Chapter 9

Hyperbolic Mixed Problems

In this chapter, we discuss the classical theory of mixed Cauchy boundary
value problem for symmetric hyperbolic systems see [Frl], [Fr2], [?] and
also [?], [?]. We follow closely the presentation in [?]. For simplicity, we
consider here only constant coefficients equations, and flat boundaries, but
all the technics can be adapted to variable coefficients and general smooth
domains.

9.1 The equations

Consider a N x N system

d
(9.1.1) Lu:=0m+ Y Ajdju=F(u)+f
j=1
For simplicity, we assume that the coeflicients A; are constant. F'is a C*°
mapping from RY to RY. The variables are t € R, y = (y1,...,yq—1) € R
and z € R. The derivations are 9; = 9,, for j € {1,...,d — 1} and 9y = 0.
For simplicity, we work in the class of symmetric hyperbolic operators:

Assumption 9.1.1.

(H1) There is a positive definite symmetric matriz S = 'S > 0 such that
for all j, SA; is symmetric.

(H2) det Az # 0

The matrix S is called a symmetrizer for L. The assumption (H2) means
that the boundary is not characteristic for L. The eigenvalues of A, are real
and different from zero. We denote by N, [resp. N_] the number of positive
[resp. negative] eigenvalues of Ay. Then N = Ny + N_.
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Lemma 9.1.2. The matriz SAg has only real eigenvalues. Counted with
their multiplicities, Ny are positive and N_ are negative.

Proof. Dropping the subscript d, SA = §1/2 (51/2A51/2)5*1/2 is conjugated

to the symmetric matrix A’ := S¥/248Y2 Therefore the eigenvalues of
SA are those of A’, thus are real. In addition, A’ has the same signature
(Ny,N_) as A. O

We consider the equations (9.1.1) on the half space {x > 0} together
with boundary conditions:

(9.1.2) Muj,—y = Mg.

where M is a N’ x N matrix.
In the theory of hyperbolic boundary problems, the simplest case occurs
when the boundary conditions are maximal dissipative:

Definition 9.1.3. The boundary condition (9.1.2) is mazximal dissipative for
L if and only if dimker M = N_ and the symmetric matrix SAg is definite
negative on ker M.

In this Chapter we study the well-posedness of the hyperbolic boundary
value problem (9.1.1) (9.1.2). We always assume that Assumption 9.1.1
holds and that the boundary condition is maximal dissipative. Restricting
attention to the image of M, there is no loss of generality in assuming that
N’ = N,, so that M is a Ny x N matrix.

Remark 9.1.4. The number of boundary conditions is N’ = N, and
there is an easy way to see that this is the correct number of conditions.
In space dimension one, consider a diagonal system 0; + AJ, with A =
diag(a,...,ayn). The diagonal entries are real and do not vanish by As-
sumption (H2). By definition, among them N+ are positive and N_ are
negative. We have seen in the first chapter, that a boundary condition is
needed for 0; + a;0, if and only a; is positive. So, the total number of
boundary conditions must be V.

Remark 9.1.5. The dissipativity condition is satisfied in many physical ex-
amples (wave equations with Dirichlet boundary conditions, Maxwell equa-
tions with usual boundary conditions, etc). However, it is far from being
necessary (see the discussion in Chapter 6 for an approach to necessary
conditions and elementary examples in [?]). In the analysis below, the dis-
sipativity assumption appears as a trick to warranty the validity of good
energy estimates: in applications these computations mean dissipation of a
physical energy.
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9.2 Hyperbolic boundary value problems

In this section we consider the problem

Lu = on R x R%
(9.2.1) { ! M

Mujz—g =9 on R x R!

We use the notation RY = {(y,z) € R : z > 0}. We assume that the
Assumptions (H1) and (H2) are satisfied, that M is a Ny x N matrix and
that the boundary condition is maximal dissipative.

We first solve this equation in weighted spaces: we look for solutions
u = e, assuming that f = €' f and g = €?'g, with u, f and g at least in
L?. This yields the equations

{(L—i—v)ﬂ:f on R x RY

(9.2.2) _ "
Muj,—g =9 on R xR4T,

The choice v > 0 corresponds to the idea that the functions u, f and g
vanish at ¢t = —oo and thus to an orientation of time.

We first study (9.2.2), dropping the tildes. We denote by H?® the usual
Sobolev spaces. We also use the notation ]led =R x Ri.

9.2.1 The adjoint problem

The adjoint of L (in the sense of distributions) is L* := —9;—_ A70;. Thus
—L* has the same form as L.

Lemma 9.2.1. S™! is a symmetrizer for —L*.

Proof. Since S is symmetric definite positive, S~! is also definite positive.
Moreover, SflA; = S*1A§55*1 = S57184;571 = A;571 is symmetric. O

. : . =1+d
For C! functions with compact support in R ++ , one has

(9.2.3) (Lu,v)L2 = (u, L*v) 2 — (Adu‘xzo,v‘wzo)p

where (-, )2 denotes the scalar product in L?. Consider a space of dimension
N4 on which SA, is definite positive. There is a N_ x N matrix M; such
that this space is ker M7. Since M is maximal dissipative, SAy is definite
negative on ker M and therefore

(9.2.4) RY = ker M & ker M,
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Lemma 9.2.2. There are matrices R and Ry of size N_ x N and Ny x N
respectively, such that for all vectors u and v in RN :

(9.2.5) (Aqu,v) = (Mu, Ryv) + (Myu, Rv) .

Moreover, ker R = (Agker M) has dimension Ny and S™1A% is definite
positive on ker R.

Proof. The identity (9.2.5) is equivalent to

(Aqu,v) = (Mu, Riv), Yu € ker M
(Aqu,v) = (Myu, Rv), Yu € ker M .
Since M is an isomorphism from ker M; to R+, the first equation deter-
mines Riv € RN+, Similarly, the second equation determines Rv € RV-.
The identity (9.2.5) implies that (Aju,v) = 0 when u € ker M and
v € ker R, thus ker R C (Agker M)*. Because the two spaces have the same
dimension, they are equal.

Suppose that (S_IAZ}U,U) < 0 for some v € ker R. Then for all u €
ker M, (SAqu, S™v) =0 by (9.2.5) and for all o € R

(SAq(u+ aS '), u+ aS™ ') = (SAqu, u) + a*(AgS v, v) 0.

Since ker M has maximal dimension among spaces on which SA; is non
positive, this implies that S™'v € ker M. Because ker R and A ker M are
orthogonal, one has (A4S~ 'v,v) = (SA48 'v,S ') = 0. Since SAy is
definite negative on ker M, this shows that S~'v = 0, hence v = 0. O

Definition 9.2.3. The system L* with boundary condition R is the adjoint
problem of (L, M).

Note that R is not unique, but the key object ker R = (Ayker M )J- is
uniquely determined from L and M.

With (9.2.3), the lemma implies that for all « and v in C} (@}Jd)

((L + 7)“7 'l)) 2 — (U, (L* + ’Y)U)L2 - (Mu|:r207 R1v|x:O)L2
- (Mlu\x:07 RU\x:O)LQ :

In particular, if u is a solution of (9.2.2) and Rv = 0 on {x = 0}, one has

(f; U) L2 — (u, (L* + ’Y)U)Lz — (g, R1U|z:0)L2

This motivates the following definition of weak solutions.
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Definition 9.2.4. Given f € L*(RI™) and g € L*(RY), u € L2(RY™) s
a weak solution of (9.2.2), if and only if for all ® € Cgo(ﬁifd) such that

R<I>|x:0 =0 one has
(926) (’LL, (L* + ')’)(I))LQ = (fa q)) L2 + (gv qu)|cc:0)L2 :

We now discuss in which sense weak solutions are indeed solutions of
(9.2.2). Introduce the spaces H®*(R1*?) of temperate distributions such
that their Fourier transform satisfy

(9.2.7) / (1172 + [n2) a(r, m, ©)2drdndé < +o0.

For s € N, this is the space of functions u € L? such that their tangential
derivatives Df! u of order |a| < s belong to L?. When s is a negative integer,
this is the space of

U = Z foyua, Ug € L2

laj<—s

The space H**(R1™) is the set of restrictions to {z > 0} of functions in
H O’S(RHd). When s is a positive or negative integer, there are equivalent
definitions analogous to those given on the whole space.

Lemma 9.2.5. For all s € R:

i) the space C’SO(Rfd) is dense in the space Hl’S(R}fd) of functions
u € HO YR such that Dyu € HO (R,

i) the mapping u +— uj,—q extends continuously from HLS(led) to
Hs-i—% (Rd ) .
Proof. The first part is proved by usual smoothing arguments. The details
are left as an exercise.

Consider next u € C§° (@ifd) and denote by (7, n, x) its partial Fourier

transform with respect to the tangential variables (t,y). Integrating 9, |d|*
on R, yields

[e @]
i(r,m, ) < 2 / Baii(r,m, )|, m, 2l de,
0

Thus, with A = (1 +72 + ’77’2)1/27

A2 (-, 0)2 < A% /0 Ogii(-, 2)*de + A2 /0 (-, 2)Pde
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Integrating in (7,7) implies
s O a2 ay < N0ullfyo, . reay + el o v greay = lullf . e, -
( HO»s(RY H (R HLs(RYTY)

Thus the mapping u — u,—¢ extends by density and continuity to H Ls (]R_lﬁd)
with values in H5+1/2(R4). O

We apply this lemma to functions in the the space
(928) D(L) = {u e L}RY) : Lue AR}

Here Lu is computed in the sense of distributions on {z > 0}. This space
is equipped with the norm |ju| ;2 + ||Lu||z2. Because Ay is invertible, for
u € D(L) one has

d—1
(9.2.9) Opu= Ay Lu— Ay 0u— > Ay A0, u
j=1

and therefore D(L) C Hlﬁ_l(Rfd). This shows that all w € D(L) has a

. _1
trace in H ™ 2.

Proposition 9.2.6. i) Cj°(R Hd) is dense in D(L)
it) For all w € D(L) and v € Hl(Rfd), there holds

(9'2'10) (Luv U)L2 = (U,L*U)Lz - <Adu|x:07U\x:O>H—1/2XH1/2

Proof. Consider a tangential mollifier 7 € C°(R x R%™1), with 7 > 0 and
such that [ (t,y)dtdy = 1. For € > 0, let

1 ty d—1
9.2.11 t,y) = —3(=, = teR, ye R .
( ) Je(t,y) Sd](£7€)7 ;Y
Denote by J: the convolution operator jcx*.
If u € D(L) and ® € C(RF?) then J.® € C°(R1*?) and in the sense
of distributions
(u, L* J.®) 12 = (Lu, J.D) 12

Note that we assume here that the support of ® is contained in the open
half space {z > 0}. Because J. commutes with differentiation and with
multiplication by constants, L*J.® = J.L*®. Moreover, for all u and v in
LQ(Rfd), one has

(u, Ja”)LZ = (J€“7U)L2
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Thus, there holds in the sense of distributions on {z > 0}:
LJou=J.Lu .

In particular u. = J.u € D(L). Moreover, for all v in LQ(REd), Jev con-
verges to v in L? when ¢ tends to zero. Thus, for u € D(L), u. converges to
w in D(L).

Next we note that for all v in L?, J.v € H?® for all s € N, since for all
a e N op (Jov) = (88,9:) *v € L?. Thus, u. € H%* for all s. Using (9.2.9)

we see that u. € H'* for all 5. In particular, u. € H 1(R}:rd) and this shows
that H'(RX™) is dense in D(L). Since C§° (E}:_d) is dense in H'(RL™?) this
implies 7).

By (9.2.9), we see that D(L) C H%~! and

[ull g S llullze + | Lul| g2 -
Thus by the trace lemma, the trace u|,—q is well defined on D(L) and

[we=o0llgr-1/2 < NlullL> + [ Lull > -
The identity (9.2.10) holds when u and v belong to C§° (@Td). Both side
are continuous for the norms of u in D(L) and v in H'. Thus, the identity
extends by density to D(L) x H'. O

Corollary 9.2.7. Given f € LQ(Rfd) and g € L*>(RY), u € L2(]Rfd) is a
weak solution of (9.2.2) if and only if
i) u € D(L) and Lu = f — ~vyu in the sense of distributions on {x > 0},
i) the trace uj,—o which is defined in H='2 by i) satisfies Muj,—g = g.

Proof. If u is a weak solution, taking ® with compact support in the open
half space implies that Lu 4+ yu = f in the sense of distributions. Thus
u € D(L).

Comparing (9.2.10) and (9.2.6) we see that for all ® € Cgo(@f_d) such
that R® = 0 on the boundary, there holds

(9: B1®pmo) 12 = (Adtjo=0: Plo=0) 172, jy1/2

Next we use Lemma 9.2.2, which means that A; = (R1)*M + R*M; to see
that the right hand side is equal to

<Mu|:c:07 Rl(I)|x=0>H71/2><H1/2 .
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For all ¢ € C5°(R?) there is ® € C5°(R, ") such that ®),_y = ¢. Thus, for

all ¢ € C§°(RY) such that Rg = 0,
(9, B19)g = (Muja—o, B1®) 12, g11/2
Similar to (9.2.4), there is a splitting
RY = ker R @ ker R;

Therefore, for all ¢ € C$°(R?) with values in R+, there is ¢ € C5°(R?)
such that R¢ = 0 and R1¢ = . Thus for all p € C§°(RY):

(g, (/7)0 = <Mu|x:0790>H71/2><H1/2 .

This means that Muj,—o = g.
Conversely, if u € D(L) and Lu + yu = f, for all test function ®, one

has
(u: (L7 +7)@) g = (£, @) =(Mupp=0, B16) g 1/2, 172
+ <M1U|x:07 R¢>H*1/2><H1/2 .
with ¢ = ®,_o. Taking ® such that R¢ = 0, we see that if Mu,—y =g
then u is a weak solution of (9.2.2). O
9.2.2 Energy estimates. Existence of weak solutions

Lemma 9.2.8. The symmetric matriz SAg is definite negative on ker M if
and only if there are constants ¢ > 0 and C such that for all vector h € CV :

—(SAgh, h) > c|h|* — C|Mh|*.
Proof. Since S A is definite negative on ker M, there is ¢ > 0 such that
Vh e ker M :  —(SAgh,h) > c|h]?.

Since SAy is invertible, dim(SAgker M) = dimker M = N_, thus K =
(SAgker M)+ has dimension N — N_ = N,. In addition since SAy is
definite negative on ker M, K Nker M = {0} and RY = K @ ker M. In
particular, there is Cp such that for all v € K, |v| < Cy|Mv|. By definition
of K, if h =v+ w with v € K and w € ker M, there holds

_(SAdh7 h) = _(SAdU7U)_(SAdw7w) > C|’UJ|2 - C|U|2
> c(]w|2 + |’U|2) —(C+ C)C’S[Mv|2.
> g|h|2 —(C'+ ¢)C2|Mhl?.

The converse statement is clear. O
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Proposition 9.2.9 (Energy estimates). There is C' such that for all v > 0
and all test function u € HY(R x R%), one has

(9.2.12) YllulZe + lup=ollz> < C(ZIE +Mulzs + | Mup—ollz-)

1
ol
g

(9.2.13) YllolZe + llve=olize < C(ZIL" +7)vlZ2 + [ Ruje=oll72)

1
ol
Y
Proof. Both side of the estimates are continuous for the H! norm. Since

Cgo(@ijd) is dense in H 1(}R}:rd) it is sufficient to make the proof when

u € C§°. Then, using that the SA; are self adjoint and integrating by parts
yields

2Re (S(L + V)U) u)LQ = ’}/(S’U,, u) L2 (SAdu\x:m u\m:O)L2
By Lemma 9.2.8, there are ¢ > 0 and C > 0 such that
—(SAqU—0, Ujzeo) 12 = cllujpollF — CllMup_ol|7- -
Because S is definite positive, there is ¢; > 0 such that
(Su,u) ;5 > erllull7e -
Therefore
eryllullFz + elluamollze < 2ISII(L + y)ullp2llull g2 + Cl| Mujp—o]72 -
This implies (9.2.12). The proof of (9.2.13) is similar. O

Proposition 9.2.10. For ally > 0, f and g in L?, the problem (9.2.2) has
a weak solution in L?.

Proof. Consider the space H of ® € H'(R x R‘i) such that R®,_o = 0. Let
Hi = (L* +~)H C L?. By (9.2.13), the mapping L* + v is one to one from
‘H to H; and the reciprocal mapping F satisfies

Fellrz + VAllBiFop—ollr: < Clloll L2 -

Thus the linear form

® — E(QO) = (f? f@)L2 + (g7R1f90\x:0)L2

is continuous on H; equipped with the norm || - || ;2. Therefore it extends as
a continuous linear form on L? and there is u € L? such that £(¢) = (u, ¢)o.
The definition of £ implies that u is a weak solution. ]
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9.2.3 Strong solutions

Definition 9.2.11. Given f and g in L?, u € L? is a strong solution of
(9.2.2) if there exist sequences (U, frn) in Hl(R}ﬁd), and g, in H'(R?) so-
lutions of (9.2.2) and converging to (u, f) in L>(RX™%) and to g in L*(R?)
respectively.

By the density of C§° (Ki—i-d) in H! (R}jd) and continuity from H' to
L? of L and the traces, one obtains an equivalent definition if one requires
that there is a sequence (uy, fpn,gn) in C§° (@fd) solutions of (9.2.2) and

converging to (u, f,g) in L2.

Proposition 9.2.12 (Weak= strong). For all v > 0, f and g in L?, any
weak solution of (9.2.2) in L? is a strong solution and

1
(9.2.14) YlullZz + luja=ollz: < C(jlfll%z +lgll72)

In particular the weak=strong solution is unique.

Proof. Consider again the mollifiers 7 (9.2.11) and the convolution operator
Jeu = 9. x u.

Suppose that u € L? is a weak solution of (9.2.2). For all test function
®, J.® is also a test function and RJ.® = 0. Therefore,

(uv (L* + 7)']6@)[/2 = (f7 J&‘(D)L2 + (gv lee(p‘x:O)LQ .

As in the proof of Proposition 9.2.6 this implies that

(Jou, (L* + ’y)@)L2 = (J-f, <I>)L2 + (J=9, R1<I>‘x:0)L2 .

This means that u. = J.u is a weak solution of

{(L'i_’}/)ua:faa

(9.2.15)
Mug|z—0 = ge -

with f. = J.f and g. = J.g.

The proof of Proposition 9.2.6 shows that for all € > 0, u. € H'(R!T9)
and by Corollary 9.2.7 the equations (9.2.15) hold in L.

Since ue, f- and g. converge in L? to (u, f,g) respectively, this shows
that u is a strong solution.

In addition, the energy estimates (9.2.12) hold for u.. Passing to the
limit, we obtain that u satisfies (9.2.14). O
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9.2.4 Regularity of solutions

We prove that if the data are regular, then the solution is regular. It is con-
venient to equip the spaces H S(Rfd) with a family of parameter dependent
norms:

(9216) ”UHS,'y = Z '78_‘a|||agy,:cu”L2 :

la|<s

We define similar norms on the spaces H*(R?), using only tangential deriva-
tives Oy, .

Proposition 9.2.13. Let s be a non negative integer. For v >0, f € H®
and g € H® the solution of (9.2.2) belongs to H® and

1

Proof. First prove the tangential regularity. We use the mollified equation
(9.2.15). Since u. € H'* for all s, we can differentiate this equation as many
times as we want in (t,y) and 95, u. € H' (R}i_+d) satisfies

(L + ’Y)atcfyua = 81?;ny 9
MOy ueja—o = Ofy9e -

Proposition 9.2.12 implies that

1
Yl lzgo. + lluepe=ollzpo.s < C(;Hsz?fo,s +119e 1 7o)

with C independent of ¢.
Next we use the equation to recover the normal derivatives. We start
from (9.2.9) which implies that

[0zt gro.s—1 S || fell go.s—1 + ||uel| gross -

In addition, since f. can be differentiated s times in =, we see by induction
on k < s that dFu. € H**' for all s’ with

d—1
Ofue = AP0V fo — AT OE TOe — > A A;0E Ojue
j=1

Thus
105 el ros—r < 108 fell gro.s—n + 1|05 e pro.s—isa
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Adding up, we see that u. € H**! and that there is C independent of ¢ and
~ such that

1
Ve llZ + e pe=oll3 < C(;Hfslli7 +lell2 )

This means that the wu. satisfy (9.2.17). Similarly, the differences u. — u.s
satisfy (9.2.17). Hence the family wu. is a Cauchy sequence in H®, so that
the limit u belongs to H* and satisfy (9.2.17). O

9.2.5 Solutions of the boundary value problem (9.2.1)

We now turn to the original equation (9.2.1). Propositions 9.2.10, 9.2.12
and 9.2.13 imply the next result.

Theorem 9.2.14. Suppose that v > 0, s € N, f € e""H® and g € "' H?®.
Then the problem (9.2.1) has a unique strong solution u € ' H® and

_ _ I, _ .
(9.218)  Alle™ullZ, + e upoll2, < C(;Ile TEIZ L+ lle g2 )

where C' is independent of v and u, f, g.

9.3 Solutions on | — 00, 7| and the causality princi-
ple

In this section, we show that if the data of (9.2.1) vanish in the past, then
the solution also does, and we solve the boundary value problem on {t < T'}.
First we note that we have a strong uniqueness result:

Lemma 9.3.1. Assume that f € e'L2NetL? and g € €' L% Ne"Mt L2with
0 < v < 71. Then the solutions u~, and u., giwven by Proposition 9.2.13
applied to v =~y and v = 1 are equal.

Proof. Note that f € e?*L? and g € e L? for all v € [y9,71]. Therefore, for
such 7 (9.2.1) has a unique strong solution u, € e7*L2.

Introduce a function § € C*°(R) such that 8(t) = 1 for ¢ < 0 and
O(t) = et for t > 1. Thus §;0 = hf with h € L>®. With § = v — o,
introduce

v =0(6t) (uy — uy) -
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The properties of § imply that v € e7°'L? and
Lv = 60,0(8t) (wy — y,) = 6h(6t)v, Muj_g=0.

Thus, by uniqueness in €"?L?, Theorem 9.2.14 applied to v = 7o, implies
that there is a constant C, independent of the ~+’s, such that

volle |2 < Cdlle™ ]| 2

If C§ < ~p, this implies that v = 0. Summing up, we have proved that
for v < (14 1/2C)y and 79 < v < 71, one has uy = u,,. By induction,
this implies that for all integer k& > 1, uy = u,, for v € [yo, 1] with 7 <
(1+1/2C)* . Hence, uy = u,, for v € [y0,71]. O

This implies local uniqueness:

Proposition 9.3.2. If f € thL2(]R}r+d) and g € e L2(RY) with v > 0
vanish for t < T, then the solution u & e7tL2(Ri+d) of (9.2.1) vanishes for
t<T.

Proof. Since f and ¢ vanish for ¢ < T, f and ¢ belong to ?*L? for all 7/ > ~.
Thus, by the lemma above, u € e7*L? for all 4/ large and by Theorem 9.2.14
there is C' such that for all v' > ~:

A 1 A A
ﬂk”M@SC?M”W@+0M”M@-
Thus

1 C 1 / _
Vlulaqgesry <7167l < ST fF2 4+ Cl TS,
C

<=
5

17T f12, 4+ CJle? 0 f|2, .

The right hand side is bounded as 4’ tends to infinity, thus u<ry = 0. O

We now consider solutions of (9.2.1) on | — o0, T] x RZL. First, we note
that the traces are well defined.

Lemma 9.3.3. Suppose that u € L*(|Ty, To[xR%) satisfies Lu € L?(JT1, To[xR%).
Then the trace uj,—q is well defined in H_1/2(}T1,T2[><Rd_1).

loc
Proof. Consider x € C§°(]T1,T2[). Then xu, extended by 0 belongs to
L%Rf‘d) and L(xu), which is the extension by 0 of x Lu+d;xu, also belongs
to LQ(Rfd). Thus, by Lemma 9.2.5, yu has a trace in H~'/2 and the lemma
follows. u
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Therefore, for u € L2(|Ty, To[xR%) such that Lu = f € L*(|Ty, To[xR%)
the equation Muj,—g =g € L? makes sense.

Corollary 9.3.4. Suppose that v > 0 and u € e’ L?(]—o00,T] xRi) satisfies

Lu=0 on ] —o00,T] x Ry)
Muj,—g =0 on | — o0, T].

Then u = 0.
Proof. For 6 > 0 choose x € C*°(R) such that

x(t)=1 fort<T —9§ and x(t)=0 fort>T-—4/2.

Extend v = x(t)u by 0 for t > T. Then v € ¢’*L?, Mwv vanishes on the
boundary, and f := Lv which is the extension of (9;x)u by 0 for ¢t > T
vanishes for ¢ < T'— 6 and belongs to €' L?. Thus, by Proposition 9.3.2
v and hence u vanish for ¢ < T — §. Since § is arbitrary, this implies that
u = 0. O

Remark 9.3.5. If v and u; are two solutions in " L? of (9.2.1) on | —
00, T1] x R% associated to L? data (f,g) and (f1,g1) respectively, and if
f=fiand g = g1 fort < T, then u = uq for t <T'. Thus the values of u for
times t < T only depend on the values of the data f and g for ¢ < T. This
means that the solutions constructed above satisfy the causality principle.

Theorem 9.3.6. Suppose that f € Y H*(]—o0, T]xR%) and g € e H(] -
00, T] x R4™Y), for some v > 0 and s € N. Then the problem (9.2.1) has a
unique solution u € Y H*(] — 00, T] x R%).
If f and g vanish fort < T4, then the solution u also vanishes fort < 1Tj.
Moreover, estimates similar to (9.2.18) are satisfied.

Proof. Extend f and g for t > T as fe H* (R x ]Ri) and g € H*(R x R4~1).
We can choose the extension such that they vanish for ¢ > 7"+ 1. For
instance, when s = 0, we can extend them by 0. Because f = f and g = g
for t < T and vanish for t > T + 1, f and g belong to e"' H*. Therefore, by
Theorem 9.2.14 the problem

(9.3.1) Lu=f, Miuj,—g =g

has a unique solution @ € e? H*. Its restriction to {t < T’} satisfies (9.2.1).
This proves the existence part of the statement.
The uniqueness follows from Corollary 9.3.4. O
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9.4 The mixed Cauchy problem

We now consider the mixed Cauchy-boundary value problem:
Lu=f on [0,7] x R%
(9.4.1) Muj,—g =g on [0,T] x R4!
Ujp—p = Uo on Ri
We first solve the problem in L? and next study the existence of smooth

solutions.
When u € L*([0,7] x R%) and Lu € L*([0,T] x R%), the trace uj,—g

is defined in H. l;i/ 2 (J0, T[xR41) thus the boundary condition makes sense.

We will construct solution in the space C°([0, T7; L*(R%)) identified with a
subspace of L?([0, 7] xR%) and for such u the initial condition is meaningful.

9.4.1 L? solutions

The starting point is an energy estimate. Note that, by standard trace theo-
rems (see also Lemma 9.2.5) all v € H'([0,7] x R%) belongs to
CO([o,T); HY2(R4)) < C°([0,T); L2(RL)). In particular, for such w, the
value of u at time ¢ € [0, 7], denoted by u(t), is well defined in L?(R%).

Proposition 9.4.1. There is a constant C' such that for all T > 0, all
ue HY[0,T) x RY) and all t € [0,T), the following inequality holds:

)l 2y + Npamoll 2 go.g ey < € (ol 2gas
(9.4.2)

t
+ [ 1O sz + laliaqoan )
where ug = u(0), f:= Lu and g := Muj,—g.

Since u € H', f = Lu belongs to L?, thus

/
£ Ol = ([ 1760 0)Pdydz)

is well defined in L?([0,77), thus in L!([0,T]).

Proof. By integration by parts, as in Proposition 9.2.9, there holds:

2Re (Sf, u)LQ([OJ]XRi) = (Su(t), u(t))LQ(Ri) — (Su(0), u(O))LQ(Ri)

- (SAdu|$:0’u|$:0)L2([O,T]><Rd—1) :
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Since S is definite positive and using Lemma 9.2.8, this implies
() st + a0 1) < C (180 2o
t
gl operin + [ 176 gy (o)l e ) -

Taking the supremum of these estimates for ¢ € [0,t], we can replace in
the left hand side ||u||iQ(Ri) by n?(t) where n(t) := SUPy e[ Hu(t/)HLZ(Ri)-

Moreover, the integral in the right hand side is smaller than

t t
) [ 1) eyds < ent0)+ e ([ 156 ds)

Choosing & small enough to absorb Cen? from the right to the left, yields,
with a new constant C"

n?(t) + Hu|z:0||%2([0’t]><Rd*1) < C(HU(O)H%z(Ri)
t
2
gl o gens-ny + (| 17lsaqegy)’as)
and (9.4.2) follows. O

This estimate has consequences for strong solutions of (9.4.1).

Definition 9.4.2. Given f € L?([0,T] x R%), g € L*([0,T] x R¥1) and
uy € L*(RL), we say that u € L*([0,T] x R%) is a strong L*-solution of
(9.4.1) if there is a sequence u™ € H'([0,T] x RY) such that u™ — u, Lu™ —
[y Mu™,—g — g and u™(0) = ug in L2,

Proposition 9.4.3. Ifu € L?([0,T]xR%) is a strong L*-solution of (9.4.1),
then u satisfies the equations (9.4.1), u € C°([0, TY; LQ(Ri)), its trace uj,—g
belongs to L2([0,T] x R¥™Y) and the energy inequalities (9.4.2) are satisfied.

Proof. Suppose that u” is a sequence in H! such that u” — wu, Lu™ — f,
Mu™,_y — g and u™(0) — ug in L2

Applying the estimate (9.4.2) to differences v — u™, we conclude that
u™ is a Cauchy sequence in C°([0,77; L?(R%)) and that the traces u"p—o
form a Cauchy sequence in L2([0,7] x R?1). Hence u™ converges to a
limit v € CO([0, T]; L*(R%)) and the traces u"|,_o converge to a limit h €
L%([0, T) xR9~1). Since u™ — w in L?, by uniqueness of the limit in the sense
of distributions, v = u. Moreover, Lu™ — Lu in the sense of distributions,
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thus Lu = f. Using Lemmas 9.3.3 and 9.2.5, we get that the traces u"|,—o

converge t0 ujy—q in Hl_oi/z(]O,T[defl), and since the traces converge to
h in L?, this implies that Ugy—o = h € L%([0,T] x R4Y). In particular,
Muj,—g = lim Mu",_o = g. Since u" — u in C°([0,T]; L?), there holds
u™(0) — u(0) and thus u(0) = ug in L?. This shows that u is a solution of
(9.4.1) and that the trace on {x = 0} is in L.

Knowing the convergences u" — u in C°([0,T]; L?), Lu™ — f, u —

n
|z=0
Ujp=0 N L?, we can pass to the limit in the energy estimates for 4™, and so

obtain that u satisfies (9.4.2). O

Remark 9.4.4. This statement applies to solutions of (9.2.1). Suppose that
feL?(]—o00,T) xRL) and g € L?(] — 0o, T] x R4™1) vanish for ¢ < 0. The
unique solution u € L?(] — oo, T] x R%) of (9.2.1) which vanishes when ¢ < 0,
given by Theorem 9.3.6 is a strong solution by Proposition 9.2.12, or as seen
by writing f = lim 7, g = lim¢” with f* € H', g" € H' vanishing when
t < 0. Then, by Theorem 9.3.6, the solution u™ of (9.2.1) with data (f", g")
belongs to H' and converge in L? to u. Since u" vanishes for ¢t < 0 and
u™ € H', the trace of u™ on {t = Ty} vanishes, i.e. u"(Tp) = 0 for all Ty < 0.
This shows that u, restricted to {t > Ty} is a strong solution of (9.4.1) with
vanishing initial data at time Tp. Thus, u € C°(] — 0o, T]; L>(R%)) and the
estimates (9.4.2) hold.

We can now state the main theorem.

Theorem 9.4.5. For all up € L*(RY), f € L*([0,T] x RY) and g €
L2([0, T)xRI7Y), there is a unique solutionu € C°([0,T], L*(R)) of (9.4.1).
It is a strong solution, its trace on {x = 0} belongs to L*([0,T] x R¥"1) and
the energy estimate (9.4.2) is satisfied.

Proof. a) Existence. Denote by H&(Ri) the space of functions in v €
HY(R%) such that V=0 = 0. Since Hj (R%) is dense in L*(R4), there is a
sequence ug such that:

uf € Hy(RL),  |lug — uol|zz — 0.

Considered as a function independent of ¢, u§ belongs to H'([0, 7] xR%), its
trace on z = 0 vanishes and Lu} € L2([0,7] x R%+). By density of smooth
functions with compact support in L2, there is a function f™ such that

1
freH' (=00, T)xRL), flio=0, 1F* = (f = Lug)ll 2o, ryxmey < -
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Similarly, there is g" such that

_ 1
g e H'(| =00, TIxR¥Y), ghig=0, llg" = gllo>(o1)upa1) < o

By Theorem 9.2.14, there is a unique function v™, such that
v e HY(] — 00, T] x Ri), Lv" = f", V"0 =0, Mv",—o=g".

In particular, since v € H', v" € C(] — o0, T]; L*(R%)), and since v™ = 0
when ¢ < 0, this implies that v™(0) = 0.

Consider u” the restriction on [0,7] x R% of v™ + uf. It belongs to
HY(] — 00, T] x RY), its trace on {z = 0} is equal to the trace of v, thus
Mu"y—g = ¢g" — g in L% Moreover, u™(0) = u} — ug in L? and Lu" =
f" + Lug — f. Thus, applying the estimate (9.4.2) to differences u" — u™,
we conclude that u™ is a Cauchy sequence in C°([0,77; L*(R%)). Thus u"
converges to a limit u in C°([0,T]; L?(R%)), thus in L?([0,7] x RY). The
properties listed above show that w is a strong solution of (9.4.1), thus a
solution which satisfies the estimates (9.4.2).

b) Uniqueness. Suppose that u € C°([0,T]; L*>(R%)) satisfies Lu = 0,
Muj,—y = 0 and u(0) = 0. Consider a C*° non decreasing function x(t) such
that x =0 for ¢t < 1 and x(t) = 1 for ¢t > 2. For § > 0, let xs5(t) = x(¢/9).
Consider us the extension by 0 for ¢ < 0 of ysu. Thus Lug is the extension
by 0 of (0;xs)u and thus belongs to L2. Moreover, the trace of us is the
extension of Xsujz—o. Thus Mugs,—o = 0. Therefore, us is a solution of
(9.2.1) which vanishes in the past. By Remark 9.4.4, it is a strong solution
and the energy estimates (9.4.2) are satisfied. Hence, for ¢t > 26

t 2
Ju(®)l> < C/O (Dixs)(s)lu(s) 2ds = 0/1 (Dex(s)|[u(ds)| L2ds -

Since u € C°([0,T]; L?) and u(0) = 0, the right hand side converges to zero
as 0 tends to zero, implying that u = 0. O
9.4.2 Compatibility conditions

In order to solve the mixed Cauchy problem in Sobolev spaces, compatibility
conditions are needed. For instance, the initial and boundary conditions
imply that necessarily

(9.4.3) Mug|y=0 = gji=0 = Muji=0.4=0
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provided that the traces are defined. Next, denote by A the operator

d
Au=Y" A;0;.
j=1

Thus, if Lu = f, Oyu = f — Au and therefore
uy = Opuj—o = —Aug + fo
if fo = flt=o- Thus, provided that the traces are defined,
(944)  Muijp=o = M(fo — Auo)jz=0 = g1 := Orgjt=0 = MU= z=0 -

These conditions are necessary for the existence of a smooth solution. Con-
tinuing the Taylor expansions to higher order yields higher order condition
as we now explain. ‘

For u smooth enough denote by u; = 9] uj—o the traces at t = 0 of
the derivatives of u. For instance, if u € H®, s > 1, they are defined for
j < s—1. Similarly, we note f; = 9] fji—o and g; = 9/g;—o when they are
defined. If u is a solution of Lu = f, then for j > 1:

uj = fij-1— Auj

By induction, this implies that

-1
(9.4.5) uj = (—A) ug + Z(*A)j_l_lfl .
1=0

The boundary condition Mu,—o = g implies that
Mujjz—o = gj
Thus necessarily, for smooth enough functions, solutions of (9.4.1) must

satisfy on the edge {t =0,z = 0}:

j—1
(9.4.6) M((—A)juo + 3 M(—Ay f,) =g
=0

|z=0 N
Lemma 9.4.6. For s > 1, ug € H*(RY), f € H*([0,7] x RY) and g €

H*([0,T] x RI1), the left and right hand sides of (9.4.6) are defined for
j€{0,...,5—1} and belong to H*~3~1/2(R4"1).
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Proof. Forug € H®, AJuy € H*7 and the trace (Ajuo)‘mzo is defined for j <
s and belongs to H*7~1/2(R%1). For f € H®, the traces f; are defined for
| < s—1 and belong to H~=1/2, Thus, A7~!=1f, € H5~7+1/2 and the traces
(Aj_l_lfl)pg:o are defined for j < s and belong to H*~7(R?~1). For g € H*,
the traces g; are defined for j < s and belong to Hs—I=1/2(Ra-1), O

The lemma shows that the following definition makes sense.

Definition 9.4.7. The data ug € HS(Ri), f e H*([0,T] x Ri) and g €
H*([0,T] x R4YY satisfy the compatibility conditions to order o < s — 1 if
the equations (9.4.6) hold for all j € {0,...,0}.

For instance, the first two conditions, given by (9.4.3) and (9.4.4) are

(9.4.7) Mug|z=0 = 9jt=0
(9.4.8) (M Au)|z=0 = folz=0 — 91-

When s = 0, there are no compatibility condition. When s = 1, there is
only one, (9.4.7). When s = 2, there are two conditions, (9.4.7) and (9.4.8),
etc.

Remark 9.4.8. Suppose that f = 0 and ¢ = 0. In this case, the com-
patibility conditions read M (A’ uo)jz—o = 0. Considering the operator A
with domain D(A) = {u € L?*(R%); Au € L*(R%)and Muj,_q = 0}, the
compatibility conditions of order s reads ug € D(A?®).

The next result is useful in the construction of smooth solutions.

Proposition 9.4.9. Suppose that ug € H*(RY), f € H*([0,T] x R%) and
g € H*([0, T) xRY1) are compatible to order s—1. Then there are sequences
up € HPYRL), fm e HTY([0,T] x RL) and g" € H*1([0,T] x RI-1),
compatible to order s, such that uj — ug, f* — f and g" — g in H®.

Proof. a) Consider first the case s = 0. Then ug, f and g are arbitrary data
in L2. One easily construct approximating sequences u?, f", g" arbitrarily
smooth and compatible to any order, by approximating the data by C*°
functions which vanish near t = 0,z = 0.

b) Suppose now that s = 1, ug, f and g are data in H'! which satisfy
the first compatibility condition (9.4.7). Consider sequences u(, f", ¢" in
H?, which converge in H' to ug, f and g respectively. By (9.4.7) and the
continuity of the traces, rj := gﬁzo — Mug|,—o satisfies

rg € HY2RYY), |lrfll gaszga1y = 0.
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To construct H? data (ug + o™, f*, ¢™) which are compatible to first order,
it is sufficient to construct v” such that:

v" EHQ(Ri)v ||Un||H1 —>Ov MU\Z:O :7"8, M(Avn)u::o:?“?,

with 7 = M (Aug)|y—0 — Jlreteo = 0910 € HY2(R41). Since M is onto,
there is a N x N, matrix, M’, such that MM’ = Id. Thus is is sufficient to
find v™ such that

(049) "€ HXRL), 0" =0, oft_g=hE, (Av")ag=hY,

with b = M'r™ € H3/2 b} = M'r} € H'Y/2. Moreover, hiy — 0 in H'/2.

Note that (9.4.9) concerns only functions of (y,z) € R? and their traces
on {z = 0}. We recall the classical construction of Poisson operators. Con-
sider ¢ € C§°(R), ¢ > 0, such that ¢(x) =1 for |z| < 1 Denoting here by ©
the Fourier transform with respect to y, consider the operator

K:he Kh, Kh(n,z) = é(zn)hn)

with (n) = (1 + [n|?)'/2. Then, K is bounded from H'/?(R%~') to H'(R%)
and from H3/2(R?1) to H2(R%). Moreover, (Kh)jz—o = h. Consider vf =
Kh™. Then, v} € H?, vy |z=0 = h{ and v — 0 in H'. Therefore, to find a
solution v™ = v +w™ of (9.4.9), it is sufficient to find w™ which satisfy the
same properties with Ay = 0 and hf replaced by kf' = AT —(Avf) =0 € H'/2.
In addition, A = 440, + A" where A" =" ._, A;0;. Thus, is is sufficient to
find w" such that

j<d

(9.4.10) w" € Hz(Ri), [w*[[gr =0, wi_g=0, Gpw"jzeg=k",

with k" = A kT € HY2.
We use a Poisson operator P, defined by

—

Pah(n, ) = 26(Aazx(n))h(n)

where A, > 11is to be chosen. We note that P, maps H'/?(R4~1) to H?(R%),
that (Pyh)jg—o = 0 and (0rPph)jz—0 = h. Thus, w" = P,k" satisfies the
first, third and fourth property in (9.4.10). It remains to show that one can
choose the sequence \, such that w™ — 0 in H'.

Elementary computations using Plancherel’s theorem, show that

A E IR
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with C independent of n and h and

onn) = [ (@002 + DIl + X2 0716 Q)

For A\, > 1, there holds

Un(n) < 5

with C independent of n. Therefore

n C
[ | ety < Wllknllgﬂm(u@d—l)-

n(n)

One can now choose A, such that the right hand side converges to zero,
showing that w™ satisfies (9.4.10). This finishes the proof of the proposition
when s = 1.

c) When s > 2, the proof is similar. One is reduced to find v €
H*(R%) such that v™ — 0 in H" and (A7v"),—¢ = h} where the h} are
given in H*7+1/2(R%1) for j < s and converge to zero in H5~I~1/2(R4-1)
for j < s—1. We first lift up the s—1 first traces by a fixed Poisson operator,
and reduce the problem to find w" € H*"1(R%) such that w™ — 0 in H"
and (&%w”)mzo =0 when j < s—1and (Jgw")|,—o = k" € HY2(R41). We
lift up the traces using a Poisson operator

— J

(9.4.11) Poh(n,z) = %¢(/\nx<n>)ﬁ(n),

and show that if the sequence )\, is properly chosen w” = P,k™ has the
desired properties. The details are left as an exercise. ]

9.4.3 Smooth solutions

Definition 9.4.10. W*(T) denotes the space of u € C°([0,T], H*(R%))
such that for all j < s, &]u € C°([0,T), H*(RL)).

W*(T) is considered as a subspace of H*([0,7] x R%) and H**1([0,T] x
R?) C W*(T). We also use the notation

N9 |
(9.4.12) lu(®)lls = 2 O:H@U(t)”HH(RiV
j:

This function is bounded (and continuous) in time when u € W* and in L?
when u € H?.
We first state an a-priori estimate for smooth solutions.
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Proposition 9.4.11. There is a constant C' such that for oll T > 0, all
u e HFY([0,T) x RY) and all t € [0,T], the following inequality holds:

lw(®)lls + 1zl rr+ (0,4 xra-1) < C(IIIU(O) lls+

(9.4.13) .
+ [ 1Ot + gl )

where f:= Lu and g := Muj,—.

Proof. Consider the tangential derivatives uq := 9, u for a € N, |a| < s.
Since u € H*T!, they satisfy

Luy = fo:= 8ffyf, Mug|z—0 = go = (9t°fyg.

Introduce the tangential norm

lu()ls =D 107 u(®)]] 1

o] <s
The L? estimates (9.4.2) imply that
lulls + llwe=oll s (jo,g xma-1) < C(lllu(o) I

t
+ [ WA + ooz n)

which is dominated by the right hand side of (9.4.13). It remains to estimate
the normal derivatives by tangential ones, using the equation (9.2.9). By
induction, one proves that

lu@lls < C (@l + 1f @lls-1) -

Since .
IF @O ls—1 < £ (O)fls-1 +/0 I0:f ()l s-1t’
and
£ O)lls—1 < Iw(O)lls,  NOef E)s—1 < W Es
the estimate (9.4.13) follows. O
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We can now prove the main theorem of this chapter.

Theorem 9.4.12. For all ug € H*(R%), f € H*([0,T] x RY) and g €
H5([0,T] x R¥YY satisfying the compatibility conditions up to order s — 1,
there is a unique solution w € W*5(T') of (9.4.1). Moreover, the trace of the
solution u on {x = 0} is in H*([0,T] x RY™Y) and u satisfies the estimates
(9.4.13).

Proof. When s = 0, this is Theorem 9.4.5. We suppose now that s > 1.
Step 1. Solve the equation with a loss of smoothness.

We prove that when ug, f and ¢ belong to H**? and satisfy the compat-
ibility condition up to order s, there is a solution in H**1([0,7] x R%+) C
WsTH(T).

With f; = 8éf‘t:0 € H*t17I(R%), consider the functions u; € H"27J(R%)
defined by (9.4.5) for j < s+ 2. Then, there is u® € H**2+1/2(R x R?) such
that

(9.4.14) Ofuy—g=u;,  forj<s+2.
We look for a solution as u = v/ + u®. The equation for v’ reads
Lu' = f':=f—Lu", Mu|,—g=9¢ =g—Mu®,—y, u—=0.

We have f' € H*t? — H5t3/2 ¢ H**! and comparing (9.4.14) and (9.4.5)
we see that

(9.4.15) 8 flio=0  forj<s.

Moreover, ¢’ € H*t2 and the compatibility conditions imply that

(9.4.16) c(ﬁg/‘tzo =0 for j <s.

Denote by f’ and §' the extensions of f' and ¢’ by 0 for ¢ < 0. Then, the
trace conditions (9.4.15) and (9.4.16) imply that f' € H*7(] — 00, T] x R%)
and §' € H*T!(] — 00, T] x R?1). Thus, by Theorem 9.3.6, the boundary
value problem

Li'=f, Mij_o=7
has a unique solution @ € H**1(] — oo, T] x R%) which vanishes when ¢ < 0.
Thus 4/(0) = 0 and denoting by v’ the restriction of @’ to t > 0, u = v’ +u®
is a solution of (9.4.1).
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Step 2. H? data.

Given ugp € H*(RY), f € H5([0,T] x RY) and g € H*([0,T] x R%1)
satisfying the compatibility conditions up to order s — 1, by repeated ap-
plications of Proposition 9.4.9, there is a sequence uf € H5+2(Ri), fve
H*+2([0,T] x RY) and ¢g” € H*+2([0, T] x R471) satisfying the compatibility
conditions up to order s+1 and converging in H® to ug, f and g respectively.

We note that for solutions of (9.4.1),

lw(O)lls = D llujll s

Jj<s

where the u; are defined at (9.4.5). Thus [|u”(0) — u*(0)||s tends to zero as
w and v tend to infinity. Therefore, the energy estimates (9.4.13) imply that
the sequence u” is a Cauchy sequence in W#(T') and therefore converges
touw € W9(T). Since s > 1, the limit w is clearly a solution of (9.4.1).
The uniqueness follows from the L? uniqueness of Theorem 9.4.5. passing
to the limit in the energy estimates for the u” implies that u also satisfies

(9.4.13). 0

9.5 Nonlinear mixed problems
Consider the equation

Lu=F(u)+f on[0,T] xRL

(9.5.1) Muj,—o=g  on[0,T] xR*!
Ujt=0 = U0 on Ri
We assume that F(0) = 0, so that it makes sense to look for solutions

vanishing at infinity and in Sobolev spaces H®.

Theorem 9.5.1. Let s be and integer s > d/2.

i) Suppose that f € H*([0,Tp] x RY), g € H*([0,Tp] x R1) and
uy € HS(Ri). Suppose that the compatibility conditions of section 2.5.2
below are satisfied up to the order s — 1. Then there is T €]0,Ty] such that
the problem (9.5.1) has a unique solution uw € W*(T).

i) If o > s and the data (f, g,uo) belong to H° ([0, T|xR%L), H°([0,T]x
R1) and H(R) respectively and satisfy the compatibility conditions to
order o — 1, then the solution u given by i) belongs to W (T).
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9.5.1 Nonlinear estimates

Recall the following multiplicative properties of Sobolev spaces.

Proposition 9.5.2. For non negative integers s > d/2 and j,k such that
j+k < s there is C such that for u € H*J(RL) and v € H**(R%) the
product uwv € H*777F(R%) and

(9-5.2) [wv]| gre=s—r < Cllull =i [[0]| o= -

Corollary 9.5.3. Let F be a C* function such that F(0) = 0. For all
s > d/2, there is a nondecreasing function C(-) on (0,400 such that for all
T>0andue WT), F(u) e W(T) and for all t € [0,T):

(9-5.3) lu®lls <R = [[Fw)®)ls < C(R).

Moreover, for all w € W*(T) and v € W*(T) with |u(t)||s < R and
lv@lls < R:

(9.5.4) I{F (u) = F(v)}O)lls < C(R){u — v} (@) -
Proof. Since F'(0) = 0, there holds
IE@)@)llz2 < IVuFllzoeppyllu®)lrz,  with R = {lu()[|ze < [lu(®)]ls,

where Br denotes the ball of radius R in the space of states u. The last
inequality follows from Sobolev embedding H*(R%Y) C L=(R%).
Next we estimate derivatives. For smooth functions u, there holds

o]
(95.5) °Fu) =Y 3 clkal,...,o")Fw) (0 y,...,0 )

k=1al+.. . +ak=a

where the c(k,al,.. .,04’_“) are numerical coefficients. Since the derivative
9% u(t) belong to H*~|*’l(R?) and satisfy

H@O‘]u(t)HHsf\aﬂ < u@®lls,

Proposition 9.5.2 implies that each term in the right hand side of (9.5.5)
belongs to C°(L?) with norm bounded by C(||u(t)||) and the estimate (9.5.3)

follows.
The estimate of differences is similar. O
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Recall next the Gagliardo-Nirenberg-Moser’s inequalities, which hold
with € equal to an Euclidian space R™ or a half space of R"™, or a quad-
rant :

Proposition 9.5.4. For all s € N, there is C such that for all « of length
la] <'s, all p € [2,2s/|af] and all uw € L>®(Q) N H*(Y), the derivative 0%u
belongs to LP(QY), and

(9.5.6) [0°ullzr < Cllull 277 ull 377

The condition on p reads % <
) = R"™ relies on the identity

o:/aj(uyajuyﬂaju) :/|aju|P+(p—1)/ua§uyajuyp2.

With Hélder inequality, this implies that

% < 1. Recall that the the proof when

2 1 1
|0sullzs S el N0l i, ==+ 5
The estimate (9.5.6) follows by induction on s. Note that the proof applies
not only to the d; but also to any vector field.

Using extension operators, the estimate holds on any smooth domain §2,
but the constant depends on the domain. For instance, if Q = [0, T] xR‘i, the
constant are unbounded as ' — 0. However, splitting u = x(t)u+(1—x(¢t))u
with y € C*°, x = 0fort > 2T/3 and x = 1 for t < T'/3, reduces the problem
to functions x(t)u and (1 — x(¢))u which can be extended in H*® by 0 for
t > T and t < 0 respectively, hence reducing the problem on quadrants
[0, +00[xR% or | — 00, T] x R% . Therefore:

Lemma 9.5.5. Given Ty > 0, there is C' such that for all T > Ty the
estimates (9.5.6) are satisfied on Q = [0,T] x R%

Corollary 9.5.6. Let F' be a C* function such that F(0) = 0. For all
s €N, and Tp > 0, there is a non decreasing function Cr(-) on [0,00[ such
that for all T > Ty, for all u € L>®(2) N H*(Q) where Q = [0,T] x RY, one
has F(u) € H*(Q2) and

(9.5.7) 1E(w)llzs < Cr(llullzee)lullas -
Proof. We estimate the L? norm as above :

[E)l[r2 < [VuFllLeepllullz,  with R = [luf|ze~,
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where Br denotes the ball of radius R in the space of states u. Next we
estimate derivatives using (9.5.5) which is valid at least for smooth u. Using
the estimate (9.5.6) for 9%’ u with 2/p; = |af|/s, we see that each term in
the right hand side of (9.5.5) has an L? norm bounded by the right hand
side of (9.5.7). The formula and the estimates extend to u € L N H® by
density (Exercise). O

9.5.2 Compatibility conditions

For (9.5.1), the definition of traces u; is modified as follows. First, with
uj = 0] u—, there holds

(9.5.8) O F(uw)jp=o = Fj(uo, - -, u5)

with Fj of the form

J
Filuo, .. ug) =Y > elk gt i) uo) (ujn, . uge)

k=1 jt4. +jk=j
The definition (9.4.5) is modified as follows: by induction let
(9.5.9) U; = —Au]‘_l + fi—1+ fj_l(UQ, . ,Uj_l) .

Then, for ugp € H® and f € H® with s > d/2, using Proposition 9.5.2, we
see that u; € H*J(R%) for j < s.

Definition 9.5.7. The data ug € H*(RY), f € H*([0,7] x RY) and g €
H*([0,T] x R4™YY satisfy the compatibility conditions to order o < s — 1 if
the u; given by (9.5.9) satisfy

Mujj,—o = & g—o, j€{0,...,0}.

9.5.3 Existence and uniqueness

We prove here the first part of Theorem 9.5.1. Below, it is always assumed
that s > d/2, f € H*([0,Ty] xR ), g € H*([0,Tp] x R?~1) and up € H*(RZ).

Proposition 9.5.8. Suppose that the compatibility conditions are satisfied
up to the order s — 1. Then there is T €]0,Ty] such that the problem (9.5.1)
has a solution w € W*(T).
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Proof. a) The iterative scheme.
Let ug € H*(RYL), f € H*([0,T] xR%) and g € H*([0, T] x R?""). Define
the u; € H*J(RL) by (9.5.9). Let u® € H**1/2(R x R%) such that

(9.5.10) Hulyg=u;, 0<j<s.

We can assume that u" vanishes for [t| > 1 and thus u® € W#(T) for all T.
There is Cy depending only on the data such that

Z gl rs-5 < Co, Jul(®)]ls < Co.
J<s

For future use, we note that Cjy depends only on the data: there is a uniform
constant C' such that

(9.5.11) Co < Cluolle + 1FO)llas
For n > 1, we solve by induction the linear mixed problems
(9.5.12) Lu" = f + F(u"™ 1Y), Mu",—g =9, u"j=o=1uo-

Suppose that u"~! is constructed in W*(Tp) and satisfies
(9.5.13) Hu g =u;, j<s.

This is true for n = 1. Then, by definition of the F; and by (9.5.13),
8{F(u”‘1)|t:0 = Fj(uo,...,u;). Next, for the linear problem (9.5.12) we
compute the u by (9.4.5). Comparing with the definition (9.5.9), we see
that uj = w;. Thus, the compatibility conditions Muj,—o = g; imply
that the data (f + F(u""'),g,up) are compatible for the linear problem.
Therefore, Theorem 9.4.12 implies that (9.5.12) has a unique solution u" €
W*#(Tp) and that '
Hu"y—o = u = ;.

This shows that the construction can be carried on and thus defines a se-
quence u" € W#(Ty) satisfying (9.5.12)

b) Uniform bounds
We show that we can choose R and T €]0,Tp| such that for all n:

(9.5.14) vte[0,7] : Ju"®)]s < R.

By (9.5.10), this estimate is satisfied for n = 0 if R > Cj.
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Assume that (9.5.14) is satisfied at order n—1. Next, the energy estimate
(9.4.13) and Corollary 9.5.3 imply that there is a constant C' and a function
Cr(-) such that for t <T

Jlu@®lls < C(Iu"(0)lls + TCr(R) + C1)

with

To
(9.5.15) Cr = 19l 10,10 1) + /0 1F(E)adt
By (9.5.13) at order n and (9.5.10):

lu™ )l = lujll s < Co-

J<s
Thus, (9.5.14) holds provided that
(9.5.16) R>Cy, R>C(Co+Cy+1) and TC(R)<1.

This can be achieved, choosing R first and next 7. For such a choice, by
induction, (9.5.14) is satisfied for all n.

c) Convergence

Write the equation satisfied by w™ = w1 — 4™ for n > 1. By (9.5.13),
there holds ||w™(0)[|s = 0. Knowing the uniform bounds (9.5.14), estimating
the nonlinear terms by Corollary 9.5.3 and using the energy estimate (9.4.13)
one obtains that forn > 2 and ¢t < T"

Ju"(t)]l. < CCp(R) /O Jo ()t

Thus there is K such that for all n > 1 and ¢ € [0,T]:
lw™(@®))ls < K™t/ (n — 1)1

This implies that the sequence u™ converges in W#(T'), thus in the uniform
norm and the limit is clearly a solution of (9.5.1). O

Next we prove uniqueness.

Proposition 9.5.9. If T €]0,Ty] and u' and u? are two solutions of (9.5.1)
in WS(T), then u! = u?.
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Proof. The traces at {t = 0} necessarily satisfy
8Zu1|t:o = azu2|t:0 = Uj-

Thus w = u? — u' satisfies [Jw(0)|ls = 0. Write the equation for w. Using
bounds for the norms of ! and u? in W?#, the energy estimates and Corollary
9.5.3 to estimate the nonlinear terms, imply that there is C' such that for all
te[0,T):

()]s < C /O lu(t) sdt’ .

Thus w = 0. ]

9.5.4 A criterion for blow-up

Suppose that f € H*(]0, To] xRi), g € H*([0, To] xR41) and ug € Hs(Ri),
with s > d/2. Suppose that the compatibility conditions are satisfied at or-
der s — 1. We have proved that there is a local solution in W*(T'). The
question is how long can the solution be extended. Let T, denote the supre-
mum of the set of T' €]0, Tp] such that the problem (9.5.1) has a solution
in W#(T'). By uniqueness, there is a unique maximal solution u on [0, T%].
The proof of Proposition 9.5.8 above gives an estimate from below of T™:
since by (9.5.11), (9.5.15) and (9.5.16), there is a function C(-) such that
the solution is W*#(T') for

(9.5.17) T = min{Ty,C(K)}

with
To
/ /
(9.5.18) K = |luollms + 1F(O)lls—1 + 91l 2 jo,10) xre-1) +/0 £ () sat”

Proposition 9.5.10. If T* < Ty or if T* =Ty but u ¢ W*(1p), then

(9.5.19) limsup ||u(t)||pe = +00.
t—T™*

Proof. Suppose that (9.5.19) is not true. This means that u € L>([0, T*[xR%).
From Proposition 9.5.8 we know that T* > 77 for some T; depending only
on the data. Thus, by Corollary 9.5.6 there is a constant C7, depending only
on the L* norm of u such that for all T' € [T1,T*[:

HF(U)HHS([O,T}xRi) < CIHUHHs([o,T]xRi) :
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The energy estimate (9.4.13) implies that

t
()1 < o+ O [ 1P

where Cj only depends on the data and C' depends only on the operator L.
Thus, using Cauchy-Schwarz inequality, we get that there is C' such that for
all t € [Tl,T*[

|||u(t)”|2 <Cp+ C”F(u)H?{s([o,t]X[RdJr) < Cp+ Ccl”uui]s([o,t]xRi)

t
<G+ CCy / u(t') |2t
0

This implies that there is a constant C5, depending only on Cp, C,C and
the norm of w in W*(T}), such that

(9.5.20) sup JJu(t)lls < Cs.
t<T*

Next we consider the Cauchy problem for (9.5.1) with initial data u(T™* —¢)
at time T —0. Because u € W#(T*—{§/2) is a solution, computing the traces
from the equation we see that the compatibility conditions are satisfied up
to order s — 1. Therefore, by Proposition 9.5.8 there is a solution @ in W#
on the interval [T* — §, T5]. By (9.5.17), we have an estimate from below for
Ts:

T2 = min{Tg,T* -0+ C(K)}

with
To
K = ||u(T* = 6)|lms + I1f(T™ = 0)ls—1 + 19l &5 (0,70 x -1 +/0 IFE)sat’.

Since f and g are given in H?®, the last three terms are bounded indepen-
dently of T* — 6. By (9.5.20), the first term is bounded independently of
T* and 6. This shows that the increment C'(K) is bounded from below
independently of T* and §.

If T* were strictly smaller that Ty, we could choose 6 = C'(K)/2 so that
T5 > T*. By uniqueness, @ would be an extension of w, contradicting the
definition of T*. If T\, = T, choosing again 6 = C'(K)/2, we see that Tp = Ty
and thus u € W(Ty). O
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9.5.5 Regularity of solutions

Suppose that T > 0 is given, f € H*([0,T] x R1), g € H*([0,T] x R%1)
and ug € H? (R‘i), with s > d/2. Suppose that the compatibility conditions
are satisfied at order s — 1 and w € W#(T') is a solution of (9.5.1). The next
result finishes the proof of Theorem 9.5.1.

Proposition 9.5.11. Suppose that o > s and (f, g,ug) belong to H° ([0, T] %
]Ri), H([0,T] xR and H® (Ri) respectively and satisfy the compatibility
conditions to order o — 1, then the solution u belongs to W°(T).

Proof. By Proposition 9.5.8 there is T} €]0,7] such that the problem has
a solution u € W7(T1). Denote by T* the maximal time of existence of
solutions in W?. By uniqueness in W*(T") for 7" < T*, u = @ for t <
T*. Since u € W*(T) and s > d/2, u € L®([0,T] x RY) and thus @ €
L>°([0, T*[xR%). Therefore Proposition 9.5.10 implies that T* = T and
u=ueWoT). O
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