Chapter 4

Symmetric systems. The L?
linear theory

4.1 Symmetric systems, preliminaries

4.1.1 Definitions

Consider the

d
(4.1.1) L=Y Aj&d;+B,  &=(x0,... z4)=(tx)
§=0
Our goal is to solve the Cauchy problem
Lu=f, t€[0,7T], x € R,
(4.1.2) / 0, 7]
u|t:0 = h7
assuming that the system is symmetric in the following sense:

Definition 4.1.1. L is symmetric hyperbolic if the A; are symmetric and
Ag is positive definite.

d
(413) A7l =0+ Aj(@)0, + B, &= (a0,...,7q) = (t,7)
j=1

Lemma 4.1.2. For all &, L(Z, E) is strongly hyperbolic in the direction
dt = (1,0,...0) and the cone of hyperbolic directions I'z is the set of § such
that L(Z, &) is positive definite.

Assumption 4.1.3. The coefficients Xj are Lipschitz continuous.
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4.1.2 Adjoints and weak solutions

Lemma 4.1.4. Let a € Wh°(Q). For u € H(Q) [resp. L*()], ady,u
is well defined in L*(Q) [resp. H=1(Q)]. In particular, for v € L*(Q) and
v e HHQ),

(a0, u, V) 15y = —/uaxj(au)da:.

The adjoint of L is

Tit%)

d
(4.1.4) L* =Y -0, A5+ B".
=0

Corollary 4.1.5. Foru € HY(Q) [resp. L2(Q)], Lu is well defined in L*(Q)

[resp. H-Y(Q)]. There is a similar result for L* and for u € L*(Q) and
v e HHQ),

<LU’U>H—1xH(} = /u(i)L*v(fn)di.

In particular, for v € L?(Q) and f € LQ(Q), the equation Lu = f is
satisfied in the weak sense, that is in H~1(), if and only if

(4.1.5) Vo € HY(Q), / w(Z)L¥v(Z)di = / F(@)(@)dz.

4.1.3 Weak and strong solutions of the Cauchy problem

Lemma 4.1.6. If u € L%([0,7] x R%) and Oyu € L*([0,T]; H'RY), then
u € CO([O,T];H_%(Rd)) and for all v € H'([0,T] x RY),

T
(4.1.6) —/u(:v) 8tv(a:)da::/0 (Opu(t),o(t)) g1y prrdt
(), 50)) gy~ (T)LETN
Also recall that H'([0,T] x R%) C C’O([O,T];H%(]Rd)).

Corollary 4.1.7. If u € L%*([0,7] x R?) and Lu € L*([0,T] x R%), then
u € CO[0,TY; H_%(Rd)) and for all v € H'([0,T] x RY),

(4.1.7) / u(@)Lro(E)di = / f(@)v(z)da
+ (0).50)),yyy — (DB, g
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Definition 4.1.8 (Weak L? solutions of the Cauchy problem). It makes
sense

Corollary 4.1.9. For f € L*([0,T] x R") and h € L*(R"), u € L*([0,T] x
R") is a weak solution of (4.1.2) if and only il, for all v € H' such that
vg=r = 0, one has

4.1.8 f-vdtde + hvp—dx = u-L*v dtdz.
|
[0,T]xR" R [0,T]xR"

Definition 4.1.10 (Strong L? solutions of the Cauchy problem). For f €
L%([0,T] x R?) and h € L*(R"), u € L([0,T] x R™) said to be a strong
solution of (4.1.2) if there is sequences u, € H'([0,T] x RY) such that in
the limit k — +o00:

z) Hu — ukHL2([o,T}an) =0,
ii) || — uk\t=0HL2(R") =0,
i) || f = Luk|| 20 17mmy = 0-

Lemma 4.1.11. Strong solutions are weak solutions

4.2 The L? energy estimate.

4.2.1 The energy balance

Lemma 4.2.1. If the matrices A; are symmetric, and u € Hl(ﬁ) then
d ~
2Re Lu.u = Z 0w, (Ajum) + Kuw € L'(Q).
j=0
with K = 2Re B — Y°7_ 0, A;.

Corollary 4.2.2. If the matrices A; are symmetric, and u € H([0,T]xR%)

2Re / Luudr = / Kuudz
[0,T]xR4 [0,T7]xR4

+ Aouu(T, z)dx — Aouu(0, z)dz.
R4 R4

Proposition 4.2.3. If L is hyperbolic symmetric with Lipschitz coefficients,
then there are constants C' and y such that for all u € H'([0,T] x R?)

(4.2.1)

t
422)  Jul®)]],. < Cu(0)]],. + C / | Lt .
0

Remark 4.2.4. On C and ~.
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4.2.2 Uniqueness of strong solutions

Theorem 4.2.5. [l the system is hyperbolic symmetric, then any strong
solution belongs to C°([0,T); L?) and satisfies the energy estimate (4.2.2).
In particular, strong solutions are unique.

Proof. Let u be s strong solution and wu; an approximating sequence. The
estimate (4.2.2) can be applied to uy and also to ug — w;, proving that the
ug are bounded and form a Cauchy sequence in C°([0,77]; L?). Therefore
the limit « is also in this space, and passing to the limit in the estimates for
the ux we get the estimate for u. O

4.3 Existence of weak solution

4.3.1 The duality method

The system L* is hyperbolic symmetric. Therefore there are energy esti-
mates for L* and changing ¢ to T — t, we obtain that for v € H'([0, T] x R%)
et t€[0,7] on a

T
o) < € [ B0 it + o)

Introduce the space ' of functions v € H'([0, 7] x R") such that v,z = 0.
The estimate above implies the following lemma.

Lemma 4.3.1. There is a constant C such that for allv € H' on a :
(4.3.1) H“(O)HL2(R«1) + HUHL2([O,T]><R‘1) < CHL*”HH([O,T}XW)'

Theorem 4.3.2. For all f € L*([0,T] x R%) and h € L?(R), the problem
(4.1.2) has a solution u € L([0,T] x RY).

Proof. Consider the space F = {L*v;v € H'} which is a subspace of
L%([0,T] x RY). The mapping L from H' L? is injective by (4.3.1). Thus
there is a linear inverse mapping . J : F — H!'. For all g € F one has
L*Jg = g and by (4.3.1)

(4.3.2) HJg|t=OHL2(]Rd) + HJQHL2([O,T}><Rd) S CHQHL2([O,T}XRd)'

Consider the anti-linear form on ! :

(4.3.3) d(v) :/ f-vdtda:+/ hv =y dx
[0,T]xR4 R4
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and the antilinear form W on F

(4.3.4) U(g) =o(Jg).

By (4.3.2) que

(4.3.5) [T(g)| < MH9HL2([0,T]de)

with M = C(||f||z2 + ||2||z2)- Hence ¥ can be continuously extended to the
closure of F in (L?([0,T] x R%), and next on (L%([0,7] x R?) as an anti-
linear form with norm less than or equal to M. By Riesz Theorem, there is
u € L%([0,T] x R™) such that for all g € L?:

U(g) = / u-g dtdz.
[0,T]xR4

Therefore, for all v € H!,
d(v) = / u- L*v dtd.
[0,T] xRd
This is precisely (4.1.8) and thus u is a solution of (4.1.2). O

4.3.2 The approximation method

Let us explain the principle first. The idea is to replace the spatial deriva-
tives 0y; by approzimations 9; such that for all € > 0 the 95 are bounded

operators in L2(R?). Of course, their norm in L? tends to +oo as € goes to
0, but we assume that they are uniformly bounded from L? to H~! : there
is a constant C' such that

(4.3.6) 105ull - < Clull 2,

The adjoint operators in L2, 8]6.*, which need not be exactly —8]?, are
bounded from H' to L?:
(437 Jo501]2 < ol 1

Moreover, 65- approximates d,, in the distribution sense, that is

Vu € L2(RY), Oju — Or;u in HL,

4.3.8
( ) Vv € HY(RY) 0;"v — —0y;v in L2
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Consider

d
(4.3.9) Lf = Agdy + Y A;j05 + B = Ag(0, + K°).
j=1

For all ¢ > 0, K¢ is bounded in L? and thus the Cauchy Lipschitz theorem
implies that

Lemma 4.3.3. For all ¢ €]0,1], h € L*RY), f € L*([0,T]; L*(R%)) the
problem

(4.3.10) Lows = f, uj_g=h

has a unique solution u® € C°([0, T]; L?(R%)).

Theorem 4.3.4. Suppose that the family u¢ is bounded in C°([0,T]; L?).
Then the Cauchy problem (4.1.2) has a weak solution u € L?([0,T] x RY).

Proof. Using (4.3.6), and the we see that 95 is bounded in L>([0,T]; H ')
and more precisely that there is C' such that for all € €]0, 1]:

[uf(t) — w* (¢')|| ;-1 < ClE—1.

Hence, by Ascoli’s theorem there is a subsequence, still denoted by u*, which
converges in CY([0,T); L?_,,) where L? _, is the L? space equipped with
the weak topology. The convergence in C°([0,T]; L? ) means that for all
@ € L*(RY), the function (uf(t), )2 converges to (u(t),¢) 2 uniformly in
time. In particular, u € L2([0,T] x R?).

For v € H'([0,T] x R?) with v(T) = 0, one has

f-odtde + | h-vp—gdx = [ v® - L v dtdx
|

where

L = -0 Ag— Y 05A;+ B
Passing to the limit in ¢ implies that u is a weak solution of (4.1.2). O
Example 1.

Let J. = (1— EAJC)*% and 05 = 0y, Je.

Proposition 4.3.5. With this choice, the assumption of Theorem 4.3.4 is
satisfied.
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Sketch of the proof. We repeat the proof of the energy estimate for L*. Be-
cause of the boundedness in L?, we can write

2Re (Ajajue, u‘E)L2 = ((A]@;f — 05 Aj)u’, uE)LQ.

Using a result of Coiffman and Meyer, one can show that the (A;0; — 95 A;)
are uniformly bounded in L?. From here the proof continues as for Propo-
sition 4.2.3. ]

Example 2. We use finite differences: jor j =1,...,d, and € €]0, 1], let

1
(4.3.11) dju(z) = E(u(w + cej) — u(z — cej))
where {ey,...,eq} is the canonical basis of R%.

Proposition 4.3.6. With this choice, the assumption of Theorem 4.3.4 is
satisfied.

We start with a preliminary estimate.
Lemma 4.3.7. Suppose that A(x) is symmetric and Lipschitz, and u €
L*(RY). Then

(4.3.12) )Re /Aj(m)aiwx)U(l’)dx‘ < [|0;A] oo [lull7--

Proof. Let

w(z,y) := 2Re A(z)(u(z + y) — u(z — y))u(x)
=A(x)u(z +y).u(z) — Alx)u(z — y).u(x)
+ A(x)u(z).u(r + y) — A(z)u(z).u(x — y).

Hence
/w(x, y)dx = /(A(x) — Az +y))u(x + y).u(x)de
+ /(A(af; —y) — A(z))u(x).u(x — y).u(x).de
< 20yl 0A] oo [Jull7--
which implies the lemma. ]
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Proof of Proposition 4.3.6. Consider the energy
& = /dAou.uda: = (Aou(t),u(t)) ;» = [|us(®)]32.
R

We have

d
%55 = ((%Ague(t), 1f(t))L2 + 2Re (f(t), us(t))L2 + Z / wj(t, z)dx
j=1

with
wj = 2Re Ajajua ue.

The Lemma implies that

d
a56 < Collf ()|l 2 VEE + CLE+

and the proposition follows. ]

4.4 Strong solutions of the Cauchy problem

4.4.1 Weak = strong

We are given a weak solution v and we want to exhibit a sequence uy, satis-
fying the properties listed in the Defintion 4.1.10. The principle of the proof
is as follows. We look for mollifiers J. wich satisfy the following properties:

1. For all € > 0, J. is a bounded operator from L?(R%) to H'(R%) and
from to H~'(R%) to L?(R%);

2. The family {J,e €]0,1]} is bounded in the space of operators from
L? to L? and for all u € L? [resp. H'], Jou — u in L? [resp H!] as
e — 0;

3. For all j, the family of operators {[Ay"A4;(t, )0y, Je], e €]0,1],t €
[0, 7]} is bounded in the space of operators from L? to L? .

Proposition 4.4.1. If there exist operators J. satisfying the properties
above, then for all f € L*([0,T] x RY) and h € L*(R%), any weak solu-
tion u € L?([0,T] x RY) of the problem (4.1.2) is a strong solution.
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Proof. Consider the commutators C§ = [AgtA;(t, )0y, , Je] acting in L*([0, T x
RY). By the property 3, they are uniformly bounded, and by property 2,
Csv — 0 in L? when v € H'([0,T] x R?). By density of H' in L? we
conclude that

IG5 ull = 0.

Write L = Ao(0; + K). What we have proved is that [K, J:Ju — 0 in
L%([0,T] x R%).

Because u € L%([0,T] x R?) and dyu € L2([0,T]; H~1(R9)), one easily
shows that

1) dJou=J.Ow,  in L*([0,T]; H Y(R?),
. _1
2)  (Jeuw)y—o = Je(up—o  in H 2(RY).
Hence we have

1) Jou—u an L*([0,T); H *(RY))
2) LJou= Ay(J-Ag f + [K, JJu — fin L*([0,T]; H*(R?))
3) (Jew)y—o=Jch—h  in L*(RY).

proving that u is a strong solution. O

4.4.2 Friedrichs Lemma

Consider a function j € C§°(R%), 7 > 0, with

(4.4.1) /](x)dx =1.
Let
(4.4.2) ge(z) = e Y(x/e), Jeu = Je * u.

Lemma 4.4.2. The operators J. have the properties 1, 2, 3 listed above.

Proof. Consider a function Lipschitz function a and v € H'. Let K.u =
Je(a0z;u) — ady; Jeu. Then

Kou(x) = / 1) (a(z - y) — a(@))0y,u(z — y)dy
Kou(z) = /Kg(x,y)u(x —y)dy.
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with
K (z,y) = 9y, 0= (y)(a(x — ey) — a(x)))

One has

|Ke(z,y)| < 2||Val L= (y)
with

W) = %y/e), i) =a(y) + yll95(y)].
Hence
|[Kou(z)| < / Cu(y)u(z — y)ldy

and
(4.4.3) | Keullr2 < O3l p2 [lw]| g2

By density of smooth functions in L?, the estimate implies the K, are uni-
formly bounded functions from L? into L?. Because K.u — 0 in L? when
H?', the uniform bound also implies that

Vu € L2, lim || K.ul| 2 = 0.
e—0

The proof is similar when a and wu also depend on ¢, and for matrices
and vectors. O

4.5 The local theory

4.5.1 The cone of hyperbolic directions

Proposition 4.5.1. The cone I'(t,x) of hyperbolic directions at (t,x) is
the set of v = (v, v1,...,vq) such that the matriz Y v;A;(t,x) is definite
positive.

Proof. O

Lemma 4.5.2. Let M\ (t, x,€) denote the eigenvalues on;-lzl EAG A (t, 2, €)
and

451 — a. a; )\ tu 9 < + .
o “7 prIxRixSI1 max [ Ay (¢, 2, §)] < F00
Then

(4.5.2) I'={v > C|1/’|} C ﬂt,xl“(t, z).
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Proof. This is clear when v/ = 0. When v/ # 0, we can assume that || =1
and the assumption is that thus vy > c¢. Thus the eigenvalues of A :=
vold + > v Ay 1Aj are positive, as well as the eigenvalues of the conjugate
matrix

NI

11 _1 _
AZAAGE = AJ% (Ao + ) A AR
Thus this symmetric matrix is definite positive, implying that v Ao+ v;A;

is also positive. ]

4.5.2 Local energy estimates

Integrate the energy balance on Q C [0,T] x R¢%:

2Re /(Lu, u)dtdr — /(Ku, u)dtdr = zd:/ vi(Aju,u)do
Q =/
where (v, ...,1v4) is the outward normal to dq.
Consider the polar cone of T :
(4.5.3) I°={(t,z) e R"?: |z| < ct},
and a backward cone
(4.5.4) Q={(t,z),te0,t],|z—z| <clt—1)}
The lateral boundary of € is
(4.5.5) 0 ={(t,x),t € [0,t],|x — x| =c(t —t)}.
Lemma 4.5.3. On 0,02, the boundary matriz ) v;A; is nonnegative.

Proof. Take for simplicity = 0. The outer normal at (t,z) € 9 is
d(c,z/|x]) with 6 = (1+ 02)%. Thus the matrix boundary matrix is §(cAg +
> vjA;) with v; = xj/|z| for j = 1,...,d. By the lemma above, it is non
negative. O

Consider t < T and z € R% and Q as above. For t € [0,2], let wy = {x :
|z — x| < c(t—t)}. One has the local energy estimate

Proposition 4.5.4. There are constants G and vy, such that for u € H* (),

t
45.6)  [[u@®)],, < Cu(O)] 2, +C /0 [ Lu(t) | 12y, At
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Proof. The energy balance applied on Q; = QN {t’ < t} and the lemma
imply that

/(Aou(t,a:),u(t,x))dmg/ (Aou(0, ), u(0, z))dx

Wt

+2Re/ (Lu,w)dt'de + | |(Ku,u)|dt'dz.
Qt Qt

We conclude by Gronwall’s argument. O

Corollary 4.5.5. If u is a strong solution of the Cauchy problem with source

term which vanishes on 0 and initial data which vanishes on wy, then u =0
on €.

Theorem 4.5.6. For ug € L*(wg) and f € L?(S2), the Cauchy problem has
a unique strong solution in L*(Y), which in addition is continuous in times
with values in L? and satisfies (4.5.6).
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