Chapter 1

Examples

1.1 Transport equations

(1.1.1)
$$(\partial_t + v \cdot \partial_x)u = f, \qquad u_{|t=0} = h.$$

(1.1.2)
$$u(t,x) = h(x-tv) + \int_0^t f(s,x-(t-s)v)ds.$$

(1.1.3)
$$u(t,x) = h(x-tv) + \int_0^t f(t-s,x-sv)ds.$$

1.2 1-D wave equation

(1.2.1)
$$(\partial_t^2 - \partial_x^2)u = f, \quad u_{|t=0} = h_0, \quad \partial_t u_{|t=0} = h_1$$

Let $v = (\partial_t - \partial_x)u$. Then $(\partial_t + \partial_x)v = 0$ and $v_{|t=0} = h_1 - \partial_x h_0$ so that

$$v(t,x) = (h_1 - \partial_x h_0)(x-t) + \int_0^t f(t-s, x-s)ds.$$

Thus

$$u(t,x) = h_0(x+t) + \int_0^t v(t-s,x+s)ds.$$

The contribution of h_1 in last integral is

$$\int_0^t h_1(x+2s-t)dt = \frac{1}{2} \int_{-t}^t h_1(x-y)dy.$$

The contribution of h_0 is

$$h_0(x+t) - \frac{1}{2} \int_{-t}^t \partial_x h_0(x-y) dy = \frac{1}{2} \big(h_0(x+t) - h_0(x-t) \big).$$

The contribution of f is

$$\int_{\{0 \le s' \le t\}} f(t-s-s', x-s+s') ds' ds = \frac{1}{2} \int_{\{|y| \le s \le t\}} f(t-s, x-y) ds dy.$$

$$u(t,x) = \frac{1}{2} \left(h_0(x+t) - h_0(x-t) \right) + \frac{1}{2} \int_{-t}^t h_1(x-y) dy$$

$$+ \frac{1}{2} \int_{\{|y| \le s \le t\}} f(t-s, x-y) ds dy.$$

1.3 The multi-D wave equation

(1.3.1) $(\partial_t^2 - \Delta_x)u = f, \quad u_{|t=0} = h_0, \quad \partial_t u_{|t=0} = h_1.$

Fourier in x

(1.3.2)

$$(\partial_t^2 + |\xi|^2)\hat{u} = \hat{f}, \qquad \hat{u}_{|t=0} = \hat{h}_0, \quad \partial_t \hat{u}_{|t=0} = \hat{h}_1.$$

(1.3.3)
$$\hat{u}(t,\xi) = \cos(t|\xi|)\hat{h}_0(\xi) + \frac{\sin(t|\xi|)}{|\xi|}\hat{h}_1(\xi) + \int_0^t \frac{\sin((t-s)|\xi|)}{|\xi|}\hat{f}(t-s,\xi)ds.$$

Compute the inverse Fourier transform of $\cos(t|\xi|)$ and $\frac{\sin(t|\xi|)}{|\xi|}$. Let

(1.3.4)
$$E(t,x) = \frac{1}{(2\pi)^d} \int e^{ix \cdot \xi} \frac{\sin(t|\xi|)}{|\xi|} d\xi.$$

Then (formally)

(1.3.5)
$$u(t,x) = \int \partial_t E(t,y) h_0(x-y) dy + \int E(t,y) h_1(x-y) dy + \int_{\{0 \le s \le t\}} E(s,y) f(t-s,x-y) ds dy.$$

Example 1. In 1-D

$$E(t,x) = \frac{1}{2} \mathbb{1}_{[-t,t]}(x).$$

Proof : compute the Fourier transform of $1_{[-t,t]}$. We recover the formula above.

Example 2. In 3-D. *E* is the distribution

(1.3.6)
$$\langle E_t, \varphi \rangle = t \int_{S^2} \varphi(t\omega) d\omega.$$

Proof : compute the Fourier transform of this distribution

$$\hat{E}_t(\xi) = \langle E_t, e^{-ix\cdot\xi} \rangle = t \int_{S^2} e^{-it\omega\cdot\xi} d\omega.$$

This integral is invariant by rotation in ξ and we can assume that $\xi = (0,0,r), r = |\xi|$. Write $\omega = (\cos \phi \sigma, \sin \phi)$ with $\phi \in [-\pi/2, \pi/2[$ and $\sigma \in S^1$. Then $d\omega = \frac{1}{2}(\cos \phi)d\sigma d\phi$. Hence

$$\hat{E}_t(\xi) = \frac{t}{2} \int e^{-itr\sin\phi} \cos\phi \, d\phi = \frac{\sin(tr)}{r}.$$

Example 3. In 5-D. E is the distribution

(1.3.7)
$$\langle E_t, \varphi \rangle = \frac{2t}{3} \int_{S^4} X \varphi(t\omega) d\omega, \qquad X = -x \cdot \partial_x + 3.$$

Proof : compute the Fourier transform, using that

$$Xe^{-ix\cdot\xi} = (3+ix\cdot\xi)e^{-ix\cdot\xi}$$
$$\hat{E}_t(\xi) = \langle E_t, e^{-ix\cdot\xi} \rangle = \frac{2t}{3} \int_{S^4} (3+ix\cdot\xi)e^{-it\omega\cdot\xi}d\omega.$$

This integral is invariant by rotation in ξ and we can assume that $\xi = (0,0,r), r = |\xi|$. Write $\omega = (\cos \phi \sigma, \sin \phi)$ with $\phi \in]-\pi/2, \pi/2[$ and $\sigma \in S^3$. Then $d\omega = \frac{3}{4}(\cos \phi)^3 d\sigma d\phi$. Hence

$$\hat{E}_t(\xi) = \frac{t}{2} \int_{-\pi/2}^{\pi/2} e^{-itr\sin\phi} (3 + itr\sin\phi) \cos^3\phi \, d\phi$$
$$= \frac{t}{2} \int_{-1}^1 e^{-itrs} (3 + itrs)(1 - s^2)\phi \, ds.$$

Integrating by parts we get

$$\hat{E}_t(\xi) = \frac{t}{2} \int_{-1}^1 e^{-itrs} (3+\partial_s s)(1-s^2) ds$$
$$= \frac{t}{2} \int_{-1}^1 e^{-itrs} ds = \frac{\sin(tr)}{r}.$$

Example 3. In 2-D. We apply the formula in \mathbb{R}^3 for functions independent of x_3 . Using the parametrization $(\cos \phi \cos \theta, \cos \phi \sin \theta, \sin \phi)$ of S^2 we get

$$\langle E_t, \varphi \rangle = \frac{t}{4\pi} \int \varphi(t \cos \phi \cos \theta, t \cos \phi \sin \theta) \cos \phi d\theta d\phi$$

= $\frac{t}{2\pi} \int \varphi(tr \cos \theta, tr \sin \theta) \frac{r}{\sqrt{1 - r^2}} dr d\theta$
= $\frac{t}{2\pi} \int_{\{|y| \le 1\}} \varphi(ty) \frac{dy}{\sqrt{1 - |y|^2}} = \frac{t}{2\pi} \int_{\{|y| \le t\}} \varphi(y) \frac{dy}{\sqrt{t^2 - |y|^2}}.$

Thus the distribution E is the function

(1.3.8)
$$E(t,x) = \frac{t}{2\pi\sqrt{t^2 - |y|^2}}$$

1.4 Gas dynamics

1.4.1 General Euler's equations

The equations of gas dynamics link the density ρ , the pressure p, the velocity $v = (v_1, v_2, v_3)$ and the total energy per unit of volume and unit of mass E through the equations:

(1.4.1)
$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho v) = 0\\ \partial_t(\rho v_j) + \operatorname{div}(\rho v v_j) + \partial_j p = 0 \quad 1 \le j \le 3\\ \partial_t E + \operatorname{div}(\rho E v + p v) = 0 \end{cases}$$

Moreover, $E = e + |v|^2/2$ where *e* is the specific internal energy. The variables ρ , *p* and *e* are linked by a state law. For instance, *e* can be seen as a function of ρ and *p* and one can take $u = (\rho, v, p) \in \mathbb{R}^5$ as unknowns. The second law of thermodynamics introduces two other dependent variables, the entropy *S* and the temperature *T* so that one can express *p*, *e* and *T* as functions \mathcal{P}, \mathcal{E} and \mathcal{T} of the variables (ρ, S) , linked by the relation

(1.4.2)
$$d\mathcal{E} = \mathcal{T}dS + \frac{\mathcal{P}}{\rho^2}d\rho.$$

One can choose $u = (\rho, v, S)$ or $\tilde{u} = (p, v, S)$ as unknowns. The equations read (for smooth solutions):

(1.4.3)
$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho v) = 0\\ \rho(\partial_t v_j + v \cdot \nabla v_j) + \partial_j p = 0 \quad 1 \le j \le 3\\ \partial_t S + v \cdot \nabla S = 0 \end{cases}$$

with p given a given function \mathcal{P} of (ρ, S) or ρ function of (p, S).

Perfect gases. They satisfy the condition

(1.4.4)
$$\frac{p}{\rho} = RT$$

where R is a constant. The second law of thermodynamics (1.4.2) implies that

$$d\mathcal{E} = \frac{\mathcal{P}}{R\rho} dS + \frac{\mathcal{P}}{\rho^2} d\rho$$

thus

$$\frac{\partial \mathcal{E}}{\partial S} = \frac{\mathcal{P}}{R\rho}, \quad \frac{\partial \mathcal{E}}{\partial \rho} = \frac{\mathcal{P}}{\rho^2} \quad \text{and} \quad \rho \frac{\partial \mathcal{E}}{\partial \rho} - R \frac{\partial \mathcal{E}}{\partial S} = 0$$

Therefore, the relation between e, ρ and S has the form

(1.4.5)
$$e = \mathcal{E}(\rho, S) = F(\rho e^{S/R}).$$

Thus the temperature $T = \mathcal{T}(\rho, S) = \frac{\partial}{\partial S} \mathcal{E} = G(\rho e^{S/R})$ with $G(s) = \frac{s}{R} F'(s)$. This implies that T is a function of e:

(1.4.6)
$$T = \Psi(e) = \frac{1}{R}G(F^{-1}(e)).$$

A particular case of this relation is when Ψ is linear, meaning that e is proportional to T:

$$(1.4.7) e = CT,$$

with C constant. In this case

$$\frac{1}{R}sF'(s) = CF(s),$$
 thus $F(s) = \lambda s^{RC}$

This implies that eand p are linked to ρ and S by

(1.4.8)
$$e = \rho^{\gamma - 1} e^{C(S - S_0)}, \quad p = (\gamma - 1)\rho^{\gamma} e^{C(S - S_0)} = (\gamma - 1)\rho e,$$

with $\gamma = 1 + RC$.

/

1.4.2 The isentropic system

.

When S is constant the system (1.4.3) reduces to

(1.4.9)
$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho v) = 0\\ \rho(\partial_t v_j + v \cdot \nabla v_j) + \partial_j p = 0 \quad 1 \le j \le 3 \end{cases}$$

with ρ and p linked by a state law, $p = \mathcal{P}(\rho)$. For instance, $p = c\rho^{\gamma}$ for perfect gases satisfying (1.4.8).

1.4.3 Acoustics

By linearization of (1.4.9) around a constant state $(\underline{\rho}, \underline{v})$, one obtains the equations

(1.4.10)
$$\begin{cases} (\partial_t + \underline{v} \cdot \nabla)\rho + \underline{\rho} \operatorname{div} v = f \\ \underline{\rho}(\partial_t + \underline{v} \cdot \nabla)v_j + \underline{c}^2 \partial_j p = g_j \quad 1 \le j \le 3 \end{cases}$$

where $\underline{c}^2 := \frac{d\mathcal{P}}{d\rho}(\underline{\rho})$. Changing variables x to $x - t\underline{v}$, reduces to

(1.4.11)
$$\begin{cases} \partial_t \rho + \underline{\rho} \operatorname{div} v = f \\ \underline{\rho} \partial_t v + \underline{c}^2 \nabla p = g \end{cases}$$

Compute the fundamental solution in D = 3. Assume for simplicity that $\underline{\rho} = 1, \underline{c} = 1$, the general case following easily. In the Fourier side we have to compute $e^{itA(\xi)}$ where

$$A = \begin{pmatrix} 0 & {}^t \xi \\ \xi & 0 \end{pmatrix}.$$

Note that

$$A^{2} = \begin{pmatrix} |\xi|^{2} & 0\\ 0 & \xi^{t}\xi \end{pmatrix}, \qquad A^{3} = |\xi|^{2}A,$$

so that

$$e^{itA} = I + \sum_{p \ge 0} \frac{(it)^{2p+2}}{(2p+2)!} |\xi|^{2p} A^2 + \sum_{p \ge 0} \frac{(it)^{2p+1}}{(2p+1)!} |\xi|^{2p} A$$
$$e^{itA} = \mathrm{Id} + \frac{\cos(t|\xi|) - 1}{|\xi|^2} A^2 + \frac{\sin(t|\xi|)}{|\xi|} iA$$

The inverse Fourier transform of $\frac{\sin(t|\xi|)}{|\xi|}$ is E_t given at (1.3.6). The inverse Fourier transform of $\frac{1-\cos(t|\xi|)}{|\xi|^2}$, F_t , satisfies $\partial_t F_t = E_t$,

(1.4.12)
$$\langle F_t, \varphi \rangle = \int_{0 \le s \le t} s\varphi(x+s\omega)dsd\omega = \int_{\{|y| \le t\}} \varphi(x+y)\frac{dy}{|y|}.$$

1.5 Maxwell's equations

1.5.1 General equations

The general Maxwell's equations read:

(1.5.1)
$$\begin{cases} \partial_t D - c \operatorname{curl} H = -j, \\ \partial_t B + c \operatorname{curl} E = 0, \\ \operatorname{div} B = 0, \\ \operatorname{div} D = q \end{cases}$$

where D is the electric displacement, E the electric field vector, H the magnetic field vector, B the magnetic induction, j the current density and q is the charge density; c is the velocity of light. They also imply the charge conservation law:

(1.5.2)
$$\partial_t q + \operatorname{div} j = 0.$$

To close the system, one needs *constitutive equations* which link E, D, H, B and j.

Equations in vacuum

Consider here the case j = 0 and q = 0 (no current and no charge) and

$$(1.5.3) D = \varepsilon E, B = \mu H,$$

where ε is the dielectric tensor and μ the tensor of magnetic permeability.

In vacuum, ε and μ are scalar and constant. After some normalization the equation reduces to

(1.5.4)
$$\begin{cases} \partial_t E - \operatorname{curl} B = 0, \\ \partial_t B + \operatorname{curl} E = 0, \\ \operatorname{div} B = 0, \\ \operatorname{div} E = 0. \end{cases}$$

The first two equations imply that $\partial_t \operatorname{div} E = \partial_t \operatorname{div} B = 0$, therefore the constraints $\operatorname{div} E = \operatorname{div} B = 0$ are satisfied at all time if they are satisfied at time t = 0. This is why one can "forget" the divergence equation and focus on the evolution equations

(1.5.5)
$$\begin{cases} \partial_t E - \operatorname{curl} B = 0, \\ \partial_t B + \operatorname{curl} E = 0, \end{cases}$$

Moreover, using that $\operatorname{curl}\operatorname{curl} = -\Delta\operatorname{Id} + \operatorname{grad}\operatorname{div}$, for divergence free fields the system is equivalent to the wave equation :

(1.5.6)
$$\partial_t^2 E - \Delta E = 0.$$

1.5.2 Crystal optics

With j = 0 and q = 0, we assume in (1.5.3) that μ is scalar but that ε is a positive definite symmetric matrix. In this case the system reads:

(1.5.7)
$$\begin{cases} \partial_t(\varepsilon E) - \operatorname{curl} B = 0, \\ \partial_t B + \operatorname{curl} E = 0, \end{cases}$$

plus the constraint equations $\operatorname{div}(\varepsilon E) = \operatorname{div} B = 0$ which are again propagated from the initial conditions. One can choose coordinate axes so that ε is diagonal:

(1.5.8)
$$\varepsilon^{-1} = \begin{pmatrix} \alpha_1 & 0 & 0 \\ 0 & \alpha_2 & 0 \\ 0 & 0 & \alpha_3 \end{pmatrix}$$

with $\alpha_1 > \alpha_2 > \alpha_3$.

1.5.3 Laser - matter interaction

Still with j = 0 and q = 0 and B proportional to H, say B = H, the interaction light-matter is described through the relation

$$(1.5.9) D = E + P$$

where P is the polarization field. P can be given explicitly in terms of E, for instance in the *Kerr nonlinearity* model:

(1.5.10)
$$P = |E|^2 E.$$

In other models P is given by an evolution equation:

(1.5.11)
$$\frac{1}{\omega^2}\partial_t^2 P + P - \alpha |P|^2 P = \gamma E$$

harmonic oscillators when $\alpha = 0$ or anharmonic oscillators when $\alpha \neq 0$.

In other models, P is given by *Bloch's equation* which come from a more precise description of the physical interaction of the light and the electrons at the quantum mechanics level.

With $Q = \partial_t P$, the equations (1.5.1) (1.5.11) can be written as a first order 12×12 system:

(1.5.12)
$$\begin{cases} \partial_t E - \operatorname{curl} B + Q = 0, \\ \partial_t B + \operatorname{curl} E = 0, \\ \partial_t P - Q = 0, \\ \partial_t Q + \omega^2 P - \omega^2 \gamma E - \omega^2 \alpha |P|^2 P = 0. \end{cases}$$

1.6 Magneto-hydrodynamics

1.6.1 A model

The equations of isentropic magnetohydrodynamics (MHD) appear in basic form as

(1.6.1)
$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho u) = 0\\ \partial_t(\rho u) + \operatorname{div}(\rho u^t u) + \nabla p + H \times \operatorname{curl} H = 0\\ \partial_t H + \operatorname{curl}(H \times u) = 0 \end{cases}$$

$$(1.6.2) div H = 0,$$

where $\rho \in \mathbb{R}$ represents density, $u \in \mathbb{R}^3$ fluid velocity, $p = p(\rho) \in \mathbb{R}$ pressure, and $H \in \mathbb{R}^3$ magnetic field. With $H \equiv 0$, (1.6.1) reduces to the equations of isentropic fluid dynamics.

Equations (1.6.1) may be put in conservative form using identity

(1.6.3)
$$H \times \operatorname{curl} H = (1/2)\operatorname{div}(|H|^2 I - 2H^t H)^{\operatorname{tr}} + H\operatorname{div} H$$

together with constraint (1.6.2) to express the second equation as

(1.6.4)
$$\partial_t(\rho u) + \operatorname{div}(\rho u^t u) + \nabla p + (1/2)\operatorname{div}(|H|^2 I - 2H^t H)^{\operatorname{tr}} = 0.$$

They may be put in symmetrizable (but no longer conservative) form by a further change, using identity

(1.6.5)
$$\operatorname{curl}(H \times u) = (\operatorname{div} u)H + (u \cdot \nabla)H - (\operatorname{div} H)u - (H \cdot \nabla)u$$

together with constraint (1.6.2) to express the third equation as

(1.6.6)
$$\partial_t H + (\operatorname{div} u)H + (u \cdot \nabla)H - (H \cdot \nabla)u = 0.$$

1.7 Elasticity

The linear wave equation in an elastic homogeneous medium is a second order constant coefficients 3×3 system

(1.7.1)
$$\partial_t^2 v - \sum_{j,k=1}^3 A_{j,k} \partial_{x_j} \partial_{x_k} v = f$$

where the $A_{j,k}$ are 3×3 real matrices. In anisotropic media, the form of the matrices $A_{j,k}$ is complicated (it may depend upon 21 parameters). The basic hyperbolicity condition is that

(1.7.2)
$$A(\xi) := \sum \xi_j \xi_k A_{j,k}$$

is symmetric and positive definite for $\xi \neq 0$.

In the isotropic case

(1.7.3)
$$\sum_{j,k=1}^{3} A_{j,k} \partial_{x_j} \partial_{x_k} v = 2\lambda \Delta_x v + \mu \nabla_x (\operatorname{div}_x v).$$

The hyperbolicity condition is that $\lambda > 0$ and $2\lambda + \mu > 0$.