Chapter 5

Smooth solutions of the nonlinear Cauchy problem

5.1 The results

We consider a first order $N \times N$ quasi-linear system

$$
\left\{\begin{array}{l}
\partial_{t} u+\sum_{j=1}^{d} A_{j}(t, x, u) \partial_{j} u=F(t, x, u) \tag{5.1.1}\\
u_{\mid t=0}=h
\end{array}\right.
$$

We say that a function $a(t, x, u)$ belongs to $C_{b}^{\infty}[0, T] \times \mathbb{R}^{d} \times \mathbb{R}^{N}$ if it is infinitely differentiable on $[0, T] \times \mathbb{R}^{d} \times \mathbb{R}^{N}$ and its derivatives at all order are bounded on the sets $[0, T] \times \mathbb{R}^{d} \times\{|u| \leq R\}$ for all R.
Assumption 5.1.1. The matrices A_{j} and the function F belong to $C_{b}^{\infty}[0, T] \times$ $\mathbb{R}^{d} \times \mathbb{R}^{N}$

Moreover, there is an invertible $N \times N$ matrix $S(t, x, u)$, such that S and S^{-1} belong to $C_{b}^{\infty}[0, T] \times \mathbb{R}^{d} \times \mathbb{R}^{N}$ and
i) $S(t, x u)$ is self adjoint, definite positive ;
ii) For all (t, x, u) and all $j, S(t, x, u) A(t, x, \xi)$ is self-adjoint.

We consider a Sobolev index $s>\frac{d}{2}+1$ which is fixed throughout this section.

Theorem 5.1.2. Suppose that $f=F(t, x, 0) \in C^{0}\left([0, T] ; H^{s}\left(\mathbb{R}^{d}\right)\right.$ and $h \in$ $H^{s}\left(\mathbb{R}^{d}\right)$, there is $\left.\left.T^{\prime} \in\right] 0, T\right]$ and a unique solution $u \in C^{0}\left(\left[0, T^{\prime}\right] ; H^{s}\left(\mathbb{R}^{d}\right)\right)$ of the Cauchy problem (5.1.1).

An estimate from below of T^{\prime} is given in the proof of the theorem.

Uniqueness allows to define the maximal time of existence :
T^{*} is the supremum of $T^{\prime} \in[0, T]$ such that the Cauchy problem has a solution $u \in C^{0}\left(\left[0, T^{\prime}\right] ; H^{s}\left(\mathbb{R}^{d}\right)\right)$.
The theorem implies that $T^{*}>0$. By uniqueness, the solution u is therefore defined for all $t<T^{*}$ and $u \in C^{0}\left(\left[0, T^{*}\left[; H^{s}\left(\mathbb{R}^{d}\right)\right)\right.\right.$.

Theorem 5.1.3. Either $T^{*}=T$ or

$$
\begin{equation*}
\limsup _{t \rightarrow T^{*}}\|u\|_{L^{\infty}\left([0, t] \times \mathbb{R}^{d}\right)}+\left\|\nabla_{t, x} u\right\|_{L^{\infty}\left([0, t] \times \mathbb{R}^{d}\right)}=+\infty . \tag{5.1.2}
\end{equation*}
$$

In theses notes, the strategy is the following. We consider the regularized equations

$$
\begin{equation*}
\partial_{t} u+\sum J_{\varepsilon} A_{j}(t, x, u) \partial_{x_{j}} J_{\varepsilon} u=F(t, x, u), \quad u_{\mid t=0}=J_{\varepsilon} h \tag{5.1.3}
\end{equation*}
$$

where J_{ε} is a Friedrichs mollifier:

$$
\begin{equation*}
J_{\varepsilon} v=\jmath_{\varepsilon} \star v, \quad \jmath_{\varepsilon}(x)=\varepsilon^{-d} \jmath(x / \varepsilon) \tag{5.1.4}
\end{equation*}
$$

where $\jmath \geq 0$ is smooth with compact support, of integral 1 , and even so that the operator J_{ε} is self adjoint in L^{2} :

$$
\begin{equation*}
\left(J_{\varepsilon} u, v\right)_{L^{2}\left(\mathbb{R}^{d}\right)}=\left(u, J_{\varepsilon} v\right)_{L^{2}\left(\mathbb{R}^{d}\right)} . \tag{5.1.5}
\end{equation*}
$$

Step 1. Existence of solutions for the approximate equation. For all fixed ε, we consider (5.1.3) a nonlinear ode in H^{s} :

$$
\begin{equation*}
\partial_{t} u=\mathcal{F}_{\varepsilon}(u) \tag{5.1.6}
\end{equation*}
$$

We will show that the smoothing properties of J_{ε} imply
Lemma 5.1.4. For all fixed $\varepsilon>0$ the application $\mathcal{F}_{\varepsilon}$ is locally Lipschiztean from H^{s} to H^{s}.

Therefore, the Cauchy-Lipschitz theorem implies that for all $\varepsilon>0$, there is $\left.\left.T_{\varepsilon} \in\right] 0, T\right]$ such that (5.1.3) has a unique solution $u^{\varepsilon} \in C^{0}\left(\left[0, T_{\varepsilon}\right] ; H^{s}\left(\mathbb{R}^{d}\right)\right)$. One can introduce the maximal time of existence :
T_{ε}^{*} is the supremum of $T^{\prime} \in[0, T]$ such that (5.1.3) has a solution $u \in C^{0}\left(\left[0, T^{\prime}\right] ; H^{s}\left(\mathbb{R}^{d}\right)\right)$.
Thus $T_{\varepsilon}^{*}>0$ and by uniqueness, the solution $u-\varepsilon$ is therefore defined for all $t<T_{\varepsilon}^{*}$ and $u \in C^{0}\left(\left[0, T_{\varepsilon}^{*}\left[; H^{s}\left(\mathbb{R}^{d}\right)\right)\right.\right.$.

Step 2. Uniform estimates.
Proposition 5.1.5. There are constants C_{0}, γ and $\left.\left.T^{\prime} \in\right] 0, T\right]$, such that for all $\varepsilon>0$, and all $t \leq \min \left(T^{\prime}, T_{\varepsilon}^{*}\right)$

$$
\begin{equation*}
\left\|u^{\varepsilon}(t)\right\|_{H^{s}(t)} \leq C_{0} e^{\gamma t}\|h\|_{H^{s}}+C_{0} \int_{0}^{t} e^{\gamma\left(t-t^{\prime}\right)}\left\|f\left(t^{\prime}\right)\right\|_{H^{s}} d t^{\prime} \tag{5.1.7}
\end{equation*}
$$

Step 3. Passing to the limit $\varepsilon \rightarrow 0$. We will show that the estimates (5.1.7) imply that $T_{\varepsilon}^{*}>T^{\prime}$ and that u^{ε} converges to a solution u of (5.1.1), which satisfies the estimates (5.1.7).

Step 4. The blow up theorem follows from the estimate (5.1.5) and the remark that C_{0} and γ only depend on the $W^{1, \infty}$ norm of u.

5.2 Nonlinear estimates

Proposition 5.2.1. Sobolev embedding $H^{s} \subset L^{\infty}$ if $s>d / 2$.
Theorem 5.2.2 (Gagliardo-Niremberg estimates). For $\frac{|\alpha|}{s} \leq \frac{2}{p} \leq 1$,

$$
\begin{equation*}
\left\|\partial^{\alpha} u\right\|_{L^{p}} \leq C\|u\|_{L^{\infty}}^{1-2 / p}\|u\|_{H^{s}}^{1 / 2 p} \tag{5.2.1}
\end{equation*}
$$

Proof. Use the identity

$$
0=\int \partial_{x}\left(u\left|\partial_{x} u\right|^{p-2} \partial_{x} u\right) d x=\int\left|\partial_{x} u\right|^{p} d x+(p-1) \int u\left|\partial_{x} u\right|^{p-2} \partial_{x}^{2} u d x
$$

Thus

$$
\left\|\partial_{x} u\right\|_{L^{p}}^{p} \leq(p-1)\|u\|_{L^{q}}\left\|\left.\partial_{x} u\right|^{p-2}\right\|_{L^{s}}\left\|\partial_{x}^{2} u\right\|_{L^{r}}
$$

if $1 / q+1 / s+1 / r=1$. We chose s such that $s(p-2)=p$ so that

$$
\left\|\left|\partial_{x} u\right|^{p-2}\right\|_{L^{s}}=\left\|\left|\partial_{x} u\left\|_{L^{p}}^{p / s}=\right\|\right| \partial_{x} u\right\|_{L^{p}}^{p-2}
$$

and after simplification,

$$
\frac{1}{q}+\frac{1}{r}=\frac{2}{p} \quad \Rightarrow \quad\left\|\partial_{x} u\right\|_{L^{p}}^{2} \leq(p-1)\|u\|_{L^{q}}\left\|\partial_{x}^{2} u\right\|_{L^{r}} .
$$

From this, we prove is by induction on l that for

$$
k \leq j \leq l, \quad \frac{l}{p}=\frac{k}{r}+\frac{l-k}{r}
$$

$$
\begin{equation*}
\left\|\nabla^{k} u\right\|_{L^{p}} \leq C\|u\|_{L^{q}}^{1-k / l}\left\|\nabla^{l} u\right\|_{L^{r}}^{k / l} \tag{5.2.2}
\end{equation*}
$$

where

$$
\left\|\nabla^{j} u\right\|_{L^{p}}=\sum_{\mid \alpha=j}\left\|\partial^{\alpha} u\right\|_{L^{p}}
$$

First, we note that the estimate is true when $k=l$ and when $k=0$.
Suppose that the estimate is proved up to l. We prove it at the order $l+1$. As already said it is true for $k=0$ and $k=l+1$. We proceed by induction on k, for $1 \leq k \leq l$.

Corollary 5.2.3.

$$
\begin{equation*}
\left\|\partial^{\alpha} a \partial^{\beta} u\right\|_{L^{2}} \leq C\left(\|a\|_{L^{\infty}}\|u\|_{H^{s}}+\|a\|_{H^{s}}\|u\|_{L^{\infty}}\right) . \tag{5.2.3}
\end{equation*}
$$

Corollary 5.2.4. H^{s} is an algebra if $s>d / 2$.
Proposition 5.2.5. Let F be a C^{∞} function such that $F(0)=0$. For all s, there is a continuous function ϕ on $\left[0,+\infty\left[\right.\right.$ such that for all $u \in H^{s} \cap L^{\infty}$, $F(u) \in H^{s}$ and

$$
\begin{equation*}
\|F(u)\|_{H^{s}} \leq \phi\left(\|u\|_{L^{\infty}}\right)\|u\|_{H^{s}} . \tag{5.2.4}
\end{equation*}
$$

Proof. To estimate the L^{2} norm of $F(u)$ we use the condition $F(0)=0$ to write $F(u)=u G(u)$, so that

$$
\|F(u)\|_{L^{2}} \leq \phi\left(\|u\|_{L^{\infty}}\right)\|u\|_{L^{2}} .
$$

with

$$
\phi(r)=\sup _{|u| \leq r}|G(u)| .
$$

The derivative $\partial^{\alpha} F(u)$ is a linear combination of terms of the form

$$
F^{(k)}(u) \partial^{\alpha_{1}} u \ldots \partial^{\alpha_{k}} u
$$

with $\alpha_{1}+\ldots+\alpha_{k}=\alpha$. We estimate the L^{∞} norm of $F^{(k)}(u)$ by a function of the L^{∞} norm of u To estimate the L^{2} norm of the product we note that, since $\sum\left|\alpha_{j}\right| / s \leq 1$, we can choose exponents p_{j} such that

$$
\frac{\left|\alpha_{j}\right|}{s} \leq \frac{2}{p_{j}}, \quad \sum \frac{2}{p_{j}}=1 .
$$

Then, by the Gagliardo Nirenberg estimates,

$$
\left\|\partial^{\alpha_{1}} u \ldots \partial^{\alpha_{k}} u\right\|_{L^{2}} \leq \prod\left\|\partial^{\alpha_{j}} u\right\|_{L^{p_{j}}} \leq C\|u\|_{L^{\infty}}^{k-1}\|u\|_{H^{s}}
$$

and the proposition follows.

We end this section with a commutator estimate.
Proposition 5.2.6. Suppose that $a \in C^{\infty}(\mathbb{R})$. For all s, there is a continuous function C such that for all u and v in $W^{1, \infty} \cap H^{s}$, one for all $|\alpha| \leq s$: has

$$
\begin{align*}
& \left\|\partial^{\alpha}\left(a(v) \partial_{x_{j}} u\right)-a(v) \partial^{\alpha} \partial_{x_{j}} u\right\|_{L^{2}} \leq C\left(\|v\|_{L^{\infty}}\right) \\
& \quad\left(\left(\|v\|_{L^{\infty}}+\|\nabla v\|_{L^{\infty}}\right)\|u\|_{H^{s}}+\left(\|u\|_{L^{\infty}}+\left\|\nabla_{x} u\right\|_{L^{\infty}}\right)\|v\|_{H^{s}}\right) . \tag{5.2.5}
\end{align*}
$$

The proof is based on the following lemma
Lemma 5.2.7. For $1 \leq|\alpha| \leq s-1, \rho \geq 0$ and $p \geq 2$ such that $\frac{|\alpha|-1}{s-1} \leq$ $\frac{|\alpha|-\rho}{s} \leq \frac{2}{p} \leq \frac{2}{p}+\rho \leq 1$,

$$
\begin{equation*}
\left\|\partial^{\alpha} u\right\|_{L^{p}} \leq C\|u\|_{L^{\infty}}^{1-2 / p-\rho}\|\nabla u\|_{L^{\infty}}^{\rho}\|u\|_{H^{s}}^{1 / 2 p} . \tag{5.2.6}
\end{equation*}
$$

Note that the condition on the indices implies that

$$
\begin{equation*}
\rho \leq \frac{s-|\alpha|}{s-1} \leq 1 . \tag{5.2.7}
\end{equation*}
$$

Proof. The Gagliardo-Nirenberg estimates imply that

$$
\begin{aligned}
& \left\|\partial^{\alpha} u\right\|_{L^{q}} \leq C\|u\|_{L^{\infty}}^{1-2 / q}\|u\|_{H^{s}}^{1 / 2 q}, \quad \frac{2}{q}=\frac{|\alpha|}{s}, \\
& \left\|\partial^{\alpha} u\right\|_{L^{r}} \leq C\|\nabla u\|_{L^{\infty}}^{1-2 / r}\|u\|_{H^{s}}^{1 / 2 r}, \quad \frac{2}{r}=\frac{|\alpha|-1}{s-1} .
\end{aligned}
$$

By Hölder inequality, for non negative $\delta \in[0,1]$, one has

$$
\left\|\partial^{\alpha} u\right\|_{L^{p}} \leq\left\|\partial^{\alpha} u\right\|_{L^{q}}^{1-\delta-\theta}\left\|\partial^{\alpha} u\right\|_{L^{r}}^{\delta}
$$

with

$$
\frac{1}{p}=\frac{1-\delta}{q}+\frac{\delta}{r}=\frac{|\alpha|}{2 s}-\delta \frac{s-|\alpha|}{2 s(s-1)},
$$

implying (5.2.6) with

$$
\rho=(1-2 / r) \delta=\delta \frac{s-|\alpha|}{s-1} .
$$

This proves the estimate when

$$
\begin{equation*}
\frac{|\alpha|-1}{s-1} \leq \frac{2}{p}=\frac{|\alpha|-\rho}{s} \leq \frac{|\alpha|}{s}, \tag{5.2.8}
\end{equation*}
$$

since then $0 \leq \rho \leq(s-|\alpha|) /(s-1)$ and there is $\delta \in[0,1]$ such that $\rho=\delta(s-|\alpha|) /(s-1)$.

Moreover, the estimate follows immediately from the Gagliardo-Nirenberg estimates when

$$
\begin{align*}
\frac{|\alpha|-1}{s-1} \leq \frac{2}{p}, & \rho=1-\frac{2}{p} \tag{5.2.9}\\
\frac{|\alpha|}{s} \leq \frac{2}{p}, & \rho=0 \tag{5.2.10}
\end{align*}
$$

When $2 / p \geq|\alpha| / s$, the estimate is proved for $\rho=0$ and $\rho=1-2 / p$, and therefore holds for $\rho \in[0,1-2 / p]$. When $(|\alpha|-1) /(s-1) \leq 2 / p \leq|\alpha| / s$, the estimate is proved for $\rho=2 s / p-|\alpha|$ and $\rho=1-2 / p$ and therefore holds for ρ in the interval limited by these two values.

Proof of Proposition 5.2.6. The term to estimate is a linear combination of terms of the form

$$
a^{(k)}(v) \partial^{\beta_{1}} v \ldots \partial^{\beta_{k}} v \partial^{\beta_{0}} u
$$

with $\left|\beta_{1}\right|+\ldots+\left|\beta_{k}\right|+\left|\beta_{0}\right|=|\alpha|+1$ and all the $\left|\beta_{j}\right| \geq 1$.
The case $|\alpha| \leq s-1$ has already been treated in the proof of Proposition 5.2.5 and requires no L^{∞} estimates of the gradients.

Consider now the case where $\sum\left|\beta_{j}\right|=s+1$. We estimate the L^{∞} norm of $a^{(k)}(v)$ by a function of the L^{∞} norm of v and it remains to estimate the L^{2} norm of the product of the derivatives. Because the number of terms $k+1$ is at least 2 , the sum $\sum\left(s-\mid \beta_{j}\right) /(s-1)$ is larger than or equal to 1 and therefore, there are real numbers ρ_{j} such that

$$
0 \leq \rho_{j} \leq \frac{s-\left|\beta_{j}\right|}{s-1}, \quad \sum \rho_{j}=1
$$

Choosing $\frac{2}{p_{j}}=\frac{\left|\beta_{j}\right|-\rho_{j}}{s}$ we can use the estimates (5.2.6) and since $\sum \frac{2}{p_{j}}=1$, we obtain

$$
\begin{array}{r}
\left\|\partial^{\beta_{1}} v \ldots \partial^{\beta_{k}} v \partial^{\beta_{0}} u\right\|_{L^{2}} \leq C\|v\|_{L^{\infty}}^{k-2+\rho_{0}+2 / p_{0}}\|\nabla v\|_{L^{\infty}}^{1-\rho_{0}}\|v\|_{H^{s}}^{1-2 / p_{0}} \\
\|u\|_{L^{\infty}}^{1-\rho_{0}-2 / p_{0}}\|\nabla u\|_{L^{\infty}}^{\rho_{0}}\|u\|_{H^{s}}^{2 / p_{0}}
\end{array}
$$

and the proposition follows.

5.3 The main estimate

In this section we assume that $u \in C^{0}\left(\left[0, T^{\prime}\right], H^{s}\right)$ is a solution of (5.1.3). Because $s>1+d / 2$, the following quantities are finite:

$$
\begin{equation*}
R=\|u\|_{L^{\infty}\left(\left[0, T^{\prime}\right] \times \mathbb{R}^{d}\right)}, \quad M=\left\|\nabla_{x} u\right\|_{L^{\infty}\left(\left[0, T^{\prime}\right] \times \mathbb{R}^{d}\right)} \tag{5.3.1}
\end{equation*}
$$

Below we denote by $C(\cdot)$ a continuous function on \mathbb{R}_{+}, which may vary from line to line.

Lemma 5.3.1. There is a function $C_{0}(\cdot)$ such that

$$
\begin{equation*}
\left\|\partial_{t} u\right\|_{L^{\infty}} \leq C_{0}(R)(1+M) \tag{5.3.2}
\end{equation*}
$$

Proof. One has

$$
\|F(u)\|_{L^{\infty}} \leq C(R)
$$

and

$$
\left\|J_{\varepsilon}\left(A_{j} J_{\varepsilon} \partial_{j} u\right)\right\|_{L^{\infty}} \leq C(R)\left\|\partial_{j} u\right\|_{L^{\infty}}
$$

thus the estimate for $\partial_{t} u$ follows from the equation.
Lemma 5.3.2. There are functions $C_{0}(\cdot)$ and $C_{1}(\cdot)$ such that for all $v \in$ $C^{0}\left(\left[0, T^{\prime}\right] ; L^{2}\right)$ which satisfies

$$
\begin{equation*}
g:=\partial_{t} v+\sum J_{\varepsilon}\left(A_{j}(u) J_{\varepsilon} D_{j} v\right) \in L^{2}\left(\left[0, T^{\prime}\right] \times \mathbb{R}^{d}\right), \tag{5.3.3}
\end{equation*}
$$

one has

$$
\begin{equation*}
\|v(t)\|_{L^{2}} \leq C_{0}(R) e^{\gamma t}\|v(0)\|_{L^{2}}+\int_{0}^{t} C_{0}(R) e^{\gamma\left(t-t^{\prime}\right)}\left\|g\left(t^{\prime}\right)\right\|_{L^{2}} d t^{\prime} \tag{5.3.4}
\end{equation*}
$$

with $\gamma=C_{1}(R) M$.
Proof. Multiply the equation by $S(u)$, so that

$$
S(u) \partial_{t} v+\sum J_{\varepsilon} S(u) A_{j}(u) J_{\varepsilon} \partial_{j} v=S(u) g+\sum g_{j}:=\tilde{g} .
$$

where

$$
j_{j}=\left[S(u), J_{\varepsilon}\right] A_{j}(u) J_{\varepsilon} \partial_{j} v .
$$

Because $S(u)$ is Lipschtiz continuous, the commutator $\left[S(u), J_{\varepsilon}\right]$ is bounded from L^{2} to L^{2} with norm less than or equal to

$$
\varepsilon\|\nabla S(u)\|_{L^{\infty}} \leq \varepsilon C(R)(1+M) .
$$

Thus

$$
\left\|g_{j}(t)\right\|_{L^{2}} \leq C(R) M\left\|\varepsilon J_{\varepsilon} \partial_{j} v(t)\right\|_{L^{2}} . \leq C(R) M\|v(t)\|_{L^{2}}
$$

Consider the energy

$$
\mathcal{E}(t)=(S v(t), v(t))_{L^{2}} .
$$

Using that the J_{ε} are self adjoint and the matrices $S A_{j}$ are symmetric, we get that

$$
\mathcal{E}(t)-\mathcal{E}(0)=2 \operatorname{Re}(\tilde{g}, v)_{L^{2}\left([0, t] \times \mathbb{R}^{d}\right)}+(K v, v)_{L^{2}\left([0, t] \times \mathbb{R}^{d}\right)}
$$

where

$$
K=\partial_{t} S(u)+\sum J_{\varepsilon} \partial_{j}\left(S A_{j}\right) J_{\varepsilon}
$$

Using Lemma 5.3 .1 we see that $\|K\|_{L^{\infty}} \leq C(R)(1+M)$. Moreover, the positivity of S and the bound of S^{-1} imply that

$$
|v|^{2} \leq C(R)(S(u) v, v) \leq C^{2}(R)|v|^{2}
$$

Hence we have

$$
\begin{aligned}
\left.\|v(t)\|_{L^{2}} \leq C(R)\|v(0)\|_{L^{2}}\right)+C(R) & \int_{0}^{t}\left\|g\left(t^{\prime}\right)\right\| l\left\|v\left(t^{\prime}\right)\right\| d t^{\prime} \\
& +C(R) M \int_{0}^{t}\left\|v\left(t^{\prime}\right)\right\|^{2} d t^{\prime}
\end{aligned}
$$

We conclude by Gronwall's lemma.
We now estimate the H^{s} norm of u. Differentiate the equation (5.1.3) to find, for $|\alpha| \leq s$:

$$
\begin{equation*}
\partial_{t} \partial_{x}^{\alpha} u+\sum J_{\varepsilon} A_{j} J_{\varepsilon} \partial_{x}^{\alpha} u=\partial_{x}^{\alpha} F(u)+g_{\alpha} \tag{5.3.5}
\end{equation*}
$$

where g_{α} is the commutator

$$
g_{\alpha}=\sum_{j} J_{\varepsilon}\left[\partial_{x}^{\alpha}, A_{j}(u)\right] \partial_{j} J_{\varepsilon} u
$$

By Proposition 5.2.6

$$
\left\|g_{\alpha}(t)\right\|_{L^{2}} \leq C(R) M\|u(t)\|_{H^{s}}
$$

By Proposition 5.2.5 applied to $F(t, x, u)-F(t, x, 0)$, we have

$$
\left\|\partial_{x}^{\alpha} F(u(t))\right\|_{L^{2}} \leq\|f(t)\|_{H^{s}}+C(R)\|u(t)\|_{H^{s}}
$$

where $f(t, x)=F(t, x, 0)$. Applying the lemma and summing in α we get that

$$
\begin{aligned}
\|u(t)\|_{H^{s}} \leq C_{0} e^{\gamma t}\|u(0)\|_{H^{s}}+C_{0}(R) & \int_{0}^{t} e^{\gamma\left(t-t^{\prime}\right)}\left\|f\left(t^{\prime}\right)\right\|_{H^{s}} d t^{\prime} \\
& +C_{2}(R) M \int_{0}^{t} e^{\gamma\left(t-t^{\prime}\right)}\left\|u\left(t^{\prime}\right)\right\|_{H^{s}} d t^{\prime}
\end{aligned}
$$

Applying once more Gronwall's lemma, we have proved the following:
Proposition 5.3.3. There are functions $C_{1}(\cdot)$ and $C_{2}(\cdot)$ such that if $u \in$ $C^{0}\left(\left[0, T^{\prime}\right], H^{s}\right)$ is a solution of (5.1.3), one has

$$
\begin{equation*}
\|u(t)\|_{H^{s}} \leq C_{1}(R) e^{\gamma t}\|u(0)\|_{H^{s}}+\int_{0}^{t} C_{1}(R) e^{\gamma\left(t-t^{\prime}\right)}\left\|f\left(t^{\prime}\right)\right\|_{L^{2}} d t^{\prime} \tag{5.3.6}
\end{equation*}
$$

with $\gamma=C_{2}(R)(1+M)$, with R and M defined at (5.3.1).

5.4 Solutions of the approximate equation

Let

$$
\mathcal{F}_{\varepsilon}(t, u)=-\sum J_{\varepsilon}\left(A_{j}(t, x, u) \partial_{j} J_{\varepsilon} u\right)+F(t, x, u)
$$

Lemma 5.4.1. For all $\varepsilon>0$, the mapping $u \mapsto \mathcal{F}_{\varepsilon}(u)$ is locally Lipschitzean from H^{s} to H^{s}.
Proof. Because $s>d / 2, H^{s}$ is an algebra and is a consequence of the nonlinear estimates that for all R, there is a constant C such that u and v in $H^{s}\left(\mathbb{R}^{d}\right)$

$$
\|u\|_{H^{s}} \leq R,\|v\|_{H^{s}} \leq R \quad \Rightarrow \quad\left\|\mathcal{F}_{\varepsilon}(t, u)-\mathcal{F}_{\varepsilon}(t, v)\right\|_{H^{s}} \leq C \varepsilon^{-1}\|u-v\|_{H^{s}}
$$

Thus by the Cauchy Lipschitz theorem, (5.1.3) has a solution $u \in C^{0}\left(\left[0, T_{\varepsilon}\right], H^{s}\right)$ for some $T_{\varepsilon}>0$ and the solution can be extended to a maximal interval $\left[0, T_{\varepsilon}^{*}\left[\right.\right.$ with either $T_{\varepsilon}=T$ or

$$
\begin{equation*}
\limsup _{t \rightarrow T_{\varepsilon}^{*}}\|u(t)\|_{H^{s}}=+\infty \tag{5.4.1}
\end{equation*}
$$

We now proceed to a choice of parameters. The functions C_{0}, C_{1} and C_{2} are those given at Lemma 5.3.1 and Proposition 5.3.3. We also introduce the Sobolev constant C_{S} such that

$$
\begin{equation*}
\|u\|_{L^{\infty}} \leq C_{S}\|u\|_{H^{s-1}} \tag{5.4.2}
\end{equation*}
$$

(recall that $s-1>d / 2$).

1. We fix $r>$ and set $\underline{R}=\|h\|_{L^{\infty}}+r$;
2. Let

$$
\underline{C}=1+2 C_{1}(\underline{R})\|h\|_{H^{s}}+2 C_{1}(\underline{R}) \int_{0}^{T}\left\|f\left(t^{\prime}\right)\right\|_{H^{s}} d t^{\prime} ;
$$

3. Let $\underline{M}=C_{S} \underline{C}$;
4. We choose $\left.\left.T^{\prime} \in\right] 0, T\right]$ such that

$$
T^{\prime} C_{0}(\underline{R})(1+\underline{M}) \leq r ; \quad e^{T^{\prime} C_{2}(\underline{R})(1+\underline{M})} \leq 2 .
$$

Proposition 5.4.2. For all $\varepsilon>0, T_{\varepsilon}^{*}>T^{\prime}$ and for all $t \in\left[0, T^{\prime}\right]$

$$
\begin{equation*}
\left\|u^{\varepsilon}(t)\right\|_{L^{\infty}} \leq \underline{R}, \quad\left\|\nabla_{x} u^{\varepsilon}(t)\right\|_{L^{\infty}} \leq \underline{M}, \quad\left\|u^{\varepsilon}(t)\right\|_{H^{s}} \leq \underline{C} . \tag{5.4.3}
\end{equation*}
$$

Proof. At time $t=0$, the estimates are satisfied with strict inequalities (remember that $C_{1} \leq 1$). Thus, by continuity, they hold on a small interval $\left[0, T_{\varepsilon}^{\prime}\right], T_{\varepsilon}^{\prime}>0$.

Suppose that $T^{\prime \prime}<\min \left(T^{\prime}, T_{\varepsilon}^{*}\right)$ is such that

$$
\begin{equation*}
\forall t \in\left[0, T^{\prime \prime}\right], \quad\left\|u^{\varepsilon}\left(t^{\prime}\right)\right\|_{H^{s}} \leq \underline{C} . \tag{5.4.4}
\end{equation*}
$$

Then, by the Sobolev embedding, $M \leq \underline{M}$. With Lemma 5.3 .1 we also have

$$
R \leq\|h\|_{L^{\infty}}+T^{\prime \prime}\left\|\partial_{T} u\right\|_{L^{\infty}} \leq \underline{R} .
$$

Therefore, Proposition 5.3.3 and the conditions on T^{\prime} imply that

$$
\left\|u^{\varepsilon}\left(t^{\prime}\right)\right\|_{H^{s}} \leq 2 C_{1}(\underline{R})\|h\|_{H^{s}}+2 C_{1}(\underline{R}) \int_{0}^{T}\left\|f\left(t^{\prime}\right)\right\|_{H^{s}} d t^{\prime}
$$

hence

$$
\left\|u^{\varepsilon}\left(t^{\prime}\right)\right\|_{H^{s}} \leq \underline{C}-1 .
$$

This implies that the blow up (5.4.1) cannot occur before T^{\prime}. Hence $T_{\varepsilon}^{*} \geq T^{\prime}$ and the bound (5.4.4) is valid on $\left[0, T^{\prime}\right]$. As shown, it implies the Lipschitz bound and the L^{∞} bound.

5.5 Proof of Theorem 5.1.2

We first prove the existence of solutions, passing to the limit in the equation.
Proposition 5.5.1. There is a subsequence, still denoted by u^{ε}, which converges in $\left.C^{0}\left(\left[0, T^{\prime}\right] \times \mathbb{R}^{d}\right]\right)$ and the limit is a solution of (5.1.1). Moreover, $u \in C^{0}\left(\left[0, T^{\prime}\right] ; H^{s}\left(\mathbb{R}^{d}\right)\right.$, and $\partial_{t} u \in C^{0}\left([0, T] ; H^{s-1}\left(\mathbb{R}^{d}\right)\right.$.

Proof. The u^{ε} are bounded in $C^{0}\left([0, T] ; H^{s}\right) \cap C^{1}\left(\left[0, T^{\prime}\right] ; H^{s-1}\right)$. Thus there is a subsequence which converges in $C^{0}\left(\left[0, T^{\prime}\right] ; H_{w}^{s}\right)$, where H_{w}^{s} is the space H^{s} equipped with the weak topology. uniformly on compact subsets. Since $s>1+d / 2$, this implies the convergence in C^{1} on all compact subset of $\left[0, T^{\prime}\right] \times \mathbb{R}^{d}$ and one can pass to the limit in the equation. Hence u is a solution of (5.1.1)

To prove that u belongs to $C^{0}\left(\left[0, T^{\prime}\right] ; H^{s}\right.$ and not only to $C^{0}\left(\left[0, T^{\prime}\right] ; H_{w}^{s}\right)$ we differentiate the equation for $|\alpha| \leq s$ and we get

$$
\begin{equation*}
\partial_{t} \partial_{x}^{\alpha} u+\sum A_{j}(u) \partial_{x_{j}} \partial_{x}^{\alpha} u=\partial_{x}^{\alpha} F(u)+g_{\alpha} \tag{5.5.1}
\end{equation*}
$$

where g_{α} is the commutator

$$
g_{\alpha}=\sum_{j}\left[\partial_{x}^{\alpha}, A_{j}(u)\right] \partial_{j} u
$$

Indeed, the identity

$$
\partial_{x}^{\alpha}\left(A_{j}(u) \partial_{x_{j}} v\right)=A_{j}(u) \partial_{x_{j}} \partial_{x}^{\alpha} v+\left[\partial_{x}^{\alpha}, A_{j}(u)\right] \partial_{x_{j}} v
$$

which is true for v smooth, makes sense in H^{-1} when $v \in H^{s}$. The estimate for the commutators can g_{α} can be repeated and the uniform bounds of $u(t)$ in H^{s} imply that $g_{\alpha} \in L^{2}\left(\left[0, T^{\prime}\right] \times L^{2}\left(\mathbb{R}^{d}\right)\right)$. Hence $\partial_{x}^{\alpha} u \in L^{2}\left(\left[0, T^{\prime}\right] \times \mathbb{R}^{d}\right)$ is a weak solution of (5.5.1). Thus by Friedrichs lemma, it is a strong solution on $\left[0, T^{\prime}\right] \times \mathbb{R}^{d}$, and $\partial^{\alpha} u \in C^{0}\left(\left[0, T^{\prime}\right] ; L^{2}\right)$, proving that $u \in C^{0}\left(\left[0, T^{\prime}\right] ; H^{s}\right)$.

To finish Theorem 5.1.2 it remains to prove uniqueness
Proposition 5.5.2. The equation (5.1.1) has at mot one solution in $C^{0}\left([0, T] ; H^{s}\left(\mathbb{R}^{d}\right)\right)$.
Proof. Suppose that u and v are two solutions. Then $w=u-v$ satisfies

$$
\begin{equation*}
\partial_{t} w+\sum_{j=1}^{d} A_{j}(u) \partial_{j} w=f, \quad w_{\mid t=0}=0 \tag{5.5.2}
\end{equation*}
$$

with

$$
\begin{equation*}
f=F(u)-F(v)+\sum_{j=1}^{d}\left(A_{j}(u)-A_{j}(v)\right) \partial_{j} v . \tag{5.5.3}
\end{equation*}
$$

Because u, v and $\partial_{j} v$ are bounded, there is a constant C such that $|f| \leq$ $C(|u-v|)$ that is:

$$
\forall(t, x), \quad|f(t, x)| \leq C|w(t, x)| .
$$

The L^{2} energy estimate can be applied to (5.5.2), and there are constants C and γ sucht that

$$
\forall t, \quad\|w(t)\|_{L^{2}} \leq C \int_{0}^{t} e^{\gamma\left(t-t^{\prime}\right)}\left\|w\left(t^{\prime}\right)\right\|_{L^{2}} d t^{\prime}
$$

By Gronwall's lemma, this implies that $\|w(t)\|_{L^{2}}=0$, that is $w=0$.

5.6 Proof of Theorem 5.1.3

Repeating the proof of Proposition 5.3.3, one has :
Proposition 5.6.1. There are functions $C_{1}(\cdot)$ and $C_{2}(\cdot)$ such that if $u \in$ $C^{0}\left(\left[0, T^{\prime}\right], H^{s}\right)$ is a solution of (5.1.1), one has for all $t \in\left[0, T^{\prime}\right]:$

$$
\begin{equation*}
\|u(t)\|_{H^{s}} \leq C_{1}(R) e^{\gamma t}\|u(0)\|_{H^{s}}+\int_{0}^{t} C_{1}(R) e^{\gamma\left(t-t^{\prime}\right)}\left\|f\left(t^{\prime}\right)\right\|_{L^{2}} d t^{\prime} \tag{5.6.1}
\end{equation*}
$$

with $\gamma=C_{2}(R)(1+M)$, with R and M defined at (5.3.1).
We can now proceed to the proof of Theorem 5.1.3. Suppose that the maximal time of existence T^{*} is strictly smaller than T and that

$$
\begin{equation*}
R=\sup _{t<T^{*}}\|u(t)\|_{L^{\infty}}<+\infty, \quad M=\sup _{t<T^{*}}\left\|\nabla_{x} u(t)\right\|_{L^{\infty}}<+\infty . \tag{5.6.2}
\end{equation*}
$$

Let

$$
N=C_{1}(R) e^{\gamma T}\|h\|_{H^{s}}+C_{1}(R) \int_{0}^{T} e^{\gamma\left(t-t^{\prime}\right)}\left\|f\left(t^{\prime}\right)\right\|_{L^{2}} d t^{\prime}
$$

One can apply Theorem 5.1.2 at any initial time $\tau \in[0, T]$, and by inspection of the proof one can see that the time of existence can be chosen independent of τ, depending only on the size of the initial data in H^{s} :

Lemma 5.6.2. There is $T^{\prime}>0$ such that for all initial time $\tau \in[0, T[$ and initial data $\tilde{h} \in H^{s}$ with $\|\tilde{h}\|_{H^{s}} \leq N$, the Cauchy problem (6.1.1) with initial data \tilde{h} at time τ has a solution $\left.u \in C^{0}\left(\left[\tau, T^{\prime \prime}\right)\right] ; H^{s}\right)$ with $T^{\prime \prime}=\min \left(\tau+T^{\prime}, T\right)$.

In particular, since $\left\|u\left(T^{*}-T^{\prime} / 2\right)\right\|_{H^{s}} \leq N$, the Cauchy problem with initial data $u\left(T^{*}-T^{\prime} / 2\right)$ at time $T^{*}-T^{\prime} / 2$ has a solution on $\left[T^{*}-T^{\prime} / 2, T^{\prime \prime}\right.$ with $T^{\prime \prime}=\min \left(T^{*}+T^{\prime} / 2, T\right)>T^{*}$. By uniqueness, this solution coincides with u on $\left[T^{*}-T^{\prime} / 2, T^{*}\left[\right.\right.$, and thus extends u to times larger than T^{*}, contradicting the definition of T^{*}.

5.7 An example of blow-up: the scalar case

Il is classical that the life span of smooth solutions of nonlinear equation is finite in general: consider for instance the ordinary differential equation

$$
\partial_{t} u=u^{2}, \quad u_{\mid t=0}=h
$$

The solution is $h /(1-t h)$ and if $h>0$, it blows up in finite time $T^{*}=1 / h$. This can be extended to semilinear equations, where the blow up occurs in the L^{∞} norm. We now illustrate, on a class of scalar equation, how the blow up can occur in the L^{∞} norm of the gradient of u.

Consider

$$
\begin{equation*}
\partial_{t} u+\sum_{j=1}^{d} a_{j}(u) \partial_{x_{j}} u, \quad u(0, x)=h(x) .=0 \tag{5.7.1}
\end{equation*}
$$

with $a_{j} \in C^{1}(\mathbb{R} ; \mathbb{R})$. We note $a=\left(a_{1}, \ldots, a_{n}\right) \in C^{1}\left(\mathbb{R} ; \mathbb{R}^{d}\right)$.
Proposition 5.7.1. $u \in C_{b}^{1}\left([0, T] \times \mathbb{R}^{d}\right)$ satisfies (5.7.1) if and only if u satisfies the implicit equation

$$
\begin{equation*}
F(t, x, u(t, x))=0 \tag{5.7.2}
\end{equation*}
$$

where $F(t, x, \lambda)=\lambda-h(x-t a(\lambda))$.
Proof. Suppose that u is C^{1} and bounded on $[0, T] \times \mathbb{R}^{d}$ Consider the integral curves of

$$
L=\partial_{t}+\sum_{j=1}^{n} a_{j}(u(t, x)) \partial_{x_{j}}
$$

that is the solutions $X(s ; t, x)$ of

$$
\begin{equation*}
\frac{d X}{d s}=a(u(s, X(s, t, x))), \quad X(t, t, x)=x \tag{5.7.3}
\end{equation*}
$$

Because the $u \in C_{b}^{1}$, the flow X is defined on $[0, T] \times[0, T] \times \mathbb{R}^{d}$. One has, for all $v \in C^{1}$,

$$
\begin{equation*}
\partial_{s}(v(s, X(s ; t, x)))=(L v)(s, X(s ; t, x) \tag{5.7.4}
\end{equation*}
$$

In particular, if u is a solution of (5.7.1),

$$
\partial_{s}(u(s, X(s ; t, x)))=0 \quad \Rightarrow \quad u(s, X(s ; t, x))=u(t, x)
$$

Thus, $a(u(s, X(s, t, x)))=a(t, x)$, implying that the integral curves are lines

$$
\begin{equation*}
X(s ; t, x)=x+(s-t) a(u(t, x)) \tag{5.7.5}
\end{equation*}
$$

and that

$$
\begin{equation*}
u(s, x+(s-t) a(u(t, x)))=u(t, x) \tag{5.7.6}
\end{equation*}
$$

At $s=0$, this means

$$
\begin{equation*}
u(t, x)=h(x-t a(u(t, x)) \tag{5.7.7}
\end{equation*}
$$

that is (5.7.2)
Conversely, suppose that $u \in C_{b}^{1}\left([0, T] \times \mathbb{R}^{d}\right)$ satisfies (5.7.2). For $t=0$, this means that $u(0, x)=h(x)$. The derivatives of F are :

$$
\begin{aligned}
& \partial_{t} F(t, x, \lambda)=\sum_{j} a_{j}(\lambda) \partial_{x_{j}} h(x-t a(\lambda)) \\
& \partial_{x_{j}} F(t, x, \lambda)=-\partial_{x_{j}} h(x-t a(\lambda)) \\
& \partial_{\lambda} F(t, x, \lambda)=1+t \sum_{j} a_{j}^{\prime}(\lambda) \partial_{x_{j}} h(x-t a(\lambda))
\end{aligned}
$$

Note that $\partial_{\lambda} F$ and $\nabla_{x} F \neq 0$ cannot vanish together. Differentiating (5.7.2), on has at $\lambda=u(t, x)$,

$$
\begin{align*}
& \partial_{t} F(t, x, \lambda)+\partial_{t} u \partial_{\lambda} F(t, x, \lambda)=0 \\
& \partial_{x_{j}} F(t, x, \lambda)+\partial_{x_{j}} u \partial_{\lambda} F(t, x, \lambda)=0 \tag{5.7.8}
\end{align*}
$$

In particular,

$$
\begin{equation*}
\partial_{\lambda} F(t, x, u(t, x)) \neq 0 \tag{5.7.9}
\end{equation*}
$$

By (5.7.8),

$$
\left(\partial_{t} u+\sum_{j} a_{j}(u) \partial_{x_{j}} u\right) \partial_{\lambda} F(t, x, u(t, x))=0
$$

With (5.7.9), this implies that u satisfies the equation (5.7.1).

Note that $\partial_{\lambda} F \neq 0$ for small times. Therefore, the implicit function theorem can be applied to (5.7.2), yielding local solutions of (5.7.1). The next result gives a precise estimate of the life span of the solution, when the initial data $h \in C_{b}^{1}\left(\mathbb{R}^{d}\right)$. The form of $\partial_{\lambda} F$ leads to introduce the functions

$$
\begin{equation*}
g(x)=\sum_{j=1}^{n} a_{j}^{\prime}(h(x)) \partial_{x_{j}} h(x) \tag{5.7.10}
\end{equation*}
$$

For $h \in C_{b}^{1}\left(\mathbb{R}^{d}\right), g$ is bounded and one can introduce

$$
\begin{equation*}
\mu=\inf _{x \in \mathbb{R}^{d}} g(x) \in \mathbb{R} \tag{5.7.11}
\end{equation*}
$$

Theorem 5.7.2. Soit $h \in C_{b}^{1}\left(\mathbb{R}^{d}\right)$. Let $T^{*}=+\infty$ if $\mu \geq 0$, and $T^{*}=-1 / \mu$ si $\mu<0$.
i) The Cauchy problem (5.7.1) has a unique solution $u \in C^{1}\left(\left[0, T^{*}\left[\times \mathbb{R}^{d}\right)\right.\right.$; moreover,

$$
\begin{equation*}
\forall(t, x) \in\left[0, T^{*}\left[\times \mathbb{R}^{d}, \quad|u(t, x)| \leq\|h\|_{L^{\infty}\left(\mathbb{R}^{d}\right)}\right.\right. \tag{5.7.12}
\end{equation*}
$$

ii) For all $T<T^{*}, u \in C_{b}^{1}\left([0, T] \times \mathbb{R}^{d}\right)$ and

$$
\begin{equation*}
\forall t<T^{*}, \quad\left\|\nabla_{x} u(t, .)\right\|_{L^{\infty}\left(\mathbb{R}^{d}\right)} \leq \frac{1}{1+t \mu}\left\|\nabla_{x} h\right\|_{L^{\infty}\left(\mathbb{R}^{d}\right)} \tag{5.7.13}
\end{equation*}
$$

iii) When $\mu<0$, there is a constant $m>0$ such that

$$
\begin{equation*}
\forall t<T^{*}, \quad\left\|\nabla_{x} u(t, .)\right\|_{L^{\infty}\left(\mathbb{R}^{d}\right)} \geq \frac{m}{T^{*}-t} \tag{5.7.14}
\end{equation*}
$$

Proof. a) Let $(t, x) \in\left[0, T *\left[\times \mathbb{R}^{d}\right.\right.$. The function $\lambda \mapsto F(t, x, \lambda)=\lambda-h(x-$ $t a(\lambda))$ is C^{1}; It is negative for $\lambda<-\|h\|_{L^{\infty}}$ and positive for $\lambda>\|h\|_{L^{\infty}}$. Therefore it vanishes. Moreover, when $F(t, x, \lambda)=0$, on a

$$
\partial_{\lambda} F(t, x, \lambda)=1+t g(x-t a(\lambda)) \geq 1+t \mu>0
$$

Thus the root in λ of $F(\lambda, t, x)=0$ is unique. This determines uniquely $u(t, x)$ such that $F(t, x, u(t, x))=0$. Moreover, since $\partial_{\lambda} F(t, x, u(t, x)>0$. the local implicit function theorem implies that u is C^{1} sur $\left[0, T^{*}\left[\times \mathbb{R}^{d}\right.\right.$. By Proposition 5.7.1 u est solution de (5.7.1). Uniqueness also follows from Proposition 5.7.1 and the uniqueness of the solution of the implicit equation $F(t, x, \lambda)=0$.

The L^{∞} bound (5.7.12) follows from the identity $u(t, x)=h(y)$ with $y=x-t a(u(t, x)$.
b) By (5.7.8),

$$
\left\{\begin{array}{l}
(1+\operatorname{tg}(y)) \partial_{t} u(t, x)=-a(h(y)) \cdot \nabla_{x} h(y), \tag{5.7.15}\\
(1+\operatorname{tg}(y)) \nabla_{x} u(t, x)=\nabla_{x} h(y),
\end{array}\right.
$$

with $y=x-t a(u(t, x))$. Since $g \geq \mu$, the estimate of the derivatives follow. In particular, all the derivatives of u are bounded on $[0, T] \times \mathbb{R}^{d}$, for all $T<T^{*}$.
c) Suppose that $\mu<0$. Let $m=\sup \left|a^{\prime}(h(y))\right|>0$. For all $\left.\mu^{\prime} \in\right] \mu, 0[$, there is $y \in \mathbb{R}^{r}$ tel que

$$
0<-\mu^{\prime} \leq-g(y)=-a^{\prime}(h(y)) \cdot \nabla_{x} h(y) \leq m\left|\nabla_{x} h(y)\right| .
$$

For $x=y+t a(h(y))$, one has $u(t, x)=h(y)$, and by (5.7.15)

$$
\left|\nabla_{x} u(t, x)\right| \geq \frac{1}{1+t \mu^{\prime}}\left|\nabla_{x} h(y)\right| \geq \frac{1}{1+t \mu^{\prime}} \frac{\left|\mu^{\prime}\right|}{m} .
$$

Hence, for all $\left.\mu^{\prime} \in\right] \mu, 0\left[\right.$ and all $t \in\left[0,-1 / \mu^{\prime}\lceil\right.$:

$$
\left\|\nabla_{x} u(t, .)\right\|_{L^{\infty}} \geq \frac{1}{1+t \mu^{\prime}} \frac{\left|\mu^{\prime}\right|}{m}
$$

Hence, for all $t \in] 0, T^{*}\left[\right.$, letting μ^{\prime} tend to μ, we see that

$$
\left\|\nabla_{x} u(t, .)\right\|_{L^{\infty}} \geq \frac{1}{1+t \mu} \frac{|\mu|}{m}=\frac{1}{m\left(T^{*}-t\right)}
$$

The theorem is proved.
Corollary 5.7.3. Si $\mu<0$, (5.7.1) has no solution in $C_{b}^{1}\left(\left[0, T\left[\times \mathbb{R}^{d}\right)\right.\right.$ pour $T>T *$.

Remark 5.7.4. When the infimum μ of g est strictement is negative and reached at $y_{0} \in \mathbb{R}^{d}$, one can choose this point in the proof above and for $t \in\left[0, T^{*}\left[\right.\right.$ and $x=y_{0}+t a\left(h\left(y_{0}\right)\right)$

$$
\left|\nabla_{x} u(t, x)\right|=\frac{1}{1+t \mu}\left|\nabla_{x} h\left(y_{0}\right)\right| .
$$

Because $\mu<0,\left|\nabla_{x} h\left(y_{0}\right)\right|>0$, and this formula shows that the gradient of u blows up at the point $\left(T^{*}, y_{0}+T^{*} a\left(h\left(y_{0}\right)\right)\right.$. Therefore, the solution has no C^{1} extension near this point.

