Viscous boundary layers in hyperbolic-parabolic
systems with Neumann boundary conditions

OLIVIER GUES! GUY METIVIER] MARK WILLIAMS? KEVIN ZUMBRUNY

Revised: April 18, 2013

Abstract

We initiate the study of noncharacteristic boundary layers in hyperbolic-parabolic
problems with Neumann boundary conditions. More generally, we study boundary lay-
ers with mixed Dirichlet—-Neumann boundary conditions where the number of Dirichlet
conditions is fewer than the number of hyperbolic characteristic modes entering the do-
main, that is, the number of boundary conditions needed to specify an outer hyperbolic
solution. We have shown previously that this situation prevents the usual WKB ap-
proximation involving an outer solution with pure Dirichlet conditions. It also rules out
the usual maximal estimates for the linearization of the hyperbolic-parabolic problem
about the boundary layer.

Here we show that for linear, constant-coefficient, hyperbolic-parabolic problems one
obtains a reduced hyperbolic problem satisfying Neumann or mixed Dirichlet—Neumann
rather than Dirichlet boundary conditions. When this hyperbolic problem can be solved,
a unique formal boundary-layer expansion can be constructed. In the extreme case
of pure Neumann conditions and totally incoming characteristics, we carry out a full
analysis of the quasilinear case, obtaining a boundary-layer approximation to all orders
with a rigorous error analysis. As a corollary we characterize the small viscosity limit for
this problem. The analysis shows that although the associated linearized hyperbolic and
hyperbolic—parabolic problems do not satisfy the usual maximal estimates for Dirichlet
conditions, they do satisfy analogous versions with losses.

Couches limites visqueuses pour des systéemes hyperboliques—paraboliques
avec condition auzx limites de Neumann

Résumé
Nous initions ’étude des couches limites non caractéristiques de systemes hyperboliques—
paraboliques avec condition aux limites de Neumann. Plus généralement, nous étudions les
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couches limites avec condition aux limites de type mixte Dirichlet-Neumann, lorsque le nom-
bre de conditions aux limites de Dirichlet est inférieur au nombre de modes caractéristiques
rentrant dans le domaine, pour I'opérateur hyperbolique.

Dans le cas des systemes linéaires a coefficients constants, nous obtenons un systeme
hyperbolique limite avec des conditions aux limites de type Neumann ou Dirichlet-Neumann.
Sous de bonnes hypothéses nous construisons des développements en couches limites BKW
tout ordre.

Dans le cas extréme ou tous les modes caractéristiques sont rentrants et avec des condi-
tions de Neumann, nous traitons completement le cas quasilinéaire, prouvant la convergence
vers un probleme hyperbolique limite avec des conditions de Neumann au bord. Les esti-
mations maximales de stabilité obtenues pour les problemes linéarisés, sont plus faibles que
celles typiques correspondant a des conditions de type Dirichlet.

Mathematics subject classification: 35Q30 (35B35 76D05)
Key words: Boundary layers, mixed Dirichlet—-Neumann conditions, Evans-Lopatinski
condition; Couches limites, conditions miztes Dirichlet—Neumann, condition Evans-Lopatinski.

1 Introduction

In the study of noncharacteristic boundary layers of hyperbolic-parabolic systems, phys-
ical applications motivate the inclusion of Neumann boundary conditions along with the
usual Dirichlet boundary conditions that have traditionally been considered for such prob-
lems (see, e.g., [GS, R2, R3] and rererences therein). In particular, as discussed in [NZ1,
NZ2, GMWZ5, R], suction-induced drag reduction along an airfoil® is typically modeled by
the compressible Navier—Stokes equations

Op + div(pu) =0

Or(pu) + div(pu'u) + Vp = epAu + e(p + n)Vdivu

O (pE) + div((pE + p)u) = kAT + epdiv((u- V)u)
+e(p+n)V(u - divu)

(1.1)

on an exterior domain €2, with no-slip suction-type boundary conditions on the velocity,
urloo = 0, uylag = V() < 0, and either prescribed or insulative boundary conditions on
the temperature, T'|9o = Tyaeu(x) or 0,T|asn = 0.

The study of such mixed-type boundary layer problems was initiated in [GMWZ5,
GMWYZ6] for certain combinations of Dirichlet and Neumann boundary conditions in the
viscous problem. However, the ansatz used there, which assumes that the residual hyper-
bolic problem should have only Dirichlet boundary conditions, breaks down when there
are too many Neumann conditions in the viscous problem - more precisely, when there
are too few Dirichlet conditions, in the sense that the number of scalar Dirichlet condi-
tions in the viscous problem is strictly less than the “correct” number of residual boundary
conditions for the hyperbolic problem. In such cases, the construction in [GMWZ5] of
“C-manifolds” of reachable states determining Dirichlet boundary conditions for the outer,

'See [S, Br], or NASA site http://www.dfrc.nasa.gov/Gallery/photo/F-16X1.2/index.html



hyperbolic solution fails, due to a lack of transversality, as a consequence of which (together
with the low-frequency decomposition of [R2]) the maximal linearized estimates used in
[GMWZ5, GMWZ6] to establish rigorous convergence may be shown to fail as well. As
noted in [R], the case of (1.1) with incoming supersonic velocity falls into this category, so
is not accessible by the techniques developed up to now.

Clearly, in such cases, a new analysis is required. Several questions arise, including;:

(1) Does the hyperbolic-parabolic problem have a solution on a fixed time interval
independent of €7

(2) Is there a residual hyperbolic problem whose solution gives the small viscosity limit of
solutions to the hyperbolic-parabolic problem? In particular, what are the correct residual
hyperbolic boundary conditions? And, are these uniquely determined?

(3) What are the maximal linearized estimates that we may expect in this context, both
for the residual hyperbolic and full hyperbolic—parabolic problem?

In this paper, we answer these questions completely in the extreme case of pure Neumann
boundary conditions and totally incoming hyperbolic characteristic modes, showing that
there is a reduced hyperbolic problem with Neumann instead of Dirichlet conditions, and
that in place of the standard Dirichlet-type linearized estimates for the reduced hyperbolic
and full hyperbolic—parabolic systems, there hold modified versions with losses, sufficient to
close a rigorous convergence argument. As a corollary we characterize the small viscosity
limit for the quasilinear problem.

In the general, linear constant-coefficient case, we present two approaches to constructing
a formal boundary-layer expansion to all orders of the solution to the hyperbolic-parabolic
problem. In general the reduced hyperbolic (outer) problem features mixed Dirichlet—
Neumann boundary conditions. In the pure Neumann case we prove that the exact and
approximate solutions to the hyperbolic-parabolic problem are close when ¢ is small.

Our results motivate the further study of first-order hyperbolic initial-boundary-value
problems with Neumann or mized Neumann—Dirichlet boundary conditions. This is at first
sight a counterintuitive problem, since the normal derivative on the boundary is not con-
trolled by the usual hyperbolic solution theory, and it does not seem to have received much
attention before now. We regard this as one of the most interesting aspects of the analysis.

1.1 Linear systems with Neumann boundary conditions

First we examine a linear problem for which the above questions have a positive, and

. . . —d
rather simple, answer. Let us consider the parabolic boundary value problem on R ++1 =
{z = (2/,29) = (x0,2",24) € R : 25 > 0}:

Lu = f+eAzuin {zq> 0}, (1.2)
daujgy=0 = 0,
Ujt<o — 0,

where L is a symmetric hyperbolic operator with constant coefficients

d
L:6t+ZAj8j, t = xg

=1



and f € H“(@}jd} with fii<o = 0. The N x N matrices A; are constant (for now), and

the boundary is noncharacteristic:
det Ay # 0.

We look for an approximate solution of the form

x x
u® () = uo(x) + euq (z, ?d) + e2uy(, ?d) +...

with the usual profiles
uj(w, 2) = w;(x) +uj(a’,2), G =1,
where u; is an “outer” solution, and u} is a boundary layer profile which goes to 0 as z — oo.

J

Remark 1.1. One could postulate a more general profile ug(x,z) = uy(z) + ui(2’, ) at
level j = 0; however, the resulting e~! order profile equations Az0,u$ — 0%uf = 0, with
boundary condition 0, (ug)|;—o = 0 would give then d,u$ = 0, recovering the assumption
ug = up(x).

The profile equation obtained at the order ° is
Lug + Agd,uq — aful = f.
which leads to the two equations for up and uj:
Luy = f (1.5)

and
Ag0.ul — 0*uf = 0. (1.6)

The boundary condition (1.3) gives at the order £°:
(Qatio)|z4=0 + (0:u) =0 = 0.
Hence the solution to the boundary layer equation (1.6) is
ui (2!, 2) = —e* AT 9 qup (2, 0). (1.7)

It follows that ] is decreasing at +o0 if and only if O4ug|s,=0 lies in E_(Ag), the negative
eigenspace of Ag:
6duo‘xd:0 S E_(Ad). (1.8)

But ug satisfies Lug = f; thus

d—1
Oquo = —A7" Y Aj05ue + Ay f
0

and the condition (1.8) is equivalent to

Huojgy=o € A7 flog=0 + E—(Aa), (1.9)



where H is the tangential operator H := A;l Zg_l A;0;. So we are led to solve the mixed
problem

Lug = fin{zq> 0}, (1.10)
Huopymo € Ay flzg=o + E-(4a), (1.11)
U0|t<0 = 0. (1.12)

(The boundary conditions may be rephrased via projections as described in Remark 1.4.)
To solve this problem introduce the unknown v := Hug, which is the solution of the
symmetric hyperbolic problem with dissipative boundary conditions

Hv+0qv = H(A;lf) in {z4 > 0}, (1.13)
Vag=0 € Ag flzg=o +E—(Aa), (1.14)
o = 0. (1.15)

Hence v is completely determined; thus ug is also uniquely determined as the unique solution
of
Hup=v, upp<co=0

(here considered as an initial-value problem defined on slices x4 = constant). Then u] is
uniquely determined by formula (1.7), and decays to zero at +oo.

The construction follows the same pattern for the next terms. For example, setting
L'=0,+ Z“ll_l A;0; we obtain at the order ! the profile equation

Luy + L'u} + Agd.us — 0%us = Aug.
which leads to the two equations for u; and u3:
Lu; = Auyg (1.16)

and
Ago.ul — 0%uly = —L'uj. (1.17)

The boundary condition (1.3) gives at the order &'
(adﬂl)\mdzo + (azU§)|z=o =0.
One can solve as before these equations which gives a unique solution for u; and u3.

Theorem 1.2. uf(z) = ug(z) +euy(z, xq/e) +- - -+ ¥ up(x, z4/8) + O(e¥) in L?((—o0, T] x
R‘i) for all given T > 0 and all k € N as e — 0.

Proof. Since we can construct an approximate solution to any order, it is sufficient to prove
an estimate of |u[z2(q,), where Q = (—o0,T] x Ri, for the solution w to the problem
(1.2)(1.3)(1.4). First we estimate the normal derivative. Applying J; to the equation
(1.2) and using condition (1.3) leads to a hyperbolic-parabolic problem with a homogenous
Dirichlet boundary condition for dqu. A simple integration by parts yields (with |u|, =
e ul 2 0p):

£|Vx8du|3 + ’y\adu\% < ’y*l|8df\3.
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Going back to the system (1.2), taking the product on the left by u, and integrating by
parts leads to
elVuly +luly S 47+ luly|0auls.

Hence using the previous estimate one gets
elVul2 +yul2 S 7R +v7%0af 2,

and finally
luly < ’Y_lmv + 7_2‘adf’7' (1.18)

Applying the estimate (1.18) to the error w = u® — ug,,,.,,, With the function f replaced
by O(e") and 9yf replaced by O(e"~1) for r chosen large enough (i.e., 7 > 2), proves the
theorem. O

An analogous result with convergence in L? replaced by convergence in L™ can easily
be obtained after getting higher derivative estimates.

Remark 1.3. The approach followed here is similar to the idea of “filtering” introduced
by Serre [Sel] in the somewhat different context of second-order hyperbolic problems with
variational structure,? in which a degenerate problem is decomposed into the composition
of problems of standard type, each inducing its own losses/gains.

1.2 Quasilinear systems with Neumann boundary conditions

Next we derive a candidate for the residual hyperbolic problem in the quasilinear case.
Consider the nonlinear parabolic problem

L,(u) = f+eAyuin {xg> 0}, (1.19)
Ogtzy—o = O, (1.20)
upey = O (1.21)

where L, is a symmetric hyperbolic operator

d
L,=0;+ ZAj(U)(?j,
1

and f € H™® (@fd) with fl;<o = 0. The matrices A; are smooth and symmetric, and the

boundary is noncharacteristic:
det Ag(u) #0, YueRY.

Again we expect an expansion of the form

T T
u®(z) = uo(x) + eus (z, ?d) + %uy(, ?d) +...,

2 Also featuring Neumann, or “free,” boundary conditions.



that is, a “weak” layer of order ¢ in amplitude. This may be deduced exactly as in the linear
constant-coefficient case, by examination of the order e~! profile equations as described in
Remark 1.1.

The equations for the terms of order ¥ give

Luguo + Aq(ug)0:uf — O2uf = f.

This equation splits into two parts

Ag(uo|zy=0)0-u] — O*uf =0 (1.22)
and
Ly up = f, (1.23)
and the boundary condition at the order €° is still
(Od10)|34=0 + (02u])|s=0- (1.24)
The solution to the boundary layer equation (1.22) is
wi(a!, z) = —e#Aa@0) A~ (4 (2! 0)) Dguo (2, 0). (1.25)

This solution goes to 0 at +oo if and only if
dquo(z',0) € E_(Ag(uo(2',0))). (1.26)
Using the equation (1.23) we rewrite this condition:
Hyq (ug) € ALt (uo(2',0)) flzumo + E— (Aq(uo(z',0))).
with H, := Ag(u)~ 1L, — 04. Writing instead

we obtain the following hyperbolic boundary problem obtained for ug:

Ly(u) = f in(-o00,T]xR% (1.27)
Ly(u) € flzy=o+E_(Aq(u)) on {zg =0}, (1.28)
<o = 0. (1.29)

Remark 1.4. We do not know if this problem is well-posed in general. The boundary
conditions (1.28) are unusual; they can be as rephrased as

7 (Aa()) (L (w) = fnymo) = 0 on {g = 0} or

(1.30)
74 (Ag(u)dqu = 0 on {xg = 0}

(equivalently, 71 0qu = 0), where 71 (A(u)) is the projection onto Ey (Ag(u)) along E_(Ag(u)).
Yet, in the constant coefficient linear case the corresponding problem (1.10), (1.11), (1.12)
turns out to have a unique natural solution.

In the totally incoming case where A4(u) > 0 and thus E_(Ag4(u)) = 0, one can solve
(1.30) by first solving a hyperbolic system on the boundary, as we describe further be-
low. A high-order approximate solution to the hyperbolic-parabolic problem (1.19) can be
constructed, and the small viscosity limit can be completely analyzed.



1.3 Assumptions and main result.

Our main result treats a quasilinear hyperbolic-parabolic problem where the questions
posed at the beginning can be answered completely, the case where all characteristics for
the hyperbolic problem are incoming: Ag(u) > 0. We study the forward problem on

Ry = {2 = (¢/,2q) = (20,2", 24) € R g > O}:
d
E(ue) := Z Aj(u)0y;u — eAu = f
=0

(1.31)
&Cdu\xd:o =0

u=0inx9 <0

where the A; are N x N matrices (not necessarily symmetric), A4(u) > 0, and Ag = I.
The approximate solution, which is constructed in section 2.1, has the form

ud(z) = u®(z) + eul(z) 4 - - + eMuM(2) (1.32)

and satisfies

d
E(u®) = ZAj(u“)(?Iju“ —eAu = f+eMR,
=0 (1.33)
Oy z4=0 = 0

u*=01in zg < 0.

As a consequence of the totally incoming assumption, there is no fast transition layer in
u®. Nevertheless, the nonlinear stability of u* and the analysis of the small viscosity limit
turn out to be delicate questions, because the Evans function for this problem vanishes at
zero frequency. Thus, u® can be expected to be at best “weakly stable”.

The low frequency Evans function is computed explicitly in section 2.4 and its degeneracy
near 0 is precisely estimated.®> This estimate allows us to construct degenerate Kreiss
symmetrizers at the symbol level in section 2.5, and these symmetrizers are used there to
prove resolvent estimates for the frozen coefficient linearized problem.*

The resolvent estimates are quantized in section 2.6 using the pseudodifferential calculi
outlined in the Appendix. This section provides the main variable coefficient L? estimate,
Theorem 2.6, for the problem obtained by linearizing the original system (1.31) around the
approximate solution u®. Fortunately, the L? estimate exhibits no loss of derivatives, but
there is a loss of a factor of /¢ when the boundary datum g = 0. This loss in the main
estimate, which reflects the degeneracy in the Evans function, is the source of most of the
technical difficulties in the paper, because it prevents us from absorbing terms that would
otherwise be absorbed easily as “error terms” in the estimates.

30utside a neighborhood of zero frequency, the Evans function is nonvanishing by (1.18); recall that the
layer in the totally incoming case is constant, so the analysis of Section 1.1 applies.

“Degenerate symmetrizers were used also in [GMWZ2], but there the degeneracy occurred in the elliptic
bloc (Sp in (2.46)), rather than the hyperbolic block.



Higher derivative estimates are proved in section 2.7 using an appropriate enlarged
system, and these estimates are then used in section 2.8 to solve the nonlinear error equation
satisfied by u. — u® by Picard iteration.

We let Qp = {z = (2/,24) = (z0,2",24) € R . 25 > 0, 19 < T} and sometimes
write t = xg.

Assumption 1.5. I.) The N x N matrices A;(u) in the system (1.31) are C*> and sym-
metric, Ao = I, and Ag(u) > 0. Thus, in particular the boundary is noncharacteristic.

II.) Let f € HS(@iﬂ) for s large (as in Theorem 2.18), f = 0 in t < 0, and let
uo(x) € Qg denote the solution to the residual hyperbolic problem:

d
Ogug + ZAj(uo)ajUQ =finxg>0
o (1.34)
Oquo|z =0 =0
ug =01t <O.

Assume that for x € Qg, the function ug takes values in a neighborhood of 0, U, such
that for uw € U, the hyperbolic operator Oy + Z;lzl A;(u)0; has semisimple characteristics of
constant multiplicity.

Remark 1.6. The positivity of A; implies that the boundary condition in (1.34) agrees with
(1.30). Assumption II is a familiar condition implying that the hyperbolic system satisfies
the “block structure” condition first formulated by Kreiss [K] for constructing symmetrizers.
We could replace Assumption II by other weaker assumptions that imply block structure.
We could also require that such an assumption holds only for  near x4 = 0 with only minor
changes in the proofs.

Theorem 1.7. Under Assumption 1.5 there exists an €y such that for 0 < e < ¢y the
parabolic problem (1.31) has an exact solution us on S, of the form

u(z) = ul + efv,, (1.35)

where u? has the expansion (1.32) in which the leading term is the solution ug to the residual
hyperbolic problem (1.34). The exponent L can be chosen as large as desired provided the
approximate solution is constructed with sufficiently many terms (M (L)) and in that case
we have:

\80‘(1)5, Eadvg)’Loo S 1 (1.36)
forla] < L, 0 <e<e. Here d=(0p,...,0q-1)-

This Theorem is an immediate corollary of the more precisely stated Theorem 2.18,
which is phrased in terms of U = (v, e04v).

Corollary 1.8 (Small viscosity limits). Let u. be the solution to the hyperbolic-parabolic
system (1.31), u? the approzimate solution (1.32) to that system, and uq the solution to the
residual hyperbolic problem (1.34). Then

e = e, < C* (131)
|u5 - UO‘LOO(QTO) < Ce. .



1.4 Mixed boundary conditions: toward a general theory

We conclude with a discussion of the case of mixed Dirichlet—Neumann boundary con-
ditions in the linear constant-coefficient case, making contact with the previous work of
[GMWZ5]. Consider again a linear constant-coefficient boundary value problem

Lu = f+eAzuin {z4 > 0},
for L as in section 1.1,> with mixed boundary conditions

Fulg,—0 = 01,

(1.38)
[204t|zy—0 = g2

satisfying

rankI'; + rankl'y = rank <£1> = N. (1.39)
2
Let us suppose now that f, g1, and go vanish in ¢ < 0 and satisfy high-order corner com-
patibility conditions at ¢t = 0, 4 = 0. We seek u such that v =0 in ¢ < 0.
We seek a formal boundary-layer expansion

X X X
u® () = uo(z, ?d) + +euy(z, ?d) + €2u2(x, ?d) + ...

with profiles
uj(z, 2) = uj(x) +uj(a, 2), j >0,

where u; is an “outer” solution, and u} is a boundary layer profile which goes to 0 as z — oo.

Denote by rankI'y =: D the number of Dirichlet conditions, rankI's =: A/ the number
of Neumann conditions, dim E; =: Z the number of incoming modes, and dimE_ =: O the
number of outgoing modes, so that

D+N=Z+0O=N.

Henceforth, we may (and do) take I'; to be a D x N matrix and I'; to be an N x N matrix.
We divide the analysis into two cases:
(i) D > Z, or, equivalently, N' < O, and
(ii) D < Z, or, equivalently, N' > O.
The first case is the one considered in [GMWZ5], and treated for problem (1.1) in [R]. The
second includes the case of Neumann boundary conditions treated here, and also the case
of problem (1.1) left untreated in [R]. As we shall see, they have quite different behavior.
We will see that in case (i) the reduced boundary condition on uy is derived as a solvability
condition for obtaining uf;, while in case (ii) u§ = 0 and the reduced boundary condition on
u is derived as a solvability condition for obtaining u]. We begin by recalling, with some
simplifications possible for this linear problem, the treatment of case (i) in [GMWZ5].
Case (i). The general solution of A40.uf — 02u}, which decays to 0 as z — oo, has the
form

ug(x', 2) = e d(2)) (1.40)

SEvidently, we can extend as in Sec. 1.3 to the nonsymmetric case, at the expense of further assumptions.
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where d € E_(Ay) is arbitrary (here and henceforth we suppress z'). The e~! order bound-
ary condition I'y0,ug(0) = 0 implies

8zu8(0) € ker (F2’1E_(Ad)) and thus US(O) S A(;l ker (F2|]E_(Ad)) . (1.41)
We make the following transversality assumption:

(a) T'9 has full rank, namely N, on E_(4y)

o (1.42)
(b) T'1 has full rank on X := A7 " ker (Da|g_(a,)) -

Since dimE_(Aq) = O, Assumption 1.42(a) implies dim(ker (U2|g_(4,))) = O —N and thus
(1.42)(b) implies
dimDiX = O — N, (1.43)

Since the subspace I''X C R? and D =Z + O — N, I'1 X is equal to the null space of some
7 x D matrix, call it . Now use the order £ Dirichlet condition

I'1(19(0) + u5(0)) = g1 (1.44)
to see that there exists uj(0) € X satisfying (1.44) if and only if
I'1(u(0)) — g1 € T X. (1.45)
In other words
T4 (uo(0)) = g1, (1.46)

where f‘l = KTI'y and g1 = Kg;. Observe that fl is an Z x N matrix of rank Z as required.
The reduced hyperbolic problem is therefore
Lu=f
f‘lgo =gronzg=0 (1.47)
uy =01int <0,
which is well-posed provided that the usual Kreiss Lopatinski condition® is satisfied. Con-
tinuing this process, one obtains an expansion to all orders. In this case, boundary layers

are amplitude O(1) and the reduced boundary conditions are purely Dirichlet.
Case (ii). We now turn to case (ii), where we make the assumption

Iy is full rank on E_(Ay). (1.48)

Since N' = rankl'y > O = dimE_(4,)), we find from the e~! order profile equation
I'204ui(0) = 0, and the fact by (1.40) that Jyug € E_(Ag), that

Oqugy = up = 0. (1.49)

5In [GMW?Z5] it is shown that both the Kreiss-Lopatinski and transversality conditions follow from a
condition on the low-frequency behavior of an Evans function.
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Thus, the boundary-layer expansion features a weak layer of amplitude O(e), just as in the
full Neumann boundary condition case. This implies by the order € boundary condition
I'yuo = g1, and the weak layer property ug = ug, that the Dirichlet condition is inherited
unchanged by the outer solution, as

[iyglz,=0 = g1- (1.50)
The order £ Neumann condition is
FQ(adu0|xd=0 + azuﬂz:O) = g2. (151)

We deduce the reduced Neumann condition on ug as a solvability condition that allows us
to find a solution O,uf|,—o € E_(A44) of (1.51). Recalling that I's is an N’ x N matrix, we
denote by S the subspace of RV given by

S = Dy(E_(Ay)). (1.52)

By (1.48) the dimension of § € RV is ©. Thus, S coincides with the kernel of an (N —O) x N/
matrix. Choose one such matrix and call it M.

By the definition of M, in order to find 0,uj|,—0 € E_(A44) satisfying (1.51) we must
have

M (T2(0quo|z,=0) — g2) = 0, (1.53)
or in other words
T204u0|zy=0 = G, (1.54)

where T's = MTy and Jo = Mgs. As expected, [y is an (N — O) x N matrix of rank
(N — 0), giving us the remaining N'— O boundary conditions needed (in addition to the
D Dirichlet conditions) for the hyperbolic problem.

Combining, we obtain the reduced hyperbolic boundary-value problem

Lug= finxyg >0

Tuoley—0 = g1 (1.55)

T20quo|z,=0 = §o
ug =01in ¢t < 0.

Remark 1.9. a) In the case of full Neumann boundary conditions we have N' = N = Z+0,
and I'y is a nonsingular N x N matrix, which we may therefore always take to be Iy. Then
we have S = E_(Ag) (1.52) and we may take M = T to be an (N — ©) x N matrix whose
rows span E (4y).

b) In the totally incoming case with full Neumann boundary conditions we have O = 0,
S = {0} ¢ RY, and we can take M = Idy. So Dy=Ty=1.

¢) In the totally incoming case with one Neumann boundary condition, we have ' = 1,
D=N-1,58={0} Cc R!, and we may take M = 1. Thus, ['s = I'y, a 1 x N matrix.

12



d) In the totally incoming case we have E_(A;) = {0}; thus, our construction of the
the approximate solution shows that u;‘(x’ ,2) = 0 for all j. In other words, the layer is
absent (or constant).

e) In the situation D = Z on the boundary of case (i), assuming (1.48), we find by the
argument of case (ii) that the amplitude of boundary layers is O(¢). In other words, the
layer is absent to lowest order also in this boundary case.

By introducing variations on the method of Section 1.1, we discuss next two approaches
to obtaining a well-posedness theory for problems of the form (1.55). When one has such a
theory, one can proceed as in section 1.1 to construct the boundary layer expansion to any
order.

1.5 The reduced hyperbolic problem: approach based on Kreiss sym-
metrizers.

Substituting for djug the expression
d—1
Oqupg = —A;l(ﬁtuo + Z AjajU()) + Aglf, (1~56)
j=1
and taking the Laplace-Fourier transform with Laplace frequency ~ + i, 7,7 € R!, and
Fourier frequency n € R%!, we convert the boundary operator appearing in (1.56) to the
homogeneous degree one boundary symbol
d—1
—A M (it 4 injAy) (1.57)
j=1
The matrix (v + i1 + Zj 1 mjA ), by symmetry of A;, is invertible for v > 0 with O( )
inverse. As we saw above 'y is of full rank r := A — O; hence T, := —FQA Ly
T+ ZJ 1277j ;) has the same rank for v > 0. Multiplying on the left by m(vy,7,n) =
(it + v+ |n|)~!, we obtain a symbol homogeneous of degree zero

Do(y,7m) == —m(y, 7, T2 Ag (v +im + ) inA;). (1.58)
j#d
The Neumann boundary conditions can be rewritten now as degree-zero Dirichlet conditions
Lo (v, 7,m)a0(v,7,7,0) = Ga(7,7,7)
= m(y, 7o) (Go(mm) = D247 f3,7,0,0))

where " denotes Laplace—Fourier transform.
With this rephrasing of the boundary conditions, the Laplace—Fourier transformed sys-
tem becomes a hyperbolic boundary-value problem of the following form:

(1.59)

d—1
Datio + A7 (v +im + Y _injAj)ag = Az f(v,7,m,24)

=1 (1.60)
Flﬁg(’}/, T, 0) =g

fZ(%Tﬂ?)ﬂo(% 7,1,0) = @2(7,7’, n) as in (1.59).
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Uniform estimates may be proved for (1.60) using Kreiss symmetrizers (see, for example,
[CP, BS, Met4], and also Proposition B.1), provided that: (i) the boundary matrix I' is
uniformly well-conditioned,

T}, [T < C, (1.61)

where T'T is the pseudoinverse of T', and (ii) there holds the uniform Lopatinski condition:

d—1
I_‘1 ) -1 . .

det | ker | -~ JE A —I—ZT—i-ZE A >C>0 1.62

<F2(7,7’,n) + d (v < 1y ]) ( )

for some C independent of (7,7) € R% v > 0. Here one defines the determinant by taking
an orthonormal basis for each of the spaces appearing there. The condition thus expresses
“uniform transversality” of those spaces for all such (v, 7, 7).

For discussion below, we recall also the weak Lopatinski condition, which is defined as
in (1.62), except that C,, > 0 is allowed to depend on vy > 0.

Assuming that the uniform Lopatinski condition is satisfied, we can use the following
proposition to solve the outer hyperbolic problem. In the next proposition for v > 1 we let

|Flsy == |l ml* F (7 = i, wa) (1.63)

L2(rm,zg)

and we let (g)s, denote the corresponding norm on the boundary. The block structure
assumption made in the next proposition is satisfied by many of the important physical
examples (see [MZ2]); we shall omit further discussion of it here.”

Proposition 1.10. Suppose that L is an operator that can be conjugated to block structure
in the sense of [MZ2]. Assuming well-conditioning (1.61) and uniform stability (1.62), there
exist positive constants C, vy and a unique solution of (1.55) satisfying

’Y|u’g,'y + <u)%77 < C (‘f|(2)7'y/7 + lafﬁdf’zlfy + <gl>%7’y + <§2>2—1,'y) : (164)

for vy = .

Proof. For the problem (1.60) with data (Aa;1 f, 91, G2) one has the standard Kreiss estimate
([CPp, BS)):

If12
vw&+@%ﬁ§0(;”+@%ﬂ+@%ﬂ- (1.65)

Existence for the problem (1.60) follows from Proposition B.1, which allows for pseudod-
ifferential boundary conditions. The estimate (1.64) now follows directly from (1.65) and
(1.59) using |m| ~ |7,v,n|~! and

(flzg=0)0y < |floy + [0y flon- (1.66)

O]

"The block structure assumption can actually be avoided in the constant coefficient symmetric case by
using the approach of [GMWZS|.
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Assuming that the uniform Lopatinski condition is satisfied, we can solve the outer
hyperbolic problem in this way and as in section 1.1 proceed to construct the boundary
layer expansion to any order. The following proposition provides some information about
when the weak and uniform Lopatinski conditions are satisfied by the problem (1.60).

Lemma 1.11. Consider the problem (1.60), where the A; are constant, real, symmetric
N X N matrices.

(a) In the totally incoming case with mized boundary conditions or full Neumann bound-
ary conditions, if the weak Lopatinski condition holds then the uniform Lopatinski condition
holds.

(b) Let d > 1. For full Neumann boundary conditions the weak Lopatinski condi-
tion holds. The uniform Lopatinski condition can fail if the characteristics are not to-
tally incoming. For example, it fails whenever there exists an eigenvalue w(T — iy,n) of
—AJN(r—iy + Z?;% A;n;), analytic in T —i7y, such that w(r,n) =0 and O;w(t,n) <0 for
the chosen (1,7m).

(¢) For pure Neumann boundary conditions and d = 1 the uniform Lopatinski condition
is satisfied.

(d) In the totally incoming case with a single Neumann condition, the weak Lopatinski

condition holds if and only if < 1> (in this case a full N x N matriz) is invertible.

Iy
A,
r
(e) For mized boundary conditions the weak Lopatinski condition holds only if <1; All>
2434
is full rank on Ei(Ag). There are examples with mized boundary conditions where weak
Lopatinski fails and other examples where uniform Lopatinski holds.

Proof. (a) In the totally incoming case Ei (A, (v +i7 +1i Z?;i n;4;)) = CN. If the weak
Lopatinski condition holds the determinant (1.62) is 1 for all v > 0.

(b) In the full Neumann case I'; is absent and I'y is an (N — O) x N matrix whose
rows span E; (A4) (see Remark 1.9). Since A; (v+it+ Zj Lin;A;) is invertible for v > 0
and B4 (A7 (v +i7+ Z;l;% injA;)) an invariant subspace, we find that the weak Lopatinski
condition is equivalent to 'y being full rank on E (A (y + it + i Z; 1 njA;)) for v > 0.
Since the problem

d—1
Oqw + A (’y—i—w—i—Zm] Hw =0
o (1.67)

fgw’zdzo = h

is maximally dissipative, a simple energy estimate shows |w(0)| < C|h| when w € E4 (A, (v+
iT 41 ZJ 1mj4;)), so the full rank condition holds.

In the case A, is not positive definite, the kernel space in (1.62) must be nontrivial.
Taking v = 0, |n| = 1 and choosing 7 from among the eigenvalues A\;(n,0) (here £z = 0) of
— Z?;% n;A; with corresponding eigenvector v # 0, we find that I'y(~y, 7, 1), or, equivalently,
fg(% 7,1m), annihilates v. It can happen that v lies in the limit space as vy — 0 of E+(A;1 (v+
IT 41 Z?;% n;A;)). The Cauchy-Riemann equations imply that this happens, for example,
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whenever there is an eigenvalue w(7 —iv,n) of —Agl (T —i”y—i—zg;i A;n;), analytic in 7 — i,
such that w(r,n) = 0 and d0;w(7,n) < 0 for the chosen (7, 7).

Since v is also a limit of vectors lying in ker fg('y,T, n) as v — 0, we see that for such
(1,m) the determinant in (1.62) converges to zero along some sequence Yn — 0.

(c) When d = 1 and v > 0, we have ker 'y(y,7) = ker ToA7! and By (A7 (y +ir)) =
E;(Ag). Thus, both spaces are independent of (7,7). The uniform Lopatinski condition
now follows from the fact that Ty is full rank on E, (Ag).

(d) Recall from Remark 1.9 that I'y = I'y a 1x N matrix. The assertion follows by the ob-

I'
servation that in this case the real part of the determinant of _ . .

b (I’gAdl(v—l—m-—{—sz#dnjAj))
. Iy
is y det <F2Ad1>'

(e)The first assertion regarding mixed boundary conditions follows by inspection of the
case v =1, 7 =0, 7 = 0. For the second assertion we refer to the examples given below.
O

Remark 1.12. 1) When the problem (1.60) only satisfies the weak Lopatinski condition,
there is a still a chance of proving well-posedness for the reduced hyperbolic problem (1.55)
using degenerate Kreiss symmetrizers and constructing the WKB expansion. Indeed, several
kinds of weakly stable problems have been studied successfully in this way (see, for example,
[BS, Co2|); typically the energy estimates exhibit a loss of derivatives.

2) Glancing points are points (7,7) where the matrix A;' (it + Zj 1 ”73 ;) has non-

trivial Jordan blocks, or equivalently, where an eigenvalue \;(§,n) of Z] 1 77JA + €Aq,
is stationary with respect to £&. Such points always occur in d > 1, except in the totally
incoming or totally outgoing cases, where they never occur (see [GMWZ6]). Example 1.1
shows that the uniform Lopatinski condition can fail at glancing points. We know of no
proof of well-posedness for the rescaled initial-boundary value problem in the case when the
uniform Lopatinski condition fails in this way. (We present a different method in Appendix
D for which this difficulty does not appear; see Example D.3.)
3) Example 1.3 shows that even weak stability can fail for the problem (1.60).

Example 1.1. Consider the simplest example of the first-order wave equation with drift c,

0 1 1+a 0
Al_(1 0)’ A2_< 0 —1—i—a>’
with full Neumann boundary conditions, so that T'y = (1 O). Then

T, = —T9A; (v + it + ind;) = — (M i) :

1+a 1+«
‘ S 1 it i
which leads to the zero-order boundary matriz 'y = — T (71+Za lTa)' By Lemma
1.11(b) the weak Lopatinski condition holds. Applying the criterion of Lemma 1.11(b),
we find that the uniform Lopatinski condition fails at n = —1, v = 0, 7 = 1, where

lim,_,o+ Ey (A5 (y + i +inAy) = Span{(1,1)T}. Moreover, the computation Ay (&,1) =
al+/E2 + n?, where A\ are the eigenvalues of EAs+nA1 shows that Ay /O =0 at £ =0,
corresponding to failure at a glancing point, occurs only for o = 0 for this choice of (1,7m).
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Example 1.2. Nezxt, consider the totally incoming problem

01

with mixzed Dirichlet—Neumann conditions I'1 = (* 1), Iy = fg = (1 O). Then,

<F1> _ ( ) Iy ) _ ( ' F12>
A ~To Ay (v + it +inAy) —(y+it) —in

IETE S TAN .
y+it g ) v
nl'11), in particular for v > 0. Thus, we have weak Lopatinski stability of the zero-order

is full rank on By (A1 (y 4 it +inAy)) = C? whenever 0 # det (

r
boundary condition. <f1> By Lemma 1.11 the uniform Lopatinski condition also holds.
2

Example 1.3. Finally, consider the totally incoming problem

01 a
Ar=11 1 0], Ay=1d,
a 0 O
. . . " ~ 010
with mixzed Dirichlet—Neumann conditions I'1 = (1 1 b), Iy =19 = 00 1) Then,
-1 -1 —-b
(E’l>:<_f‘A—1(I_‘|_l' +'A)):_ 1y +iT 4 0
2 28 Y AT NS ina 0 v+ it

is full rank on B = C? when its determinant is nonvanishing. An easy row reduction gives

Fl . . . 0 a o
det <F’2> = det (('y +i7)Id — in (b ab) ) =0

when (v +i7)/in is an eigenvalue of <2 :b)’ or (y +it)/in = %Evab’tded V“;I’QW. Choosing

a=1,b= -1, we obtain (v +it)/in = %i‘/g, or v+ it = (=i F v3)(n/2), and the
Lopatinski condition is wviolated for v = Fv/31n/2, 7 = —n/2. This shows that the weak

Lopatinski condition can fail for the totally incoming case, even with (F I:41_1> full rank.
2434

Example 1.4. This last ezample comes from a result by B. Fornet (see [F1], [F2]), and

shows that such types of Dirichlet-Neumann boundary conditions have a natural place in

the theory of first order hyperbolic Cauchy problems with discontinuous coefficients. Let us
consider the following scalar Cauchy problem in 1D

Ou+ a(x)dpu = f r€eRt>0
uly=0 = h
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where the real valued coefficient a(x) satisfies a(z) = —a < 0 if x <0 and a(z) = B > 0 if
x>0, with data h € C®(R), f € C*(R?) compactly supported. This problem is of course
not well-posed due to the lack of uniqueness. In order to select one solution, one can use
for example a vanishing viscosity approach, and look for the limit of the solution u® of

Ou + a(r)0yu — 58§u =f reR,t>0
uly—=o = h
as € — 0. To study the convergence, the problem is written as an initial boundary value

problem (or transmission problem) with uS (t,z) = u®(t, £z) for x > 0 and v° = (u%,u )T
leading to the constant coefficient system

O + ADpv° — ed20° = (f, f )T int > 0,2 >0 (1.68)

_ (8 0
A_<O a)’

corresponding to totally incoming characteristic fields. The boundary conditions are I'yv = 0
and I'y0,v = 0 on x = 0 with

with

Iy = (L _1)7 Iy = (1a 1) (169)
The result is that v¢ converges in L*([0,T] x Ry) to the (unique) solution v° of the limit
hyperbolic problem
O’ + A0 = (f4. f-)"
with the same boundary conditions
Tyl =0, T(:0°)g =0,

and initial conditions (hy,h_)T. The fact that the problem is one dimensional helps a lot,
and as a matter of fact, it is an example where the uniform Evans condition is satisfied (see
[F1]). The convergence analysis also uses specific boundary layer expansions. One can find
more general situations and examples in the paper [F2] with larger systems, still in 1D.

Remark 1.13. Example 1.2 is an example of the mixed, totalling incoming case with one
Neumann condition where the uniform Lopatinski condition holds. Recall that this case,
corresponding to supersonic incoming flow with a Neumann condition on temperature, was
left open in the study of boundary layers for the full compressible Euler equations (1.1) in
[R]. In Appendix C we provide a criterion (satisfied for example by ideal gases) for the
uniform Lopatinski condition to be satisfied in that case.

We point out that the well-conditioning of T', (1.61), fails in many cases. In particular,
in the totally incoming case, when there is even one Neumann condition, we find that I’
drops rank for v = 0 at any values of 7,7 for which 7+ > td n;A;j is not invertible, so that
ITT| blows up as v — 0. In this particular case, this may be remedied by simply multiplying
I' and data g both by I'"! to eliminate this difficulty at the expense of losses on the source;
we explore this approach further in Remark 1.17 below.

In this section, we have dealt entirely with construction of approximate solutions. Con-
vergence to these solutions is a separate issue that requires estimates on the full hyperbolic—
parabolic problem, estimates that we have for the moment only for the pure Neumann
boundary, totally incoming case. This is an important direction for further investigation.
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1.6 Second approach based on solving a Cauchy problem on the bound-
ary.

We return now to the reduced hyperbolic problem in its original form (1.55) in the
general case of mixed-type boundary conditions, but assuming that we are in the totally
incoming case®. Extensions to the general case are discussed in Appendix D. Writing
u = ug, differentiating the Dirichlet boundary condition I'ju|,,—0 = ¢1 with respect to

time, and making the usual substitution (1.56) for d;jug, we obtain the boundary condition

Brg r -1 0
- t91 — 1 E -
Bulei=o = (92 - F2A51f> o Whee B (—F2A51> a s <—F2A21AJ‘> Ory:

(1.70)
The next proposition shows that sometimes this may be treated as a Cauchy problem in
the tangential variables and solved for complete Dirichlet data u|,,—o.

- o Iy d-1 0 ,
Definition 1.14. Let p(7,n) := det ((—fQA(f) T+ <—f‘2A;1Aj> m). We say
that the system (1.70) on the boundary is:

a) evolutionary if the coefficient of 0y is invertible.
b) weakly hyperbolic if for any n € R~ the roots in T of p(t,n) = 0 are real.

Proposition 1.15. The system (1.70) is both evolutionary and weakly hyperbolic if and
only if the problem (1.60) satisfies the weak Lopatinski condition.

Proof. 1. First observe that the factor m in I, has no effect on the kernel space in (1.62).
Suppose the weak Lopatinski condition holds. Taking 7 =0, n =0, v > 0 in (1.62), since
the E space in (1.62) is CV, we see that the coefficient of d; in (1.70) is invertible. More
Iy

2(7, 7, 1)

I . d—1 0 ‘
<_f2Ad—l> (T - 27> + Zj:l <_f‘2Ad_1A]> nj-

2. The argument can be reversed to prove the other direction.

generally, the matrix (f‘ ) is nonsingular when v > 0, and thus so is the matrix

O

Weak hyperbolicity is not enough to guarantee well-posedness in H® spaces of the prob-
lem (1.70). We refer to [BS] for a discussion of necessary and sufficient conditions for such
well-posedness. One important sufficient condition for well-posedness is that the roots in 7
of p(r,7n) = 0 are real and semisimple with constant multiplicities for 17 # 0. This condition
is verified for the system (1.70) arising in the Rao example in Appendix C.

In problems where the trace ug|y,—0 = h can be found by solving (1.70), we can obtain
the solution to the reduced hyperbolic problem (1.55) by solving

Lug = fin x4 > 0, 'U/(]|;Bd:0:h, ug=01in t < 0. (1.71)

This problem is maximally dissipative in the totally incoming case.
We record the resulting bounds, which are to be compared to those of (1.64).

8Thus, this approach is relevant to the example of Rao discussed in Appendix (O).
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Proposition 1.16. Suppose that L is an operator that can be conjugated to block structure
in the sense of [MZ2]. Assuming that the roots in T of p(T,n) = 0 are real and semisimple
with constant multiplicities for n # 0, there exist positive constants C, vg and a unique
solution of (1.55) satisfying

YWulg, + (W < C(If54/7 + 1020 f16.,/7% + (0eg1)5 4 /7 + (G205, /77) - (1.72)

for v > .

Proof. Estimating the (-)o, norm of the trace of f at x4 = 0, and using this to bound the

data <§ 8159114_1 f> in (1.70), we obtain from standard hyperbolic Cauchy estimates the
2 — 124y,

bound (ulo,—0)3, < C (If16,/7% + 102 f15 /7 + (9r91)8 /%) + (32)5 ,/7?) , from which

(1.72) then follows by standard boundary value estimates for maximally dissipative systems.

O]

Remark 1.17. The bounds (1.64) obtained by method one in Proposition 1.10 are stronger
than those of (1.72) by factor v/|v,7,n| in boundary terms g; and the term 0,,f coming
from the trace of f. This reflects the well-conditioning hypothesis (1.61) made in Proposition
1.10 but not in our derivation of (1.72). Indeed, when well-conditioning fails (but the other
hypotheses of Proposition 1.10 hold) one can apply method one to derive the bounds (1.72)
provided one can find for v > 0 and r := rankl’y + rankl's an r x r matrix multiplier
|m(vy,7,n)| < C/v, such that the rescaled boundary condition

- < ) (y+im)T )

satisfies the well-conditioning hypothesis (1.61) needed to obtain standard Kreiss-type
bounds for the resulting rescaled boundary-value problem. One may check that this yields
exactly the bounds (1.72). Thus, this modification allows somewhat wider application
of method one. For example, in the case of totally incoming characteristics, the uni-
form Lopatinski condition is trivially satisfied, but (1.61) fails for the multiplier |7, 7, 5|},
whereas for the multiplier m := I'"!, the rescaled boundary condition mI' = Id trivially
satisfies (1.61), and in favorable cases satisfies [m| = [T~ < C/v. Indeed, this can be
recognized as the solution operator of the Cauchy problem on the boundary just described
in method two.

(1.73)

1.7 Discussion and open problems

To summarize, following up on the analyses initiated in [GMWZ5, GMWZ6] to accom-
modate mixed Neumann—Dirichlet boundary conditions in the general theory of hyperbolic—
parabolic boundary layers, we here investigate the case left open in those works that the
number of incoming modes exceeds the number of Dirichlet conditions imposed on the full
hyperbolic—parabolic solution. In this case, we find that (i) the resulting reduced, hyper-
bolic, “outer problem” satisfies Neumann or mixed Neumann—Dirichlet, rather than Dirich-
let conditions as in the standard case, and (ii) the resulting boundary layers are “weak” in
the sense that they are O(e) amplitude, where ¢ is the order of the viscosity.
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Although the existence of this new type of boundary layer, with quite different behavior
from the standard type, is surprising to us, such layers have physical relevance (sse Appendix
C). In particular, one must understand these layers in order to treat cases arising in physical
applications to suction-reduced drag in aerodynamics. Their analysis requires the study of
hyperbolic boundary-value problems with Neumann or mixed Neumann—Dirichlet boundary
conditions, an area that appears not to have received much attention, despite the extensive
study of noncharacteristic hyperbolic boundary-value problems. We have described two
approaches to these hyperbolic boundary problems, one involving a reduction to a problem
with pseudodifferential Dirichlet conditions, and the other involving a reduction to a Cauchy
problem on the boundary. We have provided examples where each approach works, but
much work remains to be done on the general case. An important example where the second
approach works is the case of supersonic inflow for the full compressible Euler equations
considered in Appendix C.

To study the small viscosity limit in the quasilinear hyperbolic-parabolic boundary prob-
lems considered here, our approach requires estimates for the linearization of the problem
about an approximate solution. The derivation of such estimates is completely open for
cases other than the pure Neumann totally incoming case treated in the remainder of the

paper.

2 The quasilinear totally incoming case

We turn now to our main task, the full treatment of the quasilinear case with full
Neumann boundary conditions and totally incoming modes.

2.1 Construction of an approximate solution

By plugging u¢ as in (1.32) into the boundary problem (1.31), Taylor expanding A;(u2)
about ug, and equating coefficients of equal powers of € on right and left, we obtain the
following sequence of boundary problems:

M=

(a) Aj (uo)é?juo = f, 6dUO’deO =0

7=0
d d
(b) Z Aj(uo)éjul + Z duAj(uo)(ul, ajUQ) = Auy, 3du1|xd:0 =0
j=0 J=1
) - (2.1)
(C) Z Aj (uo)ajug + Z duAj(UQ)(UQ, 8]‘U()) =
j=0 J=1
d d
Aul — Z duA] (uo)(ul, 6ju1) - diAj (Uo)(ul, uy, ajUO), 8du1 |$d=0 =0
j=1 Jj=1

and so on, where f =0int <0 and u; = 0in ¢t < 0 for all j. Here f € HS(@T_l) for s

large to be specified later.
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To solve (2.1)(a), we first solve the symmetric, pure initial value problem on x4 = 0:

U
—

Aj(v)ajv = f|$d:0’ v=0int <0, (22)

<.
Il
o

and then the symmetric, dissipative boundary problem on €7, for 7T small:
d
ZAJ up)0juo = f,  Uolzy=0 =v, wp=0int <O0. (2.3)
7=0

From (2.2), (2.3), and the invertibility of Ag(up) we obtain dgug|y,—0 = 0. The subsequent
linear problems (2.1)(b),(c),...for the unknowns uy, ug,... are solved by the same method.
Standard theory gives 0 < Ty < T} such that?

vE HS_I(bQTl), ug € HS_I(QTO), uy € Hs_4(QTO), U2 € HS_Y(QTO)7

2.4
L UE € Hs_l_3k(QT0). (2.4)

Moreover, as long as s —3M — 2 > d+1 , it is easy to check that the remainder R, in (1.33)
belongs to H**M=3(Qr,). We now summarize this construction.

Proposition 2.1 (Approximate solutions). Fix M € N. Consider the boundary problem

(1.31), where f € H*(R R ) for some s > 3M + 2+ d+1. Then (1.31) has an approzimate
solution of the form

ul(z) = uo(z) + cur () + - + eMup(2), (2.5)

satisfying (1.33), where up € H*173%(Qr,) and the remainder R. € H*—3M=3(Qr,).

2.2 Error equation

We look for an exact solution of the form
ue = u® 4 ePv®, where 1 < L < M. (2.6)

To obtain the problem satisfied by v we divide the equation &(u) — &(u®) = —eM R, by ”
to obtain

d
ZAJU + elv)o, 0+ E(u®, Vu, e Lo —eAv = —eM~LR,
j=

(2.7)
8$dv|zd_o =0

v=01n zg < 0,

9The drop by three units of regularity at each stage is due application of the Laplacian and the taking
of a trace. Here we have chosen to restrict the Sobolev indices to lie in N.
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where with V = (0y,,...,04,)
d 1
E(u®, Vu®, elv)y == Z </ DA (u® + selv) v ds> O u. (2.8)
j=1 0
To obtain a linear operator acting on v on the left we rewrite (2.7) as

d
Z Aj(u")0p;v + E(u®, Vus,0)v — eAv =
5=0
—eM=LR, 4+ 8By (u®, elv) (v, V) + el By (u®, Vul, efv) (v, v) := Fe(v, Vo) (2.9)
81’,11}‘%:0 =0
v=01in 29 < 0.

Here By and Bs, defined by the equation, are smooth functions and bilinear in their last
two arguments.

Next we rewrite (2.9) as a 2N x 2N first-order system for the unknown U = (uq,ug)! :=
(v,€0,,0)t, setting & = (D, ..., 0p, ,):

O, U = éG(p(x), £0,)U + F.(U,8"U)

I'U:=uy=00onz4=0 (2.10)
U=0inzy <0,
where
0 0 I .
F.(U)= <—.7:5(7),Vv)) and G(p(z),e0,) = <M Ad> with
d—1 (2.11)
M=) Aj(u®)edy; +eE(u”, Vu®,0) — e2Ayn and Ag = Ag(u®).
j=0
In (2.10) we have set
p(z) = (p1(2), pa(e), py(z)) where 012)

p1(x) :==wug, p2(x) =u® —wug, ps(x)=cE(u? Vu,0).

To prove weighted estimates we introduce U= e 1oy, F = e " F where v > 1, and
observe that (2.10) is equivalent to

-1 L "
0z, U = EG“’(p(x),z?@x/,e’y)U+F5(U,8 U),
T0 =i, =0onzg=0 (2.13)

U=0inzg <0,

where G7 is defined by replacing 0., by 0, + v the definition of G.
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2.3 Symbolic preparation
The operator G7 in (2.13) is the semiclassical differential operator defined by the symbol

0 I
Gp(). B) = <M<p<x>,ﬁ> A<p<w>>> ’ (2:14)

Where? with b= (p17p2ap3)7 ﬁ = (ﬁoa .- 'aﬁd—lar)/)

d—1 d—1
M(p,B) :=iBo+7 + D Aj(pr +p2)iBj +ps + Y _ B
j=1 j=i

A(p) == Aq(p1 + p2).

(2.15)

Lemma 2.2. For py €U, (p2,p3) in a small enough neighborhood we x w3 of (0,0), and B
in a small enough neighborhood wg of 0, there exists a a C™ invertible matriz T'(p, B) such
that T~YG(p, B)T has the block diagonal form

T7'GT = (1([)1 g) : (2.16)
where
T8 = <—A1§4 +7 I{;> ’ (217)
with
71(p, B) = (O(B) + O(p3))*, 2(p, B) = O(B) + O(p3). (2.18)
and

H(p,B)=—-A""M+n

P(p,B) = A+ Ar. (2.19)

Proof. The proof is a simple computation. Look for T of the given form and use the
invertibility of A to solve for 7, 7 by contraction.

[
2.4 Computation of the low frequency Evans function
Consider the N x N parabolic problem
d
o’ + Z Aj(ug)Ojus —eAu® = f
! (2.20)

61u5|z:0 =0

uli<o =0
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We now examine the Fourier-Laplace transform of the linearization of (2.20) about a con-
stant state u = uw € U, where U is the neighborhood of 0 specified in Assumption 1.5.
Writing ¢ = (7,7,7) for now and setting A; = A;(u) and A(in) := ;l_l Ajin;, we obtain:

(it +Y)v + A(in)v + Ague, + e[n*v — eVga, = f

(2.21)
Vg, =0 on zg = 0.

By multiplying through by ¢ and rescaling 24 and frequencies (zq — %4, ¢ — £() we reduce
to the case ¢ = 1. Rewriting (2.21) as a first order system we obtain with U = (u!, u?)’

(U,Uzd)tl

0p,U = G(OU + F

(2.22)
TU=uy=0o0n z4 =0,

where

F= (%) 0= (i A A (2:23)

For ( # 0 let E~(({) be the stable generalized eigenspace of G({). Define the Evans
function

D(¢) = det(E™({),kerT). (2.24)

Nonvanishing of the high frequency Evans function (a rescaled version of D(()) was verified
in [GMWZ5], Prop. 3.8. For fixed 0 < r < R the fact that D(¢) # 0 for r < |(| < R is
proved in section 4.1 of [GMWZ5].19Thus, we focus now on the low frequency region.

We show that the Evans function vanishes in the limit as ¢ — 0. For || small we
conjugate G(¢) to a block diagonal form

5706050 = (M pi)) =G (2.26)
where
H(CQ) = —Ag" (it + 7+ A(in)) + O(p*) (p=¢l), P(¢) = Aa+O(p), (2.27)
and the conjugator can be chosen to have the form
50 = (5,10 T4) with 526 = 000) (2.99)

To construct S one can simply look for a matrix of the form (2.28) satisfying G.S = SGy p,
and use the invertibility of A4 to solve for the off-diagonal blocks of S and the error terms
in (2.27).

"More precisely, the estimates (4.7) and (4.8) in [GMWZ5] are also true with R\ replaced by |A| on the
left. Those estimates and Sobolev’s inequality readily imply the trace estimate

[v(0)] < C(r, R)[v=(0)] (2.25)
for (v(0),v.(0)) € E7({) and ¢ in this frequency range.
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Writing GS = SGg p and equating (1,1) entries we obtain
S21(¢) = H(C). (2.29)

Set U = S({)U, where U := <ZH> and consider the equivalent problem
P

Z/lgcd = GH,pU—F STk

. (2.30)
I'(QU :=TS(U = H(Q)un + up.

Let F=(¢) = STY(¢)E~(¢). Since Ay is positive, F~(¢) = {(z,0) : z € CN}. On the
other hand we have from (2.30)
ker ['(¢) = {(w, —H(¢)w) : w € CV}. (2.31)
This gives immediately
D(¢) = det(F~(¢),kerI'(¢)) = det H(C) for p small, (2.32)

where each equality holds up to a factor that remains bounded away from zero for p small.

2.5 Resolvent estimates by degenerate symmetrizers
Recall that F~(¢) = {U = (up,0) : uy € CN}. Thus, for U € F~(¢) we have
DU = H(C)u, (2.33)
SO
Ul = Jug| = [HOT(OUI (2.34)
This gives the degenerate trace estimate
IT(QOU| = R(Q)[U|, where R(¢) := |H'(¢)|™", for U € F~((). (2.35)
Proposition 2.3. ! Let p:=[(|. Then for r > 0 small enough we have

|R(Q)| = Cly +p?) for 0 < [¢| < (2.36)

Proof. 1. Write H({) = pH((, p) and fix { € gi. For (¢, p) in a neighborhood of (¢, 0) we
use the smooth block reduction of ([GMWZ6], (3.20))

VTIAV = diag(Hy), (2.37)
where Hj, has spectrum in a small disk centered at Ky for By, the kth distinct eigenvalue of
H({,0). By compactness of §i it suffices to show

. 1
01 O

" This Proposition does not require A4 > 0; it remains true when H satisfies the generalized block structure
property of [GMWZ6].

(2.38)
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for ¢ in a neighborhood of any fixed é € gi and p small.
2. Let ¥ be a Kreiss symmetrizer constructed as in [GMWZ6] for Hy,. The symmetrizer
¥ satisfies

a) R(ZHy) > C(5 + p),

(a) RS 2 €G3+ p) 09)
) X <C

near the basepoint. The estimate (2.39)(a) implies that X Hy, is invertible near the basepoint

for ¥ + p > 0, and since the same is true for Hy, we see that X itelf is invertible near the

basepoint for ¥ + p > 0. The estimate (2.39)(a) also implies

C(H + p)|u)® < R(EHpu,u) < |SHyul|ul, (2.40)
SO
. C
YH,) < — 2.41
[(BH) | < 1, (2.41)

and thus (since X is invertible)

. . '
H' =|(ZH) 'S < ——. 2.42
[H | = |(5H) X s (2.42)
O
2.5.1 Resolvent estimates
With U = <UH> as in (2.30), we have
up
F~(¢) = {(ug,0) : ug € CV}, F(¢) = {(0,up) : up € CV}, (2.43)

where F'T(() is the negative (resp. positive) generalized eigenspace of Gy p(¢). Writing U
as U now, we consider the problem

ade = GH7PU+F

LU = g. (249

Let |ug|e denote the L2[0, 00) norm, and let |u| be the norm of the trace at x4 = 0.

Proposition 2.4. Fiz r > 0 small. For 0 < |{| < r we have the following estimate for
solutions of (2.44):

(v + 2" fun 3 + lupl3 + (v + p°)?|un|? + [up> < C (|Fpl3 + (v + p°) | Ful3 + |9/) -
(2.45)
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Proof. 1. We use a degenerate symmetrizer of the form

2\2
Sk(¢) = <<7+p()) Su(¢) kspo(g)1>’ (2.46)

where k& > 0 will be chosen sufficiently large, Sy (() is a standard symmetrizer for the H(()
block (constructed as in [MZ1], e.g.) and satisfies

S =Su
R(SgH) > C(y + p?) (2.47)
Spup - upg > —|up)?,
while Sp satisfies
Sp=Sp
R(SpP) > 1 (2.48)

SPUP “up > ]uP\Z.

Taking the real part of the L?[0,00) inner product, (-,-), of —SpU with (2.44) and
integrating by parts gives

%SkU(O) LU(0) + (U, R(SxGrr.p)U) = R(—SeU, F), (2.49)
(Elup(O)* = (v + p*)*|un (0)]%) + (v + p?)*unl3 + klup|3 <

(v + p*)2Snum, Fu)| + k|(Spup, Fp)| < (2.50)
5(v + p°)?lum 3 + Cs(v + p°)| Frl3 + 0k|up|3 + Csk| Fp 5.

N | =

After absorbing interior terms in the obvious way from the right, it remains only to estimate
the boundary terms.
2. Using (2.35) and (2.36), we have for the boundary terms,

klup(0)” — (v + p°)?|um (0)]* = klup(0)]* + (v + p*)*lumr (0)|* — 2(y + p*)?|um (0)|* >
2

klup(0)]* + (v + p*)?un (0)* = Clg|* — Clup(0)[*.

klup(0)* + (v + p*)?|un (0)* — C

(2.51)

For k large enough (2.51) and (2.50) imply the estimate (2.45).
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2.6 The basic variable coefficient L? estimate

Notation 2.5. 1. For u(x) € L>(Ry, H*(R%)) and ¢ = (¢',7) = ( (o, (",7), set

’u‘s,v = |<C>Sa(claxd)|L2(§’,xd)-
2. For u(z') € H*(RY) set (u)s = Q)% a2 ¢ry-
3. Let A(eC) = (1 + (e7)% + (€Co)? + [eC"|M) 7. For u(x), v(2') set
[ula = [A(EQ)a(C", ma)|2(¢r gy, (WA = [A(EQ)D(C)12(cr),

and similarly define |u|g, (v)g for other weights ¢ = ¢(e, ().
4. For u(zx) set (u)y = (u(z’,0))4.

For given p(x), F', and g we now consider the following linear boundary problem corre-
sponding to (2.13), where now we drop tildes and the superscript v on G-

1
0, U — ;G(p(a:),ac?x/,ev)U =F
TU=gonxy=0 (2.52)
U=0inxy<0:
Our goal is to prove the following (degenerate) L? estimate for solutions of (2.52).

Theorem 2.6 (Main L? estimate). Under Assumption 1.5, there erist positive constants
C, €y, Yo such that for all v > 7, 0 < € < €y with ey < 1, solutions to (2.52) satisfy

e|Ulo + (U)o < C (VelFlo + (g)o) - (2.53)

The preceding estimate is a composite of three more precise estimates corresponding to
the three natural frequency regimes in the problem, the regimes in which e is of small,
medium, or large size.

Recall 8 = (f',7) € R? x R, is a placeholder for eC. We shall localize with respect to
the size of 3 using smooth cutoff functions x;(5), j = S, M, L, such that

xs(B) + xum(B) + xL(B) = 1, (2.54)
where for some constants R; (sufficiently small), Re (sufficiently large)

supp xs C {0 < |8 < Ri}

supp xum C {%Rl < B8] < Ra} (2.55)

3
supp xr C {ZR2 < |8}

Notation 2.7. 1. We will occasionally use the symbol x s to denote a cutoff distinct from
the one in (2.55), but also supported in a bounded region strictly away from the origin.
Similar statements apply as well to xs, XL-
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2. Choose smooth cutoffs x1(8), x2(8) identically equal to 1 near =0 and compactly
supported in wg such that

X1X2 = X1, XSX1 = XS- (2.56)

3. The symbol ro will always denote a symbol or operator of order zero.

4. Denote by O(eD) a semiclassical operator with symbol s(x, 3) such that s = 5- f(z, 3)
for some smooth f.*2 O(€) denotes an operator with symbol s = ef(x,3) € Sxo.

In a similar way define O(e?), O((eD)?), etc.. When speaking of symbols instead of
operators we’ll use, as before, the notation O(eC), O(e), etc.. In ambiguous cases like O(e),
the intent (symbol or operator) should be clear from the context.

5. Write the solution to (2.52) as U = (u,v). Define

Up = (Au,v), (2.57)
where A(eD) is the multiplier associated to the symbol defined in Notation 2.5.

Here are the estimates by frequency size:

Proposition 2.8. Using the notation just introduced, we have the following estimates for
solutions to (2.52). Let R1, Ro be as in (2.55). For Ry sufficiently small and Ry sufficiently
large, there exist constants C, vy, €1 such that for all v > v, 0 < e < €1 with ey <1

(a) |XS,DU‘ 3 + <XS7DU>57+52p2 <

3 5
€Y2+e2p

O (VElFlo+ (gho + Ul + IxanULy ., ,+ xar.oUlo +&(U)o)

(0) [xar,0U o + Ve(xm,pU)o < C (€| Flo + ve(gho + €|Ulo + €(U)o)

(©) Ix.pUpl sz + Ve(xz,0Un)o < C (€| Flp-1/2 + Ve(g)o + €lUply-1/2 + €(Up) p-1/2) -
(2.58)

Proof. The estimates (2.8)(b),(c) are proved in [MZ1]. In the latter case we have applied
the high frequency estimate of Proposition 4.6 of [MZ1] after commuting (A~/2)p through
the problem. We concentrate now on proving (2.8)(a).

a. Localize to small frequency region. Commuting xg p through (2.52), we see
that x5 pU satisfies

1 1
Uy, — -G U= F+=- ,GplU
Xs,0Vzy = —GDXS.D XS,D +6[X57D D] (2.59)

I'xs,pU = xs,pg on xq = 0.

There is a high frequency contribution to the commutator because of the =’ dependence of
G, and to get a good estimate for this we use the semiclassical calculus.™® Since

xs,0Gp = (xsG)p + 5(35/X551/G)D + €%, (2.60)

2Since s must be bounded, we must then have |f| = O(1/|8]|) for |B] large.
3Even though the symbol of G is not bounded, one can use and directly estimate the formula for the
remainder given in (A.6) of [GMWZ2] to prove (2.60).
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we have

1 1
E[XS’D’ GD]U = (GQ/XSax/G)DU + ergU. (2.61)

7

Thus U, = xs,pU satisfies

1
0., Uy — —GpU, = F,
. e P (2.62)
I'v, = g4 on x4 = 0,
where

|Falo < C|Fo + [(0srxs m0)pUlo + €|Ulo, (ga)o < (9)o- (2.63)

To prove (2.58)(a) it suffices to prove the same estimate with xs pU, F, and g replaced
by U,, F, and g,.
b. Conjugate to Gypp. Let T'(p, ) be the conjugator constructed in Lemma 2.2

and set
H 0
Gup = <0 P €r0> (2.64)

Extend T'(p(z), 3) smoothly to all 3 € R? x R, as a semiclassical symbol with a uniformly
bounded inverse, and use the calculus to construct right and left (approximate) inverses
T_1,p satisfying

TDT—l,D =1+ 627‘0

2.65
T_1pTp = I + €. (2.65)

The right and left inverses are not equal, but we use the same notation for both. The
symbol T"_1 in each case has the form

Ty (p(a), B) = T + ey, (2.66)
Defining V' = T_; pU,, we have

(a) ™oV =U, + 62T0Ua
(0) (82,TD)V + Tpdy,V = 03,Uq + O(e)(roUa + €Fy) = (2.67)

1
-GpTpV + F, + O(G)(T()Ua + EF(Z).
€
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We have the following symbol equalities

@r=(y ) +ot+ow

B) T, = <é “‘}_1> +O(e€) + O(e)

(¢) T-10,,T = <8 73) + O(eC) + Ofe)

(d) GTxz = (8 i) x2(€€) + O(e¢) + O(e) (2.68)

(6) €8BIT_1 = GO(GC) + 0(6)

) e T-00@Ta) = (7] 2a(:0)+0le) + 009
(9) %T_1GTX2 = %GHPXQ + (8 :g) x2(€¢) + O(e€) + O(e).

For (2.68)(g) we used (2.66), (2.16), and (2.68)(d).
Applying the operator T_; p to (2.67)(b) and using the semiclassical calculus, we obtain
in view of the symbol equalities (2.68):

1 (Hp €T0
0V =+ (M0, 0 Y aanV b+ Ol + 0DV +0(V. (209
Observe that terms on the right in (2.68)(c),(f), and (g) all make contributions to the

entries of the first matrix on the right in (2.69). Using the calculus to commute x1 p through
(2.69), we obtain

1 /H
9z,(x1,0V) = - ( OD PDE_T‘FO&TO) (x1,0V) +1oFu +O(e)U + O(eD)x1,0U + (rodp x1)pU.
(2.70)
Next define
Fy,=roF, + O(&")U + O(ED)XLDU + (T’Oag/Xl)DU, (271)

and observe that since U, = TpV — &?rqU, = Tpx1,pV + e2roU and Uy = X1,pV satisfies

1
0z,Up = (HD o )Ub+Fb

e\ 0 Pp+erg (2.72)

I'TpUy = g4 + EroU = gp on xqg =0,

to prove (2.58)(a) it now suffices to prove the same estimate with xg pU, F, and g replaced
by Uy, F} and gp. Observe that /cF} is a sum of terms including /eO(eD)x1,pU. The
latter term is absorbed using the following Lemma, whose proof is elementary.
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Lemma 2.9. Fiz § > 0. Then for v large we have
(1) 5%,0 <9 (57% + 53;)3)
. . (2.73)
(2) 2p®> <6 (575 + 6§p3> :

Define

G0 = (3 p70 ). (2.74)

A direct computation using the invertibility of P shows that for 5 € wg one can choose a
matrix symbol T, of the form

I
Te(p(x), 8) = (0 6?)) (2.75)
such that
e (H 0\
T1GyIL = (0 P+ero> = Grp. (2.76)

As before we extend and invert T, p. The operator T, _1 p associated to the symbol

(I —erg
ra= (1) o

is easily seen to be a right and left inverse satisfying the analogue of (2.65).
Redefine V=T, _1 pUy. Now repeat the preceding argument line for line, but note, for
example, that instead of (2.68)(c),(e),(f) we have, respectively,

TC’_laxdTC = O(E)
0 627“0
edgTe, 1 = <0 0 ) (2.78)

1
E(sﬁng ’_1)8m/(Gch) = O(G)
We set U. = x1,pV and use the calculus just as before to find that U, satisfies

1
8, U. = ~GrppUs + F.
(@) Ou, ¢ HBD (2.79)

(b) I'TpTe,pUc = ga + eroU = g. on x4 = 0,

where F, has a formula like (2.71) (with F}p in place of F,). Thus, to prove (2.58)(a) it now
suffices to prove the same estimate with xs pU, F', and g replaced by U., F. and g..

c. Block structure. Recall that Ggp is given by (2.64), where H(p, ) and P(p,3)
are as in Lemma 2.2. Let p’ = (p1,p2), define H(p',5) = H(p',0,5), P(p',8) = P(p',0,5),
and set

Gurtt.0) = (07 L) (2.80)
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Note that for § € wg

Hp,B) 0 \_ / O(ps) 0
(102 ) =Gty (P4 50 ), (281)
and thus
Gurp(a).8) = Gur(y'(@).5) + (7 ). (2.52)

To proceed further we need to conjugate Gip to block structure form, which is especially
simple in the totally incoming case. Introduce polar coordinates

B=p'B, where f e L ={(F,7) €5y >0}, p =8 (2.83)

and write
H(p', B) = p