Chapter 1

Examples

1.1 Transport equations

$$
\begin{equation*}
\left(\partial_{t}+v \cdot \partial_{x}\right) u=f, \quad u_{\mid t=0}=h \tag{1.1.1}
\end{equation*}
$$

$$
\begin{equation*}
u(t, x)=h(x-t v)+\int_{0}^{t} f(s, x-(t-s) v) d s \tag{1.1.2}
\end{equation*}
$$

$$
\begin{equation*}
u(t, x)=h(x-t v)+\int_{0}^{t} f(t-s, x-s v) d s \tag{1.1.3}
\end{equation*}
$$

1.2 1-D wave equation

$$
\begin{equation*}
\left(\partial_{t}^{2}-\partial_{x}^{2}\right) u=f, \quad u_{\mid t=0}=h_{0}, \quad \partial_{t} u_{\mid t=0}=h_{1} . \tag{1.2.1}
\end{equation*}
$$

Let $v=\left(\partial_{t}-\partial_{x}\right) u$. Then $\left(\partial_{t}+\partial_{x}\right) v=0$ and $v_{\mid t=0}=h_{1}-\partial_{x} h_{0}$ so that

$$
v(t, x)=\left(h_{1}-\partial_{x} h_{0}\right)(x-t)+\int_{0}^{t} f(t-s, x-s) d s
$$

Thus

$$
u(t, x)=h_{0}(x+t)+\int_{0}^{t} v(t-s, x+s) d s
$$

The contribution of h_{1} in last integral is

$$
\int_{0}^{t} h_{1}(x+2 s-t) d t=\frac{1}{2} \int_{-t}^{t} h_{1}(x-y) d y .
$$

The contribution of h_{0} is

$$
h_{0}(x+t)-\frac{1}{2} \int_{-t}^{t} \partial_{x} h_{0}(x-y) d y=\frac{1}{2}\left(h_{0}(x+t)-h_{0}(x-t)\right) .
$$

The contribution of f is

$$
\int_{\left\{0 \leq s^{\prime} \leq t\right\}} f\left(t-s-s^{\prime}, x-s+s^{\prime}\right) d s^{\prime} d s=\frac{1}{2} \int_{\{|y| \leq s \leq t\}} f(t-s, x-y) d s d y
$$

$$
\begin{align*}
u(t, x)=\frac{1}{2}\left(h_{0}(x+t)\right. & \left.-h_{0}(x-t)\right)+\frac{1}{2} \int_{-t}^{t} h_{1}(x-y) d y \\
& +\frac{1}{2} \int_{\{|y| \leq s \leq t\}} f(t-s, x-y) d s d y \tag{1.2.2}
\end{align*}
$$

1.3 The multi-D wave equation

$$
\begin{equation*}
\left(\partial_{t}^{2}-\Delta_{x}\right) u=f, \quad u_{\mid t=0}=h_{0}, \quad \partial_{t} u_{\mid t=0}=h_{1} . \tag{1.3.1}
\end{equation*}
$$

Fourier in x

$$
\begin{align*}
\left(\partial_{t}^{2}+|\xi|^{2}\right) \hat{u} & =\hat{f}, \quad \hat{u}_{\mid t=0}=\hat{h}_{0}, \quad \partial_{t} \hat{u}_{\mid t=0}=\hat{h}_{1} \tag{1.3.2}\\
\hat{u}(t, \xi)= & \cos (t|\xi|) \hat{h}_{0}(\xi)+\frac{\sin (t|\xi|)}{|\xi|} \hat{h}_{1}(\xi) \tag{1.3.3}\\
& +\int_{0}^{t} \frac{\sin ((t-s)|\xi|)}{|\xi|} \hat{f}(t-s, \xi) d s .
\end{align*}
$$

Compute the inverse Fourier transform of $\cos (t|\xi|)$ and $\frac{\sin (t|\xi|)}{|\xi|}$. Let

$$
\begin{equation*}
E(t, x)=\frac{1}{(2 \pi)^{d}} \int e^{i x \cdot \xi} \frac{\sin (t|\xi|)}{|\xi|} d \xi \tag{1.3.4}
\end{equation*}
$$

Then (formally)

$$
\begin{array}{r}
u(t, x)=\int \partial_{t} E(t, y) h_{0}(x-y) d y+\int E(t, y) h_{1}(x-y) d y \\
+\int_{\{0 \leq s \leq t\}} E(s, y) f(t-s, x-y) d s d y \tag{1.3.5}
\end{array}
$$

Example 1. In 1-D

$$
E(t, x)=\frac{1}{2} 1_{[-t, t]}(x)
$$

Proof : compute the Fourier transform of $1_{[-t, t]}$. We recover the formula above.

Example 2. In 3-D. E is the distribution

$$
\begin{equation*}
\left\langle E_{t}, \varphi\right\rangle=t \int_{S^{2}} \varphi(t \omega) d \omega . \tag{1.3.6}
\end{equation*}
$$

Proof : compute the Fourier transform of this distribution

$$
\hat{E}_{t}(\xi)=\left\langle E_{t}, e^{-i x \cdot \xi}\right\rangle=t \int_{S^{2}} e^{-i t \omega \cdot \xi} d \omega
$$

This integral is invariant by rotation in ξ and we can assume that $\xi=$ $(0,0, r), r=|\xi|$. Write $\omega=(\cos \phi \sigma, \sin \phi)$ with $\phi \in]-\pi / 2, \pi / 2\left[\right.$ and $\sigma \in S^{1}$. Then $d \omega=\frac{1}{2}(\cos \phi) d \sigma d \phi$. Hence

$$
\hat{E}_{t}(\xi)=\frac{t}{2} \int e^{-i t r \sin \phi} \cos \phi d \phi=\frac{\sin (t r)}{r} .
$$

Example 3. In 5-D. E is the distribution

$$
\begin{equation*}
\left\langle E_{t}, \varphi\right\rangle=\frac{2 t}{3} \int_{S^{4}} X \varphi(t \omega) d \omega, \quad X=-x \cdot \partial_{x}+3 . \tag{1.3.7}
\end{equation*}
$$

Proof : compute the Fourier transform, using that

$$
\begin{aligned}
X e^{-i x \cdot \xi} & =(3+i x \cdot \xi) e^{-i x \cdot \xi} \\
\hat{E}_{t}(\xi)=\left\langle E_{t}, e^{-i x \cdot \xi}\right\rangle & =\frac{2 t}{3} \int_{S^{4}}(3+i x \cdot \xi) e^{-i t \omega \cdot \xi} d \omega .
\end{aligned}
$$

This integral is invariant by rotation in ξ and we can assume that $\xi=$ $(0,0, r), r=|\xi|$. Write $\omega=(\cos \phi \sigma, \sin \phi)$ with $\phi \in]-\pi / 2, \pi / 2\left[\right.$ and $\sigma \in S^{3}$. Then $d \omega=\frac{3}{4}(\cos \phi)^{3} d \sigma d \phi$. Hence

$$
\begin{aligned}
\hat{E}_{t}(\xi) & =\frac{t}{2} \int_{-\pi / 2}^{\pi / 2} e^{-i t r \sin \phi}(3+i t r \sin \phi) \cos ^{3} \phi d \phi \\
& =\frac{t}{2} \int_{-1}^{1} e^{-i t r s}(3+i t r s)\left(1-s^{2}\right) \phi d s .
\end{aligned}
$$

Integrating by parts we get

$$
\begin{aligned}
\hat{E}_{t}(\xi) & =\frac{t}{2} \int_{-1}^{1} e^{-i t r s}\left(3+\partial_{s} s\right)\left(1-s^{2}\right) d s \\
& =\frac{t}{2} \int_{-1}^{1} e^{-i t r s} d s=\frac{\sin (t r)}{r}
\end{aligned}
$$

Example 3. In 2-D. We apply the formula in \mathbb{R}^{3} for functions independent of x_{3}. Using the parametrization ($\left.\cos \phi \cos \theta, \cos \phi \sin \theta, \sin \phi\right)$ of S^{2} we get

$$
\begin{aligned}
\left\langle E_{t}, \varphi\right\rangle & =\frac{t}{4 \pi} \int \varphi(t \cos \phi \cos \theta, t \cos \phi \sin \theta) \cos \phi d \theta d \phi \\
& =\frac{t}{2 \pi} \int \varphi(t r \cos \theta, \operatorname{tr} \sin \theta) \frac{r}{\sqrt{1-r^{2}}} d r d \theta \\
& =\frac{t}{2 \pi} \int_{\{|y| \leq 1\}} \varphi(t y) \frac{d y}{\sqrt{1-|y|^{2}}}=\frac{t}{2 \pi} \int_{\{|y| \leq t\}} \varphi(y) \frac{d y}{\sqrt{t^{2}-|y|^{2}}}
\end{aligned}
$$

Thus the distribution E is the function

$$
\begin{equation*}
E(t, x)=\frac{t}{2 \pi \sqrt{t^{2}-|y|^{2}}} \tag{1.3.8}
\end{equation*}
$$

1.4 Gas dynamics

1.4.1 General Euler's equations

The equations of gas dynamics link the density ρ, the pressure p, the velocity $v=\left(v_{1}, v_{2}, v_{3}\right)$ and the total energy per unit of volume and unit of mass E through the equations:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\operatorname{div}(\rho v)=0 \tag{1.4.1}\\
\partial_{t}\left(\rho v_{j}\right)+\operatorname{div}\left(\rho v v_{j}\right)+\partial_{j} p=0 \quad 1 \leq j \leq 3 \\
\partial_{t} E+\operatorname{div}(\rho E v+p v)=0
\end{array}\right.
$$

Moreover, $E=e+|v|^{2} / 2$ where e is the specific internal energy. The variables ρ, p and e are linked by a state law. For instance, e can be seen as a function of ρ and p and one can take $u=(\rho, v, p) \in \mathbb{R}^{5}$ as unknowns. The second law of thermodynamics introduces two other dependent variables, the entropy S and the temperature T so that one can express p, e and T as functions \mathcal{P}, \mathcal{E} and \mathcal{T} of the variables (ρ, S), linked by the relation

$$
\begin{equation*}
d \mathcal{E}=\mathcal{T} d S+\frac{\mathcal{P}}{\rho^{2}} d \rho \tag{1.4.2}
\end{equation*}
$$

One can choose $u=(\rho, v, S)$ or $\widetilde{u}=(p, v, S)$ as unknowns. The equations read (for smooth solutions):

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\operatorname{div}(\rho v)=0 \tag{1.4.3}\\
\rho\left(\partial_{t} v_{j}+v \cdot \nabla v_{j}\right)+\partial_{j} p=0 \quad 1 \leq j \leq 3 \\
\partial_{t} S+v \cdot \nabla S=0
\end{array}\right.
$$

with p given a a given function \mathcal{P} of (ρ, S) or ρ function of (p, S).
Perfect gases. They satisfy the condition

$$
\begin{equation*}
\frac{p}{\rho}=R T \text {, } \tag{1.4.4}
\end{equation*}
$$

where R is a constant. The second law of thermodynamics (1.4.2) implies that

$$
d \mathcal{E}=\frac{\mathcal{P}}{R \rho} d S+\frac{\mathcal{P}}{\rho^{2}} d \rho
$$

thus

$$
\frac{\partial \mathcal{E}}{\partial S}=\frac{\mathcal{P}}{R \rho}, \quad \frac{\partial \mathcal{E}}{\partial \rho}=\frac{\mathcal{P}}{\rho^{2}} \quad \text { and } \quad \rho \frac{\partial \mathcal{E}}{\partial \rho}-R \frac{\partial \mathcal{E}}{\partial S}=0
$$

Therefore, the relation between e, ρ and S has the form

$$
\begin{equation*}
e=\mathcal{E}(\rho, S)=F\left(\rho e^{S / R}\right) \tag{1.4.5}
\end{equation*}
$$

Thus the temperature $T=\mathcal{T}(\rho, S)=\frac{\partial}{\partial S} \mathcal{E}=G\left(\rho e^{S / R}\right)$ with $G(s)=\frac{s}{R} F^{\prime}(s)$. This implies that T is a function of e :

$$
\begin{equation*}
T=\Psi(e)=\frac{1}{R} G\left(F^{-1}(e)\right) . \tag{1.4.6}
\end{equation*}
$$

A particular case of this relation is when Ψ is linear, meaning that e is proportional to T :

$$
\begin{equation*}
e=C T \text {, } \tag{1.4.7}
\end{equation*}
$$

with C constant. In this case

$$
\frac{1}{R} s F^{\prime}(s)=C F(s), \quad \text { thus } \quad F(s)=\lambda s^{R C}
$$

This implies that eand p are linked to ρ and S by

$$
\begin{equation*}
e=\rho^{\gamma-1} e^{C\left(S-S_{0}\right)}, \quad p=(\gamma-1) \rho^{\gamma} e^{C\left(S-S_{0}\right)}=(\gamma-1) \rho e, \tag{1.4.8}
\end{equation*}
$$

with $\gamma=1+R C$.

1.4.2 The isentropic system

When S is constant the system (1.4.3) reduces to

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\operatorname{div}(\rho v)=0 \tag{1.4.9}\\
\rho\left(\partial_{t} v_{j}+v \cdot \nabla v_{j}\right)+\partial_{j} p=0 \quad 1 \leq j \leq 3
\end{array}\right.
$$

with ρ and p linked by a state law, $p=\mathcal{P}(\rho)$. For instance, $p=c \rho^{\gamma}$ for perfect gases satisfying (1.4.8).

1.4.3 Acoustics

By linearization of (1.4.9) around a constant state $(\underline{\rho}, \underline{v})$, one obtains the equations

$$
\left\{\begin{array}{l}
\left(\partial_{t}+\underline{v} \cdot \nabla\right) \rho+\underline{\rho} \operatorname{div} v=f \tag{1.4.10}\\
\underline{\rho}\left(\partial_{t}+\underline{v} \cdot \nabla\right) v_{j}+\underline{c}^{2} \partial_{j} p=g_{j} \quad 1 \leq j \leq 3
\end{array}\right.
$$

where $\underline{c}^{2}:=\frac{d \mathcal{P}}{d \rho}(\underline{\rho})$. Changing variables x to $x-t \underline{v}$, reduces to

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\underline{\rho} \operatorname{div} v=f \tag{1.4.11}\\
\underline{\rho} \partial_{t} v+\underline{c}^{2} \nabla p=g
\end{array}\right.
$$

Compute the fundamental solution in $D=3$. Assume for simplicity that $\rho=1, \underline{c}=1$, the general case following easily. In the Fourier side we have to compute $e^{i t A(\xi)}$ where

$$
A=\left(\begin{array}{cc}
0 & { }^{t} \xi \\
\xi & 0
\end{array}\right)
$$

Note that

$$
A^{2}=\left(\begin{array}{cc}
|\xi|^{2} & 0 \\
0 & \xi^{t} \xi
\end{array}\right), \quad A^{3}=|\xi|^{2} A
$$

so that

$$
\begin{gathered}
e^{i t A}=I+\sum_{p \geq 0} \frac{(i t)^{2 p+2}}{(2 p+2)!}|\xi|^{2 p} A^{2}+\sum_{p \geq 0} \frac{(i t)^{2 p+1}}{(2 p+1)!}|\xi|^{2 p} A \\
e^{i t A}=\operatorname{Id}+\frac{\cos (t|\xi|)-1}{|\xi|^{2}} A^{2}+\frac{\sin (t|\xi|)}{|\xi|} i A
\end{gathered}
$$

The inverse Fourier transform of $\frac{\sin (t|\xi|)}{|\xi|}$ is E_{t} given at (1.3.6). The inverse Fourier transform of $\frac{1-\cos (t|\xi|)}{|\xi|^{2}}, F_{t}$, satisfies $\partial_{t} F_{t}=E_{t}$,

$$
\begin{equation*}
\left\langle F_{t}, \varphi\right\rangle=\int_{0 \leq s \leq t} s \varphi(x+s \omega) d s d \omega=\int_{\{|y| \leq t\}} \varphi(x+y) \frac{d y}{|y|} \tag{1.4.12}
\end{equation*}
$$

1.5 Maxwell's equations

1.5.1 General equations

The general Maxwell's equations read:

$$
\left\{\begin{array}{l}
\partial_{t} D-c \operatorname{curl} H=-j, \tag{1.5.1}\\
\partial_{t} B+c \operatorname{curl} E=0, \\
\operatorname{div} B=0, \\
\operatorname{div} D=q
\end{array}\right.
$$

where D is the electric displacement, E the electric field vector, H the magnetic field vector, B the magnetic induction, j the current density and q is the charge density; c is the velocity of light. They also imply the charge conservation law:

$$
\begin{equation*}
\partial_{t} q+\operatorname{div} j=0 . \tag{1.5.2}
\end{equation*}
$$

To close the system, one needs constitutive equations which link E, D, H, B and j.

Equations in vacuum

Consider here the case $j=0$ and $q=0$ (no current and no charge) and

$$
\begin{equation*}
D=\varepsilon E, \quad B=\mu H, \tag{1.5.3}
\end{equation*}
$$

where ε is the dielectric tensor and μ the tensor of magnetic permeability.
In vacuum, ε and μ are scalar and constant. After some normalization the equation reduces to

$$
\left\{\begin{array}{l}
\partial_{t} E-\operatorname{curl} B=0, \tag{1.5.4}\\
\partial_{t} B+\operatorname{curl} E=0, \\
\operatorname{div} B=0, \\
\operatorname{div} E=0 .
\end{array}\right.
$$

The first two equations imply that $\partial_{t} \operatorname{div} E=\partial_{t} \operatorname{div} B=0$, therefore the constraints $\operatorname{div} E=\operatorname{div} B=0$ are satisfied at all time if they are satisfied at time $t=0$. This is why one can "forget" the divergence equation and focus on the evolution equations

$$
\left\{\begin{array}{l}
\partial_{t} E-\operatorname{curl} B=0 \tag{1.5.5}\\
\partial_{t} B+\operatorname{curl} E=0
\end{array}\right.
$$

Moreover, using that curl curl $=-\Delta \mathrm{Id}+$ grad div, for divergence free fields the system is equivalent to the wave equation :

$$
\begin{equation*}
\partial_{t}^{2} E-\Delta E=0 \tag{1.5.6}
\end{equation*}
$$

1.5.2 Crystal optics

With $j=0$ and $q=0$, we assume in (1.5.3) that μ is scalar but that ε is a positive definite symmetric matrix. In this case the system reads:

$$
\left\{\begin{array}{l}
\partial_{t}(\varepsilon E)-\operatorname{curl} B=0 \tag{1.5.7}\\
\partial_{t} B+\operatorname{curl} E=0
\end{array}\right.
$$

plus the constraint equations $\operatorname{div}(\varepsilon E)=\operatorname{div} B=0$ which are again propagated from the initial conditions. One can choose coordinate axes so that ε is diagonal:

$$
\varepsilon^{-1}=\left(\begin{array}{ccc}
\alpha_{1} & 0 & 0 \tag{1.5.8}\\
0 & \alpha_{2} & 0 \\
0 & 0 & \alpha_{3}
\end{array}\right)
$$

with $\alpha_{1}>\alpha_{2}>\alpha_{3}$.

1.5.3 Laser - matter interaction

Still with $j=0$ and $q=0$ and B proportional to H, say $B=H$, the interaction light-matter is described through the relation

$$
\begin{equation*}
D=E+P \tag{1.5.9}
\end{equation*}
$$

where P is the polarization field. P can be given explicitly in terms of E, for instance in the Kerr nonlinearity model:

$$
\begin{equation*}
P=|E|^{2} E \tag{1.5.10}
\end{equation*}
$$

In other models P is given by an evolution equation:

$$
\begin{equation*}
\frac{1}{\omega^{2}} \partial_{t}^{2} P+P-\alpha|P|^{2} P=\gamma E \tag{1.5.11}
\end{equation*}
$$

harmonic oscillators when $\alpha=0$ or anharmonic oscillators when $\alpha \neq 0$.
In other models, P is given by Bloch's equation which come from a more precise description of the physical interaction of the light and the electrons at the quantum mechanics level.

With $Q=\partial_{t} P$, the equations (1.5.1) (1.5.11) can be written as a first order 12×12 system:

$$
\left\{\begin{array}{l}
\partial_{t} E-\operatorname{curl} B+Q=0, \tag{1.5.12}\\
\partial_{t} B+\operatorname{curl} E=0, \\
\partial_{t} P-Q=0, \\
\partial_{t} Q+\omega^{2} P-\omega^{2} \gamma E-\omega^{2} \alpha|P|^{2} P=0
\end{array}\right.
$$

1.6 Magneto-hydrodynamics

1.6.1 A model

The equations of isentropic magnetohydrodynamics (MHD) appear in basic form as

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\operatorname{div}(\rho u)=0 \tag{1.6.1}\\
\partial_{t}(\rho u)+\operatorname{div}\left(\rho u^{t} u\right)+\nabla p+H \times \operatorname{curl} H=0 \\
\partial_{t} H+\operatorname{curl}(H \times u)=0
\end{array}\right.
$$

where $\rho \in \mathbb{R}$ represents density, $u \in \mathbb{R}^{3}$ fluid velocity, $p=p(\rho) \in \mathbb{R}$ pressure, and $H \in \mathbb{R}^{3}$ magnetic field. With $H \equiv 0$, (1.6.1) reduces to the equations of isentropic fluid dynamics.

Equations (1.6.1) may be put in conservative form using identity

$$
\begin{equation*}
H \times \operatorname{curl} H=(1 / 2) \operatorname{div}\left(|H|^{2} I-2 H^{t} H\right)^{\operatorname{tr}}+H \operatorname{div} H \tag{1.6.3}
\end{equation*}
$$

together with constraint (1.6.2) to express the second equation as

$$
\begin{equation*}
\partial_{t}(\rho u)+\operatorname{div}\left(\rho u^{t} u\right)+\nabla p+(1 / 2) \operatorname{div}\left(|H|^{2} I-2 H^{t} H\right)^{\operatorname{tr}}=0 \tag{1.6.4}
\end{equation*}
$$

They may be put in symmetrizable (but no longer conservative) form by a further change, using identity

$$
\begin{equation*}
\operatorname{curl}(H \times u)=(\operatorname{div} u) H+(u \cdot \nabla) H-(\operatorname{div} H) u-(H \cdot \nabla) u \tag{1.6.5}
\end{equation*}
$$

together with constraint (1.6.2) to express the third equation as

$$
\begin{equation*}
\partial_{t} H+(\operatorname{div} u) H+(u \cdot \nabla) H-(H \cdot \nabla) u=0 . \tag{1.6.6}
\end{equation*}
$$

1.7 Elasticity

The linear wave equation in an elastic homogeneous medium is a second order constant coefficients 3×3 system

$$
\begin{equation*}
\partial_{t}^{2} v-\sum_{j, k=1}^{3} A_{j, k} \partial_{x_{j}} \partial_{x_{k}} v=f \tag{1.7.1}
\end{equation*}
$$

where the $A_{j, k}$ are 3×3 real matrices. In anisotropic media, the form of the matrices $A_{j, k}$ is complicated (it may depend upon 21 parameters). The basic hyperbolicity condition is that

$$
\begin{equation*}
A(\xi):=\sum \xi_{j} \xi_{k} A_{j, k} \tag{1.7.2}
\end{equation*}
$$

is symmetric and positive definite for $\xi \neq 0$.
In the isotropic case

$$
\begin{equation*}
\sum_{j, k=1}^{3} A_{j, k} \partial_{x_{j}} \partial_{x_{k}} v=2 \lambda \Delta_{x} v+\mu \nabla_{x}\left(\operatorname{div}_{x} v\right) . \tag{1.7.3}
\end{equation*}
$$

The hyperbolicity condition is that $\lambda>0$ and $2 \lambda+\mu>0$.

