Chapter 6

An exemple: the 1-D case

6.1 The setting

We consider here a system in space dimension d = 1
(6.1.1) Ou+ Adyu = Bu + f

on the half line {z > 0}. This equation has to be supplemented by an initial
condition

(6.1.2) o = h,
and; possibly, with boundary conditions on {z = 0}:
(6.1.3) Mujy—g = g,

where M is a constant coefficient matrix.

We assume that the system has constant coefficients and is hyperbolic
in the time direction, which means that A has only real eigenvalues. We
assume a little more, namely that A can be diagonalized (that is saying that
the system is strongly hyperbolic). Working in a basis where A is diagonal,
reduces to the case where

(6.1.4) A=|o . o

so that (6.1.1) is a system of coupled transport equations

N
(6.1.5) Oruj + a;0pu; = Z b rur + f;, 1<j<N.
k=1
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6.2 The principle

Consider the case where B = 0. Then the equations are decoupled and can
be solved explicitely. There are two cases:

1. a; <0. Then u; is uniquely determined on {z > 0} by
t
(6.2.1) w;(t, ) = hj(z — a;t) + / itz —aj(t—t))dt'.
0

2. a; > 0. Then the formula above determines u; only on the domain
{z > a;t}. On the domain {z < a;t}, one has

wi(tea) = uslt = /a0 + [ ft= o= o) ag. )’
(6.2.2) °,
:uj(t—:c/aj,O)—i—/ f x—a;(t—1t))d.

t—x/a;

The case a; < 0 contains two subcases: a; < 0 and a; = 0 which behave
differently:

1. When a; < 0, then the trace of u; on the boundary {z = 0} is given
by
t
(6.2.3) wi(£,0) = hy(—ajt) + / £ —ay(t — t))dt.
0

2. When a; = 0, the trace is given by the transport equation diu; = f;
on the boundary and

t
(6.2.4) Uj(t, 0) = hj(0,0) +/ f(t,, O)dt/.
0
Definition 6.2.1. The vector field 0; + a0, is said to be outgoing if a < 0,
incoming if a > 0, tangent if a = 0.

According to this classification, we can group the components of u cor-
responding to the different categories of vector fields 0; + a;0, and split u
intro

(625) u = (Uinautgauout)-

Principle : the boundary conditions (6.1.3) must determine uniquely the
traces ujj,—g for the indices j such that aj > 0, that is in|z—o-
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In particular, we need N;, boundary conditions, where NN;,, is the number
of eigenvalues a; of A which are positive. To avoid technical complications,
we therefore assume that

(6.2.6) M is a Nj, x N matrix

and according to the splitting (6.2.5) we write

(6.2.7) M = (Min, Mig, Moyt), Mu = Mipuin + Migurg + MoytUout-
With these notations, the boundary condition (6.1.3) reads

(6.2.8) Mintin|g—0 = 9 — Migtgja—o — MoutUout|z—0-

The analysis shows that uig|,—g and ueut|z— are determined by f and h,
therefore, to determine uniquely i, |,—o, the following condition is necessary:

Assumption 6.2.2. The N;, X N;, matriz M, is invertible.

In the remaining part of the chapter, assume that this condition is sat-
isfied.

Remark 6.2.3. The case Ny, = 0 is not excluded. In this case, no boundary
condition is required.

6.3 The case B=0

6.3.1 Continuous solutions

Suppose that f is continuous on {t > 0,z > 0} and h is continuous on {z >
0}. Then the components uq,: and wu are continuous on {t > 0,z > 0},
as well as their trace on {x = 0}. Therefore if g is continuous on {t > 0},
the trace uin|,—o is determined and continuous on {t > 0}. This implies
that the components of u; of u;, are determined by (6.2.1) when x > a;t
and by (6.2.2) when = < ajt. However, these two formulas do not define
a continuous function on {t > 0,z > 0}, unless they agree on the line
{# = ajt}. The limits of u; on this line from above and from below are
the solution of the same transport equation along the line {z = a;t}. They
coincide if and only if they have the same initial value at the origin, that is

}g% Uin(t7 O) = ili% uin (0, '73)
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The limit in the left hand side is
Mi:zl (9(0) - Mtgutg(ou 0) - Moutuout(oa 0))

= M;Ll (g(()) — Mtghtg(()) — Mouthout(o)) :

The limit in the right hand side is h;,(0). Therefore, a necessary and suf-
ficient conditions in order to get a continuous solution wu;, is the following
compatibility condition

(6.3.1) Mn(0) = g(0).

Proposition 6.3.1. Suppose that f is continuous on {t > 0,z > 0}, h is
continuous on {x > 0}, g is continuous on {t > 0} and satisfy the compat-
ibility condition (6.3.1). Then, the boundary value problem (6.1.1) (6.1.3)
has a unique solution u which is continuous on {t > 0,z > 0}. Moreover,
there is a constant C' such that if the functions are bounded,

t
(6.3.2) [u(®)]|zee < [Rllzee + Cllgllzoe(o,0) +C/O 1f (|| Loet’

6.3.2 (% solutions

For C* functions, the analysis is similar. The explicit integrations yield C*
functions. However, the C* regularity of u; at the interface x = a;t is more
involved and require further compatibility conditions.

For instance, for C! solutions, one has the necessary condition

9rg(0) = Mu(0,0)
and using the equation, this is equivalent to
(6.3.3) 91g(0) = M £(0,0) — M Ad,h(0).

Proposition 6.3.2. Suppose that f is C* on {t > 0,z > 0}, his C* on {x >
0}, g is Ct on {t > 0} and satisfy the compatibility conditions (6.3.1) (6.3.3).
Then, the boundary value problem (6.1.1) (6.1.3) has a unique solution u
which is of class C* on {t > 0,2 > 0}.

For k > 2, one obtains higher order compatibility conditions, writing

dFg(0) = MFu(0,0).
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From the equation,

k—1
Ofu=">> (—AYIf 70if + (—A) Ok
§=0

Thus the k-the compatibility condition reads
(6.3.4) aFg(0) Z M(—A) 087 £(0,0) + M(—A)*0Fn(0).

Proposition 6.3.3. Suppose that f is C* on {t > 0,z > 0}, h is C* on
{x >0}, g is C* on {t > 0} and satisfy the compatibility conditions (6.3.4)
from order O up to order k. Then, the boundary value problem (6.1.1) (6.1.3)
has a unique solution u which is of class C* on {t > 0,2 > 0}.

6.3.3  L? solutions, p < +00

On the one hand, it is simpler because discontinuities along the lines {x =
a;t} are permitted in LP, and in CY([0,7]; LP(R)). On the other hand, for
general f;; and hyy in LP, the trace of uy on {& = 0} is not defined in
general, and the boundary condition does not make sense, unless M;, = 0.
The intrinsic way to express this condition is the following.

Assumption 6.3.4. ker A C ker M

Lemma 6.3.5. Suppose that f € L'([0,T); LP(Ry) and h € LP(R). Then
the formulas (6.2.1) defines functions uey: and uggy in C°([0,T); LP). More-
over, Ugy which admits a trace Uoutjg—o i LP([0,T]) such that

(6.3.5) ltoutieoll ooz < CllAll o, +C /0 It
Proof. There are two terms. The first is
hj (l’ — ajt).

For p < oo and all h € LP, 7.h(x) = h(x — €) converges to h in LP as e — 0.
Thus the first term belongs to C°([0,T]; LP) and if a; < 0 and is trace is
h(—ajt) which belongs to LP([0,T7).

The second term is the integral in (6.2.1) which is clearly in C°([0, T7]; LP).
When a; <0, its trace is

(6.3.6) /f] (=t / (¢, 1)d
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where
o(t',t) = fi(t', —aj(t — ") L.
Thus -
fosler < [ 1o vt <€ [ 1@t
and the lemma is proved. O

Thus the natural space for the boundary condition g is LP([0,T7).

Lemma 6.3.6. Suppose that a > 0 and consider the initial-boundary value
problem

(6.3.7) O + adyu = f, Up—o = h, Uz =g
If f € LY([0,T); LP(Ry)), h € LP(Ry), g € LP([0,T)), then there is a unique
solution u € C°([0, T); LP(R..)) which satisfies

t
(6.3.8) [u®)| 1 < Cll2| L, + CHgHLP([O,t]) + C/o 1) et

Proof. The solution is the sum of three terms. The initial data contributes
to

(6.3.9) h(z — at)lpsay = h(x — at)

where h is the extension of h by 0 for z < 0. Il belongs to C°([0, T]; L?).
The contribution of f can be written in a unified way, as

/t ft',x—a(t—t))dt
0

where f is the extension of f by 0 for x < 0. This term belongs to
C°([0,T); LP). It remains the contribution

g(t — x/a)l[z<at] =g(t—x/a)

where g is the extension of g by 0 for ¢ < 0. It also belongs to C°([0,T7]; LP)
with LP norm at time ¢ estimated by C||g|| 1»((0,4)- O

Summing up, we have proved:
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Theorem 6.3.7. Assume that the boundary conditions satisfy the Assump-
tions 6.2.2 and 6.3.4. Then, for f € LY[0,T); LP(Ry)), h € LP(Ry),
g € LP([0,T1]), the initial boundary value problem (6.1.1) (6.1.3) has a unique
solution u € C°([0,T); LP(R.)). Moreover, there is a constant C such that

[u@| o + lge=ol| oo,y <

(6.3.10) v /
Mo+ Cllalloy +€ [ 17N

6.3.4 H°® solutions

The question is the following : given h € H*(R,), g € H*([0,T]) and f €
L([0,T]; H®), is the solution given by Theorem 6.3.7 in C°([0, T]; H*(R.))?

Consider the case s = 1. Functions in H'(Ry), H'([0,7]) and in
CY([0,T); H') are continuous and therefore the compatibility condition (6.3.1)
is certainly necessary. One can prove

Theorem 6.3.8. Assume that the boundary conditions satisfy the Assump-
tions 6.2.2 and 6.3.4. For f € LY[0,T);HY(Ry)), h € HY(Ry), g €
HY([0,T)) satisfying the compatibility condition (6.3.1), the initial boundary
value problem (6.1.1) (6.1.3) has a unique solution u € C°([0,T]; H'(Ry)).

The case s > 1 is much more delicate. For instance, the compatibility
condition (6.3.3) uses the value of f at the origin (0,0) and this leads to
require more regularity in time for f. This will be discussed later on.

6.4 The general case, B # 0.

If B # 0 the incoming and outgoing components are coupled, so one cannnot
solve the equations as easily. However, one can solve the equation using an
iterative scheme

ou™ + Adyu" = Bu" ' + f
(6.4.1) Uy = h,
Muﬁﬁzo =g,
for n > 1, starting with «® = 0. We state the result in L?, but it can be

extended to the other cases. We can also allow B to depend on the variables
(t,z) provided that

(6.4.2) B e L®([0,T] x Ry).
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Theorem 6.4.1. Assume that the boundary conditions satisfy the Assump-
tions 6.2.2 and 6.3.4. Then, for f € LY([0,T); L*(Ry)), h € L*(Ry),
g € L*([0,T)), the initial boundary value problem (6.1.1) (6.1.3) has a unique
solution v € C°([0,T]; LP(Ry)). Moreover, there is are constant C' and
such that

[u®l 2 + [[uge=oll 20,0y <

(6.4.3) t t ! (t—t') ’ /

C 2 + O gl oy + € [ )] pa.
Proof. By Theorem 6.3.7 the first iterate u! € C°[0,T]; L?) and satisfies
the estimate (6.3.10). By induction, the same theorem gives the iterates
u™ € C°0,T); L?). Writing the equation for w™ = u"*! — u™ and using the
estimate, we see that there is a constant 7, which depend on || B||ze, such
that for all n > 1 and ¢ € [0, T):

t
040) [0 O+ ooy <7 [ 0O

We start from w® = u! — u°, and by induction on n, the estimate implies

that for n > 1:

t N\n—1
n n (’Y(t —t ))
Hw (t)HL2 + lezzouﬂ([o,t]) < 'Y/O WHul(t/)HLth/.

This shows that the series > w™ and Wi, _o» hence the sequences u” and

ufy,_g, converge in CY([0,T); L?) and in L?([0,T]) respectively. The limit

1

w = limu,. Then, u —u' =) -, w" satisfies

t
Jute) = O+ 0= ol <7 [ €7 (0]

Using the estimate (6.3.10) for u!, one obtains (6.4.3). O
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