Chapter 4

Symmetric systems. The L^2 linear theory

4.1 Symmetric systems, preliminaries

4.1.1 Definitions

Consider the

(4.1.1)
$$L = \sum_{j=0}^{d} \widetilde{A}_j(\widetilde{x})\partial_{x_j} + \widetilde{B}, \qquad \widetilde{x} = (x_0, \dots, x_d) = (t, x)$$

Our goal is to solve the Cauchy problem

(4.1.2)
$$\begin{cases} Lu = f, & t \in [0,T], \ x \in \mathbb{R}^d, \\ u_{|t=0} = h, \end{cases}$$

assuming that the system is symmetric in the following sense:

Definition 4.1.1. *L* is symmetric hyperbolic if the A_j are symmetric and \widetilde{A}_0 is positive definite.

(4.1.3)
$$\widetilde{A}_0^{-1} = \partial_t + \sum_{j=1}^d A_j(\tilde{x})\partial_{x_j} + B, \qquad \tilde{x} = (x_0, \dots, x_d) = (t, x)$$

Lemma 4.1.2. For all \tilde{x} , $\tilde{L}(\tilde{x}, \tilde{\xi})$ is strongly hyperbolic in the direction dt = (1, 0, ..., 0) and the cone of hyperbolic directions $\Gamma_{\tilde{x}}$ is the set of $\tilde{\xi}$ such that $\tilde{L}(\tilde{x}, \tilde{\xi})$ is positive definite.

Assumption 4.1.3. The coefficients \widetilde{A}_j are Lipschitz continuous.

4.1.2 Adjoints and weak solutions

Lemma 4.1.4. Let $a \in W^{1,\infty}(\Omega)$. For $u \in H^1(\Omega)$ [resp. $L^2(\Omega)$], $a\partial_{x_j}u$ is well defined in $L^2(\Omega)$ [resp. $H^{-1}(\Omega)$]. In particular, for $u \in L^2(\Omega)$ and $v \in H^1_0(\Omega)$,

$$\langle a\partial_{x_j}u,v\rangle_{H^{-1}\times H^1_0} = -\int u\partial_{x_j}(au)dx.$$

The adjoint of L is

(4.1.4)
$$L^* = \sum_{j=0}^d -\partial_{x_j} \widetilde{A}_j^* + \widetilde{B}^*.$$

Corollary 4.1.5. For $u \in H^1(\widetilde{\Omega})$ [resp. $L^2(\widetilde{\Omega})$], Lu is well defined in $L^2(\widetilde{\Omega})$ [resp. $H^{-1}(\widetilde{\Omega})$]. There is a similar result for L^* and for $u \in L^2(\widetilde{\Omega})$ and $v \in H^1_0(\widetilde{\Omega})$,

$$\langle Lu, v \rangle_{H^{-1} \times H^1_0} = \int u(\tilde{x}) \overline{L^* v(\tilde{x})} d\tilde{x}$$

In particular, for $u \in L^2(\widetilde{\Omega})$ and $f \in L^2(\widetilde{\Omega})$, the equation Lu = f is satisfied in the weak sense, that is in $H^{-1}(\widetilde{\Omega})$, if and only if

(4.1.5)
$$\forall v \in H_0^1(\widetilde{\Omega}), \qquad \int u(\tilde{x})\overline{L^*v}(\tilde{x})d\tilde{x} = \int f(\tilde{x})\overline{v(\tilde{x})}d\tilde{x}.$$

4.1.3 Weak and strong solutions of the Cauchy problem

Lemma 4.1.6. If $u \in L^2([0,T] \times \mathbb{R}^d)$ and $\partial_t u \in L^2([0,T]; H^{-1}\mathbb{R}^d)$, then $u \in C^0([0,T]; H^{-\frac{1}{2}}(\mathbb{R}^d))$ and for all $v \in H^1([0,T] \times \mathbb{R}^d)$,

(4.1.6)
$$-\int u(\tilde{x})\,\overline{\partial_t v(\tilde{x})}d\tilde{x} = \int_0^T \langle \partial_t u(t), \overline{v}(t) \rangle_{H^{-1} \times H^1} dt + \langle u(0), \overline{v}(0) \rangle_{H^{-\frac{1}{2}} \times H^{\frac{1}{2}}} - \langle u(T), \overline{v}(T) \rangle_{H^{-\frac{1}{2}} \times H^{\frac{1}{2}}}$$

Also recall that $H^1([0,T] \times \mathbb{R}^d) \subset C^0([0,T]; H^{\frac{1}{2}}(\mathbb{R}^d)).$

Corollary 4.1.7. If $u \in L^2([0,T] \times \mathbb{R}^d)$ and $Lu \in L^2([0,T] \times \mathbb{R}^d)$, then $u \in C^0([0,T]; H^{-\frac{1}{2}}(\mathbb{R}^d))$ and for all $v \in H^1([0,T] \times \mathbb{R}^d)$,

(4.1.7)
$$\int u(\tilde{x})\overline{L^*v}(\tilde{x})d\tilde{x} = \int f(\tilde{x})\overline{v(\tilde{x})}d\tilde{x} + \langle u(0), \overline{v}(0) \rangle_{H^{-\frac{1}{2}} \times H^{\frac{1}{2}}} - \langle u(T), \overline{v}(T) \rangle_{H^{-\frac{1}{2}} \times H^{\frac{1}{2}}}$$

Definition 4.1.8 (Weak L^2 solutions of the Cauchy problem). It makes sense

Corollary 4.1.9. For $f \in L^2([0,T] \times \mathbb{R}^n)$ and $h \in L^2(\mathbb{R}^n)$, $u \in L^2([0,T] \times \mathbb{R}^n)$ is a weak solution of (4.1.2) if and only il, for all $v \in \mathcal{H}^1$ such that $v_{|t=T} = 0$, one has

(4.1.8)
$$\int_{[0,T]\times\mathbb{R}^n} f \cdot \overline{v} \, dt dx + \int_{\mathbb{R}^n} h \overline{v}_{|t=0} \, dx = \int_{[0,T]\times\mathbb{R}^n} u \overline{L^* v} \, dt dx.$$

Definition 4.1.10 (Strong L^2 solutions of the Cauchy problem). For $f \in L^2([0,T] \times \mathbb{R}^n)$ and $h \in L^2(\mathbb{R}^n)$, $u \in L^2([0,T] \times \mathbb{R}^n)$ said to be a strong solution of (4.1.2) if there is sequences $u_k \in H^1([0,T] \times \mathbb{R}^d)$ such that in the limit $k \to +\infty$:

 $\begin{aligned} i) & \|u - u_k\|_{L^2([0,T] \times \mathbb{R}^n)} \to 0, \\ ii) & \|h - u_k|_{t=0}\|_{L^2(\mathbb{R}^n)} \to 0, \\ iii) & \|f - Lu_k\|_{L^2([0,T] \times \mathbb{R}^n)} \to 0. \end{aligned}$

Lemma 4.1.11. Strong solutions are weak solutions

4.2 The L^2 energy estimate.

4.2.1 The energy balance

Lemma 4.2.1. If the matrices A_j are symmetric, and $u \in H^1(\widetilde{\Omega})$ then

$$2\operatorname{Re} Lu.\overline{u} = \sum_{j=0}^{d} \partial_{x_j}(A_j u.\overline{u}) + Ku.\overline{u} \in L^1(\widetilde{\Omega}).$$

with $K = 2 \operatorname{Re} B - \sum_{j=0}^{d} \partial_{x_j} A_j$.

Corollary 4.2.2. If the matrices A_j are symmetric, and $u \in H^1([0,T] \times \mathbb{R}^d)$

(4.2.1)
$$2\operatorname{Re} \int_{[0,T]\times\mathbb{R}^d} Lu.\overline{u} \, d\tilde{x} = \int_{[0,T]\times\mathbb{R}^d} Ku.\overline{u} \, d\tilde{x} + \int_{\mathbb{R}^d} A_0 u \, \overline{u}(T,x) dx - \int_{\mathbb{R}^d} A_0 u \, \overline{u}(0,x) dx.$$

Proposition 4.2.3. If L is hyperbolic symmetric with Lipschitz coefficients, then there are constants C and γ such that for all $u \in H^1([0,T] \times \mathbb{R}^d)$

(4.2.2)
$$||u(t)||_{L^2} \le Ce^{\gamma t} ||u(0)||_{L^2} + C \int_0^t e^{\gamma(t-t')} ||Lu(t')||_{L^2} dt'.$$

Remark 4.2.4. On C and γ .

4.2.2Uniqueness of strong solutions

Theorem 4.2.5. Il the system is hyperbolic symmetric, then any strong solution belongs to $C^0([0,T];L^2)$ and satisfies the energy estimate (4.2.2).

In particular, strong solutions are unique.

Proof. Let u be s strong solution and u_k an approximating sequence. The estimate (4.2.2) can be applied to u_k and also to $u_k - u_l$, proving that the u_k are bounded and form a Cauchy sequence in $C^0([0,T];L^2)$. Therefore the limit u is also in this space, and passing to the limit in the estimates for the u_k we get the estimate for u.

Existence of weak solution 4.3

4.3.1The duality method

The system L^* is hyperbolic symmetric. Therefore there are energy estimates for L^* and changing t to T-t, we obtain that for $v \in H^1([0,T] \times \mathbb{R}^d)$ et $t \in [0, T]$ on a

$$\left\| v(t) \right\|_{L^2} \le C \int_t^T \left\| L^* v(t) \right\|_{L^2} dt' + C \left| v(T) \right\|_{L^2}$$

Introduce the space \mathcal{H}^1 of functions $v \in H^1([0,T] \times \mathbb{R}^n)$ such that $v_{|t=T} = 0$. The estimate above implies the following lemma.

Lemma 4.3.1. There is a constant C such that for all $v \in \mathcal{H}^1$ on a :

(4.3.1)
$$\|v(0)\|_{L^2(\mathbb{R}^d)} + \|v\|_{L^2([0,T]\times\mathbb{R}^d)} \le C \|L^*v\|_{L^2([0,T]\times\mathbb{R}^d)}$$

Theorem 4.3.2. For all $f \in L^2([0,T] \times \mathbb{R}^d)$ and $h \in L^2(\mathbb{R}^d)$, the problem (4.1.2) has a solution $u \in L^2([0,T] \times \mathbb{R}^d)$.

Proof. Consider the space $\mathcal{F} = \{L^*v; v \in \mathcal{H}^1\}$ which is a subspace of $L^2([0,T] \times \mathbb{R}^d)$. The mapping \widetilde{L} from \mathcal{H}^1 L^2 is injective by (4.3.1). Thus there is a linear inverse mapping $J : \mathcal{F} \mapsto \mathcal{H}^1$. For all $g \in \mathcal{F}$ one has $L^*Jg = g$ and by (4.3.1)

(4.3.2)
$$||Jg|_{t=0}||_{L^2(\mathbb{R}^d)} + ||Jg||_{L^2([0,T]\times\mathbb{R}^d)} \le C||g||_{L^2([0,T]\times\mathbb{R}^d)}.$$

Consider the anti-linear form on \mathcal{H}^1 :

(4.3.3)
$$\Phi(v) = \int_{[0,T] \times \mathbb{R}^d} f \cdot \overline{v} \, dt dx + \int_{\mathbb{R}^d} h \overline{v}_{|t=0} \, dx$$

and the antilinear form Ψ on \mathcal{F}

(4.3.4)
$$\Psi(g) = \Phi(Jg).$$

By (4.3.2) que

(4.3.5)
$$|\Psi(g)| \le M ||g||_{L^2([0,T] \times \mathbb{R}^d)}$$

with $M = C(||f||_{L^2} + ||h||_{L^2})$. Hence Ψ can be continuously extended to the closure of \mathcal{F} in $(L^2([0,T] \times \mathbb{R}^d))$, and next on $(L^2([0,T] \times \mathbb{R}^d))$ as an antilinear form with norm less than or equal to M. By Riesz Theorem, there is $u \in L^2([0,T] \times \mathbb{R}^n)$ such that for all $g \in L^2$:

$$\Psi(g) = \int_{[0,T] \times \mathbb{R}^d} u \cdot \overline{g} \, dt dx.$$

Therefore, for all $v \in \mathcal{H}^1$,

$$\Phi(v) = \int_{[0,T] \times \mathbb{R}^d} u \cdot \overline{L^* v} \, dt dx$$

This is precisely (4.1.8) and thus u is a solution of (4.1.2).

4.3.2 The approximation method

Let us explain the principle first. The idea is to replace the spatial derivatives ∂_{x_j} by approximations ∂_j^{ε} such that for all $\varepsilon > 0$ the ∂_j^{ε} are bounded operators in $L^2(\mathbb{R}^d)$. Of course, their norm in L^2 tends to $+\infty$ as ε goes to 0, but we assume that they are uniformly bounded from L^2 to H^{-1} : there is a constant C such that

The adjoint operators in L^2 , $\partial_j^{\varepsilon*}$, which need not be exactly $-\partial_j^{\varepsilon}$, are bounded from H^1 to L^2 :

Moreover, ∂_j^{ε} approximates ∂_{x_j} in the distribution sense, that is

(4.3.8)
$$\begin{aligned} \forall u \in L^2(\mathbb{R}^d), \quad \partial_j^{\varepsilon} u \to \partial_{x_j} u \text{ in } H^{-1}, \\ \forall v \in H^1(\mathbb{R}^d) \quad \partial_j^{\varepsilon*} v \to -\partial_{x_j} v \text{ in } L^2. \end{aligned}$$

Consider

(4.3.9)
$$L^{\varepsilon} = A_0 \partial_t + \sum_{j=1}^d A_j \partial_j^{\varepsilon} + B = A_0 (\partial_t + K^{\varepsilon}).$$

For all $\varepsilon > 0$, K^{ε} is bounded in L^2 and thus the Cauchy Lipschitz theorem implies that

Lemma 4.3.3. For all $\varepsilon \in [0,1]$, $h \in L^2(\mathbb{R}^d)$, $f \in L^1([0,T]; L^2(\mathbb{R}^d))$ the problem

(4.3.10)
$$L^{\varepsilon}u^{\varepsilon} = f, \quad u_{|t=0}^{\varepsilon} = h$$

has a unique solution $u^{\varepsilon} \in C^0([0,T]; L^2(\mathbb{R}^d)).$

Theorem 4.3.4. Suppose that the family u^{ε} is bounded in $C^{0}([0,T]; L^{2})$. Then the Cauchy problem (4.1.2) has a weak solution $u \in L^{2}([0,T] \times \mathbb{R}^{d})$.

Proof. Using (4.3.6), and the we see that ∂_t^{ε} is bounded in $L^{\infty}([0,T]; H^{-1})$ and more precisely that there is C such that for all $\varepsilon \in [0,1]$:

$$\left\| u^{\varepsilon}(t) - u^{\varepsilon}(t') \right\|_{H^{-1}} \le C|t - t'|.$$

Hence, by Ascoli's theorem there is a subsequence, still denoted by u^{ε} , which converges in $C^0([0,T]; L^2_{weak})$ where L^2_{weak} is the L^2 space equipped with the weak topology. The convergence in $C^0([0,T]; L^2_{weak})$ means that for all $\varphi \in L^2(\mathbb{R}^d)$, the function $(u^{\varepsilon}(t), \varphi)_{L^2}$ converges to $(u(t), \varphi)_{L^2}$ uniformly in time. In particular, $u \in L^2([0,T] \times \mathbb{R}^d)$.

For $v \in H^1([0,T] \times \mathbb{R}^d)$ with v(T) = 0, one has

$$\int f \cdot \overline{v} dt dx + \int h \cdot \overline{v_{|t=0}} \, dx = \int u^{\varepsilon} \cdot \overline{L^{\varepsilon * v}} \, dt dx$$

where

$$L^{\varepsilon*} = -\partial_t A_0 - \sum \partial_j^{\varepsilon} A_j + B^*$$

Passing to the limit in ε implies that u is a weak solution of (4.1.2).

Example 1.

Let $J_{\varepsilon} = (1 - \varepsilon \Delta_x)^{-\frac{1}{2}}$ and $\partial_j^{\varepsilon} = \partial_{x_j} J_{\varepsilon}$.

Proposition 4.3.5. With this choice, the assumption of Theorem 4.3.4 is satisfied.

Sketch of the proof. We repeat the proof of the energy estimate for L^{ε} . Because of the boundedness in L^2 , we can write

$$2\operatorname{Re}\left(A_{j}\partial_{j}^{\varepsilon}u^{\varepsilon}, u^{\varepsilon}\right)_{L^{2}} = \left((A_{j}\partial_{j}^{\varepsilon}-\partial_{j}^{\varepsilon}A_{j})u^{\varepsilon}, u^{\varepsilon}\right)_{L^{2}}.$$

Using a result of Coiffman and Meyer, one can show that the $(A_j \partial_j^{\varepsilon} - \partial_j^{\varepsilon} A_j)$ are uniformly bounded in L^2 . From here the proof continues as for Proposition 4.2.3.

Example 2. We use finite differences: jor $j = 1, \ldots, d$, and $\varepsilon \in [0, 1]$, let

(4.3.11)
$$\partial_j^{\varepsilon} u(x) = \frac{1}{2\varepsilon} \left(u(x + \varepsilon e_j) - u(x - \varepsilon e_j) \right)$$

where $\{e_1, \ldots, e_d\}$ is the canonical basis of \mathbb{R}^d .

Proposition 4.3.6. With this choice, the assumption of Theorem 4.3.4 is satisfied.

We start with a preliminary estimate.

Lemma 4.3.7. Suppose that A(x) is symmetric and Lipschitz, and $u \in L^2(\mathbb{R}^d)$. Then

(4.3.12)
$$\left|\operatorname{Re} \int A_j(x)\partial_j^{\varepsilon}u(x)\,\overline{u(x)}dx\right| \le \left\|\partial_j A\right\|_{L^{\infty}}\,\left\|u\right\|_{L^2}^2.$$

Proof. Let

$$w(x,y) := 2\operatorname{Re} A(x)(u(x+y) - u(x-y))\overline{u}(x)$$

= $A(x)u(x+y).\overline{u}(x) - A(x)u(x-y).\overline{u}(x)$
+ $A(x)u(x).\overline{u}(x+y) - A(x)u(x).\overline{u}(x-y).$

Hence

$$\int w(x,y)dx = \int (A(x) - A(x+y))u(x+y).\overline{u}(x)dx$$
$$+ \int (A(x-y) - A(x))u(x).\overline{u}(x-y).\overline{u}(x).dx$$
$$\leq 2|y| \|\partial A\|_{L^{\infty}} \|u\|_{L^{2}}^{2}.$$

which implies the lemma.

_	_

Proof of Proposition 4.3.6. Consider the energy

$$\mathcal{E}^{\varepsilon} = \int_{\mathbb{R}^d} A_0 u.\overline{u} dx = \left(A_0 u(t), u(t)\right)_{L^2} \approx \left\|u^{\varepsilon}(t)\right\|_{L^2}^2.$$

We have

$$\frac{d}{dt}\mathcal{E}^{\varepsilon} = \left(\partial_t A_0 u^{\varepsilon}(t), u^{\varepsilon}(t)\right)_{L^2} + 2\operatorname{Re}\left(f(t), u^{\varepsilon}(t)\right)_{L^2} + \sum_{j=1}^d \int w_j(t, x) dx$$

with

$$w_j = 2 \operatorname{Re} A_j \partial_j^{\varepsilon} u^{\varepsilon} \overline{u^{\varepsilon}}.$$

The Lemma implies that

$$\frac{d}{dt}\mathcal{E}^{\varepsilon} \le C_0 \|f(t)\|_{L^2} \sqrt{\mathcal{E}^{\varepsilon}} + C_1 \mathcal{E}^{\varepsilon} +$$

and the proposition follows.

4.4 Strong solutions of the Cauchy problem

4.4.1 Weak = strong

We are given a weak solution u and we want to exhibit a sequence u_k satisfying the properties listed in the Definition 4.1.10. The principle of the proof is as follows. We look for *mollifiers* J_{ε} wich satisfy the following properties:

- 1. For all $\varepsilon > 0$, J_{ε} is a bounded operator from $L^2(\mathbb{R}^d)$ to $H^1(\mathbb{R}^d)$ and from to $H^{-1}(\mathbb{R}^d)$ to $L^2(\mathbb{R}^d)$;
- 2. The family $\{J_{\varepsilon}, \varepsilon \in [0, 1]\}$ is bounded in the space of operators from L^2 to L^2 and for all $u \in L^2$ [resp. H^1], $J_{\varepsilon}u \to u$ in L^2 [resp H^1] as $\varepsilon \to 0$;
- 3. For all j, the family of operators $\{[A_0^{-1}A_j(t,x)\partial_{x_j}, J_{\varepsilon}], \varepsilon \in]0,1], t \in [0,T]\}$ is bounded in the space of operators from L^2 to L^2 .

Proposition 4.4.1. If there exist operators J_{ε} satisfying the properties above, then for all $f \in L^2([0,T] \times \mathbb{R}^d)$ and $h \in L^2(\mathbb{R}^d)$, any weak solution $u \in L^2([0,T] \times \mathbb{R}^d)$ of the problem (4.1.2) is a strong solution. Proof. Consider the commutators $C_j^{\varepsilon} = [A_0^{-1}A_j(t,x)\partial_{x_j}, J_{\varepsilon}]$ acting in $L^2([0,T] \times \mathbb{R}^d)$. By the property 3, they are uniformly bounded, and by property 2, $C_j^{\varepsilon}v \to 0$ in L^2 when $v \in H^1([0,T] \times \mathbb{R}^d)$. By density of H^1 in L^2 we conclude that

$$\left\|C_j^{\varepsilon}u\right\|_{L^2} \to 0.$$

Write $L = A_0(\partial_t + K)$. What we have proved is that $[K, J_{\varepsilon}]u \to 0$ in $L^2([0, T] \times \mathbb{R}^d)$.

Because $u \in L^2([0,T] \times \mathbb{R}^d)$ and $\partial_t u \in L^2([0,T]; H^{-1}(\mathbb{R}^d))$, one easily shows that

1)
$$\partial_t J_{\varepsilon} u = J_{\varepsilon} \partial_t u$$
, in $L^2([0,T]; H^{-1}(\mathbb{R}^d))$,
2) $(J_{\varepsilon} u)_{|t=0} = J_{\varepsilon}(u_{|t=0})$ in $H^{-\frac{1}{2}}(\mathbb{R}^d)$.

Hence we have

- 1) $J_{\varepsilon}u \to u$ in $L^{2}([0,T]; H^{-1}(\mathbb{R}^{d}))$ 2) $LJ_{\varepsilon}u = A_{0}(J_{\varepsilon}A_{0}^{-1}f + [K, J_{\varepsilon}]u \to fin \ L^{2}([0,T]; H^{-1}(\mathbb{R}^{d}))$
- 3) $(J_{\varepsilon}u)_{|t=0} = J_{\varepsilon}h \to h$ in $L^2(\mathbb{R}^d)$.

proving that u is a strong solution.

4.4.2 Friedrichs Lemma

Consider a function $j \in C_0^{\infty}(\mathbb{R}^d), j \ge 0$, with

(4.4.1)
$$\int j(x)dx = 1$$

Let

(4.4.2)
$$j_{\varepsilon}(x) = \varepsilon^{-d} j(x/\varepsilon), \qquad J_{\varepsilon} u = j_{\varepsilon} \star u.$$

Lemma 4.4.2. The operators J_{ε} have the properties 1, 2, 3 listed above.

Proof. Consider a function Lipschitz function a and $u \in H^1$. Let $K_{\varepsilon}u = J_{\varepsilon}(a\partial_{x_j}u) - a\partial_{x_j}J_{\varepsilon}u$. Then

$$K_{\varepsilon}u(x) = \int j_{\varepsilon}(y)(a(x-y) - a(x))\partial_{x_j}u(x-y)dy$$
$$K_{\varepsilon}u(x) = \int K_{\varepsilon}(x,y)u(x-y)dy.$$

with

$$K_{\varepsilon}(x,y) = \partial_{y_j} \left(j_{\varepsilon}(y) (a(x - \varepsilon y) - a(x)) \right)$$

One has

$$|K_{\varepsilon}(x,y)| \le 2 \|\nabla a\|_{L^{\infty}} \tilde{j}_{\varepsilon}(y)$$

with

$$\tilde{\jmath}_{\varepsilon}(y) = \varepsilon^{-d} \tilde{\jmath}(y/\varepsilon), \qquad \tilde{\jmath}(y) = \jmath(y) + |y| |\partial_{j} \jmath(y)|$$

Hence

$$|K_{\varepsilon}u(x)| \leq \int C\tilde{j}_{\varepsilon}(y)|u(x-y)|dy$$

and

(4.4.3)
$$||K_{\varepsilon}u||_{L^2} \le C ||\tilde{j}||_{L^1} ||u||_{L^2}.$$

By density of smooth functions in L^2 , the estimate implies the K_{ε} are uniformly bounded functions from L^2 into L^2 . Because $K_{\varepsilon}u \to 0$ in L^2 when H^1 , the uniform bound also implies that

$$\forall u \in L^2, \quad \lim_{\varepsilon \to 0} \|K_{\varepsilon}u\|_{L^2} = 0.$$

The proof is similar when a and u also depend on t, and for matrices and vectors.

4.5 The local theory

4.5.1 The cone of hyperbolic directions

Proposition 4.5.1. The cone $\Gamma(t,x)$ of hyperbolic directions at (t,x) is the set of $\nu = (\nu_0, \nu_1, \ldots, \nu_d)$ such that the matrix $\sum \nu_j A_j(t,x)$ is definite positive.

Proof.

Lemma 4.5.2. Let $\lambda_k(t, x, \xi)$ denote the eigenvalues of $\sum_{j=1}^d \xi_j A_0^{-1} A_j(t, x, \xi)$ and

(4.5.1)
$$c = \max_{[0,T] \times \mathbb{R}^d \times S^{d-1}} \max_k |\lambda_k(t, x, \xi)| < +\infty.$$

Then

(4.5.2)
$$\Gamma = \{\nu_0 > c |\nu'|\} \subset \cap_{t,x} \Gamma(t,x).$$

Proof. This is clear when $\nu' = 0$. When $\nu' \neq 0$, we can assume that $|\nu'| = 1$ and the assumption is that thus $\nu_0 > c$. Thus the eigenvalues of $A := \nu_0 \text{Id} + \sum \nu_j A_0^{-1} A_j$ are positive, as well as the eigenvalues of the conjugate matrix

$$A_0^{\frac{1}{2}}AA_0^{-\frac{1}{2}} = A_0^{-\frac{1}{2}} (\nu_0 A_0 + \sum \nu_j A_j) A_0^{-\frac{1}{2}}.$$

Thus this symmetric matrix is definite positive, implying that $\nu_0 A_0 + \sum \nu_j A_j$ is also positive.

4.5.2 Local energy estimates

Integrate the energy balance on $\Omega \subset [0, T] \times \mathbb{R}^d$:

$$2\operatorname{Re} \int_{\Omega} (Lu, u) dt dx - \int (Ku, u) dt dx = \sum_{j=0}^{d} \int_{\partial \Omega} \nu_j (A_j u, u) d\sigma$$

where (ν_0, \ldots, ν_d) is the outward normal to ∂_{Ω} .

Consider the polar cone of Γ :

(4.5.3)
$$\Gamma^{\circ} = \{(t, x) \in \mathbb{R}^{1+d} : |x| \le ct\},\$$

and a backward cone

(4.5.4)
$$\Omega = \{(t, x), t \in [0, \underline{t}], |x - \underline{x}| \le c(\underline{t} - t)\}.$$

The lateral boundary of Ω is

(4.5.5)
$$\partial_l \Omega = \{(t, x), t \in [0, \underline{t}], |x - \underline{x}| = c(\underline{t} - t)\}$$

Lemma 4.5.3. On $\partial_l \Omega$, the boundary matrix $\sum \nu_j A_j$ is nonnegative.

Proof. Take for simplicity $\underline{x} = 0$. The outer normal at $(t, x) \in \partial_l \Omega$ is $\delta(c, x/|x|)$ with $\delta = (1 + c^2)^{\frac{1}{2}}$. Thus the matrix boundary matrix is $\delta(cA_0 + \sum \nu_j A_j)$ with $\nu_j = x_j/|x|$ for $j = 1, \ldots, d$. By the lemma above, it is non negative.

Consider $\underline{t} \leq T$ and $\underline{x} \in \mathbb{R}^d$ and Ω as above. For $t \in [0, \underline{t}]$, let $\omega_t = \{x : |x - \underline{x}| \leq c(\underline{t} - t)\}$. One has the local energy estimate

Proposition 4.5.4. There are constants G and γ , such that for $u \in H^1(\Omega)$,

(4.5.6)
$$\|u(t)\|_{\omega_t} \leq Ce^{\gamma t} \|u(0)\|_{L^2(\omega_0)} + C \int_0^t e^{\gamma(t-t')} \|Lu(t')\|_{L^2(\omega_{t'})} dt'.$$

Proof. The energy balance applied on $\Omega_t = \Omega \cap \{t' < t\}$ and the lemma imply that

$$\int_{\omega_t} (A_0 u(t, x), u(t, x)) dx \le \int_{\omega_t} (A_0 u(0, x), u(0, x)) dx$$
$$+ 2\operatorname{Re} \int_{\Omega_t} (Lu, u) dt' dx + \int_{\Omega_t} |(Ku, u)| dt' dx.$$

We conclude by Gronwall's argument.

Corollary 4.5.5. If u is a strong solution of the Cauchy problem with source term which vanishes on Ω and initial data which vanishes on ω_0 , then u = 0 on Ω .

Theorem 4.5.6. For $u_0 \in L^2(\omega_0)$ and $f \in L^2(\Omega)$, the Cauchy problem has a unique strong solution in $L^2(\Omega)$, which in addition is continuous in times with values in L^2 and satisfies (4.5.6).