coefficients of the X; ..
This property is due to the fact that the coefficient of 9, in X,,, is constant.
There holds:

[%i,g; .%jﬁ] = %Z"g [} 3€j,5 — 3€j,€ o %i,s = Z ag %kﬁ s ap € Cgo(Q) .
0<k<d

For A > 0 we define the weighted norms ||u
e €]0,1] and m € N

letllme o= A% o,

laf<m

lo = lle™ ul| 12(y) and for

and

(3.43) |u

e = 30 XS Ul oy
la|<1

To estimate the traces on t = 0 we also use the following norms
[olme = D A" (€ 00)* 0l 2y -
|a|<m
We use the following Gagliardo-Nirenberg estimates.
Lemma 3.14. Let m € N,.. There is ¢,, > 0 such that for allu € L>®(Qp)N
H™(wr), for all € €]0,1] and for all o € N**¥ such that |a| <m

B o 1—|a|/m
(3.44) lle )‘tffe UHLzm/\a\(wT) < om HuHLool(S‘l/T)

laf/m

[y g

1
Proof. 1t is a special case of inequality (Ap-1I-3) given in FF‘IT)], p. 643. O
This implies the following Moser’s type inequality.
Lemma 3.15. Let m an integer. There is ¢, > 0 such that for all € €]0,1]

and for all functions ay, ---, ap in H™(wr) N L*®(wr)
(3.45) N NxE allope < em Y (T laglleear) lanllmae
ko j#k
where o = (a1, -+, ) € NP and
X%a = XMayp x -+ x XePay, lag]|+ -+ |ap] <k <m.
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lemme Sobolev I‘

plongement de Sobolev‘

ilfallaitleno |

estimtraces

Lemma 3.16. For allm > d/2+1 there is csop > 0 such that for alle €]0,1]
and for all w € H™ (wr)

(3.46) ulee < coop € Y2 ullmre, VA>T,

Proof. 1t is a consequence of the usual Sobolev embedding applied to the
function z — wu(t, e x). O

3.5.2 Traces estimates on the exact solution

Fé)rstalgi fixed € €]0,1], there is T > 0 such that to the Cauchy problem
(b%ﬁhas a solution U® € H*(wye) . In particular, the terms (X% U®);—o
are well defined in H*®(R?). Our main objective is to show that 7° = T.
We start the analysis by looking at the traces of U® at t = 0.

Lemma 3.17. For all m € N, there is an increasing function pp, : Rt —
R such that for all e €]0,1], all k and m' such that k +m' < m and for
all X € [1,400[, the following estimate holds:

(3.47) |[(XF, (U =U)) gl re < pm(X) M4

Proof. By constructi have (U* — Ug)ju— = 0 thug (§47) 3 trivial f
roof. By construction, we have ( 2jt=0 = us (B.47) s trivial for
EZU% for & E 35)

m = 0. We prove (B. = 1. The equation (3.38) on U® can be
formulated as

:)(1}0[]€ = g(é‘, t, x, (a?Us)‘odSl) + T(E, t, Z, (,]E)hE
where G is a smooth function of its arguments. It implies that

(XUOUE)ltZO = g(e, 0,z, (8§‘U§)|a|§1)|t:0 +T(g,0,2,Uz)(h") =0

mozarella e prosciuto

Since U: satisfies the equation (8.39) which only differs by the additional
source term ¢ R¢, we have

(XUO (UE - Ug)) = EM T(E, 07 Z, Ué)(RE)hﬁ:O .

|t=0

Estimating the L?—norm of the.riéht hand side, as well as the L?—norm of
esti aces

its € 0, —derivative, implies (&3.47& when k& = 1.

The other cases k > 1 are proved by induction. applying Xﬁo_ L to the
equations above, causing a loss of e **1 in the right hand side. O

36



:opestimationapriori,I‘

estimationaprioriI‘

equationpourutilde‘

estimationLQ,I‘

3.5.3 A priori estimates for the linear problem

In this paragraph we prove the following result.

Proposition 3.18. For all m € N, there is A\, > 1 and there is a positive
function Cy, : RY —— R such that the following holds. For all e €]0,1], for
all A > A\, and for allfgggggons u aqd u which belong to H™(wrp)N Lip(wr)

| meerreurlinealre

and satisfy the system (3.42), one has
(3.48)

C « _
aflmre < €282 (uflne + 2 [[uflne [amre

+ eM_l HRsHm)\,& + Zk+m’§m Am—k—m,| (X’]Lc}ou)|t:0|mla)‘75) .

Proof. The proof is in several steps.

e step 1: the L? estimate. Expanding by the Taylor formula the
coefficients of the operator H?(a®,u%,d), we get

He(af,uf,0) = > S5(a”,uf) X
(3.49) 0<j<d
+ L(vg, ) + 3¢ (a®, uf)

where the matrices S5 and J¢ are C™ functions of their arguments ¢, a and
u. Moreover, the S5 are symmetric, with S§ positive definite. Introduce the

At

new unknown u := e~ u which satisfies

Sj(aa, u®) X;.u+ L(vg, 0p)0
(3.50) 0<j<d
+ X S§(af, u)u+ I (af,uf)a =Mt M RE,

. . . equationpourutilde
Forming the product of u with the equation (b.%l)}, m%egraflng by parts
on wr and using the symmetry of the matrices S; and L;, we obtain the

following inequality, exact for A > Ag and Ay big enough

CO(|H|*,E)

(3.51) [ufore < BN (lafloe + [a(0)]ore + M1 g

0,\e ) .

e step 2: end of the proof when vg is constant. It is interesting to
treat the special case vg is constant because the proof is simpler, involving
however some commutator estimates that will be useful in the general situ-
ation. So, suppose that g is a constant vector in RYY. We want to estimate
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mutateur cas constant\

mutateur cas constant‘

he higher derivati i.e. th o for <m. A 1
the higher derivatives of u. i.e. the [|XZullo . for [af < m. As usual, we

compose (3. on the left with X¢ and we perform energy estimates
- Co(lufx.e)
Al x2 ulfo e < T

(3.52) ol 11
x (Al [[He(a%, 1, 0); X2 | uloe

+lulmae + A" XE w(0)]one + MR mae )
timl,1
We are lead to estimate the commutator in the right hand side of (}Ze3.5521 %

Lemma 3.19. Let a € N'*4 sych that |a| < m. Suppose that vy is constant.
Then for all € €]0,1], for all A € [1,+0o0[, and for all u and u in H*(wr),
one has

m—|a| el € oy
(3.53) A I[H(a% u,0); X ullone <
c(lulee) (J[ullmare + [l [allme) -

Proof. Since vy is constant
(3.54) [L(vo, 8:); X¥] =0, VaeNt,
Thus the commutator that we want to estimate writes

> [85(a%, ) X5 X2] + A [Sf(a%,w): X2 ] + [J°(a®,m); X2].
. L. X . . lestimation commutateur cas constant
With this simplification, the estimate (3.53) 1S a classm@ o} ggﬂma’ce for com-

mutator and follows from Moser’s estimates of Lemma B.15. a
. . estimatio imifytlateur cas bolev I
Using estlmﬁte Qﬂ .03) 1 (8.9 emma 3. o control |u ., we get
estimationapriori ?

the inequality (3.48) and the proposition is proved in this special case.

e step 3: reduction to the case where the field X, is constant.
We perform a change of variables which reduces X,,, to 0. Since X,,,v9 = 0,
vg is constant along the the integral curves of the field and the integral curve
5 (s,’y(s; t, x)) issued from (¢, x) at time s =t is

v(s;t,x) = (t,a: + (s —t) u(vo(t, )) )
We perform the change of variables (¢,z) — ®(t,z) := (¢,7(0;¢,2) ) with
®(t,z) = (t,z — tpu(vo(t,z))), oMt z) = (t,x +tpu(v(0,))).

This is a C* diffeomorphism from 2 and D® and D®~! belong to C°(9).
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systemepourutilde’

systemeredresse‘

reductiondusymboledel ‘

In the new coordinates
(tlv .Z‘/) = (I)(t, .I') = (t7 (I)l(t> x)a e aq)d(tv .CC))

the functions lj}gt ) become. f'(t' ') with f’ is defined by f(t, z) = f(@(t,z)).
The system (3.42) 18 fransformed to

d
Sh(a’,w) oy’ + ) Si(a’,u)edpu’ + (¢, 2!, 00

(3.55) =
+ J’(a’,g’)u’ — €M—1(Rs)/
where
d d
3.56 £t 2, 0y £ 0y, o (0p, @) 0 @1,
J Y k

j=1 =
L£(t', 2, 0,r) is the differential operator with symbol
(3.57) Lt 2", i&) =i L(vy, (£ 0,®) 0 )

s steme ourutllde’ ,

The new systEm L( F n he new coordinates (', ') has the same
emee reur inea

7

structure as ( ) in place of L(vg, 9;) and 9y in place of
Xoe. It is equlvalent to prove the estlmates for u or for u’. Thus, dropping
the ’, it is sufficient to prove a priori estimates for the solutions of

Z Sj(a,u)X.u + £(t,z,0;)u
(3.58) 0<j<d
+ J(a,u)u = M- R*

when X . = 0;.
e step 4: reduction to the case where £(¢,z,0;) has constant
coefficients. Since @ is a diffeomorphism

(3.59) -0, Nt x) £0,  V(tz,&) e Qx (R {0}).

It follows that the matrix £(¢,z,¢) has a constant rank on Q x (R%\ {0}).
Hence there is a N x N matrix ®(t,z,¢) with real entries in Cg°(Q x R9),
which is invertible for all (,z,¢) € Q x R?, which is homogenous of degree
0 in ¢ for || large enough (say for |£| > r > 0), and which is such that for
all (t,2,€) € wp x RY

(3.60) "Wt x, &) L(t, 2, §) Bt 2, &) = p(§) L+ p(t, 2,€)

39



where L is a constant N x IV real symmetric matrix, the function p(-) belongs
to C°(R%R) and is homogenous of degree 1 in ¢ for |¢| > 7, and p(-) is a
N x N symmetric matrix whose coefficients are in Cp°(wr x R4 R) and are
supported in {|¢] < '} for some 7' > 0.

The functions ¥(¢,x,€) and p(&) are symbols of pseudo-differential op-
erators on R?, depending in a C;° way on the parameter ¢t € | — T, Tp[. The

symbol U(t,x, &) is of order 0, p(&) of order 1 and p(t x,llfe)d&%t%o%usvm%o?ed%
order —oo. For the corresponding operators, the relation (3.60) implies that

(3.61) W(t,x,Dy)" £(t,z, D) ¥ (t,z,D,) = Lp(D,) + t(t,x, Dy)

where we use the notation D, = —id,, ¥(t,x,D,)* denotes the adjoint
of the operateur op (¥) and t is a pseudo-differential operator of order 0,
depending smoothly on the parameter ¢). Moreover, W (t,z, D,)* is also a
pseudo-differential operator of order 0; we denote by ¥'(¢,z, ) its symbol,
so that W(t,z,D;)* = W'(t,x,0,). Let us emphasize the fact that, by
construction, there exists a constant ¢ > 0 such that

ion uniforme de gamma‘ (3.62) 0<c<|det®(t,z&)] <ct, V(t, 2, &) e QxR

Denote by $°(a®,u, X) the operator defined by

(3.63) $H(a®,u, X) Z S;j(a®,u) X +J(a®,u).
0<j<d

. systemeredresse
We still note u the unknown of the system (&3.58) obtained at the step

3. The idea is to introduce a new function u € H* () which is defined by
u = ¥({,z, Dy)u and which satisfy the system

op(¥’') H°(a%, u, X) op(¥)u +i L op(p)u =
— op(t)u + "~ op(P¥') R

’ systemepseudo ‘ (3.64)

and the condition Uj—g = 0.

lemme choix de Psi\ Lemma 3.20. For all m € N, one can choose the function W(t,x,&) such
that ¥ (t,x,0;) is an isomorphism from H™(wr) to H™(wr).

reductiondysimbodeileh uniforme de gamma

Proof. Let W(t,z,§) satisfy (b 60) and (13- 02) In general, the corresponding
operator ¥(t,x,d,) is not invertible in L> (@dﬂg gtlon i wr) dfor a %wen
m). But, with Ws(t,z,€) = ¥(t,z,6¢), (3.62) implies that ‘l’g(f x0y
an isomorphism of H™(wr) for 6 > 0 small enough, (see for example
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exercise 5.14, p.75). Since £ is homogenous of degree 1 in ¢, the following
relation holds

(3.65) "Wy (t, 2, €) Lt %, &) Cs(t,x,€) = 67 p(0€) L+ 06" p(t,z,8¢)

and this shows that the function Wy solves the question. O

Frogﬂ oW @n, we fix a function ¥ such that the conclusion of Lemma
i

Let v € H*°(Qr) such that v;_y = 0 and

f := op(¥)* H%(a®,u,X)op(¥)v + i Lop(p)v.

If we note v = op(W¥)v, the symbolic calculus shows that

inversion de Psi| (3.66) 0= op(\I’_l)V +op_yv

where op_; is a pseudo-differential operator of degree —1. Applyiq&&el%% ion de Psi

energy estimate of the step 1 to v = op(¥)v and using the relation (3.66),
we deduce that v satisfies

CO U
one < S (o o)one + Iflane)

-imL2poursystemepseudo ‘ (3.67) Ilo

for all A > Ag, A\g being fixed large enough, and for some positive increasing
function Cy(+).
estllnL rder to estimatgothe derivatives of v we apply the energy estimate

oursystemepseu )
o X7'b. Since by construction

(3.68) [op(p); X&] = 0,
we get

Al x2oloae < Collulse) A2

."drempoursystemepseudo‘ (3.69) X ([lollmae + \m—lal 1X20(0)|oxe + [Ifllmre
+ X | [op(®') 5 op(®): X2 Jo floae ) -

:ationducommutateur,II‘ Lemma 3.21. Let o € N2 gych that la] < m. Then

| [op(®’) H°op(¥); X] v [lone <

tion d tateur,I| (3.70
Aic10on u commutateur ‘ ( ) C(|H’*’€) (||U||m7/\’8+|0p(111)t)|*75 ||2Hm7>\76) .
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Proof. The commutator writes as the sum
op(P') [H% %] op(P)v + op(P') H° [op(¥); X v

sommedescommutateurs | (3.71)

+ [op(¥); X7 $° op(®)o.
1) The first term satisfies
lop (') [H%; XZ] op(¥)olope < c [|[H%;X] oD (¥)b]l0,n e

The term on the right can be treated as was the commutator [H; %%J)li‘la%rjj:on du commutateur. I

step 2. This implies that it is controlled by the right hand side of (3.70).
2) The second term satisfies
lop(®") $° [op(®); Xvllore < c [19° [op(®); XTollore

(3.72) < C(Iuflee) > 1% [op(®); 220
0<j<d

0,\e*

Using the notation X& = 9°(0,)”, the commutator [op(¥); X2] writes as
a sum

313 > w00l

0<j<aqo

where the ¥, (¢, z, D,) are pseudo-differential operators on R?, depend-
ing as before on the parameter ¢, of order p; such that p; < |3|—1. It follows
that for 2° = h® or 2° = X

(3.74)  x™=lol |jop(W') E° [op(®); X2]o

ore < C(u|Loewr)) I0llmae -
ajoration du commutateur,I

This quantity is obviously dominated by the right hand side of (8.70).

3) Th third term is similar to the second. The commutator [op(®'), X¢]
is a sum (b 73) and it is sufficient to estimate terms of the form

troisiemeterme,I ‘ (3.75) am-led ||6|ﬁ‘ W,(t,z; Dy) 8tj5’_)6 op(¥) vlloe -
troisiemet I
Each of these terms (b.ro7 5} 15 controtled by
197 0p(®)0 [[jaj-12e < 97 0P(®)0 [[m-1,2e

which can be estimated using again Gagliardo-Nirenberg estimates as in step

2. The lemma is E)roved. O
Using lemma 310 we Tepice the t ©)o], . in the right hand sid
Using lemma 810 we replace the term lop(¥)v|, in the right hand side

of (3.70) by

ce 2 T lop(®)ollmae < ¢ e Y2 o]l
lestimordrempoursystemepseudo

Pluging the result in the riggt hand side of B.60), we obtfain the claimed
X . . ropestimationapriori
estimation. The proposition B.181s proved. O
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[solutionsexactes

3.5.4 End of the proof of theorem 3.13

he proof of theorem I

Let u® € H*(wr) such that

d7€]0,77; u(t,x) =ul,, . (t,x), VY (t,z) €]0,7] x R?.

|systemeerreurlineaire
B

We consider the solution u® € H*(wr) of the linear system (3.42).
uniqueness, we are sure that

u(t,z) = s, (t,x) =1 (U = U)(t,x), V(t,x) €]0,7] x R%.
. ilfallaitleno
By applying lemma B.17, we ge

— — / —
Z AT fom ‘(Xﬁoua)ﬂ:o‘m’,)\,s < pm(A) 5M "
k+m’'<m

By assumption M > d + 2. Therefore, we can find m € N such that
d/2+1<m < M—d/2.

Let § > 0 be a given arbitrary positive real number, and fix A > 1 such that
AY2C,(0) < 1/2. We define the application

oA o(A) = 4 Cp(8) ATV? ([|Rellmre +Pm(N) + 1.

1ema de Picard borne,I‘ Lemma 3.22. There is eg > 0 such that if u® satisfies

(3.76) e <0, Jullmae < o) YT, Ve €]0,e],
then u® satisfies the same estimates

jgedtajk| (3.77) e <0, ullmas < 0(A) MM, Ve €]0,e).

L ropestimationapriori,T .
Proof. It follows from Proposition E l§, absorbing in the left hand side the
term A~V/2 C,, (6) ||u®||;m . This implies

[0 lmpe <2 Cm(8) A2 (a(2) M2 T 070 e

inegalix| (3.78) + MR |lmre + P ()‘)EMim)
m,\,e mi\Aa ’

Since M — m — d/2 > 0, we can find g > 0 small enough such that
2C(5) A2 (N) AT e 2 < 12,
We absorb again in the left hand side the term [|u®||, ) which yields

0 [lnpe < 4CmE) A2 (MR lmpe + pm(A) M) < o (A) M
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jgcdfajk
It gives the second control in (%Hi ['hen, decreasing g if necessary, we
find
Coop 2T eMm=d/25()) < §, Ve €]0,¢e0] -

lemme Sobolev I
Lemma &3. 6 implies

ufse < cop el eMm=d25()) < 4.

Lemme schema de Picard borne,I

This finishes the proof of Lemma 3.22. O

|[solutionsexactes [lemme schema de Picard borne,I
Theorem B.T31s now a classical consequence of Lemma .22, The exact

solution u is obtained on [0, 7] by a simple Picard iteration scheme, taking
u” as u and u™*! as u and starting the irhductio with, u? = 0. Since u°
X . i emme schema de Picard borme,I
obviously satisfies the estimates of Lemma B.22, all the u™ safisty the same
estimates, implying that the limit u exists on the whole interval [0,7] and

also satisfies the estimates.

fthm solutions exactes II

3.5.5 Proof of the theorem 3.12

. [solutionsexactes . .
It is similar to the proof of Theorem B.13, Thus we only give the key ingre-

dients and point out where the new condition on M is used. Let m € N
such that d/2+1 < m < M. Without loss of generality, we can assume that
the approximate solution is defined on the whole domain Q =] —Tj, To[ xR,
and that the exact solution is known in the past Q N {t < 0}. Qp denotes
the strip | — Tp, T[xR? for all TI > ()

solutionsexactes

As in the proof of Theorem B.13; we look for U® = Uy, + € ug,,, where

u:,.. is now given in the past )y instead of being given at {t = 0}. We are
err L . %s%stemeerr urlineaire . .
lead to find a priori estimates for the problem (3.42) where the condition
uTt:O = 0 is now replaced by u‘IEt<0 = eM=1p8 with r¢ = e~} (U® — Us)ioo

given and satsifying
sup Z 127° | L2 (9) + 0Sup Z H%?rf|]Loo(Qo) < 00.

0<e= Jaj<m <=t jgi<1

. . Weighted norms and anisotropic regularity
We replace the norms ||. ||,z - defined in section B.5.1 by the following ones.

Holllmae = D A e %2l 20,

lal<m

[Wllee =Y A e™ x20]| 1o q)
lal<1

re(A) == Y AT [leT M X0 1o g
|| <m
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lestimationaprioril

The substitute for (3.48) 1s :

_ C *
e < A e e (M) + Cmllles) (i1l

(319

22 |l e [alll e + € RSl e

mationaprio

estimates (511183 Indeed suppgse first that 7 = 0. Then the estimate
estimationdpridri i .
follows from (3.48) since all the terms (Xvou)| 1o vanish. In the general case
we use a cut-off function x € C*(R,R) such that x(t) = 0if ¢t < —2T5/3
and = 1 if t > —Tp/3. We write u® = x(t)u® + (1 — x(¢)) u, and we can
apply the previous case to x(¢) u® since it vanishes in the past t < —27/3,
and this gives the estimate, up to a tfa]nslation in the t. ?oordinates.
) esti rol lestimationapriori . .
The difference between (3.79) and (3.48) is that the terms involving the
traces (X% u) have been replaced by eM~!r (\) = O(e™~1). This is

|t=0
. . . . M?m
X .
a gain since, for a fixed A, the terms involving the tracesllggl}eneOsg: o d)e Picard borne,l

Now, we can prove by induction a lemma similar to Lemma B.22; where the
conditions

for all A > @Q% ivvglth some )\mlarge enough. The proof is a consequence ((Eefsttlge ol

labruteltruan| (3.80) u®|lse <96, |l mre < o(A)eMt] Ve €]0, 0]

imply that u satisgisetsitherg%me estimate. Indeed, to prove this, w irlllgeaﬂl}?
a priori estimate (}3 79% which implies the following substitute for (&3 7§i

1[0 [lmae <2 Cn(8) A2 (a(2) M 1742 T ||[uf)||1n,z.0

(3'81) + €M—l HREH N )+c/\€M—1
m,\,e .

Taking € > 0 small enough, we can now absorb in left hand side the term
€ 3 €

ol and obtain the expecie, by Jor i U eond! 85011 ©f

||u®||« - follows then from emma 3.10; 4 Theorem B 12 follgws, alopg the lines

developed at the end of the section B.5.4.

[thm solutions exactes I

3.6 Proof of theorem 3.11 whith M, = (d+ ¢+ 2)/2.

We set the problem in the general text of singular equations as treated
by G. Browning and H.O. Kreiss %:)r by J.-L. Joly, G. Métiver and J.
Rauch . We prove first the existence of solutions and justify next their
asymptotic expansions.

We consider again the problem for the unknown U® = (V¢, W¢) defined
by u® = (vp + Ve, W¥¢). The equations are

(3.82) HE(US,0)U° = h®
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oublicau

with the initial condition
(3.83) U*(0,2) = Ug (z, 8°(x) /e)
where @°(z) := @(0,z) and

(3.84) U = Z e" (Vint+1, Wa)ji=o -
0<n<M

We look for a solution U®(f, z) as U* (t,z,f(t,z)/e). A sufficient condition
for U® to be a solution of (%3 %2) is that U®(¢t, z, ) be a solution of a Cauchy
problem that can be written in the condensated form

1

. 5 + - t,.ﬁL‘, 0 - 5
3.85 He(U®, 9\ U* E L 0)U* h*
with
(3.86) =0 = U,

fE

3.87 h® = .

357 -

Here, H*(U, ') denotes a first order symmetric hyperbolic operator of the
form

(U, d) Z A5 (v0,U) 0 + C(vp,U) .

In this formula, 0; with j > d denotes the derivative with respect to the
variables 0y:
Od+r = Do, , 1<k</?.

The matrices A5(v,U) and C*(v,U) are N x N and are C* functions of
g,v,U up to ¢ = 0. The matrices A5(v,U) are symmetric with Aj(v,U)
positive definite. Introduce

M
U, = > & (V;, W)
=0

which is bounded in H* (w7 x T*) and satisfies

(3.88) H*(US,,,9)U;, cp=h"+e"R°.

9 \UE iﬁ(t 2,09)U
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traceiterecompatible ‘

Theorem 3.23. Let m € N with (d+()/24+1 <m < M. There is T, > 0
such that for all € €]0,1] the solution U® of the Cauchy problem ( 85) —
(%01.187 ;czlalvists on wp x T¢ in C([O,T]; H™(R? x TZ)). Moreover, for all j €

{0, ,m}, we have

(3.89) sup 18] (U = UG, ) (Dl s metscrey = O™ ).
t€[0,T]

Proof. Consider the linear singular system

1
(3.90) H°(U*,0')U + - L(t,z,09)U =h, im0 = Up.
We look for a priori estimates in the space

W™T):= (] C7(0,T], H" /(R x T))

0<j<m

endowed with its natural norm || - |lyym(py. Fix m with m > (d +¢)/2 + 1.
Suppose that U® € W™(T') and we choose a constant R >|| U ||yym ). We
fix a bounded neighborood K of 0 in RY such that U® and U} take their
values in IC. We also assume that U* satisfies

(3.91) Ui, =U;.

1) L? estimate. By symmetry and integration by parts, using the fact
that the coefficients of L(¢,z,0p) do not depend on 6, we get

(3.92) 10 lleqo,rie2y < C(R) T |hlleqo,rye2) + <o UG 22
where C(R) is a function of R and ¢y is a constant independent on R.

2) Estimates of the derivat_ivea., Here the analysis relies strongly an
o . etits diviseurs . traceiterecompatible
the small divisor Assumption E%Z and on the relation (8.91). Since %%iv,{i

has a constant rank for £ # 0, there exists a N x N invertible matrix I'(v, £),
defined for all (v,¢) € RY" x R?, homogeneous of degree 0 in ¢ and C* on
RY" x (R \ {0}), such that T'(v,0) = Idyxy and

T(v,&) L, )T(v,§) = [( L,  V(v,6) e RN xR”.
Here L is a constant symmetric matrix. For (¢,z) € Q and o € Z¢, let

y(t,z, o) = I‘(vo(t,m),a . 8z95(t,x)) .
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We denote by ~(t,x,dy) the corresponding Fourier multiplier. It is defined
on L*(Q x T RN) by

7(t7$789) U(t,.’L’,Q) = ﬁo(t,.’ﬂ)

operateurgamma‘ (3.93) +3 Z ~(t, z,q) ﬁa(t7 z) pilact)

a€eZN\{0}

The properties of ~(t,x,0y) are S“Hég}%glzﬁ(xirils% liclhse next proposition. Note

that the small divisors assumption 8.2 implies that (¢, z, ) is invertible for
all (¢t,z) €  and for all a € Z.

Proposition 3.24. The operator ~(t,x,dy) is an isomorphism from H?® (€ x
T RN) onto itself for all s > 0. Its inverse is the Fourier multiplier
~~(t,x,0p) defined by

7_1(t,:r,69) U(t’$79) = ﬁo(tvx

+ i Z vt 2, 0) Un(t, z) €40 .
a€zd\{0}

Moreover, the operators (8&7)(@3:,89) and (85557*1)(15,36,89) are continu-
ous from H*(Q x T RYN) into itself, for all f € N'*¢ and s > 0.

Proof. Since I'(v, ) is homogeneous of degree 0 with respect to £, there is
¢ > 0 such that

c < |dety(t,z,a) <c !, YV (t,z,0) € Q x (Z°\ {0}).
Hence the entries of the inverse matrix v~ !(t,2,a) are bounded on the
domain © x (Z*\ {0}). This implies that (¢, x, Jp) is an isomorphism from
L? to L? with inverse v~ 1(t,2,0p). That ~(t,x,9) and ~(t,z,09) "' map
H? to H® when s > 0 is a consequence of the homogeneity of I' and of (‘)che

. i L erationdeEE
coherence assumption, as shown for the the operator £ in Proposition }3.6;
we do not repeat the details here. a

Introducing the new unknown V := ~(t,2,9) 1 U yields for V the

equation

1
(3.94) v (t,2,09) H(U, ') v(t,2,00) V + ~ L |0p| V = [.

€

Applying 8#6;‘85 to the equation (with k& + |a| + |5] < m) and using that

L is constant, we prove the following estimate

IVilwm@ry < Cn(R) T ([VIwmmy + 1)

+cop sup Hag’)’(tyl‘,ae)_lUg|t=0HHm—J(Rde)-
0<j<m

(3.95)
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To obtain the desired energy estimate for V and thus for U it remains to
show that for all j € {0,---,m},

(3.96) 107U ljt=ol zrm-3 = O(1).
This is proved by induction on j, as a consequence of the estimates
107 (U° — Ug,p)je=oll srm—s = O(™7).

When j = 0 it is obvious. For the higher order derivatives, we use (%63’5) to
replace the time derivatives by 0, and Jy derivatives. There is a loss of at
most one power ¢ at each step, because of the factor e “'£ in the equation
and the estimate follows.

Going back to the unknown U, this shows that

(3.97) [Ullwmzy < Cn(R) T ([Ullwmry + 1) + &

for some new constants ¢y and Cy,(R) independent on € and T'.

Applying this inequality with U = U, with R > 0 large enough and T
small enough, we obtain || Ul|yym ) < R, for all € €]0,1]. This implies the
existence of U® on the time interval [0, 7], for all € €]0, 1]. Furthermore, if
the initial data is in the space H>°(RYx T) the solution is also in H>(Qz x T).

Once the existence of U® is proved, we can compare U® and Ug,,,. The
difference V¢ := U*® — Ut satisfies

app
1
(3.98) H®(U®,0")V® + . L(t,x,09)VE + GV = —eMR?
with
d+¢
G = Z Gj (Uga Uipp) 8JUpr
j=0

and the G; are smooth matrices. Moreover, V\Etzo = 0. Using the energy
estimates already proved for the operator

1
HE(U%,0) + - L{t,2,00)

. . eq38 thm323
one obtains the estimates (bQS’Q% and Theorem B.2371s proved. O
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4  e-stratified and e-conormal waves

solutionsstratifiees‘

In this section, we consider expansions with a single phase ¢ € C*(Q;R),
which is fixed and satisfies the eiconal equation X,,¢o = 0. Moreover, we
assume that dp € C°(€; R19) and infg |0,¢| >

Inspired by the one dimensional analysis of % we want to treat more
%%%ral fluctuations such as almost periodic oscillations or jump profiles
(2.21), which enter in the more general context of e-stratified or e-conormal
waves.

We introduce first several notations. Let 7g,---,7;_1 denote smooth
vector fields on ) tangent to the foliation {¢ = cte} which means that
Tjo = 0 for all j. We assume that the family has a constant rank d. We
also assume that the fields 7; have bounded coefficients, together with all
their derivatives, that is 7; € C°(Q; RY).

We denote by 7; a vector field on 2, tangent to the hypersurface {¢ = 0},
with coefficients in Cp°(€Q2;R). We assume that the family 7o,--- , 751,74
is a generator of vector fields tangent to {¢ = 0}, and that this family has
rank d + 1 when {p(t,z) # 0}.

Example 4.1. When the phase ¢(¢,z) is linear or more generally can be
reduced to ¢ = x4 after a change of coordinates, we can choose, in the new
coordinates,

76:8757 T]:a] forje{:l?”'?d_l}a 7;l:h('rd)ada

where h € C°(R;R), |h(zq)| = 1 if |zq] > 2, h(xq) = x4 if |x4| < 1 and
h(zq) # 0 if x4 # 0.

Because ¢ satisfies the eiconal equation, we can choose

(4.1) To(t,z, 04, 0y) = O + p(vo) - Va

and assume that the other fields 77, -+ ,7; contain only z-derivatives:

tangent to t=0‘ (4.2) T, =Ti(t,x,0,) =7j(t,x) -V, Tj€ C?(Q;Rd), 1<5<d.

4.1 e-stratified and e-conormal regularity.

We consider two sets of vector fields Z.. When dealing with the e-stratified
case, we take

rees eps ta.ngentielles‘ (4.3) Zstrat = {']{), oo Tg1,€0y,01, -, €0y } )
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rivees eps conormales‘

initial norms 1‘

To describe e-conormal smoothness, we consider
(44) Zgon = {%a"'7%—17%768075817“'758d}'

Usually, we simply use the notation Z., the choice being clear from the
context.

In both cases, an important property is that the commutator of two
elements of Z. is a linear combination of elements of Z. with coefficients in
Co(9)) -

X€Z. YeZ = [X;Y]=XY-YX= azZ, azecCr9Q).
Zel.

For all k& € N the notation Z* will denote the set of all the operators
Zy 0.0 Z, such that Z; € Z, for j € {1,--- ,k}. We will also note Z¥ a
general element in the set Z~.

e Interior regularity. For all reals a,b such that —Tp < a < b < Tp, we
define the space A" (a,b) of families of functions u®(¢,z), 0 < ¢ < 1 such
that 9/0%u® € C([a,b]; L*(R?)) for j + |a| < m and such that

>y S \ZfUEHC([a,b];L2)<OO~

0<k<m Zkezk

In a similar way, replacing L? by L> we define the space B™(a, b) of (families
of) functions u® such that 9/0%u® € C([a,b]; L*(RY)) for j + |a| < m and

such that
>y S 1250 e (a,piz) < o0
0<k<m Zkezk

We also introduce the spaces
(4.5) A™(a,b) := A™(a,b) N Bl(a,b).

tangent to t=
e Regularity of initial data. Because of (%ﬁ?eryﬁ@ld Z% in Z. ex-
cepted 7y and € 0y, is tangent to the hypersurfaces {t = cte} and in particular
to {t = 0}. Thus if Z € Z. \ {70, 0o}, the first order operator Z;,_g is a
well defined vector field on R?. Let us denote by I(Z.) the set of such fields

(Z.) := { Z.4—0; 2. € Z:\{To,2 00} } .

We denote by AT the space of families of functions u® € H™(R?) such that

(49) 2 > sup || 210+ 0 Zu p2(ray < 0.
0<k<m {21, ,Z,}el(Z:)F O<e<1
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According to the choice of the set Z., the functions belonging to A" have
an e-stratified (resp. e-conormal) regularity with respect to the foliation
{o=cte}n{t =0} of R? (resp. the hypersurface {p = 0} N {t = 0}).

Similarly, we denote by B{* the space of the u®(z) such that

initial norms 2‘ (4.7) Z Z sup ||[Z10---0 ZkUEHLoo(Rd) < .
0<k<m {2, Z,}el(Z:)F 0<e<1

We will note A := A7 N IB%%).

4.2 The Cauchy problem and compatibility conditions.

Our goal is to solve, locally in time, the Cauchy problem for e-stratified
or e-conormal initial data. We also include source terms and consider the
equation

>
S(u®) Xypeu® + L(v%, 0 )u® = [ 89]:_ ] , (t,x) € wr

lemedecauchystratifie ‘ (4.8)

€ __ €
u|t:0 = U,

€ . t(fe € € m m
where the data h® := *(f, ¢°) and v belong to A™(0,T)) and Af SLOSREC: docauchystratifio

tively. The goal is to show that, if m is large enough the problem (4.8) has
a solution in A™(0,7T) for some T' > 0 independent on € > 0. But, in gen-
eral, this requires compatibility conditions, which ensure that the solutions
do not develop singularities associated to other modes of the system and
propagating in other directions.

First, we describe these necessary compatibility conditions. Assume that
u® = (vg + e v, we) € A"™(0,T) is a solution of

rstemeavecsecondmembre‘ (4.9) S(u) Xpgtev t + L(v,05)u = [

sfe]
g |

nee

Introduce V¢ := (v¢,w®) and h® := (f°, gcac)n gdince Xoooe — X, does not
contain time derivatives and because of (2.15, V= safisfies an equation

(4.10) Xy Ve = Fi( e, t, 2, (05V) <1 h°) -

By induction, for 1 < k <m

siondesderiveesentemps‘ (4.11) XﬁOV6 = ]-'k(e,t,:v, (8§V€)|a|gka (8f’mh)|ﬂ|§k_1)
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3.11

3.12

where the functions Fy (e, ¢, %, (Va)jaj<k » (Hp)|g<k—1) are C> functions of
their arguments, up to € = 0. Using the special structures of the Fj, we see
that for all V= € A™(0,T), all real numbers a,b such that 0 < a < b < T
and for all k£ such that 1 < k < m, there holds

(412) fk(e’f,t,.’E, (8?VE>|Q|§]€, (851,}1)@3;{;_1) < Am_k(a, b) .

Moreover
Fi( e t, 2, (00VE)jaj<1, h°) € B(a,b).

In particular, taking a = b = 0 and denoting by Vi = V|(;—g}, we have
(4.13) fl(é,o,l', (8§%E)|a|§1 , h“gtzo) S Agl_l ﬂEg,
and for £ such that 2 <k <m
(4.14) Fir(£,0,2, (03VE)jaj<h » (O uhfi—o)ipi<n—1) € AJF.

Definition 4.1. Let h® = (f¢, g°) be given in A™(0,Ty). Consider a family
of Cauchy data ug of the form ug = (voji—o + € a®, b%) where Vi := (a®,b%) is
in A7'. We say thg ﬁe data g 1%nd h® are compatible up to order m if

the m conditions (4.13) and (7.14) are satisfied.

. . |systemeavecsecondmembre
If u* = (vo + €v®,w®) is a solution of (4.9) with (v°,w*) € A™(0,T), the
trace uft:(] is necessarily compatible up to order m. Conversely, the next
theorem asserts that these compatibility conditions are also sufficient to

solve the Cauchy problem in A" (0,T") for some T" > 0 (independent on ¢).

Theorem 4.2. Let m € N such that m > d/2 + 2. For all h* =(f¢,¢°) in
A™(0,Tp). and (a®,b%) in AG* such that the data uf = (voj—o + € a®,b%) and
h® are compatible up {grgg‘flg{eg&a%c Qesgrxggﬁlj; > 0 such that for all e €10, 1]

the Cauchy problem (7.8) has a (unigue] solution u® € C([0,T]; H™(R?)) in
wr. Moreover, u® has the form u® = (vg+e v, w®) with (v¢,w®) € A"™(0,T).

A consequence of the nessary and sufficient character of the compatibility
conditions is the propagation of the A™ reqularity for solutions of the form
uf = (vg + e v, w?). For all T > Ty, we denote Qp :=] — Tp, T[xRC.

Corollary 4.3. (m > d/2+2). Let h* = (f¢,¢°) be given lzn A (Th T0)o g oo

system

assume that u® = (v + € v%,w) is a family of solutions of (A.9) wn CXy, such
that (v¢,w®) € A™(=Ty,0). Then there exists T > 0 such that, for all € €
10,1], w® eﬁstgg,c(ie%gggegsg%i %nglqg)~ as a solution ﬂ8~€ C([—TO,TN];}{’”(RC[))
of system (X.9) on Q. Moreover, 4° has the form u° = (v + € 0%, W) with

(5°,4°) € A™(—Ty, T).
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le donnees compatibles‘

o bor agiven 7 > 0, consider dg(t, -) := uo(t—7, ). We can apply Corollary
.3) to ugp as unperturbed state and data

< Z; ) = < 8 > € A" (-T1p,0),  h° = < ; ) e A™(=Ty, To)

where h¢ is chosen such that
h(t,-) =0, Vte]—1"Tp,0] and he(r,-) £0.

The solution @*(+,-) has a non trivial trace a°(r,-) at time ¢t = 7, which
necessarily satislflesaéche compatibility condition. This remark shows that
Corollary (4.3) can be used to construct the existence of non trivial initial
compatible datas. In the framework of oscillations discussed in section 3,
BKW formal solutions is another source of compatible data.

In the more general context of stratified or conormal waves, non trivial
compatible initial data can be explicitly constructed, as shown in the next
result. Let C be a given compact set in R?. We denote by Jo(R?; R¥) the
set of functions u(z,z) € C°(RE x R,;R¥) such that u(z,z) = 0 if x ¢ C.
Let us recall that the function ¢(t, ) is scalar. We introduce

I (z) = Pb(vo(O,x),ﬁxgo(O,x)).

Theorem 4.4. Let {a;}jen € Jc(REGRY)N and {bj}jeny € Jo(REGRN)N
be two given sequences of profiles, the first one satisfying the polarization
condition H% a; = a; for all j € N. For any given m € N, there exists a
function (Vi§, W§) € Ay satisfying

Mo(x) Vs (@) = > & aj(w,0(0,2)/e)
0<j<m

W)= Y & bj(a,p(0,2)/e)

0<j<m

and such that the initial data yi = (vg+€ Vi, W§) is compatible up to order
m (in the sense of Definition H.T).

Remark 4.5. In general, there are no approximate WKB solution corre-
sponding to such initial data, except in the case of periodic profiles a;(z,-)
and bj(z,-) discussed in section 3. But, for almost periodic profiles, or
jump profiles, or nore %‘e%leral cases, the WKB construction is not available.
Hence, Theorem 4.2 proves the existence of solutions containing large am-
plitude variations, even if a high order asymptotic expansion of the solution
is unknown.
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theo 1.2
4.3 Proof of the theorem 4.2

The key ingredient is to prove uniform estimates for the solutions U¢ of the

following linear Ciauchy problem, where the operator H° (U,0) was intro-
duced in (

(4.15) HY(U,OU = h*,  Upo="Us

with U§ : blga bsl For all € # 0 fized, the linear symmetric hyperbolic
problem (E I5§ has obviously a unique solution U® € Wm(O Toy). The corre-
sponding estima fgma£e7glven by proposition E iy 1 Elgh order L? estimates)
and proposition (L estimates) of this section, which is mainly con-

cerned with proving them. The last arritggaph of subsection 4.3 is devoted
to the end of the proof of theorem h 2.

We r‘ecall that, by assumpjmo.r‘l, U5 € ,AP an(g fﬁ e A" 9 g;) are given
data which satisfy the compatibility conditions (4.13) and (h [1).

4.3.1 Norms

For m € N and ¢ # 0, introduce the notations

(4.16) Wlmer == > > sup 1250 (t, )l 2 ey »

0<k<m zkezk OIS

and

(4.17) Ve = Z Z Sup IZ5v(t, ) oo (may -

0<k<m Zkezk

Similarly, we denote by |[v|| om0,y and [v|[gm o7y the supremum with respect
to € €]0,1] of [v[lm,e,r and |v[}, . 1 respectively.
We also use similar notations for initial datas and denote respectively by

[v]lazm0.1) anﬁjlﬂvL% @oﬁﬁst}} supremym with respect to & €]0, 1] of the left
hand s1de of (4.6) and (4.7) respectively.

4.3.2 L? estimate
For all T € [0, Tp], wr denotes the strip ]0, T[xR¢.

Lemma 4.6. Let R > 0 and U = (v,w) such that || U |1 om)< R. Then,
there is a constant Co(R) such that for all U € C°(RY*), for all € €]0,1],
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boucherie sanzot ‘

and for all T € [0, Tp)

T
\wmmg%myéummmWﬂmwms
+ Co(R) [Ulloe,o-

Proof. A Taylor expansion shows that

(4.18)

(419)  pl+ed) = p) +eplev),  Vv,oe) e RY)?x]0,1]
where fi(-, -, -) is a C* function of its arguments. It follows that

Xooter = Xug + fi(e;v0,0) - €Vy
(4.20) =T+ Y. [(e,vo,0)ed;.

1<j<d

Therefore, the field X,,4¢, is a linear combination of fields in Z.. Using a
similar Taylor expansion of the coefficients of the operator L(vy + v, 0;),
we write the equation in the following form:

(4.21) > Sz.(e,00,U) Z.U + L(vg, 0,)U + K(vg, 000, U)U = h
ZEEZE

where the matrices Sz(e,v,U) are C* functions of their arguments ¢, v, U
up to € = 0. Now we ftlnroecreleédS1am the usual way, taking the product of U
and of the e(%uatlon g%tl 21) and 1ntegrat1ng by parts. Because of the special
form (Ml 21) and because ||U||g1(0,7,) < R, we get a uniform control of the

derivatives of the coefficients, and therefore

T
<c(R) / Ullo.c.s ds
0

T
+ [ @00, iz ds + Uloso.
0

(4.22)

Note that the estimate above strongly relies on the existence of a good sym-
metrizor : the coefficients of L(vg, 0;) have bounded derivatives because the
operator L does not involve the variable w. Using the Gronwall lemma we
deduce

T
@2)  Wlher < [ T MU, U1z ds + P
0
labell
which implies (hal 86% with co(R) = ec(B)To, O
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Moser

4.3.3 Gagliardo-Nirenberg-Moser inequalities

To estimate the derivatives of U we will use Gagliardo-Nirenberg’s and
Moser’s estimates. Let us introduce some notations. For all open subset
O of ©, all m € N and all p € [1, o0], we note

[ullime oy = Z Z | ZEul| 1o (o)
0<k<m ZkeZk
and
L™P(0) = {u° € L*(O); sup [uf|[Lmr o) < 00 }.
0<e<1
Recall that for all T > —Tp, we note Qp :=] — Ty, T[xR?. The following
Galiardo-Nirenberg estimates hold.

Lemma 4.7. Let m € N with m > 1. For all T € [0,Ty] and for all u in
the space L>=(Qr) NL"™2(Qr)

1-k/m k/m
a2) 1l < o Tl Tl
for all k € {0,--- ,m}, for all ZE € ZF and for all e € [0,1].

1
Proof. 1t is a special case of the inequality (Ap-II-3), of f‘m], p. 643. O

The following Moser’s estimates follow.

Lemma 4.8. Let m € N. There is ¢, > 0 such that for all T € [0,Tp], for
all functions ay,--- ,a, in H™(Qr) N L*(Q7), and for all € €10, 1]

k
(125) 2501 2P0yl p) < en 3 (T] lasllimon) okl e,
k  j#k

wherek1—|—---+kp§mandejEij ifje{l,---,p}.

4.3.4 Higher order estimates

Next we Want ef;cimates for the derivatives Zf U. As usual, we apply the L?
estimate (4. o the term ZFU which satisfies the equation

HE(U,0) ZkU = zFh + [HE(U,0); 2N U .
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traces

Therefore,

|Ullme,r <Co(R) T |hllme,r

(4.26) 2 g i
+C(R) T ||[[H(U,0); Z21U | 12 (r) + Co(R) [Ullmeo-

Hence, we are lead to estimate in L?(wr) the commutator [H(U, 9); ZF] U.
Here we make use, for the first time, of the compatibility assumption on the
data. Let us begin with a lifting lemma.

Proposition 4.9. Let vy € A, vy € Ag“l NBY, vs € AS”*Z, v € AL
There exists V€ A" (=T, Tp) such that
(4.27) (X)) V)jmg=vk  Yhke{0,---,m}.
traces
Proof.  We show that there is V' € A™(0,T)) satisfying (4.27). There is

a similar lifting to [—Tp, 0], and since the traces are equal on {t = 0}, the
two functions can be glued together. We follow the proof of classical lifting
theorem for C* spaces ( ' Corollary 1.34, p. 18). Let m € N be fixed.
We show by induction on r = 0,---,m that there exists V" € A™ (=T, Tp)
satisfying (4. *for 0 < k < 7. For r = 0 we take VO(¢,2) = vo(x). For
1 < r < m, assuming that V"~ is known, we look for V" of the form
V" =Vl 4+ U where we want U € A™(—Tp, Tp) to satisfy on t = 0

(X)*U =0, Vke{0,---,r—1}.

(428) r ryr—1 m—r
(X)) ' U=2v, — (X)) VT i=w e AF".

Let us introduce a function j € C§°(R?) such that [ j(z)dz = 1, and note
jy(z) ==y~ 4j(x/7) for all v € R,. We are going to show that if § is fixed
small enough in the interval ]0, 1], the function

r

U(t,z) = ] Jgs ¥ W

satisfies the desired conditions. Denote by ~— the Fourier transformation
with respect to the variables z € R¢. We have

0(t,6) = 2 56°) ()
R r—1 R r—1 R
2.0(1,€) = (j_l)!j@és) D)+ 1 (€ V(e B(e)

which implies R
0T (€| < er t7 joy(£°8) [D(9) |
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“oincidencedanslepasse ‘

where ¢; € R and jq) € S (R4, R*). By induction we also get that for all
p € N such that p <r

OFU(LE)| < cp 77 ) (£°€) | D(€)|
for some constant ¢, € R} and ji,) € S(R%;RT). It follows that
€ 0| < i), YaeN

where ¢, = ¢, supg ([¢ |l J)(€) ). Using the theorem of dominated con-
vergence, we deduce that 9’U belongs to

C ([—To, Tol; H(T*P)/f;)

and is bounded uniformly with respect to € €0, 1] in this space (remember
that U as w depend on ). We select § €]0,1/m/[. It is then obvious that
U belongs also to A™(—Tp,Tp). Moreover, choosing § small enough in order
that (r — 1)/0 > d/2, the Sobolev embedding theorem implies that U is
contained in B(—Tpy,Tp). It follows that U is indeed in A™(—Tp,Tp) and
that the traces satisfy the expected relations. O

An important consequence of this proposition and of the compatibility
g)nditions is that the functions U and U extend to t < 0 as functions U and
U which both belong to L™2(Q7) N LY*°(Qr) and such that

(4.29) ﬁ\t<0 = (7|t<0 =V

where V is given by the proposition &19 and depends only on the Cauchy
data U° (and on the choice of the lifting operator in proposmon . Since
wr is contained in €7 we have

(4.30) (U, 0); ZE)U || 12y < 1 HE(T, 0); Z2E1U 120y -
The commutator [H=(U, d); ZF] U writes

) 3 [Sz(e,v0,0)Z: 24T + [L(vo, 8.); 250
4.31 ZcZ
+ [K(vo, dvo, U); ZE1 U .

Each term of the form [Sz(e, v, U)Z; Z¥]U is a sum of terms like

o(e,v0,U0) MU, --- 20U, 20T,
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where Z%i € ZFi for 1 <j<p+1 withki+ -+ k1 <k+1, kpp1 <k,
ki >1,...,kpy1 > 1. We write this term as

O(e,v0,U) 251(20,) -+ 2%(20, ) 2"+ (20;,,,)
and with the lemma h.& we get

18z(e,v0,U) 2 21U |l 20 <
C(R) ([Tlluma(@r) + 1+ [Tl ip) 1TllLmaiay) ) -

|coincidencedanslepasse
By using (4.29), we deduce the following inequality where p is some > 0

constant depending only on [[V||rm.2(q,) and ||V 1.00(q,.), or in other words
only on the norm of the initial data Uj in Af’

(4.32) ISz(c,v0,U) 2, 2¥]Ull 12000y < C(R) (U lLme2 (o)
+p + (p+ ULt (wr) (0 + 1UlILm2(0r)) ) -

Let us also quote the obvious estimate
(433)  Jollme,, < TY2 \|lmer, Yve H™(Qr), Veelo,1].

5.19 CS
We deduce from (h.32) and (%33) the following control, which is uniform
with respect to € €]0, 1], where p is again a constant depending only on Uj

I[Sz(c,v0,0) Z; 2" U || 12(0g) < C(R) (TY? |Ullmesr + p)

(4.34) . L2
+CO(R) (p+ U erllUllLroc ) (p+ T2 |Ullm,er) -

The control of [L(vg, d;); Z¥]U is less easy. Let us note

d

N(t,2,0:) = Va7 D (950) 05, (t,z) €Q.

=1

The vector field N (¢, z, 0,) is transverse to the characteristic foliation {p =
cte}. Tt can also be seen as a vector field in R?, parametrized by ¢, and
normal to the hypersurfaces {((t,-) = cte} of R%. We recall that d,p(t, x) #
0 for all (¢,z) € Q, and that the coefficients of A/ belong to C;°(€). For all
v € RN", the operator L(v, d,) writes

L(v,9;) = L(v, Z:AP ) N(t,z,0,) Z M;(v) T;(t,z, 0, Oy)
[Datp] 1<j<d
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where the M;(v) are symmetric with C* coefficients. The matrix L(v,§) is
symmetric and has a constant rank p with p < N — 1, on RY" x (R%\ {0}).
Hence there exists a C* invertible matrix ®(¢,z) such that

Opp

td(t,z) L(vo,
(t.2) Lvo, 55

) @(t,z) =T

where I' is the constant N x N matrix

(4.35) r:(? 8).

Introduce the unknown U'(t,x) = ®(t,z) 1 U(t,r). Then express through
the equation (E.IB1 iefaﬁléequantity N(@)TU" in term of the Z.U’ and of the
right hand side h. Finally, we get the following result.

Proposition 4.10. Let m € N with m > d/2+ 1. For all R > 0, there
is a constant Cp,(R) satisfying what follows. Suppose that U € W™(0,Tp)
satisfies the relations

(X}ZO Q)|t=0 = Fk (5707567 (8:?‘/06)\Oé|§k’ (8tﬁ,mh|€t:o)\5§k)

for0 < k<m btfgneetgierg with ’QP{,E,TO < R. Then, the solution U of the
ltnear problem (E.IB) satisfies the following estimate
’U”m@T §Cm(R) r (’hHm,E,T + (1 + ‘U|>{,E,T) ’U”m@T)

(4.36) s
+ Cn(R) TV (1 + Ui o) + Con(R) Um0

for all T € [0, Tp] and for all e €]0,1].

4.3.5 L estimates

For v € RN and ¢ € R?\ {0}, we denote by Q(v,£) the pseudo inverse of
L(v,€), that is the matrix such that

(437) Q(v7§)L<’U7§) = L(“7§> Q(U7€> = Id—P(’U,f)

To simplify notations, set

PO = P(Uo(tan),@xSD(taif))a QO = Q(UO(t7x)a8$90(t7x)) :
Lemma 4.11.

P, ) Lv,n)P(v,&) =0,  V(v,&n) € RV x (RY\ {0}) x R?.
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Proof. The matrices satisfy
P(v,)L(v,&) =0, L0 &PwE =0, V(¢ eRY xRY.
Differentiating the relation P L P = 0 with respect to §; gives
(0:,P)LP + P (0;,L)P + PL (9, P) = 0.

Since the first term and the third term in this sum are nul, it only remains
the second term. And since the matrix L has the form

L(v,§) = & Bi(v) + -+ + & Ba(v),

we get
P(v,§) Bj(0)P(v,§) =0,  V(v,§) e RN xR?,

This relation being true for j = 1,--- ,d, the lemma is proved. O

Using a Taylor expansion of the matrix L(vy + € v, 0,¢/|0xp|) and mul-
tiplying the equation by Qg on the left, we find that U satisfies

N(t,2,0,) 1d=Po)U = Qoh+ Y Mz(e,t,z,U) 2.U
(4.38) Z.€Ze
+ N(e,t,z,U)U

where the matrices Mz and N are C*° functions.

Lemma 4.12. Let m € N such that mg > d/2. There is ¢ > 0 such that for
all T €]0,Tp), all u € A™0(0,T) the following inequality holds

[uloer < ¢ ([ullmoer + N 2, 0n)ulmg-17), Ve €]0,1].
2.4
It follows from lemma kEIQ that

1(1d = Po)U(t, )|z < ¢(R) [Ullmger
+ c(B) (|hllmoer + Ullmger 1U(E e ) -

Repeating the arguments for the e-tangent (or e-conormal) derivatives gives:

Lemma 4.13. Let mg > d/2+ 2. For all Z¥ € ZF and for all k € {0,1,2},
the following holds

1ZE(1d = Po)U(#) 2 < cq(R) [Ullmer
+ ¢g(R) (|hllmer + 1Ullmer U@z ) -
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Let us write U = Uy + Uy with

L 0z L _ Ozp
(439)  Uri=Pluotew, 220U, Unri= (1a-P(wo+ev, |8M))U.

5.1
Multiplying on the left the equation (ﬁ?) by the matrix

Oz
P(vo+ev, ﬁ)

leads to the following equation for Ug:

Oz
S1(vo + v, w) Xog oo U = P(vo + 0 il) "

O
(4.40) — Z P(v,ﬁ) Mj(voJrey) IZE‘UH
1<5<d =¥

— X Urr — (e, v) - €0, Upp

2.7
where [i is defined in (h9) and we have used the notations for U = (v, w)

(4.41) Si(U) == P (v, gz:j') S(U) P (v, |gz:;|).

The matrix S being positive definite, the matrix S7(U) is invertible on the

range of P(v, %). Therefore, writing P instead of P(vg + v, %), there

holds:
(4.42) P Xyote0 Ur = Ti(g,v0,U) Sr(vo + v, w) Xygtew Ur

where T is a pseudo inverse of S;(U), C* function of its arguments (&, v, U).
Moreover, since

Xogtev Ur = P Xygieo Ur + (Xvo+ey(P)) -Ur
we deduce that Uy satisfies

Xoyyteo Ur = Fle,t,z,U) h

(4.43) + Z Cz(e,t,z,U) ZUrr + Co(e, t,z,U)U
Z€eZ,

where F', Cz and Cj are again C*° matrices, bounded with all their deriva-
tives on [0,1]. x Q x K, for all compact subset K of RY. By integration
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along the vector field X1y, and using the assumption ||U||g1 (o 1) < R, we
deduce the following L inequality

(444) |Urlser < eBR) T (IWlSer + (U er + [Unlier) + Utlieo-
2.18
Applying the field Z. € Z. to the equation (4.43) gives

Xootev Z2eUr = f + coeff - Zch
+ coeff - Z.U + Z coeff - ZU
(4.45) Z€eZ.
+ Z coeﬁ-ZfUH

Z2e€72

where the not ti&n coeff means a matrix with entries C* in ¢,t,z,U, as in
the equation (%:43). The following equation follows

Utlier < oB) T (Ihfier + URer + Unlser) + Ul o
In order to estimate |UH\§’€,T, we write

Orp
|0z

. . lem2.6 X
The second term of this sum is controled by Lemma h [3. A Taylor expansion
shows that in order to control the derivatives in Z? in the first term of the
sum, it is sufficient to find a bound in L*° of terms of the form, using obvious
notations,

(4.47) eU Z2°U, e ZU ZU, e 22U U.

(4.46) Urr = (PO—P(vo—i-sy, ))U (I —Po)U.

This last point follows from the standard Sobolev embedding theorem which
implies that for mg > d/2 there is a constant ¢ > 0 such that for all T' €
[0, Tp], and for all € €]0, 1]:

(4.48) e U\S@T < ¢ |V|lmgeT s Voe A™(0,7T).
. 2.22
Hence, if [U[] . 7 < R, each one of the terms (h.l?) is bounded by
A(R) (Ullmo+2.e7 WUloer + |Ullmot2er)-
Hence we have proved that

(4.49) Untlser < ¢(R) (|Ulmer + |hllmer + [Ullmer U

Furthermore, integrating along the characteristics of the field X,,, gives

‘6,5,T ) .

WUirlier < T\Unlzer + Unrlico-

Summarizing, we have proved the following result.
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5.35

5.36

stracciatela

Proposition 4.14. Let m > d/2+ 2. The following estimates hold

Utlicr < c(R)T (|hir + [ULr + Wilser) + 1UIli oo
\Urtlier < T \Unlzer + Urrlicos
<

Unils e < e(B) ([Ullmer + hlmer + Ulmer [Ulser)-

theo 1.2
4.3.6 End of the proof of theorem LI.2
Observe that

HUHm,e,O <k Z H(XZOU)W:O}HAS”*’C + K HUS 0,e,0
(4.50) e .
+ K Z ka(&‘, 0,z, (agUO )|oc|§k’ (atwh t:0)|ﬂ|§k—l) HAS"*’%
1<k<m
and

U0 < & > H(XU) gy s+
(4.51) 0<k<1

(106l + 171(e, 0,2, (00§ ) <> hizo) l1mg) -

IN

The constants x and &’ only depend upon the choice of the vector fields 7;
gngd on m, but not on U nor on ¢. It follows then from the estimates (&50)—(
h:SI) and from the compatibility conditions satisfied by the Cauchy data,

that the quantities ||U|[;m.c,0 and |U[] . o are uniformly bounﬂg‘(lie with, respect

to g]O, 1]. Now, choosing T .>'O small epongh. Theorem ollows as a
classical consequence of Propositions :B iy and 4.14.

lexistence de donnees compatibles

4.4 proof of theorem 4.4

Let us call U§ := (Vi, W§). We look for U of the form

Uj(x) = Ug(z,p(x)/e) + e Ug(z, (z)/c)

(4.52) +oe ot MUY (2, () Je)

where the profiles Ug(x, z) belong to the space C*°(R? x R; R%). Since ev-
erything is local, making a smooth change of independent coordinates, we
can assume that in the compact C the phase (¢, x) is 4. Recall that

L(v,§) = Li(v)& + -+ + La(v)&a,  La(vo) = L(vo, 9x¢p) -
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ghetti frutti di mare‘ (4.53) XU = N(vg, W) 9qU + Z A% (vo,U) 2ZU + Q% (vg, Ovg, U)U
ZeZ

where the matrices N, A, Q are C*° functions of their arguments up to € up
toe =0, and .
N (vg,w) = (So(vo,w))_ Lg(vo) -

Since Lg(vo) has a constant rank there exists some N x N matrix with
C° entries such that the matrix Lg(vg) ®(¢, z) has a constant kernel in RY.
Replacing U by ®(t,z)U and forgetting the ” ~ ”, we can assume that the
matrix N has a constant kernel iand that N = M I" where I in the constant
N x N matrix

r_ [ Id 0 }

0 0

and M is some N x N invertible matrix. It is sufficient to prove the theorem
after all these reductions are done. In particular we assume that IIp(z) does
not depend on x, implying that

(Id-T)U = Y(y(z)V, W), YU=(V,W)eRY xRV,

Our goal is to find profiles Ug satisfying

(450 1T = )
. spaghetti frutti di mare
and such that the local smooth solution U¢(t,z) of (4.53) with mitial data
stracciatela

.52) satisfies (when e goes to 0)

3runello di Montalcino| (4.55) (X{)OU‘E) = 0(1), Vjie{l,---,m}.

|t=0

Hereé pg%go%eans that the Aj'NB{’ norm is bounded, for all m € N. Because

of (E.Si), the problem is reduced to determine
ru), -, ru}l.

In a first step, we solve this problem in t'h.e senge u%fe 12?[%yg}p1\t481tni:% lsc%ggzs in
powers of . Next, we check that the conditions (4.55) are satistied.
For j = 1, the condition reduces to (I' 9qU¥)|;—o = O(1). Thus, T 0. U =

0, and

T UQ(x,2) = ¢ (z)
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is a solution for all c¢® € Cy° (Rd; RN ) which is supported in the compact set
C.

Assuming that the condition is satisfied for j = 1,--- | k, we find that

Xy Ut = X5, (M(vo, W) To.U° + Y Az(U°) ZU° + Q(UF) Uf)
XU g = XE (M(vg, W) T 04U ) 10 + O(1)
= (M(uvo, W5) T 83 X5, U7 ), _o + O(1)

and the condition (XEFU?) = O(1) reduces to

|t=0
(4.56) T 04X} U® \mo = O(1).
Now Xﬁo Uﬁ:o is a function of the form
0
ijOUﬁ:O = Z gl Ff(x,ap(o,m)/&?) + O(e)
j=—k

and since by induction hypothesis all the terms Ff with j < 0 are zero, we
just have to solve

X3 Uiz = Fy (z,0(0,7)/e) + O(e)
which yields
T 0y XE U =g = e ' TO.F(2,0(0,2)/e) + O(1).
Hence we are lead to solve the equation
(4.57) To.F} = 0.
The function FJ(z,2) has the following form
FE = (M(vo, W) T 8.)" UL + GE~!
where the term Glg_l depends only on the profiles Ué with j <k -1
GEt = G (Dvoji=o 3£i5§jUé;
0<j<k—1,|al<k, [Bil+p; <k, pi<k-1).

izabel
Hence the equation (%.z5a7ei can be written as
(4.58) T, (M(vy, W) T 8,)" TUE = —T0,GE"
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g &= [E [E

CGM

where the unknown is T'U%. This equation can be solved through k + 1
repeated integrations with respect to z, and multiplications by the matrix
M~ (vy, W), the solution depending on the choice of k + 1 arbitrary C>
functions cf(x),--- ,cf(z) (the constants of integration) that we can all
choose supported in the compact C. This shows that the problem can be
solved from a formal point of view with TU¥ € C°(R?%; R") supported in
C x R. But the same induction shows that [T'U%(z, 2)| < cte (1 + |2|¥) and

more generally for all @« € N% and j € N
(4.59)  |020ITUL(2,2)| < chay (1+]2[F77),  V(z,2) eR*xR.
This implies that

f TUR (2, 24/) € AT NBY,  VmeN.

We already know that the function (Id — T')U§ = !(a;, b;) is prescribed in
the space Jo(R?;RY) which implies that

(Id — T)U(z,z4/c) € AT NBY,  YmeN.,

Therefore, U is actually a compatible initial data, and the proof is complete.
O
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