Chapter 4

Symmetric systems. The L^{2} linear theory

4.1 Symmetric systems, preliminaries

4.1.1 Definitions

Consider the

$$
\begin{equation*}
L=\sum_{j=0}^{d} \widetilde{A}_{j}(\tilde{x}) \partial_{x_{j}}+\widetilde{B}, \quad \tilde{x}=\left(x_{0}, \ldots, x_{d}\right)=(t, x) \tag{4.1.1}
\end{equation*}
$$

Our goal is to solve the Cauchy problem

$$
\left\{\begin{array}{l}
L u=f, \tag{4.1.2}\\
u_{\mid t=0}=h,
\end{array} \quad t \in[0, T], x \in \mathbb{R}^{d}\right.
$$

assuming that the system is symmetric in the following sense:
Definition 4.1.1. L is symmetric hyperbolic if the A_{j} are symmetric and \widetilde{A}_{0} is positive definite.

$$
\begin{equation*}
\widetilde{A}_{0}^{-1}=\partial_{t}+\sum_{j=1}^{d} A_{j}(\tilde{x}) \partial_{x_{j}}+B, \quad \tilde{x}=\left(x_{0}, \ldots, x_{d}\right)=(t, x) \tag{4.1.3}
\end{equation*}
$$

Lemma 4.1.2. For all $\tilde{x}, \widetilde{L}(\widetilde{x}, \widetilde{\xi})$ is strongly hyperbolic in the direction $d t=(1,0, \ldots 0)$ and the cone of hyperbolic directions $\Gamma_{\tilde{x}}$ is the set of $\tilde{\xi}$ such that $\widetilde{L}(\widetilde{x}, \widetilde{\xi})$ is positive definite.
Assumption 4.1.3. The coefficients \widetilde{A}_{j} are Lipschitz continuous.

4.1.2 Adjoints and weak solutions

Lemma 4.1.4. Let $a \in W^{1, \infty}(\Omega)$. For $u \in H^{1}(\Omega)[r e s p . ~ L ~ L ~(\Omega)], ~ a \partial_{x_{j}} u$ is well defined in $L^{2}(\Omega)\left[\right.$ resp. $\left.H^{-1}(\Omega)\right]$. In particular, for $u \in L^{2}(\Omega)$ and $v \in H_{0}^{1}(\Omega)$,

$$
\left\langle a \partial_{x_{j}} u, v\right\rangle_{H^{-1} \times H_{0}^{1}}=-\int u \partial_{x_{j}}(a u) d x
$$

The adjoint of L is

$$
\begin{equation*}
L^{*}=\sum_{j=0}^{d}-\partial_{x_{j}} \widetilde{A}_{j}^{*}+\widetilde{B}^{*} \tag{4.1.4}
\end{equation*}
$$

Corollary 4.1.5. For $u \in H^{1}(\widetilde{\Omega})\left[\operatorname{resp} . L^{2}(\widetilde{\Omega})\right]$, Lu is well defined in $L^{2}(\widetilde{\Omega})$ $\left[\right.$ resp. $\left.H_{\sim}^{-1}(\widetilde{\Omega})\right]$. There is a similar result for L^{*} and for $u \in L^{2}(\widetilde{\Omega})$ and $v \in H_{0}^{1}(\widetilde{\Omega})$,

$$
\langle L u, v\rangle_{H^{-1} \times H_{0}^{1}}=\int u(\tilde{x}) \overline{L^{*} v(\tilde{x})} d \tilde{x}
$$

In particular, for $u \in L^{2}(\widetilde{\Omega})$ and $f \in L^{2}(\widetilde{\Omega})$, the equation $L u=f$ is satisfied in the weak sense, that is in $H^{-1}(\widetilde{\Omega})$, if and only if

$$
\begin{equation*}
\forall v \in H_{0}^{1}(\widetilde{\Omega}), \quad \int u(\tilde{x}) \overline{L^{*} v}(\tilde{x}) d \tilde{x}=\int f(\tilde{x}) \overline{v(\tilde{x})} d \tilde{x} \tag{4.1.5}
\end{equation*}
$$

4.1.3 Weak and strong solutions of the Cauchy problem

Lemma 4.1.6. If $u \in L^{2}\left([0, T] \times \mathbb{R}^{d}\right)$ and $\partial_{t} u \in L^{2}\left([0, T] ; H^{-1} \mathbb{R}^{d}\right)$, then $u \in C^{0}\left([0, T] ; H^{-\frac{1}{2}}\left(\mathbb{R}^{d}\right)\right)$ and for all $v \in H^{1}\left([0, T] \times \mathbb{R}^{d}\right)$,

$$
\begin{align*}
-\int u(\tilde{x}) \overline{\partial_{t} v(\tilde{x})} d \tilde{x} & =\int_{0}^{T}\left\langle\partial_{t} u(t), \bar{v}(t)\right\rangle_{H^{-1} \times H^{1}} d t \tag{4.1.6}\\
& +\langle u(0), \bar{v}(0)\rangle_{H^{-\frac{1}{2}} \times H^{\frac{1}{2}}}-\langle u(T), \bar{v}(T)\rangle_{H^{-\frac{1}{2}} \times H^{\frac{1}{2}}}
\end{align*}
$$

Also recall that $H^{1}\left([0, T] \times \mathbb{R}^{d}\right) \subset C^{0}\left([0, T] ; H^{\frac{1}{2}}\left(\mathbb{R}^{d}\right)\right)$.
Corollary 4.1.7. If $u \in L^{2}\left([0, T] \times \mathbb{R}^{d}\right)$ and $L u \in L^{2}\left([0, T] \times \mathbb{R}^{d}\right)$, then $u \in C^{0}\left([0, T] ; H^{-\frac{1}{2}}\left(\mathbb{R}^{d}\right)\right)$ and for all $v \in H^{1}\left([0, T] \times \mathbb{R}^{d}\right)$,

$$
\begin{align*}
& \int u(\tilde{x}) \overline{L^{*} v}(\tilde{x}) d \tilde{x}=\int f(\tilde{x}) \overline{v(\tilde{x})} d \tilde{x} \tag{4.1.7}\\
&+\langle u(0), \bar{v}(0)\rangle_{H^{-\frac{1}{2}} \times H^{\frac{1}{2}}}-\langle u(T), \bar{v}(T)\rangle_{H^{-\frac{1}{2}} \times H^{\frac{1}{2}}}
\end{align*}
$$

Definition 4.1.8 (Weak L^{2} solutions of the Cauchy problem). It makes sense
Corollary 4.1.9. For $f \in L^{2}\left([0, T] \times \mathbb{R}^{n}\right)$ and $h \in L^{2}\left(\mathbb{R}^{n}\right), u \in L^{2}([0, T] \times$ $\left.\mathbb{R}^{n}\right)$ is a weak solution of (4.1.2) if and only il, for all $v \in \mathcal{H}^{1}$ such that $v_{\mid t=T}=0$, one has

$$
\begin{equation*}
\int_{[0, T] \times \mathbb{R}^{n}} f \cdot \bar{v} d t d x+\int_{\mathbb{R}^{n}} h \cdot \bar{v} \mid t=0 ~ d x=\int_{[0, T] \times \mathbb{R}^{n}} u \cdot \overline{L^{*} v} d t d x \tag{4.1.8}
\end{equation*}
$$

Definition 4.1.10 (Strong L^{2} solutions of the Cauchy problem). For $f \in$ $L^{2}\left([0, T] \times \mathbb{R}^{n}\right)$ and $h \in L^{2}\left(\mathbb{R}^{n}\right)$, $u \in L^{2}\left([0, T] \times \mathbb{R}^{n}\right)$ said to be a strong solution of (4.1.2) if there is sequences $u_{k} \in H^{1}\left([0, T] \times \mathbb{R}^{d}\right)$ such that in the limit $k \rightarrow+\infty$:
i) $\left\|u-u_{k}\right\|_{L^{2}\left([0, T] \times \mathbb{R}^{n}\right)} \rightarrow 0$,
ii) $\left\|h-u_{k \mid t=0}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \rightarrow 0$,
iii) $\left\|f-L u_{k}\right\|_{L^{2}\left([0, T] \times \mathbb{R}^{n}\right)} \rightarrow 0$.

Lemma 4.1.11. Strong solutions are weak solutions

4.2 The L^{2} energy estimate.

4.2.1 The energy balance

Lemma 4.2.1. If the matrices A_{j} are symmetric, and $u \in H^{1}(\widetilde{\Omega})$ then

$$
2 \operatorname{Re} L u \cdot \bar{u}=\sum_{j=0}^{d} \partial_{x_{j}}\left(A_{j} u \cdot \bar{u}\right)+K u \cdot \bar{u} \in L^{1}(\widetilde{\Omega})
$$

with $K=2 \operatorname{Re} B-\sum_{j=0}^{d} \partial_{x_{j}} A_{j}$.
Corollary 4.2.2. If the matrices A_{j} are symmetric, and $u \in H^{1}\left([0, T] \times \mathbb{R}^{d}\right)$

$$
\begin{align*}
& 2 \operatorname{Re} \int_{[0, T] \times \mathbb{R}^{d}} L u \cdot \bar{u} d \tilde{x}=\int_{[0, T] \times \mathbb{R}^{d}} K u \cdot \bar{u} d \tilde{x} \tag{4.2.1}\\
&+\int_{\mathbb{R}^{d}} A_{0} u \bar{u}(T, x) d x-\int_{\mathbb{R}^{d}} A_{0} u \bar{u}(0, x) d x
\end{align*}
$$

Proposition 4.2.3. If L is hyperbolic symmetric with Lipschitz coefficients, then there are constants C and γ such that for all $u \in H^{1}\left([0, T] \times \mathbb{R}^{d}\right)$

$$
\begin{equation*}
\|u(t)\|_{L^{2}} \leq C e^{\gamma t}\|u(0)\|_{L^{2}}+C \int_{0}^{t} e^{\gamma\left(t-t^{\prime}\right)}\left\|L u\left(t^{\prime}\right)\right\|_{L^{2}} d t^{\prime} \tag{4.2.2}
\end{equation*}
$$

Remark 4.2.4. On C and γ.

4.2.2 Uniqueness of strong solutions

Theorem 4.2.5. Il the system is hyperbolic symmetric, then any strong solution belongs to $C^{0}\left([0, T] ; L^{2}\right)$ and satisfies the energy estimate (4.2.2).

In particular, strong solutions are unique.
Proof. Let u be s strong solution and u_{k} an approximating sequence. The estimate (4.2.2) can be applied to u_{k} and also to $u_{k}-u_{l}$, proving that the u_{k} are bounded and form a Cauchy sequence in $C^{0}\left([0, T] ; L^{2}\right)$. Therefore the limit u is also in this space, and passing to the limit in the estimates for the u_{k} we get the estimate for u.

4.3 Existence of weak solution

4.3.1 The duality method

The system L^{*} is hyperbolic symmetric. Therefore there are energy estimates for L^{*} and changing t to $T-t$, we obtain that for $v \in H^{1}\left([0, T] \times \mathbb{R}^{d}\right)$ et $t \in[0, T]$ on a

$$
\|v(t)\|_{L^{2}} \leq C \int_{t}^{T}\left\|L^{*} v\left(^{\prime}\right)\right\|_{L^{2}} d t^{\prime}+C \mid v(T) \|_{L^{2}}
$$

Introduce the space \mathcal{H}^{1} of functions $v \in H^{1}\left([0, T] \times \mathbb{R}^{n}\right)$ such that $v_{\mid t=T}=0$. The estimate above implies the following lemma.

Lemma 4.3.1. There is a constant C such that for all $v \in \mathcal{H}^{1}$ on a :

$$
\begin{equation*}
\|v(0)\|_{L^{2}\left(\mathbb{R}^{d}\right)}+\|v\|_{L^{2}\left([0, T] \times \mathbb{R}^{d}\right)} \leq C\left\|L^{*} v\right\|_{L^{2}\left([0, T] \times \mathbb{R}^{d}\right)} \tag{4.3.1}
\end{equation*}
$$

Theorem 4.3.2. For all $f \in L^{2}\left([0, T] \times \mathbb{R}^{d}\right)$ and $h \in L^{2}\left(\mathbb{R}^{d}\right)$, the problem (4.1.2) has a solution $u \in L^{2}\left([0, T] \times \mathbb{R}^{d}\right)$.

Proof. Consider the space $\mathcal{F}=\left\{L^{*} v ; v \in \mathcal{H}^{1}\right\}$ which is a subspace of $L^{2}\left([0, T] \times \mathbb{R}^{d}\right)$. The mapping \widetilde{L} from $\mathcal{H}^{1} L^{2}$ is injective by (4.3.1). Thus there is a linear inverse mapping . $J: \mathcal{F} \mapsto \mathcal{H}^{1}$. For all $g \in \mathcal{F}$ one has $L^{*} J g=g$ and by (4.3.1)

$$
\begin{equation*}
\left\|J g_{\mid t=0}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}+\|J g\|_{L^{2}\left([0, T] \times \mathbb{R}^{d}\right)} \leq C\|g\|_{L^{2}\left([0, T] \times \mathbb{R}^{d}\right)} \tag{4.3.2}
\end{equation*}
$$

Consider the anti-linear form on \mathcal{H}^{1} :

$$
\begin{equation*}
\Phi(v)=\int_{[0, T] \times \mathbb{R}^{d}} f \cdot \bar{v} d t d x+\int_{\mathbb{R}^{d}} h \cdot \overline{v \mid t=0} d x \tag{4.3.3}
\end{equation*}
$$

and the antilinear form Ψ on \mathcal{F}

$$
\begin{equation*}
\Psi(g)=\Phi(J g) . \tag{4.3.4}
\end{equation*}
$$

By (4.3.2) que

$$
\begin{equation*}
|\Psi(g)| \leq M\|g\|_{L^{2}\left([0, T] \times \mathbb{R}^{d}\right)} \tag{4.3.5}
\end{equation*}
$$

with $M=C\left(\|f\|_{L^{2}}+\|h\|_{L^{2}}\right)$. Hence Ψ can be continuously extended to the closure of \mathcal{F} in $\left(L^{2}\left([0, T] \times \mathbb{R}^{d}\right)\right.$, and next on $\left(L^{2}\left([0, T] \times \mathbb{R}^{d}\right)\right.$ as an antilinear form with norm less than or equal to M. By Riesz Theorem, there is $u \in L^{2}\left([0, T] \times \mathbb{R}^{n}\right)$ such that for all $g \in L^{2}$:

$$
\Psi(g)=\int_{[0, T] \times \mathbb{R}^{d}} u \cdot \bar{g} d t d x .
$$

Therefore, for all $v \in \mathcal{H}^{1}$,

$$
\Phi(v)=\int_{[0, T] \times \mathbb{R}^{d}} u \cdot \overline{L^{*} v} d t d x
$$

This is precisely (4.1.8) and thus u is a solution of (4.1.2).

4.3.2 The approximation method

Let us explain the principle first. The idea is to replace the spatial derivatives $\partial_{x_{j}}$ by approximations $\partial_{j}^{\varepsilon}$ such that for all $\varepsilon>0$ the $\partial_{j}^{\varepsilon}$ are bounded operators in $L^{2}\left(\mathbb{R}^{d}\right)$. Of course, their norm in L^{2} tends to $+\infty$ as ε goes to 0 , but we assume that they are uniformly bounded from L^{2} to H^{-1} : there is a constant C such that

$$
\begin{equation*}
\left\|\partial_{j}^{\varepsilon} u\right\|_{H^{-1}} \leq C\|u\|_{L^{2}}, \tag{4.3.6}
\end{equation*}
$$

The adjoint operators in $L^{2}, \partial_{j}^{\varepsilon *}$, which need not be exactly $-\partial_{j}^{\varepsilon}$, are bounded from H^{1} to L^{2} :

$$
\begin{equation*}
\left\|\partial_{j}^{\varepsilon} v\right\|_{L^{2}} \leq C\|v\|_{H^{1}} . \tag{4.3.7}
\end{equation*}
$$

Moreover, $\partial_{j}^{\varepsilon}$ approximates $\partial_{x_{j}}$ in the distribution sense, that is

$$
\begin{array}{lc}
\forall u \in L^{2}\left(\mathbb{R}^{d}\right), & \partial_{j}^{\epsilon} u \rightarrow \partial_{x_{j}} u \text { in } H^{-1}, \\
\forall v \in H^{1}\left(\mathbb{R}^{d}\right) & \partial_{j}^{\varepsilon *} v \rightarrow-\partial_{x_{j}} v \text { in } L^{2} . \tag{4.3.8}
\end{array}
$$

Consider

$$
\begin{equation*}
L^{\varepsilon}=A_{0} \partial_{t}+\sum_{j=1}^{d} A_{j} \partial_{j}^{\varepsilon}+B=A_{0}\left(\partial_{t}+K^{\varepsilon}\right) \tag{4.3.9}
\end{equation*}
$$

For all $\varepsilon>0, K^{\varepsilon}$ is bounded in L^{2} and thus the Cauchy Lipschitz theorem implies that

Lemma 4.3.3. For all $\varepsilon \in] 0,1], h \in L^{2}\left(\mathbb{R}^{d}\right), f \in L^{1}\left([0, T] ; L^{2}\left(\mathbb{R}^{d}\right)\right)$ the problem

$$
\begin{equation*}
L^{\varepsilon} u^{\varepsilon}=f, \quad u_{\mid t=0}^{\varepsilon}=h \tag{4.3.10}
\end{equation*}
$$

has a unique solution $u^{\varepsilon} \in C^{0}\left([0, T] ; L^{2}\left(\mathbb{R}^{d}\right)\right)$.
Theorem 4.3.4. Suppose that the family u^{ε} is bounded in $C^{0}\left([0, T] ; L^{2}\right)$. Then the Cauchy problem (4.1.2) has a weak solution $u \in L^{2}\left([0, T] \times \mathbb{R}^{d}\right)$.

Proof. Using (4.3.6), and the we see that ∂_{t}^{ϵ} is bounded in $L^{\infty}\left([0, T] ; H^{-1}\right)$ and more precisely that there is C such that for all $\varepsilon \in] 0,1]$:

$$
\left\|u^{\varepsilon}(t)-u^{\varepsilon}\left(t^{\prime}\right)\right\|_{H^{-1}} \leq C\left|t-t^{\prime}\right| .
$$

Hence, by Ascoli's theorem there is a subsequence, still denoted by u^{ε}, which converges in $C^{0}\left([0, T] ; L_{\text {weak }}^{2}\right)$ where $L_{\text {weak }}^{2}$ is the L^{2} space equipped with the weak topology. The convergence in $C^{0}\left([0, T] ; L_{\text {weak }}^{2}\right)$ means that for all $\varphi \in L^{2}\left(\mathbb{R}^{d}\right)$, the function $\left(u^{\varepsilon}(t), \varphi\right)_{L^{2}}$ converges to $(u(t), \varphi)_{L^{2}}$ uniformly in time. In particular, $u \in L^{2}\left([0, T] \times \mathbb{R}^{d}\right)$.

For $v \in H^{1}\left([0, T] \times \mathbb{R}^{d}\right)$ with $v(T)=0$, one has

$$
\int f \cdot \bar{v} d t d x+\int h \cdot \overline{v_{\mid t=0}} d x=\int u^{\varepsilon} \cdot \overline{L^{\varepsilon *} v} d t d x
$$

where

$$
L^{\varepsilon *}=-\partial_{t} A_{0}-\sum \partial_{j}^{\varepsilon} A_{j}+B^{*}
$$

Passing to the limit in ε implies that u is a weak solution of (4.1.2).

Example 1.

Let $J_{\varepsilon}=\left(1-\varepsilon \Delta_{x}\right)^{-\frac{1}{2}}$ and $\partial_{j}^{\varepsilon}=\partial_{x_{j}} J_{\varepsilon}$.
Proposition 4.3.5. With this choice, the assumption of Theorem 4.3.4 is satisfied.

Sketch of the proof. We repeat the proof of the energy estimate for L^{ε}. Because of the boundedness in L^{2}, we can write

$$
2 \operatorname{Re}\left(A_{j} \partial_{j}^{\varepsilon} u^{\varepsilon}, u^{\varepsilon}\right)_{L^{2}}=\left(\left(A_{j} \partial_{j}^{\varepsilon}-\partial_{j}^{\varepsilon} A_{j}\right) u^{\varepsilon}, u^{\varepsilon}\right)_{L^{2}} .
$$

Using a result of Coiffman and Meyer, one can show that the $\left(A_{j} \partial_{j}^{\varepsilon}-\partial_{j}^{\varepsilon} A_{j}\right)$ are uniformly bounded in L^{2}. From here the proof continues as for Proposition 4.2.3.

Example 2. We use finite differences: jor $j=1, \ldots, d$, and $\varepsilon \in] 0,1]$, let

$$
\begin{equation*}
\partial_{j}^{\varepsilon} u(x)=\frac{1}{2 \varepsilon}\left(u\left(x+\varepsilon e_{j}\right)-u\left(x-\varepsilon e_{j}\right)\right) \tag{4.3.11}
\end{equation*}
$$

where $\left\{e_{1}, \ldots, e_{d}\right\}$ is the canonical basis of \mathbb{R}^{d}.
Proposition 4.3.6. With this choice, the assumption of Theorem 4.3.4 is satisfied.

We start with a preliminary estimate.
Lemma 4.3.7. Suppose that $A(x)$ is symmetric and Lipschitz, and $u \in$ $L^{2}\left(\mathbb{R}^{d}\right)$. Then

$$
\begin{equation*}
\left|\operatorname{Re} \int A_{j}(x) \partial_{j}^{\varepsilon} u(x) \overline{u(x)} d x\right| \leq\left\|\partial_{j} A\right\|_{L^{\infty}}\|u\|_{L^{2}}^{2} \tag{4.3.12}
\end{equation*}
$$

Proof. Let

$$
\begin{aligned}
w(x, y):=2 \operatorname{Re} & A(x)(u(x+y)-u(x-y)) \bar{u}(x) \\
= & A(x) u(x+y) \cdot \bar{u}(x)-A(x) u(x-y) \cdot \bar{u}(x) \\
& \quad+A(x) u(x) \cdot \bar{u}(x+y)-A(x) u(x) \cdot \bar{u}(x-y) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\int w(x, y) d x= & \int(A(x)-A(x+y)) u(x+y) \cdot \bar{u}(x) d x \\
& +\int(A(x-y)-A(x)) u(x) \cdot \bar{u}(x-y) \cdot \bar{u}(x) \cdot d x \\
& \leq 2|y|\|\partial A\|_{L^{\infty}}\|u\|_{L^{2}}^{2}
\end{aligned}
$$

which implies the lemma.

Proof of Proposition 4.3.6. Consider the energy

$$
\mathcal{E}^{\varepsilon}=\int_{\mathbb{R}^{d}} A_{0} u \cdot \bar{u} d x=\left(A_{0} u(t), u(t)\right)_{L^{2}} \approx\left\|u^{\varepsilon}(t)\right\|_{L^{2}}^{2} .
$$

We have

$$
\frac{d}{d t} \mathcal{E}^{\varepsilon}=\left(\partial_{t} A_{0} u^{\varepsilon}(t), u^{\varepsilon}(t)\right)_{L^{2}}+2 \operatorname{Re}\left(f(t), u^{\varepsilon}(t)\right)_{L^{2}}+\sum_{j=1}^{d} \int w_{j}(t, x) d x
$$

with

$$
w_{j}=2 \operatorname{Re} A_{j} \partial_{j}^{\varepsilon} u^{\varepsilon} \overline{u^{\varepsilon}} .
$$

The Lemma implies that

$$
\frac{d}{d t} \mathcal{E}^{\varepsilon} \leq C_{0}\|f(t)\|_{L^{2}} \sqrt{\mathcal{E}^{\varepsilon}}+C_{1} \mathcal{E}^{\varepsilon}+
$$

and the proposition follows.

4.4 Strong solutions of the Cauchy problem

4.4.1 \quad Weak $=$ strong

We are given a weak solution u and we want to exhibit a sequence u_{k} satisfying the properties listed in the Defintion 4.1.10. The principle of the proof is as follows. We look for mollifiers J_{ε} wich satisfy the following properties:

1. For all $\varepsilon>0, J_{\varepsilon}$ is a bounded operator from $L^{2}\left(\mathbb{R}^{d}\right)$ to $H^{1}\left(\mathbb{R}^{d}\right)$ and from to $H^{-1}\left(\mathbb{R}^{d}\right)$ to $L^{2}\left(\mathbb{R}^{d}\right)$;
2. The family $\left.\left.\left\{J_{\varepsilon}, \varepsilon \in\right] 0,1\right]\right\}$ is bounded in the space of operators from L^{2} to L^{2} and for all $u \in L^{2}$ [resp. H^{1}], $J_{\varepsilon} u \rightarrow u$ in $L^{2}\left[\right.$ resp $\left.H^{1}\right]$ as $\varepsilon \rightarrow 0$;
3. For all j, the family of operators $\left.\left\{\left[A_{0}^{-1} A_{j}(t, x) \partial_{x_{j}}, J_{\varepsilon}\right], \varepsilon \in\right] 0,1\right], t \in$ $[0, T]\}$ is bounded in the space of operators from L^{2} to L^{2}.

Proposition 4.4.1. If there exist operators J_{ε} satisfying the properties above, then for all $f \in L^{2}\left([0, T] \times \mathbb{R}^{d}\right)$ and $h \in L^{2}\left(\mathbb{R}^{d}\right)$, any weak solution $u \in L^{2}\left([0, T] \times \mathbb{R}^{d}\right)$ of the problem (4.1.2) is a strong solution.

Proof. Consider the commutators $C_{j}^{\varepsilon}=\left[A_{0}^{-1} A_{j}(t, x) \partial_{x_{j}}, J_{\varepsilon}\right]$ acting in $L^{2}([0, T] \times$ $\left.\mathbb{R}^{d}\right)$. By the property 3 , they are uniformly bounded, and by property 2 , $C_{j}^{\varepsilon} v \rightarrow 0$ in L^{2} when $v \in H^{1}\left([0, T] \times \mathbb{R}^{d}\right)$. By density of H^{1} in L^{2} we conclude that

$$
\left\|C_{j}^{\varepsilon} u\right\|_{L^{2}} \rightarrow 0 .
$$

Write $L=A_{0}\left(\partial_{t}+K\right)$. What we have proved is that $\left[K, J_{\varepsilon}\right] u \rightarrow 0$ in $L^{2}\left([0, T] \times \mathbb{R}^{d}\right)$.

Because $u \in L^{2}\left([0, T] \times \mathbb{R}^{d}\right)$ and $\partial_{t} u \in L^{2}\left([0, T] ; H^{-1}\left(\mathbb{R}^{d}\right)\right)$, one easily shows that

$$
\begin{aligned}
& \text { 1) } \quad \partial_{t} J_{\varepsilon} u=J_{\varepsilon} \partial_{t} u, \quad \text { in } L^{2}\left([0, T] ; H^{-1}\left(\mathbb{R}^{d}\right)\right), \\
& \text { 2) } \quad\left(J_{\varepsilon} u\right)_{\mid t=0}=J_{\varepsilon}\left(u_{\mid t=0} \quad \text { in } H^{-\frac{1}{2}}\left(\mathbb{R}^{d}\right) .\right.
\end{aligned}
$$

Hence we have

1) $J_{\varepsilon} u \rightarrow u \quad$ in $L^{2}\left([0, T] ; H^{-1}\left(\mathbb{R}^{d}\right)\right)$
2) $L J_{\varepsilon} u=A_{0}\left(J_{\varepsilon} A_{0}^{-1} f+\left[K, J_{\varepsilon}\right] u \rightarrow\right.$ fin $L^{2}\left([0, T] ; H^{-1}\left(\mathbb{R}^{d}\right)\right)$
3) $\left(J_{\varepsilon} u\right)_{\mid t=0}=J_{\varepsilon} h \rightarrow h \quad$ in $L^{2}\left(\mathbb{R}^{d}\right)$.
proving that u is a strong solution.

4.4.2 Friedrichs Lemma

Consider a function $\jmath \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right), \jmath \geq 0$, with

$$
\begin{equation*}
\int \jmath(x) d x=1 . \tag{4.4.1}
\end{equation*}
$$

Let

$$
\begin{equation*}
\jmath_{\varepsilon}(x)=\varepsilon^{-d} \jmath(x / \varepsilon), \quad J_{\varepsilon} u=\jmath_{\varepsilon} \star u . \tag{4.4.2}
\end{equation*}
$$

Lemma 4.4.2. The operators J_{ε} have the properties 1, 2, 3 listed above.
Proof. Consider a function Lipschitz function a and $u \in H^{1}$. Let $K_{\varepsilon} u=$ $J_{\varepsilon}\left(a \partial_{x_{j}} u\right)-a \partial_{x_{j}} J_{\varepsilon} u$. Then

$$
\begin{gathered}
K_{\varepsilon} u(x)=\int \jmath_{\varepsilon}(y)(a(x-y)-a(x)) \partial_{x_{j}} u(x-y) d y \\
K_{\varepsilon} u(x)=\int K_{\varepsilon}(x, y) u(x-y) d y .
\end{gathered}
$$

with

$$
K_{\varepsilon}(x, y)=\partial_{y_{j}}\left(J_{\varepsilon}(y)(a(x-\varepsilon y)-a(x))\right)
$$

One has

$$
\left|K_{\varepsilon}(x, y)\right| \leq 2\|\nabla a\|_{L^{\infty}} \tilde{\jmath}_{\varepsilon}(y)
$$

with

$$
\tilde{\jmath}_{\varepsilon}(y)=\varepsilon^{-d} \tilde{\jmath}(y / \varepsilon), \quad \tilde{\jmath}(y)=\jmath(y)+|y|\left|\partial_{j} \jmath(y)\right| .
$$

Hence

$$
\left|K_{\varepsilon} u(x)\right| \leq \int C \tilde{\jmath}_{\varepsilon}(y)|u(x-y)| d y
$$

and

$$
\begin{equation*}
\left\|K_{\varepsilon} u\right\|_{L^{2}} \leq C\|\tilde{\jmath}\|_{L^{1}}\|u\|_{L^{2}} . \tag{4.4.3}
\end{equation*}
$$

By density of smooth functions in L^{2}, the estimate implies the K_{ε} are uniformly bounded functions from L^{2} into L^{2}. Because $K_{\varepsilon} u \rightarrow 0$ in L^{2} when H^{1}, the uniform bound also implies that

$$
\forall u \in L^{2}, \quad \lim _{\varepsilon \rightarrow 0}\left\|K_{\varepsilon} u\right\|_{L^{2}}=0 .
$$

The proof is similar when a and u also depend on t, and for matrices and vectors.

4.5 The local theory

4.5.1 The cone of hyperbolic directions

Proposition 4.5.1. The cone $\Gamma(t, x)$ of hyperbolic directions at (t, x) is the set of $\nu=\left(\nu_{0}, \nu_{1}, \ldots, \nu_{d}\right)$ such that the matrix $\sum \nu_{j} A_{j}(t, x)$ is definite positive.

Proof.

Lemma 4.5.2. Let $\lambda_{k}(t, x, \xi)$ denote the eigenvalues of $\sum_{j=1}^{d} \xi_{j} A_{0}^{-1} A_{j}(t, x, \xi)$ and

$$
\begin{equation*}
c=\max _{[0, T] \times \mathbb{R}^{d} \times S^{d-1}} \max _{k}\left|\lambda_{k}(t, x, \xi)\right|<+\infty . \tag{4.5.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
\Gamma=\left\{\nu_{0}>c\left|\nu^{\prime}\right|\right\} \subset \cap_{t, x} \Gamma(t, x) . \tag{4.5.2}
\end{equation*}
$$

Proof. This is clear when $\nu^{\prime}=0$. When $\nu^{\prime} \neq 0$, we can assume that $\left|\nu^{\prime}\right|=1$ and the assumption is that thus $\nu_{0}>c$. Thus the eigenvalues of $A:=$ $\nu_{0} \mathrm{Id}+\sum \nu_{j} A_{0}^{-1} A_{j}$ are positive, as well as the eigenvalues of the conjugate matrix

$$
A_{0}^{\frac{1}{2}} A A_{0}^{-\frac{1}{2}}=A_{0}^{-\frac{1}{2}}\left(\nu_{0} A_{0}+\sum \nu_{j} A_{j}\right) A_{0}^{-\frac{1}{2}}
$$

Thus this symmetric matrix is definite positive, implying that $\nu_{0} A_{0}+\sum \nu_{j} A_{j}$ is also positive.

4.5.2 Local energy estimates

Integrate the energy balance on $\Omega \subset[0, T] \times \mathbb{R}^{d}$:

$$
2 \operatorname{Re} \int_{\Omega}(L u, u) d t d x-\int(K u, u) d t d x=\sum_{j=0}^{d} \int_{\partial \Omega} \nu_{j}\left(A_{j} u, u\right) d \sigma
$$

where $\left(\nu_{0}, \ldots, \nu_{d}\right)$ is the outward normal to ∂_{Ω}.
Consider the polar cone of Γ :

$$
\begin{equation*}
\Gamma^{\circ}=\left\{(t, x) \in \mathbb{R}^{1+d}:|x| \leq c t\right\} \tag{4.5.3}
\end{equation*}
$$

and a backward cone

$$
\begin{equation*}
\Omega=\{(t, x), t \in[0, \underline{t}],|x-\underline{x}| \leq c(\underline{t}-t)\} . \tag{4.5.4}
\end{equation*}
$$

The lateral boundary of Ω is

$$
\begin{equation*}
\partial_{l} \Omega=\{(t, x), t \in[0, \underline{t}],|x-\underline{x}|=c(\underline{t}-t)\} . \tag{4.5.5}
\end{equation*}
$$

Lemma 4.5.3. On $\partial_{l} \Omega$, the boundary matrix $\sum \nu_{j} A_{j}$ is nonnegative.
Proof. Take for simplicity $\underline{x}=0$. The outer normal at $(t, x) \in \partial_{l} \Omega$ is $\delta(c, x /|x|)$ with $\delta=\left(1+c^{2}\right)^{\frac{1}{2}}$. Thus the matrix boundary matrix is $\delta\left(c A_{0}+\right.$ $\left.\sum \nu_{j} A_{j}\right)$ with $\nu_{j}=x_{j} /|x|$ for $j=1, \ldots, d$. By the lemma above, it is non negative.

Consider $\underline{t} \leq T$ and $\underline{x} \in \mathbb{R}^{d}$ and Ω as above. For $t \in[0, \underline{t}]$, let $\omega_{t}=\{x:$ $|x-\underline{x}| \leq c(\underline{t}-t)\}$. One has the local energy estimate

Proposition 4.5.4. There are constants G and γ, such that for $u \in H^{1}(\Omega)$,

$$
\begin{equation*}
\|u(t)\|_{\omega_{t}} \leq C e^{\gamma t}\|u(0)\|_{L^{2}\left(\omega_{0}\right)}+C \int_{0}^{t} e^{\gamma\left(t-t^{\prime}\right)}\left\|L u\left(t^{\prime}\right)\right\|_{L^{2}\left(\omega_{t^{\prime}}\right)} d t^{\prime} \tag{4.5.6}
\end{equation*}
$$

Proof. The energy balance applied on $\Omega_{t}=\Omega \cap\left\{t^{\prime}<t\right\}$ and the lemma imply that

$$
\begin{aligned}
& \int_{\omega_{t}}\left(A_{0} u(t, x), u(t, x)\right) d x \leq \int_{\omega_{t}}\left(A_{0} u(0, x), u(0, x)\right) d x \\
&+2 \operatorname{Re} \int_{\Omega_{t}}(L u, u) d t^{\prime} d x+\int_{\Omega_{t}}|(K u, u)| d t^{\prime} d x .
\end{aligned}
$$

We conclude by Gronwall's argument.
Corollary 4.5.5. If u is a strong solution of the Cauchy problem with source term which vanishes on Ω and initial data which vanishes on ω_{0}, then $u=0$ on Ω.

Theorem 4.5.6. For $u_{0} \in L^{2}\left(\omega_{0}\right)$ and $f \in L^{2}(\Omega)$, the Cauchy problem has a unique strong solution in $L^{2}(\Omega)$, which in addition is continuous in times with values in L^{2} and satisfies (4.5.6).

