Nonlinear Hyperbolic Smoothing at a Focal Point *

Jean-Luc JOLY

MAB, Université de Bordeaux I
33405 Talence, FRANCE

Guy METIVIER

IRMAR, Université de Rennes I
35042 Rennes, FRANCE

Jeffrey RAUCH

Department of Mathematics, University of Michigan
Ann Arbor 48109 MI, USA

Outline.
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Abstract. The nonlinear dissipative wave equation uy — Au + |ug|*~*uy = 0 in dimension d > 1
has strong solutions with the following structure. In 0 < ¢ < 1 the solutions have a focusing wave
of singularity on the incoming light cone |z| = 1 —¢t. In {¢ > 1} that is after the focusing time,
they are smoother than they were in {0 < ¢ < 1}. The examples are radial and piecewise smooth
in{0<t<1}

61. Introduction.

We construct real valued finite energy solutions of the dissipative nonlinear wave equation

h—1
"

Ou + |u =0, O0:=0? — A, 1< heR, (1.1)

which have singularities which are partially smoothed after a focus. Here {t,z} € R*? with
spatial dimension d > 2.

A striking classical result of Lions-Strauss [LS] shows that (1.1) is a well behaved evolution equation
in ¢ > 0 in all dimensions. There are two underlying estimates in establishing this result. The first
is that solutions have nonincreaing energy. With

2 2
E(u,t) ::/ w o Veul® g (1.2)
e 2 2
one has
T ‘Ut‘h-i-l
B(u,t) = E(u,0) —/ / [l gpat < B(u,0). (1.3)
0 Rd h+ ].

Research partially supported by the U.S. National Science Foundation, U.S. Office of Naval Research, and the NSF-CNRS
cooperation program under grant numbers NSF-DMS-9203413, NSF-DMS-9803296, OD-G-N0014-92-J-1245, and NSF-INT-
9314095 respectively, and the CNRS through the Groupe de Recherche G1180 POAN.

1



More generally one has a contractivity estimate which relies on the monotonicity of the nonlinear
function
Fy(s) := ‘sh_l‘ s.

Precisely,

T
E(u—wv,t) = E(u—v,0) — /0 /Rd (ur — vi) (Fr(ue) — Fp(vy)) dzdt < E(u—v,0). (1.4)

The energy dissipation identity is the case v = 0 of the contractivity identity. These estimates lead
to the following fundamental results of J.-L. Lions and W. Strauss.

Theorem 1.1. [LS]. If {f,g} € H*(R?) x L2(R?) then there is a unique soltion u to (1) with
u € C([0,00[; H'(RY)),  uz € C([0,00[; L*(RY)) N L"*([0, 00[xR?)

with Cauchy data
u‘t:o =f ut‘t:o =g. (1.5)

In addition, the energy laws (1.3) and (1.4) are satisfied by pairs of such solutions as well as the
local versions in the truncated cones , (z,R,T) := {|x —z]|<R-t,0<t<T< R}.

The energy law in , (z, R, R) shows that two solutions whose Cauchy data agree on |z — z| < R,
must agree on cone |z — z| < R —t.

Regularity results follow from this by applying the contractivity estimate (1.4) to the solutions
u(t,z) and v = u(t,z + £). The H' modulus of continuity is defined by

St Wi s ([Vou(tse) = Vaults o+ O)lfagen + lunlts) =t + Ol faeny - (16
0< €<

Corollary 1.2. [LS]. If u is one of the solutions from Theorem 1, then the H' modulus of
continuity w(u,t, h) is a decreasing function of t. It follows that if f,g € H°*! x H? with o €]0, 1]
then

u € L ([0, 00[; HU‘H(Rd)) , and uy € L ([0, 00[; HU(]Rd)) .

For o €]0,1[ one has continuity in time, that is

uEC([O,oo[; H”"'I(Rd)), and Uy EC([0,00[; H”(Rd)).

This shows that H® regularity for 1 < s < 2 propagates forward in time.

The major interest of these results is that they define a strongly nonlinear evolution. By any
measure known to man these problems are supercritical when d is large. These problems can not
be attacked by using the basic estimates and then treating the nonlinear term as a perturbation
writing 4 = —0O7! (u?) In particular for d large and h € Z,qq the nonlinearity is polynomial and
it is not known whether the solutions with data in C§° are C'*°. Equivalently it is not known if
such solutions are locally lipshitzean.

Our main result is the construction of compactly supported solutions which are smoother in {t > 1}
than they are in {0 <t < 1}. This includes an explicit solution in closed form computed in §5.
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The examples cannot be locally lipshitzean since the result of [GR] shows that if a solution has
Viazu € LS., then its H; . regularity does not change with time. In particular, in the one di-

mensional case, if the Cauchy data satisfies V; ,u(0,z) € LS., then the solution is lipshizean and

therefore the H?® regularity is independent of ¢ > 0. This lipshitz bound is proved by an argument
needed later, so we recall the estimates. Introduce the characteristic combinations

uy 1= Ozu = (3t F 3x)u.
When d = 1, the differential equation (1.1) takes the characteristic form

Fp(ug +u-)

(3t + 395) U+ + 2h

=0.
Multiplying by puft_l with even integer p, adding and then integrating dx shows that

3t/uﬁ +u? dz = —2% (“ﬁ_l +uP ™ Fy(uy +u) de.
R R

Since for abitrary real a,b one has (a?~' + b*~') Fj(a + b) > 0, it follows that [u + u” dz is
a nonincreasing function of ¢. Passing to the limit p — oo shows that supg max{|uy|,|u_|} is a
nonincreasing function of ¢. Thus, if V; ;u(0,.) is initially L* it remains so in ¢ > 0.

Assumption 1.3. Suppose that the initial data f, g are piecewise C?, radial, compactly supported,
vanish for |z| < 1, and have singularities only on |z| = 1. In addition, f is assumed to be continuous
and g + 0, f is not continuous.

When this assumption is satisfied, d,.f and g are radial piecewise smooth and the locus of singu-
larities is » = 1. Since g + 0,-f is not continuous at least one of g and 9, f must jump at r = 1.
This implies that

{f,g} e H*(RY) x H*"Y(R?) <<= o <3/2. (1.7)

Assumption 1.4. In addition to Assumption 1.3, suppose that (0; — 0,)u(0,r) = g — O,.f is
continuous at r =1 .

Since g — 0-f does not jump it follows that the jumps of ¢ and 0,f are equal and nonzero.
Assumption 1.4 insures that a jump discontinuity in Vu propagates along the focussing cone
{]z] =1 —t} and that the first derivatives are continuous across the outgoing cone

Main Theorem 1.5. Assume that Assumtions 1.3 and 1.4 are satisfied and that u is the solution
from Theorem 1.1. Then

u,uy € L®([0,1]; H (R") x H'(RY)) <= 0<3/2

and u is more regular for t > 1 in the following senses.
I. If d > 2h/(h — 1), then

u € L®([1,00[; H*(R?)) and wu; € L®([1,00[; H'(R?)). (1.8)
IL If2h/(h— 1) =1 <d < 2h/(h—1), let a := (2h/(h — 1) — d)/2 € [0,1/2[ then for all € > 0
u € C([1,00[; H**"¢(RY)) N C*([1,00[; H*"¢(R")), (1.9)



Remarks. 1. For h fixed, the regularity of the solution for ¢ > 1 increases linearly from H3/2 to
H? as the dimension increases from dy(h) := 2h/(h —1) — 1 to d3(h) = 2h/(h —1). For dimensions
higher than do(h) the wave is H? in t > 1.

2. Theorem 1 of [GR] shows that in order for this smoothing to take place the solutions must not
be lipshitzean. For any ¢ €]0, 1], the solution is uniformly lipshitzean on [0,#] x R, but that the
sup norm of the derivatives diverges to infinity as t — 1.

3. What is happening is that an incoming spherical wave focusses at t = 1,z = 0. Approaching
the focus, the amplitudes of u; and u? diverge to infinity. The nonlinear term acts in a dissipative
manner. For d > 2h/(h—1)—1 the nonlinearity is sufficiently large that the effect of the dissipation
is so strong that the solution grows more slowly than it would have in the linear case. The idea
of the proof in case I is to use the classical energy estimate for the second derivates of u in the
domain outside the incoming light cone that is {{t,2} : |z| > 1 —t}. The energy identity involves
a boundary term on the incoming light cone |z| = 1 —¢. This term is finite for the nonlinear
problem and would have been infinite for the linear problem. In this way one shows that the
second derivative at time £ = 1 are square integrable. In case II one shows that they are square
integrable with weight r*, 1 > «a > 0. Then an inequality of Hardy type finishes the proof.

4. There are at least two other circumstances where supercritical damping for the same family of
equations has been shown to have a regularizing effect on solutions. The first involves families of
oscillatory solutions u¢ whose angular derivatives d,V; ;u¢ are uniformly bounded in L? at the
same time as V; ,u is bounded in L? ([JMR2], [JMR3], [JMR4]). If the initial data is supported
in |z| < 1, is not compact in energy, and has prinicipal oscillations which initially move toward the
origin, in the sense that (0; — 9,-)u€ is compact in L?, then for ¢ > 1 the family V, ,u¢ is compact
in L2(R?). The noncompactness has been absorbed at the focus.

5. A similar phenomenon was described in [RR3] for families u¢ of unifromly disipative first order
systems when d = 1 and the intial data are the regularizations j. * y1 of finite measures. The L'(R)
norm of u¢(¢) decreases in time. It is proved that for ¢ > 0 the solutions converge to the solution
with initial data given by the nonsingular parts (in the sense of the Lebesgue decomposition) of the
measures ;. The singular part is absorbed. In particular if the singular part is nonzero, u*(t, z)
is compact in L!(R,) for ¢ > 0 even though the initial data are not.

6. The explicit example of §5, shows that the result of the Main Theorem is sharp when h = 2 and
d=4.

2. Analysis of the singularities.

The most important step in the proof of the Main Theorem is to analyse the jump discontinuities
in the derivatives of the solution for times 0 < ¢ < 1. The singularities come from the initial jump
discontinuities on the sphere |z| = 1.

The finite speed of propagation implies that the solution u in the Main Theorem satisfies u = 0
in the truncated cone |z| < 1 —¢. Uniqueness implies that u is radial. With the usual abuse of
notation we write u = u(t,r), and the differential equation in {r > 0} becomes

d—1
utt—uTT—TuT+Fh(ut) =0. (2.1)

This is a hyperbolic equation and the coefficient (d — 1)/r is smooth in {r > 0}. The solution we
are looking at vanishes in {r < 1 —t} so is supported in the smooth coefficient region for 0 < ¢ < 1.

Lemma 2.1. i. Piecewise continuity for t < 1. If Assumption 1.3 is satisfied, then for
0 <t < 1, u is continuous and piecewise C? with jumps in the first derivatives restricted to the
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cones {|z| = 1 £ t}. ii. Piecewise continuity up to t = 1 away from x = 0. For any § > 0,
u is continous and piecewise C? in the regions {7’ >0+t, 0<t< 1} with jumps in the first
derivatives restricted to the cones {|z| =1+ t}.

Proof of Lemma 2.1. i. Fix 0 < T' < 1. Finite speed shows that for 0 < ¢ < T, u is supported
inr>1—T >0 where the coefficient (d — 1)/2r in (2.1) is smooth.

The first step is to show that the solution is uniformly lipsitzean on [0,T] x RZ. Write (2.1) in the
characteristic form

d—1 Fr(uy +u_)

(’U,+—’U/_)+2—h :0, U4 = (8t2128r)u (22)

(8t + (97«)U:|: +

The standard local existence theorem for hyperbolic equations in space dimension d = 1 shows
that u is uniformly lipshitzean on [0,7}] x [1 — T, 00[ with T} small positive. The same result
show that in order to prove that wu is lipshitzean up to time T it suffices to prove an a priori
estimate for ||V, u(t)||p~®). Precisely, it suffices to show that there is an M < oo depending
only on f,g, so that if 0 <¢ < Ty, < T and u is a lipshitzean solution on [0,7%] x [1 — T, 00|, then
IV e,rul| Lo ([0, 1) x[1=T,00)) < M.

Multiply (2.2) by pu’j___1 with even integer p and add the resulting identities to find that

O (uf +u” )49, (uﬁ—u’i)—i—z% (u-—uq) (uﬂ_l%—u’fl) = —%(u’fl—i—u’fl) Frp(us+u_) <0.
(2.3)

Define o
P(t,p) = / uf +u? dr. (2.4)

1-T

Integrate (2.3) over [0,¢] x [1 — T, 00]. Integrating by parts and using the fact that r > 1 -7 >0
so no boundary terms arise yields

P(t) —(0)
t [ele] 1— d t 25
S/ / M(u+—u_)(uﬂ_l+u’i_l) drdtgcp/ p(t) dt, (2:5)
o Ji1-T 2r 0
where b1 b1
d—1 (u— —ug)(uly " +ul")
=c(d,T): = —— . 2.6
¢=c(d,T) 1-T pgﬂ?in {u+,ur£1?é(R2\0} uﬁ +uf <o (2:6)
Therefore .
U(t.0) < 90.p) + ld. )p [ ditp)di (2.7)
0
and Gronwall’s inequality yields
P(t,p) < (0,p) eP? (2.8)

with ¢ independent of p. Taking the p'" root gives bound on the LP norm of u4 independent
of t < Ty and p. Passing to the limit p — oo bounds ||us(t)||ze([o,15]x[0,00p) < M(f,9). This
estimate completes the proof that u is a uniformly lipshitzean solution of (1.1) on [0, 7] supported
in {r>1-t}.

When Fj, is a amooth function that is when h € Z,44, Theorem 1 of [RR1] applied to the first
order system (2.2) implies that u is piecewise smooth with singularities restricted to the two cones.
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If one is only interested in showing that Lipshitz continuous solutions are piecewise C? then the
argument of [RR2] requires only that the nonlinear function F' be C! which is the case in our
problem. More generally if F € C* then the argument of [RR] can be carried out to study
discontinuities in derivatives of order k + 1. The details for completeing this part of the proof of
part i. of the Lemma are left to the reader.

The proof of ii. is similar. It suffices to prove an apriori estimate

IVerull Lo (o,1]x (r>o+t1) < M(f,9)
with M independent of T5 < 1. Introduce

o0
U(t,p) := / uf +u? dr.
s+t

Integrating (2.3) over the region {r > d+¢} N {0 < ¢ <t} yields
t

\I](zap)_\lf(ovp) + 2/_up— ‘r:5+t dt
0

t

L% p(1 —d) -1 -1
< / / LS (u+ — u_) (u’_’F + u? ) dr dt < c(d, 5);0/ U (t,p)dt.
o Jsyr 2 0

There is now a boundary term on r = § + ¢ which is nonnegative, so improves the estimate. As
before this yields an estimate

U(t,p) < U(0,p) e BP? (2.9)
with ¢ independent of p. Taking the the p'" root and then the limit p — oo yields the desired
Lipshitz estimate. 1

The next three lemmas prepare for the application of an energy estimate. That estimate is applied
to w := Ou and one needs to control the growth of the boundary values of (0; — 0,)0u on the
shrinking sphere r = 1 — ¢ as ¢ increases to 1. To do this we take advantage of the piecewise
smoothness.

The main estimate (2.10) of the next lemma is very important. If the problem had been linear,
one would have found that the energy density r?~%)(u2 + u2) was constant on the incoming
characteristic. If (d — 1)(h — 1) > 2 then, the energy density tends to zero as r — 0 which is
a result of the nonlinear dissipative mechanism. For linear dissipation, the energy density would
converge to a strictly positive quantity.

In comparing the condition of this lemma with those of the Main Theorem it is useful to keep in
mind the relation

Lemma 2.2. Analysis of the incoming jump. On the incoming characteristicr = 1 —t one
hasuy =0. If d > (h+1)/(h — 1), then as t increases to 1, one has

u_(t,1— 1) = T‘;_l) (1 + 0(1)) , (2.10)

where the values of u_ are the limits from above, that is from t > 1 —r and the constant ¢ = ¢(d, h)
is given in (2.13). In addition the tangential derivative satisfies

C

c(d,h) (d—1)  c(d,h)"
b= 7o

(1+o(1)), C=Cd,h) = ; - . (2.11)

(0 — 00) u_(t,1— o




Proof of Lemma 2.2. By finite speed of popagation, both 4 and w_ vanish in r < 1 —¢. Also
by the plus equation in (2.2), u4 is continuous across r = 1 — ¢ which proves that w4 vanishes on
the incoming characteristic.

Next estimate the boundary values b of u_,

b(t,1 —t):= 6l_i)r61+u_(t,1 —t+90).

Note that b is defined only on the characteristic line {r =1 — ¢}.

Since u_ = 0 below the characteristic, the jump in u_ from under to over the characteristic is
equal to b.
Since u_ = 0 below » = 1 — ¢t and w4 vanishes on both sides, the minus equation of (2.2) reads
d—1
(Bt—ar)b—z—bJth(b):(). (2.12)
r

Let v := r(@=1/2p = (1 — ¢)(4=1/2p(¢,1 — t). Then

_ d—1 _1y/2 Frlg) —Fhn(y)
(0 = 0)y =02 (0= 0)b - S b) = =R ZEE — ol

Then since (d — 1)(h—1)/2 # 1,

—h+1 1 pl=(d=1)(h—1)/2
(0 = o) o = shi@ ooz = O o) 5 :
—h+1  2hpld=D-1)/ 2" (1= (d—1)(h—1)/2)
Thus along » = 1 — ¢ the quantity
1 1

(h—=Dy*=t  2h=1 ((d - 1)(h — 1) — 2) r(d-D(-1)/2-1

is constant.

The hypothesis (d —1)(h —1) > 2 guarantees that the exponent of r in the second term is positive,
so as as t increases to 1, the radius r shrinks to zero and the second term grows without bound.
To compensate this the first term tends to infinity. Thus,

et d—1)(h—1)—2\"/"
'y:crd2 (CEE) <1+0(1)), c=c(d,h) ::2<( )h(—l ) > . (2.13)
In terms of the original variable b, estimate (2.13) is equivalent to (2.10).
To prove (2.11), insert the estimate (2.10) into the identity (2.12). 1

The energy density along the characteristic is then
’)”d_l |’LL_|2 — O(’)”d_l ,r—2/(h—1)) — O(,r,d—l—2/(h—1))
which is o(1) precisely when the hypothesis of Lemma 2.2 is satisfied.
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Lemma 2.3 If d satisfies the condition d > (h + 1)/(h — 1) from Lemma 2.2 and « satisfies
a+d > 2h/(h — 1), then for each 0 € {0/0:,0/0z1,...0/0xq} the limits of the derivatives
(0r — 0r)0u from above the incoming light cone satisfy

/-H Ta(‘(at —3r)3ur+ IVw3UI2> do < oo, (2.14)
0<t<1

where |V w| is the length of the angular derivative given by |V ,w|? := |V,w|> — |0,w|? and do
the element of surface area.

Proof of Lemma 2.3. In |z| > 1 — ¢, write

ou_ o oz 0u

3—:163-_53%- r Or '

Since d,u is spherically symmetric, its angular gradient vanishes so

ou z;\ Ou
Vo e = (%) G
Use that 20, = u_ — u4 and that on the incoming light cone the second summand vanishes to
show that on |z] =1—t¢
_ Zjy Y- _ Zjy U= T Ut -1 — /(D)) i
(v.5) " = (9,5) et ot /0 — o).
Similarly, the product rule,
ou ;i\ Ou X, ou x, x,
O —0p) — = ((0y — 0,)~L ) — O —0) .= ((0y —0) 2L )u_ + 2L (0 — O,)u_ .
(t )3$j <(t )r)8r+r(t )87“ <(t )27’)“ +27’(t )u

Equations (2.10) and (2.11) show that each summand is O(r="/(h=1)),
Thus
“ Ou |* 2 "o 1 d—1
ﬁwlt " (‘(at a ar) % + |Vw8u| ) do < C /0 r m r dr.

0<t<1 J
This integral is finite if and only if & — 2h/(h — 1) +d — 1 > —1 recovering the condition in the
Lemma.

The remaining derivative (9; — 0,)0yu = (0y — 0y)Oru on the incoming cone, so the square integra-
bility follows from the previous estimates. 1

Lemma 2.4. Analysis of the outgoing jump. If Assumption 1.4 is satisfied then u is contin-
uously differentiable on a neighborhood of the outgoing cone {|$| =1+, t> ()}. In particular u
is locally H? on the complement of the incoming light cone, u € H2 _((]0,1[xR?)\ {|z| = 1 —t}).
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Proof of Lemma 2.4. From Lemma 2.1.ii., u is continuous, and, on a neighborhood of {r =
t, t > 0}, u is piecewise smooth with singularities on r = ¢. It is sufficient to prove that uy are
continuous across {r =1+1t, ¢t > 0}.

For u_ this follows from equation (2.2)_ and the facts that w4 are locally bounded.

Next we show that the continuity of u4 (0,7) at » = 1 from Assumption 1.4 implies the continuity
of uy across the outgoing characteristic r = 1 + ¢.

The jump in w4 defined as
[up](t, 1 +t) :=uy(t+,14+t) —ugp(t— 1+ 1), ug(t£, 1+ 1) := (}in(l)u(t +0,1+1).
—)

The first step is to show that the lim;_,o[ui](t, 1+ t) = 0.

Equation (2.2) 4 shows that (9; + 0,)uy is locally bounded. Thus with 0 < § < ¢t << 1 integrating
this equation shows that

up(t+6,1+1t)—u(0,1-0)=0(t), up(t—0,1+1t) —u(0,14+9) =0(1).
Letting § — 0 and subtracting shows that
[ug](t,1+1t) = O(t) + lim (u4(0,1=6) —ug(0,149)).
The limit on the right is equal to zero thanks to Assumption 1.4 and therefore

lim [uy(t,t)] = 0. (2.15)

t—0+

Define a smooth function k(t) by
k(t) :=uy(t —0,t) +u_(t,t) = 2u(t — 0,1).

The transport equation satisfied by the jump [uy] along the outgoing characteristic is derived by
taking the difference between the equation (2.2) 4 on the upper and lower sides of the characteristic
to find

d—1 Fh([u+] + k(t)) - F (k(t))

[’U,+] + Zh =0.

(at + ar)[u-i-] +
Define a C! function

Gnt,s) =2 = Loy Inls k(t);h— Fu(k(t)")

with  Gp(t,0) =0
to find the nonlinear transport equation
(01 + Or)[us] + Gr(t,[us]) =0. (2.16)

The initial value problem defined by (2.15) and (2.16) has the unique solution [uy] = 0 which
proves the desired continuous differentiability. 1



83. Proof of part I of the Main Theorem.

The next step in the proof is an energy estimate which begins with the energy identity

2 2 d
thw:6t<%+ |Vx2w| ) Z@ wt(? w) = Ore(t, z) — ZOJ wtaw (3.1)
j=1

Lemma 3.1. Energy estimate. For 0 < T < 1 define Qr := { (t,x) : 1+t > [z| > 1-¢, 0<t <
T} and suppose that w € C?(Qr) and satisfies w; 0w < 0 in Qr. Define 2 e(w,t,z) := w} +|Vw|?.
Then

/ e(w, T, z) dx—/ e(w,0,z)dr <
o >1-T jol>1
do

[m=1—t <(wt ) + |V w| ) 2\/_ \acl 1+t ((wt +w,,)2 + |wa|2) 2—\/§

o<t T

(3.2)

Proof of Lemma 3.1. This identity follows from integrating (3.1) over Q7 and then integrating
by parts to find

/ e(t,z) dr
lz|>1—t +=0
/9”|1t (e(t’$) — wy(t, z) wr(t,l'))

o<t<T

t=T
<

do do

V2 V2
Simplifying the boundary terms using the identities 2(e F wyw,) = (w; F w,)? + |Vow|? yields
(3.2). 1

* ﬁwlﬂ (e(t,:L‘) + wt(t7$) wr(t,J?))

o<t<T

End of proof of Main Theorem 1.5.1. For 9 € {0;,0/0z1,...0/0z4} let w := Ou. Lemma 2.1.i
proves that w € C? (QT) for any T < 1. Applying 0 to equation (1.1) shows that Ow = —3u? w;
so wiOw = —2(uz wy)? < 0. Thus Lemma 3.1 can be applied to this w.

Next consider the terms on the right hand side of (3.2) in the limit 77 — 1. Part ii. of Lemma
2.1. implies that the second term is bounded independent of T'. Similary, Lemma 2.3 with o = 0
shows that the integral of the first summand in the first integral on the right of (3.2) is bounded
independent of T'. This is where the hypothesis d > 2h/(h — 1) is used.

Taking the limit 77— 1 in (3.2) implies that

limsup/ e(w,T,z)dx < oo.
T—1 1+T>|z[>1-T

Inserting the definition w = OQu, this reads

lim sup / (atau(T,x))z + ‘Vzau(T,x)‘z dx < 00
T—1  J14T>z|>1-T

Lemma 2.1.ii together with the continuous differentiability from Lemma 2.4 imply that

lim sup / (3t8u(T,:1:))2 + ‘anu(T,x)‘z dx < co.
T—1 |z|>04+T

10



Combining the the last two estimates shows that

lim sup / (6t6u(T,x))2 + ‘anu(T,:E)‘2 dr < oo. (3.3)
T—1  Jig|>1-T

Corollary 1.2 with (1.7) imply that
du(l,z) € C([0,00[: HY?7(R?)),  and  9du(l,z) € C([0,00[: H /> 7¢(RY)). (3.4)

Estimate (3.3) together with the continuity (3.4) implies that the restriction of 0; ,0u(1,z) to
{R?\ 0} is a square integrable function, that is

/Rd\o (3tau(1a=’13))2 + ‘Vmau(l,x)‘z dr < 0o. (3.5)

Define G(7) to be the square integrable function which is the restriction of 9; »0u(1, ) to R? \ 0,
and let

R(z) := G(z) — 0y z0u(l,x), S0 supp R C {0} . (3.6)

The regularity (3.4) implies that
Re HY/2=¢(Rr?). (3.7)

Since there are no nonzero elements of this space with support at the orgin it follows that R = 0
and therefore that 9y ,0u(1l,z) € L?(R?). Corollary 1.2 with o = 1 implies that (1.8) is satisfied
so the proof of Main Theorem 1.5.1 is complete. 1

84. Proof of part II of the Main Theorem.

The difference in the analysis comes from the square integrability near the focus at t = 1, = 0. For
the second part of the Main Theorem one needs the weights r* from Lemma 2.3. To take advantage
of the weighted estimates from Lemma 2.3 we use the following weighted energy estimate which
reduces to Lemma 3.1 when o = 0.

Lemma 4.1. Weighted energy estimate. For 0 < T < 1 define Qr := {(t,z) : 1+t > |z| >
1—t, 0<t<T} and suppose that w € C? (QT), vanishes for |z| > R and satisfies w; Ow < 0 in
Q. Define 2e(t,z) := w? + |V w|?. Then for all a > 0,

/ (Jz] +1=T)%e(T, ) dx — / (lz] + 1) e(0, z) da <
|z|>1-T |z|>1

11



Proof. Multiplying (3.1) by a continuous function ¢(¢,z) with integrable first derivates yields

d

d
O (pelt,z) Zaj pwi Ojw) = dre — Z(aj¢) (wt Ojw)
j=1 j=1

< gre+ |V jwe| [Vew| < (¢t + |Vz¢|) e

If ¢ satisfies ¢y + |V, | < 0, then an integration by parts in Qr yields

t=T
0> /lleI_tqﬁ(t,x) e(t,z) dz .
- /|x|:1—t o(t, z) (e(t, ) — we(t, z) wy(t, z)) % (4.2)

_/ o(t, z) (e(t, ) + wi(t, z) wy(t, 7))
|z|=1+t¢

SIE

Taking ¢(t,z) := (Jz| + 1 — t)® > 0 and using the identities 2(e F wyw,) = (w; F w;)? + |Vow|?
yields (4.1). 1

Proof of Main Theorem 1.5.II. Using Lemma 2.1.ii, Lemma 2.4, estimates (2.14) and (4.1),
and reasoning as in the proof of Theorem 1.5.1, yields the following weighted estimates on R? \ 0.
Define « €]0,1/2] by

2h

o = % (ﬁ — d) (4.3)

Then,

88}

Ve > 0, 36{8t o

/ |[Pot2e ((8tau(1,x>)2+\vxau(l,m) dr < co. (4.4)
R0

An application of Holder’s inequality shows that the function defined for 2 # 0 by 0,0u(1,z) is
absolutely integrable on compact subsets of R? so defines a distribution. As in the sentence before
equation (3.6), this distribution is called G(x). Define R as in (3.6). Then

R e Llloc(Rd) + H_l/z_e(Rd) ) and supp R C {0} .

It follows that R = 0. Thus, G is equal to the 9,0u(l,x) where the derivatives are taken in the
sense of distributions.
Thus

d:=0u = |z|*"°V,®ec L*R). (4.5)

Lemma 4.2. Hardy inequality. If 8 €]0,d/2[ then there is a ¢ = ¢(d,[3) so that for all
P € S(RY),

D17 | ey < | lel? T [ - (46)

12



Proof. Inequality (4.6) follows from the inequality

d
11017 ey < 1l 0 oy 0B < o )

applied to the first derivatives of ®.

Inequality (4.7) in turn is a consequence of the boundedness on L? of the integral operator with
kernel

1 1 d
, 0<pB< <. 4.8
7 — y|7-8 Jy|? 2 (4.8)
A proof of this boundedness can be found in [SW]. This completes the proof of Lemma 4.2. ]

Applying (4.6) to the regularizations @€ := j. * du and passing to the limit ¢ — 0 yields
|IDI*=2=¢9u(l, .) € L*(RY). (4.9)

An application of Corollary 1.2 completes the proof of the Main Theorem. 1

§5. An explicit example.

In this section we compute an explicit example exhibiting smoothing of a singularity. The ex-
ample is self similar so the partial differential equation in £, becomes a nonlinear equation with
singularities of Fuchs type. When h = 2 this equation is explicitly solvable.

If v is a solution of (1.1) and A > 0, then
uy = up(t,z) := X (A, Ax) (5.1)
is also a solution provided that « and h satisfy the equivalent conditions

2—h a+ 2

= — h= . 5.2
“Tho1 atl1 (5:2)

For the case of quadratic nonlinearity
h=2, and a=0, (5.3)

seek radial self similar solutions, that is solutions satisfying
u(t,r) == u(At, Ar). (5.1)

Setting A = 1/r shows that
u(t,r) =u(t/r,1) :=U(t/r). (5.4)

Then

1 t 1 t —t t t? t 2t t
Ut:—U,(—), utt:_ZU”(_)a Ur:—2UI<—), Urr:—4U”<_)+—3UI<—).
T T T T T T T T T T

Therefore equation (2.1) reads

d—1t 2t 1
(d-1) —T—3] U+ S U (5.5)



Multiply by r2? and set

s:=t/r, Vi.=U' (5.6)
to find
(1=sHV' +(d-3)sV+V|V|=0. (5.7)
Consider solutions with
U=V=0 for —oo<s< -1,

which corresponds to solutions u which vanish on the incoming cone {t < —r}.

For —1 < s < 1, change variable to
V= (1-s)d=32y
to find that (5.7) is transformed to
(1—s)W' + (1 - )42 |w|=0. (5.8)

Therefore, W never changes sign in {—1 < s < 1} and —W is a solution whenever W is a solution.

Separating variables in (5.8) yields the positive solution

1 S
Wi(s) = =—, where F(s ::/ 1—?)d=3)/2 gt
)= Fy (9= -1
This integral is finite for d > 3 and approaching s = —1 from above one has

2
Ty (o).

F(s) =

Thus, the right hand limit of V'(s) at s = —1 is given by

s{r{ll Vis)=(d-3)/2.

Therefore U’ = V has a jump discontinuity at s = —1, so the first derivatives of the selfsimilar
solution has a jump discontinuity on the incoming light cone.

When s increases to +1 from below one has
V(s) ~c(l—s2)d=3/2,

Extend V to vanish for s > 1,
V:i=0 for s>1. (5.8)

The resulting self similar solution is constant inside the outgoing light cone {r = ¢ > 0}. In
addition the first derivatives of u are continuous across this cone.
Near the outgoing cone, one has
Vipu ~ (r—t)d=3/2
so for all € > 0,
Vu e H 3242 (5.9)

loc

For d = 4 this example shows that the result of the Main Theorem is sharp. For d > 4, the
regularity on the outgoing cone increases linearly with d as if the result of the first part of the
Main Theorem were true for all d > 2h/(h — 1).
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