
Chapter 6

An exemple: the 1-D case

6.1 The setting

We consider here a system in space dimension d = 1

(6.1.1) ∂tu+A∂xu = Bu+ f

on the half line {x > 0}. This equation has to be supplemented by an initial
condition

(6.1.2) u|t=0 = h,

and; possibly, with boundary conditions on {x = 0}:

(6.1.3) Mu|x=0 = g,

where M is a constant coefficient matrix.
We assume that the system has constant coefficients and is hyperbolic

in the time direction, which means that A has only real eigenvalues. We
assume a little more, namely that A can be diagonalized (that is saying that
the system is strongly hyperbolic). Working in a basis where A is diagonal,
reduces to the case where

(6.1.4) A =




a1 0

0
. . . 0
0 aN





so that (6.1.1) is a system of coupled transport equations

(6.1.5) ∂tuj + aj∂xuj =
N�

k=1

bj,kuk + fj , 1 ≤ j ≤ N.
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6.2 The principle

Consider the case where B = 0. Then the equations are decoupled and can
be solved explicitely. There are two cases:

1. aj ≤ 0. Then uj is uniquely determined on {x > 0} by

(6.2.1) uj(t, x) = hj(x− ajt) +

�
t

0
fj(t

�, x− aj(t− t�))dt�.

2. aj > 0. Then the formula above determines uj only on the domain
{x > ajt}. On the domain {x < ajt}, one has

(6.2.2)

uj(t, x) = uj(t− x/aj , 0) +

�
x

0
f(t− (x− x�)/aj , x

�)dx�/aj

= uj(t− x/aj , 0) +

�
t

t−x/aj

f(t�, x− aj(t− t�))dx�.

The case aj ≤ 0 contains two subcases: aj < 0 and aj = 0 which behave
differently:

1. When aj < 0, then the trace of uj on the boundary {x = 0} is given
by

(6.2.3) uj(t, 0) = hj(−ajt) +

�
t

0
f(t�,−aj(t− t�))dt�.

2. When aj = 0, the trace is given by the transport equation ∂tuj = fj
on the boundary and

(6.2.4) uj(t, 0) = hj(0, 0) +

�
t

0
f(t�, 0)dt�.

Definition 6.2.1. The vector field ∂t + a∂x is said to be outgoing if a < 0,
incoming if a > 0, tangent if a = 0.

According to this classification, we can group the components of u cor-
responding to the different categories of vector fields ∂t + aj∂x and split u
intro

(6.2.5) u = (uin, utg, uout).

Principle : the boundary conditions (6.1.3) must determine uniquely the
traces uj |x=0 for the indices j such that aj > 0, that is uin|x=0.
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In particular, we need Nin boundary conditions, where Nin is the number
of eigenvalues aj of A which are positive. To avoid technical complications,
we therefore assume that

(6.2.6) M is a Nin ×N matrix

and according to the splitting (6.2.5) we write

(6.2.7) M = (Min,Mtg,Mout), Mu = Minuin +Mtgutg +Moutuout.

With these notations, the boundary condition (6.1.3) reads

(6.2.8) Minuin|x=0 = g −Mtgutg |x=0 −Moutuout|x=0.

The analysis shows that utg |x=0 and uout|x=0 are determined by f and h,
therefore, to determine uniquely uin|x=0, the following condition is necessary:

Assumption 6.2.2. The Nin ×Nin matrix Min is invertible.

In the remaining part of the chapter, assume that this condition is sat-
isfied.

Remark 6.2.3. The case Nin = 0 is not excluded. In this case, no boundary
condition is required.

6.3 The case B = 0

6.3.1 Continuous solutions

Suppose that f is continuous on {t ≥ 0, x ≥ 0} and h is continuous on {x ≥

0}. Then the components uout and utg are continuous on {t ≥ 0, x ≥ 0},
as well as their trace on {x = 0}. Therefore if g is continuous on {t ≥ 0},
the trace uin|x=0 is determined and continuous on {t ≥ 0}. This implies
that the components of uj of uin are determined by (6.2.1) when x > ajt
and by (6.2.2) when x < ajt. However, these two formulas do not define
a continuous function on {t ≥ 0, x ≥ 0}, unless they agree on the line
{x = ajt}. The limits of uj on this line from above and from below are
the solution of the same transport equation along the line {x = ajt}. They
coincide if and only if they have the same initial value at the origin, that is

lim
t→0

uin(t, 0) = lim
x→0

uin(0, x).
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The limit in the left hand side is

M−1
in

�
g(0)−Mtgutg(0, 0)−Moutuout(0, 0)

�

= M−1
in

�
g(0)−Mtghtg(0)−Mouthout(0)

�
.

The limit in the right hand side is hin(0). Therefore, a necessary and suf-
ficient conditions in order to get a continuous solution uin is the following
compatibility condition

(6.3.1) Mh(0) = g(0).

Proposition 6.3.1. Suppose that f is continuous on {t ≥ 0, x ≥ 0}, h is
continuous on {x ≥ 0}, g is continuous on {t ≥ 0} and satisfy the compat-
ibility condition (6.3.1). Then, the boundary value problem (6.1.1) (6.1.3)
has a unique solution u which is continuous on {t ≥ 0, x ≥ 0}. Moreover,
there is a constant C such that if the functions are bounded,

(6.3.2) �u(t)�L∞ ≤ �h�L∞ + C�g�L∞([0,t]) + C

�
t

0
�f(t��L∞dt�

6.3.2 C
k
solutions

For Ck functions, the analysis is similar. The explicit integrations yield Ck

functions. However, the Ck regularity of uj at the interface x = ajt is more
involved and require further compatibility conditions.

For instance, for C1 solutions, one has the necessary condition

∂tg(0) = M∂tu(0, 0)

and using the equation, this is equivalent to

(6.3.3) ∂tg(0) = Mf(0, 0)−MA∂xh(0).

Proposition 6.3.2. Suppose that f is C1 on {t ≥ 0, x ≥ 0}, h is C1 on {x ≥

0}, g is C1 on {t ≥ 0} and satisfy the compatibility conditions (6.3.1) (6.3.3).
Then, the boundary value problem (6.1.1) (6.1.3) has a unique solution u
which is of class C1 on {t ≥ 0, x ≥ 0}.

For k ≥ 2, one obtains higher order compatibility conditions, writing

∂k

t g(0) = M∂k

t u(0, 0).
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From the equation,

∂k

t u =
k−1�

j=0

(−A)j∂k−j

t
∂j

xf + (−A)k∂k

xu.

Thus the k-the compatibility condition reads

(6.3.4) ∂k

t g(0) =
k−1�

j=0

M(−A)j∂k−j

t
∂j

xf(0, 0) +M(−A)k∂k

xh(0).

Proposition 6.3.3. Suppose that f is Ck on {t ≥ 0, x ≥ 0}, h is Ck on
{x ≥ 0}, g is Ck on {t ≥ 0} and satisfy the compatibility conditions (6.3.4)
from order 0 up to order k. Then, the boundary value problem (6.1.1) (6.1.3)
has a unique solution u which is of class Ck on {t ≥ 0, x ≥ 0}.

6.3.3 L
p
solutions, p < +∞

On the one hand, it is simpler because discontinuities along the lines {x =
ajt} are permitted in Lp, and in C0([0, T ];Lp(R)). On the other hand, for
general ftg and htg in Lp, the trace of utg on {x = 0} is not defined in
general, and the boundary condition does not make sense, unless Mtg = 0.
The intrinsic way to express this condition is the following.

Assumption 6.3.4. kerA ⊂ kerM

Lemma 6.3.5. Suppose that f ∈ L1([0, T ];Lp(R+) and h ∈ Lp(R). Then
the formulas (6.2.1) defines functions uout and utg in C0([0, T ];Lp). More-
over, uout which admits a trace uout|x=0 in Lp([0, T ]) such that

(6.3.5)
��uout|x=0

��
Lp([0,T ])

≤ C
��h

��
Lp(R+)

+ C

�

0T
�fj(t

�)�Lpdt�.

Proof. There are two terms. The first is

hj(x− ajt).

For p < ∞ and all h ∈ Lp, τεh(x) = h(x− ε) converges to h in Lp as ε → 0.
Thus the first term belongs to C0([0, T ];Lp) and if aj < 0 and is trace is
h(−ajt) which belongs to Lp([0, T ]).

The second term is the integral in (6.2.1) which is clearly in C0([0, T ];Lp).
When aj < 0, its trace is

(6.3.6) vj(t) =

�
t

0
fj(t

�,−aj(t− t�))dt� =

�
T

0
φ(t�, t)dt�
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where
φ(t�, t) = fj(t

�,−aj(t− t�))1[t>t�].

Thus

�vj�Lp ≤

�
T

0
�φ(t�, ·)�Lpdt� ≤ C

�

0T
�fj(t

�)�Lpdt�

and the lemma is proved.

Thus the natural space for the boundary condition g is Lp([0, T ]).

Lemma 6.3.6. Suppose that a > 0 and consider the initial-boundary value
problem

(6.3.7) ∂t + a∂xu = f, u|t=0 = h, u|x=0 = g.

If f ∈ L1([0, T ];Lp(R+)), h ∈ Lp(R+), g ∈ Lp([0, T ]), then there is a unique
solution u ∈ C0([0, T ];Lp(R+)) which satisfies

(6.3.8)
��u(t)

��
Lp ≤ C

��h
��
Lp + C

��g
��
Lp([0,t])

+ C

�
t

0

��f(t�)
��
Lpdt

�.

Proof. The solution is the sum of three terms. The initial data contributes
to

(6.3.9) h(x− at)1[x>at] = h̃(x− at)

where h̃ is the extension of h by 0 for x < 0. Il belongs to C0([0, T ];Lp).
The contribution of f can be written in a unified way, as

�
t

0
f̃(t�, x− a(t− t�))dt�

where f̃ is the extension of f by 0 for x < 0. This term belongs to
C0([0, T ];Lp). It remains the contribution

g(t− x/a)1[x<at] = g̃(t− x/a)

where g̃ is the extension of g by 0 for t < 0. It also belongs to C0([0, T ];Lp)
with Lp norm at time t estimated by C�g�Lp([0,t]).

Summing up, we have proved:
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Theorem 6.3.7. Assume that the boundary conditions satisfy the Assump-
tions 6.2.2 and 6.3.4. Then, for f ∈ L1([0, T ];Lp(R+)), h ∈ Lp(R+),
g ∈ Lp([0, T ]), the initial boundary value problem (6.1.1) (6.1.3) has a unique
solution u ∈ C0([0, T ];Lp(R+)). Moreover, there is a constant C such that

(6.3.10)

��u(t)
��
Lp +

��u|x=0

��
Lp([0,t])

≤

C
��h

��
Lp + C

��g
��
Lp([0,t])

+ C

�
t

0

��f(t�)
��
Lpdt

�.

6.3.4 H
s
solutions

The question is the following : given h ∈ Hs(R+), g ∈ Hs([0, T ]) and f ∈

L1([0, T ];Hs), is the solution given by Theorem 6.3.7 in C0([0, T ];Hs(R+))?
Consider the case s = 1. Functions in H1(R+), H1([0, T ]) and in

C0([0, T ];H1) are continuous and therefore the compatibility condition (6.3.1)
is certainly necessary. One can prove

Theorem 6.3.8. Assume that the boundary conditions satisfy the Assump-
tions 6.2.2 and 6.3.4. For f ∈ L1([0, T ];H1(R+)), h ∈ H1(R+), g ∈

H1([0, T ]) satisfying the compatibility condition (6.3.1), the initial boundary
value problem (6.1.1) (6.1.3) has a unique solution u ∈ C0([0, T ];H1(R+)).

The case s > 1 is much more delicate. For instance, the compatibility
condition (6.3.3) uses the value of f at the origin (0, 0) and this leads to
require more regularity in time for f . This will be discussed later on.

6.4 The general case, B �= 0.

If B �= 0 the incoming and outgoing components are coupled, so one cannnot
solve the equations as easily. However, one can solve the equation using an
iterative scheme

(6.4.1)






∂tu
n +A∂xu

n = Bun−1 + f

un|t=0 = h,

Mun|x=0 = g,

for n ≥ 1, starting with u0 = 0. We state the result in L2, but it can be
extended to the other cases. We can also allow B to depend on the variables
(t, x) provided that

(6.4.2) B ∈ L∞([0, T ]× R+).
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Theorem 6.4.1. Assume that the boundary conditions satisfy the Assump-
tions 6.2.2 and 6.3.4. Then, for f ∈ L1([0, T ];L2(R+)), h ∈ L2(R+),
g ∈ L2([0, T ]), the initial boundary value problem (6.1.1) (6.1.3) has a unique
solution u ∈ C0([0, T ];Lp(R+)). Moreover, there is are constant C and γ
such that

(6.4.3)

��u(t)
��
L2 +

��u|x=0

��
L2([0,t])

≤

Ceγt
��h

��
L2 + Ceγt

��g
��
L2([0,t])

+ C

�
t

0
eγ(t−t

�)
��f(t�)

��
Lpdt

�.

Proof. By Theorem 6.3.7 the first iterate u1 ∈ C0[0, T ];L2) and satisfies
the estimate (6.3.10). By induction, the same theorem gives the iterates
un ∈ C0[0, T ];L2). Writing the equation for wn = un+1 − un and using the
estimate, we see that there is a constant γ, which depend on �B�L∞ , such
that for all n ≥ 1 and t ∈ [0, T ]:

(6.4.4)
��wn(t)

��
L2 +

��wn

|x=0

��
L2([0,t])

≤ γ

�
t

0

��wn−1(t�)
��
L2dt

�.

We start from w0 = u1 − u0, and by induction on n, the estimate implies
that for n ≥ 1:

��wn(t)
��
L2 +

��wn

|x=0

��
L2([0,t])

≤ γ

�
t

0

(γ(t− t�))n−1

(n− 1)!

��u1(t�)
��
L2dt

�.

This shows that the series
�

wn and
�

wn

|x=0, hence the sequences un and

un|x=0, converge in C0([0, T ];L2) and in L2([0, T ]) respectively. The limit

u = limun. Then, u− u1 =
�

n≥1w
n satisfies

��u(t)− u1(t)
��
L2 +

��(u− u1)|x=0

��
L2([0,t])

≤ γ

�
t

0
eγ(t−t

�)
��u1(t�)

��
L2dt

�.

Using the estimate (6.3.10) for u1, one obtains (6.4.3).
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