
Chapter 8

Finite speed, local

uniqueness

8.1 Invariant definitions. The incoming spaces

Recall the notations.The symbol L(iξ̃) =
�

iξjAj+B acts from E to F with
dimE = dimF = N . We denote by p(ξ̃) = detL(iξ̃). The principal symbol
is L0(iξ̃) =

�
iξ̃jAj . L is assumed to be hyperbolic in some direction ν

and Γ ⊂ R
1+d denotes the open convex cone of hyperbolic directions. We

consider the domain Ω = {xn > 0} where xn = n · x, and n ∈ R
1+d is

the inner conormal to the boundary. The boundary matrix is An = L0(n),
supposed to be invertible, and we denotes by G(̃iξ) = A−1

n L(iξ̃).
By Theorem 2.4.2, there is γ0 > 0 such that

(8.1.1) ξ̃ ∈ R
1+d, ϑ ∈ Γ ⇒ p(ξ̃ − iγ0ν − iϑ) �= 0

We can normalize ν so that γ0 = 1 so that, denoting by Γν = ν + Γ ⊂ Γ,

(8.1.2) Im ξ̃ ∈ Γν ⇒ p(ξ̃) �= 0.

This implies that for ξ̃ ∈ R
1+d−iΓν , G(ξ̃) has no purely imaginary eigenvalue

and hence the definition of incoming spaces has the following extension:

Definition 8.1.1. For ξ̃ ∈ R
1+d − iΓν , the incoming space E

in(ξ̃) is the
invariant space of G(ξ̃) associated to the eigenvalues in {Reλ > 0}.

The dimension of Ein is constant, and was computed above.

Lemma 8.1.2. E
in(ξ̃) is an holomorphic vector bundle over R

1+d − iΓν of
dimension N+, the number of positive eigenvalues of A−1

n L(ν).
In particular, if n ∈ Γ [resp. n ∈ −Γ], then E

in = C
N [resp. E

in = {0} ]
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From now on, we assume that ±n /∈ Γ otherwise E
in = C

N or Ein = {0}
and all what follows is trivial.

Because
G(iξ̃ + sn) = G(iξ̃) + sId

the incoming spaces have the property that

(8.1.3) E
in(ξ̃ + sn) = E

in(ξ̃)

if the segment [ξ, ξ+ sn] is contained in R
1+d− iΓν . (This is trivial if s ∈ R;

in general, the assumption is that for t ∈ [0, 1] the eigenvalues of G(iξ̃+itsn)
do not cross the imaginary axis, implying that the invariant space associated
to the eigenvalues in {Reλ > 0} is constant).

Consider the projection � : R1+d �→ R
1+d/Rn ≈ T ∗∂Ω and its complex

extension C
1+d �→ C

1+d/Cn ≈ C ⊗ T ∗∂Ω. Let Γ� denote the projection of
Γ:

(8.1.4) Γ� = {ζ : ∃ξ̃ ∈ Γ , ζ = �ξ̃} ⊂ T ∗∂Ω\{0}.

It is an open convex cone in T ∗∂Ω. Let Γ�
ν = ν�+Γ� = �Γν . It is convex and

for ζ ∈ Γ�
ν , �

−1(ζ) is a segment in Γ. Thus the invariance (8.1.3) implies
that Ein depends only on �ξ̃ and legitimates the following definition:

Definition 8.1.3. For ζ ∈ T ∗∂Ω− iΓ�
ν , we set

(8.1.5) E
in(ζ) = E

in(ξ̃), ξ ∈ R
1+d

− iΓν , �ξ̃ = ζ.

In coordinates (t, x�, xn) with dual variables (τ, ξ�, ξn) ∈ R
d ×R, one can

identify T ∗∂Ω with the first factor Rd. This is what we did in the previous
chapter, and this is why we used the notation ζ for element of T ∗∂Ω. More
importantly, we have extended the definition of Ein to the complex domain
{Im ζ ∈ Γ�

ν}.

When L = L0 is homogeneous, then E
in is clearly homogeneous of degree

0 and defined in R
1+d − iΓ. In general, because L0 is hyperbolic with the

same cone of hyperbolic directions Γ, we can introduce the incoming spaces
associated to L0, which we denote by. Ein

0 (ξ̃). For ξ̃ ∈ R
1+d − iΓ and ε > 0

small, we have

(8.1.6)
Πin(ξ̃/ε) =

1

2iπ

�

C+
(G0(iξ̃) + εA−1

n B − zId)−1dz

→ Πin

0 (ξ̃) as ε → 0.
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This property is still true in the quotient ξ̃ �→ ζ. Note that these conver-
gences hold for Im ζ ∈ Γ�, which means in particular that Im ζ̃ �= 0. No
uniformity in Im ζ is claimed as Im ζ → 0.

In the homogeneous case the domain of definition of Ein can be extended,
using the following remark:

Lemma 8.1.4. For all complex number a,

(8.1.7) Im ζ ∈ −Γ�, Im (aζ) ∈ −Γ�
⇒ E

in

0 (aζ) = E
in

0 (ζ).

Proof. Because Γ� is an open convex cone, one has a �= 0 and a �= −1. With
at = ta+ (1− t) �= 0, we prove that Ein

0 (atζ) is constant.
The assumptions are that ζ = �ξ̃ and aζ = �η̃ with Im ξ̃ ∈ −Γ and

Im η̃ ∈ −Γ. Thus η̃ = aξ̃ + sn, for some complex number s. For t ∈ [0, 1],
atζ = �(ξ̃t) with ξ̃t = tη̃ + (1− t)ξ̃ = atξ̃ + tsn. Because

G0(iξt) = atG0(iξ) + itsId,

the invariant spaces of G0(ξ̃t) are those of G(ξ̃). Moreover, since Γ is convex,
Im ξ̃t ∈ −Γ and the eigenvalues of G(iξt) do not cross the imaginary axis.
Hence E

in

0 (ξ̃t) = E
in

0 (ξ̃).

Introduce the open set

(8.1.8) G = {aζ, Im ζ ∈ −Γ�, a ∈ C\{0}} ⊂ C⊗ T ∗∂Ω ≈ C
1+d/Cn.

This set is conic and stable by multiplication by complex numbers a �= 0,
but is not convex. If aζ = bζ �, with Im ζ and Im ζ � in −Γ�, then ζ � = αζ
with α = a/b and (8.2.7) implies that Ein

0 (ζ) = E
in

0 (ζ �). Therefore, it makes
sense to extend the definition of Ein

0 to the domain G in such a way that

(8.1.9) ∀ζ ∈ G, ∀a ∈ C\{0} : E
in

0 (aζ) = E
in

0 (ζ).

In particular, the incoming space E
in(ζ) is defined when ζ̃ ∈ Γ�. We

show that we can also extend the definition of Ein to this region.

Lemma 8.1.5. When ζ̃ = �ξ̃ and ξ̃ ∈ Γ, the eigenvalues of G0(ξ̃) are real
and exactly N+ are positive. The associated invariant space is E

in

0 (ζ) and
has a holomorphic extension to a neighborhood of ζ.

Moreover, there are ε0 > 0 and a complex neighborhood V of ζ such that
E
in extends holomorphical to the cone {ε−1ζ �, ε < ε0, ζ � ∈ V } and

(8.1.10) ∀ζ � ∈ V : Πin(ε−1ζ �) → Πin

0 (ζ �)

One has similar results when θ ∈ −Γ�, with E
in

0 (−θ) associated to the
negative eigenvalues of G0(−θ), so that Ein

0 (−θ) = E
in(θ) in accordance with

(8.1.9).
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Proof. The eigenvalues of G0(ξ̃) = A−1
n L0(ξ̃) are the inverse of those of

L0(iξ̃)−1An which are real since we assumed that ξ̃ is in the cone Γ. And
they do not vanish since the matrices are invertible.

Moreover, Im (−iaξ) ∈ −Γ if Re a > 0 and thus, by (8.1.7), Ein

0 (−iaξ̃) =
E
in

0 (−iξ̃), which means that the invariant space of G0(−iaξ̃) associated to
eigenvalues in Reλ > 0 is constant an equal to E

in(−iξ̃). When a → i in
Re a > 0, G0(−iaξ̃) → G0(ξ), which has real and non vanishing eigenvalues.
Thus E

in(−iξ̃) is the invariant space of G0(ξ) associated to eigenvalues in
Reλ > 0. Since 0 is not an eigenvalue of G0(iξ̃) the invariant space can be
continued analytical for all small perturbations of G0(ξ̃) and the remaining
part of the lemma follows.

8.2 The Lopatinski determinant(s)

We consider boundary conditions M : E �→ G, with with dimG = N+ as
above. The question under discussion is to know wether E

in(ζ) ∩ kerM is
trivial or not. There are several ways to express this condition. First, given
an arbitrary scalar product in E, one can measure the angle between kerM
and E

in(ξ�) through the quantity

(8.2.1) D(ζ) =
�� det(H,Ein(ζ))

��

where the determinant is computed by taking orthonormal bases in each
space. This quantity does not depend on the choice of the bases, but it
depends only on the choice of a scalar product on E. One has

(8.2.2) E
in(ζ) ∩ kerM = {0} ⇔ D(ζ) �= 0.

However, this choice ignores an important feature of the problem, which
is the analytic dependence of Ein. Locally in T ∗∂Ω − iΓ�

ν , one can choose
a holomorphic basis ein

k
(ζ) of Ein(ζ), and form the (local) Lopatinski deter-

minant

(8.2.3) �(ζ) = det
�
g1, . . . , gN−N+ , e

in

1 (ζ), . . . , einN+
(ζ)

�

where the gj form a basis of kerM . This function has the advantage of being
holomorphic in ζ, and locally there are constants 0 < c ≤ C such that

(8.2.4) c|�(ζ)| ≤ D(ζ) ≤ C|�(ζ)|.

The function � can be globalized using analytic continuation and the prop-
erty that T ∗∂Ω − iΓ� is simply connected, but the global properties of the
extended function do not seem obvious.
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There is an alternate way to preserve analyticity. Fix a basis ek of E and
for all subset J = {j1, . . . , jN+} ⊂ {1, . . . , N} of N+ elements consider

(8.2.5) �J(ζ) = det
�
g1, . . . , gN−N+ ,Π

in(ζ)ej1 , . . . ,Π
in(ζ)eN+ .

�

These functions are clearly defined and holomorphic in T ∗∂Ω− iΓ�
ν and

(8.2.6) E
in(ζ) ∩ kerM �= {0} ⇔ ∀J, �J(ζ) = 0.

Considering the principal part L0 which is hyperbolic with the same cone
of hyperbolic directions Γ, one can form the quantities D0 and �J,0 associ-
ated to L0 and M . The following properties are immediate consequences of
(8.1.9), (8.1.6) and Lemma 8.1.5.

Proposition 8.2.1. i) D0 and �J,0 are defined on the set G and

(8.2.7) ∀ζ ∈ G, ∀a ∈ C\{0} : D0(aζ) = D0(ζ), �J,0(aζ) = �J,0(ζ).

ii) For all ζ ∈ T ∗∂Ω− Γ�,

(8.2.8) D(ζ/ε) → D0(ζ), �J(ζ/ε) → �J,0(ζ) as ε → 0.

iii) if θ ∈ Γ�, there are ε0 and a complex neighborhood V of θ such that
D and the �J are defined for ζ/ε if ζ ∈ V and ε < ε0 and the convergence
above is true on V .

8.3 The Lopatinski condition

First remark that if ϑ ∈ Γ�, then there is γ0 such that γϑ ∈ Γ�
ν when γ ≥ γ0.

This legitimates the following definition:

Definition 8.3.1. The (weak) Lopatinski condition is satisfied in the di-
rection ϑ ∈ Γ� if and only if there is γ0 such that D(ζ − iγϑ) �= 0 for all
ζ ∈ T ∗∂Ω and γ > γ0.

Lemma 8.3.2. If L satisfies the Lopatinski condition in the direction ϑ ∈ Γ�,
then L0 also satisfies the Lopatinski condition.

Proof. Suppose that D0(ζ) = 0 at some ζ ∈ T ∗∂Ω−iγϑ. For ε small enough,
the function gε(z) = D(ζ + zϑ/ε) is defined for z in a disc centered at the
origin and gε → D0(ζ + zϑ). Moreover, D0 is not identically 0. Hence,
by Lemma 8.3.5 (Hurwitz lemma if we replace D by an holomorphic local
version), gε vanishes in a neighborhood of the origin.
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Theorem 8.3.3. Suppose that the Lopatinski condition is satisfied in the
direction ϑ ∈ Γ�. Let Σ denote the component of ϑ in {ζ ∈ Γ�, D0(−iζ) �=
0}. Then Σ is an open convex subcone of Γ� in T ∗∂Ω and the Lopatinski
condition is satisfied in all direction θ ∈ Σ.

Proof. a) For ζ ∈ T ∗∂Ω, we look at the function of the complex variable
z, Fζ(z) = D0(ζ + zϑ). It is defined when ζ + zϑ ∈ G, in particular when
Im z < 0 since then ζ + zϑ ∈ T ∗∂Ω − iΓ� and, by assumption, Fζ does not
vanish there. Moreover, −ζ − zϑ ∈ T ∗∂Ω − iΓ� when Im z > 0, and thus
ζ + zϑ ∈ G. By (8.2.7), Fζ(z) = D0(−ζ − zϑ) wich is �= 0 by assumption.
This shows that for ζ ∈ T ∗∂Ω, Fζ is defined and does not vanish when
Im z �= 0.

b) When θ ∈ Σ, Im (−i(θ+zϑ)) = −θ−Re zϑ ∈ −Γ� when Re z ≥ 0 thus
−i(θ+zϑ) ∈ T ∗∂Ω− iΓ� and θ+zν ∈ G. Thus, Fθ is defined for Re z ≥ 0. It
does not vanish when Im z �= 0 by step a), and it does not vanish when z = 0
since Fθ(0) = D0(θ) = D0(−iθ) which is �= 0 by assumption. Therefore,
Fθ(z) �= 0 when Re z = 0.

Moreover, for |z| large in Re z ≥ 0, one has ϑ + z−1ζ ∈ Γ� ⊂ G and
Fζ(z) = D0(ϑ+ z−1ζ) = D0(−i(ϑ+ z−1ζ)) �= 0 since D0(ϑ �= 0).

This shows that Fθ does not vanish when Re z = 0 or when Re z ≥ 0
and lz| is large. Since Fϑ(z) = D0((1 + z)ϑ = D0(ϑ) �= 0 for all z such that
Re z ≥ 0, Lemma 8.3.6 by deformation that Fθ does not vanish either on
the domain {Re z ≥ 0}:

(8.3.1) ∀θ ∈ Σ, ∀z, Re z ≥ 0 ⇒ D0(θ + zϑ) �= 0.

Because Re 1/z ≥ 0 when Re z ≥ 0, the homogeneity of D0, implies that
D0(ϑ + zθ) �= 0 when Re z ≥ 0 and z �= 0. This property is also true at
z = 0, and hence

(8.3.2) ∀θ ∈ Σ, ∀z, Re z ≥ 0 ⇒ D0(ϑ+ zθ) �= 0.

In particular, this applies to z real nonnegative, and by homogeneity, one
has D0(tθ� + sν �) �= 0 when t > 0 and s ≥ 0. This extends to t = 0. Thus
the segment [ν, θ�] is contained in Σ and Σ is star shaped with respect to ν.

c) Let ζ ∈ T ∗∂Ω and θ ∈ Σ. For γ > γ0, we look at the function
of z, Gγ(z) = D(ζ − iγϑ − izθ), which is defined for Re z ≥ 0 since then
Im (ζ − iγθ� − izθ) = −γθ� − Re zθ ∈ −Γ�

ν − Γ� ⊂ −Γ�
ν . It does not vanish

when Re z = 0, since the Lopatinski condition is satisfied in the direction ϑ.
Moreover, when z is large, setting ẑ = z/|z|, one has

Gγ(z) = D
�
− iẑθ + |z|−1(ζ − iγϑ)

�
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By iii) of Proposition 8.2.1, since θ ∈ Γ�, this converges to D0(−iẑθ) =
D0(−iθ) �= 0 if Re ẑ ≥ 0 . This implies that Gγ does not vanish in the half
space Re z ≥ 0, either when Re z = 0 or when |z| ≥ R0(1 + γ), for some R0

large enough.
Therefore, applying Lemma 8.3.6, to prove that

(8.3.3) ∀ζ ∈ T ∗∂Ω, ∀γ > γ0, ∀z, Re z ≥ 0 ⇒ D(ζ − iγϑ− izθ) �= 0.

it is sufficient to show that for γ1 large

(8.3.4) γ ≥ γ1, |z| ≤ R0(1 + γ) : D(ζ − iγϑ− izθ) �= 0.

Here we factor out γ and use again the Proposition 8.2.1 which implies that

Gγ(z) = D(γ(−iϑ− iẑθ + γ−1ζ) → D0(−i(ϑ+ ẑθ)),

where ẑ = z/γ is bounded. By step (8.3.2) the limit does not vanish and
is bounded from below since |ẑ| is bounded. Therefore, (8.3.4) and (8.3.3)
follow.

d) Because Σ is open, one can replace θ by θ− δϑ for some δ > 0 small,
and (8.3.3) implies that

(8.3.5) ∀ζ ∈ T ∗∂Ω, , ∀z, Re z > β ⇒ D(ζ − izθ) �= 0.

This shows that the Lopatinski condition is satisfied in the direction θ�.
Applying step a), this implies that Σ is star shaped with respect to θ�

and the proof of the theorem is complete.

Theorem 8.3.4. If M satisfies the uniform Lopatinski condition in a direc-
tion ϑ ∈ Γ�, then Σ = Γ� and the uniform Lopatinski condition is satisfied
in all directions θ ∈ Γ�.

Proof. We have seen that Γ� − iΓ� ∈ C and that ∆ is continuous there. The
uniform Lopatinski condition implies that |∆(aθ)| ≥ c when θ ∈ Γ� Im a < 0.
Hence by continuity |∆(θ)| ≥ c, implying that θ ∈ Σ.

By Proposition ??, there is ε > 0 such that M � satisfies the Lopatinski
condition in the direction ϑ if |M − M �| ≤ ε, and thus in all direction
θ ∈ Σ = Γ� by Theorem 8.3.3 and the remark above. By Proposition ??,
this implies that the uniform Lopatinski condition is satisfied in all directions
θ ∈ Γ�.
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8.3.1 The analogue of Rouché’s theorem

Lemma 8.3.5. Suppose that Dn is a sequence of functions on Ḣ = {Re z >
}, which converge uniformly to D on compact subsets of Ḣ. Suppose that
for all z ∈ Ḣ there is a neighborhood ω of z, a sequence of holomorphic
functions �n on ω for n ≥ n0, which converge to �, and a constant C > 1
such that

(8.3.6) ∀z ∈ ω, ∀n ≥ n0,
1

C
|�n(z)| ≤ Dn(z) ≤ C|�n(z)|

and �n → � Suppose that D is not identically zero. Then, if D vanishes at
z0 ∈ Ḣ, there is a sequence zn → z such that Dn(zn) = 0.

Proof. a) From the lemma above, we know that D(·) cannot vanish iden-
tically on any open set since it does not vanish at infinity Ḣ.

b ) If D(z) = 0, then by assumption there are holomorphic functions
�n → � on a neighborhood ω such that the zeros of Dn [resp. D] in ω are
the zeros of the �n. Since � is not identically zero, z is a zero of finite order
m and on a possibly smaller neighborhood of z, for n large enough, �n has
the m zeros, counted with their multiplicities.

Lemma 8.3.6. Suppose that D is a continuous function on H := [0, 1]×H
where H = {z ∈ C,Re z ≥ 0}. Suppose that for all (t0, z0) ∈ H, there is a
neighborhood of (t0, z0), a function � on this neighborhood, continuous in t
and holomorphic in z, and a constant C > 1 such that

(8.3.7)
1

C
|�(t, z)| ≤ D(t, z) ≤ C|�(t, z)|.

Suppose that there is R > 0 such that for all t ∈ [0, 1], D(t, z) �= 0 when
Re z = 0 and when |z| ≥ R. Suppose that D(0, z) �= 0 for all z ∈ H. Then
if D(1, ·) does not vanish on H.

Proof. a) We show that D(t, ·) cannot vanish identically on any open set. If
it would, let Z denote the non empty set of points z ∈ Ḣ such that D(t, ·)
vanishes identically on a neighborhood of z. It is open by definition. If zn is
a sequence of points in Z which converge to z ∈ Ḣ, the assumption implies
that on a neighborhood ω of z, the zeros of D are zeros of an holomorphic
function �. In particular, for n large zn ∈ ω and �(zn) = 0. Therefore, the
zeros of � have an accumulation at point, implying that � and therefore D
must vanish identically on ω. Therefore Z is open and closed and Z = Ḣ,
which contradicts the assumption that D(t, ·) does not vanish at infinity. .
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b) The set N of (t, z) such that D(t, z) = 0 is compact in ]0, 1] × Ḣ
where Ḣ = {Re z > 0} is the interior of H. If it is not empty, let t0 =
min{t, (t, z) ∈ N} and let z0 ∈ Ḣ such that D(t0, z0) = 0. Then t0 > 0.

Let � be a function satisfying (8.3.7) on a neighborhood of (t0, z0). By a),
�(t0, ·) it is not identically 0, and therefore it is has a zero of finite order at
z0 and therefore does not vanish on the boundary of a small disc containing
z0. Hence, by Rouché’s theorem, �(t, ·) has a root in this disc for t−t0 small,
which contradicts the definition of t0.
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