
Chapter 5

Smooth solutions of the

nonlinear Cauchy problem

5.1 The results

We consider a first order N ×N quasi-linear system

(5.1.1)






∂tu+
d�

j=1

Aj(t, x, u)∂ju = F (t, x, u),

u|t=0 = h.

We say that a function a(t, x, u) belongs to C∞
b
[0, T ] × Rd × RN if it is

infinitely differentiable on [0, T ] × Rd × RN and its derivatives at all order
are bounded on the sets [0, T ]× Rd × {|u| ≤ R} for all R.

Assumption 5.1.1. The matrices Aj and the function F belong to C∞
b
[0, T ]×

Rd × RN

Moreover, there is an invertible N×N matrix S(t, x, u), such that S and
S−1 belong to C∞

b
[0, T ]× Rd × RN and

i) S(t, xu) is self adjoint, definite positive ;
ii) For all (t, x, u) and all j, S(t, x, u)A(t, x, ξ) is self-adjoint.

We consider a Sobolev index s > d

2 + 1 which is fixed throughout this
section.

Theorem 5.1.2. Suppose that f = F (t, x, 0) ∈ C0([0, T ];Hs(Rd) and h ∈

Hs(Rd), there is T � ∈]0, T ] and a unique solution u ∈ C0([0, T �];Hs(Rd)) of
the Cauchy problem (5.1.1).

An estimate from below of T � is given in the proof of the theorem.
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Uniqueness allows to define the maximal time of existence :
T ∗ is the supremum of T � ∈ [0, T ] such that the Cauchy problem
has a solution u ∈ C0([0, T �];Hs(Rd)).

The theorem implies that T ∗ > 0. By uniqueness, the solution u is
therefore defined for all t < T ∗ and u ∈ C0([0, T ∗[;Hs(Rd)).

Theorem 5.1.3. Either T ∗ = T or

(5.1.2) lim sup
t→T ∗

��u
��
L∞([0,t]×Rd)

+
��∇t,xu

��
L∞([0,t]×Rd)

= +∞.

In theses notes, the strategy is the following. We consider the regularized
equations

(5.1.3) ∂tu+
�

JεAj(t, x, u)∂xjJεu = F (t, x, u), u|t=0 = Jεh

where Jε is a Friedrichs mollifier:

(5.1.4) Jεv = ε � v, ε(x) = ε−d(x/ε)

where  ≥ 0 is smooth with compact support, of integral 1, and even so that
the operator Jε is self adjoint in L2:

(5.1.5)
�
Jεu, v

�
L2(Rd)

=
�
u, Jεv

�
L2(Rd)

.

Step 1. Existence of solutions for the approximate equation. For all
fixed ε, we consider (5.1.3) a nonlinear ode in Hs:

(5.1.6) ∂tu = Fε(u)

We will show that the smoothing properties of Jε imply

Lemma 5.1.4. For all fixed ε > 0 the application Fε is locally Lipschiztean
from Hs to Hs.

Therefore, the Cauchy-Lipschitz theorem implies that for all ε > 0, there
is Tε ∈]0, T ] such that (5.1.3) has a unique solution uε ∈ C0([0, Tε];Hs(Rd)).
One can introduce the maximal time of existence :

T ∗
ε is the supremum of T � ∈ [0, T ] such that (5.1.3) has a solution

u ∈ C0([0, T �];Hs(Rd)).
Thus T ∗

ε > 0 and by uniqueness, the solution u − ε is therefore defined for
all t < T ∗

ε and u ∈ C0([0, T ∗
ε [;H

s(Rd)).
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Step 2. Uniform estimates.

Proposition 5.1.5. There are constants C0, γ and T � ∈]0, T ], such that for
all ε > 0, and all t ≤ min(T �, T ∗

ε )

(5.1.7)
��uε(t)

��
Hs(t)

≤ C0e
γt
�h�Hs + C0

�
t

0
eγ(t−t

�)
�f(t�)�Hsdt�.

Step 3. Passing to the limit ε → 0. We will show that the estimates
(5.1.7) imply that T ∗

ε > T � and that uε converges to a solution u of (5.1.1),
which satisfies the estimates (5.1.7).

Step 4. The blow up theorem follows from the estimate (5.1.5) and
the remark that C0 and γ only depend on the W 1,∞ norm of u.

5.2 Nonlinear estimates

Proposition 5.2.1. Sobolev embedding Hs ⊂ L∞ if s > d/2.

Theorem 5.2.2 (Gagliardo-Niremberg estimates). For |α|
s

≤
2
p
≤ 1,

(5.2.1) �∂αu�Lp ≤ C�u�1−2/p
L∞ �u�1/2p

Hs

Proof. Use the identity

0 =

�
∂x(u|∂xu|

p−2∂xu)dx =

�
|∂xu|

pdx+ (p− 1)

�
u|∂xu|

p−2∂2
xudx

Thus
�∂xu�

p

Lp ≤ (p− 1)�u�Lq�|∂xu|
p−2

�Ls�∂2
xu�Lr

if 1/q + 1/s+ 1/r = 1. We chose s such that s(p− 2) = p so that

�|∂xu|
p−2

�Ls = �|∂xu�
p/s

Lp = �|∂xu�
p−2
Lp

and after simplification,

1

q
+

1

r
=

2

p
⇒ �∂xu�

2
Lp ≤ (p− 1)�u�Lq�∂2

xu�Lr .

From this, we prove is by induction on l that for

k ≤ j ≤ l,
l

p
=

k

r
+

l − k

r
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(5.2.2) �∇
ku�Lp ≤ C�u�1−k/l

Lq �∇
lu�k/l

Lr

where
�∇

ju�Lp =
�

|α=j

�∂αu�Lp

First, we note that the estimate is true when k = l and when k = 0.
Suppose that the estimate is proved up to l. We prove it at the order

l + 1. As already said it is true for k = 0 and k = l + 1. We proceed by
induction on k, for 1 ≤ k ≤ l.

....

Corollary 5.2.3.

(5.2.3) �∂αa ∂βu�L2 ≤ C
�
�a�L∞�u�Hs + �a�Hs�u�L∞

�
.

Corollary 5.2.4. Hs is an algebra if s > d/2.

Proposition 5.2.5. Let F be a C∞ function such that F (0) = 0. For all s,
there is a continuous function φ on [0,+∞[ such that for all u ∈ Hs ∩ L∞,
F (u) ∈ Hs and

(5.2.4)
��F (u)

��
Hs ≤ φ

�
�u�L∞

�
�u�Hs .

Proof. To estimate the L2 norm of F (u) we use the condition F (0) = 0 to
write F (u) = uG(u), so that

�F (u)�L2 ≤ φ
�
�u�L∞

�
�u�L2 .

with
φ(r) = sup

|u|≤r

|G(u)|.

The derivative ∂αF (u) is a linear combination of terms of the form

F (k)(u)∂α1u . . . ∂αku

with α1 + . . .+ αk = α. We estimate the L∞ norm of F (k)(u) by a function
of the L∞ norm of u To estimate the L2 norm of the product we note that,
since

�
|αj |/s ≤ 1, we can choose exponents pj such that

|αj |

s
≤

2

pj
,

� 2

pj
= 1.

Then, by the Gagliardo Nirenberg estimates,

�∂α1u . . . ∂αku�L2 ≤

�
�∂αju�

L
pj ≤ C�u�k−1

L∞ �u�Hs

and the proposition follows.
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We end this section with a commutator estimate.

Proposition 5.2.6. Suppose that a ∈ C∞(R). For all s, there is a contin-
uous function C such that for all u and v in W 1,∞∩Hs, one for all |α| ≤ s:
has

(5.2.5)

��∂α(a(v)∂xju)− a(v)∂α∂xju
��
L2 ≤ C(�v�L∞)

�
(�v�L∞ + �∇v�L∞)�u�Hs + (�u�L∞ + �∇xu�L∞)�v�Hs

�
.

The proof is based on the following lemma

Lemma 5.2.7. For 1 ≤ |α| ≤ s − 1, ρ ≥ 0 and p ≥ 2 such that |α|−1
s−1 ≤

|α|−ρ

s
≤

2
p
≤

2
p
+ ρ ≤ 1,

(5.2.6) �∂αu�Lp ≤ C�u�1−2/p−ρ

L∞ �∇u�ρ
L∞�u�1/2p

Hs .

Note that the condition on the indices implies that

(5.2.7) ρ ≤
s− |α|

s− 1
≤ 1.

Proof. The Gagliardo-Nirenberg estimates imply that

�∂αu�Lq ≤ C�u�1−2/q
L∞ �u�1/2q

Hs ,
2

q
=

|α|

s
,

�∂αu�Lr ≤ C�∇u�1−2/r
L∞ �u�1/2r

Hs ,
2

r
=

|α| − 1

s− 1
.

By Hölder inequality, for non negative δ ∈ [0, 1], one has

�∂αu�Lp ≤ �∂αu�1−δ−θ

Lq �∂αu�δLr

with
1

p
=

1− δ

q
+

δ

r
=

|α|

2s
− δ

s− |α|

2s(s− 1)
,

implying (5.2.6) with

ρ = (1− 2/r)δ = δ
s− |α|

s− 1
.

This proves the estimate when

(5.2.8)
|α| − 1

s− 1
≤

2

p
=

|α| − ρ

s
≤

|α|

s
,
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since then 0 ≤ ρ ≤ (s − |α|)/(s − 1) and there is δ ∈ [0, 1] such that
ρ = δ(s− |α|)/(s− 1).

Moreover, the estimate follows immediately from the Gagliardo-Nirenberg
estimates when

(5.2.9)
|α| − 1

s− 1
≤

2

p
, ρ = 1−

2

p

(5.2.10)
|α|

s
≤

2

p
, ρ = 0.

When 2/p ≥ |α|/s, the estimate is proved for ρ = 0 and ρ = 1−2/p, and
therefore holds for ρ ∈ [0, 1 − 2/p]. When (|α| − 1)/(s − 1) ≤ 2/p ≤ |α|/s,
the estimate is proved for ρ = 2s/p−|α| and ρ = 1−2/p and therefore holds
for ρ in the interval limited by these two values.

Proof of Proposition 5.2.6. The term to estimate is a linear combination of
terms of the form

a(k)(v)∂β1v . . . ∂βkv ∂β0u

with |β1|+ . . .+ |βk|+ |β0| = |α|+ 1 and all the |βj | ≥ 1.
The case |α| ≤ s − 1 has already been treated in the proof of Proposi-

tion 5.2.5 and requires no L∞ estimates of the gradients.
Consider now the case where

�
|βj | = s+1. We estimate the L∞ norm

of a(k)(v) by a function of the L∞ norm of v and it remains to estimate the
L2 norm of the product of the derivatives. Because the number of terms
k + 1 is at least 2, the sum

�
(s − |βj)/(s − 1) is larger than or equal to 1

and therefore, there are real numbers ρj such that

0 ≤ ρj ≤
s− |βj |

s− 1
,

�
ρj = 1.

Choosing 2
pj

= |βj |−ρj

s
we can use the estimates (5.2.6) and since

� 2
pj

= 1,

we obtain
��∂β1v . . . ∂βkv ∂β0u

��
L2 ≤ C�v�k−2+ρ0+2/p0

L∞ �∇v�1−ρ0
L∞ �v�1−2/p0

Hs

�u�1−ρ0−2/p0
L∞ �∇u�ρ0

L∞�u�2/p0
Hs

and the proposition follows.
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5.3 The main estimate

In this section we assume that u ∈ C0([0, T �], Hs) is a solution of (5.1.3).
Because s > 1 + d/2, the following quantities are finite:

(5.3.1) R = �u�L∞([0,T �]×Rd), M = �∇xu�L∞([0,T �]×Rd)

Below we denote by C(·) a continuous function on R+, which may vary from
line to line.

Lemma 5.3.1. There is a function C0(·) such that

(5.3.2) �∂tu�L∞ ≤ C0(R)(1 +M)

Proof. One has
�F (u)�L∞ ≤ C(R)

and
�Jε(AjJε∂ju)�L∞ ≤ C(R)�∂ju�L∞

thus the estimate for ∂tu follows from the equation.

Lemma 5.3.2. There are functions C0(·) and C1(·) such that for all v ∈

C0([0, T �];L2) which satisfies

(5.3.3) g := ∂tv +
�

Jε(Aj(u)JεDjv) ∈ L2([0, T �]× Rd),

one has

(5.3.4) �v(t)�L2 ≤ C0(R)eγt�v(0)�L2 +

�
t

0
C0(R)eγ(t−t

�)
�g(t�)�L2dt�.

with γ = C1(R)M .

Proof. Multiply the equation by S(u), so that

S(u)∂tv +
�

JεS(u)Aj(u)Jε∂jv = S(u)g +
�

gj := g̃.

where
jj = [S(u), Jε]Aj(u)Jε∂jv.

Because S(u) is Lipschtiz continuous, the commutator [S(u), Jε] is bounded
from L2 to L2 with norm less than or equal to

ε�∇S(u)�L∞ ≤ εC(R)(1 +M).
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Thus
�gj(t)�L2 ≤ C(R)M�εJε∂jv(t)�L2 . ≤ C(R)M�v(t)�L2

Consider the energy
E(t) =

�
Sv(t), v(t)

�
L2 .

Using that the Jε are self adjoint and the matrices SAj are symmetric, we
get that

E(t)− E(0) = 2Re
�
g̃, v

�
L2([0,t]×Rd)

+
�
Kv, v

�
L2([0,t]×Rd)

where
K = ∂tS(u) +

�
Jε∂j(SAj)Jε.

Using Lemma 5.3.1 we see that �K�|L∞ ≤ C(R)(1 + M). Moreover, the
positivity of S and the bound of S−1 imply that

|v|2 ≤ C(R)(S(u)v, v) ≤ C2(R)|v|2

Hence we have

�v(t)�L2 ≤ C(R)�v(0)�L2) + C(R)

�
t

0
�g(t�)�l�v(t�)�dt�

+ C(R)M

�
t

0
�v(t�)�2dt�.

We conclude by Gronwall’s lemma.

We now estimate the Hs norm of u. Differentiate the equation (5.1.3)
to find, for |α| ≤ s:

(5.3.5) ∂t∂
α

xu+
�

JεAjJε∂
α

xu = ∂α

xF (u) + gα

where gα is the commutator

gα =
�

j

Jε[∂
α

x , Aj(u)]∂jJεu.

By Proposition 5.2.6

�gα(t)�L2 ≤ C(R)M�u(t)�Hs .

By Proposition 5.2.5 applied to F (t, x, u)− F (t, x, 0), we have

�∂α

xF (u(t))�L2 ≤ �f(t)�Hs + C(R)�u(t)�Hs
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where f(t, x) = F (t, x, 0). Applying the lemma and summing in α we get
that

�u(t)�Hs ≤ C0e
γt
�u(0)�Hs + C0(R)

�
t

0
eγ(t−t

�)
�f(t�)�Hsdt�

+ C2(R)M

�
t

0
eγ(t−t

�)
�u(t�)�Hsdt�.

Applying once more Gronwall’s lemma, we have proved the following:

Proposition 5.3.3. There are functions C1(·) and C2(·) such that if u ∈

C0([0, T �], Hs) is a solution of (5.1.3), one has

(5.3.6) �u(t)�Hs ≤ C1(R)eγt�u(0)�Hs +

�
t

0
C1(R)eγ(t−t

�)
�f(t�)�L2dt�.

with γ = C2(R)(1 +M), with R and M defined at (5.3.1).

5.4 Solutions of the approximate equation

Let
Fε(t, u) = −

�
Jε(Aj(t, x, u)∂jJεu) + F (t, x, u)

Lemma 5.4.1. For all ε > 0, the mapping u �→ Fε(u) is locally Lipschitzean
from Hs to Hs.

Proof. Because s > d/2, Hs is an algebra and is a consequence of the non-
linear estimates that for all R, there is a constant C such that u and v in
Hs(Rd)

�u�Hs ≤ R, �v�Hs ≤ R ⇒ �Fε(t, u)−Fε(t, v)�Hs ≤ Cε−1
�u− v�Hs .

Thus by the Cauchy Lipschitz theorem, (5.1.3) has a solution u ∈ C0([0, Tε], Hs)
for some Tε > 0 and the solution can be extended to a maximal interval
[0, T ∗

ε [ with either Tε = T or

(5.4.1) lim sup
t→T ∗

ε

�u(t)�Hs = +∞.

We now proceed to a choice of parameters. The functions C0, C1 and C2

are those given at Lemma 5.3.1 and Proposition 5.3.3. We also introduce
the Sobolev constant CS such that

(5.4.2) �u�L∞ ≤ CS�u�Hs−1

(recall that s− 1 > d/2).

56



1. We fix r > and set R = �h�L∞ + r;

2. Let

C = 1 + 2C1(R)�h�Hs + 2C1(R)

�
T

0
�f(t�)�Hsdt�;

3. Let M = CSC;

4. We choose T � ∈]0, T ] such that

T �C0(R)(1 +M) ≤ r; eT
�
C2(R)(1+M)

≤ 2.

Proposition 5.4.2. For all ε > 0, T ∗
ε > T � and for all t ∈ [0, T �]

(5.4.3) �uε(t)�L∞ ≤ R, �∇xu
ε(t)�L∞ ≤ M, �uε(t)�Hs ≤ C.

Proof. At time t = 0, the estimates are satisfied with strict inequalities
(remember that C1 ≤ 1). Thus, by continuity, they hold on a small interval
[0, T �

ε], T
�
ε > 0.

Suppose that T �� < min(T �, T ∗
ε ) is such that

(5.4.4) ∀t ∈ [0, T ��], �uε(t�)�Hs ≤ C.

Then, by the Sobolev embedding, M ≤ M . With Lemma 5.3.1 we also have

R ≤ �h�L∞ + T ��
�∂Tu�L∞ ≤ R.

Therefore, Proposition 5.3.3 and the conditions on T � imply that

�uε(t�)�Hs ≤ 2C1(R)�h�Hs + 2C1(R)

�
T

0
�f(t�)�Hsdt�

hence
�uε(t�)�Hs ≤ C − 1.

This implies that the blow up (5.4.1) cannot occur before T �. Hence T ∗
ε ≥ T �

and the bound (5.4.4) is valid on [0, T �]. As shown, it implies the Lipschitz
bound and the L∞ bound.
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5.5 Proof of Theorem 5.1.2

We first prove the existence of solutions, passing to the limit in the equation.

Proposition 5.5.1. There is a subsequence, still denoted by uε, which con-
verges in C0([0, T �]× Rd]) and the limit is a solution of (5.1.1). Moreover,
u ∈ C0([0, T �];Hs(Rd), and ∂tu ∈ C0([0, T ];Hs−1(Rd).

Proof. The uε are bounded in C0([0, T ];Hs)∩C1([0, T �];Hs−1). Thus there
is a subsequence which converges in C0([0, T �];Hs

w), where Hs
w is the space

Hs equipped with the weak topology. uniformly on compact subsets. Since
s > 1 + d/2, this implies the convergence in C1 on all compact subset of
[0, T �] × Rd and one can pass to the limit in the equation. Hence u is a
solution of (5.1.1)

To prove that u belongs to C0([0, T �];Hs and not only to C0([0, T �];Hs
w)

we differentiate the equation for |α| ≤ s and we get

(5.5.1) ∂t∂
α

xu+
�

Aj(u)∂xj∂
α

xu = ∂α

xF (u) + gα

where gα is the commutator

gα =
�

j

[∂α

x , Aj(u)]∂ju.

Indeed, the identity

∂α

x

�
Aj(u)∂xjv

�
= Aj(u)∂xj∂

α

x v + [∂α

x , Aj(u)]∂xjv

which is true for v smooth, makes sense in H−1 when v ∈ Hs. The estimate
for the commutators can gα can be repeated and the uniform bounds of u(t)
in Hs imply that gα ∈ L2([0, T �]×L2(Rd)). Hence ∂α

xu ∈ L2([0, T �]×Rd) is a
weak solution of (5.5.1). Thus by Friedrichs lemma, it is a strong solution on
[0, T �]× Rd, and ∂αu ∈ C0([0, T �];L2), proving that u ∈ C0([0, T �];Hs).

To finish Theorem 5.1.2 it remains to prove uniqueness

Proposition 5.5.2. The equation (5.1.1) has at mot one solution in C0([0, T ];Hs(Rd)).

Proof. Suppose that u and v are two solutions. Then w = u− v satisfies

(5.5.2) ∂tw +
d�

j=1

Aj(u)∂jw = f, w|t=0 = 0

58



with

(5.5.3) f = F (u)− F (v) +
d�

j=1

(Aj(u)−Aj(v))∂jv.

Because u, v and ∂jv are bounded, there is a constant C such that |f | ≤
C(|u− v|) that is:

∀(t, x), |f(t, x)| ≤ C|w(t, x)|.

The L2 energy estimate can be applied to (5.5.2), and there are constants
C and γ sucht that

∀t, �w(t)�L2 ≤ C

�
t

0
eγ(t−t

�)
�w(t�)�L2dt�.

By Gronwall’s lemma, this implies that �w(t)�L2 = 0, that is w = 0.

5.6 Proof of Theorem 5.1.3

Repeating the proof of Proposition 5.3.3, one has :

Proposition 5.6.1. There are functions C1(·) and C2(·) such that if u ∈

C0([0, T �], Hs) is a solution of (5.1.1), one has for all t ∈ [0, T �]:

(5.6.1) �u(t)�Hs ≤ C1(R)eγt�u(0)�Hs +

�
t

0
C1(R)eγ(t−t

�)
�f(t�)�L2dt�.

with γ = C2(R)(1 +M), with R and M defined at (5.3.1).

We can now proceed to the proof of Theorem 5.1.3. Suppose that the
maximal time of existence T ∗ is strictly smaller than T and that

(5.6.2) R = sup
t<T ∗

�u(t)�L∞ < +∞, M = sup
t<T ∗

�∇xu(t)�L∞ < +∞.

Let

N = C1(R)eγT �h�Hs + C1(R)

�
T

0
eγ(t−t

�)
�f(t�)�L2dt�.

One can apply Theorem 5.1.2 at any initial time τ ∈ [0, T ], and by inspection
of the proof one can see that the time of existence can be chosen independent
of τ , depending only on the size of the initial data in Hs:
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Lemma 5.6.2. There is T � > 0 such that for all initial time τ ∈ [0, T [ and
initial data h̃ ∈ Hs with �h̃�Hs ≤ N , the Cauchy problem (6.1.1) with initial
data h̃ at time τ has a solution u ∈ C0([τ, T ��)];Hs) with T �� = min(τ+T �, T ).

In particular, since �u(T ∗ − T �/2)�Hs ≤ N , the Cauchy problem with
initial data u(T ∗−T �/2) at time T ∗−T �/2 has a solution on [T ∗−T �/2, T ��

with T �� = min(T ∗ + T �/2, T ) > T ∗. By uniqueness, this solution coincides
with u on [T ∗ − T �/2, T ∗[, and thus extends u to times larger than T ∗,
contradicting the definition of T ∗.

5.7 An example of blow-up: the scalar case

Il is classical that the life span of smooth solutions of nonlinear equation is
finite in general: consider for instance the ordinary differential equation

∂tu = u2, u|t=0 = h.

The solution is h/(1− th) and if h > 0, it blows up in finite time T ∗ = 1/h.
This can be extended to semilinear equations, where the blow up occurs in
the L∞ norm. We now illustrate, on a class of scalar equation, how the blow
up can occur in the L∞ norm of the gradient of u.

Consider

(5.7.1) ∂tu+
d�

j=1

aj(u)∂xju, u(0, x) = h(x) . = 0 ,

with aj ∈ C1(R;R). We note a = (a1, . . . , an) ∈ C1(R;Rd).

Proposition 5.7.1. u ∈ C1
b
([0, T ] × Rd) satisfies (5.7.1) if and only if u

satisfies the implicit equation

(5.7.2) F (t, x, u(t, x)) = 0 ,

where F (t, x, λ) = λ− h(x− ta(λ)).

Proof. Suppose that u is C1 and bounded on [0, T ]×Rd Consider the integral
curves of

L = ∂t +
n�

j=1

aj(u(t, x))∂xj

that is the solutions X(s; t, x) of

(5.7.3)
dX

ds
= a(u(s,X(s, t, x))), X(t, t, x) = x.
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Because the u ∈ C1
b
, the flow X is defined on [0, T ]× [0, T ]× Rd. One has,

for all v ∈ C1,

(5.7.4) ∂s
�
v(s,X(s; t, x))

�
= (Lv)(s,X(s; t, x)

In particular, if u is a solution of (5.7.1),

∂s
�
u(s,X(s; t, x))

�
= 0 ⇒ u(s,X(s; t, x)) = u(t, x).

Thus, a(u(s,X(s, t, x))) = a(t, x), implying that the integral curves are lines

(5.7.5) X(s; t, x) = x+ (s− t)a(u(t, x))

and that

(5.7.6) u(s, x+ (s− t)a(u(t, x))) = u(t, x).

At s = 0, this means

(5.7.7) u(t, x) = h(x− ta(u(t, x)),

that is (5.7.2)
Conversely, suppose that u ∈ C1

b
([0, T ]×Rd) satisfies (5.7.2). For t = 0,

this means that u(0, x) = h(x). The derivatives of F are :

∂tF (t, x, λ) =
�

j

aj(λ)∂xjh(x− ta(λ)) ,

∂xjF (t, x, λ) = −∂xjh(x− ta(λ)) ,

∂λF (t, x, λ) = 1 + t
�

j

a�j(λ)∂xjh(x− ta(λ)) .

Note that ∂λF and ∇xF �= 0 cannot vanish together. Differentiating (5.7.2),
on has at λ = u(t, x),

(5.7.8)
∂tF (t, x, λ) + ∂tu ∂λF (t, x, λ) = 0 ,

∂xjF (t, x, λ) + ∂xju ∂λF (t, x, λ) = 0 .

In particular,

(5.7.9) ∂λF (t, x, u(t, x)) �= 0 .

By (5.7.8), �
∂tu+

�

j

aj(u)∂xju
�
∂λF (t, x, u(t, x)) = 0 .

With (5.7.9), this implies that u satisfies the equation (5.7.1).
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Note that ∂λF �= 0 for small times. Therefore, the implicit function
theorem can be applied to (5.7.2), yielding local solutions of (5.7.1). The
next result gives a precise estimate of the life span of the solution, when the
initial data h ∈ C1

b
(Rd). The form of ∂λF leads to introduce the functions

(5.7.10) g(x) =
n�

j=1

a�j(h(x))∂xjh(x)

For h ∈ C1
b
(Rd), g is bounded and one can introduce

(5.7.11) µ = inf
x∈Rd

g(x) ∈ R.

Theorem 5.7.2. Soit h ∈ C1
b
(Rd). Let T ∗ = +∞ if µ ≥ 0, and T ∗ = −1/µ

si µ < 0.
i) The Cauchy problem (5.7.1) has a unique solution u ∈ C1([0, T ∗[×Rd);

moreover,

(5.7.12) ∀(t, x) ∈ [0, T ∗[×Rd , |u(t, x)| ≤ �h�L∞(Rd) .

ii) For all T < T ∗, u ∈ C1
b
([0, T ]× Rd) and

(5.7.13) ∀t < T ∗ , �∇xu(t, .)�L∞(Rd) ≤
1

1 + tµ
�∇xh�L∞(Rd) .

iii) When µ < 0, there is a constant m > 0 such that

(5.7.14) ∀t < T ∗ , �∇xu(t, .)�L∞(Rd) ≥
m

T ∗ − t
.

Proof. a) Let (t, x) ∈ [0, T ∗ [×Rd. The function λ �→ F (t, x, λ) = λ−h(x−
ta(λ)) is C1; It is negative for λ < −�h�L∞ and positive for λ > �h�L∞ .
Therefore it vanishes. Moreover, when F (t, x, λ) = 0, on a

∂λF (t, x, λ) = 1 + tg(x− ta(λ)) ≥ 1 + tµ > 0 .

Thus the root in λ of F (λ, t, x) = 0 is unique. This determines uniquely
u(t, x) such that F (t, x, u(t, x)) = 0. Moreover, since ∂λF (t, x, u(t, x) > 0.
the local implicit function theorem implies that u is C1 sur [0, T ∗[×Rd. By
Proposition 5.7.1 u est solution de (5.7.1). Uniqueness also follows from
Proposition 5.7.1 and the uniqueness of the solution of the implicit equation
F (t, x, λ) = 0.

The L∞ bound (5.7.12) follows from the identity u(t, x) = h(y) with
y = x− ta(u(t, x).
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b) By (5.7.8),

(5.7.15)

�
(1 + tg(y)) ∂tu(t, x) = −a(h(y)) · ∇xh(y) ,

(1 + tg(y))∇xu(t, x) = ∇xh(y) ,

with y = x− ta(u(t, x)). Since g ≥ µ, the estimate of the derivatives follow.
In particular, all the derivatives of u are bounded on [0, T ] × Rd, for all
T < T ∗.

c) Suppose that µ < 0. Let m = sup |a�(h(y))| > 0. For all µ� ∈]µ, 0[,
there is y ∈ Rr tel que

0 < −µ�
≤ −g(y) = −a�(h(y)) · ∇xh(y) ≤ m|∇xh(y)| .

For x = y + ta(h(y)), one has u(t, x) = h(y), and by (5.7.15)

|∇xu(t, x)| ≥
1

1 + tµ� |∇xh(y)| ≥
1

1 + tµ�
|µ�|

m
.

Hence, for all µ� ∈]µ, 0[ and all t ∈ [0,−1/µ�[:

�∇xu(t, .)�L∞ ≥
1

1 + tµ�
|µ�|

m

Hence, for all t ∈]0, T ∗[, letting µ� tend to µ, we see that

�∇xu(t, .)�L∞ ≥
1

1 + tµ

|µ|

m
=

1

m(T ∗ − t)
.

The theorem is proved.

Corollary 5.7.3. Si µ < 0, (5.7.1) has no solution in C1
b
([0, T [×Rd) pour

T > T∗.

Remark 5.7.4. When the infimum µ of g est strictement is negative and
reached at y0 ∈ Rd, one can choose this point in the proof above and for
t ∈ [0, T ∗[ and x = y0 + ta(h(y0))

|∇xu(t, x)| =
1

1 + tµ
|∇xh(y0)| .

Because µ < 0, |∇xh(y0)| > 0, and this formula shows that the gradient of
u blows up at the point (T ∗, y0+T ∗a(h(y0)). Therefore, the solution has no
C1 extension near this point.
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