
Chapter 7

Constant coefficients BVP

7.1 Introduction

We consider a constant coefficient system L =
�

Aj∂x̃j +B and the bound-
ary value problem (in short BVP) on the half space

(7.1.1)

�
Lu = f, xn > 0,

Mu|xn=0 = g.

with xn = n · x̃ and n is the conormal direction to the boundary. The
principal part of L is L0 =

�
Aj∂j .

Assumption 7.1.1. i) L is hyperbolic in a direction ν �= n.
ii) An = L0(n) is invertible.

If L is hyperbolic in the normal direction n, the problem is a Cauchy
problem and thus already treated, this is why we do not consider this case.
The case where the boundary matrix is not invertible could be considered
too, but is much more delicate.

The matrices Aj and L(iξ̃) act from spaces E to F and M from E to G.
We assume in this lecture that the boundary is not characteristic, that is
that

At the end, we want to solve and initial boundary value problem (in
short IBVP) the problem (7.1.1) that is for positive time t = ν · x̃ with
an initial datum at t = 0. An intermediate step is to solve the BVP for
times t running from −∞ to +∞ (that is in R

1+d

+ = {xn ≥ 0}), in spaces of
functions or distributions which are allowed to have an exponential growth
in time at +∞, but still decaying (temperate) at infinity in space. More
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precisely, we look for solutions of the form

(7.1.2) eγtu�(x̃)

with u� tempered. The equations for u� reads

(7.1.3)

�
Lγu� = f� xn > 0,

Mu�|xn=0 = g�,

where

(7.1.4) Lγ(∂) = L(∂) + γL(ν), Lγ(iξ̃) = L(iξ̃ + γν).

So the first goal is to solve (7.1.3) when γ is large enough, say γ ≥ γ0, and
next to draw conclusions for (7.1.1) and for the IBVP.

Objectives:

• Introduce the stability condition for (7.1.3), the Lopatinski condition;

• Discuss the causality principle;

• Discuss the finite speed propagation property in relation to the choice
of the time direction.

7.2 The basic bvp for o.d.e

Introduce the coordinates

(7.2.1) x̃ = (t, x�, nn) and the dual variables ξ̃ = (τ, ξ�, ξn).

Apply the tangential Fourier Laplace transform to (7.1.1), that is the Fourier
transform to (7.1.3) with respect to the variables (t, x�). To simplify nota-
tions, we call u the resulting function. The equations are

(7.2.2)

�
∂xnu+G(iζ)u = f, xn > 0,

Mu|xn=0 = g.

Here ζ = (τ, ξ�) ∈ C× R
d−1, Im τ = −γ < 0 and

(7.2.3) G(iζ) = A−1
n L(iζ, 0).

Lemma 7.2.1. Hyperbolicity implies that there is γ0 such that for Im τ <
−γ0, G(iζ) has no eigenvalue on the imaginary axis.
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Proof. If G(iζ) has a purely imaginaryl eigenvalue iλ, then ξn = −λ satisfies
detL(iζ, iξn) = detAn det(iξn +G(iζ)) = 0, which requires that |Im τ | ≤ γ0
for some γ0.

Definition 7.2.2. For Im τ < −γ0, the incoming space E
in(ζ) [resp. out-

going space E
out(ζ) ] is the invariant space of G(iζ) associated to the eigen-

values in {Reλ > 0} [resp. {Reλ < 0}]. We denote by Πin [resp. Πout] the
spectral projectors on these spaces.

The projectors are analytic functions of ζ for Im τ < −γ0

Lemma 7.2.3. The dimension of Ein is equal to N+, the number of positive
eigenvalues of L0(n)−1L0(ν).

Proof. This number is independent of ζ. We compute it for ζ = (−iγ, 0)
with γ → +∞. In this case

Gγ := γ−1G(iζ) = L0(n)
−1L0(ν) + γ−1B → L0(n)

−1L0(ν).

Thus By Assumption 7.1.1, the eigenvalues of L0(n)−1L0(ν) are real and
�= 0. Thus, for γ large, the eigenvalues of Gγ split into two groups. N+ of
them are in Reλ > 0 and N − N+ are in Reλ < 0. Hence G(iζ) has N+

eigenvalues in Reλ > 0 and N −N+ in Reλ >< 0.

We now consider the o.d.e. (∂xn + iG)u = f in spaces of temperate
(or decaying) functions on [0,+∞[. By Lemma 7.2.1 the solutions of the
homogeneous equations u = e−xnGa, split into groups, those which decay
exponentially at +∞ when a ∈ E

in and those which decay exponentially at
−∞ when a ∈ E

out. One has the following representation:

(7.2.4) e−xnGΠin =
1

2iπ

�

C+
e−xnλ

�
G− λId

�−1
dλ

where C+ is a contour in {Re ξn > 0} surrounding the spectrum of G located
in this half space. Similarly

(7.2.5) e−xnGΠout =
1

2iπ

�

C−
e−xnλ

�
G− λId)−1dλ,

with C− ⊂ {Re ξn < 0}.

Lemma 7.2.4. e−xnGΠin [resp. e−xnGΠout is exponentially decaying when
xn → +∞ [resp. xn → −∞]. If f is temperate at +∞, the temperate
solutions of (∂xn + iG)u = f on R+ are

(7.2.6) u(xn) = e−xnGa+ If(xn), a ∈ E
in

76



where

(7.2.7)

If(xn) =

�
xn

0
e(yn−xn)GΠinf(yn)dyn

−

� ∞

xn

e(yn−xn)GΠoutf(yn)dyn.

Therefore, to solve (7.2.2) is remains to check the boundary condition,
that is to solve for a = Πinu0

(7.2.8) a ∈ E
in(ζ), Ma = g −MI(f)|xn=0

Proposition 7.2.5. For Im τ < −γ0, the boundary value problem (7.2.2)
has a unique (temperate) [resp. in the Schwartz class] [resp. in L2] solu-
tion for all f in the same space and all g ∈ G, if and only if M|Ein is an

isomorphism from E
in to G.

This leads to the natural condition which we assume to be satisfied from
now on.

Assumption 7.2.6. The number of boundary conditions is N+, i.e. the
boundary operator acts from E to G where dimG = N+.

The analysis above also legitimates the following condition:

Definition 7.2.7. We say that the (7.1.1) satisfies the Lopatinski condition
(in the time direction dt) if there is γ0 such that for all ζ = (τ, ξ�) with
Im τ < −γ0, Ein(ζ) ∩ kerM = {0}.

7.3 Fourier synthesis

To get solutions for (7.1.3), we must be able to perform the inverse Fourier
transform, that is we need estimates. For simplicity, we give details in L2

spaces.
We use the representation (7.2.6) of the solution

(7.3.1) û(xn, τ, ξ
�) = e−xnG(ζ)â(ζ) + I(ζ, f̂( ·, τ, ξ�))

where I(ζ, f̂) is given by (7.3.3) and ζ = (τ, ξ�) with Im τ < −γ0 for some
γ0.

Lemma 7.3.1. There are m0 ≥ 1, γ0 ≥ 0 and C such that for all real ξn
and all ζ with γ = −Im τ ≥ γ0

(7.3.2) γm0
��(iξnId +G(iζ)−1

�� ≤ �ζ�m0−1.
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Proof. Recall that the determinant p of L(iζ, iξn)−1 satisfies for Im τ < −γ0

|p(iζ, iξn)| ≥ c(γ − γ0)
−N .

Since L−1 is the transposed matrix of of the cofactors of L, divided by detL,
this implies the resolvent estimate

(γ − γ0)
−N

��(L(iζ, iξn)−1
�� ≤ C(|ξn|+ �ζ�)N−1

(see also (2.5.2)). Thus, for γ ≥ 2γ0

γN
��(iξnId +G(iζ)−1

�� ≤ C(|ξn|+ �ζ�)N−1

This implies (7.3.2) when |ξn| ≤ C ��ζ�. When |ξn|/�ζ� is large, (iξnId +
G(iζ)−1 = O(|ξn|−1) which implies (7.3.2).

Lemma 7.3.2. f ∈ L2(R+) then I(f) is the restriction to R+ of the solution
in L2 of (∂xn + iG)ũ = f̃ where f̃ is the extension of f by 0 on the negative
axis.

Proof. ũ is given by the formula

(7.3.3) ũ(xn) =

�
xn

−∞
ei(yn−xn)GΠinf̃dyn −

� ∞

xn

ei(yn−xn)GΠoutf̃dyn.

Corollary 7.3.3. There are C and γ0 such that when Im τ < −γ0

γm0
��I(f)

��
L2 ≤ C�ζ�m0−1

��f
��
L2 ,(7.3.4)

γm0
��I(f)|xn=0

�� ≤ C�ζ�m0− 1
2
��f

��
L2 .(7.3.5)

Proof. ũ can be computed using a Fourier transform in xn: its Fourier trans-
form is

û(ξn) = −i(ξn +G)−1f̂

where f̂ is the Fourier transform of f̃ . The L2 estimate of ũ follows from
(7.3.2). The second estimate follows using the equation and the inequality

(7.3.6) |ũ(0)|2 ≤ 2
��ũ

��
L2

��∂xn ũ
��
L2 ≤ 2

��ũ
��
L2

��f̃
��
L2 +O(�ζ�)

��ũ
��2
L2 .

For the first term in (7.3.1), we use the following estimate.
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Lemma 7.3.4. There is C such that for Im τ < −γ0 and a ∈ E
in(ζ),

u = e−ixnGa satisfies

(7.3.7) γm0
��u

��
L2(R+)

≤ �ζ�m0−1
|a|.

Proof. Introduce L∗ = −∂x − iG∗ the adjoint of L = ∂x + iG. Then

(7.3.8)
�
Lu, v

�
L2(R+)

−
�
u, L∗v

�
L2(R+)

= −
�
u(0), v(0)

�
.

In particular, if u = e−ixnGa with a ∈ E
in, one has

(7.3.9)
�
u, L∗v

�
L2(R+)

=
�
a, v(0)

�
.

For f ∈ L2(R+), extend it by 0 for negative xn and consider the solution v
of L∗v = f̃ . L∗ satisfies the same estimate (7.3.2) as L and repeating the
proof of the Corollary above, we obtain the estimate

(7.3.10) γm0 |v(0)| ≤ C�ζ�m0− 1
2
��f

��
L2 .

With (7.3.8), this implies (7.3.7).

Next we need estimates for the solutions of the equation (7.2.8). The
Lopatinski condition says that there is an inverse mapping R(ζ) : G �→

E
in(ζ) such that MR(ζ) = IdG.

Lemma 7.3.5. If the Lopatinski condition is satisfied, there are γ1, m and
C such that for Im τ ≤ −γ1

(7.3.11) a ∈ E
in(ζ) ⇒ |Im τ |m

��u
�� ≤ C�ζ�m

��Ma
��.

Equivalently, this means that

(7.3.12)
��R(ζ)

�� ≤ C|Im τ |m/�ζ�m.

Proof. Again, the polynomial bound depends on properties of semi-algebraic
functions.

Summing up, we have proved the following:

Theorem 7.3.6. Suppose that the system is hyperbolic in the time direction
and the Lopatinski condition is satisfied. Then, there are C, m and γ0 such
that, when Im τ < −γ0, for all f ∈ L2(R+) and all g ∈ C

N+, the problem
(7.2.2) has a unique solution u ∈ H1(R+) wich satisfies,

γ
��u

��2
L2 +

��u(0)
��2 ≤ C

�
�ζ�/γ

�m�
γ−1

��f
��2
L2 +

��g
��2�.(7.3.13)

where γ = −Im τ .
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