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Abstract. The nonlinear dissipative wave equation utt ��u + jutjh�1ut = 0 in dimension d > 1
has strong solutions with the following structure. In 0 � t < 1 the solutions have a focusing wave
of singularity on the incoming light cone jxj = 1 � t. In ft � 1g that is after the focusing time,
they are smoother than they were in f0 � t < 1g. The examples are radial and piecewise smooth
in f0 � t < 1g

x1. Introduction.

We construct real valued �nite energy solutions of the dissipative nonlinear wave equation

u+
��ut��h�1ut = 0 ; := @2t ��x ; 1 < h 2 R ; (1:1)

which have singularities which are partially smoothed after a focus. Here ft; xg 2 R
1+d , with

spatial dimension d � 2.

A striking classical result of Lions-Strauss [LS] shows that (1.1) is a well behaved evolution equation
in t � 0 in all dimensions. There are two underlying estimates in establishing this result. The �rst
is that solutions have nonincreaing energy. With

E(u; t) :=

Z
Rd

u2t
2
+
jrxuj2

2
dx ; (1:2)

one has

E(u; t) = E(u; 0)�
Z T

0

Z
Rd

��ut��h+1
h+ 1

dx dt � E(u; 0) : (1:3)
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More generally one has a contractivity estimate which relies on the monotonicity of the nonlinear
function

Fh(s) :=
��sh�1�� s :

Precisely,

E(u� v; t) = E(u� v; 0)�
Z T

0

Z
Rd

�
ut � vt

� �
Fh(ut)� Fh(vt)

�
dx dt � E(u� v; 0) : (1:4)

The energy dissipation identity is the case v = 0 of the contractivity identity. These estimates lead
to the following fundamental results of J.-L. Lions and W. Strauss.

Theorem 1.1. [LS]. If ff; gg 2 H1(Rd )� L2(Rd) then there is a unique soltion u to (1) with

u 2 C�[0;1[ ; H1(Rd)
�
; ut 2 C

�
[0;1[ ; L2(Rd)

� \ Lh+1([0;1[�Rd)

with Cauchy data
u
��
t=0

= f ut
��
t=0

= g : (1:5)

In addition, the energy laws (1.3) and (1.4) are satis�ed by pairs of such solutions as well as the
local versions in the truncated cones �(x;R; T ) :=

�jx� xjj < R� t ; 0 < t < T � R
	
.

The energy law in �(x;R;R) shows that two solutions whose Cauchy data agree on jx � xj � R,
must agree on cone jx� xj � R � t.

Regularity results follow from this by applying the contractivity estimate (1.4) to the solutions
u(t; x) and v = u(t; x+ �). The H1 modulus of continuity is de�ned by

!(u; t; h)2 := sup
0<j�j�h

krxu(t; x)�rxu(t; x+ �)k2L2(Rd) + kut(t; x)� ut(t; x+ �)k2L2(Rd) : (1:6)

Corollary 1.2. [LS]. If u is one of the solutions from Theorem 1, then the H1 modulus of
continuity !(u; t; h) is a decreasing function of t. It follows that if f; g 2 H�+1�H� with � 2]0; 1]
then

u 2 L1�[0;1[ ; H�+1(Rd)
�
; and ut 2 L1

�
[0;1[ ; H�(Rd)

�
:

For � 2]0; 1[ one has continuity in time, that is

u 2 C�[0;1[ ; H�+1(Rd)
�
; and ut 2 C

�
[0;1[ ; H�(Rd )

�
:

This shows that Hs regularity for 1 � s � 2 propagates forward in time.

The major interest of these results is that they de�ne a strongly nonlinear evolution. By any
measure known to man these problems are supercritical when d is large. These problems can not
be attacked by using the basic estimates and then treating the nonlinear term as a perturbation
writing u = � �1

�
uht
�
. In particular for d large and h 2 Zodd the nonlinearity is polynomial and

it is not known whether the solutions with data in C10 are C1. Equivalently it is not known if
such solutions are locally lipshitzean.

Our main result is the construction of compactly supported solutions which are smoother in ft � 1g
than they are in f0 � t < 1g. This includes an explicit solution in closed form computed in x5.
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The examples cannot be locally lipshitzean since the result of [GR] shows that if a solution has
rt;xu 2 L1loc, then its Hs

loc regularity does not change with time. In particular, in the one di-
mensional case, if the Cauchy data satis�es rt;xu(0; x) 2 L1loc, then the solution is lipshizean and
therefore the Hs regularity is independent of t � 0. This lipshitz bound is proved by an argument
needed later, so we recall the estimates. Introduce the characteristic combinations

u� := @�u :=
�
@t � @x

�
u :

When d = 1, the di�erential equation (1.1) takes the characteristic form

�
@t � @x

�
u� +

Fh(u+ + u�)

2h
= 0 :

Multiplying by p up�1� with even integer p, adding and then integrating dx shows that

@t

Z
R

up+ + up� dx = � p

2h

Z
R

(up�1+ + up�1� ) Fh(u+ + u�) dx :

Since for abitrary real a; b one has (ap�1 + bp�1)Fh(a + b) � 0, it follows that
R
up+ + up� dx is

a nonincreasing function of t. Passing to the limit p ! 1 shows that supRmaxfju+j; ju�jg is a
nonincreasing function of t. Thus, if rt;xu(0; :) is initially L

1 it remains so in t � 0.

Assumption 1.3. Suppose that the initial data f; g are piecewise C2, radial, compactly supported,
vanish for jxj � 1, and have singularities only on jxj = 1. In addition, f is assumed to be continuous
and g + @rf is not continuous.

When this assumption is satis�ed, @rf and g are radial piecewise smooth and the locus of singu-
larities is r = 1. Since g + @rf is not continuous at least one of g and @rf must jump at r = 1.
This implies that

ff; gg 2 H�(Rd )�H��1(Rd ) () � < 3=2 : (1:7)

Assumption 1.4. In addition to Assumption 1.3, suppose that (@t � @r)u(0; r) = g � @rf is
continuous at r = 1 .

Since g � @rf does not jump it follows that the jumps of g and @rf are equal and nonzero.
Assumption 1.4 insures that a jump discontinuity in ru propagates along the focussing cone
fjxj = 1� tg and that the �rst derivatives are continuous across the outgoing cone

Main Theorem 1.5. Assume that Assumtions 1.3 and 1.4 are satis�ed and that u is the solution
from Theorem 1.1. Then

u ; ut 2 L1
�
[0; 1[ ; H�(Rd)�H��1(Rd)

� () � < 3=2

and u is more regular for t � 1 in the following senses.

I. If d > 2h=(h� 1), then

u 2 L1� [1;1[ ; H2(Rd)
�

and ut 2 L1
�
[1;1[ ; H1(Rd )

�
: (1:8)

II. If 2h=(h� 1)� 1 < d � 2h=(h� 1), let � :=
�
2h=(h� 1) � d

�
=2 2 [0; 1=2[ then for all � > 0

u 2 C� [1;1[ ; H2����(Rd )
� \ C1

�
[1;1[ ; H1����(Rd )

�
; (1:9)

3



Remarks. 1. For h �xed, the regularity of the solution for t � 1 increases linearly from H3=2 to
H2 as the dimension increases from d1(h) := 2h=(h� 1)� 1 to d2(h) = 2h=(h� 1). For dimensions
higher than d2(h) the wave is H

2 in t � 1.

2. Theorem 1 of [GR] shows that in order for this smoothing to take place the solutions must not
be lipshitzean. For any t 2]0; 1[, the solution is uniformly lipshitzean on [0; t] � R

d , but that the
sup norm of the derivatives diverges to in�nity as t! 1.

3. What is happening is that an incoming spherical wave focusses at t = 1; x = 0. Approaching
the focus, the amplitudes of ut and u

h
t diverge to in�nity. The nonlinear term acts in a dissipative

manner. For d > 2h=(h�1)�1 the nonlinearity is su�ciently large that the e�ect of the dissipation
is so strong that the solution grows more slowly than it would have in the linear case. The idea
of the proof in case I is to use the classical energy estimate for the second derivates of u in the
domain outside the incoming light cone that is

�ft; xg : jxj � 1� t
	
. The energy identity involves

a boundary term on the incoming light cone jxj = 1 � t. This term is �nite for the nonlinear
problem and would have been in�nite for the linear problem. In this way one shows that the
second derivative at time t = 1 are square integrable. In case II one shows that they are square
integrable with weight r�, 1 > � � 0. Then an inequality of Hardy type �nishes the proof.

4. There are at least two other circumstances where supercritical damping for the same family of
equations has been shown to have a regularizing e�ect on solutions. The �rst involves families of
oscillatory solutions u� whose angular derivatives @!rt;xu

� are uniformly bounded in L2 at the
same time as rt;xu

� is bounded in L2 ([JMR2], [JMR3], [JMR4]). If the initial data is supported
in jxj < 1, is not compact in energy, and has prinicipal oscillations which initially move toward the
origin, in the sense that (@t � @r)u

� is compact in L2, then for t > 1 the family rt;xu
� is compact

in L2(Rd ). The noncompactness has been absorbed at the focus.

5. A similar phenomenon was described in [RR3] for families u� of unifromly disipative �rst order
systems when d = 1 and the intial data are the regularizations j� �� of �nite measures. The L1(R)
norm of u�(t) decreases in time. It is proved that for t > 0 the solutions converge to the solution
with initial data given by the nonsingular parts (in the sense of the Lebesgue decomposition) of the
measures �j . The singular part is absorbed. In particular if the singular part is nonzero, u�(t; x)
is compact in L1(Rx ) for t > 0 even though the initial data are not.

6. The explicit example of x5, shows that the result of the Main Theorem is sharp when h = 2 and
d = 4.

2. Analysis of the singularities.

The most important step in the proof of the Main Theorem is to analyse the jump discontinuities
in the derivatives of the solution for times 0 � t � 1. The singularities come from the initial jump
discontinuities on the sphere jxj = 1.

The �nite speed of propagation implies that the solution u in the Main Theorem satis�es u = 0
in the truncated cone jxj < 1 � t. Uniqueness implies that u is radial. With the usual abuse of
notation we write u = u(t; r), and the di�erential equation in fr > 0g becomes

utt � urr � d� 1

r
ur + Fh(ut) = 0 : (2:1)

This is a hyperbolic equation and the coe�cient (d� 1)=r is smooth in fr > 0g. The solution we
are looking at vanishes in fr < 1� tg so is supported in the smooth coe�cient region for 0 � t < 1.

Lemma 2.1. i. Piecewise continuity for t < 1. If Assumption 1.3 is satis�ed, then for
0 � t < 1, u is continuous and piecewise C2 with jumps in the �rst derivatives restricted to the

4



cones fjxj = 1� tg. ii. Piecewise continuity up to t = 1 away from x = 0. For any � > 0,
u is continous and piecewise C2 in the regions

�
r � � + t ; 0 � t � 1

	
with jumps in the �rst

derivatives restricted to the cones fjxj = 1� tg.

Proof of Lemma 2.1. i. Fix 0 < T < 1. Finite speed shows that for 0 � t � T , u is supported
in r � 1� T > 0 where the coe�cient (d� 1)=2r in (2.1) is smooth.

The �rst step is to show that the solution is uniformly lipsitzean on [0; T ]�Rd . Write (2.1) in the
characteristic form

�
@t � @r

�
u� +

d� 1

2r
(u+ � u�) +

Fh(u+ + u�)

2h
= 0 ; u� :=

�
@t � @r

�
u : (2:2)

The standard local existence theorem for hyperbolic equations in space dimension d = 1 shows
that u is uniformly lipshitzean on [0; T1] � [1 � T;1[ with T1 small positive. The same result
show that in order to prove that u is lipshitzean up to time T it su�ces to prove an a priori

estimate for krt;ru(t)kL1(R). Precisely, it su�ces to show that there is an M < 1 depending
only on f; g, so that if 0 � t � T2 � T and u is a lipshitzean solution on [0; T2]� [1� T;1[, then
krt;rukL1([0;T2]�[1�T;1[) �M .

Multiply (2.2) by pup�1� with even integer p and add the resulting identities to �nd that

@t
�
up++u

p
�

�
+@r

�
up+�up�

�
+
p(d� 1)

2r

�
u��u+

� �
up�1+ +up�1�

�
= � p

2h
�
up�1+ +up�1�

�
Fh(u++u�) � 0 :

(2:3)
De�ne

 (t; p) :=

Z 1

1�T

up+ + up� dr : (2:4)

Integrate (2.3) over [0; t] � [1� T;1]. Integrating by parts and using the fact that r � 1� T > 0
so no boundary terms arise yields

 (t)�  (0)

�
Z t

0

Z 1

1�T

p(1� d)

2r

�
u+ � u�

� �
up�1+ + up�1�

�
dr dt � c p

Z t

0

 (t) dt ;
(2:5)

where

c = c(d; T ) :=
d� 1

1� T
max

p2Neven
max

fu+;u�g2R2n0g

(u� � u+)(u
p�1
+ + up�1� )

up+ + up�
<1 : (2:6)

Therefore

 (t; p) �  (0; p) + c(d; T ) p

Z t

0

 (t; p) dt (2:7)

and Gronwall's inequality yields
 (t; p) �  (0; p) ec p t (2:8)

with c independent of p. Taking the pth root gives bound on the Lp norm of u� independent
of t � T2 and p. Passing to the limit p ! 1 bounds ku�(t)kL1([0;T2]�[0;1[) � M(f; g). This
estimate completes the proof that u is a uniformly lipshitzean solution of (1.1) on [0; T ] supported
in fr � 1� tg.
When Fh is a amooth function that is when h 2 Zodd, Theorem 1 of [RR1] applied to the �rst
order system (2.2) implies that u is piecewise smooth with singularities restricted to the two cones.
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If one is only interested in showing that Lipshitz continuous solutions are piecewise C2 then the
argument of [RR2] requires only that the nonlinear function F be C1 which is the case in our
problem. More generally if F 2 Ck then the argument of [RR] can be carried out to study
discontinuities in derivatives of order k + 1. The details for completeing this part of the proof of
part i. of the Lemma are left to the reader.

The proof of ii. is similar. It su�ces to prove an apriori estimate

krt;rukL1([0;T2]�fr��+tg) �M(f; g)

with M independent of T2 � 1. Introduce

	(t; p) :=

Z 1

�+t

up+ + up� dr :

Integrating (2.3) over the region
�
r � � + t

	 \ �0 � t � t
	
yields

	(t; p)�	(0; p) + 2

Z t

0

up�
��
r=�+t

dt

�
Z t

0

Z 1

�+t

p(1� d)

2r

�
u+ � u�

� �
up�1+ + up�1�

�
dr dt � c(d; �) p

Z t

0

	(t; p) dt :

There is now a boundary term on r = � + t which is nonnegative, so improves the estimate. As
before this yields an estimate

	(t; p) � 	(0; p) ec(d;�)p t (2:9)

with c independent of p. Taking the the pth root and then the limit p ! 1 yields the desired
Lipshitz estimate.

The next three lemmas prepare for the application of an energy estimate. That estimate is applied
to w := @u and one needs to control the growth of the boundary values of (@t � @r)@u on the
shrinking sphere r = 1 � t as t increases to 1. To do this we take advantage of the piecewise
smoothness.

The main estimate (2.10) of the next lemma is very important. If the problem had been linear,
one would have found that the energy density r(d�1)(u2� + u2+) was constant on the incoming
characteristic. If (d � 1)(h � 1) > 2 then, the energy density tends to zero as r ! 0 which is
a result of the nonlinear dissipative mechanism. For linear dissipation, the energy density would
converge to a strictly positive quantity.

In comparing the condition of this lemma with those of the Main Theorem it is useful to keep in
mind the relation

2h

h� 1
� 1 =

h+ 1

h� 1
:

Lemma 2.2. Analysis of the incoming jump. On the incoming characteristic r = 1 � t one
has u+ = 0. If d > (h+ 1)=(h� 1), then as t increases to 1, one has

u�(t; 1� t) =
c

r1=(h�1)

�
1 + o(1)

�
; (2:10)

where the values of u� are the limits from above, that is from t > 1�r and the constant c = c(d; h)
is given in (2.13). In addition the tangential derivative satis�es

�
@t� @r

�
u�(t; 1� t) = C

rh=(h�1)

�
1+ o(1)

�
; C = C(d; h) =

c(d; h) (d� 1)

2
� c(d; h)h

2h
: (2:11)
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Proof of Lemma 2.2. By �nite speed of popagation, both u+ and u� vanish in r < 1� t. Also
by the plus equation in (2.2), u+ is continuous across r = 1� t which proves that u+ vanishes on
the incoming characteristic.

Next estimate the boundary values b of u�,

b(t; 1� t) := lim
�!0+

u�(t; 1� t+ �) :

Note that b is de�ned only on the characteristic line fr = 1� tg.
Since u� = 0 below the characteristic, the jump in u� from under to over the characteristic is
equal to b.

Since u� = 0 below r = 1� t and u+ vanishes on both sides, the minus equation of (2.2) reads

�
@t � @r

�
b� d� 1

2 r
b+ Fh(b) = 0 : (2:12)

Let 
 := r(d�1)=2b = (1� t)(d�1)=2b(t; 1� t). Then

�
@t � @r

�

 = r(d�1)=2

� �
@t � @r

�
b� d� 1

2 r
b
�
= �r(d�1)=2 Fh(g)

2h
=

�Fh(
)
2h r(d�1)(h�1)=2

:

Then since (d� 1)(h� 1)=2 6= 1,

�
@t � @r

� j
j�h+1
�h+ 1

=
�1

2h r(d�1)(h�1)=2
=
�
@t � @r

� r1�(d�1)(h�1)=2

2h
�
1� (d� 1)(h� 1)=2

� :

Thus along r = 1� t the quantity

1

(h� 1)j
jh�1 �
1

2h�1
�
(d� 1)(h� 1)� 2

�
r(d�1)(h�1)=2�1

is constant.

The hypothesis (d�1)(h�1) > 2 guarantees that the exponent of r in the second term is positive,
so as as t increases to 1, the radius r shrinks to zero and the second term grows without bound.
To compensate this the �rst term tends to in�nity. Thus,


 = c r
d�1
2 � 1

(h�1)

�
1 + o(1)

�
; c = c(d; h) := 2

�
(d� 1)(h� 1)� 2

h� 1

�1=(h�1)

: (2:13)

In terms of the original variable b, estimate (2.13) is equivalent to (2.10).

To prove (2.11), insert the estimate (2.10) into the identity (2.12).

The energy density along the characteristic is then

rd�1 ju�j2 = O
�
rd�1 r�2=(h�1)

�
= O(rd�1�2=(h�1))

which is o(1) precisely when the hypothesis of Lemma 2.2 is satis�ed.
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Lemma 2.3 If d satis�es the condition d > (h + 1)=(h � 1) from Lemma 2.2 and � satis�es
� + d > 2h=(h � 1), then for each @ 2 f@=@t; @=@x1; : : : @=@xdg the limits of the derivatives
(@t � @r)@u from above the incoming light cone satisfy

Z
jxj=1�t
0<t<1

r�
� ����@t � @r

�
@u
���2 + jr!@uj2

�
d� < 1 ; (2:14)

where jr!wj is the length of the angular derivative given by jr!wj2 := jrxwj2 � j@rwj2 and d�
the element of surface area.

Proof of Lemma 2.3. In jxj � 1� t, write

@u

@xj
=
@u

@r

@r

@xj
=
xj
r

@u

@r
:

Since @ru is spherically symmetric, its angular gradient vanishes so

r!
@u

@xj
=
�r!

xj
r

� @u
@r

:

Use that 2@r = u� � u+ and that on the incoming light cone the second summand vanishes to
show that on jxj = 1� t

=
�r!

xj
r

� u�
2

=
�r!

xj
r

� u� � u+
2

= O(r�1 r�1=(h�1)) = O(r
�h
h�1 ) :

Similarly, the product rule,

�
@t � @r

� @u

@xj
=
�
(@t � @r)

xj
r

� @u
@r

+
xj
r
(@t � @r)

@u

@r
: =

�
(@t � @r)

xj
2r

�
u� +

xj
2r

(@t � @r)u� :

Equations (2.10) and (2.11) show that each summand is O(r�h=(h�1)).

Thus Z
jxj=1�t
0<t<1

r�
�����@t � @r

� @u

@xj

���2 + jr!@uj2
�
d� � C

Z 1

0

r�
1

r2h=(h�1)
rd�1 dr :

This integral is �nite if and only if � � 2h=(h� 1) + d � 1 > �1 recovering the condition in the
Lemma.

The remaining derivative (@t� @r)@tu = (@t� @r)@ru on the incoming cone, so the square integra-
bility follows from the previous estimates.

Lemma 2.4. Analysis of the outgoing jump. If Assumption 1.4 is satis�ed then u is contin-
uously di�erentiable on a neighborhood of the outgoing cone

�jxj = 1+ t ; t > 0
	
. In particular u

is locally H2 on the complement of the incoming light cone, u 2 H2
loc

�
(]0; 1[�Rd) n fjxj = 1� tg�.
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Proof of Lemma 2.4. From Lemma 2.1.ii., u is continuous, and, on a neighborhood of fr =
t ; t > 0g, u is piecewise smooth with singularities on r = t. It is su�cient to prove that u� are
continuous across fr = 1 + t ; t > 0g.
For u� this follows from equation (2:2)� and the facts that u� are locally bounded.

Next we show that the continuity of u+(0; r) at r = 1 from Assumption 1.4 implies the continuity
of u+ across the outgoing characteristic r = 1 + t.

The jump in u+ de�ned as

[u+](t; 1 + t) := u+(t+; 1 + t)� u+(t�; 1 + t) ; u+(t�; 1 + t) := lim
�!0

u(t� �; 1 + t) :

The �rst step is to show that the limt!0[u+](t; 1 + t) = 0.

Equation (2:2)+ shows that (@t+ @r)u+ is locally bounded. Thus with 0 < � < t << 1 integrating
this equation shows that

u+(t+ �; 1 + t)� u(0; 1� �) = O(t) ; u+(t� �; 1 + t)� u(0; 1 + �) = O(t) :

Letting � ! 0 and subtracting shows that

[u+](t; 1 + t) = O(t) + lim
�!0

�
u+(0; 1� �)� u+(0; 1 + �)

�
:

The limit on the right is equal to zero thanks to Assumption 1.4 and therefore

lim
t!0+

[u+(t; t)] = 0 : (2:15)

De�ne a smooth function k(t) by

k(t) := u+(t� 0; t) + u�(t; t) = 2ut(t� 0; t) :

The transport equation satis�ed by the jump [u+] along the outgoing characteristic is derived by
taking the di�erence between the equation (2:2)+ on the upper and lower sides of the characteristic
to �nd

(@t + @r)[u+] +
d� 1

r
[u+] +

Fh
�
[u+] + k(t)

�� Fh
�
k(t)

�
2h

= 0 :

De�ne a C1 function

Gh(t; s) :=
d� 1

r
s+

Fh
�
s+ k(t)

�� Fh(k(t)
h
�

2h
with Gh(t; 0) = 0

to �nd the nonlinear transport equation

(@t + @r)[u+] +Gh(t; [u+]) = 0 : (2:16)

The initial value problem de�ned by (2.15) and (2.16) has the unique solution [u+] = 0 which
proves the desired continuous di�erentiability.
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x3. Proof of part I of the Main Theorem.

The next step in the proof is an energy estimate which begins with the energy identity

wt w = @t

� w2
t

2
+
jrxwj2

2

�
�

dX
j=1

@j
�
wt @jw

�
:= @te(t; x)�

dX
j=1

@j
�
wt @jw

�
: (3:1)

Lemma 3.1. Energy estimate. For 0 < T < 1 de�ne 
T := f (t; x) : 1+t > jxj > 1�t; 0 < t <
Tg and suppose that w 2 C2(
T ) and satis�es wt w � 0 in 
T . De�ne 2 e(w; t; x) := w2

t +jrxwj2.
ThenZ

jxj�1�T

e(w; T; x) dx�
Z
jxj�1

e(w; 0; x) dx �
Z
jxj=1�t
0<t<T

�
(wt � wr)

2 + jr!wj2
� d�

2
p
2
+

Z
jxj=1+t
0<t<T

�
(wt + wr)

2 + jr!wj2
� d�

2
p
2
:

(3:2)

Proof of Lemma 3.1. This identity follows from integrating (3.1) over 
T and then integrating
by parts to �nd

Z
jxj�1�t

e(t; x) dx

����
t=T

t=0

�
Z
jxj=1�t
0<t<T

�
e(t; x)� wt(t; x)wr(t; x)

� d�p
2
+

Z
jxj=1+t
0<t<T

�
e(t; x) + wt(t; x)wr(t; x)

� d�p
2
:

Simplifying the boundary terms using the identities 2(e � wtwr) = (wt � wr)
2 + jr!wj2 yields

(3.2).

End of proof of Main Theorem 1.5.I. For @ 2 f@t; @=@x1; : : : @=@xdg let w := @u. Lemma 2.1.i
proves that w 2 C2

�

T

�
for any T < 1. Applying @ to equation (1.1) shows that w = �3u2t wt

so wt w = �2(utwt)
2 � 0 . Thus Lemma 3.1 can be applied to this w.

Next consider the terms on the right hand side of (3.2) in the limit T ! 1. Part ii. of Lemma
2.1. implies that the second term is bounded independent of T . Similary, Lemma 2.3 with � = 0
shows that the integral of the �rst summand in the �rst integral on the right of (3.2) is bounded
independent of T . This is where the hypothesis d > 2h=(h� 1) is used.

Taking the limit T ! 1 in (3.2) implies that

lim sup
T!1

Z
1+T>jxj>1�T

e(w; T; x) dx < 1 :

Inserting the de�nition w = @u, this reads

lim sup
T!1

Z
1+T>jxj>1�T

�
@t@u(T; x)

�2
+
��rx@u(T; x)

��2 dx <1

Lemma 2.1.ii together with the continuous di�erentiability from Lemma 2.4 imply that

lim sup
T!1

Z
jxj>�+T

�
@t@u(T; x)

�2
+
��rx@u(T; x)

��2 dx <1 :

10



Combining the the last two estimates shows that

lim sup
T!1

Z
jxj>1�T

�
@t@u(T; x)

�2
+
��rx@u(T; x)

��2 dx <1 : (3:3)

Corollary 1.2 with (1.7) imply that

@u(1; x) 2 C� [0;1 [ : H1=2��(Rd)
�
; and @t@u(1; x) 2 C

�
[0;1 [ : H�1=2��(Rd )

�
: (3:4)

Estimate (3.3) together with the continuity (3.4) implies that the restriction of @t;x@u(1; x) to
fRd n 0g is a square integrable function, that is

Z
Rdn0

�
@t@u(1; x)

�2
+
��rx@u(1; x)

��2 dx <1 : (3:5)

De�ne G(x) to be the square integrable function which is the restriction of @t;x@u(1; x) to R
d n 0,

and let

R(x) := G(x)� @t;x@u(1; x) ; so suppR � f0g : (3:6)

The regularity (3.4) implies that

R 2 H�1=2��(Rd) : (3:7)

Since there are no nonzero elements of this space with support at the orgin it follows that R = 0
and therefore that @t;x@u(1; x) 2 L2(Rd ). Corollary 1.2 with � = 1 implies that (1.8) is satis�ed
so the proof of Main Theorem 1.5.I is complete.

x4. Proof of part II of the Main Theorem.

The di�erence in the analysis comes from the square integrability near the focus at t = 1; r = 0. For
the second part of the Main Theorem one needs the weights r� from Lemma 2.3. To take advantage
of the weighted estimates from Lemma 2.3 we use the following weighted energy estimate which
reduces to Lemma 3.1 when � = 0.

Lemma 4.1. Weighted energy estimate. For 0 < T < 1 de�ne 
T := f (t; x) : 1 + t > jxj >
1� t; 0 < t < Tg and suppose that w 2 C2

�

T

�
, vanishes for jxj � R and satis�es wt w � 0 in


T . De�ne 2 e(t; x) := w2
t + jrxwj2. Then for all � � 0,

Z
jxj�1�T

(jxj+ 1� T )� e(T; x) dx�
Z
jxj�1

(jxj+ 1)� e(0; x) dx �
Z
jxj=1�t

(jxj+ 1� t)�
�
(wt � wr)

2 + jr!wj2
� d�

2
p
2

+

Z
jxj=1+t

(jxj+ 1� t)�
�
(wt + wr)

2 + jr!wj2
� d�

2
p
2
:

(4:1)
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Proof. Multiplying (3.1) by a continuous function �(t; x) with integrable �rst derivates yields

@t
�
� e(t; x)

��
dX

j=1

@j
�
�wt @jw

�
= �te�

dX
j=1

(@j�)
�
wt @jw

�

� �t e+ jrx�j jwtj jrxwj �
�
�t + jrx�j

�
e :

If � satis�es �t + jrx�j � 0 ; then an integration by parts in 
T yields

0 �
Z
jxj�1�t

�(t; x) e(t; x) dx

����
t=T

t=0

�
Z
jxj=1�t �(t; x)

�
e(t; x)� wt(t; x)wr(t; x)

� d�p
2

�
Z
jxj=1+t

�(t; x)
�
e(t; x) + wt(t; x)wr(t; x)

� d�p
2
:

(4:2)

Taking �(t; x) := (jxj + 1 � t)� � 0 and using the identities 2(e� wtwr) = (wt � wr)
2 + jr!wj2

yields (4.1).

Proof of Main Theorem 1.5.II. Using Lemma 2.1.ii, Lemma 2.4, estimates (2.14) and (4.1),
and reasoning as in the proof of Theorem 1.5.I, yields the following weighted estimates on Rd n 0.
De�ne � 2]0; 1=2] by

� :=
1

2

� 2h

h� 1
� d

�
: (4:3)

Then,

8� > 0 ; @ 2
n @

@t
;
@

@xj

o
;

Z
Rdn0

jxj2�+2�
��
@t@u(1; x)

�2
+
��rx@u(1; x)

��2� dx < 1 : (4:4)

An application of H�older's inequality shows that the function de�ned for x 6= 0 by @x@u(1; x) is
absolutely integrable on compact subsets of Rd so de�nes a distribution. As in the sentence before
equation (3.6), this distribution is called G(x). De�ne R as in (3.6). Then

R 2 L1loc(Rd ) +H�1=2��(Rd ) ; and suppR � f0g :

It follows that R = 0. Thus, G is equal to the @x@u(1; x) where the derivatives are taken in the
sense of distributions.

Thus

� := @u ) jxj���rx� 2 L2(Rd ) : (4:5)

Lemma 4.2. Hardy inequality. If � 2]0; d=2[ then there is a c = c(d; �) so that for all
� 2 S (Rd ), 

 jDj1�� �



L2(Rd)
� c



 jxj� rx�



L2(Rd)

: (4:6)
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Proof. Inequality (4.6) follows from the inequality



 jDj��  


L2(Rd)

� c


 jxj�  



L2(Rd)
; 0 < � <

d

2
(4:7)

applied to the �rst derivatives of �.

Inequality (4.7) in turn is a consequence of the boundedness on L2 of the integral operator with
kernel

1

jx� yjd��
1

jyj� ; 0 < � <
d

2
: (4:8)

A proof of this boundedness can be found in [SW]. This completes the proof of Lemma 4.2.

Applying (4.6) to the regularizations �� := j� � @ u and passing to the limit �! 0 yields

jDj1���� @u(1; : ) 2 L2(Rd) : (4:9)

An application of Corollary 1.2 completes the proof of the Main Theorem.

x5. An explicit example.

In this section we compute an explicit example exhibiting smoothing of a singularity. The ex-
ample is self similar so the partial di�erential equation in t; r becomes a nonlinear equation with
singularities of Fuchs type. When h = 2 this equation is explicitly solvable.

If v is a solution of (1.1) and � > 0, then

u� = u�(t; x) := �� v(�t; �x) (5:1)

is also a solution provided that � and h satisfy the equivalent conditions

� =
2� h

h� 1
; h =

�+ 2

�+ 1
: (5:2)

For the case of quadratic nonlinearity

h = 2 ; and � = 0 ; (5:3)

seek radial self similar solutions, that is solutions satisfying

u(t; r) := u(�t; �r) : (5:1)

Setting � = 1=r shows that
u(t; r) = u(t=r; 1) := U(t=r) : (5:4)

Then

ut =
1

r
U 0
� t
r

�
; utt =

1

r2
U 00

� t
r

�
; ur =

�t
r2

U 0
� t
r

�
; urr =

t2

r4
U 00

� t
r

�
+

2t

r3
U 0
� t
r

�
:

Therefore equation (2.1) reads

0 = u+ Fh(ut) =
h 1
r2
� t2

r4

i
U 00 +

h (d� 1)t

r3
� 2t

r3

i
U 0 +

1

r2
U 0jU 0j : (5:5)
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Multiply by r2 and set
s := t=r ; V := U 0 (5:6)

to �nd
(1� s2)V 0 + (d� 3)s V + V jV j = 0 : (5:7)

Consider solutions with
U = V = 0 for �1 < s < �1 ;

which corresponds to solutions u which vanish on the incoming cone ft < �rg.
For �1 < s < 1, change variable to

V := (1� s2)(d�3)=2W

to �nd that (5.7) is transformed to

(1� s2)W 0 + (1� s2)(d�3)=2W jW j = 0 : (5:8)

Therefore, W never changes sign in f�1 < s < 1g and �W is a solution whenever W is a solution.

Separating variables in (5.8) yields the positive solution

W (s) =
1

F (s)
; where F (s) :=

Z s

�1

(1� t2)(d�5)=2 dt :

This integral is �nite for d > 3 and approaching s = �1 from above one has

F (s) =
2

(d� 3)(1� s2)(d�3)=2

�
1 + o(1)

�
:

Thus, the right hand limit of V (s) at s = �1 is given by

lim
s&�1

V (s) = (d� 3)=2 :

Therefore U 0 = V has a jump discontinuity at s = �1, so the �rst derivatives of the selfsimilar
solution has a jump discontinuity on the incoming light cone.

When s increases to +1 from below one has

V (s) � c (1� s2)(d�3)=2 :

Extend V to vanish for s > 1,
V := 0 for s � 1 : (5:8)

The resulting self similar solution is constant inside the outgoing light cone fr = t > 0g. In
addition the �rst derivatives of u are continuous across this cone.

Near the outgoing cone, one has
rt;r u � (r � t)(d�3)=2

so for all � > 0,

ru 2 H(1+(d�3)=2+1=2��)
loc (5:9)

For d = 4 this example shows that the result of the Main Theorem is sharp. For d > 4, the
regularity on the outgoing cone increases linearly with d as if the result of the �rst part of the
Main Theorem were true for all d > 2h=(h� 1).
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