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1. Introduction

Many results have been obtained in the last decade about the justification of nonlinear geo-
metric optics expansions (see references below and the survey papers [JMR1][JMR2]). All of them
consider general equations and make no assumption on the structure of the nonlinear terms. There
are cases where these general theorems are insufficiently precise. Typically, this happens when
interaction coefficients vanish because of the special structure of the equations. This implies that
the transport equations are linear so the leading order approximation does not reveal any nonlin-
ear behavior. This is already a useful piece of information, showing that nonlinear phenomena do
not assert their influence until anormaly large amplitudes or anormaly long interaction times are
considered. This phenomenon is called transparence. To reach nonlinear regimes, one can consider
waves of larger amplitude or, equivalently, of higher energy. The main goal of this paper is to start
an analysis of this problem. We perform it within a class of equations which is interesting for three
reasons. First, it contains several versions of Maxwell-Bloch equations which are of special interest
in nonlinear optics. Second, it is sufficiently general to capture most of the expected phenomena.
Third, it allows an almost complete analysis of the problem since the necessary and the sufficient
conditions we state are very close. Two questions are raised. What are the conditions for the
construction of BKW solutions? When they exist, what are the conditions for their stability, i.e.
when are they close to exact solutions? The analysis relies on the study of resonant interaction of
oscillations. Because of the large amplitudes, they may create strong instabilities in times O(1),
and they actually do so for general equations. The compatibility conditions simply mean that
the interaction coefficients vanish at all the (possibly) unstable resonances. One important point
is that there are many more interactions to control for the second question than for the first.
In particular, unstable BKW solutions do exist. In fact, the Maxwell-Bloch equations lie at an
extreme end of the class of equations which we consider. There exists a canonical change of un-
knowns which reduces them to the standard regime of nonlinear geometric optics, where the known

* Research partially supported by the U.S. National Science Foundation, U.S. Office of Naval Research, and the NSF-

CNRS cooperation program under grants number NSF-DMS-9803296 and OD-G-N0014-92-J-1245 NSF-INT-9314095 re-

spectively, and the CNRS through the Groupe de Recherche G1180 POAN.

1



results of [DR] apply. Our analysis explains how the existence of this change of unknows is deeply
related to the very strong compatibility conditions which are satisfied by these equations. This is
an extreme behaviour. The class of equations under consideration contains many other interesting
examples such as coupled Klein-Gordon equations. We use them to illustrate the different levels
of compatibility conditions.

To introduce the above mentionned class of equations, we start from the Maxwell-Bloch equa-
tions. They are widely used in nonlinear optics textbooks as a model for the description of the
interaction between light and matter and the propagation of laser beams in nonlinear media, see
e.g. [BW], [NM], [Bo] or [PP]. Because of their special interest, we will discuss them in detail in
§12. Just recall here a model which comes from a two levels quantum system for the electrons. In
suitable units and scales, the electromagnetic field (E, B), the polarization P of the medium and
the difference N between the numbers of exited and nonexited atoms satisfy

(1.1)

{
∂tB + curlE = 0 , ∂tE − curlB = −∂tP ,

ε2 ∂2
t P + Ω2P = γ1 N E , ∂tN = − γ2∂tP · E ,

where ε is a small parameter such that Ω/ε is the frequency associated to the electronic transition
between the two levels. Introducing Q = ε∂tP and U = (B, E, P, Q, N −N) where N denotes the
value of N at thermodynamical equilibrium, the equations (1.1) fall into the general framework of
dispersive equations (see [DR])

(1.2) L(ε∂x)U = F(U)

where x = (t, y) ∈ R × Rd denotes the space-time variables and L(ε∂x) = ε∂t +
∑

εAj∂j + L0 is
conservative. We study high frequency asymptotic solutions

(1.3) Uε(x) ∼ U + εp
∑
n≥0

εnp Un(x, β · x/ε)

where U is a constant solution and the Un(x, θ) are periodic functions of θ. Note that the wave-
length of the oscillation is exactly of order ε because the frequency of light is comparable to the
frequency of the electronic transistion. This is an important feature of the problem which encodes
the dispersive character of the propagation, see [Do], [DR].

The analysis of nonlinear geometric optics expansions for general systems (1.2) is made in [DR].
The first step is to determine the appropriate order εp for the solution. It must be sufficiently small
so that the solutions exist on a domain independent of ε and it should be sufficiently large enough
that nonlinear effects are captured in the leading term U0. The answer depends on the order of the
nonlinearity f . When f is quadratic [resp. cubic], it is p = 1 [resp. p = 1/2]. This is the standard
regime of semilinear geometric optics where exact solutions Uε satisfying (1.3) are constructed
in [DR] (see also [JR] for nondispersive equations). Recall that the wave number β satisfies the
eikonal equation detL(iβ) = 0 and the Fourier coefficients of the principal term U0 =

∑
U0(ν)eiνθ

satisfy the polarization condition U0(ν) = P (νβ)U0(ν) where P (ξ) is the orthogonal projector on
ker L(iξ). When f is quadratic, the nonlinear interaction term in the transport equation for U0(ν)
is

(1.4) P (νβ)
∑

ν1+ν2=ν

q(U0(ν1),U0(ν2)) ,

where q is the symmetric bilinear form associated to f .
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For the Maxwell-Bloch equations (1.1), f is quadratic and [DR] applies to solutions of am-
plitude O(ε). This is insufficient for two reasons. First, for physically relevant choices of U0, the
interactions terms (1.4) vanish. Thus the transport equations are linear showing that the BKW
solutions are not affected by the nonlinearity of the medium. Second, Maxwell-Bloch equations are
supposed to be a refinement of cubic models in nonlinear optics, such as the anharmonic oscillator
model which is discussed in [Do] and [DR]. Both facts suggest that solutions of amplitude O(

√
ε)

are natural. In addition, such BKW solutions of equation Maxwell-Bloch (1.1) are constructed in
[Do]. They obey the following inhomogeneous scaling of the amplitudes :

(1.5) (B, E, P, Q) =
√

ε (B̃, Ẽ, P̃ , Q̃) , N −N = εÑ .

This is a particular case of (1.3) with p = 1/2. However, one forces N − N = O(ε) because the
terms in (1.4) vanish only when U0 = (B̃0, Ẽ0, P̃0, Q̃0, 0). We refer to §12 for further motivations
for introducing it. The Maxwell-Bloc equations (1.1) then read

(1.6)


ε ∂tB̃ + ε curlẼ = 0 , ε ∂tẼ − εcurlB̃ = −Q̃ ,

ε ∂tP̃ − Q̃ = 0 , ε ∂tQ̃ + Ω2 P = γ1N Ẽ + ε γ1 Ñ Ẽ,

ε∂tÑ = − γ2 Q̃ · Ẽ .

The question is to study the existence of formal and exact solutions Ũ of (1.6) with amplitude
O(1). A tricky argument gives the anwser. Consider the change of unknows

(1.7) n = Ñ +
γ2

2γ1N
(Q̃2 + Ω2P̃ 2) .

Then the last equation in (1.6) is transformed into

(1.8) ε∂tn = ε
γ2

N
Ñ Q̃ · Ẽ = ε

(
c1n − c2(Q̃2 + Ω2P̃ 2)

)
Q̃ · Ẽ .

The key point is that the bad O(1) quadratic term in the equations for Ñ has been eliminated.
Introducing U ] := (B̃, Ẽ, P̃ , Q̃, n), the system (1.6) is equivalent to an equation of the form

(1.9) L(ε∂x)U ] = εF(U ])

where the key point is that the right hand side is O(ε). For this equation, the standard regime of
nonlinear geometric optics concerns O(1) solutions and the results of [DR] apply. Changing back
to the variables, we recover the BKW solutions of (1.1) constructed in [Do] and prove that they
are stable, i.e. that there exist exact solutions of (1.1) which have the same asymptotic expansion.
Because of their special interest, we will develop several examples of applications of this sort in
§12.

This is the end of the story for the Maxwell-Bloch equations (1.1) but this is the starting point
of this paper. Our goal is to understand what can be said for more general transparent systems
and why there exists such a miraculous change of unknowns. In this paper we perform the analysis
for systems of the following form which generalizes (1.6)

(1.10)

L(ε∂x)u := ε∂tu +
∑

εAj∂ju + L0u = εf(u, v)

M(ε∂x)v := ε∂tv +
∑

εBj∂jv + M0v = q(u) + εg(u, v)
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where L and M are symmetric hyperbolic, q is quadratic and f and g vanish at the origin. This
is a particular case of equations (1.2). The triangular structure of the main quadratic interaction
permits a very complete analysis. On the other hand, the problem we are now considering is more
singular than the one sketched above for general equations (1.2) since, as in (1.6), we are looking
for solutions U = (u, v) of amplitude O(1)

(1.11) Uε(x) ∼
∑
n≥0

εn Un(x, ϕ(x)/ε) ,

where the Un(x, θ) are periodic functions of θ and ϕ(x) is a given phase function or a finite set of
phase functions if one considers interacting waves. For general systems (1.10) the standard regime
of nonlinear geometric optics concerns solutions which are smaller by a factor ε. The analogue of
(1.4) is

(1.12)
∑

ν1+ν2=ν

Q(νdϕ) q
(
u0(ν1),u0(ν2)

)
.

where the u0(ν) satisfy the polarization condition u0(ν) = P (νdϕ)u0(ν) and P (ξ) [resp. Q(ξ)] is
the orthogonal projector on kerL(iξ) [resp. M(iξ)]. It is this term which always vanishes for the
Maxwell-Bloch equations.

In this paper, we discuss the following questions.
1. The existence of BKW solutions (1.10) of amplitude O(1). Substituting (1.11) into (1.10)

and ordering the terms yields a formal series
∑

εnFn. A BKW solution is a formal series (1.11),
such that after substitution, all the term Fn vanish. The equation F0 = 0 implies the polarisation
conditions u0(ν) = P (νdϕ)u0(ν) and the necessary condition that the term in (1.12) vanishes.
Thus, in order to construct solutions with arbitrary initial data for P (νdϕ)u0(ν), it is necessary
to assume that

(1.13) Q((ν1 + ν2)dϕ) q
(
P (ν1dϕ) · , P (ν2dϕ) ·

)
= 0 , for all ν1 and ν2 .

This is the transparency condition. Note that this assumption is not as strong as it may seem.
Because the equations are dispersive, most of the P (νdϕ) and Q(νdϕ) vanish. Thus in practice, it
reduces to a small number of cancellations and this is why this condition is not unrealistic.

When it is satisfied, the equations Fn = 0 are equivalent to a triangular sequence of equations
for U0, U1 etc. In general these equations are quasilinear. Moreover the transparency condition
is not sufficient to imply that they have solutions. We give both sufficient conditions and also
necessary conditions for their solvability. They are strictly stronger than (1.13).

2. The stability of BKW solutions. Using Borel’s summation process, a BKW solution
yields approximate solutions Uε

app. They satisfy (1.11) and solve the equation (1.10) with infinite
accuracy

(1.14) L(ε∂x)Uε
app − F(Uε

app) = O(ε∞) .

The BKW solution is stable when there exists a family Uε of exact solutions of (1.10) such that
Uε − Uε

app = o(1). This is not always true, and the main purpose of this paper is to study this
question in detail. We give necessary and sufficient conditions for the stability. They are much
stronger than the conditions which allow the construction of the BKW solution.
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To see where the difficulty lies, consider V ε = ε−m
(
Uε − Uε

app

)
. Assuming that F(U) =

Q(U, U) is quadratic,

(1.15) L̃εV ε := L(ε∂x)V ε − 2Q(Uε
app, V

ε) = εm F(V ε) + O(ε∞) .

When Uε
app = O(ε) a standard energy estimate for L(ε∂x) and Gronwall’s lemma imply that the

solutions of L̃εW ε = 0 satisfy on [0, T ]

(1.16) ‖W ε(t)‖L2 ≤ CT ‖W ε(0)‖L2

where CT is independent of ε. (Recall that the coefficient of ∂t in L is ε). This kind of estimate
is the starting point of the analysis in [DR] and [JR] leading to the linear and nonlinear stability
results of standard nonlinear geometric optics. In sharp contrast, when Uε

app = O(1), the zero-th
order term Q(Uε

app, V
ε) is as strong as L(ε∂x)V ε and cannot be neglected. The main task is to

study the validity of a uniform estimate (1.16). Necessary and sufficient conditions are given. In
short, they assert that

(1.17) Q(ξ + νdϕ) q
(
P (νdϕ) · , P (ξ) ·

)
= 0 , for all ν and ξ .

The idea is that the oscillations νdϕ in u0 interact with all the frequencies ξ of W ε. The condition
(1.17) ensures that there are no unbounded amplification in this mechanism. When (1.17) is not
satisfied, we construct solutions which grow like eγt/

√
ε showing that the uniform estimates (1.16)

do not hold.
The last step is to prove that when (1.16) is satisfied, the BKW solution is actually stable.

3) The Maxwell-Bloch equations (1.6) and their multi-level extensions discussed in §12
satisfy the stronger property

(1.18) Q(ξ + ξ′) q
(
P (ξ) · , P (ξ′) ·

)
= 0 , for all ξ and ξ′ .

When this property is satisfied, we show that there is a bilinear mapping

(1.19) (u, u′) 7→ J(u, u′)

acting on functions of y, such that the change of variables

(1.20) v](t, . ) = v(t, . ) + J
(
u(t, . ), u(t, . )

)
transforms the second equation of (1.10) to

(1.21) M(ε∂x) v] = 2 J
(
u, L(ε∂x)u

)
+ ε g(u, v) = ε

(
2 J(u, f(u, v)) + g(u, v)

)
.

Therefore, U ] = (u, v]) satisfies an equation of the form (1.9). Thus, under the strong condition
(1.18), the problem is reduced to the standard regime for equations (1.9). However, in general, the
bilinear mapping J and thus the nonlinear F(U ]) involve Fourier multipliers. The know results
[DR], [JR], [JMR 3,4,5] should be adapted to cover this case to explain why O(1) stable expansions
are valid.

For the Maxwell-Bloch equations (1.6), it happens that the change of unknowns (1.20) is
given by the polynomial substitution (1.7) and the known results of [DR] directly apply to the
transformed equation (1.9). This is extended to more general versions of Maxwell-Bloch equations
in §12. But in general, J does involve Fourier multipliers. We give examples of coupled Klein
Gordon equations which illustrate this point.
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As sketched above, the analysis only relies on the study of resonant interaction of oscillations
which can cause strong instabilities because of the large amplitude of the leading term. The
necessary and the sufficient compatibility conditions say that the interaction coefficients vanish
at all the unstable resonances. The conditions (1.13) (1.17) and (1.18) are in increasing order of
strength. Coupled Klein-Gordon equations give examples showing that thi orde is strict. Unstable
BKW solutions exist. Stable BKW solutions may exist when (1.18) is not globally satisfied. The
condition (1.17) can be satisfied for dϕ in an open subset of the characteritic variety while (1.18)
does not hold.

2. Outline of the results

With variables x = (t, y) ∈ R× Rd, consider a system

(2.1)

{
L(ε ∂x)u + ε f(u, v) = 0 ,

M(ε∂x) v + q(u, u) + ε g(u, v) = 0 ,

where f and g are smooth polynomial functions of their arguments and vanish at the origin, q is
bilinear and

(2.2)
L(ε ∂) := ε ∂t + A(ε ∂y) := ε ∂t +

∑
ε Aj∂yj + L0 := εL1(∂x) + L0

M(ε ∂) := ε ∂t + B(ε ∂y) := ε ∂t +
∑

ε Bj∂yj + M0 := εM1(∂x) + M0

are symmetric hyperbolic, meaning that the Aj and Bj are hermitian symmetric while L0 and M0

are skew adjoint. The main feature of this system is that the principal nonlinearity q(u, u) appears
only on the second equation and depends only on the first set of unknows u.

When one considers complex valued solutions, one should consider general quadratic interac-
tions q1(u, u) + q2(u, u) + q3(u, u). Taking real and imaginary parts reduces to the case q(u, u).
However, even when we are interested only in real solutions of real systems, we want to use com-
plex exponential and thus one has to extend q to the complex domain. For simplicity, we confine
ourselves to the (complex) bilinear case. In Remark 2.12 below, we indicate briefly the necessary
modifications to cover the general case.

We look for solutions satisfying

(2.3) uε(x) ∼
∑
n≥0

εn un(x, β · x/ε) , vε(x) ∼
∑
n≥0

εn vn(x, β · x/ε) .

Here β := (β1, . . . , βm) ∈ (R1+d)m denotes a set of m space-time wave numbers. The profiles
un(x, θ) and vn(x, θ) are 2π-periodic in θ = (θ1, . . . , θm) ∈ Tm := (R/2πZ)m. Througout the
paper we use the notations βj = (ωj , κj) ∈ R × Rd, ω := (ω1, . . . , ωm) and κ := (κ1, . . . , κm).
Substituting the formal series (2.3) into (2.1) the left hand side of (2.1) has the formal expansion

∼
∑
n≥0

εn Φn(x, β · x/ε) .

Definition.
∑

εn(un,vn) is a formal solution or a BKW solution when Φn = 0 for all
n ≥ 0.
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A) The transparency condition.

The first equation Φ0 = 0 reads

(2.4) L(β∂θ)u0 = 0 , M(β∂θ)v0 + q(u0,u0) = 0 ,

where L(β∂θ) :=
∑

j L1(βj)∂θj + L0 and M(β∂θ) :=
∑

j M1(βj)∂θj + M0. On Fourier series,

(2.5) L(β∂θ)
( ∑

ν∈Zm
aνeiνθ

)
=
∑

ν∈Zm
L(iνβ) aν eiνθ ,

where νβ :=
∑

j νjβj ∈ R1+d and L(iξ) = iL1(ξ) + L0 denotes the symbol of L. We say that ξ is
characteristic for L when det L(iξ) = 0. Introduce the projector P on the kernel of L(β∂θ)

(2.6) P
( ∑

ν∈Zm
aνeiνθ

)
:=

∑
ν∈Zm

P (νβ) aν eiνθ ,

where P (ξ) denotes the orthogonal projector on kerL(iξ). Similarly introduce Q(ξ) the orthogonal
projector on kerM(iξ) and Q the projector on kerM(β∂θ),

The first equation in (2.4) is equivalent to the polarisation condition u0 = Pu0. We are looking
for solutions with u0 6= 0 and thus at least one of the P (νβ) must be different of zero. In this
work, we focus on dispersive equations, i.e. L0 6= 0, and for simplicity we assume throughout the
paper that

(2.7) det L(iνβ) 6= 0 and detM(iνβ) 6= 0 for ν large .

Examples 1. To describe the propagation of a single wave, one considers one wave number
β := (ω, κ) ∈ R× Rd which satisfies the eikonal equation for L :

(2.8) detL(iβ) = 0 .

The condition (2.7) is satisfied for instance when det L1(β) 6= 0 and detM1(β) 6= 0. A typical
example is that det L(iνβ) = 0 exactly for ν ∈ {−1, 0, 1} and detM(iνβ) = 0 only for ν = 0.

2. To describe the interaction of waves one considers several wave numbers (β1, . . . , βm).
Each of them satisfies the eikonal equation (2.8) and have at most a finite number of characteristic
harmonics. The interaction is nonresonant when all the combinations

∑
νjβj with at least two

nonvanishing coefficients which are not characteristic. In case of resonant interaction, there are
often exactly two resonance relations

∑
νjβj = 0 and

∑
(−νj)βj = 0 and (2.7) is also satisfied.

The second equation in (2.4) requires that Qq(u0,u0) = 0. The transparency condition states
that this equation is a consequence of the polarisation u0 = Pu0.

Assumption 2.1. For all ν and ν1 in Zm and for all vectors u and v, one has

(2.9) Q(ν1β) q
(
P ((ν1 − ν)β)u , P (νβ)v

)
= 0 .
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Using Fourier series, (2.9) is equivalent to the condition that for all functions u and u′ one has

(2.10) Qq
(
Pu , Pu′

)
= 0 .

The assumption is trivially satisfied when all the Q(νβ) vanish, i.e. all the harmonics νβ are
noncharacteristic for M . The interesting case occurs when there is at least one resonance, i.e.
harmonics ν1β and ν2β which are characteristic for L and such that (ν1 + ν2)β is characteristic for
M . Note, that (2.7) implies that there are only a finite number of such resonances.

B) Triangulation of the equations for the formal equations.
To find formal solutions, the first step is to put the system of equations {Φn = 0}n≥0 in a

triangular form in order to compute the (un,vn) inductively. In §3, we show that this can be done
when Assumption 2.1 is satisfied leading to equations of the form

(2.11)n


PL1(∂x)Pun = rn ,

QM1(∂x)Qvn + D(u0, ∂y)Pun = rn

(I− P)un = rn ,

(I−Q)vn = rn .

The rn denote different functionals which depends on (uk,mk)k<n and their derivatives and also
on (Pun,Qvn) but not on their derivatives. In particular, the firts two equations form a system
for (Pun,Qvn), which is quasilinear for n = 0 and linear for n ≥ 1.

C) Construction of formal solutions.
Assumption 2.1 does not imply that the Cauchy problem for the first two equations in (2.11)

is well posed. The principal part is

(2.12)

{
PL1(∂)Pu ,

QM1(∂x)Qv + D(Pu0, ∂y)Pu .

Introduce the space P [resp Q] of trigonometric polynomials
∑

uνeiνθ [resp.
∑

vνeiνθ] with coeffi-
cients uν ∈ ker(Id−P (νβ)) [resp. vν ∈ ker(Id−Q(νβ))]. By (2.7), P and Q are finite dimensional
and (2.11) is a first order system for functions of variables x = (t, y) with values in P × Q. Its
principal part (2.12) can be written

(2.13) ∂t + A(u0(x), ∂y) = ∂t +
d∑

j=1

Aj(u0)∂yj .

To solve (2.11), and in particular (2.11)0 which is quasilinear, we are led to impose hyperbolicity.

Assumption 2.2. The system (2.12) is strongly hyperbolic, meaning that the matrices
eiA(a,η) are uniformly bounded for η ∈ Rd and a in bounded subsets of P. .

In §4 we give equivalent formulations using resonances. When it is satisfied, (2.13) is sym-
metrizable, but the symbol S(u0, η) of the symmetrizer is not necessarily smooth in η. However,
in the present case, the lack of smoothness of the symmetrizer is not an obstacle for solving (2.11)
and in §5 we prove the following result.
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Theorem 2.3 Suppose that Assumptions 2.1 and 2.2 are satisfied. Given arbitrary initial
data for Pun and Qvn in PH∞(Rd × Tm) and QH∞(Rd × Tm) respectively, there is T > 0 and a
sequence (un,vn) ∈ C0([0, T ];H∞(Rd × Tm)) which satisfies the family of equations (2.11).

Here H∞ denotes the intersection of the Sobolev spaces Hσ, for all σ.

D) Linear stability.

Consider a formal solution on [0, T ]× Rd, given by Theorem 2.3. For any k,

(2.14) Uε
app(x) = Uε

app(x, x · β/ε) , Uε
app :=

k∑
n=0

εn(un,vn)

is an approximate solution of (2.1), in the sense that the left hand side evaluated on Uε
app is O(εk+1)

in L∞ ∩ L2 and its j-th derivatives are O(εk+1−j). In the discussion of the existence of an exact
solution close to Uε

app, the main step is to study the linear stability of the approximate solution,
i.e. the well posedness of the linearized Cauchy problem :

(2.15) L̃εU + εF ′(Uε
app)U :=

(
L1(ε∂x)u
M(ε∂x)v + 2q(uε

0, u)

)
+ εF ′(Uε

app)U = ε H ,

where U = (u, v) and F (U) := (f(U), g(U)). The Cauchy problem is stable when there is a
constant C such that for all ε ∈]0, 1], all smooth initial data U(0) and right hand side H, the
solution of the Cauchy problem for (2.15) satisfies for all t ∈ [0, T ] :

(2.16) ‖U(t)‖L2(Rd) ≤ C ‖U(0)‖L2(Rd) + C

∫ t

0

‖H(s)‖L2(Rd) ds

In §6, we give the following necessary condition for the stability. Recall the notation β = (ω, κ).

Proposition 2.4. If the linearized Cauchy problem (2.15) is stable, there is a constant C
such that for all ν ∈ Zm, all ξ = (τ, η) in the characteristic variety of L, all ξ′ = (τ ′, νκ + η) in the
characteristic variety of M , all x ∈ [0, T ]× Rd and all vector u∣∣∣Q(ξ′)q

(
u0,ν(x) , P (ξ)u

) ∣∣∣ ≤ C | τ ′ − τ − νω | |u | ,

where u0,ν(x) denotes the ν-th Fourier component of u0(x, θ).

When Assumptions 2.1 and 2.2 are satisfied, approximate solutions are constructed with ar-
bitrary initial data for u0,ν provided that they satisfy u0,ν = P (νβ)u0,ν . Thus, we are led to the
following condition

Assumption 2.5. For all ν ∈ Zm, there is a constant C such that for all ξ = (τ, η) in the
characteristic variety of L, all ξ′ = (τ ′, νκ + η) in the characteristic variety of M and all vectors u
and u′

(2.17)
∣∣∣Q(ξ′)q

(
P (νβ)u , P (ξ)u′

) ∣∣∣ ≤ C | τ ′ − τ − νω | |u | |u′ | .
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In particular, Assumption 2.5 requires that

(2.18) Q(ξ′)q
(
P (νβ)u , P (ξ)u′

)
= 0 at resonances, i.e. when ξ′ = νβ + ξ .

Conversely, near “regular” resonances, (2.18) implies that one can factor out the equation of
resonance in Q(ξ′)q

(
P (νβ)u , P (ξ)u′

)
, and (2.17) follows. This is made precise in §7 where we also

give other equivalent formulations of Assumption 2.5. An important remark is that it is strictly
stronger than the previous Assumptions 2.1 and 2.2

Proposition 2.6. Assumption 2.5 implies Assumptions 2.1 and 2.2.

When Assumptions 2.1 and 2.2 are satisfied, Proposition 2.4 asserts that Assumption 2.5 is
necessary for the validity of the stability estimate (2.16) for all approximate solutions. Conversely,
we prove in §8 that it is sufficient.

Proposition 2.7. When Assumption 2.5 is satisfied, then for the family of approximate
solution (2.14), the solutions of the linearized equation (2.15) satisfy the a priori estimate (2.16)
with canstant C independent of ε ∈]0, 1].

E) Nonlinear stability and exact solutions.
In §8 we prove that Assumption 2.5 also implies the nonlinear stability of approximate solu-

tions.

Theorem 2.8. Suppose that Assumption 2.5 is satisfied. Fix a positive integer k ≥ 3 and
consider a smooth approximate solution Uε

app, as in (2.14), defined on [0, Ta] × Rd. Then for all
T < Ta, there is ε0 > 0 such that for all ε ∈]0, ε0] the Cauchy problem for (2.1) with initial data
Uε

app(0, . ) has a unique solution Uε = (uε, vε) on [0, T ]×Rd. Moreover, there is a constant C such
that for all ε ∈]0, ε0] and all t ∈ [0, T ] :

(2.19)
∥∥Uε(t) − Uε

app(t)
∥∥

L∞(Rd) ≤ C εk .

This theorem is a consequence of a more precise result which we now describe. We look for
solutions (u, v) of (2.1) as functions

(2.20) u(x) = u(x, β · x/ε) , v(x) = v(x, β · x/ε)

with u(x, θ) and v(x, θ)periodic in θ. For (u, v) to be solutions of (2.1), it is sufficient that

(2.21)

{
L(ε∂x + β∂θ)u + ε f(u,v) = 0 ,

M(ε∂x + β∂θ)v + q(u,u) + ε g(u,v) = 0 .

Introduce. U := (u,v). With obviuous notations, write this system as

(2.22) LεUε + Fε(Uε) = 0 .

Consider a formal solution
∑

εnUn given by Theorem 2.3 on [0, Ta]×Rd×Tm. Fix a positive
integer k and introduce Uε

app as in (2.14). Proposition 3.1 below shows that Uε
app is an approximate

solution of (2.21), meaning that for all integer σ, there is a constant C such that for all ε ∈]0, 1]
and all t ∈ [0, Ta]

(2.23)
∥∥ (LεUε

app + Fε(Uε
app)

)
(t, . )

∥∥
Hσ(Rd×Tm)

≤ C εk+1 ,

Theorem 2.8 is a corollary of the following result which is proved in §8.
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Theorem 2.9. Suppose that Assumption 2.5 is satisfied. For k ≥ 2 consider an approximate
solution Uε

app (2.14), defined on [0, Ta]×Rd. In addition, consider a bounded family Rε
0 in Hσ(Rd×

Tm) with σ > (d + m)/2. Then for all T < Ta, there is ε0 > 0 such that for all ε ∈]0, ε0] the
Cauchy problem for (2.32) with initial data Uε

app(0, . )+ εkRε
0 has a unique solution Uε = (uε,vε)

on [0, T ]× Rd × Tm and there is a constant C such that for all ε ∈]0, ε0] and all t ∈ [0, T ]

(2.24)
∥∥Uε(t) − Uε

app(t)
∥∥

Hσ(Rd×Tm)
≤ C εk .

F) Compatible nonlinearities.

The strongest condition in the stability analysis is to assume that all pump frequencies β give
rise to stable oscillations.

Assumption 2.10. There is a constant C such that for all ξ = (τ, η) and ξ′ = (τ ′, η′) in the
characteristic variety of L, all ξ′′ = (τ ′′, η + η′) in the characteristic variety of M and all vectors u
and u′

(2.25)
∣∣∣Q(ξ′′)q

(
P (ξ)u , P (ξ′)u′

) ∣∣∣ ≤ C | τ ′′ − τ − τ ′ | |u | |u′ | .

This assumption is discussed and compared to Assumption 2.5 in § 9. There are interesting
examples where not all the pump frequencies are stables. We also show that Assumption 2.10
implies that the system (2.1) is conjugated via a nonlinear change of unknowns to a similar system
with q = 0.

Theorem 2.11 Suppose that Assumption 2.10 is satisfied. Then, there exists a family of bi-
linear mappings Jε, from H∞(Rd)×H∞(Rd) to H∞(Rd), such that for all u ∈ C1([0, T ];H∞(Rd)),

(2.26) q(u(t), u(t)) = M(ε∂x)Jε
(
u(t), u(t)

)
− Jε

(
L(ε∂x)u(t), u(t)

)
− Jε

(
u(t), L(ε∂x)u(t)

)
.

The change of variables which eliminates q is

(2.27) ṽ := v + Jε(u, u) ;

The general definition of J is of the form

(2.28) Jε(u, u′)(y) = (2π)−d

∫
Rd×Rd

eiy(η+η′)J(εη, εη′; û(η), û′(η′)) dηdη′

where J(η, η′; · , · ) is a bounded family of quadratic forms on CN × CN . The Maxwell-Bloch
equations discussed in §12 satisfy Assumption 2.10, but in addition, the forms J(η, η′; · , · ) are
independent of (η, η′) implying that the change of variable (2.27) is algebraic. In §9, we also give
examples of systems for which J is pseudodifferential.
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G) Examples of instability.
When Assumption 2.5 is not satisfied, Proposition 2.4 implies that instabilities are expected

in the linearized equation. In §10 we study a model problem for which a single resonant interaction
is isolated. The strength of the instability depends on the lower order terms, that is on f . In the
strongest case, the amplitudes Ûε(t, η) of the exact solutions at frequencies η in a ball |η− η0/ε| ≤
h/
√

ε are exponentially amplified by a factor eγt/
√

ε. This analysis is used in §11 to produce
examples of systems (2.1) which satisfy Assumptions 2.1 and 2.2, together with very accurate
approximate solutions Uε

app which are uniformly bounded in L2 ∩L∞ on [0, T ]×Rd, but such that
the exact solutions Uε which have the same initial data satisfy

(2.29) ‖Uε(t) ‖L2(K) ≥ c eγt
√

ε

where K is a ball, c > 0 and γ > 0. Thus, in time t ≈ √ε, the exact solution has nothing to do with
the approximate solution. Moreover, this gives examples of Cauchy problems which have infinely
accurate and uniformly bounded approximate solutions, but which have no uniformly bounded
excat solutions.

H) Applications to the Maxwell-Bloch equations.
In § 12, we come back to different versions of the Maxwell-Bloch equations. We compute the

principal term U0 of the expansion in two different applications. The first concerns the propagation
of one single beam in a two level isotropic medium. We recover equations similar to those found in
[DR] for the anharmonic model and in [Do] for the model (1.1). The second application concerns
the stimulated Raman scattering. This is a three waves mixing process. There we use expansions
(2.3) with several phases, i.e. with β ∈ (R1+3)3. In § 12, we also outline another application
of properties of the change of variables (1.7). It can be used to justify the long time diffractive
expansions found in [Do] for equation (1.1), reducing the problem to a “‘standard” regime treated
in [Lan].

Remark 2.12. 1) The analysis of quadratic interaction sketched above for C-bilinear q, relies
on the rule that q(aeixξ, a′eixξ′) = eix(ξ+ξ′)q(a, a′). When q(u, u′) is linear in u and antilinear in u′

[resp. antilinear in u and linear in u′] [resp. bi-antilinear] one has q(aeixξ, a′eixξ′) = eix(ξ−ξ′)q(a, a′)
[resp. q(aeixξ, a′eixξ′) = eix(−ξ+ξ′)q(a, a′)] [resp. q(aeixξ, a′eixξ′) = e−ix(ξ+ξ′)q(a, a′)] and the
condition (2.9) (2.17) and (2.25) in Assumptions 2.1, 2.5 and 2.10 must be changed accordingly.
For example, when q is linear-antilinear, (2.25) is to be replaced by

(2.30)
∣∣∣Q(ξ′′)q

(
P (ξ)u , P (ξ′)u′

) ∣∣∣ ≤ C | τ ′′ − τ + τ ′ | |u | |u′ | , for ξ” = (τ”, η − η′) .

2) Suppose that L and M are real and suppose that q is a real quadratic form. Consider
q1 the C-bilinear extension of q and q2(u, u′) = q1(u, u′) [resp. q3(u, u′) = q1(u, u′)] its sequilinear
[resp. bi-antilinear] extension. Because P (−ξ) = P (ξ) and Q(−ξ) = Q(ξ), it is clear that the
compatiblity conditions for q2 [resp. q3] just described are equivalent to the compatibility conditions
for q1.

Remark 2.13. In this paper we only consider planar phases β · x. Part of the analysis
can be extended to nonlinear phases ϕ(x). As in [DR] or [JRM 3], one has to make coherence
assumptions meaning that the rank of the matrices L(iνdϕ(x)) is independent of x and that the
projectors P (νdϕ(x)) are smooth in x. However, technical difficulties arise. For example, in §8 we

12



use a pseudodifferential calculus with non smooth symbols (of a special sort). To extend the proof
to nonlinear phases, it seems reasonnable to make assumptions so that one gets smooth symbols.
This would lead to assume that the characteristic varieties of L and M have constant multiplicity
and that the resonances hold on smooth manifolds. Moreover, one should localize the analysis, to
cover the case where the phases are defined only locally. We leave these extensions to the interested
reader.

3. Equations for formal solutions

From now on, we fix β ∈ (R1+d)m and write (ω, κ) ∈ Rm × (Rd)m. We assume that (2.7)
holds. We look for BKW solutions of equations (2.1), i.e. we look for formal series

(3.1) uε(x, θ) ∼
∑
n≥0

εn un(x, θ) , vε(x, θ) ∼
∑
n≥0

εn vn(x, θ)

which satisfy (2.21) in the sense of formal series. Formal substitution yields

(3.2)

L(ε∂x + β∂θ)uε ∼
∑
n≥0

εn
(
L(β∂θ)un + L1(∂x)un−1

)
,

M(ε∂x + β∂θ)vε ∼
∑
n≥0

εn
(
M(β∂θ)vn + M1(∂x)vn−1

)
,

f(uε,vε) ∼
∑
n≥0

εn fn , g(uε,vε) ∼
∑
n≥0

εn gn , q(uε,uε) ∼
∑
n≥0

εn qn

and the left hand side of (2.21) is
∼
∑
n≥0

εn Φn(x, θ) .

Here and below we agree that all terms with negative index vanish.
We look for profiles (un,vn) which are trigonometric polynomials. Since f and g are polyno-

mial functions of their arguments, we note that this implies that fn and gn are also trigonometric
polynomials. The equation Φn = 0 reads

(3.3)n

{
L(β∂θ)un + L1(∂x)un−1 + fn−1 = 0 ,

M(β∂θ)vn + M1(∂x)vn−1 + qn + gn−1 = 0 .

Introduce the operator

(3.4) L−1
( ∑

ν∈Zm
aνeiνθ

)
:=

∑
ν∈Zm

L(−1)(iνβ) aν eiνθ .

where L(−1)(iξ) denotes the partial inverse of L(iξ) definded by

L(−1)(iξ)L(iξ) = L(iξ)L(−1)(iξ) = Id− P (ξ) , L(−1)(ξ)P (ξ) = P (ξ)L(−1)(ξ) = 0 .

L−1 acts on formal Fourier series and on trigonometric polynomials. The definition of the partial
inverse M−1 of M(β∂θ) is similar. One has

(3.5)

PL(β∂θ) = L(β∂θ)P = 0 ,

L−1L(β∂θ) = L(β∂θ)L−1 = I− P , L−1P = PL−1 = 0 .

QM(β∂θ) = M(β∂θ)Q = 0 ,

M−1M(β∂θ) = M(β∂θ)M−1 = I−Q , M−1Q = QM−1 = 0 .
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Thus (3.3)n is equivalent to

(3.6)n


i) (I− P)un = −L−1 (L1un−1 + fn−1) ,

ii) PL1un−1 + Pfn−1 = 0 ,

iii) (I−Q)vn = −M−1(M1vn−1 + qn + gn−1) ,

iv) QM1vn−1 + Qqn + Qgn−1 = 0 .

When n = 0, the first equation reduces to u0 = Pu0, the second is trivial and the fourth reads
Qq(u0,u0) = 0. Therefefore, when the transparency Assumption 2.1 is satisfied, as we now assume,
(2.10) implies that the fourth equation is a consequence of the first one. Thus (3.6)0 reduces to

(3.6)0

{
i) u0 = Pu0,

iii) (I−Q)v0 = −M−1q0 .

There is a similar analysis for n > 0. Introduce the notation

(3.7) hn−1 :=
n−1∑
k=1

q(uk,un−k) = qn − 2q(u0,un) .

The transparency assumption and (3.6)0 imply that Qq(u0,Pun) = 0. Using the first equation in
(3.6)n to compute Qq(u0, (I − P)un), we see that if (3.6)0 is satisfied, one can replace the fourth
equation in (3.6)n by

(3.8)n QM1vn−1 − 2Qq
(
u0 , L−1(L1un−1 + fn−1)

)
+ Q(hn−1 + gn−1) = 0 .

For n ≥ 0 consider the equations

(3.9)n


i) (3.6)n i) ,

ii) (3.6)n+1 ii) ,

iii) (3.6)n iii) ,

iv) (3.8)n+1 .

The first and third equations give (I−P)un and (I−Q)vn respectively. If we substitute their value
in the second and fourth equation, we see that (3.9)n is equivalent to

(3.10)n


(I− P)un = −L−1(L1un−1 + fn−1) ,

PL1Pun + Pfn = PL1L−1(L1un−1 + fn−1) ,

(I−Q)vn = −M−1(M1vn−1 + qn + gn−1) ,

QM1Qvn − 2Qq
(
u0,L−1(L1Pun + fn)

)
−QM1M−1qn +Q(hn−1 + gn−1) = rn−1 .

with
rn−1 := QM1M−1(M1vn−1 + gn−1)− 2Qq

(
u0,L−1L1L−1(L1un−1 + fn−1)

)
.

Substituting (I−P)un and (I−Q)vn in the nonlinear terms yields further simplifications. Denoting
by rn−1 various expressions which depend only on (u0, . . . ,un−1) and (v0, . . . ,vn−1), we get

qn = q∗n + rn−1 , fn = f∗n + rn−1 , gn = g∗n + rn−1 .
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with

(3.11) q∗0 := q(Pu0,Pu0) , q∗n := 2 q(Pu0,Pun) for n > 0 ,

(3.12) f∗0 := f(Pu0,Qv0 −M−1q∗0) , f∗n := ∇f(u0,v0)(Pun,Qvn −M−1q∗n) for n > 0

and similar formulas for g∗n.
Next, by (3.7), one has h0 = 0, h1 = q(u1,u1) and hn = 2q(u1,un) + rn−1 for n ≥ 2. We set

h∗0 = 0 and for n ≥ 1, we see that the transparency assumption implies that

Qhn = Qh∗n + rn−1

where

(3.13) h∗n := 2 q
(
(I− P)u1,Pun

)
= − 2 q

(
L−1(L1u0 + f(u0,v0)),Pun

)
.

Therefore, using the notation rn−1 introduced above, (3.10)n is equivalent to

(3.14)n


PL1Pun + Pfn = Prn−1

QM1Qvn − 2Qq(Pu0 , L−1L1Pun) − QM1M−1q∗n + Qkn = Qrn−1

(I− P)un = (I− P)rn−1 ,

(I−Q)vn = −M−1q∗n + (I−Q)rn−1 .

where

(3.15) kn := − 2Qq(Pu0 , L−1f∗n) + Q(h∗n + g∗n)

is a linear function of (Pun,Qvn) when n > 0.
The discussion above is summarized in the following statement.

Proposition 3.1. When Assumption 2.1 is satisfied, the equations (3.3)0 . . . (3.3)n+1 imply
(3.14)0 . . . (3.14)n which imply (3.3)0 . . . (3.3)n.

The first two equations in (3.14) form a system for (Pun,Qvn). When n = 0, it is quasilinear
in the two terms Qq(Pu0,L−1L1Pu0) and QM1M−1q∗0 = QM1M−1q(Pu0,Pu0). When n > 0, the
definitions (3.11-12-13) show that it is linear. For n = 1, one could have expected a semilinear
term coming from q(u1,u1). This term is not present, because of the transparency Assumption
which implies that Qh1 = Qh∗1

4. Hyperbolicity of formal equations

Assumption 2.1 does not say anything about the solvability of the equations (3.14). In this
section we discuss the hyperbolicity of the first two equations in (3.14). For n = 0, they are

(4.1)

{
PL1(∂x)Pu0 + Pf0 = 0
QM1(∂x)Qv0 − D(Pu0 , ∂y)Pu0 + Qk0 = 0 ,
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where the quasilinear term is

(4.2) D(Pa, ∂y)Pu :=
d∑

j=1

2Q q(Pa,L−1Aj∂yjPu) + 2QBjM−1q(Pa, ∂yjPu) .

Note that there is no ∂t in D, since (3.5) implies that L−1∂tP = 0 and Q∂tM−1 = 0.
Introduce the spaces of trigonometric polynomials (with constant coefficients) P := ker(I−P)

and Q := ker(I − Q). By (2.7), P × Q is finite dimensional and (4.1) is a quasilinear first order
system for the function U0(x) = (Pu0(x),Pv0(x)) valued in P ×Q. It reads

(4.3) (∂t + A(Pu0, ∂y))U0 + F0(U0) = 0 .

Moreover, (3.12) and (3.15) show that F0 is a polynomial function on P ×Q.
For n > 0, the analysis is similar. The first two equations in (3.14)n read

(4.4)

{
PL1(∂x)Pun + Pfn = Prn−1

QM1(∂x)Qvn − D(Pu0 , ∂y)Pun − Qk′n + Qkn = Qrn−1

where
k′n = 2

∑
j

QBjM−1q(∂jPu0,Pun) .

This is a linear first order system for the function Un(x) = (Pun(x),Pvn(x)) valued in P ×Q. It
reads

(4.5) (∂t + A(Pu0, ∂y))Un + B0(u0, ∂yu0)Un = Rn−1 .

PL1(∂x)P acts diagonaly on Fourier components. For u =
∑

ν uνeiνθ ∈ P,

PL1(∂x)Pu =
∑

ν

L1,ν(∂x)uνeiνθ , with L1,ν(∂x) := P (νβ)L1(∂x)P (νβ)

L1,ν is symmetric hyperbolic on Pν := ker(Id − P (νβ)). Denote by P1(ν, ξ) the orthogonal pro-
jector on kerL1,ν(ξ) ∩ Pν . Similarly, introduce M1,ν(∂x) := Q(νβ)M1(∂x)Q(β) and Q1(ν, ξ) the
orthogonal projector on kerM1,ν(ξ) ∩ ker(Id−Q(νβ)).

On the other hand, D(a, η) is not diagonal on Fourier series. For a =
∑

aνeiνθ ∈ P and
u =

∑
uνeiνθ ∈ P, one has

(4.6) D(a, η)u =
∑
ν1

(∑
ν

Dν1,ν(aν1−ν , η)uν

)
eiν1θ ∈ Q

where

(4.7)
Dν1,ν(a, η)u := 2Q(ν1β) q

(
P ((ν1 − ν)β)a , L(−1)(νβ)A1(η)P (νβ)u

)
+ 2 Q(ν1β)B1(η)M (−1)(ν1β) q

(
P ((ν1 − ν)β)a , P (νβ)u

)
.

and A1(η) :=
∑

ηjAj , B1(η) :=
∑

ηjBj .
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Proposition 4.1. The following properties are equivalent :

i) The system (4.3) is strongly hyperbolic in the sense that for all a ∈ P the matrices eiA(a,η)

are uniformly bounded η ∈ Rd

ii) The system (4.3) is symmetrizable in the sense that for all a ∈ P there is a bounded
family {S(a, η)}η∈Rd of uniformly symmetric definite positive matrices, such that S(a, η)A(a, η)
is symmetric.

iii) The system (4.3) is conjugated to a symmetric system in the sense that for all a ∈ P
there is a bounded family {N (a, η)}η∈Rd of invertible matrices, with uniformly bounded inverses,
such that N (a, η)−1A(a, η)N (a, η) is symmetric.

iv) For all integers ν and ν1, there is a constant C such that for all η, τ , τ ′ and a ∈ P

(4.8)
∣∣∣Q1(ν1, τ

′, η) Dν1,ν(a, η)P1(ν, τ, η)
∣∣∣ ≤ C |τ ′ − τ | |a| .

v) There is a bounded family of bilinear mappings, {F(η)}η∈Rd , from P ×P to Q, such that
for all η, a ∈ P and u ∈ P

(4.9) D(a, η)u = F(η)
(
a , PA1(η)Pu

)
− QB1(η)QF(η)

(
a , u

)
.

Proof. The implications iii)⇒ ii)⇒ i) are always true.
a) i)⇒ iv). On Fourier components, A(a, η) has the following block structure

(4.10) A(a, η) =

(
diag{A1,ν(η)}ν 0

{Dν1,ν(aν1−ν , η)}ν1,ν diag{B1,ν1(η)}ν1

)
.

where A1,ν(η) := P (νβ)A1(η)P (νβ) and B1,ν1(η) := Q(ν1β)B1(η)Q(ν1β). The exponential is
explicitly computable. The diagonal terms eitA1,ν(η) and eitB1,ν1 (η) are unitary and the off-diagonal
terms are

(4.11)
∫ t

0

ei(t−s)B1,ν1 (η) Dν1,ν(aν1−ν , η) eisA1,ν(η) ds .

Introduce the eigenvalues λk(ν, η) [resp. µl(ν1, η) ] and the eigenprojectors P1,k(ν, η) [resp. Q1,l(ν1, η)]
of A1,ν(η) [resp. B1,ν1(η)]. The integrals (4.11) are uniformly bounded if and only if the integrals∫ t

0

eis(λk(ν,η)−µl(ν1,η)) Q1,l(ν1, η)Dν1,ν(aν1−ν , η)P1,k(ν, η) ds .

are uniformly bounded, hence if and only if there is C(aν1−ν) such that

(4.12) ∀η , |Q1,l(ν1, η)Dν1,ν(aν1−ν , η)P1,k(ν, η)| ≤ C(aν1−ν) |λk(ν, η)− µl(ν1, η)| .

The projectors P1(ν, τ, η) vanish except when −τ is equal to one of the eigenvalues of A1,ν(η).
Moreover, when τ = −λk(ν, η), P1(ν, τ, η) = P1,k(ν, η). A similar argument holds for the Q’s.
Therefore, (4.12) is equivalent to

∀η, ∀τ ,∀τ ′ ,
∣∣∣Q1(ν1, τ

′, η)Dν1,ν(aν1−ν , η)P1(ν, τ, η)
∣∣∣ ≤ C(aν1−ν) |τ ′ − τ | .
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Because Dν1,ν(a, η) is linear in a, this implies and thus is equivalent to the existence of a constant
C such that (4.8) holds for all a, and all (η, τ, τ ′).

b) iv)⇒ v). With notations as in a), introduce

Fν1,ν(a, η) :=
∑
k,l

1
λk(ν, η)− µl(ν1, η)

Q1,l(ν1, η)Dν1,ν(a, η)P1,k(ν, η)

with the convention that the summand vanishes when λk(ν, η)− µl(ν1, η) = 0. If (4.8) is safisfied,
one has

(4.13) |Fν1,ν(a, η)| ≤ C ′ |a|

and

(4.14) Dν1,ν(a, η) = Fν1,ν(a, η)A1,ν(η) − B1,ν1(η)Fν1,ν(a, η) .

Conversely, if (4.13) and (4.14) hold, multiplying (4.14) on the left by Q1,l(ν1, η) and on the right
by P1,k(ν, η), one obtains (4.12) and thus (4.8). Note that the Fν1,ν depend linearly on a.

For a =
∑

aνeiνθ ∈ P and u =
∑

ν uνeiνθ ∈ P, define

(4.15) F(η)(a,u) =
∑
ν1

(∑
ν

Fν1,ν(aν1−ν , η)uν

)
eiν1θ ∈ Q

This defines a bilinear mapping F(η) : P×P 7→ Q. With this notation (4.14) is the componentwise
expression of (4.9). Moreover, the bilinear mappings F(η) are uniformly bounded if and only if
(4.13) holds.

c) v)⇒ iii). Denote by F(a, η) the linear mapping u 7→ F(η)(a,u) and introduce

(4.16) N (a, η) :=
(

Id 0
F(a, η) Id

)
where the blocks correspond to the components in P and Q. The intertwinning relation (4.9) is
equivalent to

(4.17) N (a, η)−1A(a, η)N (a, η) =
(
PA1(η)P 0

0 QB1(η)Q

)
.

The proof of Proposition 4.1 is complete

Things are much simpler when νβ and ν1β are regular points of the characteristic varieties.

Definition 4.2. A point ξ in the characteristic variety of L [resp. M ] is regular when, in
a neighborhood of ξ, the charactistic variety is a graph τ = −λ(η) and iλ(η) is an eigenvalue of
constant multiplicity of A(iη), [resp. B(iη)].

When νβ is a regular point of the characteristic variety of L corresponding to the eigenvalue
λ(η), L1,ν is the vector field with symbol τ + ∇ηλ(νκ) · η. Therefore, P1(ν, ξ) = 0 when τ +
∇ηλ(νκ) · η 6= 0 and P1(ν, ξ) = P (νβ) when τ +∇ηλ(νκ) · η = 0.
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Proposition 4.3. Suppose that νβ and ν1β are regular points in the characteristic variety
of L and M respectively with associated eigenvalues λ and µ respectively. Then the estimate (4.8)
is satisfied if and only if for all η for all a ∈ P,

(4.18) Dν1,ν(a, η) = 0 when ∇ηλ(νκ) · η = ∇ηµ(ν1κ) · η .

Moreover, if Zmβ intersects the characteristic varieties of L and M only at regular points, the
symmetrizer S and the conjugation matrix N can be chosen independent of η.

Proof.

With the description of the projectors P1(ν, η) and Q1(ν1, η) which follows Definition 4.2, it is
clear that (4.18) follows from (4.8). Conversely, Dν1,ν(a, η) is linear both in a and η. Thus,(4.18)
means it vanishes on the hyperplane ∇ηλ(νκ) · η = ∇ηµ(ν1κ) · η. This holds, if and only if there
is a matrix Fν1,ν(a), depending linearly on a, such that

Dν1,ν(a, η) = Q(ν1β)Dν1,ν(a, η)P (νβ) =
(
∇ηµ(ν1κ) · η − ∇ηλ(νκ) · η

)
Fν1,ν(a)

= Fν1,ν(a)A1,ν(η) − B1,ν1(η)Fν1,ν(a) .

This is (4.14) with Fν1,ν independent of η and the proposition follows.

5. Existence of formal solutions

In this section we prove Theorem 2.3. Suppose that the trigonometric polynomials (U0, . . .Un−1)
and (Pun,Qvn) are knowns. Then, since f and g are polynomials, the right hand sides in the third
and fourth equation of (3.14) are trigonometric polynomials. Therefore, these two equations de-
termine (I−P)un and (I−Q)vn which are in their turn trigonometric polynomials. Therefore it is
sufficient to solve the first two equations of (3.14), that is (4.3) when n = 0 and (4.5) when n > 0.

We suppose that Assumptions 2.1 and 2.2 are satisfied. The systems (4.3) (4.5) are hyperbolic
and symmetrizable, thus the proof is quite standard, except for the fact that the symmetrizers
have nonsmooth symbols since the bilinear F(η) are only L∞. Thus we review the classical proof
of existence and the only serious point to check is that the lack of smoothness of the symbols does
not affect the a-priori estimates.

To solve (4.3) and (4.5), one uses Picard’s iterations and thus one considers the Cauchy
problem for

(5.1) (∂t + A(a, ∂y))U = F , U|t=0 = U0 .

Proposition 5.1. Suppose that

(5.2)
a ∈ L∞([0, T ];Hσ(Rd;P)) , ∂ta ∈ L∞([0, T ];Hσ−1(Rd;P)) ,

F ∈ L∞([0, T ];Hσ(Rd;P ×Q)) , U0 ∈ Hσ(Rd;P ×Q) ,

where σ ∈ N is strictly larger than (d+1)/2. Then, the Cauchy problem (5.3) has a unique solution
U ∈ C0([0, T ];Hσ(Rd;P ×Q)) and it satifies the estimates (5.11), (5.12) and (5.13) below.
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Proof.

a) The specific definition of the spaces P and Q has no importance. The usefull properties
are that A(a, ∂y) and the matrix N (a, η) introduced at (4.16) have the following block structure

(5.3) A(a, ∂y) =
(
A1(∂y) 0
D(a, ∂y) A2(∂y)

)
, N (a, η) =

(
Id 0

F(a, η) Id

)
.

Moreover, F(a, η) is linear in a and

(5.4) F(a, η) =
dimP∑
l=1

al Fl(η)

where the al denote the components of a in an arbitrary basis of P and the Fl(η) are uniformly
bounded matrices for η ∈ Rd. Finally, the intertwinnig relation (4.9) reads

(5.5) D(a, η) = F(a, η)A1(η) − A2(η)F(a, η) .

For a valued in P, introduce the operator

(5.6)
(
F(a, Dy)u

)
(y) := (2π)−d

∫
eiyη F(a(y), η) Û(η) ) dη

The operator N (a, Dy) is defined similarly. The specific form (5.4) shows that

(
F(a, Dy)u

)
(y) =

dimP∑
l=1

al(y)
(
Fl(Dy)u

)
(y) .

Thus, when a ∈ L∞(Rd;P), F(a, Dy) is bounded from L2(Rd;P) to L2(Rd;Q). Moreover, the
derivations ∂t and ∂y commute with Fourier multipliers Fl(Dy). Thus, because the operators A1

and A2 are differential, the identity (5.5) implies that for smooth functions

(5.7) D(a, Dy) = F(a, Dy) (∂t +A1(∂y)) − (∂t +A2(∂y))F(a, Dy) + G(∂xa, Dy)

whith

(5.8) G(∂xa, Dy) = F(∂ta, Dy) +
d∑

j=1

dimP∑
l=1

A2,j(∂jal)(y)Fl(Dy) .

In this definition, A2,j is the coefficient of ∂j in A2. Note that G(∂xa, Dy) is bounded in L2 with
norm dominated by C‖∂xa‖L∞ .

Therefore, for smooth functions U = (u,v) and F = (f ,g), (5.1) is equivalent to

(5.9)

{
(∂t +A1(∂y)u = f ,

(∂t +A2(∂y))
(
v + F(a, Dy)u

)
= g + F(a, Dy)f + G(∂xa, Dy)u .

b) The first equation in (5.9) is linear, has constant coefficient and is symmetric hyperbolic.
Thus for all initial data u0 ∈ Hσ(Rd;P) and all f ∈ L1([0, T ];Hσ(Rd;P)), the Cauchy problem
has a unique solution u ∈ C0([0, T ];Hσ(Rd;P)) and

(5.10) ‖u(t)‖Hσ ≤ ‖u(0)‖Hσ +
∫ t

0

‖f(s)‖Hσds .
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Moreover, the equation implies that

(5.11) ‖∂tu(t)‖Hσ−1 ≤ C ‖u(t)‖Hσ + ‖f(t)‖Hσ−1 .

Knowing u, the second equation in (5.1) determines v. It reads

(∂t +A2(∂y))v = g −D(a, ∂y)u .

Therefore, if the data satisfy (5.2), (5.1) has a unique solution in C0([0, T ];Hσ−1(Rd)).
c) We now prove the optimal a-priori estimate for v. Assume first that the data satisfy (5.2)

with σ =∞. Thus the solution is valued in H∞. Because F(a, Dy) and G(∂x, Dy) are bounded in
L2, the usual L2 energy estimates for (5.9) implies that the solution of (5.1) satisfies

(5.12)
‖v(t)‖L2 ≤ ‖v(0)‖L2 + C‖a(0)‖L∞‖u(0)‖L2 + C‖a(t)‖L∞‖u(t)‖L2∫ t

0

(
‖g(s)‖L2 + C‖a(s)‖L∞‖f(s)‖L2 + C‖∂xa(s)‖L∞‖u(s)‖L2

)
ds .

To get the higher order estimates, the idea is to differentiate (5.1), and apply the L2 estimate
(5.12). For |α| ≤ σ, the commutators

γ := ∂α
yD(a, ∂y)u − D(a, ∂y)∂α

y u

are estimated using Gagliardo-Nirenberg’s inequalities :

‖ γ(t) ‖L2 ≤ C
(
‖∂ya(t)‖L∞‖u(t)‖Hσ + ‖a(t)‖Hσ‖∂yu(t)‖L∞

)
This yields

(5.13)

‖v(t)‖Hσ ≤‖v(0)‖Hσ + C
(
‖a(0)‖L∞‖u(0)‖Hσ + ‖a(t)‖L∞‖u(t)‖Hσ

)
+∫ t

0

‖g(s)‖Hσds + C

∫ t

0

‖a(s)‖L∞‖f(s)‖Hσ ds +

C

∫ t

0

(
‖∂xa(s)‖L∞‖u(s)‖Hσ + ‖a(s)‖Hσ‖∂yu(s)‖L∞

)
ds .

Mollifying the data and passing to the limit, one shows that for data satisfying (5.2) the unique
solution v given by part b) belongs to C0([0, T ];Hσ) and satisfies (5.13). This finishes the proof
of the proposition.

The estimates (5.10) (5.11) and (5.13) for the solutions of (5.1) are quite similar to the es-
timates available for quasilinear hyperbolic first order systems. Therefore, the standard Picard’s
iterations give the solutions of (4.3) and (4.5). We omit the details and give the results. Fix
σ0 > (d + 2) > 2. For the quasilinear equation (4.3) with n = 0, there is T > 0 such that the
Picard’s iterates are bounded in C0([0, T ];Hσ0(Rd;P × Q)); they converge in C0([0, T ];Hσ0−1),
and using the equation once more, the limit is shown to belong to C0([0, T ];Hσ0); the a-priori
estimates also imply that the solution remains in Hσ, up to time T , if the Cauchy data belong to
Hσ and σ ≥ σ0. The equation provides smoothness in t.

When n ≥ 1, the equation (4.5) is linear, and knowing that the coefficient and the right hand
side are C∞ in t ∈ [0, T ] and H∞ in y, the Picards iterates converge in C0([0, T ];Hσ) for all σ,
and therefore the limit is a smooth solution.
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6. Necesary conditions for linear stability.

In this section we prove Proposition 2.4 which gives necessary conditions for the stability of
the linearized equations (2.15).

Consider U0 = (u0,v0) ∈ H∞([0, T ]× Rd × Tm) and Uε
app = (uε

app, v
ε
app) such that

(6.1) sup
x∈[0,T ]×Rd

|Uε
app(x) − U0(x, β · x/ε) | = O(ε)

Consider the linearized equation (2.15). The estimate (6.1) and Gronwall’s Lemma imply that the
stability estimate (2.16) holds if and only if a similar estimate is satisfied by solutions of

(6.2)

{
L(ε∂x)u = εf ,

M(ε∂x)v + 2q(uε
0, u) = εg ,

where uε
0(x) = u0(x, β · x/ε) =

∑
u0,ν(x) eiνβ·x/ε. Moreover, the estimate (2.16) for the Cauchy

problem with initial data at time t = 0 implies similar estimates for data at all times. Therefore, we
assume that there is a constant C such that for ε ∈]0, 1], t0 ∈ [0, T [, F = (f, g) in H∞([t0, T ]×Rd),
the solution of (6.2) with initial data U(t0) ∈ H∞(Rd) satisfies for t ∈ [t0, T ]

(6.3) ‖U(t)‖L2 ≤ C ‖U(t0)‖L2 + C

∫ t

t0

‖F (s)‖L2 ds .

We further assume that only a finite number of u0,ν do not vanish. Note that this condition is
satisfied by approximate solutions. Therefore Proposition 2.4 is a corollary of the following result.

Proposition 6.1. If the estimate (6.3) is satisfied, there is a constant C such that for all
ν ∈ Zm, all ξ = (τ, η) in the characteristic variety of L, all ξ′ = (τ ′, νκ + η) in the characteristic
variety of M , all x ∈ [0, T ]× Rd and all vectors u

(6.4)
∣∣∣Q(ξ′)q

(
u0,ν(x) , P (ξ)u

) ∣∣∣ ≤ C | τ ′ − τ − νω | |u | .

Proof. a) Consider a characteristic covector ξ for L. Following [Lax], we construct oscillatory
approximate solutions of (6.2). For t0 ∈ [0, T ] and ρ ∈ H∞(Rd), independent of time, consider the
solution σ of the symmetric hyperbolic Cauchy problem on [t0, T ]

(6.5) P (ξ)σ(x) = σ(x) , P (ξ)L1(∂x)P (ξ)σ = P (ξ)ρ , σ|t=t0 = 0.

Introduce

(6.6)

{
uε(x) := σε(x) eiξ·x/ε , σε(x) = σ(x) − ε L(−1)(iξ)L1(∂x)σ(x) ,

fε(x) := P (ξ)ρ(x) eiξ·x/ε .

Then,

(6.7) sup
t∈[t0,T ]

‖L(ε∂x)uε(t)− εfε(t)‖L2 = O(ε2) , uε
|t=t0

= 0 .
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The interaction term is

(6.8) 2q(uε
0, u

ε) =
∑

ν

bε
ν(x) ei(ξ+νβ)·x/ε , bε

ν(x) := 2q
(
aν(x) , σε(x)

)
.

Next we compute an approximate solution of the second equation in (6.2) with source term g = 0,
using standard linear geometric optics calculations (see [Lax]). We look for

(6.9) vε =
∑

vε
ν(x)ei(ξ+νβ)x/ε , with vε

ν = ε−1v−1,ν + v0,ν + ε v1,ν .

We determine the coefficients so that

(6.10)

 ‖v
ε(t0)‖L2 = O(ε) ,

sup
t∈[t0,T ]

‖M(ε∂x) vε(t) + 2 q(uε
0(t), u

ε(t)) ‖L2 = O(ε2) .

Let Z denote the set of indices ν such that ξ + νβ is characteristic for M , and let Z ′ denote
the complementary set. For ν ∈ Z, we choose v−1,ν satisfying Q(ξ + νβ)v−1,ν = v−1,ν and the
symmetric hyperbolic equation

(6.11) Q(ξ + νβ)M1(∂x)Q(ξ + νβ)v−1,ν = −2 Q(ξ + νβ) q(u0,ν , σ) , v−1,ν |t=t0 = 0 .

Moreover,

(6.12) v0,ν = 2 M (−1)(i(ξ + νβ)) q(u0,ν , σ) + wν

where wν = Q(ξ+νβ)wν satisfies an equation similar to (6.11) and we choose the initial conditions
for wu to be equal to zero. In particular, we note that the initial condition in (6.4) implies that
v0,ν(t0) = 0. Recall that M (−1)(i(ξ + νβ)) is the partial inverse of M(i(ξ + νβ)) .

When ν ∈ Z ′, we choose v−1,ν = 0 and

(6.13) v0,ν(x) = −2 M (−1)(i(ξ + νβ)) q(u0,ν , σ) .

and in particular v0,ν(t0) = 0.
The explicit form of the second corrector v1,ν has no importance.
With (6.7) and (6.10), the uniform estimate (6.3) implies that

(6.14) ∀t ∈ [t0, T ] , lim sup
ε

‖vε(t) ‖L2 ≤ C lim sup
ε

∫ t

t0

‖fε(s) ‖L2 ds = C (t− t0) ‖ρ‖L2 ,

with the same constant C.
b) With notations similar to (6.9), we write vε := ε−1vε

−1 + vε
0 + ε vε

1. The first consequence
of (6.14) is that

∀t ∈ [t0, T ] , lim sup
ε

‖vε
−1(t) ‖L2 = 0 .

Because the ξ + νβ are pairwise distinct, this implies that

lim
ε→0
‖ vε
−1 ‖2L2([t0,t1]×Rd) =

∑
ν∈Z

‖v−1,ν‖2L2([t0,t1]×Rd) = 0 .
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Thus all the v−1,ν vanish. According to (6.11), this requires that for all ν, Q(ξ +νβ)q(u0,ν , σ) = 0.
From (6.5), it follows that

(6.15) σ(t) = (t− t0)P (ξ)ρ + O
(
(t− t0)2

)
.

Thus, we conclude that Q(ξ + νβ)q(u0,ν(t0), P (ξ)ρ) = 0. Since ρ and t0 are arbitrary we have
proved that a first necessary condition for the validity of (6.3) is that

(6.16) Q(ξ + νβ) q(u0,ν(x), P (ξ)ρ) = 0

for all x and all vectors ρ. In particular, this implies (6.4) when ξ′ = ξ + νβ.
c) Conversely, when (6.16) is satisfied, the right hand side of (6.11) vanishes, and the approx-

imate solution (6.9) reducues to vε = vε
0 + ε vε

1. Therefore, (6.14) implies that∑
ν

‖v0,ν‖2L2([t0,t]×Rd) = lim
ε→0
‖ vε ‖2L2([t0,t]×Rd) ≤ C2 (t− t0)2 ‖ρ‖2 .

Thus each term in the sum is smaller than the right hand side and the definitions (6.12) and (6.13)
show that for all ν,

(6.17) ‖M (−1)(i(ξ + νβ)) q(u0,ν , σ)‖L2([t0,t]×Rd ≤ C (t− t0) ‖ρ‖L2

Consider ξ′ = (τ ′, η + νκ) in the characteristic variety of M . Remark that

M(i(ξ + νβ)) = i(τ + νω)Id + B1(η + ν κ) = i(τ + νω − τ ′)Id + M(iξ′) .

Therefore
Q(ξ′)M(i(ξ + νβ)) = i(τ + νω − τ ′)Q(ξ′)

When ξ + ν β is not characteristic for M , this immediately implies that

(6.18) Q(ξ′)M (−1)(i(ξ + νβ)) =
1

i(τ + νω − τ ′)
Q(ξ′) .

When ξ +ν β is characteristic but τ ′ 6= τ +νω, τ ′ and τ +νω are distinct eigenvalues of B1(η+ν κ)
and therefore Q(ξ′) and Q(ξ+ν β) are projectors on two orthogonal eigenspaces and (6.18) satisfied
in this case too. Hence, (6.18) is satsified for all ξ′ = (τ ′, η + νκ) such that τ ′ 6= τ + νω.

Because Q(ξ′) is an orthogonal projector, (6.17) implies

(6.19) ‖Q(ξ′) q(u0,ν , σ)‖L2([t0,t]×Rd) ≤ C (t− t0) |τ + νω − τ ′| ‖ρ‖L2

Using again (6.15), we conclude that

‖Q(ξ′) q(u0,ν(t0), P (ξ)ρ)‖L2(Rd) ≤ C |τ + νω − τ ′| ‖ρ‖L2

Because t0 and ρ are arbitrary, this implies that

(6.20) |Q(ξ′) q(u0,ν(x), P (ξ)ρ) | ≤ |τ + νω − τ ′| |ρ| .

for all x and all vector ρ. In particular, this implies (6.4) when ξ′ 6= ξ + νβ and the proof of
Proposition 6.1 is complete.

24



7. The stability condition

In this section we discuss the link between Assumption 2.5 and Assumptions 2.1 and 2.2 and
give several examples.

Proposition 7.1. Assumption 2.5 is satisfied if and only if for all ν in Zm there is a bounded
family of bilinear mappings {Sν(η)}η∈Rd such that for all η ∈ Rd, and all vectors a and u, one has

(7.2) q
(
P (νβ) a , u

)
= Sν(η)

(
P (νβ) a , A(iη)u

)
− (iνω + B(i(νκ + η))Sν(η)

(
P (νβ) a , u

)
.

Proof.

For η ∈ Rd, introduce the spectral decomposition A(iη) =
∑

iλk(η)Pk(η). The number of
terms may depend on η and the Pk and λk may be nonsmooth. The important point is that the
Pk are orthogonal projectors and therefore uniformly bounded. Then, ξ = (τ, η) is L-characteristic
if and only if there is k such that τ = −λk(η). In this case, P (ξ) = Pk(η). Introduce the
similar decomposition B(iη) =

∑
µl(η)Ql(η). For fixed a and ν, introduce next the operator

Gν(a) : u 7→ q(P (νβ)a, u). Then Assumption 2.5 holds if and only if there is C such that for all η,
k, l and a

(7.3)
∣∣Ql(η + ν κ)Gν(a)Pk(η)u

∣∣ ≤ C |µl(η) − λk(η) + νω| |a| .

Suppose that it is satisfied. Then define Sν(η, a) =
∑

Sν,l,k(η, a) where Sν,l,k(η, a) = 0 when
µl(η) − λk(η) + νω = 0 and

Sν,l,k(η, a) = i
(
µl(η) − λk(η) + νω

)−1
Qk(η + ν κ)Gν(a)Pk(η)u

)
otherwise. Then (7.3) implies that

(7.4) |Sν(η, a) | ≤ C ′ |a|

and

(7.5) Gν(a) = −Sν(η, a)A(iη) + (iνω + B(νκ + η))Sν(η, a) .

Conversely, if (7.4) (7.5) hold, multiplying (7.5) on the left by Ql(νκ+η) and on the right by Pk(η)
implies (7.3). The Sν are linear in a, thus setting Sν(η)(a, u) = Sν(η, a)u, the proposition follows.

Proposition 7.2. Assumption 2.5 implies both Assumptions 2.1 and 2.2. More precisely,
for ν1 ∈ Zm and ν ∈ Zm, suppose that (2.18) or equivalently (7.2) is satisfied for ν1 − ν and η in
a neighborhood of νκ. Then (2.9) is satisfied and (4.8) holds in a neighborhood of νκ.

Proof. Fix, a, ν1 and ν and assume that (2.18) holds with ν1 − ν in place of ν and for η in a
neighborhood of νκ. Evaluating (2.18) at ξ = νβ and ξ′ = ν1β immediately yields (2.9). This
proves the first part of the proposition.

To prove the other implication, introduce the notation Gu := q(P ((ν1− ν)β)a, u). Then (2.9)
reads

(7.6) Q(ν1β)G P (νβ) = 0 .
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Moreover, our assumption and Proposition 7.1 imply that there is a bounded family of matrices
S(η) defined for η close to νκ and such that

(7.7) G = S(η) (A(iη) + iνω) − (B(iη) + iν1ω)S(η) .

To prove (4.8) , the idea is to differentiate (7.7) at η = νκ. However, because we have made no
assumption of smoothness of S we cannot take derivatives.

With notations as in (7.2), S(η)u := Sν1−ν(P ((ν1 − ν)β)a, u) and (7.7) is (7.5) applied to the
the present situation. Thus, For, η̃ ∈ Rd, the matrix in (4.7) is

(7.8) D(η̃) = 2Q(ν1β)G P ′(η̃) + 2Q′(η̃) G P (νβ) .

with

(7.9) P ′(η̃) := L(−1)(iνβ)A1(η̃) P (νβ) , Q′(η̃) := Q(ν1β)B1(η̃)M (−1)(iν1β) .

For s ∈ [0, 1], we compute

(7.10)
(
Q(ν1β)− isQ′(η̃)

)
G
(
P (νβ)− isP ′(η̃)

)
.

On one hand, by (7.6) it is equal to

(7.11)
1
2i

s D(η̃) + O(s2)

On the other hand, we use (7.7) with η = νκ + sη̃. Note that A(iη) + iνω = L(iνβ) + isA1(η̃).
Because P (νβ)L(iνβ) = 0 and L(iνβ)L(−1)(iνβ) = Id− P (νβ), one has

(A(iη) + iνω) (P (νβ)− sP ′(η̃)) = i s A1,ν(η̃) + O(s2)

where A1,ν(η̃) := P (νβ)A1(η̃)P (νβ). Similarly

(Q(ν1β)− isQ′(η̃)) (B(iη) + iν1ω) = i sB1,ν1(η̃) + O(s2)

with B1,ν1(η̃) := Q (ν1β)B1(η̃)Q(ν1β). Therefore, the term in (7.10) is equal to

i sQ(ν1β)S(η)A1,ν(η̃) − i s B1,ν1(η̃) S(η)P (νβ) + O(s2) .

Comparing with (7.11) this shows that

(7.12)
1
2

D(η̃) = −Q(ν1β)S(η)A1,ν(η̃) + B1,ν1(η̃)S(η) P (νβ) + O(s) .

When S(η) is continuous at νβ, the limit of (7.12) as s tends to 0 gives directly (4.14). In the
general case, introduce the orthogonal projectors P1(ν, ξ) and Q1(ν, ξ) as in § 4. Then

A1,ν(η̃)P1(ν, τ, η̃) = −τP1(ν, τ, η̃) and B1,ν1(η̃)Q1(ν1, τ
′, η̃) = −τ ′Q1(ν1, τ, η̃) ,

Thus, (7.12) and the uniform estimate (7.4) imply that

(7.12) |Q1(ν1, τ
′, η̃)D(η̃)P1(ν, τ, η̃) | ≤ C |a| |τ ′ − τ |+ O(s) .

Letting s tend to zero, this implies (4.8) and the proposition is proved.
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Remark 7.3. Near regular points, the analysis can be pushed a little further. Suppose that
ξ = (τ , η) and ξ′ = ξ + νβ = (τ ′, η + νκ) are regular points in the characteristic varieties of L
and M respectively. Let λ and µ denote the smooth eigenvalues of L and M respectively, such
that τ = −λ(η) and τ ′ = −µ(η). We say that the resonance is regular when the group velocities
∇ηµ(η+νκ) and ∇ηλ(η) are diferent. In this case, the equation µ(η+νκ) = λ(η)−νω, determines
a smooth manifold R of codimension 1 in Rd near η.

In this case, the estimate (2.18) in Assumption 2.5 is satisfied for ξ and ξ′ in neighborhoods
of ξ and ξ′, if and only if for all ξ = (τ, η) near ξ in the characteristic variety of L, with η ∈ R,
one has

(7.13) Q(ξ + νβ) q(P (νβ)u , P (ξ)v) = 0 .

This is clearly necessary. Conversely, suppose that for ξ = (τ, η) and ξ′ = (τ ′, η + νκ) belong to
small neighborhoods of ξ and ξ′ in the characteristic varieties of L and M respectively. This means
that τ = −λ(η) and τ ′ = −µ(η + νκ). The projectors P (ξ) and Q(ξ′) are smooth functions on the
characteristic varieties near regular points. Thus the function

Q(ξ′) q(P (νβ)u , P (ξ)v)

is a smooth function of η and (7.13) means that it vanishes on the resonant manifold R. Hence,
µ(η + νκ)− λ(η) + νω can be factored out in the left hand side of (7.13), implying (2.18).

In space dimension d = 1, if the resonance (ξ′, ξ) is regular, R = {η} and (7.13) reduces to
the condition Q(ξ + νβ) q(P (νβ)u , P (ξ)v) = 0. As a corollary, we can state.

Corollary 7.4 In space dimension d = 1, assume that Zmβ intersects the characteristic
varieties of L and M at finitely many regular points and that for all ν ∈ Zm all the resonances
(ξ, ξ) ∈ Zmβ × Zmβ are regular. Then, the transparency Assumption 2.1 implies that Assump-
tion 2.2 is satisfied.

Example 7.5. Assumption 2.5 is strictly stronger than Assumptions 2.1 and 2.2. In space
dimension d = 1, consider

(7.14) L(ε∂x) :=
(

ε∂t − ε∂y m
−m ε∂t + ε∂y

)
, M(ε∂x) := ε∂t .

The characteristic variety of L is C := {τ2 = η2 + m2}. For ξ = (τ, η) ∈ C, the vector e(ξ) :=
(m, i(η − τ)) is a basis of kerL(iξ). Consider β = (ω, κ) ∈ C with κ 6= 0. Then νβ ∈ C if and only
if ν = ±1 and νβ is characteristic for M if and only if ν = 0. Consider the quadratic form

(7.15) q(u, u′) := u1 u′2 + u′1 u2

Then for all ξ one has q(e(ξ), e(−ξ)) = 0. Applied to ξ = ±β, this shows that the transparency
Assumption 2.1 is satisfied. With Corollary 7.4, this implies that Assumption 2.2 is also satisfied.
On the other hand, consider β′ = (−ω, κ) ∈ C. Then β + β′ = (0, 2κ) is characteristic for M and
q(e(β), e(β′)) = 2 i mκ 6= 0 Thus (2.18) is not satified, showing that Assumption 2.5 does not hold.

This example will be used in §11 to produce an example of strongly unstable BKW solution.
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8. Linear and nonlinear stability of approximate solutions

In this section we prove Theorem 2.9. Consider the system (2.21) and a formal solution∑
εnUn, with Un = (un,vn), given by Theorem 2.3. It is defined on [0, Ta], with values in H∞.

Introduce the approximate solution

(8.1) Uε
app :=

k∑
n=0

εnUn .

It satisfies the estimate (2.23).
Neglecting O(ε) zero-th order terms, the linearized operator is

(8.2)

{
L(ε∂x + β∂θ)u
M(ε∂x + β∂θ)v + 2q(u0,u)

We prove that, under Assumption 2.5, the operator (8.2) is conjugated to the free system, that is
to the operator (8.2) with u0 = 0, modulo error terms which are O(ε) in Sobolev spaces.

Theorem 8.1. Suppose that Assumption 2.5 is satisfied. Then, there are families of operators
Sε(t) and Tε(t), for ε ∈]0, 1] and t ∈ [0, Ta] such that

i) the mappings t 7→ Sε(t) and t 7→ Tε(t) are C∞ from [0, Ta] to the space of bounded
operators from Hσ(Rd × Tm) to itself for all σ,

ii) for all σ the operators Sε(t) and Tε(t) are uniformly bounded from Hσ(Rd × Tm) to
itself,

iii) one has the following relation

(8.3) SεL(ε∂x + β∂θ) − M(ε∂x + β∂θ)Sε = q(u0, · ) + εTε .

Proof.

a) Denote by Σ the space of functions on [0, Ta]× Rd × Rd which are finite sums of products
a(x) p(η) with a ∈ H∞([0, Ta]×Rd) and p ∈ L∞(Rd). For S ∈ Σ, ε ∈]0, 1], t ∈ [0, Ta] and µ ∈ Zm,
the operator

(8.4) u 7→ S(t, y, εDy + µκ)u := (2π)−d

∫
eiyηS(t, y, εη + µκ) û(η) dη

maps Hσ(Rd) into itself, for all σ, with norm bounded independently of ε, t and µ, because this
property is true both for operators of multiplication by functions H∞ and for p(εDy + µκ) with
p ∈ L∞. Moreover, when S ∈ Σ, the times derivatives ∂j

t S also belong to Σ and the mapping
t 7→ S(t, y, εDy + µκ)) is C∞ from [0, Ta] to the space of bounded operators from Hσ(Rd×Tm) to
itself for all σ,

Introduce next the space Σ of trigonometric polynomials S(x, η, θ) =
∑

Sν(x, η) eiνθ with
coefficients in Σ. For S ∈ Σ, introduce the operators acting on Fourier series

(8.5) Sεu = Sε
(∑

µ

eiµθuµ

)
:=
∑
ν,µ

ei(µ+ν)θSν(x, εDy + µκ) uµ .
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Note that no time derivative acts on u in these formula and we denote by Sε(t) and Tε(t) the
operators acting on functions of (y, θ) for the given value of time t.

Let
∑

eiµθvµ be the Fourier series of v = Sε(t)u. Then, by definition

(8.6) vµ =
∑

ν

Sν(x, εDy + (µ− ν)κ)uµ−ν .

Note that the sum runs over a finite set of indices, say |ν| ≤ N , since S is a trigonometric
polynomial. Then, for all σ there is a constant C independent of t, ε, µ and u such that

(8.7) ‖vµ‖Hσ(Rd) ≤ C
∑
|ν|≤N

‖uµ−ν‖Hσ(Rd) .

This implies that the Sε(t) are uniformly bounded from Hσ(Rd × Tm) into itself for all σ.
b) When S ∈ Σ, the derivatives ∂xS and ∂θS also belong to Σ. Moroever, the commutators

[∂xj , S(x, εDy +µκ)] are equal to (∂xjS)(x, εDy +µκ). Therefore, acting on smooth functions, one
has

(8.8) ∂x(Sεu) = Sε(∂xu) + (∂xS)εu .

Similarly, one has

∂θ

(
ei(µ+ν)θSν(x, εDy + µκ)uµ

)
= ei(µ+ν)θ

(
Sν(x, εDy + µκ) (iµ + iν)uµ

)
and thus

(8.9) ∂θ(Sεu) = Sε(∂θu) + (∂θS)εu .

c) Introduce the bilinear mappings Sν(η) given by Proposition 7.1. Introduce next the
matrices

(8.10) Sν(x, η) v := Sν(η)(P (νβ)u0,ν(x) , v)

where u0,ν(x) ∈ H∞([0, Ta] × Rd) denote the Fourier coefficients of u0(x, θ). Then, Sν and ∂tSν

are matrices of symbols in the class Σ. Note that only finitely many Sν do not vanish, because
P (νβ) = 0 when |ν| is large. Thus S =

∑
Sνeiνθ ∈ Σ.

For smooth trigonometric polynomials u =
∑

uµeiµθ, (8.8) implies that

(8.11) M1(∂x)Sεu = Sε(∂tu) +
∑

j

BjSε(∂ju) − Tεu

where T ∈ Σ. Therefore

(8.12) SεL(ε∂x + β∂θ)u − M(ε∂x + β∂θ)Sεu =
∑
µ,ν

ei(µ+ν)θ vµ,ν + εTεu

with
vµ,ν(x) = (2π)−d

∫
eiyη Gµ,ν(x, η) ûµ(t, η) dη

Gµ,ν(x, η) :=Sν(x, εDy + µκ)
(
iµω + A(iεη + µκ)

)
−
(
i(µ + ν)ω + B(iεη + i(µ + ν)κ)

)
Sν(x, εDy + µκ) .

The terms with iµω cancel each other. Applying (8.2) to the frequency εη + µκ and vectors
a = u0,ν(x), u = ûµ(η) shows that

Gµ,ν(x, η) ûµ(η) = q
(
u0,ν(x) , ûµ(η)

)
.

Therefore, vµ,ν = q(u0,ν , uµ) and
∑

µ,ν ei(µ+ν)θ vµ,ν = q(u0,u) so (8.12) implies the theorem.
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The main ingredient for solving the semilinear equation (2.22) is to prove Sobolev estimates
for the solutions of the linearized equation

(8.13) LεU + ∇UFε(Uε
app)U

Proposition 8.2. Suppose that Assumption 2.5 is satisfied. Then for all σ ∈ N, there is a
constant C such that for all T ∈ [0, Ta], U ∈ C1([0, T ];Hσ+1(Rd × Tm)), t ∈ [0, T ] and ε ∈]0, 1],

(8.14)
‖U(t)‖Hσ(Rd×Tm) ≤C ‖U(0)‖Hσ(Rd×Tm)

+ C ε−1

∫ t

0

‖
(
L +∇UFε

(
Uε

app)
)
U(s)‖Hσ(Rd×Tm) ds .

Recall that L starts with ε∂t. This is why there is a factor ε−1 in form of the integral. In the
applications below the right hand side LU +∇F(Uε

app)U is O(ε).

Proof. a) Let (f ,g) := (Lε +∇UFε(Uε
app))U, that is

(8.15)

{
f := L(ε∂x + β∂θ)u + ε∇f(uε

app,v
ε
app)(u,v)

g := M(ε∂x + β∂θ)v + 2q(uε
app,u) + ε∇g(uε

app,v
ε
app)(u,v) .

The Hσ norm of the terms ε∇f(uε
app,v

ε
app)(u,v), ε∇g(uε

app,v
ε
app)(u,v) and q(uε

app − u0,u) are
O
(
ε‖U(s)‖Hσ

)
. Therefore, Gronwall’s lemma implies that it is sufficient to prove the estimate

(8.14) when f = 0, g = 0 and uε
app is replaced by u0, that is for the system

(8.16)

{
f = L(ε∂x + β∂θ)u ,

g = M(ε∂x + β∂θ)v + 2q(u0,u) .

b) Introduce w := v + 2Sεu. Theorem 8.1 implies that

(8.17) M(ε∂x + β∂θ)w = h := g + 2Sεf + 2 εTεu .

Because L(ε∂x + β∂θ) and M(ε∂x + β∂θ) are symmetric hyperbolic, with coefficient of ∂t equal to
ε, one has

(8.18)
‖u(t)‖Hσ ≤ ‖u(0)‖Hσ + ε−1

∫ t

0

‖f(s)‖Hσ ds ,

‖w(t)‖Hσ ≤ ‖w(0)‖Hσ + ε−1

∫ t

0

‖h(s)‖Hσ ds .

Moreover, Sε(t) and Tε(t) are uniformly bounded in Hσ and

(8.19)
‖h(t)‖Hσ ≤ ‖g(t)‖Hσ + C‖f(t)‖Hσ + ε C ‖u(t)‖Hσ .

‖v(t)‖Hσ ≤ ‖w(t)‖Hσ + C ‖u(t)‖Hσ , ‖w(0)‖Hσ ≤ ‖v(0)‖Hσ + C ‖u(0)‖Hσ .

When one substitutes the estimate of h in (8.18), the error term is C
∫ t

0
‖u‖ and therefore Gron-

wall’s lemma implies the estimate (8.14) for the solutions of (8.16) finishing the proof of the
proposition.
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Proof of Theorem 2.8.

Uε = Uε
app + εkVε is a solution of (2.22) if and only if Vε satisfies

(8.20) LεVε + ∇UFε(Uε
app)V

ε = εEε + εkGε(Uε
app,V

ε) ,

with

(8.21) Eε := − ε−k−1
(
LεUapp + F(Uε

app)
)
,

(8.22) Gε(U, V ) := − ε−2k
(
Fε(U + εkV ) − εk∇Fε(U)V

)
= O(V 2) .

The equation (8.20) is solved by Picard’s iterations, noticing that by (2.23) Eε is uniformly bounded
in Hσ and that (8.22) defines a bounded family of smooth functions of the variables (U, V ).

The linear operator in the left hand side is hyperbolic with smooth coefficients. Therefore the
iterates are well defined in C0([0, Ta], Hσ) if the initial data belong to Hσ and σ > (d + m)/2 so
that Hσ is an algebra. The iterates are estimated using Proposition 8.2. Note that the loss of ε−1

in (8.16) is compensated by the factors ε in front of Eε and εk in front of Gε(Uε
app,V

ε). From
there on, the proof is standard and we omit the details. When k = 1, we obtain boundedness and
convergence of the iterates on a uniform interval [0, T ]. When k > 1, the nonlinear term εk−1Gε

is arbitrarily small when ε is small, so that T can be chosen arbitrarily close to Ta for small ε.

9. Nonlinear conjugation

In this section we prove Theorem 2.11 and discuss the links between the Assumption 2.5 and
2.10. As a mater of fact, we consider the more general framework of equations (2.21) which includes
the fast variables θ. In particular, Theorem 2.11 is a consequence of the following result applied
to functions independent of θ.

Theorem 9.1 Suppose that Assumption 2.10 is satisfied. Then, there exists a family of
symmetric bilinear mappings Jε, from H∞(Rd × Tm)×H∞(Rd × Tm) to H∞(Rd × T), such that
for all u ∈ C1([0, T ];H∞(Rd × Tm)),

(9.1) q
(
u(t),u(t)

)
= M(ε∂x + β∂θ)Jε

(
u(t),u(t)

)
− 2Jε

(
L(ε∂x + β∂θ)u(t),u(t)

)
.

Proof. Expanding functions into Fourier series we look for Jε as

(9.2) Jε
(∑

uνeiνθ,
∑

uνeiνθ
)

=
∑

Jε
ν,ν′(uν , u′ν) ei(ν+ν′)θ ,

and, denoting by û the Fourier transform of u on Rd,

(9.3) Jε
ν,ν′(u, u′)(y) = (2π)−d

∫
Rd×Rd

eiy(η+η′)Jν,ν′(εη, εη′; û(η), û′(η′))dηdη′

where {Jν,ν′(η, η′; · , · ) ; (ν, ν′) ∈ Zm × Zm , (η, η′) ∈ Rd × Rd} is a bounded family of quadratic
forms on CN ×CN . In this case, the relations above define a bounded family of continuous bilinear
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mappings {Jε ; ε ∈]0, 1]}, from Hσ(Rd×Tm)×Hσ(Rd×Tm) to itself provided that σ > (d+m)/2.
Jε is symmetric if

(9.4) Jν,ν′(η, η′;u, u′) = Jν′,ν(η′, η;u′, u) .

One has
ε∂tJε(u,u) = Jε(ε∂tu,u) + Jε(u, ε∂tu)

Therefore, to prove (9.1) it is sufficient to prove that

(9.5)
q
(
u,u

)
=
(
ω∂θ + B(ε∂y + κ∂θ)

)
Jε
(
u,u

)
− Jε

(
(ω∂θ + A(ε∂y + κ∂θ)u,u

)
− Jε

(
u, (ω∂θ + A(ε∂y + κ)∂θ)u

)
.

Taking Fourier expansions, this means that for all (ν, ν′, η, η′, u, u′) one has

(9.6)

q
(
u, u′

)
=
(
i(ν + ν′)ω + B

(
i(η + η′ + νκ + ν′κ)

))
Jν,ν′(η, η′;u, u′)

− Jν,ν′
(
η, η′; (iνω + A(iη + iνκ))u, u′

)
− Jν,ν′

(
η, η′;u, (iν′ω + A(iη′ + iν′κ))u′

)
.

The terms with i(ν + ν′)ω, iνω and iν′ω add to zero. Hence (9.6) is equivalent to

(9.7)
q
(
u, u′

)
=B

(
i(η + η′ + νκ + ν′κ)

)
Jν,ν′(η, η′;u, u′)

− Jν,ν′
(
η, η′;A(iη + iνκ)u, u′

)
− Jν,ν′

(
η, η′;u, A(iη′ + iν′κ)u′

)
.

For fixed (ν, ν′, η, η′), introduce η̃ = η+νκ, η̃′ = η′+ν′κ′ and consider the spectral decompositions

A(iη̃) =
∑

iλj(η̃)Pj(η̃) , A(iη̃′) =
∑

iλk(η̃′)Pk(η̃′)

B(i(η̃ + η̃′)) =
∑

iµl(η̃ + η̃′)Ql(η + η̃′)
.

Then (9.7) is equivalent to the condition that for all (j, k, l)

(9.8)
Ql(η̃ + η̃′)q

(
Pj(η̃)u, Pk(η̃′)u′

)
=(

µl(η̃ + η̃′)− λj(η̃)− λk(η̃′)
)
Ql(η̃ + η̃′)Jν,ν′

(
η, η′; (Pj(η̃)u, Pk(η̃′)u′

)
.

Assumption 2.10 implies that the left hand side is O(µl(η̃ + η̃′)− λj(η̃)− λk(η̃′)). Therefore, this
equation uniquely determines Jν,ν′(η, η′). One has

(9.9) Jν,ν′(η, η′) = J(η + νκ, η′ + ν′κ)

with

(9.10) J
(
η, η′;u, u′

)
:=
∑
j,k,l

(
µl(η + η′)− λj(η)− λk(η′)

)−1
Ql(η + η′)q

(
Pj(η)u, Pk(η′)u′

)
.

Conversely, (9.9) and (9.10) define a bounded family of quadratic forms which satisfy (9.8) and the
symmetry property (9.4). The theorem follows.
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Corollary 9.2 Consider the change of unknowns

(9.11) ṽ := v + Jε(u,u) ;

Then, for smooth solutions, the system (2.21) is equivalent to

(9.12)

{
L(ε∂x + β∂θ)u + ε f(u, ṽ − Jε(u,u)) = 0 ,

M(ε∂x + β∂θ)ṽ + εJε(u, f(u, ṽ − Jε(u,u))) + ε g(u, ṽ − Jε(u,u)) = 0 .

As mentionned in the introduction, for the Maxwell-Bloch equations, the bilinear operator J
does not involve Fourier multipliers and has the simpler form

(9.13) J(u,u)(y, θ) = J̃(u(y, θ),u(y, θ))

where J̃ is a bilinear form on CN × CN . We now give several other examples of systems which
illustrate Assumption 2.10.

Example 9.3. Fourier multipliers do occur.

Consider

(9.14) L(ε∂x) :=
(

ε∂t − ε∂y − i 0
0 ε∂t + ε∂y + i

)
, M(ε∂x) :=

(
ε∂t − εc∂y m
−m ε∂t + εc∂y

)
.

The characterisitic varieties of L and M are CL = {τ2 = (η + 1)2} and CM = {τ2 = c2η2 + m2}
respectively. CL is the union of two lines , C± := {τ = ±(η + 1)}. The eigenvectors are e+ = (1, 0)
and e− = (0, 1) respectively. Assume that

(9.15) (m2 − 4) (c2 − 1) > 4 .

This implies that when ξ ∈ CL and ξ′ ∈ CL belong to the same line C±, then ξ + ξ′ /∈ CM . On the
other hand, when ξ and ξ′ belong to different lines, ξ + ξ′ ∈ CM if and only if

(η − η′)2 = c2(η + η′)2 + m2 .

Denote by (u1, u2) the two components of u. If q(u, u) = q1u
2
1 + q2u

2
2, then q(e+, e−) = 0, showing

that q(P (ξ), P (ξ′)) vanishes at resonances. Indeed, one can show that Assumption 2.10 is satisfied.
We now compute explicitely the operator Jε, when

(9.16) q(u, u) =
(

b1

b2

)
u2

1 .

In this case, Jε depends only on u1 :

(9.17) Jε(u, u) =
1
2π

∫
ei(η+η′)y

(
ρ(η, η′)
σ(η, η′)

)
û1(η) û1(η′) dη dη′ ,

where ρ and σ satisfy

(9.18)

{
i(η + η′ + 2− c(η + η′))ρ + m σ = b1 ,

−mρ + i(η + η′ + 2 + c(η + η′))σ = b2 .

The condition (9.15) implies that the determinant of this system is bounded from below by a
positive constant and that ρ(η, η′) and σ(η, η′) are bounded symbols. Note that the definition of ρ
and σ involves nontrivial rational fractions, implying that Jε does involve Fourier multipliers.
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Example 9.4. The nonresonant case.

Consider two coupled Klein-Gordon equations :

(9.19) L(ε∂x) :=
(

ε∂t − ε∂y m1

−m1 ε∂t + ε∂y

)
, M(ε∂x) :=

(
ε∂t − ε∂y m2

−m2 ε∂t + ε∂y

)
.

The characterisitec varieties of L and M are C1 = {τ2 = η2 + m2
1} and C2 = {τ2 = η2 + m2

2}
respectively. When m2 < 2m1, the intersection (C1 + C1) ∩ C2 is empty, which implies that there
are no resonances. Moreover, there is a positive constant c such that

(9.20)
∣∣∣±√(η + η′)2 + m2

2 ±
√

η2 + m2
1 ±

√
η′2 + m2

1

∣∣∣ ≥ c .

This implies that for all quadratic form q, Assumption 2.10 is satisfied.

Example 9.5. Resonant Klein Gordon equations.

Consider the case where L itself is made of two Klein-Gordon operators :

(9.21) L1(ε∂x) :=
(

ε∂t − ε∂y m1

−m1 ε∂t + ε∂y

)
, L2(ε∂x) :=

(
ε∂t − ε∂y m2

−m2 ε∂t + ε∂y

)
.

We denote u = (u1, u2) and Lj acts on uj . In addition,

(9.22) M(ε∂x) :=
(

ε∂t − ε∂y m
−m ε∂t + ε∂y

)
.

The characterisitec varieties are CL1 = {τ2 = η2 + m2
1}, CL2 = {τ2 = η2 + m2

2} and CM = {τ2 =
η2 + m2}. Assume that

(9.23) m2 < m1 , min(m1 −m2, 2m2) < m < 2m1 .

This implies that

(9.24) (CL1 + CL1) ∩ CM = ∅ , (CL1 + CL2) ∩ CM = ∅, (CL2 + CL2) ∩ CM 6= ∅ .

Thus, there are resonances, but only for L2-characteristic frequencies. In particular, when

q(u, u) = q1(u1, u1) + b(u1, u2)

does not involve quadratic terms in u2, one has Q(ξ + ξ′)q(P (ξ) . , P (ξ′) . ) = 0 at resonances.
Moreover, estimates similar to (9.20) show that Assumption 2.10 is satisfied.

Example 9.6 Assumption 2.10 is strictly stronger than Assumption 2.5.

In this example, we show that the stability condition can be satisfied only for some pump
frequencies β. Consider

(9.25) L(ε∂x) :=
(

ε∂t − ε∂y m1

−m1 ε∂t + ε∂y

)
, M(ε∂x) :=

(
ε∂t − εc∂y m
−m ε∂t + εc∂y

)
.
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The characterisitic varieties are CL = {τ2 = η2 + m2
1} and CM = {τ2 = c2η2 + m2} respectively.

Assume that

(9.26) c > 1 , m > 2m1 .

Consider β = (ω, κ) ∈ CL. One has Zβ∩CL = {−β, β}. The resonance condition (CL±β)∩CM 6= ∅
yields an equation of degree four for η. We show that this equation has no solution when κ is
small, and that is has solutions when κ is large.

Consider first β0 = (m1, 0) ∈ CL. Then (9.26) clearly implies that (CL ± β) ∩ CM = ∅. This
property remains true for β close to β0. Consider next β ∈ CL such that ω > m/2. In this
case, the functions ϕ1(η) := ω +

√
m2

1 + (η − κ)2 and ϕ2(η) :=
√

m2 + c2η2 satisfy ϕ2(0) < ϕ1(0)
and ϕ2(η) > ϕ1(η) when η is large. Therefore the graphs of ϕ1 and ϕ2 intersect each other and
(CL ± β) ∩ CM 6= ∅.

Using Remark 7.3, this shows that there is δ > 0, such that for all β = (ω, κ) ∈ CL with |κ| < δ
and all quadratic form q(u, u) the Assumption 2.5 is satisfied. On the other hand, when κ is large,
there are resonances, and the condition

(9.27) Q(ξ + β)q(P (β) . , P (ξ) . ) = 0

is certainly violated by an appropriate choice of q, in which case Assumption 2.10 is not satisfied.

Example 9.7. The example above is easily modified to include resonances for stable pump
frequencies β. Consider L = (L1, L2) as in (9.21) and M as in (9.25). Assume that

(9.28) c > 1 , 2m1 > m > m1 + m2 .

For β ∈ CL1 close to β0 = (m1, 0), one has

(9.29) (CL1 ± β) ∩ CM 6= ∅ , (CL2 ± β) ∩ CM = ∅ .

The first condition means that there are resonances and the second that they do not involve the
L2 characteristic frequencies. Therefore, the condition (9.37) is satisfied for all

(9.30) q(u, u) = q2(u2, u2) + b(u1, u2)

which does not involve quadratic terms in u1. Using Remark 7.3, this implies that Assumption 2.5
is satisfied for β ∈ CL1 close to β0.

For β large, one has (CL2 ± β) ∩ CM 6= ∅ and (9.27) is violated for appropriate choices of b in
(9.30), showing that Assumption 2.10 is not satisfied.

10. Linearly unstable resonances

Proposition 2.4 asserts that when Assumption 2.5 is not satisfied, the linearized equations
are not uniformly stable. What happens in this case depends on the lower order terms. In this
section, we study a simplified model for the description of linear instabilities at resonances. In the
next section, we apply this analysis to produce examples of systems (2.1) for which approximate
solutions which are O(1) and have residual O(ε∞) differ from the exact solution with the same
initial data by O(1).
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Consider the linearized version of (2.1)

(10.1)

{
L(ε∂x)u + εf(uε

0, v) = 0 ,

M(ε∂x)v + q(uε
0, u) = 0 ,

where L and M are two symmetric hyperbolic systems of the form (2.2) and f and q are bilinear
forms. The coefficient uε

0 comes from u0(x, β ·x/ε). The main simplification is to assume here that
u0 is a monochromatic plane wave

(10.2) uε
0(x) = a eiβ·x/ε ,

where β = (ω, κ) ∈ R×Rd and the amplitude a is constant. The second simplification is due to the
special placement of complex conjugate in the interaction. On the Fourier side, f(uε

0, v) translates
the frequencies of v by −β, while q(uε

0, u) translates back the frequencies of u by β. Therefore, it
makes sense to look for monochromatic solutions

(10.3) u(x) := ũ(x) eiα·x/ε , v(x) := ṽ(x) ei(α+β)·x/ε , .

with α characteristic for L and α+β characteristic for M . This means that the resonance (α, β) 7→
(α + β) has been singled out. Without restriction, we assume that α = 0.

For (u, v) given by (10.3), the equations (10.1) are equivalent to the constant coefficient system

(10.4) (ε∂t +A(ε, ε∂y))
(

u
ṽ

)
= 0 , A(ε, iη) :=

(
A(iη) εF

G ωI + B(iη + iκ)

)
.

where F [resp. G] is the matrix such that f(a, v) = Fv [resp. q(a, u) = Gu].
In this case, the uniform stability estimate (2.16) holds if and only if the matrices e−tA(ε,iη)/ε

are uniformly bounded for t ∈ [0, T ]. By Gronwall’s lemma, this is equivalent to the uniform
boundedness of e−tA(0,iη) for all time. As in the proof of Proposition 4.1, this is true if and only
if there is a constant C such that for all ξ = (τ, η) and all ξ′ = (τ ′, η + κ), one has∣∣Q(ξ′)GP (ξ)

∣∣ ≤ C |τ ′ − τ − ω| .

This is Assumption 2.5. In the opposite direction, we consider the following situation.

Assumption 10.1 Suppose that ξ0 = (τ0, η0) and ξ′0 = ξ0 + β = (τ ′0, η
′
0) are regular points in

the characteristic variety of L and M respectively and

(10.5) Q(ξ′0)G P (ξ0) 6= 0

Moreover, −iτ0 is the unique common eigenvalue of A(iη0) and B(iη′0) + iω.

Our goal is to investigate the growth propeties of e−tA(ε,iη)/ε for η in a small neighborhood of
η0.

a) In a neighborhood of η0, [resp. η′0 = η0 + κ] there is a smooth eigenvalue of constant
multiplicity iλ(η) [resp. iµ(η′)] of A(iη) [resp. B(iη′)] such that τ0 = −λ(η0) [resp. τ ′0 = τ0 +
ω = −µ(η′0)]. With some abuse of notation, we denote by P (η) [resp. Q(η′)] the corresponding
eigenprojector.
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There are smooth unitary matrices S(η) and T (η′) such that

(10.6) S(η)−1A(iη)S(η) =
(

A[(iη) 0
0 iλ(η)

)
, T (η′)−1B(iη′)T (η′) =

(
iµ(η′) 0

0 B[(iη′)

)
.

Therefore

S(η)−1P (η)S(η) =
(

0 0
0 I

)
, T (η′)−1Q(η′)T (η′) =

(
I 0
0 0

)
.

With the notation η′ = η + κ which we use systematically in this section, A[(iη) and B[(iη′) + iω
have no common eigenvalue, iµ(η′) is not an eigenvalue of A[(iη) and iλ(η) is not an eigenvalue of
B[(iη′) + iω}. Therefore, there is a matrix K(η) which depends smoothly on η,

K(η) = T (η′)
(

K11(η) 0
K21(η) K22(η)

)
S−1(η) ,

such that

(10.7)

{
K(η)A(iη) − (B(iη′) + iω)K(η) = G − Q(η′) G P (η) ,

Q(η′)K(η)P (η) = 0 ,

Introduce

(10.8) P(η) :=
(

S(η) 0
K(η)S(η) T (η′)

)
.

Then T (η′)−1Q(η′)GP (η)S(η) is of the form

(10.9) T (η′)−1Q(η′)GP (η)S(η) =
(

0 ρ(η)
0 0

)
and therefore, (10.7) implies that

(10.10) A1(0, η) := P(η)−1A(0, η)P(η) =


A[(iη) 0 0 0

0 iλ(η) 0 0
0 ρ(η) iµ(η′) + iω 0
0 0 0 B[(η′) + iω

 .

Using (10 4), we see that

(10.11) A1(ε, η) := P(η)−1A(ε, η)P(η) = A1(0, η) + εF(η)

where

F(η) = P(η)−1

(
0 F
0 0

)
P(η)

We compute only one element matrix of F . In the basis where (10.10) holds, the second line of
the third column is the matrix σ(η) such that

(10.12) S(η)−1P (η)FQ(η′)T (η′) =
(

0 0
σ(η) 0

)
The matrix A1(0, η) is block diagonal and the blocks have no common eigenvalue. Therefore,

there is a smooth family of matrices Q(ε, η) = Id + O(ε) defined for ε small enough and η in a
small neighborhood of η0, such that

(10.13)

A2(ε, η) := Q(ε, η)−1A1(ε, η)Q(ε, η)

=


A[(ε, iη) 0 0 0

0 iλ(ε, η) εσ(ε, η) 0
0 ρ(ε, η) iµ(ε, η) + iω 0
0 0 0 B[(ε, iη′) + iω

 .

where A[(ε, iη), λ(ε, η)... are smooth extensions of A[(iη), λ(η)... .
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b) We study the exponentials e−tA2/ε. Because A[(ε, iη) = A[(iη) + O(ε) and A[(iη) is
anti-adjoint, Gronwall’s Lemma implies that the matrices e−tA[(ε,iη)/ε are uniformly bounded for
t ∈ [0, T ], ε ∈]0, ε0] and η in a small neighborhood of η0. Similarly, e−t(B[(ε,iη)+iω)/ε is uniformly
bounded in the same range of parameters.

c) Next we evaluate the exponential of the second block in A2 :

(10.14)
B(ε, η) :=

(
iλ(ε, η) εσ(ε, η)
ρ(ε, η) iµ(ε, η′) + iω

)
= iλ(ε, η) Id +

(
0 εσ(ε, η)

ρ(ε, η) iµ̃(ε, η)

)
:= iλ(ε, η) Id + B1(ε, η) ,

where µ̃(ε, η) = µ(ε, η′) + ω − λ(ε, η). One has e−tB/ε = e−itλ(ε,η)/εe−tB1/ε. Since λ(ε, η) =
λ(η) + O(ε) and λ(η) is real, e−itλ(ε,η)/ε is uniformly bounded for t ∈ [0, T ]. Thus it remains to
study e−tB1/ε.

The resonance condition τ ′0 = τ0 + ω implies that µ̃(0, η0) = 0 and therefore

(10.15) µ̃(ε, η) = O(|η − η0)|+ ε) .

One has

(10.16)
(

1/
√

ε 0
0 Id

)
B1(ε, η)

(√
ε 0

0 Id

)
=
√

ε

(
0 σ(ε, η)

ρ(ε, η) iµ̃(ε, η)/
√

ε

)
:=
√

εB2(ε, η) .

Because of (10.15), µ̃(ε, η)/
√

ε is small when ε is small and η is restricted to a small neighborhood
of η0, i.e. when

(10.17) |η − η0| ≤ h
√

ε

and h is small. In this case, B2(ε, η) is a perturbation of

(10.18) B0 :=
(

0 σ(η0)
ρ(η0) 0

)
and the behaviour of e−tB1/ε depends on the sprectrum of B0. Note that ϕ 6= 0 is an eigenvalue
of B0 if and only if ϕ2 is an eigenvalue of σ(η0)ρ(η0) or equivalently of ρ(η0)σ(η0), which means
here that ϕ2 is a nonvanishing eigenvalue of P (η0)FQ(η′0)GP (η0) and of Q(η′0)GP (η0)FQ(η′0). If
B0 has an eigenvalue ϕ0 with negative real part, then for ε and h are small enough, and for η
satisfying (10.17), B2(ε, η) also has an eigenvalue ϕ with negative real part. In this case,

√
ε ϕ is

an eigenvalue of A(ε, η).
On the other hand, the imaginary part of µ̃(ε, η) is O(ε) so that the real part of B2 is O(1).

Thus e−tB2 = O(eCt) implying that e−tA = O(ε−1/2eC
√

εt).
Therefore, we have proved :

Proposition 10.2. i) There is a constant C and a neighborhood O of η0, such that for all
ε ∈]0, 1], η ∈ O, t ∈ [0, T ]

(10.19)
∣∣ e−tA(ε,η)/ε

∣∣ ≤ C√
ε

eCt/
√

ε .

ii) If Q(η′0)GP (η0)FQ(η′0) has a nonreal eigenvalue or a real positive eigenvalue, then there
are constants γ > 0, ε0 > 0 and h > 0, such that for all ε ∈]0, ε0], all η satisfying (10.17) and all
t ∈ [0, T ]

(10.20)
∣∣ e−tA(ε,η)/ε

∣∣ ≥ γ eγt/
√

ε .

We now give a more precise estimate to be used in the next section. Consider the following
situation
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Assumption 10.3. Q(η′0) GP (η0)FQ(η′0) has a simple eigenvalue δ0 = ϕ2
0 /∈] −∞, 0], such

that the real part of the square roots of the other eigenvalues is strictly smaller than |Reϕ0|.

Examples are given in the next section. Choose the square root ϕ0 of δ0 such that its real
part is positive. Assumption 10.3 means that ±ϕ0 are simple eigenvalues of B0 and the real part
of the other eigenvalues belong to the open interval ]− Reϕ0,Reϕ0[.

When Assumption 10.3 is satisfied, we denote by Π0 the spectral projection on the eigenspace
associated to δ0.

Proposition 10.4. Suppose that Assumptions 10.1 and 10.3 are satisfied. For all C ≥ 0
there are positive constants ε0, h, γ, r and c such that for all ε ∈]0, ε0], all η satisfying (10.17) all
t ∈ [r

√
ε, T ] and all vectors U = (u, v) such that

(10.21) |u| ≤ Cε |v| , |v| ≤ C |Π0v| ,

one has

(10.22) |e−tA(ε,η)/ε U | ≥ c eγt/
√

ε |v|.

Proof a) Introduce U1 = Q−1(ε, η)P−1(η)U . In the basis where A2 has the block decomposition
(10.13), write U1 = t(u[, u1, v1, v

[). Note that (10.21) implies that for ε small enough, one has

(10.23) u[ = O(ε|v|) , u1 = O(ε|v|) , |v[| ≤ C ′|v1| ≈ |v| ≤ C ′′|π0v1|

where π0 denotes the eigenprojector of ρ(η0)σ(η0) associated to the eigenvalue −ϕ0.
Introduce V := t(u1, v1). For t ∈ [0, T ], one has

(10.24) |e−tA(ε,η)/εU | ≈ |e−tA2(ε,η)/εU1| ≥ |e−tB(ε,η)/εV | ≈ |e−tB1(ε,η)/εV | .

Thus it is sufficient to give a lower bound for the last term.
b) Assumption 10.3 implies that −ϕ0 is a simple eigenvalue of B0. The eigenprojector is

(10.25) Σ0 =
1

2ϕ0

(
ϕ0π1 −σ(η0)π0

−ρ(η0)π1 ϕ0π0

)
where π0 and π1 are the eigenprojectors of ρ(η0)σ(η0) and σ(η0)ρ(η0) respectively, associated to
the eigenvalue ϕ2

0. They satisfy σ(η0)π0 = π1σ(η0) and π0ρ(η0) = ρ(η0)π1 so that the matrix in
(10.25) defines a projector, which commutes with B0.

For ε and h small enough and for η satisfying (10.17), B2(ε, η) has a simple eigenvalue,
−ϕ(ε, η) = −ϕ0 + O(h/

√
ε) and the eigenprojector Σ(ε, η) satisfies Σ(ε, η) = Σ0 + O(h +

√
ε).

Thus

(10.26) B2(ε, η) = −ϕ(ε, η) Σ(ε, η) + B[
2(ε, η)

where B[
2(ε, η) = B[

0 +O(h+
√

ε). Assumption 10.3 implies that all the eigenvalues of B[
0 have real

part strictly smaller than Reϕ0. Therefore, if ε0 and h are small enough, there are γ > γ′ ≥ 0 and
C such that for η satisfying (10.17), one has

(10.27)

{
Re ϕ(ε, η) ≥ γ ,

∀t ≥ 0 , | e−tB[2(ε,η)| ≤ C etγ′ .
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c) Next, introduce

(10.28) Ṽ =
(

ũ1

v1

)
:=
(

1/
√

ε 0
0 Id

)
V =

(
u1/
√

ε
v1

)
.

The identity (10.16) and the spectral decomposition (10.26) imply that

(10.29)
e−tB1(ε,η)/εV =

(
1/
√

ε 0
0 Id

)
e−tB2(ε,η)/

√
ε Ṽ ,

e−tB2(ε,η)/
√

ε Ṽ = etϕ(ε,η)/
√

ε Σ(ε, η) Ṽ + e−tB[2(ε,η)/
√

ε Ṽ .

Using (10.23) and (10.25), we see that if h and ε are small enough,

Σ(ε, η) Ṽ =
1

2ϕ0

(
−σ(η0)π0v1

ϕ0π0v1

)
+ O

(
(h +

√
ε)|v|

)
.

With (10.27) it follows that

(10.30) |e−tB1(ε,η)/ε V | ≥ 1
2

eγt
√

ε
(
|π0v1| − O

(
(h +

√
ε)|v|

)
− O

(
eγ′t/2

√
ε|v|
)
.

With (10.24) and recalling that γ > γ′ ≥ 0, the proposition follows.

Remarks 10.5 1) The second assumption in (10.21) means that the component of v in the
crucial direction does not vanish and dominates the length of v.

2) The proof uses a weaker version of (10.17). What is needed is that

(10.31) |λ(η)− µ(η + κ)− ω| ≤ h
√

ε .

In particular, when the resonance is regular, i.e. when ∇λ(η0) 6= ∇µ(η′0) the set of resonances
{η |λ(η) = µ(η+κ) + ω } is a smooth manifold near η0 and (10.31) is the set of points whose distance
to the resonance manifold is less than h

√
ε. Thus, all the frequencies in this

√
ε-neighborhood of

the resonance manifold are amplified.

11. An example of instability

Consider a system of the form

(11.1)


L1(ε∂x)u1 = 0 ,

L2(ε∂x)u2 + εf(u1, v) = 0 ,

M(ε∂x)v + q(u1, u2) = 0 ,

where L1, L2 and M are symmetric hyperbolic systems of the form (2.2) and f and g are bilinear
forms. Taking real an imaginary parts of the unknows yields a real system. With notations as in
(2.1), one has

(11.2) q(u, u′) =
1
2

g(u1, u
′
2) +

1
2

g(u′1, u2) for u = (u1, u2) , u′ = (u′1, u
′
2).

For simplicity, we further assume that M is homogeneous, i.e. M(ε∂x) = εM(∂x).
We suppose that the wave number β = (ω, κ) ∈ R× Rd is so chosen that

(11.3) detL1(iβ) = 0 , detL2(−iβ) 6= 0 , detM(iβ) 6= 0 .

Because M is homogeneous, all the projectors Q(νβ) vanish, except when ν = 0 and Q(0) = Id.

40



Example 11.1. In space dimension d = 1 consider the 3× 3 system

(11.4)


(∂t − ∂y)u1 = 0 ,

(∂t − 2∂y)u2 + δ u1 v = 0 ,

ε∂tv + u1 u2 = 0 ,

and choose β = (1, 1). In the second equation, δ is a parameter.

Example 11.2. In space dimension d = 1, consider β = (
√

2, 1) and

(11.5)
L1(ε∂x) =

(
ε(∂t − ∂y) 1
−1 ε(∂t + ∂y)

)
, L2(ε∂x) =

(
ε(∂t − ∂y) 1/2
−1/2 ε(∂t + ∂y)

)
,

M(ε∂x) = ε∂t .

The conditions (2.7) are satisfied and

(11.6) detL1(iνβ) = 0 ⇔ ν = ±1 and ∀ν ∈ Z , detL2(iνβ) 6= 0 .

Moreover,

(11.7) det M(iνβ) = 0 ⇔ ν = 0 .

Near ±β, the characteristic variety of (L1, L2) coincides with the characteristic variety of
L1 and there, the spectral projector P (ξ) projects onto a subspace of {u2 = 0}. With (11.2) this
implies that q(P (−νβ)u , P (ξ)u′) = 0. Thus (2.18) is satisfied for ξ close to ±β and Proposition 7.2
and Remark 7.3 imply that Assumptions 2.1 and 2.2 are satisfied.

Consider a family {uε
1}ε∈]0,1] of exact solutions of the linear equation L1(ε∂x)uε

1 = 0, such
that

(11.8) uε
1(x) = a(x, ε) eiβ·x/ε , a(x, ε) ∼

∞∑
n=0

εnan(x)

and aε ∈ H∞([0, T ] × Rd × [0, 1]) (see e.g.[Lax]). When the initial data of u2 and v vanish, the
solution of (11.1) is (uε

1, 0, 0). We now discuss the stability of these solutions. We consider (small)
perturbations of the initial data and show :

1) there are uniformly bounded families of formal and approximate solutions,
2) the exact solutions wih the same Cauchy data may diverge exponentially, like eγt/

√
ε, from

the approximate solution.

Formal solutions

The system (11.1) reduces to a linear system (10.1) for (u2, v). Following the general theory in
§4, one can construct formal solutions of (11.1). But, thanks to the special form of the interaction,
one can look for solutions

(11.9) uε
2(x) ∼

( ∞∑
n=1

εnbn(x)
)
e−iβ·x/ε , vε(x) ∼

∞∑
n=0

εnvn(x) .
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The bn are defined for n ≥ 1 by

(11.10) bn+1 = −L2(−iβ)−1
( n∑

k=0

f(ak, vn−k) + L2,1(∂x)bn

)
where L2,1 denotes the first order part of L2. By induction this implies that

(11.11) bn+1 = −L2(−iβ)−1f(a0, vn) + ϕn−1

where ϕn−1 depends only on (v0, . . . , vn−1) and their derivatives. The vn satisfy

(11.12) M(∂x)vn +
n∑

k=0

g(ak, bn+1−k) = 0 .

Substituting (11.11) in (11.12) yields a symmetric hyperbolic linear equation for vn with source
term depending only on (v0, . . . , vn−1). Therefore

Proposition 11.3. For any sequence v0
n in H∞(Rd), the system (11.1) has a unique formal

solution (uε
1, u

ε
2, v

ε), (uε
2, v

ε) given by (11.9), with coefficients bn and vn in H∞([0, T ] × Rd) and
such that vn|t=0 = v0

n.

Note that vn = 0 for n < p and bn = 0 for n ≤ p when the Cauchy data v0
n vanish for n < p.

Given a formal solution, consider

(11.13) uε
2,app =

k+1∑
n=1

εkbn e−iβ·x/ε, vε
app =

k∑
n=0

εkvn .

They are approximate solutions of (11.1), meaning that

eiβ·x/ε
(
L2(ε∂x)uε

2,app + εf(uε
1, v

ε
app)

)
and εM(∂x)vε

app + g(uε
1, u

ε
2,app)

are O(εk+2) in H∞([0, T ]× Rd).

Exact solutions

Given an approximate solution (11.13) we now consider the family of exact solutions of (11.1)
which have the same Cauchy data. The existence is clear, since the problem is linear in (uε

2, v
ε).

The question is to know how long the exact solution remains close to the approximate solution
when Assumption 2.5 is violated.

To simplify the analysis, we make several choices for uε
1 and the data v0

n. Consider a bounded
open set Ω0 ⊂ Rd, and let Ω be the domain of influence of Ω0 in [0, T ] × Rd for the system
(L2(ε∂x), M(ε∂x)). Consider a constant vector a such that P1(β)a = a, where P1(β) denotes
the orthogonal projector on kerL1(iβ). Note that aeiβ·x/ε is an exact plane wave solution of
L1(ε∂x)u = 0. The classical theory ([Lax]) shows that one can construct the family uε

1 in (11.8) so
that

(11.14) uε
1 = aeiβ·x/ε on Ω
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Next, we choose initial data v0
0 ∈ C∞0 (Ω0) and v0

n = 0 when n > 0. The equations (11.11)
(11.12) show that there are differential operators Dn(∂y) of order n such that

(11.15) bn+1(0, . ) = Dn(∂y) v0
0

Note that D has constant coefficients, since a is constant on a neighborhood of {0} × Ω0. In
particular, the initial values of bn are supported in Ω0. Therefore the initial values of uε

2 and
vε which are equal to the initial values of uε

2,app and vε
app are supported in Ω0. Thus, the exact

solutions uε
2 and vε are supported in Ω and therefore they satisfy

(11.16)

{
L2(ε∂x)uε

2 + εf(uε
0, v

ε) = 0 ,

M(ε∂x)vε + q(uε
0, u

ε
2) = 0 ,

uε
0 = aeiβ·x/ε .

Therefore, we are in position to apply the results of §10. Recall the following notation : F [resp.
G] is the matrix such that f(a, v) = Fv [resp. g(a, u) = Gu]. We suppose that Assumptions 10.1
and 10.3 are satisfied at ξ0 = (τ0, η0) for the system (L2, M). We denote by Π0 the spectral
projection introduced after Assumption 10.3.

In addition to the previous choices for the initial data, assume that the Fourier transform of
v0
0 satisfies

(11.17) ∃C , ∀η , |v̂0
0(η)| ≤ C |Π0F v̂0

0(η)| .

(11.18) ∃s < 1/2 , ∃c1 > 0 , ∀η , |v̂0
0(η)| ≥ γ1 e−γ2|η|s .

Recall that Π0 is the projector introduced afer Assumption 10.3. Hence, the first condition is a
polarization condition, ensuring that the unstable mode is activated. The second condition, is a
“nonGevrey 2” condition. It is related to the rate of growth eγ/

√
ε of unstable frequencies of size

≈ 1/ε.
Exemples are given after the proof of the next theorem.

Theorem 11.4. Suppose that Assumptions 10.1 and 10.3 are satisfied and the initial data
are chosen as indicated above. Then there are c > 0, γ > 0 and C > 0 such that

i) the approximate solutions (11.13) are uniformly bounded on [0, T ] × Rd and compactly
supported,

ii) for ε small enough, the exact solutions with the same initial data satisfy

(11.19) ‖Uε(t)‖L2 ≥ c eγt/2
√

ε , when t ∈ [C ε
1
2−s, T ] .

Proof.

a) Recall that the coefficients bn of the formal solution are given by (11.15). In particular,

|b̂n+1(0, η) | ≤ Cn(1 + |η|)n|v̂0
0(η)| .
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Therefore, (11.13) implies that

(11.20) |ûε
2(0, η)| = | ̂uε

2,app(0, η)| ≤ C ε (1 + ε|η + κ/ε|)k |v̂0
0(η + κ)| .

As in (10.3) introduce ṽε := vεe−iβ·x/ε and its Fourier transform ̂̃vε(t, η) = e−itω/εv̂ε(t, η + κ/ε).
Let A(ε, ε∂y) denote the matrix (10.4) associated to the system (11.16) satisfied by (uε

2, v
ε). Then

(11.21)

(
ûε

2(t, η)

e−itω/εv̂ε(t, η + κ/ε)

)
= e−itA(ε,εη)/ε

(
ûε

2(0, η)

v̂ε(0, η + κ/ε)

)
In addition, note that vε(0, . ) = vε

app(0, . ) = v0
0 .

b) Let ε0, h, γ, c and r denote the constants given by Proposition 10.4. For ε ≤ ε0 and η in
the ball

(11.22) |εη − η0| ≤ h
√

ε

one has |η| = O(1/ε). Thus (11.20) and (11.17) imply that the assumption (10.21) in Proposition
10.4 is satisfied. Therefore, for t ≥ r

√
ε and η satisfying (11.22), the estimate (10.22) in Proposition

10.4 applies to the frequency εη. With (11.21) this implies that

(11.23) |Û(t, η)| ≥ c1 eγt
√

ε |v̂0
0(η + κ/ε)|2 dη .

Integrating over the ball (11.22), and using the assumption (11.18), yields

(11.24) ‖Uε(t)‖L2 ≥ c2 eγt/
√

ε− γ′/εs ,

and the Theorem follows.

Remarks 11.5. Let P2(ξ0) denote the orthogonal projector on kerL2(ξ0).
1) When v is one dimensional, Q(ξ′0)GP2(ξ0)FQ(ξ′0) is the multiplication by a scalar δ.

In this case, Assumption 10.3 reduces to the condition δ /∈] − ∞, 0]. Morever, the polarization
condition (11.17) is trivially satisfied.

2) When the eigenvalue λ(η) [resp µ(η′)] is simple, P2(ξ0) [resp. Q(ξ′0)] is a rank one projec-
tor. Thus there is δ ∈ C such that P2(ξ0)FQ(ξ′0)GP2(ξ0) = δP2(ξ0) [resp Q(ξ′0)G2P (ξ0)FQ(ξ′0) =
δQ(ξ′0)]. In this case also, Assumption 10.3 reduces to the condition δ /∈]−∞, 0].

3) The condition (11.17) is satisfied when v0
0 takes its values in a space which does not

intersect the kernel of the operator Q(ξ′0)GP2(ξ0)FQ(ξ′0).

Examples 11.6 1) Consider the system (11.4) of Example 11.1. In this case, β = (1, 1),
and there is a unique ξ0 = (−1,−1/2) which is characteristic for ∂t − 2∂y and such that ξ0 + β is
characteristic for ∂t. The matrix A is the 2× 2 matrix

A(ε, η) =
(
−2iη εδa

a i

)
.

G and F are 1× 1 matrices, equal to a and a respectively. Moreover Q(ξ′0)GP (ξ0)FQ(ξ′0) = δ|a|2.
Thus Assumption 10.3 is satisfied if and only if δ /∈]−∞, 0].

The exponential of A can be computed explicitely. For example, when δ is a positive real
number, the eigenvalues are purely imaginary when |η+1/2| > √ε

√
δ|a| but there are real positive

and negative eigenvalues,
√

εϕ±(ε, η), when |η + 1/2| < √ε
√

δ|a|. The analysis in §10 is a simple
extension of this particular case.
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2) Consider the operators L1, L2 and M (11.5) of Example 11.2 and β = (
√

2, 1). There
are two resonances (−

√
2,±
√

7/2). The eigenvalues of L1 and L2 are simple and Assumption 10.1
is satisfied. Moreover, we are in the situation of Remark 10.5 2, Q(ξ′0) = Id and P (ξ0) is a rank
one projector. Let ` be a nonvanishing vector in the kernel of L2(ξ0). There is δ ∈ C such that

P (ξ0) f(a, g(a, `)) = δ`.

Assumption 10.3 is satisfied exactly when δ /∈]−∞, 0]. This condition is met by a suitable choice
of f and g.

Remark 11.7. In space dimension one, squaring and integrating (11.23) yields

(11.25) ‖Uε(t) ‖2L2 ≥ c1 etγ/
√

ε

∫ η′0/ε+h/
√

ε

η′0/ε−h/
√

ε

| v̂0
0(η) |2 dη

with η′0 = η0 + κ.
a) If η′0 = 0 and v0

0 6= 0, this implies that for ε small enough and t ≥ r
√

ε the L2 norm of
the exact solution Uε is larger than ceγt/

√
ε.

b) If η′0 6= 0, (11.25) implies that if the family Uε(t) is uniformly bounded in L2 for t ∈ [0, T ]
and ε ≤ ε0, then the integral ∫ +∞

−∞
eγ′
√
|η| |v̂0

0(η)|2 dη < ∞

for some γ′ > 0. This means that v0
0 belongs to the Gevrey class G2. Conversely, using the

the upper bound (10.19) in Proposition 10.2, one can show that this condition implies that Uε is
uniformly bounded for small times.

Remark 11.8. For the sake of completeness, we check that the set of functions v0
0 ∈ C∞0 (R)

which statisfy (11.18) is not empty. Introduce χ(y) the inverse Fourier transform of e−(1+|η|2)s/2 .
This function belongs to the Gevrey class G1/s and therefore is C∞. Consider next χ1 6= 0 a real
and even C∞ function with compact support. Its Fourier transform χ̂1 is real and even. Thus
χ2 = χ1 ∗ χ1 ∈ C∞0 and χ̂2 is real and nonnegative. Consider v = χχ2. It is C∞ and Gevrey G1/s

if we choose χ1 in a Gevrey class Ga with 1 < a ≤ 1/s. The support of v is compact, and

v̂(η) ≥
∫ 1

−1

e−|η−ζ|s χ̂2(ζ) dζ

Because χ̂2 is real analytic, nonnegative and does not vanish identically, its integral over [−1, 1] is
positive. This implies that v̂ satisfies (11.18).

12. Maxwell-Bloch equations

The Maxwell-Bloch equations present a theoretical background for the description of the
interaction between light and matter, see e.g. [BW], [NM], [Bo] or [PP]. The electromagnetic field
satisfies

(12.1)

{
∂tB + curlE = 0 , divB = 0,

∂tE − curlB = −∂tP , div(E + P ) = 0,
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where P is the polarization of the medium. The divergence equations are propagated in time from
the initial conditions, and we forget them competely in the discussion below. Bloch’s equations
link P and the electronic state of the medium which is described through a simplified quantum
model. The formalism of density matrices is convenient to account for statistical averagings due
for instance to the large number of atoms. The density matrix ρ satisifies

(12.2) iε ∂tρ = [Ω, ρ] − [V (E, B), ρ] ,

where Ω is the electronic Hamiltonian in absence of external field and V (E, B) is the potential
induced by the external electromagnetic field. For weak fields, V is expanded into its Taylors’s
series (see e.g. [PP]). In the dipole approximation,

(12.3) V (E, B) = E · Γ , P = tr(Γρ)

where −Γ is the dipole moment operator. An important simplification is that only a finite number
of eigenstates of Ω are retained. From the physical point of view, they are associated to the
electronic levels which are excited by the electronomagnetic field. In this case, ρ is a complex
finite dimensional N × N matrix and Γ is a hermitian symmetric N × N matrix with entries
in C3. In physics books, this reduction is captured by introducing phenomenological damping
terms which would force the density matrix to relax towards a thermodynamical equilibrium in
absence of the external field. For simplicity, we do not consider here the damping terms. The large
ones only contribute to reduce the size of the effective system and the small ones contribute to
perturbations which do not alter qualitatively the phenomena. Physics books also introduce “local
field corrections” to improve the model and take into account the electromagnetic field created
by the electrons. This mainly results in changing the values of several constants which is of no
importance in our discussion.

The parameter ε in front of ∂t in (12.2) plays a crucial role in the statement of the problem. It
intervenes at three different places. First it makes our problem fall into the category of “dispersive”
equations (1.2) (see[Do], [DR])

(12.4) L(ε∂x)U = F (U) .

Next, the quantities ωj,k/ε := (ωj−ωk)/ε, where the ωj are the eigenvalues of Ω, have an important
physical meaning. They are the characterisitic frequencies of the electronic transitions from the
level k to the level j and therefore related to the energies of these transitions. The interaction
between light and matter is understood as a resonance phenomenon and the possibility of excitation
of electrons by the field. This means that the energies of the electronic transitions are comparable
to the energy of photons. Thus, if one chooses to normalize Ω ≈ 1 as we now assume, ε is
comparable to the pulsation of light. The choice of units which is tacitely used in (12.1) fixes the
speed of light in vacuum to be equal to one. Thus, in these units, ε is also comparable to the
wavelength of light. Therefore, this means that in (12.4), we are interested in oscillatory solutions
of wavelength of order ε. At last, the Maxwell-Bloch model described above, is expected to be
correct for weak fields and small perturbations of a steady state, which can be for instance either
the ground state or a thermodynamical equilibrium. This means that in (12.4) we consider small
perturbations of a constant solution U . How small they are with respect to ε is a very important
part of the discussion. This is the third occurence of ε in the statement of the problem. Summing
up, we look for solutions of the form (1.3)

(12.5) Uε(x) ∼ U + εp
∑
n≥0

εnp Un(x, β · x/ε)

where the Un(x, θ) are periodic functions of θ and β is a given space-time wave number, or a finite
set of wave numbers if one considers interacting waves.
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In applications, an important point is the notion of parity for the eigenstates of Ω. For
instance, consider the Hamiltonian associated to one electron. It acts in a space L2(R3) and the
eigenvectors of Ω are functions ϕj of variables ỹ ∈ R3. The dipole moment operator is −e ỹ where
e is the electric charge of the electron and thus the entries of Γ in the basis {ϕj} are

(12.6) Γj,k =
∫
R3

ỹ ϕj(ỹ)ϕk(ỹ) dỹ .

(see [PP]). For physical reasons, Ω may have symmetries which may imply that some of the
coefficients Γj,k vanish. For instance, Ω is often invariant under the change ỹ 7→ −ỹ, and the
eigenstates ϕj can often been choosen to have a definite parity, i.e. to be either odd or even. In
this case, all the coefficients Γj,k associated to states ϕj and ϕk of the same parity vanish.

Next, we note that equation (12.2) has the important consequence that the spectrum of ρ(t, y)
is time independent. This implies the existence of many conserved quantities, such as the trace
and the determinant of ρ. This means that among the entries of the density matrix, the actual
number of unknowns is much less than it could seem. This remark is crucial to understand the
special properties of the Maxwell-Bloch equations.

Examples.

Example 12.1. The one space dimension equations.

They describe a one dimensional propagation, say along the first axis. E is assumed to have a
constant direction, orthogonal to the direction of propagation. B is perpendicular both to E and
the axis of propagation. P is parallel to E. This leads to the following set of equations

(12.7)


∂tb + ∂ye = 0 ,

∂te + ∂yb = −∂ttr(Γρ) ,

iε∂tρ = [Ω, ρ] − e [Γ, ρ] ,

where e and b take their value in R and Γ is a Hermitian symmetric matrix, with entries in C. In
this case, note that tr(Γ[Γ, ρ]) = 0 and

(12.8) ε∂ttr(Γρ) =
1
i

tr(Γ[Ω, ρ]) .

Example 12.2. The two levels equations in space dimension one.

In this case, ρ and Γ are 2 × 2 hermitian symmetric matrices. We chose a basis such that Ω
is diagonal whith entries ω1 < ω2. It is convenient to introduce

(12.9) p := γ1,2ρ2,1 + γ2,1ρ1,2 , q :=
1
i

(γ1,2ρ2,1 − γ2,1ρ1,2) , n := ρ1,1 − ρ2,2 .

Using (12.8), (12.7) implies

(12.10)



ε∂tb + ε∂ye = 0 ,

ε∂te + ε∂yb = −ω2,1q ,

ε∂tp = ω2,1q + (γ1,1 − γ2,2) e q ,

ε∂tq = −ω2,1p + (γ2,2 − γ1,1) p e + 2|γ2.1|2 n e ,

ε∂tn = −2 e q .
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Conversely, (12.9) together with the condition ρ1,1+ρ2,2 = 1, which is natural thanks to the general
conservation ∂ttrρ = 0, allow to recover ρ from (p, q, n), and (12.10) implies (12.7).

When the states 1 and 2 have definite parities, then γ1,1 = γ2,2 = 0. When the parities are
different, γ2,1 is not equal to zero in general. When the states 1 and 2 have definite parities, or
more generally, when γ1,1 − γ2,2 = 0, the equations take the simpler form :

(12.11)

{
∂tb + ∂ye = 0 , ∂te + ∂yb = −∂tp

ε2 ∂2
t p + (ω2,1)2p = 2ω2,1|γ2,1|2 n e , ∂tn = − 2

ω2,1
∂tpe .

Note that the equations (1.1) are the rotation invariant extension of equations (12.11) to R3.

Example 12.3 Other isotropic two levels models.

Consider 4× 4 matrices Ω and Γ such that

(12.12) Ω =
(

ω1 0
0 ω2Id3×3

)
, E · Γ =

(
0 γtE

γE i δE × ·

)
,

where the blocks correspond to a splitting C × C3 of the space. The Hamiltonian Ω has two
eigenvalues and we suppose that ω1 < ω2. This means that the ground state is simple and that
the excited level has multiplicity 3. The group of rotations SO(3) acts on R3 and C3, and thus on
the electric and magnetic fields E and B. For R ∈ SO(3), define

R̃ =
(

1 0
0 R

)
.

Then the matrices Ω and Γ satisfy

ΩR̃ = R̃Ω , (RE) · Γ R̃ = R̃(E · Γ), tr(ΓR̃ρR̃−1) = Rtr(Γρ) .

Therefore, the equations (12.1) (12.2) are invariant under the change of unknows (E, B, ρ) 7→
(RE, RB, R̃ρR̃−1), which means that they are invariant by rotation and thus isotropic.

Example 12.4. A model for Raman scattering.

We now give a classical model which is used to describe Raman scattering in one space di-
mension (see e.g. [Bo], [NM ], [PP]). This is a particular case of equations (12.7) in which Ω has
three simple eigenvalues, ω1 < ω2 < ω3. Moreover, the states 1 and 2 have the same parity, while
the state 3 has the opposite parity. This yields

(12.13) Ω =

ω1 0 0
0 ω2 0
0 0 ω3

 , Γ =

 0 0 γ1,3

0 0 γ2,3

γ3,1 γ3,2 0

 .

The linearized equations.
We look for solutions (12.5) with U = (0, 0, ρ) where ρ is a constant hermitian matrix such that

[Ω, ρ] = 0. Let ω1 < ω2 < . . . be the distinct eigenvalues of Ω and Π1,Π2 . . . , the corresponding
orthogonal spectral projectors. We denote by ρj,k the block decomposition of the matrix ρ in the
eigenspaces of Ω i.e. ρ =

∑
Πjρj,kΠk, and ρj,k = ΠjρΠk.

Assumption 12.5. ρ =
∑

j

rjΠj , with r1 ≥ r2 ≥ . . . ≥ 0.
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Examples 12.6. 1) The ground state corresponds to ρ = Π1.
2) The thermodynamical equilibrium corresponds to ρ =

∑
rjΠj with (see [PP])

rj =
e−h̄ω̃j/κT∑

k

e−h̄ω̃k/κT
.

where ω̃j is the physical frequency of the state j expressed in s−1. For applications one has to
compare rj/r1 to ε. If rj/r1 = O(ε) for j > 1, the distinction between the ground state and the
thermodynamical equilibrium makes no sense in our analysis

Definition 12.7. Introduce I := {(j, k) : rj 6= rk} and II the complementary set. Given a
matrix ρ set

(12.14) ρI :=
∑

(j,k)∈I

ΠjρΠk , ρII :=
∑

(j,k)∈II

ΠjρΠk .

Introduce u := (E, B, ρI) and v = ρII − ρ. Note that ρI = 0. The Maxwell-Bloch equations

(12.15)


ε∂tB + ε curlE = 0 ,

ε∂tE − ε curlB = i trΓ[Ω, ρ] − itrΓ[E · Γ, ρ] ,

iε ∂tρ = [Ω, ρ] − [E · Γ, ρ]
take the form

(12.16)

{
L(ε∂)u + Kv + q1(u) + f1(u, v) = 0 ,

M(ε∂) v + q2(u) + f2(u, v) = 0 .

where

(12.17) L(ε∂x)u :=


ε∂tB + ε curlE

ε∂tE − ε curlB − i tr
(
ΓI [Ω, ρI ]

)
+ i tr

(
ΓI(E ·G)

)
ε∂t ρI + i [Ω, ρI ] − i E ·G

with G := [Γ, ρ]

(12.18) M(ε∂x)v := ε∂t + i[Ω, v] ,

(12.19) Kv :=


0

− i tr(ΓII [Ω, v])
0

,

(12.20) q1(u) :=


0

i tr
(
Γ[E · Γ, ρI ]

)
− i
(
[E · Γ, ρI ]

)I , f1(u, v) :=


0

itr
(
Γ[E · Γ, v]

)
− i

(
[E · Γ, v]

)I ,

(12.21) q2(u) := −i
(
[E · Γ, ρI ]

)II
, f2(u, v) := − i

(
[E · Γ, v]

)II
.

Note that q1 and q2 are quadratic in u and f1 and f2 are bilinear in (u, v). The definition 12.7 is
motivated by the remark that G := [Γ, ρ] = GI . It implies the triangular form of the linear part of
the equations (12.16).
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Proposition 12.8. The systems L(ε∂x) and M(ε∂x) are conservative, i.e. they are symmetric
hyperbolic in the sense given after (2.2).

Proof.

a) The conserved quantity for M is

tr(vv∗) =
∑

(j,k)∈II

tr(vj,k v∗j,k)

as a consequence of the identity Im tr([Ω, v]v∗) = 0.
b) For solutions of L(ε∂x)u = 0, the following quantity is conserved

|E|2 + |B|2 +
∑

(j,k)∈I

ωk − ωj

rj − rk
tr(ρj,k ρ∗j,k)

Note that the denominator rj−rk does not vanish precisely when (j, k) ∈ I. Moreover, Assumption
12.5 implies that the coefficients (ωk −ωj)/(rj − rk) are positive, showing that the quadratic form
above is definite positive. Therefore L(ε∂x) is symmetric hyperbolic.

The linear part of (12.16) is

(12.23)
(

L(ε∂x) K
0 M(ε∂x)

)
When K 6= 0, in general, it is not conservative. At intersection points of the characteristic manifolds
of L and M , the coupling term Kv introduces a nondiagonal Jordan factor. Hence, there are no
L2 energy estimates for (12.23) independent of ε.

When K = 0 (12.23) is hyperbolic symmetric. Analogously, introducing u = (E, B, P, Q) with
Q := ε∂tP ) and v = N −N , the equations (1.1) take the form (12.19) with K = 0 :

(12.24)


{

ε ∂tB + ε curlE = 0 , ε ∂tE − εcurlB + Q = 0 ,

ε ∂tP −Q = 0 , ε ∂tQ + Ω2P = γ1NE + γ1 vE ,

ε∂tv = −γ2 Q · E .

Compatibility and change of unknowns.

Proposition 12.9. The operators L(ε∂x), M(ε∂x) and the quadratic form q2 satisfy As-
sumption 2.10. Moreover the associated bilinear mapping J given by Theorem 2.11 is

(12.25) Jj,k(ρ, ρ′) :=
∑

l∈Ij,k

1
rj − rl

ρj,lρ
′
l,k (j, k) ∈ II ,

where Ij,k := {l : (j, l) ∈ I}.

J(ρ, ρ) is a matrix of type II. Note that for (j, k) ∈ II, the conditions (j, l) ∈ I and (k, l) ∈ I
are equivalent and rl − rj = rl − rk 6= 0.

50



Proof.

We leave to the reader to check that Assumption 2.10 is satisfied. This is a consequence of
the identity (2.26) which we now check. Note that

∂tJ(ρI , ρI) = J(∂tρ
I , ρI) + J(ρI , ∂tρ

I) ,

[Ω, J(ρI , ρI)] = J([Ω, ρI ], ρI) + J(ρI , [Ω, ρI ])

[ρI , E · Γ]II = J(E ·G, ρI) + J(ρI , E ·G) .

These identities follow directly from the definition (12.25). They imply that

q2(u) = M(ε∂x)J(ρI , ρI)− J
(
ε∂tρ

I + i[Ω, ρI ]− iE ·G, ρI
)
− J

(
ρI , ε∂tρ

I + i[Ω, ρI ]− iE ·G
)

The proposition follows.
The change of unknows (2.27) reads

(12.26) σ := v + J(ρI , ρI)

and the second equation in (12.16) is equivalent to

(12.27) M(ε∂x)σ + g(U) + f2(u, v) = 0

where g(U) is cubic in U

(12.28) g(u) := J([ρ, E · Γ]I , ρI) + J(ρI , [ρ, E · Γ]I) .

The case where ρ is the ground state.

When ρ is the ground state one has

(12.29) ρI =


0 ρ1,2 . . . ρ1,m

ρ2.1 0 . . . 0
...

...
...

ρm1 0 . . . 0

 , ρII =


ρ1,1 0 . . . 0
0 ρ2.2 . . . ρ2,m

...
...

...
0 ρm2 . . . ρm,m

 ,

(12.30) J(ρI , ρI) = ρIJρI , with J =
(
−1 0
0 Id

)
,

(12.31) q1(u) :=


0

i tr
(
ΓII [E · ΓI , ρI ]

)
+ i tr

(
ΓI [E · ΓII , ρI ]

)
− i
(
[E · ΓII , ρI ]

)I ,

(12.32) q2(u) := −i
(
[E · ΓI , ρI ]

)II
, f2(u, v) := − i

(
[E · ΓII , v]

)II
.
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After the change of variables (12.26), further simplifications occur in the equation (12.27). It reads

(12.33) M(ε∂x)σ − i [E · ΓII , σ] − i
[
[E · ΓI , σ − ρIJρI ] , J ρI

]
= 0 .

The similar change of variables for the system (12.24) was given in (1.7)

(12.34) n = v +
γ2

2γ1N
(Q2 + Ω2P 2) .

Then the last equation in (12.24) is transformed into

(12.35) ε∂tn = ε
(
c1n − c2(Q2 + Ω2P 2)

)
Q · E .

Scaling the amplitudes.

We discuss the scale εp of asymptotic solutions (12.5) of equations (12.16).

A) The case K 6= 0. This case occurs when ΓII is not diagonal.

Because the linear system (12.13) is not conservative, the term Kv is a source term in the
equation for u. Suppose that u = O(εp) and v = O(εp′). The source term for u is then of order
O(εα) with α = min(p′, 2p, p + p′). Because the propagation is in ε∂t, the cumulative effects of the
source terms for times O(1) is O(εα−1). Thus, one is lead to require that p ≤ α − 1. Similarly,
the equation for v yields the condition p′ ≤ min(2p, p + p′). These conditions are satisfied when
p ≥ 2, q ∈ [p + 1, 2p − 1]. Thus, for general equations of the form (12.16), the largest amplitudes
are reached for p = 2, p′ = 3.

We now take advantage of the special form of the nonlinear terms, using Proposition 12.9.
We replace the second equation in (12.16) by (12.27) and use (12.26) to obtain a system for
(u, σ). Because g is cubic, the conditions for (p, p′) are now p ≤ min(p′, 2p, p + p′) − 1 and
p′ ≤ min(3p, p + p′) − 1. The optimal solution is p = 1, p′ = 2. This yields to introduce new
unknowns (ũ, σ̃) such that

(12.36) u = εũ , σ = ε2σ̃ .

In the original variables this means

(12.37) E = ε Ẽ , B = ε B̃ , ρI = ε ρ̃I , ρII = ρ + ε2 ρ̃II .

Note that the change of variables (12.26) is compatible with this scaling. The equations for (ũ, σ̃)
are of the form

(12.38)

{
L(ε∂)ũ + εKṽ + εF1(ũ, σ̃) = 0 ,

M(ε∂) σ̃ + εF2(ũ, σ̃) = 0 .

The difference of scales for u and σ provides the factor ε in front of K which becomes an admissible
source term. On the other hand, because g is cubic, the nonlinearity has also a factor ε. The
standard results of geometric optics apply to (12.38) ([DR], [JR], [JMR 3,4,5])
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B) The case K = 0.

B1) When K = 0 , the sandard results apply to solutions (12.5) with p = 1.

B2) When ΓII = 0 and ρ is the ground state, one can construct larger solutions with p = 1/2.
In this case, (12.31) and (12.32) imply that K = 0, q1 = 0, f2 = 0. Moreover, (12.33) simplifies
and the equations read

(12.39)

{
L(ε∂x)u + f1(u, σ − ρIJρI) = 0 ,

M(ε∂x)σ − i
[
[E · ΓI , σ − ρIJρI ] , J ρI

]
= 0 .

Introduce the new scaling which is well adapted to the nonlinear terms

(12.40) u =
√

εũ , σ = εσ̃ .

Then (12.39) in transformed to

(12.41)

{
L(ε∂x)ũ + εf1(ũ, σ̃ − ρ̃IJρ̃I) = 0 ,

M(ε∂x)σ̃ − i ε
[
[Ẽ · ΓI , σ̃ − ρ̃IJρ̃I ] , Jρ̃I

]
= 0 .

The standard results of [DR] apply to solutions In the original variables this means that

(12.42) E =
√

ε Ẽ , B =
√

ε B̃ , ρI =
√

ε ρ̃I , ρII = ρ + ε ρ̃II .

Applications.

The idea is to apply known results to the equations satisfied by ũ = (B̃, Ẽ, ρ̃I) and σ̃. We
give three examples where we use results and ideas from [DR], [JRM 3], [Lan]. For the first two
applications, the results also follow from Therems 2.3, 2.8 and 2.9 above. From now on, we assume
that ρ is the ground state.

A) O(
√

ε) fields for an isotropic two level model.

To illustrate the case B2), we compute the principal term U0 for the isotropic two level system
(12.12) when δ = 0. Introduce the scaling (12.42) and perform the change of unknonws

ρ̃II = σ̃ + ρ̃I

(
−1 0
0 Id3×3

)
ρ̃I

Introduce next the notations

ρ̃I =
(

0 tϕ
ψ 0

)
, σ =

(
n 0
0 N

)
.

where ϕ and ψ are vectors in C3, n is a complex number and N is a 3 × 3 matrix. Using the
identities

[Ẽ · ΓI , σ] =
(

0 γtE (N − nId)
−γ(N − nId)E 0

)
, trΓI

(
0 γth
−γk 0

)
= |γ|2(h− k) ,
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we obtain that the equations (12.41) read

(12.43)



ε∂tB̃ + ε curlẼ = 0 ,

ε∂tẼ − ε curlB̃ − i (γω1,2ψ + γω2,1ϕ) − iε|γ|2(A− tA)Ẽ = 0 ,

ε∂t ϕ + i ω1,2 ϕ + iγẼ − iε γ tAẼ = 0 ,

ε∂t ψ + i ω2,1 ψ − iγẼ + iε γ AẼ = 0 ,

ε∂t n + i ε
(
γ tẼAψ − γ tϕAẼ

)
= 0 ,

ε∂t N + i ε
(
γ AẼtϕ− γ ψtẼA

)
= 0 .

with A := N − ψtϕ− (n + tψϕ)Id.
The characteristic variety of the operator L in (12.17), which now acts on the components

(B̃, Ẽ, ϕ, ψ) is the union of {τ = 0}, {τ = ±
√

(ω2,1)2 + 2|γ|2ω2,1} and the variety C of equation

(12.43) |η|2 = τ2(1 + χ(τ)) , χ(τ) :=
2ω2,1|γ|2

(ω2,1)2 − τ2
.

Optical wave numbers ξ = (τ, η) satisfy (12.43). When ξ ∈ C and η 6= 0, the kernel of L(iξ) is
parametrized by E ∈ η⊥ and the ohter components are

(12.44) B = −1
τ

η × E, ϕ =
γ

ω2,1 − τ
E , ψ =

γ

ω2,1 + τ
E .

Moreover, f = (fB , fE , fϕ, fψ) is in the image of L(iξ) if and only if

(12.45) −η × fB + τ
(
fE +

ω2,1γ

ω2,1 − τ
fϕ +

ω2,1γ

ω2,1 + τ
fψ

)
∈ Cη .

Consider β = (ω, κ) ∈ C with κ 6= 0 and assume that νβ is not characteristic when ν /∈
{−1, 0, 1}. The only frequency νβ which is characteristic for ε∂t is ν = 0. The polarisation
condition PU0 = U0 of the general theory of [DR] or in §2 shows that the principal terms u0 and
v0 satisfy

(12.46) u0(x, θ) =
1∑

ν=−1

uν(x) eiνθ , P (νβ)uν = uν , v0(x, θ) = v0(x)

and transport equations of the form

(12.47)

{
P (νβ)L1(∂x)uν + P (νβ) Φ(u0,v0) = 0

∂t v0 +
〈
Ψ(u0,v0)

〉
= 0 ,

where P (νβ) is the spectral projector on kerL(iνβ) and 〈v〉 denotes the mean value of the periodic
function v. In general, these equations couple u±1 and (u0, m0). However, (u0, v0) remain equal
to zero when their initial data of vanish. This means that instead of (12.46) one has

(12.48) u0(x, θ) =
∑

ν∈{−1,1}
uν(x) eiνθ , P (νβ)uν = uν , v0(x, θ) = 0 .
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This follows from the fact that if u0 satisfies (12.46), then

(12.49) P (0) Φ(u0, 0) = 0 ,
〈
Ψ(u0, 0)

〉
= 0 .

The first equality follows from the fact that Φ(u, 0) is cubic in u and therefore the average of
Φ(u0, 0) vanishes when u0 has only the harmonics +1 and −1. To prove the second, note that

Ψ(u, 0) =
(
−γ(tẼψ)(tϕψ)− γ(tϕψ))(tẼψ) + γ(tϕψ)(tϕẼ) + γ(tϕẼ)(tϕψ)
−γ(tϕẼ)ψ ⊗ tϕ− γ(tϕψ)Ẽ ⊗ tϕ + γ (tẼψ)ψ ⊗ tϕ + γ(tϕψ)ψ ⊗ tẼ

)
.

Thus, when u0 is given by (12.46), the polarisation conditions (12.44) imply

Ψ(u0, 0) =
∑

ν1,ν2,ν3,ν4

ei(ν1+ν2+ν3+ν4)θ(ν1 + ν2 + ν3 + ν4)ω
(

(tϕν1ψν2)(
tϕν3ψν4)

−(tϕν1ψν2)ψν3 ⊗ tϕν4

)

Thus the average vanishes and the second identity of (12.49) is proved. When the principal profile
satisfies (12.48) the transport equation (12.47) reduces to

P (νβ)L1(∂x)uν + P (νβ) f(u0, 0) = 0 , ν ∈ {−1, 1} .

For ν = ±1, P (νβ)L1P (νβ) is the transport field ∂t + vg ·∂y where the vg is group velocity deduced
form the dispersion relation (12.43)

vg :=
∂(−τ)

∂η
(κ) =

−κ

ω(1 + χ(ω) + ωχ′(ω)/2
.

Thanks to (12.31), the Fourier coefficients u±1 are determined by Ẽ±1. Thus the equations (12.37)

are equations for Ẽν . For real solutions, Ẽ−1 = Ẽ1, and using the characterization (12.32) of the
image of L(iβ), we end up with the following equation for Ẽ1 :

(12.50) (∂t + vg · ∂y) Ẽ1 + i c1|Ẽ1|2Ẽ1 + ic2 (tẼ1 · Ẽ1)Ẽ1 = 0 ,

where c1 and c2 are real constants which we do not compute explicitely. This is the familiar form
of the equations found for differents models in nonlinear optics ([Bo], [NM], [Do] and [DR]).

B) The case ΓII 6= 0. Application to stimulated Raman scattering.
This is the general case of equation (12.15) and we use the scaling (12.37). The explicit form

of the equations for (B̃, Ẽ, ρ̃I) and σ̃ is

(12.51)



ε∂tB̃ + ε curlẼ = 0 ,

ε∂tẼ − ε curlB̃ − i tr(ΓI [Ω, ρI ]) + itr(ΓI(Ẽ ·G))

+ iεtr
(
Γ[Ẽ · Γ, ρ̃I ]

)
− i εtr(ΓII [Ω, σ̃ − ρ̃Jρ̃]) = ε2F1 ,

ε∂t ρ̃I + i [Ω, ρ̃I ] − i Ẽ ·G − i ε[Ẽ · ΓII , ρ̃I ] = ε2F2 ,

ε∂t σ̃ + i [Ω, σ̃] − i ε [Ẽ · ΓII , σ̃] = ε2F3

where we do not specify F1, F2 and F3 because they do not affect the principal terms of the
expansions.
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The stimulated Raman scattering is modelled through a resonant three phases geometric
optics expansion for equations (12.7) with Ω and Γ given by (12.13). We jump directly to the
corresponding system (12.51). Because we are interested in the computation of the principal term
of the asymptotic expansion, we can assume that F1 = F2 = F3 = 0. Moreover, assuming that the
initial data of σ̃ vanish, we find that σ̃ = 0 (or is O(ε)) and therefore can be neglected.

The equations for u = (b̃, ẽ, ρ̃I) read

(12.52)



ε∂tb̃ + ε∂y ẽ = 0 ,

ε∂tẽ + ε∂y b̃ − i ω3,1(γ1,3ρ̃3,1 − γ3,1ρ̃1,3) + i εω3,2(γ2,3ρ̃3,1ρ̃1,2 − γ3,2ρ̃2,1ρ̃1,3) = 0 ,

ε∂tρ̃1,3 − iω3,1ρ̃1,3 + iẽγ1,3 + i ε ẽ ρ1,2γ2,3 = 0 ,

ε∂tρ̃3,1 + iω3,1ρ̃3,1 − iẽγ3,1 − i ε ẽ γ3,2ρ2,1 = 0 ,

ε∂tρ1,2 − iω2,1ρ1,2 + i ε ẽ ρ1,3γ3,2 = 0 ,

ε∂tρ2,1 + iω2,1ρ2,1 − i ε ẽ γ2,3ρ3,1 = 0 .

This is of the form

(12.53) L(ε∂x)u + εf(u) = 0

where f is quadratic. As a consequence of the equality γ1,2 = 0, the linear operator L(ε∂x) splits
into two independent systems :

(12.54) L1(ε∂x)


b
e

ρ1,3

ρ3,1

 :=


ε∂tb + ε∂ye, ,

ε∂te + ε∂yb− i ω3,1(γ1,3ρ̃3,1 − γ3,1ρ̃1,3) ,

ε∂tρ1,3 − iω3,1ρ1,3 + ieγ1,3 ,

ε∂tρ3,1 + iω3,1ρ3,1 − ieγ3,1 ,

and

(12.55) L2(ε∂x)
(

ρ1,2

ρ2,1

)
:=

{
ε∂tρ1,2 − iω2,1ρ1,2 ,

ε∂tρ2,1 + iω2,1ρ2,1 .

The characteristic varieties of L1 and L2 are

(12.56)

 CL1 = {ξ = (τ, η) ∈ R2 ; η2 = τ2(1 + χ(τ)} , χ(τ) :=
2ω3,1|γ1,3|2
(ω3,1)2 − τ2

,

CL2 = {ξ = (τ, η) ∈ R2 ; τ = ±ω2,1} .

Raman interaction occurs when a laser beam of wave number βL = (ωL, κL) ∈ CL1 interacts with
an electronic exitation βE = (ω2,1, κE) ∈ CL2 to produce a scattered wave βS = (ωS , κS) ∈ CL1 via
the resonance relation

(12.57) βL = βE + βS .

One further assumes that βL /∈ CL2 , βE /∈ CL1 and βS /∈ CL2 .
To fit the general framework of expansions (12.5), introduce β := (βL, βS). Then, the principal

profile u0(x, θ) has a two dimensional fast variable θ ∈ T2 and its Fourier coefficients satisfy

(12.58) P (νβ)uν = uν , P (νβ)L1(∂)P (νβ)uν + P (νβ)f(u0) = 0.
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Because f is quadratic, the conditions on (βL, βS , βE) show that (12.58) has solutions with spec-
trum contained in {±(1, 0),±(0, 1),±(1,−1)}. We now restrict our attention to these solutions. It
is convenient to label the Fourier coefficients u±L, u±S and u±E so that

(12.59) u0(x, β · x/ε) = uL(x)eiβLx/ε + uS(x)eiβSx/ε + uE(x)eiβEx/ε + u−L(x)e−iβLx/ε + . . .

In addition, introduce the notations uL = (bL, eL, ρj,k,L) etc. The polarization conditions imply
that b±E = e±E = ρ1,3,±E = ρ3,1,±E = 0 and ρ1,2,±L = ρ1,2,±S = ρ2,1,±L = ρ2,1,±S = 0. Moreover,
ρ1,2,−E = ρ2,1,E = 0,

bL = − 1
ωL

κL × E, ρ1,3,L =
γ1,3

ω3,1 − ωL
eL , ρ3,1,L =

γ3,1

ω3,1 + ωL
eL ,

and similar formula hold for the subscripts −L and ±S. Furthermore, for real fields and hermitian
density matrices, one has the relations

e−L = eL , e−S = eS , ρ2,1,−E = ρ1,2,E .

Therefore, the profile equations (12.58) reduce to the following system for (eL, eS) and σE := ρ1,2,E ,
which is the familar equations of three waves mixing ([Bo], [NM], [PP]).

(12.60)


(∂t + vL∂y)eL + i c1 eS σE = 0 ,

(∂t + vS∂y)eS + ic2 eS σE = 0 ,

∂tσE + i c3 eL eS = 0 .

Here vL and vS are the group velocities associated to the frequencies βL and βS respectively. We
refer for example to [Bo], [NM] for an explicit calculation of the constants ck and the discussion of
the amplification properties of this system.

C) Long time diffraction.

Consider the system (1.1). Consider the new scaling

(12.61) (B, E, P, Q) = ε(B̃, Ẽ, P̃ , Q̃) , N = N + ε2Ñ

and introduce the new variable n as in (1.7). Then (1.1) is equivalent to

(12.62)



ε ∂tB̃ + ε curlẼ = 0 ,

ε ∂tẼ − εcurlB̃ = −Q̃ ,

ε ∂tP̃ − Q̃ = 0 ,

ε ∂tQ̃ + Ω2 P = γ1 N Ẽ + ε2 γ1

(
n − c (Q̃2 + Ω2P̃ 2)

)
Ẽ ,

ε∂tn = ε2 γ2

N

(
n − c (Q̃2 + Ω2P̃ 2)

)
Q̃ · Ẽ .

This equation is of the form

(12.63) L(ε∂x)Ũ + ε2f(Ũ) = 0 ,
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and long time diffractive geometric optics expansions are available in [Lan] (see also [DJMR] and
[JMR 7] for nondispersive equations). Formal solutions of (1.1) of the form

(12.64) U(x) ∼ ε
∑

εnUn(εt, x− vgt, β · x/ε)

were computed in [Do]. They correspond to formal solutions of (12.62) of the form

(12.65) Ũ(x) ∼
∑

εnUn(εt, x− vgt, β · x/ε)

The existence of exact solutions of (12.63) which satisfy (12.64) uniformly for times t ≤ T∗/ε
follows from [Lan]. In particular, this justifies the stability of the formal solutions found in [Do].

This discussion also applies to the general form of Maxwell-Bloch equations discussed above
when ΓII = 0.
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