Chapter 6

An exemple: the 1-D case

6.1 The setting

We consider here a system in space dimension d = 1

 $(6.1.1) \qquad \qquad \partial_t u + A \partial_x u = B u + f$

on the half line $\{x > 0\}$. This equation has to be supplemented by an initial condition

(6.1.2)
$$u_{|t=0} = h,$$

and; possibly, with boundary conditions on $\{x = 0\}$:

(6.1.3)
$$Mu_{|x=0} = g,$$

where M is a constant coefficient matrix.

We assume that the system has constant coefficients and is hyperbolic in the time direction, which means that A has only real eigenvalues. We assume a little more, namely that A can be diagonalized (that is saying that the system is strongly hyperbolic). Working in a basis where A is diagonal, reduces to the case where

(6.1.4)
$$A = \begin{pmatrix} a_1 & 0 & \\ 0 & \ddots & 0 \\ & 0 & a_N \end{pmatrix}$$

so that (6.1.1) is a system of coupled transport equations

(6.1.5)
$$\partial_t u_j + a_j \partial_x u_j = \sum_{k=1}^N b_{j,k} u_k + f_j, \qquad 1 \le j \le N.$$

6.2 The principle

Consider the case where B = 0. Then the equations are decoupled and can be solved explicitly. There are two cases:

1. $a_j \leq 0$. Then u_j is uniquely determined on $\{x > 0\}$ by

(6.2.1)
$$u_j(t,x) = h_j(x-a_jt) + \int_0^t f_j(t',x-a_j(t-t'))dt'.$$

2. $a_j > 0$. Then the formula above determines u_j only on the domain $\{x > a_j t\}$. On the domain $\{x < a_j t\}$, one has

(6.2.2)
$$u_{j}(t,x) = u_{j}(t-x/a_{j},0) + \int_{0}^{x} f(t-(x-x')/a_{j},x')dx'/a_{j}$$
$$= u_{j}(t-x/a_{j},0) + \int_{t-x/a_{j}}^{t} f(t',x-a_{j}(t-t'))dx'.$$

The case $a_j \leq 0$ contains two subcases: $a_j < 0$ and $a_j = 0$ which behave differently:

1. When $a_j < 0$, then the trace of u_j on the boundary $\{x = 0\}$ is given by

(6.2.3)
$$u_j(t,0) = h_j(-a_jt) + \int_0^t f(t',-a_j(t-t'))dt'.$$

2. When $a_j = 0$, the trace is given by the transport equation $\partial_t u_j = f_j$ on the boundary and

(6.2.4)
$$u_j(t,0) = h_j(0,0) + \int_0^t f(t',0)dt'.$$

Definition 6.2.1. The vector field $\partial_t + a\partial_x$ is said to be outgoing if a < 0, incoming if a > 0, tangent if a = 0.

According to this classification, we can group the components of u corresponding to the different categories of vector fields $\partial_t + a_j \partial_x$ and split u intro

$$(6.2.5) u = (u_{in}, u_{tg}, u_{out}).$$

Principle : the boundary conditions (6.1.3) must determine uniquely the traces $u_{j|x=0}$ for the indices j such that $a_j > 0$, that is $u_{in|x=0}$.

In particular, we need N_{in} boundary conditions, where N_{in} is the number of eigenvalues a_j of A which are positive. To avoid technical complications, we therefore assume that

(6.2.6)
$$M$$
 is a $N_{in} \times N$ matrix

and according to the splitting (6.2.5) we write

$$(6.2.7) M = (M_{in}, M_{tg}, M_{out}), M u = M_{in}u_{in} + M_{tg}u_{tg} + M_{out}u_{out}.$$

With these notations, the boundary condition (6.1.3) reads

$$(6.2.8) M_{in}u_{in|x=0} = g - M_{tg}u_{tg|x=0} - M_{out}u_{out|x=0}$$

The analysis shows that $u_{tg|x=0}$ and $u_{out|x=0}$ are determined by f and h, therefore, to determine uniquely $u_{in|x=0}$, the following condition is necessary:

Assumption 6.2.2. The $N_{in} \times N_{in}$ matrix M_{in} is invertible.

In the remaining part of the chapter, assume that this condition is satisfied.

Remark 6.2.3. The case $N_{in} = 0$ is not excluded. In this case, no boundary condition is required.

6.3 The case B = 0

6.3.1 Continuous solutions

Suppose that f is continuous on $\{t \ge 0, x \ge 0\}$ and h is continuous on $\{x \ge 0\}$. Then the components u_{out} and u_{tg} are continuous on $\{t \ge 0, x \ge 0\}$, as well as their trace on $\{x = 0\}$. Therefore if g is continuous on $\{t \ge 0\}$, the trace $u_{in|x=0}$ is determined and continuous on $\{t \ge 0\}$. This implies that the components of u_j of u_{in} are determined by (6.2.1) when $x > a_j t$ and by (6.2.2) when $x < a_j t$. However, these two formulas do not define a continuous function on $\{t \ge 0, x \ge 0\}$, unless they agree on the line $\{x = a_j t\}$. The limits of u_j on this line from above and from below are the solution of the same transport equation along the line $\{x = a_j t\}$. They coincide if and only if they have the same initial value at the origin, that is

$$\lim_{t \to 0} u_{in}(t,0) = \lim_{x \to 0} u_{in}(0,x).$$

The limit in the left hand side is

$$M_{in}^{-1} \Big(g(0) - M_{tg} u_{tg}(0,0) - M_{out} u_{out}(0,0) \Big)$$

= $M_{in}^{-1} \Big(g(0) - M_{tg} h_{tg}(0) - M_{out} h_{out}(0) \Big).$

The limit in the right hand side is $h_{in}(0)$. Therefore, a necessary and sufficient conditions in order to get a continuous solution u_{in} is the following compatibility condition

(6.3.1)
$$Mh(0) = g(0).$$

Proposition 6.3.1. Suppose that f is continuous on $\{t \ge 0, x \ge 0\}$, h is continuous on $\{x \ge 0\}$, g is continuous on $\{t \ge 0\}$ and satisfy the compatibility condition (6.3.1). Then, the boundary value problem (6.1.1) (6.1.3) has a unique solution u which is continuous on $\{t \ge 0, x \ge 0\}$. Moreover, there is a constant C such that if the functions are bounded,

(6.3.2)
$$\|u(t)\|_{L^{\infty}} \le \|h\|_{L^{\infty}} + C \|g\|_{L^{\infty}([0,t])} + C \int_{0}^{t} \|f(t'\|_{L^{\infty}} dt'$$

6.3.2 C^k solutions

For C^k functions, the analysis is similar. The explicit integrations yield C^k functions. However, the C^k regularity of u_j at the interface $x = a_j t$ is more involved and require further compatibility conditions.

For instance, for C^1 solutions, one has the necessary condition

$$\partial_t g(0) = M \partial_t u(0,0)$$

and using the equation, this is equivalent to

(6.3.3)
$$\partial_t g(0) = M f(0,0) - M A \partial_x h(0).$$

Proposition 6.3.2. Suppose that f is C^1 on $\{t \ge 0, x \ge 0\}$, h is C^1 on $\{x \ge 0\}$, g is C^1 on $\{t \ge 0\}$ and satisfy the compatibility conditions (6.3.1) (6.3.3). Then, the boundary value problem (6.1.1) (6.1.3) has a unique solution u which is of class C^1 on $\{t \ge 0, x \ge 0\}$.

For $k \geq 2$, one obtains higher order compatibility conditions, writing

$$\partial_t^k g(0) = M \partial_t^k u(0,0)$$

From the equation,

$$\partial_t^k u = \sum_{j=0}^{k-1} (-A)^j \partial_t^{k-j} \partial_x^j f + (-A)^k \partial_x^k u.$$

Thus the k-the compatibility condition reads

(6.3.4)
$$\partial_t^k g(0) = \sum_{j=0}^{k-1} M(-A)^j \partial_t^{k-j} \partial_x^j f(0,0) + M(-A)^k \partial_x^k h(0).$$

Proposition 6.3.3. Suppose that f is C^k on $\{t \ge 0, x \ge 0\}$, h is C^k on $\{x \ge 0\}$, g is C^k on $\{t \ge 0\}$ and satisfy the compatibility conditions (6.3.4) from order 0 up to order k. Then, the boundary value problem (6.1.1) (6.1.3) has a unique solution u which is of class C^k on $\{t \ge 0, x \ge 0\}$.

6.3.3 L^p solutions, $p < +\infty$

On the one hand, it is simpler because discontinuities along the lines $\{x = a_jt\}$ are permitted in L^p , and in $C^0([0,T]; L^p(\mathbb{R}))$. On the other hand, for general f_{tg} and h_{tg} in L^p , the trace of u_{tg} on $\{x = 0\}$ is not defined in general, and the boundary condition does not make sense, unless $M_{tg} = 0$. The intrinsic way to express this condition is the following.

Assumption 6.3.4. ker $A \subset \ker M$

Lemma 6.3.5. Suppose that $f \in L^1([0,T]; L^p(\mathbb{R}_+))$ and $h \in L^p(\mathbb{R})$. Then the formulas (6.2.1) defines functions u_{out} and u_{tg} in $C^0([0,T]; L^p)$. Moreover, u_{out} which admits a trace $u_{out|x=0}$ in $L^p([0,T])$ such that

(6.3.5)
$$\|u_{out}\|_{x=0} \|_{L^p([0,T])} \le C \|h\|_{L^p(\mathbb{R}_+)} + C \int_{0^T} \|f_j(t')\|_{L^p} dt'.$$

Proof. There are two terms. The first is

$$h_j(x-a_jt).$$

For $p < \infty$ and all $h \in L^p$, $\tau_{\varepsilon}h(x) = h(x - \varepsilon)$ converges to h in L^p as $\varepsilon \to 0$. Thus the first term belongs to $C^0([0,T];L^p)$ and if $a_j < 0$ and is trace is $h(-a_jt)$ which belongs to $L^p([0,T])$.

The second term is the integral in (6.2.1) which is clearly in $C^0([0, T]; L^p)$. When $a_j < 0$, its trace is

(6.3.6)
$$v_j(t) = \int_0^t f_j(t', -a_j(t-t'))dt' = \int_0^T \phi(t', t)dt'$$

where

$$\phi(t',t) = f_j(t',-a_j(t-t'))\mathbf{1}_{[t>t']}.$$

Thus

$$\|v_j\|_{L^p} \le \int_0^T \|\phi(t', \cdot)\|_{L^p} dt' \le C \int_{0^T} \|f_j(t')\|_{L^p} dt'$$

and the lemma is proved.

Thus the natural space for the boundary condition g is $L^p([0,T])$.

Lemma 6.3.6. Suppose that a > 0 and consider the initial-boundary value problem

$$(6.3.7) \qquad \qquad \partial_t + a\partial_x u = f, \qquad u_{|t=0} = h, \quad u_{|x=0} = g$$

If $f \in L^1([0,T]; L^p(\mathbb{R}_+))$, $h \in L^p(\mathbb{R}_+)$, $g \in L^p([0,T])$, then there is a unique solution $u \in C^0([0,T]; L^p(\mathbb{R}_+))$ which satisfies

(6.3.8)
$$||u(t)||_{L^p} \le C ||h||_{L^p} + C ||g||_{L^p([0,t])} + C \int_0^t ||f(t')||_{L^p} dt'.$$

Proof. The solution is the sum of three terms. The initial data contributes to

(6.3.9)
$$h(x-at)1_{[x>at]} = \tilde{h}(x-at)$$

where \tilde{h} is the extension of h by 0 for x < 0. Il belongs to $C^0([0,T]; L^p)$.

The contribution of f can be written in a unified way, as

$$\int_0^t \tilde{f}(t', x - a(t - t'))dt'$$

where \tilde{f} is the extension of f by 0 for x < 0. This term belongs to $C^0([0,T]; L^p)$. It remains the contribution

$$g(t - x/a)\mathbf{1}_{[x < at]} = \tilde{g}(t - x/a)$$

where \tilde{g} is the extension of g by 0 for t < 0. It also belongs to $C^0([0,T]; L^p)$ with L^p norm at time t estimated by $C||g||_{L^p([0,t])}$.

Summing up, we have proved:

Theorem 6.3.7. Assume that the boundary conditions satisfy the Assumptions 6.2.2 and 6.3.4. Then, for $f \in L^1([0,T]; L^p(\mathbb{R}_+))$, $h \in L^p(\mathbb{R}_+)$, $g \in L^p([0,T])$, the initial boundary value problem (6.1.1) (6.1.3) has a unique solution $u \in C^0([0,T]; L^p(\mathbb{R}_+))$. Moreover, there is a constant C such that

(6.3.10)
$$\begin{aligned} \|u(t)\|_{L^{p}} + \|u_{|x=0}\|_{L^{p}([0,t])} \leq \\ C\|h\|_{L^{p}} + C\|g\|_{L^{p}([0,t])} + C\int_{0}^{t} \|f(t')\|_{L^{p}} dt'. \end{aligned}$$

6.3.4 H^s solutions

The question is the following : given $h \in H^s(\mathbb{R}_+)$, $g \in H^s([0,T])$ and $f \in L^1([0,T]; H^s)$, is the solution given by Theorem 6.3.7 in $C^0([0,T]; H^s(\mathbb{R}_+))$? Consider the case s = 1. Functions in $H^1(\mathbb{R}_+)$, $H^1([0,T])$ and in

Consider the case s = 1. Functions in $H^{2}(\mathbb{R}_{+})$, $H^{2}([0, T])$ and in $C^{0}([0, T]; H^{1})$ are continuous and therefore the compatibility condition (6.3.1) is certainly necessary. One can prove

Theorem 6.3.8. Assume that the boundary conditions satisfy the Assumptions 6.2.2 and 6.3.4. For $f \in L^1([0,T]; H^1(\mathbb{R}_+))$, $h \in H^1(\mathbb{R}_+)$, $g \in H^1([0,T])$ satisfying the compatibility condition (6.3.1), the initial boundary value problem (6.1.1) (6.1.3) has a unique solution $u \in C^0([0,T]; H^1(\mathbb{R}_+))$.

The case s > 1 is much more delicate. For instance, the compatibility condition (6.3.3) uses the value of f at the origin (0,0) and this leads to require more regularity in time for f. This will be discussed later on.

6.4 The general case, $B \neq 0$.

If $B \neq 0$ the incoming and outgoing components are coupled, so one cannnot solve the equations as easily. However, one can solve the equation using an iterative scheme

(6.4.1)
$$\begin{cases} \partial_t u^n + A \partial_x u^n = B u^{n-1} + f \\ u^n_{|t=0} = h, \\ M u^n_{|x=0} = g, \end{cases}$$

for $n \ge 1$, starting with $u^0 = 0$. We state the result in L^2 , but it can be extended to the other cases. We can also allow B to depend on the variables (t, x) provided that

$$(6.4.2) B \in L^{\infty}([0,T] \times \mathbb{R}_+).$$

Theorem 6.4.1. Assume that the boundary conditions satisfy the Assumptions 6.2.2 and 6.3.4. Then, for $f \in L^1([0,T]; L^2(\mathbb{R}_+))$, $h \in L^2(\mathbb{R}_+)$, $g \in L^2([0,T])$, the initial boundary value problem (6.1.1) (6.1.3) has a unique solution $u \in C^0([0,T]; L^p(\mathbb{R}_+))$. Moreover, there is are constant C and γ such that

(6.4.3)
$$\begin{aligned} \|u(t)\|_{L^{2}} + \|u_{|x=0}\|_{L^{2}([0,t])} \leq \\ Ce^{\gamma t} \|h\|_{L^{2}} + Ce^{\gamma t} \|g\|_{L^{2}([0,t])} + C \int_{0}^{t} e^{\gamma (t-t')} \|f(t')\|_{L^{p}} dt'. \end{aligned}$$

Proof. By Theorem 6.3.7 the first iterate $u^1 \in C^0[0,T]; L^2$) and satisfies the estimate (6.3.10). By induction, the same theorem gives the iterates $u^n \in C^0[0,T]; L^2$). Writing the equation for $w^n = u^{n+1} - u^n$ and using the estimate, we see that there is a constant γ , which depend on $||B||_{L^{\infty}}$, such that for all $n \geq 1$ and $t \in [0,T]$:

(6.4.4)
$$\|w^n(t)\|_{L^2} + \|w^n_{|x=0}\|_{L^2([0,t])} \le \gamma \int_0^t \|w^{n-1}(t')\|_{L^2} dt'.$$

We start from $w^0 = u^1 - u^0$, and by induction on n, the estimate implies that for $n \ge 1$:

$$\left\|w^{n}(t)\right\|_{L^{2}}+\left\|w^{n}_{|x=0}\right\|_{L^{2}([0,t])}\leq\gamma\int_{0}^{t}\frac{(\gamma(t-t'))^{n-1}}{(n-1)!}\left\|u^{1}(t')\right\|_{L^{2}}dt'.$$

This shows that the series $\sum w^n$ and $\sum w_{|x=0}^n$, hence the sequences u^n and $u_{|x=0}^n$, converge in $C^0([0,T]; L^2)$ and in $L^2([0,T])$ respectively. The limit $u = \lim u_n$. Then, $u - u^1 = \sum_{n \ge 1} w^n$ satisfies

$$\left\| u(t) - u^{1}(t) \right\|_{L^{2}} + \left\| (u - u^{1})_{|x=0} \right\|_{L^{2}([0,t])} \leq \gamma \int_{0}^{t} e^{\gamma(t-t')} \left\| u^{1}(t') \right\|_{L^{2}} dt'.$$

Using the estimate (6.3.10) for u^1 , one obtains (6.4.3).