Chapter 6

An exemple: the $1-\mathrm{D}$ case

6.1 The setting

We consider here a system in space dimension $d=1$

$$
\begin{equation*}
\partial_{t} u+A \partial_{x} u=B u+f \tag{6.1.1}
\end{equation*}
$$

on the half line $\{x>0\}$. This equation has to be supplemented by an initial condition

$$
\begin{equation*}
u_{\mid t=0}=h, \tag{6.1.2}
\end{equation*}
$$

and; possibly, with boundary conditions on $\{x=0\}$:

$$
\begin{equation*}
M u_{\mid x=0}=g \tag{6.1.3}
\end{equation*}
$$

where M is a constant coefficient matrix.
We assume that the system has constant coefficients and is hyperbolic in the time direction, which means that A has only real eigenvalues. We assume a little more, namely that A can be diagonalized (that is saying that the system is strongly hyperbolic). Working in a basis where A is diagonal, reduces to the case where

$$
A=\left(\begin{array}{ccc}
a_{1} & 0 & \tag{6.1.4}\\
0 & \ddots & 0 \\
& 0 & a_{N}
\end{array}\right)
$$

so that (6.1.1) is a system of coupled transport equations

$$
\begin{equation*}
\partial_{t} u_{j}+a_{j} \partial_{x} u_{j}=\sum_{k=1}^{N} b_{j, k} u_{k}+f_{j}, \quad 1 \leq j \leq N . \tag{6.1.5}
\end{equation*}
$$

6.2 The principle

Consider the case where $B=0$. Then the equations are decoupled and can be solved explicitely. There are two cases:

1. $a_{j} \leq 0$. Then u_{j} is uniquely determined on $\{x>0\}$ by

$$
\begin{equation*}
u_{j}(t, x)=h_{j}\left(x-a_{j} t\right)+\int_{0}^{t} f_{j}\left(t^{\prime}, x-a_{j}\left(t-t^{\prime}\right)\right) d t^{\prime} . \tag{6.2.1}
\end{equation*}
$$

2. $a_{j}>0$. Then the formula above determines u_{j} only on the domain $\left\{x>a_{j} t\right\}$. On the domain $\left\{x<a_{j} t\right\}$, one has

$$
\begin{align*}
u_{j}(t, x) & =u_{j}\left(t-x / a_{j}, 0\right)+\int_{0}^{x} f\left(t-\left(x-x^{\prime}\right) / a_{j}, x^{\prime}\right) d x^{\prime} / a_{j} \\
& =u_{j}\left(t-x / a_{j}, 0\right)+\int_{t-x / a_{j}}^{t} f\left(t^{\prime}, x-a_{j}\left(t-t^{\prime}\right)\right) d x^{\prime} . \tag{6.2.2}
\end{align*}
$$

The case $a_{j} \leq 0$ contains two subcases: $a_{j}<0$ and $a_{j}=0$ which behave differently:

1. When $a_{j}<0$, then the trace of u_{j} on the boundary $\{x=0\}$ is given by

$$
\begin{equation*}
u_{j}(t, 0)=h_{j}\left(-a_{j} t\right)+\int_{0}^{t} f\left(t^{\prime},-a_{j}\left(t-t^{\prime}\right)\right) d t^{\prime} \tag{6.2.3}
\end{equation*}
$$

2. When $a_{j}=0$, the trace is given by the transport equation $\partial_{t} u_{j}=f_{j}$ on the boundary and

$$
\begin{equation*}
u_{j}(t, 0)=h_{j}(0,0)+\int_{0}^{t} f\left(t^{\prime}, 0\right) d t^{\prime} \tag{6.2.4}
\end{equation*}
$$

Definition 6.2.1. The vector field $\partial_{t}+a \partial_{x}$ is said to be outgoing if $a<0$, incoming if $a>0$, tangent if $a=0$.

According to this classification, we can group the components of u corresponding to the different categories of vector fields $\partial_{t}+a_{j} \partial_{x}$ and split u intro

$$
\begin{equation*}
u=\left(u_{i n}, u_{t g}, u_{o u t}\right) . \tag{6.2.5}
\end{equation*}
$$

Principle: the boundary conditions (6.1.3) must determine uniquely the traces $u_{j \mid x=0}$ for the indices j such that $a_{j}>0$, that is $u_{i n \mid x=0}$.

In particular, we need $N_{i n}$ boundary conditions, where $N_{i n}$ is the number of eigenvalues a_{j} of A which are positive. To avoid technical complications, we therefore assume that

$$
\begin{equation*}
M \text { is a } N_{i n} \times N \text { matrix } \tag{6.2.6}
\end{equation*}
$$

and according to the splitting (6.2.5) we write

$$
\begin{equation*}
M=\left(M_{i n}, M_{t g}, M_{o u t}\right), \quad M u=M_{i n} u_{i n}+M_{t g} u_{t g}+M_{o u t} u_{o u t} \tag{6.2.7}
\end{equation*}
$$

With these notations, the boundary condition (6.1.3) reads

$$
\begin{equation*}
M_{i n} u_{i n \mid x=0}=g-M_{t g} u_{t g \mid x=0}-M_{o u t} u_{o u t \mid x=0} \tag{6.2.8}
\end{equation*}
$$

The analysis shows that $u_{t g \mid x=0}$ and $u_{o u t \mid x=0}$ are determined by f and h, therefore, to determine uniquely $u_{i n \mid x=0}$, the following condition is necessary:

Assumption 6.2.2. The $N_{\text {in }} \times N_{\text {in }}$ matrix $M_{\text {in }}$ is invertible.
In the remaining part of the chapter, assume that this condition is satisfied.

Remark 6.2.3. The case $N_{i n}=0$ is not excluded. In this case, no boundary condition is required.

6.3 The case $B=0$

6.3.1 Continuous solutions

Suppose that f is continuous on $\{t \geq 0, x \geq 0\}$ and h is continuous on $\{x \geq$ $0\}$. Then the components $u_{o u t}$ and $u_{t g}$ are continuous on $\{t \geq 0, x \geq 0\}$, as well as their trace on $\{x=0\}$. Therefore if g is continuous on $\{t \geq 0\}$, the trace $u_{i n \mid x=0}$ is determined and continuous on $\{t \geq 0\}$. This implies that the components of u_{j} of $u_{i n}$ are determined by (6.2.1) when $x>a_{j} t$ and by (6.2.2) when $x<a_{j} t$. However, these two formulas do not define a continuous function on $\{t \geq 0, x \geq 0\}$, unless they agree on the line $\left\{x=a_{j} t\right\}$. The limits of u_{j} on this line from above and from below are the solution of the same transport equation along the line $\left\{x=a_{j} t\right\}$. They coincide if and only if they have the same initial value at the origin, that is

$$
\lim _{t \rightarrow 0} u_{i n}(t, 0)=\lim _{x \rightarrow 0} u_{i n}(0, x)
$$

The limit in the left hand side is

$$
\begin{aligned}
& M_{i n}^{-1}\left(g(0)-M_{t g} u_{t g}(0,0)-M_{\text {out }} u_{\text {out }}(0,0)\right) \\
& \quad=M_{i n}^{-1}\left(g(0)-M_{t g} h_{t g}(0)-M_{\text {out }} h_{o u t}(0)\right)
\end{aligned}
$$

The limit in the right hand side is $h_{i n}(0)$. Therefore, a necessary and sufficient conditions in order to get a continuous solution $u_{i n}$ is the following compatibility condition

$$
\begin{equation*}
M h(0)=g(0) \tag{6.3.1}
\end{equation*}
$$

Proposition 6.3.1. Suppose that f is continuous on $\{t \geq 0, x \geq 0\}$, h is continuous on $\{x \geq 0\}, g$ is continuous on $\{t \geq 0\}$ and satisfy the compatibility condition (6.3.1). Then, the boundary value problem (6.1.1) (6.1.3) has a unique solution u which is continuous on $\{t \geq 0, x \geq 0\}$. Moreover, there is a constant C such that if the functions are bounded,

$$
\begin{equation*}
\|u(t)\|_{L^{\infty}} \leq\|h\|_{L^{\infty}}+C\|g\|_{L^{\infty}([0, t])}+C \int_{0}^{t} \| f\left(t^{\prime} \|_{L^{\infty}} d t^{\prime}\right. \tag{6.3.2}
\end{equation*}
$$

6.3.2 $\quad C^{k}$ solutions

For C^{k} functions, the analysis is similar. The explicit integrations yield C^{k} functions. However, the C^{k} regularity of u_{j} at the interface $x=a_{j} t$ is more involved and require further compatibility conditions.

For instance, for C^{1} solutions, one has the necessary condition

$$
\partial_{t} g(0)=M \partial_{t} u(0,0)
$$

and using the equation, this is equivalent to

$$
\begin{equation*}
\partial_{t} g(0)=M f(0,0)-M A \partial_{x} h(0) \tag{6.3.3}
\end{equation*}
$$

Proposition 6.3.2. Suppose that f is C^{1} on $\{t \geq 0, x \geq 0\}$, h is C^{1} on $\{x \geq$ $0\}, g$ is C^{1} on $\{t \geq 0\}$ and satisfy the compatibility conditions (6.3.1) (6.3.3). Then, the boundary value problem (6.1.1) (6.1.3) has a unique solution u which is of class C^{1} on $\{t \geq 0, x \geq 0\}$.

For $k \geq 2$, one obtains higher order compatibility conditions, writing

$$
\partial_{t}^{k} g(0)=M \partial_{t}^{k} u(0,0)
$$

From the equation,

$$
\partial_{t}^{k} u=\sum_{j=0}^{k-1}(-A)^{j} \partial_{t}^{k-j} \partial_{x}^{j} f+(-A)^{k} \partial_{x}^{k} u
$$

Thus the k-the compatibility condition reads

$$
\begin{equation*}
\partial_{t}^{k} g(0)=\sum_{j=0}^{k-1} M(-A)^{j} \partial_{t}^{k-j} \partial_{x}^{j} f(0,0)+M(-A)^{k} \partial_{x}^{k} h(0) \tag{6.3.4}
\end{equation*}
$$

Proposition 6.3.3. Suppose that f is C^{k} on $\{t \geq 0, x \geq 0\}$, h is C^{k} on $\{x \geq 0\}, g$ is C^{k} on $\{t \geq 0\}$ and satisfy the compatibility conditions (6.3.4) from order 0 up to order k. Then, the boundary value problem (6.1.1) (6.1.3) has a unique solution u which is of class C^{k} on $\{t \geq 0, x \geq 0\}$.

6.3.3 L^{p} solutions, $p<+\infty$

On the one hand, it is simpler because discontinuities along the lines $\{x=$ $\left.a_{j} t\right\}$ are permitted in L^{p}, and in $C^{0}\left([0, T] ; L^{p}(\mathbb{R})\right)$. On the other hand, for general $f_{t g}$ and $h_{t g}$ in L^{p}, the trace of $u_{t g}$ on $\{x=0\}$ is not defined in general, and the boundary condition does not make sense, unless $M_{t g}=0$. The intrinsic way to express this condition is the following.

Assumption 6.3.4. $\operatorname{ker} A \subset \operatorname{ker} M$
Lemma 6.3.5. Suppose that $f \in L^{1}\left([0, T] ; L^{p}\left(\mathbb{R}_{+}\right)\right.$and $h \in L^{p}(\mathbb{R})$. Then the formulas (6.2.1) defines functions $u_{\text {out }}$ and $u_{t g}$ in $C^{0}\left([0, T] ; L^{p}\right)$. Moreover, $u_{\text {out }}$ which admits a trace $u_{o u t \mid x=0}$ in $L^{p}([0, T])$ such that

$$
\begin{equation*}
\left\|u_{\text {out } \mid x=0}\right\|_{L^{p}([0, T])} \leq C\|h\|_{L^{p}\left(\mathbb{R}_{+}\right)}+C \int_{0^{T}}\left\|f_{j}\left(t^{\prime}\right)\right\|_{L^{p}} d t^{\prime} \tag{6.3.5}
\end{equation*}
$$

Proof. There are two terms. The first is

$$
h_{j}\left(x-a_{j} t\right)
$$

For $p<\infty$ and all $h \in L^{p}, \tau_{\varepsilon} h(x)=h(x-\varepsilon)$ converges to h in L^{p} as $\varepsilon \rightarrow 0$. Thus the first term belongs to $C^{0}\left([0, T] ; L^{p}\right)$ and if $a_{j}<0$ and is trace is $h\left(-a_{j} t\right)$ which belongs to $L^{p}([0, T])$.

The second term is the integral in (6.2.1) which is clearly in $C^{0}\left([0, T] ; L^{p}\right)$. When $a_{j}<0$, its trace is

$$
\begin{equation*}
v_{j}(t)=\int_{0}^{t} f_{j}\left(t^{\prime},-a_{j}\left(t-t^{\prime}\right)\right) d t^{\prime}=\int_{0}^{T} \phi\left(t^{\prime}, t\right) d t^{\prime} \tag{6.3.6}
\end{equation*}
$$

where

$$
\phi\left(t^{\prime}, t\right)=f_{j}\left(t^{\prime},-a_{j}\left(t-t^{\prime}\right)\right) 1_{\left[t>t^{\prime}\right]} .
$$

Thus

$$
\left\|v_{j}\right\|_{L^{p}} \leq \int_{0}^{T}\left\|\phi\left(t^{\prime}, \cdot\right)\right\|_{L^{p}} d t^{\prime} \leq C \int_{0^{T}}\left\|f_{j}\left(t^{\prime}\right)\right\|_{L^{p}} d t^{\prime}
$$

and the lemma is proved.
Thus the natural space for the boundary condition g is $L^{p}([0, T])$.
Lemma 6.3.6. Suppose that $a>0$ and consider the initial-boundary value problem

$$
\begin{equation*}
\partial_{t}+a \partial_{x} u=f, \quad u_{\mid t=0}=h, \quad u_{\mid x=0}=g . \tag{6.3.7}
\end{equation*}
$$

If $f \in L^{1}\left([0, T] ; L^{p}\left(\mathbb{R}_{+}\right)\right), h \in L^{p}\left(\mathbb{R}_{+}\right), g \in L^{p}([0, T])$, then there is a unique solution $u \in C^{0}\left([0, T] ; L^{p}\left(\mathbb{R}_{+}\right)\right)$which satisfies

$$
\begin{equation*}
\|u(t)\|_{L^{p}} \leq C\|h\|_{L^{p}}+C\|g\|_{L^{p}([0, t])}+C \int_{0}^{t}\left\|f\left(t^{\prime}\right)\right\|_{L^{p}} d t^{\prime} \tag{6.3.8}
\end{equation*}
$$

Proof. The solution is the sum of three terms. The initial data contributes to

$$
\begin{equation*}
h(x-a t) 1_{[x>a t]}=\tilde{h}(x-a t) \tag{6.3.9}
\end{equation*}
$$

where \tilde{h} is the extension of h by 0 for $x<0$. Il belongs to $C^{0}\left([0, T] ; L^{p}\right)$.
The contribution of f can be written in a unified way, as

$$
\int_{0}^{t} \tilde{f}\left(t^{\prime}, x-a\left(t-t^{\prime}\right)\right) d t^{\prime}
$$

where \tilde{f} is the extension of f by 0 for $x<0$. This term belongs to $C^{0}\left([0, T] ; L^{p}\right)$. It remains the contribution

$$
g(t-x / a) 1_{[x<a t]}=\tilde{g}(t-x / a)
$$

where \tilde{g} is the extension of g by 0 for $t<0$. It also belongs to $C^{0}\left([0, T] ; L^{p}\right)$ with L^{p} norm at time t estimated by $C\|g\|_{L^{p}([0, t])}$.

Summing up, we have proved:

Theorem 6.3.7. Assume that the boundary conditions satisfy the Assumptions 6.2 .2 and 6.3.4. Then, for $f \in L^{1}\left([0, T] ; L^{p}\left(\mathbb{R}_{+}\right)\right), h \in L^{p}\left(\mathbb{R}_{+}\right)$, $g \in L^{p}([0, T])$, the initial boundary value problem (6.1.1) (6.1.3) has a unique solution $u \in C^{0}\left([0, T] ; L^{p}\left(\mathbb{R}_{+}\right)\right)$. Moreover, there is a constant C such that

$$
\begin{align*}
& \|u(t)\|_{L^{p}}+\left\|u_{\mid x=0}\right\|_{L^{p}([0, t])} \leq \\
& \quad C\|h\|_{L^{p}}+C\|g\|_{L^{p}([0, t])}+C \int_{0}^{t}\left\|f\left(t^{\prime}\right)\right\|_{L^{p}} d t^{\prime} \tag{6.3.10}
\end{align*}
$$

6.3.4 H^{s} solutions

The question is the following : given $h \in H^{s}\left(\mathbb{R}_{+}\right), g \in H^{s}([0, T])$ and $f \in$ $L^{1}\left([0, T] ; H^{s}\right)$, is the solution given by Theorem 6.3.7 in $C^{0}\left([0, T] ; H^{s}\left(\mathbb{R}_{+}\right)\right)$?

Consider the case $s=1$. Functions in $H^{1}\left(\mathbb{R}_{+}\right), H^{1}([0, T])$ and in $C^{0}\left([0, T] ; H^{1}\right)$ are continuous and therefore the compatibility condition (6.3.1) is certainly necessary. One can prove

Theorem 6.3.8. Assume that the boundary conditions satisfy the Assumptions 6.2 .2 and 6.3.4. For $f \in L^{1}\left([0, T] ; H^{1}\left(\mathbb{R}_{+}\right)\right), h \in H^{1}\left(\mathbb{R}_{+}\right), g \in$ $H^{1}([0, T])$ satisfying the compatibility condition (6.3.1), the initial boundary value problem (6.1.1) (6.1.3) has a unique solution $u \in C^{0}\left([0, T] ; H^{1}\left(\mathbb{R}_{+}\right)\right)$.

The case $s>1$ is much more delicate. For instance, the compatibility condition (6.3.3) uses the value of f at the origin $(0,0)$ and this leads to require more regularity in time for f. This will be discussed later on.

6.4 The general case, $B \neq 0$.

If $B \neq 0$ the incoming and outgoing components are coupled, so one cannnot solve the equations as easily. However, one can solve the equation using an iterative scheme

$$
\left\{\begin{array}{l}
\partial_{t} u^{n}+A \partial_{x} u^{n}=B u^{n-1}+f \tag{6.4.1}\\
u_{\mid t=0}^{n}=h \\
M u_{\mid x=0}^{n}=g
\end{array}\right.
$$

for $n \geq 1$, starting with $u^{0}=0$. We state the result in L^{2}, but it can be extended to the other cases. We can also allow B to depend on the variables (t, x) provided that

$$
\begin{equation*}
B \in L^{\infty}\left([0, T] \times \mathbb{R}_{+}\right) \tag{6.4.2}
\end{equation*}
$$

Theorem 6.4.1. Assume that the boundary conditions satisfy the Assumptions 6.2 .2 and 6.3.4. Then, for $f \in L^{1}\left([0, T] ; L^{2}\left(\mathbb{R}_{+}\right)\right), h \in L^{2}\left(\mathbb{R}_{+}\right)$, $g \in L^{2}([0, T])$, the initial boundary value problem (6.1.1) (6.1.3) has a unique solution $u \in C^{0}\left([0, T] ; L^{p}\left(\mathbb{R}_{+}\right)\right)$. Moreover, there is are constant C and γ such that

$$
\begin{align*}
& \|u(t)\|_{L^{2}}+\left\|u_{\mid x=0}\right\|_{L^{2}([0, t])} \leq \\
& \quad C e^{\gamma t}\|h\|_{L^{2}}+C e^{\gamma t}\|g\|_{L^{2}([0, t])}+C \int_{0}^{t} e^{\gamma\left(t-t^{\prime}\right)}\left\|f\left(t^{\prime}\right)\right\|_{L^{p}} d t^{\prime} \tag{6.4.3}
\end{align*}
$$

Proof. By Theorem 6.3.7 the first iterate $u^{1} \in C^{0}[0, T] ; L^{2}$) and satisfies the estimate (6.3.10). By induction, the same theorem gives the iterates $\left.u^{n} \in C^{0}[0, T] ; L^{2}\right)$. Writing the equation for $w^{n}=u^{n+1}-u^{n}$ and using the estimate, we see that there is a constant γ, which depend on $\|B\|_{L^{\infty}}$, such that for all $n \geq 1$ and $t \in[0, T]$:

$$
\begin{equation*}
\left\|w^{n}(t)\right\|_{L^{2}}+\left\|w_{\mid x=0}^{n}\right\|_{L^{2}([0, t])} \leq \gamma \int_{0}^{t}\left\|w^{n-1}\left(t^{\prime}\right)\right\|_{L^{2}} d t^{\prime} \tag{6.4.4}
\end{equation*}
$$

We start from $w^{0}=u^{1}-u^{0}$, and by induction on n, the estimate implies that for $n \geq 1$:

$$
\left\|w^{n}(t)\right\|_{L^{2}}+\left\|w_{\mid x=0}^{n}\right\|_{L^{2}([0, t])} \leq \gamma \int_{0}^{t} \frac{\left(\gamma\left(t-t^{\prime}\right)\right)^{n-1}}{(n-1)!}\left\|u^{1}\left(t^{\prime}\right)\right\|_{L^{2}} d t^{\prime}
$$

This shows that the series $\sum w^{n}$ and $\sum w_{\mid x=0}^{n}$, hence the sequences u^{n} and $u_{\mid x=0}^{n}$, converge in $C^{0}\left([0, T] ; L^{2}\right)$ and in $L^{2}([0, T])$ respectively. The limit $u=\lim u_{n}$. Then, $u-u^{1}=\sum_{n \geq 1} w^{n}$ satisfies

$$
\left\|u(t)-u^{1}(t)\right\|_{L^{2}}+\left\|\left(u-u^{1}\right)_{\mid x=0}\right\|_{L^{2}([0, t])} \leq \gamma \int_{0}^{t} e^{\gamma\left(t-t^{\prime}\right)}\left\|u^{1}\left(t^{\prime}\right)\right\|_{L^{2}} d t^{\prime}
$$

Using the estimate (6.3.10) for u^{1}, one obtains (6.4.3).

