Chapter 5

Smooth solutions of the
nonlinear Cauchy problem

5.1 The results

We consider a first order NV x N quasi-linear system

d
Oru + Z Aj(t,z,u)0u = F(t,z,u),
(5.1.1) =
U‘t:() = h.

We say that a function a(t,z,u) belongs to C°[0, 7] x R? x RN if it is
infinitely differentiable on [0,T] x R? x RV and its derivatives at all order
are bounded on the sets [0, 7] x R? x {|u| < R} for all R.

Assumption 5.1.1. The matrices Aj and the function F belong to Cp°[0, T x
R x RY
Moreover, there is an invertible N x N matriz S(t,z,u), such that S and
S=1 belong to C°[0,T) x RY x RN and
i) S(t,zu) is self adjoint, definite positive ;
it) For all (t,z,u) and all j, S(t,z,u)A(t,x,§) is self-adjoint.

We consider a Sobolev index s > % + 1 which is fixed throughout this
section.

Theorem 5.1.2. Suppose that f = F(t,x,0) € C°([0,T]; H*(R?) and h €
H3(RY), there is T' €]0,T] and a unique solution u € C°([0,T']; H*(R%)) of
the Cauchy problem (5.1.1).

An estimate from below of T” is given in the proof of the theorem.
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Uniqueness allows to define the maximal time of existence :
T* is the supremum of T' € [0,T] such that the Cauchy problem
has a solution u € C°([0, T"]; H*(RY)).
The theorem implies that 7% > 0. By uniqueness, the solution u is
therefore defined for all t < T* and u € C°([0, T*[; H*(R%)).

Theorem 5.1.3. Fither T* =T or

(5.1.2) hgg‘ij“HLoo([o,t]de)JrHvt@“HLoo([o,t]de) = foo.

In theses notes, the strategy is the following. We consider the regularized
equations

(5.1.3) Opu + Z JeAj(t z,u)0p, Jou = F(t,x,u), uy—g = Jeh
where J. is a Friedrichs mollifier:
(5.1.4) Jev=gexv, Je(x) = Y(x/e)

where y > 0 is smooth with compact support, of integral 1, and even so that
the operator .J; is self adjoint in L?:

(5.1.5) (Jgu, v) U, ng)

L2(Rd) — ( L2(RY)’

Step 1. Existence of solutions for the approximate equation. For all
fixed e, we consider (5.1.3) a nonlinear ode in H*:

(5.1.6) Ou = Fe(u)
We will show that the smoothing properties of J; imply

Lemma 5.1.4. For all fixed € > 0 the application F. is locally Lipschiztean
from H?® to H".

Therefore, the Cauchy-Lipschitz theorem implies that for all € > 0, there
is T. €]0,T] such that (5.1.3) has a unique solution u¢ € C°([0, 7.]; H*(R?)).
One can introduce the maximal time of existence :
TZ is the supremum of T' € [0,T] such that (5.1.3) has a solution
u € CO([0,T']; H*(R%)).
Thus 77 > 0 and by uniqueness, the solution u — ¢ is therefore defined for
all t < T and u € C°([0, T*[; H*(RY)).
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Step 2. Uniform estimates.
Proposition 5.1.5. There are constants Cy, v and T' €]0,T], such that for
alle >0, and all t < min(T",TY)

t
(5.1.7) [0 ()] ) < Coe™ IR s + Co/ TN L) | ot
0

Step 3. Passing to the limit £ — 0. We will show that the estimates
(5.1.7) imply that T} > T and that u® converges to a solution u of (5.1.1),
which satisfies the estimates (5.1.7).

Step 4. The blow up theorem follows from the estimate (5.1.5) and
the remark that Cy and v only depend on the W norm of .

5.2 Nonlinear estimates

Proposition 5.2.1. Sobolev embedding H® C L*> if s > d/2.

Theorem 5.2.2 (Gagliardo-Niremberg estimates). For % <2<,

S

o 1-2 1/2
(5.2.1) 10%ul| o < Cllulls=2/P u 42

Proof. Use the identity

0= /6$(u]8xup_2ﬁmu)dx = / |OzulPdr + (p — 1) /u!@mu\p_Qagud:U
Thus
10zl < (9 — V)l|ull Lall|OzulP || x| OZul -

if 1/g+1/s+1/r = 1. We chose s such that s(p —2) = p so that
0l ~2s = |0zull 7 = l|0zulf,>

and after simplification,

1 1 2
Tr s~ 0zullZe < (p = Dlullzal|OZullz.

From this, we prove is by induction on [ that for

Ik 1-k
P T r
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1-k/1 k/l
(5.2.2) IVEullr < Cllull ™ [V a7

where
IV ulle = > (0%l £
lo=j

First, we note that the estimate is true when k£ = [ and when k£ = 0.

Suppose that the estimate is proved up to . We prove it at the order
[ 4+ 1. As already said it is true for k = 0 and kK = [ + 1. We proceed by
induction on k, for 1 < k < [.

O

Corollary 5.2.3.

(5.2.3) 100 0%l 2 < C(llall oo |l s + llal ars |l <)

Corollary 5.2.4. H* is an algebra if s > d/2.

Proposition 5.2.5. Let F' be a C*° function such that F(0) = 0. For all s,

there is a continuous function ¢ on [0, +oo[ such that for all w € H® N L,
F(u) € H® and
(5.2.4) [E @) e < @llullzee) llullzs.
Proof. To estimate the L? norm of F(u) we use the condition F(0) = 0 to
write F'(u) = uG(u), so that

IF)llzz < é(llullzee) lullz.
with

¢(r) = sup |G(u)].

|ul<r
The derivative 0 F(u) is a linear combination of terms of the form
F® (u)d“ru. .. 9%u

with aj + ...+ o, = a. We estimate the L™ norm of F*)(u) by a function
of the L™ norm of u To estimate the L? norm of the product we note that,
since ) |oyj|/s < 1, we can choose exponents p; such that

|| 2 2
L < — g =1.
s T pj’

Py ITJ
Then, by the Gagliardo Nirenberg estimates,

0% u...0%ul 2 < TT O ullrs < Clullf lullae

and the proposition follows. ]
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We end this section with a commutator estimate.

Proposition 5.2.6. Suppose that a € C*°(R). For all s, there is a contin-
uous function C such that for all u and v in WH° N H*, one for all |a| < s:
has

H(?O‘(a(v)axju) - a(v)@aaxjuHLz < C(||v]lze)

(5.2.5)
((IlvllLoo + Vol o) llullms + (llullze + IIVIUHLw)Hvlle)-

The proof is based on the following lemma

Lemma 5.2.7. For 1 < |a| < s—1, p >0 and p > 2 such that o

|—1
o s—1 S
aj—p 2 2
L<2i<Zyp<,

1-2/p— 1/2
(5.2.6) 10%ul 2o < Clul| o2/ IV ullf oo |l 1127

HS

Note that the condition on the indices implies that

s — |af
2. < <1
(5.2.7) ps——7 <

Proof. The Gagliardo-Nirenberg estimates imply that

1-2 1/2 2 ‘04‘
10%ull o < Cllullp2/ ful 2t = =12

Hs » q S )
1-2 12r 2 |a|—1
l0*ullzr < CIVall 2l ~ = St

By Holder inequality, for non negative ¢ € [0, 1], one has
10%ull e < (0%l 1"~ 0 0% ul| g

with

I 1-6 46 |of 58—|oz|
p q ro 2s 2s(s — 1)’
implying (5.2.6) with

s — |of
=(1-2/r)d=4¢ .
p=(1-2/r) Py
This proves the estimate when
1 9 _
(5.2.8) ol =1 2 _lel=p _ ol
s—1 P s ]
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since then 0 < p < (s — |a|)/(s — 1) and there is § € [0,1] such that

p="04(s—laf)/(s—1).
Moreover, the estimate follows immediately from the Gagliardo-Nirenberg
estimates when

la—1 2 2
5.2.9 <z =1-=
(5.2.9) puy p
2
(5.2.10) lof o Z, p=0.
s T p

When 2/p > |a|/s, the estimate is proved for p = 0 and p = 1—2/p, and
therefore holds for p € [0,1 — 2/p]. When (Ja| = 1)/(s — 1) < 2/p < |a|/s,
the estimate is proved for p = 2s/p— || and p = 1 —2/p and therefore holds
for p in the interval limited by these two values. O

Proof of Proposition 5.2.6. The term to estimate is a linear combination of
terms of the form

a® ()8%10 .. 9% §%u

with ||+ ...+ |Bk| + |Bo| = || + 1 and all the |3;] > 1.

The case |a| < s — 1 has already been treated in the proof of Proposi-
tion 5.2.5 and requires no L™ estimates of the gradients.

Consider now the case where ) |5;| = s + 1. We estimate the L> norm
of a® (v) by a function of the L norm of v and it remains to estimate the
L? norm of the product of the derivatives. Because the number of terms
k41 is at least 2, the sum ) (s — |3;)/(s — 1) is larger than or equal to 1
and therefore, there are real numbers p; such that

518
OSmET R 2=t

_ 1Bil=pj

Choosing | Pi we can use the estimates (5.2.6) and since Z =1,

we obtain

2+po+2 1 1-2
[0%0... 0w a%ul| , < CllollgE T2 |Vl Lo foll 7P

2 2
ull 220270 20 [l 277

and the proposition follows. ]
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5.3 The main estimate

In this section we assume that u € C°([0,T'], H®) is a solution of (5.1.3).
Because s > 1 + d/2, the following quantities are finite:

(5.3.1) R = |ull oo (o, rrxra)s - M = [[Vaul| Lo 0.1 xra)

Below we denote by C(+) a continuous function on R, which may vary from
line to line.

Lemma 5.3.1. There is a function Co(-) such that
(5.3.2) [0cull oo < Co(R)(1 + M)

Proof. One has
[1F(u)]|z= < C(R)

and
[ Je(AjJ05u)|| e < C(R)||Ojul e

thus the estimate for 0;u follows from the equation. O

Lemma 5.3.2. There are functions Co(-) and C1(-) such that for all v €
CY([0,T"); L?) which satisfies

(5.3.3) g:=0w+ > J(Aj(u)J.Dyw) € L*([0,T'] x RY),

one has
t

(5.3.4) ()2 < Co(R)e™ [|v(0)]| 2 +/ Co(R)e" = |g(t')]| 2at’.
0

with v = C1(R)M.
Proof. Multiply the equation by S(u), so that
S(u)dw + Y JS(u)Aj(u)Jd;0 = S(u)g+ Y _ gj =g

where

J; = [S(u), Je]Aj(u)J-05v.

Because S(u) is Lipschtiz continuous, the commutator [S(u), J¢] is bounded
from L? to L? with norm less than or equal to

e VS(w)| 1 < eC(R)(1+ M).
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Thus
19; ()2 < C(R)M||eJe0jv(t)|| 2. < C(R)M|lv(t)| 12

Consider the energy

E(t) = (Sv(t). (1)) .
Using that the J. are self adjoint and the matrices SA; are symmetric, we
get that

E(t) —£(0) = 2Re (§7U)L2([0,t]XRd) + (Kv, ”)LQ([OJ}XRO‘)

where

K =0,S(u)+ Y _ J.0;(SA;) ..

Using Lemma 5.3.1 we see that ||K|||~ < C(R)(1 + M). Moreover, the
positivity of S and the bound of S~! imply that

lvf* < C(R)(S(u)v,v) < C*(R)Jv|?
Hence we have
[v@®)llz2 < C(R)|[[v(0)]|2) +C(R)/O gt Lo ()| at’
¢ / 2 /
+C(R)M/O lo(t)||2dt"

We conclude by Gronwall’s lemma. O

We now estimate the H® norm of u. Differentiate the equation (5.1.3)
to find, for |a| < s:

(5.3.5) 005w+ JeA;J05u = 05F (u) + ga
where g, is the commutator

go =Y J[0%, Aj(u)]d;Jeu.
J

By Proposition 5.2.6
1ga()llz2 < C(R)M |[u(t)] g
By Proposition 5.2.5 applied to F(t,x,u) — F(t,z,0), we have

105 F(u(®) 2 < [1f )]l zs + C(R)|[u(®) |z
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where f(t,x) = F(t,z,0). Applying the lemma and summing in a we get
that

t
lu(®)l| s < Coe™[|u(0)]|= + Co(R)/ N F () |-t
0

t
+ Co(R)M / ) ()| ot
0

Applying once more Gronwall’s lemma, we have proved the following:

Proposition 5.3.3. There are functions C1(-) and Ca(-) such that if u €
CO([0,T"], H?) is a solution of (5.1.3), one has

t
(5.3.6)  llu®)]a: < CLB)™[u(0)] +/O CLR)T | f()] et

with v = Ca(R)(1 + M), with R and M defined at (5.3.1).

5.4 Solutions of the approximate equation
Let
Felt,u) = = J(Aj(t, 2, )5 Jou) + F(t, 2, u)

Lemma 5.4.1. For alle > 0, the mapping u — F(u) is locally Lipschitzean
from H?® to H®.

Proof. Because s > d/2, H® is an algebra and is a consequence of the non-
linear estimates that for all R, there is a constant C' such that u and v in
H*(R%)
lullzrs < R, ollas <R = [ Felt,u) = Fe(t,v)las < Ce™Vlu— |z,
O

Thus by the Cauchy Lipschitz theorem, (5.1.3) has a solution v € CY([0, T¢], H®)
for some T, > 0 and the solution can be extended to a maximal interval
[0, T7[ with either T, = T or

(5.4.1) limsup ||u(t)]| = = +o0.

t—T*

We now proceed to a choice of parameters. The functions Cy, Cq and Cy
are those given at Lemma 5.3.1 and Proposition 5.3.3. We also introduce
the Sobolev constant C's such that

(5.4.2) lul|pee < Csllull gs—1
(recall that s —1 > d/2).
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1. We fix r > and set R = ||h||p~ + 73
2. Let -
C =1+ 20 R + 26 (B) [ 1) et
0
3. Let M = CgC
4. We choose T" €]0, T such that

T'Co(R)(1+ M) <r;  LCBOM) <o

Proposition 5.4.2. For alle >0, T} > T" and for all t € [0,T"]
(543 [u Ol <B  IVar Ollie <M, @)l < C

Proof. At time t = 0, the estimates are satisfied with strict inequalities
(remember that Cy < 1). Thus, by continuity, they hold on a small interval
[0,T7], T > 0.
Suppose that 7" < min(7”,TY) is such that
(5.4.4) vt e [0, 7], ||luc()||lgs < C.
Then, by the Sobolev embedding, M < M. With Lemma 5.3.1 we also have
R < [[h]l~ +T"[[0rul L~ < R.

Therefore, Proposition 5.3.3 and the conditions on 7" imply that

T
[uf ()| zs < 2C1(R)||R] s + 201(R)/ 1f ()| zrsdt’
0
hence
u () lgs < C —1.

This implies that the blow up (5.4.1) cannot occur before 7’. Hence T > T’
and the bound (5.4.4) is valid on [0,7”]. As shown, it implies the Lipschitz
bound and the L*° bound. O
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5.5 Proof of Theorem 5.1.2

We first prove the existence of solutions, passing to the limit in the equation.

Proposition 5.5.1. There is a subsequence, still denoted by u®, which con-
verges in C°([0,T'] x RY)) and the limit is a solution of (5.1.1). Moreover,
u € CO[0,T']; H*(RY), and dyu € C°([0, T); H*~H(R?).

Proof. The u® are bounded in C°([0, T]; H¥) N CY([0,T"]; H*~!). Thus there
is a subsequence which converges in C°([0,7"]; HE), where H3, is the space
H? equipped with the weak topology. uniformly on compact subsets. Since
s > 1+ d/2, this implies the convergence in C! on all compact subset of
[0,7"] x R? and one can pass to the limit in the equation. Hence w is a
solution of (5.1.1)

To prove that u belongs to C°([0,7"]; H* and not only to C°([0, T"]; H))
we differentiate the equation for |a| < s and we get

(5.5.1) 005w+ Y Aj(u)dy,05u = 05F (u) + ga
where g, is the commutator

Ja = 2[837 Aj (u)]aju

J
Indeed, the identity
0% (Aj(u)0y,v) = Aj(u)0y;05v + (05, Aj ()]0, v

which is true for v smooth, makes sense in H~' when v € H®. The estimate
for the commutators can g, can be repeated and the uniform bounds of w(t)
in H* imply that g, € L?([0,T'] x L?(R%)). Hence %u € L?([0, T'] xR%) is a
weak solution of (5.5.1). Thus by Friedrichs lemma, it is a strong solution on
[0,T'] x R and 0%u € C°([0,T’]; L?), proving that u € C°([0,T']; H*). O

To finish Theorem 5.1.2 it remains to prove uniqueness
Proposition 5.5.2. The equation (5.1.1) has at mot one solution in C°([0, T]; H*(R?)).

Proof. Suppose that u and v are two solutions. Then w = u — v satisfies

d
(5.5.2) Ow + Z Aj(u)0jw = f, Wi—g = 0
j=1
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with
(5.5.3) f=F(u)—F(v)+> (A;(u) = 4;(v));v.
Because u, v and d;v are bounded, there is a constant C such that |f| <
C(Ju — v|) that is:
v(t,z), |f(t@)| < Clw(t, )l

The L? energy estimate can be applied to (5.5.2), and there are constants
C and ~ sucht that

t
Ve, o)l < C / ) (¢ 2.
0

By Gronwall’s lemma, this implies that ||w(t)||z2 = 0, that is w = 0. O

5.6 Proof of Theorem 5.1.3

Repeating the proof of Proposition 5.3.3, one has :

Proposition 5.6.1. There are functions C1(-) and Ca(-) such that if u €
CO([0,T"], H®) is a solution of (5.1.1), one has for all t € [0,T"]:

t
(5.6.1)  Ju®)]a: < CLBR)[[u(0)] - +/0 CLR) | f()] et

with v = Ca2(R)(1 + M), with R and M defined at (5.3.1).

We can now proceed to the proof of Theorem 5.1.3. Suppose that the
maximal time of existence T* is strictly smaller than 7" and that

(5.6.2) R = sup ||u(t)||pe < 400, M = sup ||Vzu(t)| e < +00.
t<T* t<T*

Let
T
N = (R ||| + cl(R)/ | F(1) ] ot
0

One can apply Theorem 5.1.2 at any initial time 7 € [0, 7], and by inspection
of the proof one can see that the time of existence can be chosen independent
of 7, depending only on the size of the initial data in H*®:
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Lemma 5.6.2. There is T" > 0 such that for all initial time 7 € [0, T[ and
initial data h € H® with [|h||gs < N, the Cauchy problem (6.1.1) with initial
data h at time T has a solutionu € CO([r,T")]; H®) with T" = min(r+1",T).

In particular, since ||u(T* —T"/2)||gs < N, the Cauchy problem with
initial data w(T* —T"/2) at time T* —T"/2 has a solution on [T* —T"/2,T"
with 7" = min(T* + T"/2,T) > T*. By uniqueness, this solution coincides
with w on [T% — T'/2,T*[, and thus extends u to times larger than T*,
contradicting the definition of T*.

5.7 An example of blow-up: the scalar case

Il is classical that the life span of smooth solutions of nonlinear equation is
finite in general: consider for instance the ordinary differential equation

Opu = u?, Ujg=o = h.

The solution is h/(1 —th) and if A > 0, it blows up in finite time 7™ = 1/h.
This can be extended to semilinear equations, where the blow up occurs in
the L*° norm. We now illustrate, on a class of scalar equation, how the blow
up can occur in the L* norm of the gradient of wu.

Consider

d
(5.7.1) O+ a;(u)dy;u,  u(0,2)=h(z). =0,
j=1

with a; € C1(R;R). We note a = (ay,...,a,) € CH(R;RY).

Proposition 5.7.1. u € CL([0,7T] x RY) satisfies (5.7.1) if and only if u
satisfies the implicit equation

(5.7.2) F(t,z,u(t,x)) =0,
where F(t,z,\) = X\ — h(x — ta()\)).

Proof. Suppose that v is C! and bounded on [0, 7] x R? Consider the integral
curves of

L=0,+) aj(u(t,z))d,,
Jj=1

that is the solutions X (s;¢,x) of

ax

(5.7.3) i a(u(s, X (s,t,x))), X(t, t,x) =x.
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Because the u € C}, the flow X is defined on [0,7] x [0,7] x R%. One has,
for all v € C1,

(5.7.4) ds(v(s, X (s;t,2))) = (Lv)(s, X (s;t, z)
In particular, if u is a solution of (5.7.1),
Os(u(s, X(s;t,2))) =0 = u(s,X(s;t,x)) =u(t,z).

Thus, a(u(s, X(s,t,x))) = a(t, z), implying that the integral curves are lines

(5.7.5) X(s;t,x) =+ (s — t)a(u(t, x))
and that
(5.7.6) u(s,x + (s —t)a(u(t,x))) = u(t, x).

At s = 0, this means
(5.7.7) u(t,x) = h(z — ta(u(t, z)),

that is (5.7.2)
Conversely, suppose that u € CL([0, T] x R?) satisfies (5.7.2). For t = 0,
this means that u(0,z) = h(z). The derivatives of F are :

F(t,z,\) Za] )0z h(x —ta(N)),

Oij(t,m,)\):—ﬁxjh( —ta(\),

ONF(t,z,\) = 141> aj(A\)da; h(z — ta(N)).
J
Note that 9y F and V,F' # 0 cannot vanish together. Differentiating (5.7.2),
on has at A\ = u(t, x),

atF(t,l’, )\) + Opu a)\F(t,SL', )‘) =

5.7.8
( ) Ou; F(t, 2, \) + Op,uO\F(t,z,)\) =

In particular,
(5.7.9) OF(t,x,u(t,z)) #0.

By (5.7.8),
(8tu+2aj >8AF(t z,u(t,z)) = 0.

With (5.7.9), this implies that u satisfies the equation (5.7.1). O
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Note that dyF # 0 for small times. Therefore, the implicit function
theorem can be applied to (5.7.2), yielding local solutions of (5.7.1). The
next result gives a precise estimate of the life span of the solution, when the
initial data h € C}(RY). The form of 9\ F leads to introduce the functions

(5.7.10) Za 2)) 0y, h(x)

For h € C}(R?), g is bounded and one can introduce

(5.7.11) p= inf g(x) € R.
zERY

Theorem 5.7.2. Soit h € CL(R?). Let T* = +oo if u >0, and T* = —1/u
st p < 0.

i) The Cauchy problem (5.7.1) has a unique solutionu € C*([0, T*[xR?);
moreover,

(5.7.12) V(t,z) € [0,T* [xR?,  |u(t,z)| < ||l oo () -

i) For all T < T*, u € CH([0,T] x RY) and

1+tu

iii) When p < 0, there is a constant m > 0 such that

m
T —t

(5.7.14) VE< T, | Vault, ) o ga 2

Proof. a) Let (t,z) € [0,T *[xR? The function A — F(t,2,\) = A\—h(z —
ta()\)) is C1; Tt is negative for A\ < —||h||z~ and positive for X > ||h| .
Therefore it vanishes. Moreover, when F'(t,z,A) =0, on a

WF(t,x,\) =1+tg(x —ta(N)) >1+tu>0.

Thus the root in A of F(\ t,2) = 0 is unique. This determines uniquely
u(t, z) such that F(t,x,u(t,x)) = 0. Moreover, since O)\F(¢,x,u(t,z) > 0.
the local implicit function theorem implies that u is C' sur [0, T*[xR%. By
Proposition 5.7.1 w est solution de (5.7.1). Uniqueness also follows from
Proposition 5.7.1 and the uniqueness of the solution of the implicit equation
F(t,z,A\) =0

The L* bound (5.7.12) follows from the identity u(t,z) = h(y) with
y =z — ta(u(t, z).
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b) By (5.7.8),

{ (1+tg(y)) Qult, x) = —a(h(y)) - Vah(y),

(5.7.15) (1+tg(y)) Veu(t,z) = Vih(y),

with y = z — ta(u(t, x)). Since g > p, the estimate of the derivatives follow.
In particular, all the derivatives of u are bounded on [0,7] x R?, for all
T <T*.

¢) Suppose that u < 0. Let m = sup |a/(h(y))| > 0. For all p/ €]u,0],
there is y € R" tel que
0 < —p' < —g(y) = —d'(h(y)) - Voh(y) < m|Vzh(y)|.
For x = y + ta(h(y)), one has u(t,z) = h(y), and by (5.7.15)

1|

1+t m

1
> — >
Voult, o)l 2 3775 IVah(y)] 2

Hence, for all u/ €]u,0] and all ¢t € [0,—1/4/[:

Ly
IVaut, )llpe 2 1+ty m

Hence, for all t €]0, T*], letting p’ tend to u, we see that

1 |ul 1
\Y% t,. o > _—=
IVault, )z = 1+tu m  m(T*—t)

The theorem is proved. O

Corollary 5.7.3. Si p < 0, (5.7.1) has no solution in C}([0, T[xR?) pour
T > Tx.

Remark 5.7.4. When the infimum p of g est strictement is negative and
reached at yo € R%, one can choose this point in the proof above and for
t €0, 7" and z = yo + ta(h(yo))

1

Vu(t =
Voult. o) = 1o

Because p < 0, [Vzh(yo)| > 0, and this formula shows that the gradient of

u blows up at the point (T, yo + T*a(h(yo)). Therefore, the solution has no
C' extension near this point.

63



