Chapter 5

Smooth solutions of the nonlinear Cauchy problem

5.1 The results

We consider a first order $N \times N$ quasi-linear system

(5.1.1)
$$\begin{cases} \partial_t u + \sum_{j=1}^d A_j(t, x, u) \partial_j u = F(t, x, u), \\ u_{|t=0} = h. \end{cases}$$

We say that a function a(t, x, u) belongs to $C_b^{\infty}[0, T] \times \mathbb{R}^d \times \mathbb{R}^N$ if it is infinitely differentiable on $[0, T] \times \mathbb{R}^d \times \mathbb{R}^N$ and its derivatives at all order are bounded on the sets $[0, T] \times \mathbb{R}^d \times \{|u| \leq R\}$ for all R.

Assumption 5.1.1. The matrices A_j and the function F belong to $C_b^{\infty}[0,T] \times \mathbb{R}^d \times \mathbb{R}^N$

Moreover, there is an invertible $N \times N$ matrix S(t, x, u), such that S and S^{-1} belong to $C_b^{\infty}[0,T] \times \mathbb{R}^d \times \mathbb{R}^N$ and

i) S(t, xu) is self adjoint, definite positive ;

ii) For all (t, x, u) and all j, $S(t, x, u)A(t, x, \xi)$ is self-adjoint.

We consider a Sobolev index $s > \frac{d}{2} + 1$ which is fixed throughout this section.

Theorem 5.1.2. Suppose that $f = F(t, x, 0) \in C^0([0, T]; H^s(\mathbb{R}^d) \text{ and } h \in H^s(\mathbb{R}^d)$, there is $T' \in [0, T]$ and a unique solution $u \in C^0([0, T']; H^s(\mathbb{R}^d))$ of the Cauchy problem (5.1.1).

An estimate from below of T' is given in the proof of the theorem.

Uniqueness allows to define the maximal time of existence :

 T^* is the supremum of $T' \in [0, T]$ such that the Cauchy problem has a solution $u \in C^0([0, T']; H^s(\mathbb{R}^d))$.

The theorem implies that $T^* > 0$. By uniqueness, the solution u is therefore defined for all $t < T^*$ and $u \in C^0([0, T^*[; H^s(\mathbb{R}^d)))$.

Theorem 5.1.3. Either $T^* = T$ or

(5.1.2)
$$\lim_{t \to T^*} \sup \|u\|_{L^{\infty}([0,t] \times \mathbb{R}^d)} + \|\nabla_{t,x}u\|_{L^{\infty}([0,t] \times \mathbb{R}^d)} = +\infty.$$

In theses notes, the strategy is the following. We consider the regularized equations

(5.1.3)
$$\partial_t u + \sum J_{\varepsilon} A_j(t, x, u) \partial_{x_j} J_{\varepsilon} u = F(t, x, u), \quad u_{|t=0} = J_{\varepsilon} h$$

where J_{ε} is a Friedrichs mollifier:

(5.1.4)
$$J_{\varepsilon}v = j_{\varepsilon} \star v, \quad j_{\varepsilon}(x) = \varepsilon^{-d}j(x/\varepsilon)$$

where $j \ge 0$ is smooth with compact support, of integral 1, and even so that the operator J_{ε} is self adjoint in L^2 :

(5.1.5)
$$(J_{\varepsilon}u, v)_{L^2(\mathbb{R}^d)} = (u, J_{\varepsilon}v)_{L^2(\mathbb{R}^d)}.$$

Step 1. Existence of solutions for the approximate equation. For all fixed ε , we consider (5.1.3) a nonlinear ode in H^s :

(5.1.6)
$$\partial_t u = \mathcal{F}_{\varepsilon}(u)$$

We will show that the smoothing properties of J_{ε} imply

Lemma 5.1.4. For all fixed $\varepsilon > 0$ the application $\mathcal{F}_{\varepsilon}$ is locally Lipschiztean from H^s to H^s .

Therefore, the Cauchy-Lipschitz theorem implies that for all $\varepsilon > 0$, there is $T_{\varepsilon} \in]0, T]$ such that (5.1.3) has a unique solution $u^{\varepsilon} \in C^0([0, T_{\varepsilon}]; H^s(\mathbb{R}^d))$. One can introduce the maximal time of existence :

 T_{ε}^* is the supremum of $T' \in [0, T]$ such that (5.1.3) has a solution $u \in C^0([0, T']; H^s(\mathbb{R}^d)).$

Thus $T_{\varepsilon}^* > 0$ and by uniqueness, the solution $u - \varepsilon$ is therefore defined for all $t < T_{\varepsilon}^*$ and $u \in C^0([0, T_{\varepsilon}^*[; H^s(\mathbb{R}^d))).$

Step 2. Uniform estimates.

Proposition 5.1.5. There are constants C_0 , γ and $T' \in]0, T]$, such that for all $\varepsilon > 0$, and all $t \leq \min(T', T_{\varepsilon}^*)$

(5.1.7)
$$\left\| u^{\varepsilon}(t) \right\|_{H^{s}(t)} \leq C_{0} e^{\gamma t} \|h\|_{H^{s}} + C_{0} \int_{0}^{t} e^{\gamma (t-t')} \|f(t')\|_{H^{s}} dt'.$$

Step 3. Passing to the limit $\varepsilon \to 0$. We will show that the estimates (5.1.7) imply that $T_{\varepsilon}^* > T'$ and that u^{ε} converges to a solution u of (5.1.1), which satisfies the estimates (5.1.7).

Step 4. The blow up theorem follows from the estimate (5.1.5) and the remark that C_0 and γ only depend on the $W^{1,\infty}$ norm of u.

5.2 Nonlinear estimates

Proposition 5.2.1. Sobolev embedding $H^s \subset L^{\infty}$ if s > d/2.

Theorem 5.2.2 (Gagliardo-Niremberg estimates). For $\frac{|\alpha|}{s} \leq \frac{2}{p} \leq 1$,

(5.2.1)
$$\|\partial^{\alpha} u\|_{L^{p}} \leq C \|u\|_{L^{\infty}}^{1-2/p} \|u\|_{H^{s}}^{1/2p}$$

Proof. Use the identity

$$0 = \int \partial_x (u|\partial_x u|^{p-2} \partial_x u) dx = \int |\partial_x u|^p dx + (p-1) \int u|\partial_x u|^{p-2} \partial_x^2 u dx$$

Thus

$$|\partial_x u||_{L^p}^p \le (p-1)||u||_{L^q}||\partial_x u|^{p-2}||_{L^s}||\partial_x^2 u||_{L^r}$$

if 1/q + 1/s + 1/r = 1. We chose s such that s(p-2) = p so that

$$\||\partial_x u|^{p-2}\|_{L^s} = \||\partial_x u\|_{L^p}^{p/s} = \||\partial_x u\|_{L^p}^{p-2}$$

and after simplification,

$$\frac{1}{q} + \frac{1}{r} = \frac{2}{p} \quad \Rightarrow \quad \|\partial_x u\|_{L^p}^2 \le (p-1)\|u\|_{L^q} \|\partial_x^2 u\|_{L^r}.$$

From this, we prove is by induction on l that for

$$k \le j \le l, \qquad \frac{l}{p} = \frac{k}{r} + \frac{l-k}{r}$$

(5.2.2)
$$\|\nabla^k u\|_{L^p} \le C \|u\|_{L^q}^{1-k/l} \|\nabla^l u\|_{L^r}^{k/l}$$

where

$$\|\nabla^j u\|_{L^p} = \sum_{|\alpha=j} \|\partial^{\alpha} u\|_{L^p}$$

First, we note that the estimate is true when k = l and when k = 0.

Suppose that the estimate is proved up to l. We prove it at the order l+1. As already said it is true for k = 0 and k = l+1. We proceed by induction on k, for $1 \le k \le l$.

....

Corollary 5.2.3.

(5.2.3)
$$\|\partial^{\alpha} a \,\partial^{\beta} u\|_{L^{2}} \le C \big(\|a\|_{L^{\infty}} \|u\|_{H^{s}} + \|a\|_{H^{s}} \|u\|_{L^{\infty}} \big)$$

Corollary 5.2.4. H^s is an algebra if s > d/2.

Proposition 5.2.5. Let F be a C^{∞} function such that F(0) = 0. For all s, there is a continuous function ϕ on $[0, +\infty[$ such that for all $u \in H^s \cap L^{\infty}$, $F(u) \in H^s$ and

(5.2.4)
$$||F(u)||_{H^s} \le \phi(||u||_{L^{\infty}}) ||u||_{H^s}$$

Proof. To estimate the L^2 norm of F(u) we use the condition F(0) = 0 to write F(u) = uG(u), so that

$$||F(u)||_{L^2} \le \phi (||u||_{L^\infty}) ||u||_{L^2}.$$

with

$$\phi(r) = \sup_{|u| \le r} |G(u)|.$$

The derivative $\partial^{\alpha} F(u)$ is a linear combination of terms of the form

$$F^{(k)}(u)\partial^{\alpha_1}u\dots\partial^{\alpha_k}u$$

with $\alpha_1 + \ldots + \alpha_k = \alpha$. We estimate the L^{∞} norm of $F^{(k)}(u)$ by a function of the L^{∞} norm of u To estimate the L^2 norm of the product we note that, since $\sum |\alpha_j|/s \leq 1$, we can choose exponents p_j such that

$$\frac{\alpha_j|}{s} \le \frac{2}{p_j}, \qquad \sum \frac{2}{p_j} = 1.$$

Then, by the Gagliardo Nirenberg estimates,

$$\|\partial^{\alpha_1}u\dots\partial^{\alpha_k}u\|_{L^2} \le \prod \|\partial^{\alpha_j}u\|_{L^{p_j}} \le C\|u\|_{L^{\infty}}^{k-1}\|u\|_{H^s}$$

and the proposition follows.

We end this section with a commutator estimate.

Proposition 5.2.6. Suppose that $a \in C^{\infty}(\mathbb{R})$. For all *s*, there is a continuous function *C* such that for all *u* and *v* in $W^{1,\infty} \cap H^s$, one for all $|\alpha| \leq s$: has

(5.2.5)
$$\frac{\left\|\partial^{\alpha}(a(v)\partial_{x_{j}}u) - a(v)\partial^{\alpha}\partial_{x_{j}}u\right\|_{L^{2}}}{\left(\left(\|v\|_{L^{\infty}} + \|\nabla v\|_{L^{\infty}}\right)\|u\|_{H^{s}} + \left(\|u\|_{L^{\infty}} + \|\nabla_{x}u\|_{L^{\infty}}\right)\|v\|_{H^{s}}\right)}.$$

The proof is based on the following lemma

Lemma 5.2.7. For $1 \leq |\alpha| \leq s-1$, $\rho \geq 0$ and $p \geq 2$ such that $\frac{|\alpha|-1}{s-1} \leq \frac{|\alpha|-\rho}{s} \leq \frac{2}{p} \leq \frac{2}{p} + \rho \leq 1$,

(5.2.6)
$$\|\partial^{\alpha} u\|_{L^{p}} \leq C \|u\|_{L^{\infty}}^{1-2/p-\rho} \|\nabla u\|_{L^{\infty}}^{\rho} \|u\|_{H^{s}}^{1/2p}.$$

Note that the condition on the indices implies that

(5.2.7)
$$\rho \le \frac{s - |\alpha|}{s - 1} \le 1.$$

Proof. The Gagliardo-Nirenberg estimates imply that

$$\begin{aligned} \|\partial^{\alpha} u\|_{L^{q}} &\leq C \|u\|_{L^{\infty}}^{1-2/q} \|u\|_{H^{s}}^{1/2q}, \quad \frac{2}{q} = \frac{|\alpha|}{s}, \\ \|\partial^{\alpha} u\|_{L^{r}} &\leq C \|\nabla u\|_{L^{\infty}}^{1-2/r} \|u\|_{H^{s}}^{1/2r}, \quad \frac{2}{r} = \frac{|\alpha|-1}{s-1}. \end{aligned}$$

By Hölder inequality, for non negative $\delta \in [0, 1]$, one has

$$\|\partial^{\alpha} u\|_{L^{p}} \leq \|\partial^{\alpha} u\|_{L^{q}}^{1-\delta-\theta} \|\partial^{\alpha} u\|_{L^{r}}^{\delta}$$

with

$$\frac{1}{p} = \frac{1-\delta}{q} + \frac{\delta}{r} = \frac{|\alpha|}{2s} - \delta \frac{s-|\alpha|}{2s(s-1)},$$

implying (5.2.6) with

$$\rho = (1 - 2/r)\delta = \delta \frac{s - |\alpha|}{s - 1}.$$

This proves the estimate when

(5.2.8)
$$\frac{|\alpha|-1}{s-1} \le \frac{2}{p} = \frac{|\alpha|-\rho}{s} \le \frac{|\alpha|}{s},$$

since then $0 \le \rho \le (s - |\alpha|)/(s - 1)$ and there is $\delta \in [0, 1]$ such that $\rho = \delta(s - |\alpha|)/(s - 1)$.

Moreover, the estimate follows immediately from the Gagliardo-Nirenberg estimates when

(5.2.9)
$$\frac{|\alpha| - 1}{s - 1} \le \frac{2}{p}, \qquad \rho = 1 - \frac{2}{p}$$

(5.2.10)
$$\frac{|\alpha|}{s} \le \frac{2}{p}, \qquad \rho = 0.$$

When $2/p \ge |\alpha|/s$, the estimate is proved for $\rho = 0$ and $\rho = 1 - 2/p$, and therefore holds for $\rho \in [0, 1 - 2/p]$. When $(|\alpha| - 1)/(s - 1) \le 2/p \le |\alpha|/s$, the estimate is proved for $\rho = 2s/p - |\alpha|$ and $\rho = 1 - 2/p$ and therefore holds for ρ in the interval limited by these two values.

Proof of Proposition 5.2.6. The term to estimate is a linear combination of terms of the form

$$a^{(k)}(v)\partial^{\beta_1}v\ldots\partial^{\beta_k}v\,\partial^{\beta_0}u$$

with $|\beta_1| + ... + |\beta_k| + |\beta_0| = |\alpha| + 1$ and all the $|\beta_j| \ge 1$.

The case $|\alpha| \leq s - 1$ has already been treated in the proof of Proposition 5.2.5 and requires no L^{∞} estimates of the gradients.

Consider now the case where $\sum |\beta_j| = s + 1$. We estimate the L^{∞} norm of $a^{(k)}(v)$ by a function of the L^{∞} norm of v and it remains to estimate the L^2 norm of the product of the derivatives. Because the number of terms k + 1 is at least 2, the sum $\sum (s - |\beta_j|/(s - 1))$ is larger than or equal to 1 and therefore, there are real numbers ρ_j such that

$$0 \le \rho_j \le \frac{s - |\beta_j|}{s - 1}, \qquad \sum \rho_j = 1.$$

Choosing $\frac{2}{p_j} = \frac{|\beta_j| - \rho_j}{s}$ we can use the estimates (5.2.6) and since $\sum \frac{2}{p_j} = 1$, we obtain

$$\begin{aligned} \left\| \partial^{\beta_1} v \dots \partial^{\beta_k} v \, \partial^{\beta_0} u \right\|_{L^2} &\leq C \|v\|_{L^{\infty}}^{k-2+\rho_0+2/p_0} \|\nabla v\|_{L^{\infty}}^{1-\rho_0} \|v\|_{H^s}^{1-2/p_0} \\ &\|u\|_{L^{\infty}}^{1-\rho_0-2/p_0} \|\nabla u\|_{L^{\infty}}^{\rho_0} \|u\|_{H^s}^{2/p_0} \end{aligned}$$

and the proposition follows.

5.3 The main estimate

In this section we assume that $u \in C^0([0, T'], H^s)$ is a solution of (5.1.3). Because s > 1 + d/2, the following quantities are finite:

(5.3.1)
$$R = \|u\|_{L^{\infty}([0,T']\times\mathbb{R}^d)}, \quad M = \|\nabla_x u\|_{L^{\infty}([0,T']\times\mathbb{R}^d)}$$

Below we denote by $C(\cdot)$ a continuous function on \mathbb{R}_+ , which may vary from line to line.

Lemma 5.3.1. There is a function $C_0(\cdot)$ such that

(5.3.2)
$$\|\partial_t u\|_{L^{\infty}} \le C_0(R)(1+M)$$

Proof. One has

$$||F(u)||_{L^{\infty}} \le C(R)$$

and

$$\|J_{\varepsilon}(A_j J_{\varepsilon} \partial_j u)\|_{L^{\infty}} \le C(R) \|\partial_j u\|_{L^{\infty}}$$

thus the estimate for $\partial_t u$ follows from the equation.

Lemma 5.3.2. There are functions $C_0(\cdot)$ and $C_1(\cdot)$ such that for all $v \in C^0([0,T'];L^2)$ which satisfies

(5.3.3)
$$g := \partial_t v + \sum J_{\varepsilon}(A_j(u)J_{\varepsilon}D_jv) \in L^2([0,T'] \times \mathbb{R}^d),$$

one has

(5.3.4)
$$\|v(t)\|_{L^2} \le C_0(R)e^{\gamma t}\|v(0)\|_{L^2} + \int_0^t C_0(R)e^{\gamma(t-t')}\|g(t')\|_{L^2}dt'.$$

with $\gamma = C_1(R)M$.

Proof. Multiply the equation by S(u), so that

$$S(u)\partial_t v + \sum J_{\varepsilon}S(u)A_j(u)J_{\varepsilon}\partial_j v = S(u)g + \sum g_j := \tilde{g}.$$

where

$$j_j = [S(u), J_{\varepsilon}]A_j(u)J_{\varepsilon}\partial_j v.$$

Because S(u) is Lipschtiz continuous, the commutator $[S(u), J_{\varepsilon}]$ is bounded from L^2 to L^2 with norm less than or equal to

$$\varepsilon \|\nabla S(u)\|_{L^{\infty}} \le \varepsilon C(R)(1+M).$$

Thus

$$\|g_j(t)\|_{L^2} \le C(R)M\|\varepsilon J_{\varepsilon}\partial_j v(t)\|_{L^2} \le C(R)M\|v(t)\|_{L^2}$$

Consider the energy

$$\mathcal{E}(t) = \left(Sv(t), v(t)\right)_{L^2}.$$

Using that the J_{ε} are self adjoint and the matrices SA_j are symmetric, we get that

$$\mathcal{E}(t) - \mathcal{E}(0) = 2 \operatorname{Re}\left(\tilde{g}, v\right)_{L^2([0,t] \times \mathbb{R}^d)} + \left(Kv, v\right)_{L^2([0,t] \times \mathbb{R}^d)}$$

where

$$K = \partial_t S(u) + \sum J_{\varepsilon} \partial_j (SA_j) J_{\varepsilon}.$$

Using Lemma 5.3.1 we see that $||K|||_{L^{\infty}} \leq C(R)(1+M)$. Moreover, the positivity of S and the bound of S^{-1} imply that

$$|v|^2 \le C(R)(S(u)v, v) \le C^2(R)|v|^2$$

Hence we have

$$\|v(t)\|_{L^{2}} \leq C(R) \|v(0)\|_{L^{2}} + C(R) \int_{0}^{t} \|g(t')\| \|v(t')\| dt' + C(R) M \int_{0}^{t} \|v(t')\|^{2} dt'.$$

We conclude by Gronwall's lemma.

We now estimate the H^s norm of u. Differentiate the equation (5.1.3) to find, for $|\alpha| \leq s$:

(5.3.5)
$$\partial_t \partial_x^{\alpha} u + \sum J_{\varepsilon} A_j J_{\varepsilon} \partial_x^{\alpha} u = \partial_x^{\alpha} F(u) + g_{\alpha}$$

where g_{α} is the commutator

$$g_{\alpha} = \sum_{j} J_{\varepsilon}[\partial_x^{\alpha}, A_j(u)] \partial_j J_{\varepsilon} u.$$

By Proposition 5.2.6

$$||g_{\alpha}(t)||_{L^{2}} \leq C(R)M||u(t)||_{H^{s}}.$$

By Proposition 5.2.5 applied to F(t, x, u) - F(t, x, 0), we have

$$\|\partial_x^{\alpha} F(u(t))\|_{L^2} \le \|f(t)\|_{H^s} + C(R)\|u(t)\|_{H^s}$$

where f(t, x) = F(t, x, 0). Applying the lemma and summing in α we get that

$$\begin{aligned} \|u(t)\|_{H^s} &\leq C_0 e^{\gamma t} \|u(0)\|_{H^s} + C_0(R) \int_0^t e^{\gamma(t-t')} \|f(t')\|_{H^s} dt' \\ &+ C_2(R) M \int_0^t e^{\gamma(t-t')} \|u(t')\|_{H^s} dt'. \end{aligned}$$

Applying once more Gronwall's lemma, we have proved the following:

Proposition 5.3.3. There are functions $C_1(\cdot)$ and $C_2(\cdot)$ such that if $u \in C^0([0,T'], H^s)$ is a solution of (5.1.3), one has

(5.3.6)
$$||u(t)||_{H^s} \leq C_1(R)e^{\gamma t}||u(0)||_{H^s} + \int_0^t C_1(R)e^{\gamma(t-t')}||f(t')||_{L^2}dt'.$$

with $\gamma = C_2(R)(1+M)$, with R and M defined at (5.3.1).

5.4 Solutions of the approximate equation

Let

$$\mathcal{F}_{\varepsilon}(t,u) = -\sum J_{\varepsilon}(A_j(t,x,u)\partial_j J_{\varepsilon}u) + F(t,x,u)$$

Lemma 5.4.1. For all $\varepsilon > 0$, the mapping $u \mapsto \mathcal{F}_{\varepsilon}(u)$ is locally Lipschitzean from H^s to H^s .

Proof. Because s > d/2, H^s is an algebra and is a consequence of the nonlinear estimates that for all R, there is a constant C such that u and v in $H^s(\mathbb{R}^d)$

$$\|u\|_{H^s} \le R, \ \|v\|_{H^s} \le R \quad \Rightarrow \quad \|\mathcal{F}_{\varepsilon}(t,u) - \mathcal{F}_{\varepsilon}(t,v)\|_{H^s} \le C\varepsilon^{-1}\|u-v\|_{H^s}.$$

Thus by the Cauchy Lipschitz theorem, (5.1.3) has a solution $u \in C^0([0, T_{\varepsilon}], H^s)$ for some $T_{\varepsilon} > 0$ and the solution can be extended to a maximal interval $[0, T_{\varepsilon}^*]$ with either $T_{\varepsilon} = T$ or

(5.4.1)
$$\limsup_{t \to T_{\varepsilon}^*} \|u(t)\|_{H^s} = +\infty.$$

We now proceed to a choice of parameters. The functions C_0 , C_1 and C_2 are those given at Lemma 5.3.1 and Proposition 5.3.3. We also introduce the Sobolev constant C_S such that

(5.4.2)
$$||u||_{L^{\infty}} \le C_S ||u||_{H^{s-1}}$$

(recall that s - 1 > d/2).

- 1. We fix r > and set $\underline{R} = ||h||_{L^{\infty}} + r$;
- 2. Let

$$\underline{C} = 1 + 2C_1(\underline{R}) \|h\|_{H^s} + 2C_1(\underline{R}) \int_0^T \|f(t')\|_{H^s} dt';$$

- 3. Let $\underline{M} = C_S \underline{C};$
- 4. We choose $T' \in]0, T]$ such that

$$T'C_0(\underline{R})(1+\underline{M}) \le r; \qquad e^{T'C_2(\underline{R})(1+\underline{M})} \le 2.$$

Proposition 5.4.2. For all $\varepsilon > 0$, $T_{\varepsilon}^* > T'$ and for all $t \in [0, T']$

(5.4.3)
$$||u^{\varepsilon}(t)||_{L^{\infty}} \leq \underline{R}, \quad ||\nabla_x u^{\varepsilon}(t)||_{L^{\infty}} \leq \underline{M}, \quad ||u^{\varepsilon}(t)||_{H^s} \leq \underline{C}.$$

Proof. At time t = 0, the estimates are satisfied with strict inequalities (remember that $C_1 \leq 1$). Thus, by continuity, they hold on a small interval $[0, T_{\varepsilon}'], T_{\varepsilon}' > 0.$ Suppose that $T'' < \min(T', T_{\varepsilon}^*)$ is such that

(5.4.4)
$$\forall t \in [0, T''], \quad \|u^{\varepsilon}(t')\|_{H^s} \le \underline{C}.$$

Then, by the Sobolev embedding, $M \leq \underline{M}$. With Lemma 5.3.1 we also have

$$R \le \|h\|_{L^{\infty}} + T'' \|\partial_T u\|_{L^{\infty}} \le \underline{R}.$$

Therefore, Proposition 5.3.3 and the conditions on T' imply that

$$\|u^{\varepsilon}(t')\|_{H^{s}} \le 2C_{1}(\underline{R})\|h\|_{H^{s}} + 2C_{1}(\underline{R})\int_{0}^{T}\|f(t')\|_{H^{s}}dt'$$

hence

$$\|u^{\varepsilon}(t')\|_{H^s} \leq \underline{C} - 1.$$

This implies that the blow up (5.4.1) cannot occur before T'. Hence $T_{\varepsilon}^* \geq T'$ and the bound (5.4.4) is valid on [0, T']. As shown, it implies the Lipschitz bound and the L^{∞} bound.

5.5 Proof of Theorem 5.1.2

We first prove the existence of solutions, passing to the limit in the equation.

Proposition 5.5.1. There is a subsequence, still denoted by u^{ε} , which converges in $C^{0}([0, T'] \times \mathbb{R}^{d}])$ and the limit is a solution of (5.1.1). Moreover, $u \in C^{0}([0, T']; H^{s}(\mathbb{R}^{d}), and \partial_{t}u \in C^{0}([0, T]; H^{s-1}(\mathbb{R}^{d}).$

Proof. The u^{ε} are bounded in $C^{0}([0,T]; H^{s}) \cap C^{1}([0,T']; H^{s-1})$. Thus there is a subsequence which converges in $C^{0}([0,T']; H_{w}^{s})$, where H_{w}^{s} is the space H^{s} equipped with the weak topology. uniformly on compact subsets. Since s > 1 + d/2, this implies the convergence in C^{1} on all compact subset of $[0,T'] \times \mathbb{R}^{d}$ and one can pass to the limit in the equation. Hence u is a solution of (5.1.1)

To prove that u belongs to $C^0([0, T']; H^s$ and not only to $C^0([0, T']; H^s_w)$ we differentiate the equation for $|\alpha| \leq s$ and we get

(5.5.1)
$$\partial_t \partial_x^{\alpha} u + \sum A_j(u) \partial_{x_j} \partial_x^{\alpha} u = \partial_x^{\alpha} F(u) + g_{\alpha}$$

where g_{α} is the commutator

$$g_{\alpha} = \sum_{j} [\partial_x^{\alpha}, A_j(u)] \partial_j u.$$

Indeed, the identity

$$\partial_x^{\alpha} (A_j(u)\partial_{x_j}v) = A_j(u)\partial_{x_j}\partial_x^{\alpha}v + [\partial_x^{\alpha}, A_j(u)]\partial_{x_j}v$$

which is true for v smooth, makes sense in H^{-1} when $v \in H^s$. The estimate for the commutators can g_{α} can be repeated and the uniform bounds of u(t)in H^s imply that $g_{\alpha} \in L^2([0, T'] \times L^2(\mathbb{R}^d))$. Hence $\partial_x^{\alpha} u \in L^2([0, T'] \times \mathbb{R}^d)$ is a weak solution of (5.5.1). Thus by Friedrichs lemma, it is a strong solution on $[0, T'] \times \mathbb{R}^d$, and $\partial^{\alpha} u \in C^0([0, T']; L^2)$, proving that $u \in C^0([0, T']; H^s)$. \Box

To finish Theorem 5.1.2 it remains to prove uniqueness

Proposition 5.5.2. The equation (5.1.1) has at mot one solution in $C^0([0,T]; H^s(\mathbb{R}^d))$.

Proof. Suppose that u and v are two solutions. Then w = u - v satisfies

(5.5.2)
$$\partial_t w + \sum_{j=1}^d A_j(u) \partial_j w = f, \qquad w_{|t=0} = 0$$

with

(5.5.3)
$$f = F(u) - F(v) + \sum_{j=1}^{d} (A_j(u) - A_j(v))\partial_j v.$$

Because u, v and $\partial_j v$ are bounded, there is a constant C such that $|f| \leq C(|u-v|)$ that is:

$$\forall (t, x), \quad |f(t, x)| \le C|w(t, x)|.$$

The L^2 energy estimate can be applied to (5.5.2), and there are constants C and γ such that

$$\forall t, \quad \|w(t)\|_{L^2} \le C \int_0^t e^{\gamma(t-t')} \|w(t')\|_{L^2} dt'.$$

By Gronwall's lemma, this implies that $||w(t)||_{L^2} = 0$, that is w = 0.

5.6 Proof of Theorem 5.1.3

Repeating the proof of Proposition 5.3.3, one has :

Proposition 5.6.1. There are functions $C_1(\cdot)$ and $C_2(\cdot)$ such that if $u \in C^0([0,T'], H^s)$ is a solution of (5.1.1), one has for all $t \in [0,T']$:

(5.6.1)
$$||u(t)||_{H^s} \leq C_1(R)e^{\gamma t}||u(0)||_{H^s} + \int_0^t C_1(R)e^{\gamma(t-t')}||f(t')||_{L^2}dt'.$$

with $\gamma = C_2(R)(1+M)$, with R and M defined at (5.3.1).

We can now proceed to the proof of Theorem 5.1.3. Suppose that the maximal time of existence T^* is strictly smaller than T and that

(5.6.2)
$$R = \sup_{t < T^*} \|u(t)\|_{L^{\infty}} < +\infty, \quad M = \sup_{t < T^*} \|\nabla_x u(t)\|_{L^{\infty}} < +\infty.$$

Let

$$N = C_1(R)e^{\gamma T} \|h\|_{H^s} + C_1(R) \int_0^T e^{\gamma(t-t')} \|f(t')\|_{L^2} dt'.$$

One can apply Theorem 5.1.2 at any initial time $\tau \in [0, T]$, and by inspection of the proof one can see that the time of existence can be chosen independent of τ , depending only on the size of the initial data in H^s : **Lemma 5.6.2.** There is T' > 0 such that for all initial time $\tau \in [0, T[$ and initial data $\tilde{h} \in H^s$ with $\|\tilde{h}\|_{H^s} \leq N$, the Cauchy problem (6.1.1) with initial data \tilde{h} at time τ has a solution $u \in C^0([\tau, T'')]; H^s)$ with $T'' = \min(\tau + T', T)$.

In particular, since $||u(T^* - T'/2)||_{H^s} \leq N$, the Cauchy problem with initial data $u(T^* - T'/2)$ at time $T^* - T'/2$ has a solution on $[T^* - T'/2, T'']$ with $T'' = \min(T^* + T'/2, T) > T^*$. By uniqueness, this solution coincides with u on $[T^* - T'/2, T^*]$, and thus extends u to times larger than T^* , contradicting the definition of T^* .

5.7 An example of blow-up: the scalar case

Il is classical that the life span of smooth solutions of nonlinear equation is finite in general: consider for instance the ordinary differential equation

$$\partial_t u = u^2, \quad u_{|t=0} = h.$$

The solution is h/(1-th) and if h > 0, it blows up in finite time $T^* = 1/h$. This can be extended to semilinear equations, where the blow up occurs in the L^{∞} norm. We now illustrate, on a class of scalar equation, how the blow up can occur in the L^{∞} norm of the gradient of u.

Consider

(5.7.1)
$$\partial_t u + \sum_{j=1}^d a_j(u) \partial_{x_j} u, \qquad u(0,x) = h(x) = 0,$$

with $a_j \in C^1(\mathbb{R};\mathbb{R})$. We note $a = (a_1, \ldots, a_n) \in C^1(\mathbb{R};\mathbb{R}^d)$.

Proposition 5.7.1. $u \in C_b^1([0,T] \times \mathbb{R}^d)$ satisfies (5.7.1) if and only if u satisfies the implicit equation

(5.7.2)
$$F(t, x, u(t, x)) = 0$$
,

where $F(t, x, \lambda) = \lambda - h(x - ta(\lambda)).$

Proof. Suppose that u is C^1 and bounded on $[0, T] \times \mathbb{R}^d$ Consider the integral curves of

$$L = \partial_t + \sum_{j=1}^n a_j(u(t,x))\partial_{x_j}$$

that is the solutions X(s; t, x) of

(5.7.3)
$$\frac{dX}{ds} = a(u(s, X(s, t, x))), \qquad X(t, t, x) = x.$$

Because the $u \in C_b^1$, the flow X is defined on $[0,T] \times [0,T] \times \mathbb{R}^d$. One has, for all $v \in C^1$,

(5.7.4)
$$\partial_s \big(v(s, X(s; t, x)) \big) = (Lv)(s, X(s; t, x))$$

In particular, if u is a solution of (5.7.1),

$$\partial_s (u(s, X(s; t, x))) = 0 \implies u(s, X(s; t, x)) = u(t, x).$$

Thus, a(u(s, X(s, t, x))) = a(t, x), implying that the integral curves are lines

(5.7.5)
$$X(s;t,x) = x + (s-t)a(u(t,x))$$

and that

(5.7.6)
$$u(s, x + (s - t)a(u(t, x))) = u(t, x).$$

At s = 0, this means

(5.7.7)
$$u(t,x) = h(x - ta(u(t,x))),$$

that is (5.7.2)

Conversely, suppose that $u \in C_b^1([0,T] \times \mathbb{R}^d)$ satisfies (5.7.2). For t = 0, this means that u(0,x) = h(x). The derivatives of F are :

$$\partial_t F(t, x, \lambda) = \sum_j a_j(\lambda) \partial_{x_j} h(x - ta(\lambda)),$$

$$\partial_{x_j} F(t, x, \lambda) = -\partial_{x_j} h(x - ta(\lambda)),$$

$$\partial_\lambda F(t, x, \lambda) = 1 + t \sum_j a'_j(\lambda) \partial_{x_j} h(x - ta(\lambda))$$

Note that $\partial_{\lambda}F$ and $\nabla_{x}F \neq 0$ cannot vanish together. Differentiating (5.7.2), on has at $\lambda = u(t, x)$,

(5.7.8)
$$\begin{aligned} \partial_t F(t,x,\lambda) + \partial_t u \, \partial_\lambda F(t,x,\lambda) &= 0, \\ \partial_{x_i} F(t,x,\lambda) + \partial_{x_i} u \, \partial_\lambda F(t,x,\lambda) &= 0. \end{aligned}$$

In particular,

(5.7.9)
$$\partial_{\lambda} F(t, x, u(t, x)) \neq 0.$$

By (5.7.8),

$$\left(\partial_t u + \sum_j a_j(u)\partial_{x_j}u\right)\partial_\lambda F(t,x,u(t,x)) = 0$$

With (5.7.9), this implies that u satisfies the equation (5.7.1).

Note that $\partial_{\lambda} F \neq 0$ for small times. Therefore, the implicit function theorem can be applied to (5.7.2), yielding local solutions of (5.7.1). The next result gives a precise estimate of the life span of the solution, when the initial data $h \in C_b^1(\mathbb{R}^d)$. The form of $\partial_{\lambda} F$ leads to introduce the functions

(5.7.10)
$$g(x) = \sum_{j=1}^{n} a'_{j}(h(x))\partial_{x_{j}}h(x)$$

For $h \in C_b^1(\mathbb{R}^d)$, g is bounded and one can introduce

(5.7.11)
$$\mu = \inf_{x \in \mathbb{R}^d} g(x) \in \mathbb{R}$$

Theorem 5.7.2. Soit $h \in C_b^1(\mathbb{R}^d)$. Let $T^* = +\infty$ if $\mu \ge 0$, and $T^* = -1/\mu$ si $\mu < 0$.

i) The Cauchy problem (5.7.1) has a unique solution $u \in C^1([0, T^*[\times \mathbb{R}^d); moreover,$

(5.7.12)
$$\forall (t,x) \in [0,T^*[\times \mathbb{R}^d, |u(t,x)| \le ||h||_{L^{\infty}(\mathbb{R}^d)}.$$

ii) For all $T < T^*$, $u \in C_b^1([0,T] \times \mathbb{R}^d)$ and

(5.7.13)
$$\forall t < T^*, \quad \|\nabla_x u(t,.)\|_{L^{\infty}(\mathbb{R}^d)} \le \frac{1}{1+t\mu} \|\nabla_x h\|_{L^{\infty}(\mathbb{R}^d)}.$$

iii) When $\mu < 0$, there is a constant m > 0 such that

(5.7.14)
$$\forall t < T^*, \quad \|\nabla_x u(t,.)\|_{L^{\infty}(\mathbb{R}^d)} \ge \frac{m}{T^* - t}.$$

Proof. a) Let $(t, x) \in [0, T * [\times \mathbb{R}^d]$. The function $\lambda \mapsto F(t, x, \lambda) = \lambda - h(x - ta(\lambda))$ is C^1 ; It is negative for $\lambda < -\|h\|_{L^{\infty}}$ and positive for $\lambda > \|h\|_{L^{\infty}}$. Therefore it vanishes. Moreover, when $F(t, x, \lambda) = 0$, on a

$$\partial_{\lambda} F(t, x, \lambda) = 1 + tg(x - ta(\lambda)) \ge 1 + t\mu > 0.$$

Thus the root in λ of $F(\lambda, t, x) = 0$ is unique. This determines uniquely u(t, x) such that F(t, x, u(t, x)) = 0. Moreover, since $\partial_{\lambda}F(t, x, u(t, x) > 0$. the local implicit function theorem implies that u is C^1 sur $[0, T^*[\times \mathbb{R}^d]$. By Proposition 5.7.1 u est solution de (5.7.1). Uniqueness also follows from Proposition 5.7.1 and the uniqueness of the solution of the implicit equation $F(t, x, \lambda) = 0$.

The L^{∞} bound (5.7.12) follows from the identity u(t,x) = h(y) with y = x - ta(u(t,x)).

b) By (5.7.8),

(5.7.15)
$$\begin{cases} (1 + tg(y)) \partial_t u(t, x) = -a(h(y)) \cdot \nabla_x h(y), \\ (1 + tg(y)) \nabla_x u(t, x) = \nabla_x h(y), \end{cases}$$

with y = x - ta(u(t, x)). Since $g \ge \mu$, the estimate of the derivatives follow. In particular, all the derivatives of u are bounded on $[0, T] \times \mathbb{R}^d$, for all $T < T^*$.

c) Suppose that $\mu < 0$. Let $m = \sup |a'(h(y))| > 0$. For all $\mu' \in]\mu, 0[$, there is $y \in \mathbb{R}^r$ tel que

$$0 < -\mu' \le -g(y) = -a'(h(y)) \cdot \nabla_x h(y) \le m |\nabla_x h(y)|.$$

For x = y + ta(h(y)), one has u(t, x) = h(y), and by (5.7.15)

$$|\nabla_x u(t,x)| \ge \frac{1}{1+t\mu'} |\nabla_x h(y)| \ge \frac{1}{1+t\mu'} \frac{|\mu'|}{m}.$$

Hence, for all $\mu' \in]\mu, 0[$ and all $t \in [0, -1/\mu'[:$

$$\|\nabla_x u(t,.)\|_{L^{\infty}} \ge \frac{1}{1+t\mu'} \frac{|\mu'|}{m}$$

Hence, for all $t \in]0, T^*[$, letting μ' tend to μ , we see that

$$\|\nabla_x u(t,.)\|_{L^{\infty}} \ge \frac{1}{1+t\mu} \frac{|\mu|}{m} = \frac{1}{m(T^*-t)}.$$

The theorem is proved.

Corollary 5.7.3. Si $\mu < 0$, (5.7.1) has no solution in $C_b^1([0, T[\times \mathbb{R}^d) \text{ pour } T > T*.$

Remark 5.7.4. When the infimum μ of g est strictment is negative and reached at $y_0 \in \mathbb{R}^d$, one can choose this point in the proof above and for $t \in [0, T^*[$ and $x = y_0 + ta(h(y_0))$

$$|\nabla_x u(t,x)| = \frac{1}{1+t\mu} |\nabla_x h(y_0)|.$$

Because $\mu < 0$, $|\nabla_x h(y_0)| > 0$, and this formula shows that the gradient of u blows up at the point $(T^*, y_0 + T^*a(h(y_0)))$. Therefore, the solution has no C^1 extension near this point.