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Abstract

We study linear and nonlinear stability of large-amplitude multi-
dimensional viscous boundary layers arising through the small viscos-
ity perturbation of a hyperbolic initial–boundary value problem with
noncharacteristic boundary. Our main result is to show that, provided
there holds the necessary condition that all “frozen,”planar boundary
layers associated with the inner layer of the profile satisfy an appro-
priate Evans function condition, then the linearized equations about
the full profile are well-posed in L2, with sufficiently strong estimates
on the solution and its derivatives as to yield a full nonlinear stabil-
ity result and thereby nonlinear continuation/validation of the formal
boundary layer expansion (alternatively, short-time existence for pre-
pared initial data). The method of analysis is by symmetrizers and
an appropriate extension of Kreiss’ analysis of hyperbolic equations.
Notable technical aspects include reduction to constant coefficients of
the resolvent equation by an extension of the Gap Lemma of Evans
function theory, clarification of the role of block structure in Kreiss-
type estimates, and the use of conormal derivative estimates in the
hyperbolic–parabolic setting.
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1 Introduction

In this paper, we study the linear and nonlinear stability of viscous boundary
layers which arise when one considers small viscosity parabolic perturbations
of hyperbolic equations. For linear equations this problem is studied in
[BBB], [Ba-Ra], [Lio]. The semilinear case is solved in [Gu1]. For quasilinear
equations, a partial answer is given in [Gr-Gu] (see also [Gi-Se] for results
in one space dimension). Indeed, the analysis in [Gr-Gu] has two parts. In
the first part, approximate solutions are obtained using formal expansions
in series of the the viscosity ε. In the second part, the authors prove the
stability of this approximate solution, proving that the exact solution is
actually close to the approximate one, using a smallness condition (as in
[Gi-Se]). By an example, they also show that some condition is needed.
However, the smallness condition is not natural and does not allow large
boundary layers.

The goal of this paper is to remove this smallness assumption, replacing
it by an accurate assumption based on the analysis of an Evans function.
Evans functions have been introduced in the study of the stability of planar
viscous shock and boundary layers (see, e.g., [GZ], [ZH], [ZS], [Z], [S], [Rou],
and references therein1). They play the role of the Lopatinski determinant
for constant coefficient boundary value problems. When they vanish in the
open left half plane, the problem is strongly unstable and when they do
not vanish in the closed half space, the problem is expected to be strongly
stable. Rescaling the variables, the results of [ZH], [Z] can be used to study
the linear stability of boundary layers created by viscous perturbations of
constant state solutions of hyperbolic equations on a half space providing
some estimates of the corresponding Green’s function. This indicates that
assumptions on the Evans function should be the correct approach in the
study of the stability of boundary layers. This has been proved to be correct
in space dimension one [Gr-Ro] and the goal of this paper is to extend the
analysis to multidimensional problems.

The one space dimensional analysis in [Gr-Ro] is based on integrations
along characteristics for the hyperbolic equations and on pointwise estimates
of the Green’s function for the parabolic part, which are then combined to
yield L1 bounds on the Green’s function for the linearized equations about
the full boundary layer expansion. In multi-dimensions, both ingredients
break down, due to more complicated geometry of characteristic surfaces. In

1For the origins of this method in the study of reaction–diffusion equations; see, e.g.,
[E1]-[E4], [J], [AGJ], [PW], [K].
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particular, the known estimates of the parabolic Green’s function [Z] consist
of Lp bounds, p ≥ 2, and do not include pointwise behavior. Moreover, it is
known from study of the constant-coefficient case [HoZ] that the L1 norm
of the Green’s function is not necessarily bounded in multi-dimensions, but
in general may grow time-algebraically. This is a consequence of focusing
and spreading in the underlying hyperbolic propagation, the effects of which
are even more dramatic without parabolic regularization. Indeed, examples
given by Rauch [Ra1] of Lp instability, p 6= 2, of smooth perturbations of
constant states give reason to believe that L2 is the only Lp norm in which
we can expect that multi-dimensional hyperbolic problems be well-posed.

Thus, we are restricted in multi-dimensions by the hyperbolic (or “outer”)
part of the solution to seeking L2 → L2 bounds, analogous to but (even in
the constant-coefficient case) distinct from the L1 Green’s function bounds
found in [Gr-Ro]. Moreover, we must obtain these bounds by a method suit-
able for the analysis of both hyperbolic boundary-value problems and their
parabolic regularizations. To satisfy these requirements, we follow Kreiss’
analysis of hyperbolic equations. Our basic estimate concerns the L2 sta-
bility of the linearized equations, and is proved using symmetrizers and a
suitable extension of Kreiss’ analysis to parabolic-hyperbolic problems.

It can be seen by comparison with explicit representations of the resol-
vent in the planar case, carried out respectively in [Ag] and [Z], that this
basic estimate is sharp for both hyperbolic and parabolic parts of the equa-
tions. Moreover, we significantly relax the structural assumptions under
which the parabolic results of [Z] were obtained, just as the Kreiss analysis
relaxed the assumptions necessary for the hyperbolic results of [Ag] .

Consider a first order quasilinear system

(1.1) L(b, u, ∂)u := ∂tu+
d∑
j=1

Aj(b, u)∂ju = F (b, u)

The equation holds on R × Ω where Ω is a regular bounded domain in Rd.
The unknown u is valued in RN and b = b(t, x) will be a given function
which represents the variables (t, x) and the various possible source terms :

(1.2) b(t, x) = (t, x, b0(t, x)) ∈ R1+d × RM0 = RM .

For example, one can think of (1.1) as a system of conservation laws with
unknown b0 + u where b0 is some background variable state and u a per-
turbation. The function b0 can also appear as a forcing term in the right
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hand side. Since we will use change of coordinates, we also include the
variables (t, x) in the coefficient b. The parameter b will vary in a domain
B = [−T, T ] × Ω × B0 where B0 is a bounded open set in RM0 . The pair
(b, u) will vary jointly within an open set O ⊂ B × RN , having the form
of a graph ∪b∈BU(b) over B, where U(·) is a continuous set-valued function
from B to open sets in RN ; in the simplest case, U(b) ≡ U and O = B × U .
(The latter suffices to discuss small amplitude boundary layers, i.e., u small,
or, more generally, for boundary layers with small variation; see discussion
below Definition 1.3.) We denote by B∂ the set B = [−T, T ]× ∂Ω×B0, and
O∂ := ∪b∈B∂

U(b) the restriction of O to ∂Ω. For (b, u) = (t, x, b0, u) ∈ O∂ ,
we denote by

(1.3) An(b, u) =
d∑
j=1

νj(x)Aj(b, u)

the boundary matrix where ν(x) = (ν1(x), . . . , νd(x)) is the inner unit nor-
mal vector to ∂Ω at x.

Next, we consider a parabolic viscous perturbation of (1.1)

(1.4) L(b, u, ∂)u− ε
∑

1≤j,k≤d
∂j
(
Bj,k(b, u)∂ku

)
= F (b, u) .

with Dirichlet boundary conditions:

(1.5) u |∂Ω = 0 .

Note that nonhomogeneous boundary conditions reduce to homogeneous
ones, changing u into u0 + v, and adding u0 to the parameters b0. For the
parabolic problem (1.5), (b, u) is allowed to range in a possibly larger open
set O∗ containing O. For small amplitude boundary layers, we may take
O∗ = O = B × U ; however, in general we wish to allow the situation that
the solution of (1.5), within the boundary layer near ∂Ω, may take on values
of (b, u) that lie outside the domain of well-posedness (i.e., hyperbolicity) of
equation (1.1).

Assumption 1.1.
(H0) The Aj and Bj,k are N ×N real matrices, C∞ for (b, u) in O∗; F

is a smooth function from O∗ to RN .

(H1) There is c > 0 such that for all (b, u) ∈ O∗ and all ξ ∈ Rd the
eigenvalues of

∑d
j,k=1 ξjξkBj,k(u) satisfy Reµ ≥ c|ξ|2.
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(H2) For all (b, u) ∈ O, the eigenvalues of
∑
ξjAj(b, u) are real and

semi-simple and have constant multiplicities for (b, u) ∈ O := B × U and
ξ ∈ Rd \ {0}.

(H3) There is c > 0 such that for all (b, u) ∈ O and ξ ∈ Rd the eigenval-
ues of i

∑d
j=1 ξjAj(u) +

∑d
j,k=1 ξjξkBj,k(u) satisfy Reµ ≥ c|ξ|2.

(H4) For all (b, u) ∈ O∂, there holds detAn(b, u) 6= 0.

The Assumption (H1) means that the perturbation

B(b, u, ∂) :=
∑

∂j

(
Bj,k(b, u)∂k ·

)
is uniformly parabolic. (H2) means that L is hyperbolic, at least when
the state (b, u) remains in the domain O. The important Assumption (H4)
means that the boundary ∂Ω is noncharacteristic for L. The Assumption
(H3) is a compatibility condition between L and B. For example, when
B = ∆x is the Laplacian, (H1) is trivial and (H3) follows immediately
from (H2). When (1.1) is a system of conservation laws which admits a
strictly convex entropy η(u), the system is symmetric hyperbolic. If in
addition, Re

(
η′′(u)

∑
ξjξkBj,k(u)

)
is definite positive for all ξ 6= 0, then the

assumptions (H1) and (H3) are satisfied.

The first step is to find the correct limiting boundary conditions for
equation (1.1). These come from the study of a natural “inner layer” o.d.e
equation, for b ∈ B∂ , (see [Gi-Se], [Rou], ) :

(1.6) An(b, w)
dw

dz
− d

dz

(
Bn(b, w)

dw

dz

)
= 0 , w(0) = 0 ,

where Bn(b, u) =
∑
νj(x)νk(x)Bj,k(b, u). In (1.6) z stands for a fast variable

in the direction ν. If (y, xn) 7→ y + xnν(y) with y ∈ ∂Ω and xn small
parametrizes a neighborhood of ∂Ω, then z is a placeholder for xn/ε. In
what follows, what we call a solution of (1.6), is a solution on [0,∞[ such
that (b, w(z)) ∈ O∗ for all z. One introduces the set

(1.7)
C =

{
(b, u) ∈ O∂ : (1.6) has a solution

such that u = lim
z→+∞

w(z)
}

Following [Gi-Se], [Rou], [Gr-Gu] the correct limit boundary conditions for
(1.1) read

(1.8) ∀x ∈ ∂Ω , (b(t, x), u(t, x)) ∈ C .
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Constants are solutions of (1.6) and Assumption (H4) implies that for
all (b, u) there is a family of solutions wb,u,v(z), depending on parameters v,
such that wb,u,v converges to u as z tends to infinity at an exponential rate
(stable-central manifold theorem). That one of these solutions connects u
to zero is a condition on (b, u) which defines C. That the connection can be
chosen smooth with respect to parameters is a transversality assumption.

To start the discussion, we first assume that for all b ∈ B∂ a family of
solutions of (1.6) is chosen, connecting 0 to a set of end states Cb ⊂ U(b).

Assumption 1.2. We are given a smooth manifold C ⊂ O∂ such that for
all b ∈ B∂, Cb := {u ∈ U(b) : (b, u) ∈ C} 6= ∅, and a smooth function W
from C × [0,∞[ such that for all (b, u) ∈ C, wb,u = W (b, u, ·) is a solution
of (1.6) and wb,u(z) converges to u when z tends to +∞, at an exponential
rate, which can be chosen uniform on compact subsets of C.

Assumption 1.2 is the natural analog of assumption (H4), [Z], made in
the planar shock theory.

The properties of C depend on the stability of wb,u solutions of ODE (1.6).
Consider the linearized equation of (1.6) around wb,u

(1.9)


An(w)

dẇ

dz
+ (A′n(w) · ẇ)

dw

dz
− d

dz

(
Bn(w)

dẇ

dz

)
− d

dz

((
ẇ · ∇uB

′
n(w)

)dw
dz

)
= 0

ẇ(0) = 0 .

These equations depend on the parameters b ∈ B∂ and the function w(z),
with w ∈ C∞([0,∞[; RN ). The unknown is ẇ.

Definition 1.3. We say that the limiting boundary conditions (1.8) are
transversal if:

i) For all b ∈ B∂, Cb is a smooth manifold of dimension N− equal to the
number of negative eigenvalues of An(b, u).

ii) For (b, u) ∈ C, the tangent space of Cb at u is the set of u̇ such that
the linearized equation (1.9) with w = wb,u has a (unique) solution ẇ such
that u̇ = limz→∞ ẇ(z).

In [Gr-Gu], it is proved that in the small amplitude case, i.e., for u in a
suitably small neighborhood of 0, there is a unique manifold C and connec-
tion W having the properties above; moreover, the transversality condition
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is satisfied. They also prove that the boundary conditions (1.8) are max-
imally dissipative, when u is small and the parabolic term is the Laplace
operator. In the large, we substitute for maximal dissipativity the more
general uniform Kreiss-Lopatinski condition.

Consider a point (b, u) ∈ C, b = (t, x, b0). To derive the Kreiss-Lopatinski
condition for hyperbolic problems, the idea is to approximate Ω near x by
the half space {ν(x) · x > 0}, and to linearize the equation (1.1) around
the constant solution u. This leads to a constant coefficient problem which
is analyzed using a tangential Fourier-Laplace transform. We proceed in a
similar way for (1.4). To (b, u) ∈ C we associate the profile w(z) = wb,u(z).
The substitute for the constant state u is the “planar” boundary layer
w̃(x) = w(ν · x/ε) that interpolates between 0 on the boundary ν · x = 0
and the inner state u . Next, we linearize the equation (1.4) around w̃ to
get the linear operator

(1.10) ∂tv +
d∑
j=1

A]j∂jv − ε

d∑
j,k=1

B̃j,k∂
2
j,kv +

1
ε
E]v

where

(1.11)

A]jv = Ãjv −
d∑

k=1

νk(∂zw̃ · ∇uB̃k,j)v −
d∑

k=1

νk(v · ∇uB̃j,k)∂zw̃

E]v =
d∑

k=1

νk(v · ∇uÃk)∂zw̃ −
d∑

j,k=1

νjνk(v · ∇uB̃j,k)∂2
z w̃

−
d∑

j,k=1

νjνk(∇2
uB̃j,k(v, ∂zw̃))∂zw̃

where f̃ stands for the function f evaluated at (b, w̃). In (1.10), the coeffi-
cients are functions of ν · x only, and thus we can again perform a Fourier-
Laplace transform in (t, y) where y are the variables in the tangent space
TxΩ. This leads us to introduce the following symbols, where η ∈ T ∗x∂Ω is
a Fourier tangential frequency and τ − iγ a Fourier-Laplace time frequency:

(1.12) M = (iτ + γ)Id +
d∑
j=1

iηjA
]
j +

∑
1≤j,k≤d

ηjηkB̃j,k + E]

(1.13) A =
d∑
j=1

νjA
]
j −

∑
1≤j,k≤d

iηjνk(B̃j,k + B̃k,j)
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The symbols M and A are functions of z ∈ [0,∞[ which depend on the
parameters (b, u) ∈ C and (τ, η, γ) ∈ R×T ∗x∂Ω×]0,∞[. Introducing the fast
variable z and scaling the frequency variables properly (see section 2 below),
the Fourier-Laplace transform of (1.10) reads

(1.14) Lv := −B̃n
d2v

dz2
+A

dv

dz
+Mv

This is an ordinary differential system in z, depending on the parameters
(b, u, ζ) with ζ := (τ, η, γ).

Let E−(b, u, ζ) denote the set of initial data (v(0), dvdz (0)) ∈ CN×CN such
that the corresponding solution of Lv = 0 is bounded as z tends to infinity.
Under Assumptions 1.1 and 1.2, for all (b, u) ∈ C and ζ = (τ, η, γ) 6= 0 with
γ ≥ 0, E−(b, u, ζ) has dimension N and depends smoothly on the parameters
(b, u, ζ) (see Corollary 2.7 below). The weak stability condition states that
the problem Lv = 0, v(0) = 0 has no nontrivial bounded solutions, equiva-
lently that E− is transverse to ker Γ := {0} × CN , where Γ is the mapping
(u̇, v̇) 7→ u̇ from CN ×CN to CN . This is clearly necessary for linear stabil-
ity, its violation implying the existence of local time-exponentially growing
modes. The strong or uniform stability condition requires in addition some
uniform behavior as ζ tends to zero and also as ζ tends to infinity. In partic-
ular, the uniform behavior near the origin is needed to recover the uniform
stability of the hyperbolic boundary value problem. The uniform behavior
at infinity is equivalent to the well-posedness of the Dirichlet boundary value
problem for the parabolic part of the equation.

Because E− and ker Γ both have dimension N in a space of dimension
2N , there is a determinant

(1.15) D(b, u, ζ) = det
(
E−(b, u, ζ), ker Γ

)
obtained by taking orthonormal bases in each space, and the result is inde-
pendent of the choice of the bases. This is the Evans’ function (see [Z], [S]).
D vanishes if and only if E− ∩ ker Γ is not reduced to {0}.

To deal properly with the high frequencies, some appropriate scaling is
required. With

(1.16) Λ(ζ) =
(
1 + τ2 + γ2 + |η|4

) 1
4

introduce the space Ẽ−(b, u, ζ) = JΛE−(b, u, ζ) where JΛ is the mapping
(u̇, v̇) 7→ (u̇,Λ−1v̇) in CN × CN and the “scaled” Evans’ function

(1.17) D̃(b, u, ζ) = det
(
Ẽ−(b, u, ζ), ker Γ

)
.
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Note that ker Γ is invariant by JΛ so thatD vanishes if and only if D̃ vanishes.
Moreover, for bounded values of ζ, there is C such that 1

C |D| ≤ |D̃| ≤ C|D|,
since, in the computation of the Evans’s functions, the introduction of JΛ

only amounts to a change of scalar product in C2N .
The weak stability condition requires that D 6= 0 for (b, u) ∈ C and ζ 6= 0

with γ ≥ 0. The strong or uniform reads

Assumption 1.4 (Uniform stability condition). There is a constant
c > 0 such that for all for all (b, u) ∈ C and ζ = (τ, γ, η) 6= 0 with γ ≥ 0

(1.18) |D̃(b, u, ζ)| ≥ c

Remarks 1.5. a) The weak and uniform stability conditions are conditions
on the “frozen coefficient” planar boundary value problems associated with
the inner layer solution. They are natural analogs of those defined in [Z]
for the planar shock case. In the one-dimensional boundary layer case,
Assumption 1.4 reduces to the condition imposed by Grenier and Rousset
[Gr-Ro].

b) The uniform stability condition is equivalent to saying that

(1.19) |v| ≤ CΛ|u| for U = t(u, v) ∈ E−(b, u, τ, η, γ)

uniformly with respect to (b, u) and (τ, η, γ) bounded, with (τ, η, γ) 6= 0 and
γ ≥ 0.

c) Under Assumptions 1.1 and (1.2) the spaces E−(b, u, τ, γ, η) have
limits E0

−(b, u, τ̌ , η̌, γ̌) when (τ, γ, η) = ρ(τ̌ , η̌, γ̌) and ρ tends to zero, with
(τ̌ , η̌, γ̌) 6= 0, γ̌ > 0. In addition, the spaces E0

− are closely related to
the similar spaces associated to the limit hyperbolic problem, and extend
continuously to γ̌ = 0. The uniform stability condition implies that for all
(b, u) ∈ C and (τ, γ, η) 6= 0 with γ ≥ 0:

(1.20) E−(b, u, ζ)
⋂

({0} × CN ) = {0} ,

and for all (τ̂ , γ̂, η̂) 6= 0 with γ̂ ≥ 0:

(1.21) E0
−(b, u, τ̌ , η̌, γ̌)

⋂
({0} × CN ) = {0} .

This will be shown in Appendix A.
d) The stability condition also involves a uniform behavior as (τ, η, γ)

tends to infinity. Indeed, one can show that the spaces Ẽ−(y, b, u, τ, η, γ)
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have limits as E∞− (y, b, u, τ̃ , γ̃, η̃) when (τ, γ, η) = (λ2τ̃ , λ2γ̃, λη̃) and λ tends
to infinity, with (τ̃ , γ̃, η̃) 6= 0, γ̃ ≥ 0. The uniform stability condition (1.18)
for large values of ζ is equivalent to the transversality condition E∞− ∩ker Γ =
{0}. It turns out that this condition is equivalent to the well-posedness
of the parabolic Dirichlet boundary value problem, as can be seen by a
standard rescaling/asymptotic ODE argument (see [Z], Lemma 4.28 and
also the proof of Lemma 2.14 below). In particular, it is satisfied when
the parabolic operator is symmetric, i.e. when there is a smooth definite
positive S(b, u) such that Re (

∑
ξjξkSBj,k) is positive definite for ξ 6= 0 (see

Remark 2.15 below).

The following useful relation was established by Rousset [Rou] via Evans
function calculations. A proof of the second part of the assertion (i.e., sat-
isfaction of the uniform Kreiss-Lopatinski condition) is given in Appendix
A; see also Remark c) above.

Proposition 1.6. [Rou] Under Assumptions 1.1, 1.2, the uniform stability
condition Assumption 1.4 implies both that the limiting boundary condition
(1.8) is transversal and that the resulting limiting hyperbolic boundary value
problem (1.1) (1.8) satisfies the uniform Kreiss-Lopatinski condition. (In-
deed, these two statements are together equivalent to Assumption 1.4(ii).)

Therefore, under Assumptions 1.1, 1.2 and 1.4, one can solve the mixed
problem (1.1) (1.8) for initial conditions which satisfy sufficiently many com-
patibility conditions (see [Maj], [Ra-Ma], [Mok], [Mé2]).

Remark 1.7. For outer initial data sufficiently close to some particular
value u0 for which there exists a boundary layer satisfying the uniform sta-
bility condition 1.4 (or, more generally, a compact set U0 of such values),
Remark 1.5 (b) above, together with the above proposition, implies that
Assumption 1.4 is automatically satisfied for such time as the outer solution
remains near u0 (resp. U0). This gives a simple situation in which these
assumptions are verifiable a priori for solutions with large boundary layer.
Note that this does not preclude the possibility of multiple (but locally
unique), stable boundary layers, with associated distinct valid boundary
layer expansions. For analogs in the shock layer setting, see [AMPZ].

Consider a solution u0 in Hs0([−T0, T0] × Ω) of the hyperbolic bound-
ary value problem (1.1) (1.8), with b a given smooth enough function in
Hs0([−T0, T0] × Ω). The index s0 is large enough, and how large will be
made precise later. In any case, s0 > 1 + d+1

2 so that functions in Hs0 are
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Lipschtiz continuous. By definition of the boundary condition, there is a
profile

(1.22) w0(t, y, z) = wb(t,y),u0(t,y)(z) .

The profiles wb,a are defined for b ∈ B∂ and a ∈ Cb. It is convenient to
extend the definition to all b and a ∈ U .

Lemma 1.8. There is a C∞ function W on O × [0,∞[ such that
i) W (b, a, z) = 0 when b ∈ B∂ and z = 0,
ii) for all compact set K ⊂ ×U , there are δ > 0 and C such that

∀b ∈ B , ∀a ∈ K ,∀z ≥ 0 : |W (b, a, z)− a| ≤ Ce−δz

iii) when b ∈ B∂ and a ∈ Cb then z 7→W (b, a, z) is a solution of (1.6)

Proof. One can parametrize a neighborhood of ∂Ω using normal coordinates
x = y + xnν(y). Near (b, a) ∈ C, one can use coordinates a = (a′, a′′) such
that C is given by the equations a′′ = h(b, a′). Then one can extend locally
the function w as

W (b, a, z) = wb[,a′,h(b[,a′)(z) + (a′′ − h(b[, a′)) tanh z .

where b[ = (t, y, b0) if b = (t, x, b0) and x = y+xnν(y). When x is outside a
neighborhood of ∂Ω, one can take W = a. Gluing the pieces by a partition
of unity yields the result.

Taking ϕ ∈ C∞(Ω) such that ϕ = 0 and dϕ = ν on ∂Ω, introduce

(1.23) uε0(t, x) = W (b(t, x), u0(t, x), ϕ(x)/ε) .

By construction, it satisfies

(1.24)

{
uε0|∂Ω = 0 .

uε0 − u0 = O(e−δϕ/ε)

Thus uε0 is a perturbation of u0 in the interior and the general idea is that
uε0 is close to a solution of (1.4). In this direction, the main step is to
prove that the linearized equations from (1.4) around uε0 are stable. More
precisely, consider a family of perturbations vε ∈ W 1,∞([−T0, T ] × Ω) and
the linearized equation from (1.4) around uεa := uε0 + εvε :

(1.25) Puε
0+εv(t, x, ∂t, ∂x)u = f , u|∂Ω = 0

13



Pũε
0+εv is a differential operator, first order in t and second order in x, whose

coefficients depend on b, ũε0 and v and their derivatives. Its explicit form is
computed in section 4 below.

The main new result of this paper is that, under Assumptions 1.1 and
1.4, the equations (1.25) are well posed in L2. With T0 > 0 given, we assume
that

(1.26)


u0 ∈W 2,∞([−T0, T0]× Ω) , b ∈W 2,∞([−T0, T0]× Ω)

sup
ε∈]0,1]

(
‖vε‖L∞ + ‖ε∇t,xv

ε‖L∞ + ‖ε2∇2
t,xv

ε‖L∞
)
< ∞ .

Theorem 1.9 (L2 stability). There are C > 0 and ε0 such that for all
ε ∈]0, ε0] and f ∈ L2([−T0, T0]×Ω) vanishing for t < 0, the equation (1.25)
has a unique solution which vanishes for t < 0. Moreover

(1.27) ‖u‖L2 +
√
ε‖∂xu‖L2 + ε3/2‖∂2

xu‖L2 ≤ C‖f‖L2 .

This theorem is proved in section 4 below together with slight improve-
ments which are needed in the proof of the estimates for the derivatives. Let
us just mention where the difficulty lies. The coefficients of Pũε

0
depend on

ϕ(x/ε) and thus are not (uniformly) Lipschitzean. Moreover, the coefficient
of u in Puε

a
has a factor 1

ε in front of it. Thus the usual energy method us-
ing integration by parts yields singular and apparently uncontrolled terms.
This is exactly where the smallness assumption in [Gr-Gu] comes in. Using
it together with a tricky argument, the authors were able to absorb the sin-
gular terms. Our main objective in this paper, is to replace the smallness
argument by a detailed analysis of Puε

a
and to use the Assumption 1.4 to

construct symmetrizers.

The next step is to prove estimates for the derivatives of the solution u.
The classical approach is to differentiate (1.25) with respect to vector fields
which are tangent to R× ∂Ω, in order have natural boundary conditions for
the derivatives. For non characteristic problems, the normal derivatives are
deduced from the tangential ones using the equations. Here, we can adapt
the first argument, but the second certainly fails since the coefficients of Puε

a

are singular in the normal direction and the solution cannot be (uniformly)
smooth in this direction. This leads us to introduce spaces with conormal
Sobolev smoothness. Such spaces have already been widely used in the study
of boundary value problems, see e.g. [Ra2], [Gu2]. Let {Zk}0≤k≤k denote a
finite set of generators of vector fields tangent to R× ∂Ω, with for instance

14



Z0 = ∂t. For U ⊂ R× Ω and m ∈ N, define the space

(1.28)
Hm(U) :=

{
u ∈ L2(U) :Zk1 . . . Zkpu ∈ L2(U) ,

∀p ≤ m,∀(k1, . . . , kp) ∈ {0, . . . k}p
}

This space is equipped with the obvious norm, denoted by ‖ · ‖Hm(U).
In order to solve nonlinear problems, we need work in Banach algebras

which means here that we have to supplement the Hm estimates with L∞

estimates. Introduce the following norms

(1.29) ‖u‖Wµ(U) = ‖u‖L∞ +
µ∑
p=1

∑
1≤k1,...,kp≤k

‖Zk1 . . . Zkpu‖L∞ .

Reinforcing (1.26), we now assume that on ΩT0 := [−T0, T0]× Ω,

(1.30)

u0 ∈Wm+2,∞(ΩT0) , b ∈Wm+2,∞(ΩT0)

sup
ε∈]0,1]

‖vε‖Wm + ε‖∇t,xv
ε‖Wm + ε2‖∇2

xv
ε‖Wm <∞ .

Theorem 1.10. There are C > 0 and ε0 such that all ε ∈]0, ε0] and all
f ∈ Hm([−T0, T0] × Ω) vanishing for t < 0, the solution of equation (1.25)
satisfies

(1.31) ‖u‖Hm +
√
ε‖∂xu‖Hm + ε3/2‖∂2

xu‖Hm ≤ C‖f‖Hm

If in addition m ≥ 2 + d+1
2 and f ∈ L∞([−T0, T0]× Ω), then the solution u

also satisfies

(1.32) ‖u‖W2 + ε‖∂xu‖W1 + ε2‖∂2
xu‖L∞ ≤ C

(
‖f‖Hm + ε‖f‖L∞

)
.

These results can be used to solve the nonlinear equations (1.4). In order
to avoid technical discussions on compatibility conditions for the Cauchy
data and the boundary conditions, we consider here the simple case where
the Cauchy data for (1.1) and (1.2) are zero, but with a non trivial forcing
term, see [Gr-Gu]. More precisely, we consider F (b, u) such that F (0, 0) = 0.
With indices m and s0 such that

(1.33) m >
d+ 1

2
, s0 > m+ 3

d+ 1
2

,

consider b ∈ Hs0([−T0, T0] × Ω) such that b = 0 for t < 0. Assuming that
the state u = 0 belongs the domain of hyperbolicity O in Assumption 1.1
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and shrinking T0 if necessary, the mixed Cauchy problem (1.1) (1.8) has a
unique solution u0 ∈ Hs0([−T0, T0] × Ω) which vanishes for t < 0. In this
case, uε0 given by (1.23) vanishes for t < 0 and is an exact solution of (1.4)
there. We show that this solution can be continued to [0, T0] × Ω and that
uε0 is a good approximation.

Theorem 1.11. There is ε0 > 0 such that for all ε ∈]0, ε0] the problem
(1.4)(1.5) has a unique solution uε which vanishes for t < 0. Moreover,

(1.34) ‖uε − uε0‖Hm + ‖u− uε0‖L∞ = O(ε) .

This theorem is proved in section 6. Indeed, we first construct a first
corrector uε1 such that uε1 = 0 for t < 0, uε1 = 0 on [−T0, T0] × ∂Ω and
uεa = uε0 + εuε1 satisfies equation (1.4) up to an error e = O(ε). Indeed,
when one substitutes uε0 in (1.4), the O(ε−1) term is killed by the choice
(1.23) and because W satisfies (1.6) when the boundary condition is satis-
fied. However, it remains an O(e−δϕ/ε) term. The corrector uε1, given by
a formula analogous to (1.23), can be chosen to cancel this term (see the
general discussion of BKW solutions in [Gr-Gu]). Then the solution uε is
constructed as uεa + εvε, where vε solves

(1.35) Puε
a
vε + εQ(vε) = f := ε−1e

and Q is at least quadratic in v. Denoting by ‖ · ‖Xm
ε

[resp. ‖ · ‖Ym
ε

] the
norm given by adding the left [resp right] hand sides of (1.31) and (1.32)
one proves that

(1.36)
‖εQ(vε)‖Ym

ε
≤ ε1/4C(M) ,

‖ε(Q(vε1)−Q(vε2))‖Ym
ε
≤ ε1/4C(M) ‖v1 − v2‖Xm

ε
,

provided that

(1.37)
ε‖v1‖L∞ ≤ 1 , ε‖v1‖L∞ ≤ 1
ε‖v1‖Xm

ε
≤M , ε‖v1‖Xm

ε
≤M .

Together with Theorem 1.10, this shows that the equation (1.35) can be
solved in Xm, provided that ε is small enough.

The main result in [Gr-Gu] is analogous to Theorem 1.11, but does not
give the existence up to T0. They proved the linear and nonlinear stabil-
ity as long as uε0 remains smaller than some small constant in a suitable
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norm. Here, we get the stability under the more geometric condition that
(y, u0(t, y)) remains in a domain where the uniform stability condition As-
sumption 1.4 holds, knowing that when this condition fails, strong instabil-
ities can occur. Note also that our estimates in Theorem 1.10 are stronger
than the corresponding estimates in [Gr-Gu], since they proved estimates
for derivatives εZ and not for Z. The price they had to pay was that they
needed a very accurate approximate solution uεa, so that the solution is con-
structed as uεa+ε

Mv with M large, so that control of ε derivatives for v gives
control of L∞ norms for εMv. Moreover, the accurate approximate solutions
were constructed by BKW expansions, which require a lot of smoothness on
u0. Indeed, they assumed u0 ∈ C∞.

However, the results in Theorem 1.10 and 1.11 are not quite satisfactory.
Because (1.4) is parabolic, one should expect the solutions to be smoother
than the solutions of (1.1). Here we get a result going the wrong way.
We start from a very smooth solution u0 of (1.1) and we end up with less
smooth solutions of (1.4). This is clearly related to the method of proof, and
a direct proof of existence with uniform estimates for (1.4), without using
the solution u0 of (1.1) would be very interesting. This will be developed in
a further work. In any case, the stability analysis in Theorem 1.9 is the key
point and is indeed the main concern of this paper.
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2 Linear stability : the model case

This section is an introduction to and preparation for the general analysis
developed in section 4. We consider the model problem where the domain
is a half plane and the hyperbolic solution u0 as well as the source term
are constant. More precisely, we fix y ∈ ∂Ω and a local chart χ from a
neighborhood V of y to a neighborhood Ṽ of 0 in Rd such that Ω ∩ V is
transformed into Ṽ ∩{x > 0} where (y, x) ∈ Rd−1×R are coordinates in Rd,
and the defining function ϕ in (1.23) is ϕ = x. The form of the equation
(1.4) is preserved by the change of coordinates, as well as the Assumptions
1.1 and 1.4. For simplicity, we keep the same notations. The linearized
equations around uεa read

(2.1)


∂tu+

d∑
j=1

Aεj∂ju− ε

d∑
j,k=1

Bε
j,k∂

2
j,ku+

1
ε
Eεu = f , x > 0 ,

ux=0 = 0 .

with

Aεjv = Ãjv − ε
∑
k

(B̃′
j,k · v)∂kuεa − ε

∑
k

(B̃′
k,j · ∂kuεa)v ,

Bε
j,k = B̃j,k ,

Eεv = ε
∑
j

(Ã′j · v)∂juεa − ε2
∑
j,k

(B̃′
j,k · v)∂2

j,ku
ε
a + B̃′′

j,k(v, ∂ju
ε
a)∂ku

ε
a ,

where Ã stands for the function A evaluated at (b(t, y, x), uεa(t, y, x)) and A′

is the derivative of A with respect to the variable u. The d−1 first variables
are (y1, . . . , yd−1) and the d-th variable is x.

In particular, we will consider (2.1) when uεa = uε0 + εv and uε0 is given
by (1.23), which reads in the new coordinates,

(2.2) uε0(t, y, x) = W (b(t, y, x), u0(t, y, x),
x

ε
)

As mentioned in the introduction, the starting point is to analyze the lin-
earized equation when u0 is a constant and the coefficients (t, y, x) are frozen.
This leads us to consider functions

(2.3) uεa(t, y, x) = W (b, a,
x

ε
) + c := w(p,

x

ε
)

where

(2.4) p = (b, a, c)
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are parameters which vary in a neighborhoods of b = b(t, 0, 0) in R × Rd ×
RM0 × [0,∞[, a = u0(t, 0, 0) in O, and c = 0 in RN respectively. We denote
by p = (b, a, c).

When uεa is given by (2.2), the linearized equation (2.1) simplifies to

(2.5)


∂tu+

d∑
j=1

A]j∂ju− ε
d∑

j,k=1

B]
j,k∂

2
j,ku+

1
ε
E]u = f , x > 0 ,

ux=0 = 0 .

with

(2.6)


A]jv = Ãjv − (B̃′

j,d · v)∂zwp − (B̃′
d,j · ∂zwp)v ,

B]
j,k = B̃j,k ,

E]v = (Ã′d · v)∂zwp − (B̃′
d,d · v)∂2

zwp − B̃′′
d,d(v, ∂zwp)∂zwp ,

and the functions are now evaluated at (b, w(p, x/ε)). We remark that all the
coefficients A]j , B

]
j,k and E] are C∞ functions of p and z = x/ε. Moreover,

they converge with an exponential rate when z tends to +∞. The limits are
denoted by A∞j (p), B∞

j,k(p) and E∞(p). They are given by

(2.7) A∞j (p) = Aj(b, a+ c) , B∞
j,k(p) = Bj,k(b, a+ c) , E∞(p) = 0 .

Moreover, there are C and δ > 0, such that for all p in a neighborhood of p
and all indices j and k:

(2.8) |A]j(p, z)−A∞(p)|+ |B]
j,k(p, z)−A∞(p)|+ |E](p, z)| ≤ Ce−δz .

In this section we prove uniform a priori estimates for (2.5). We shall
concentrate more on the method than on the estimates themselves. The
symmetrizers we construct now will serve as symbols for the general con-
struction of symmetrizers performed in section 4.

We denote by ‖ · ‖ and | · | the L2 norms respectively on the half space
{(t, y, x) ∈ R1+d : x > 0} and on the boundary {(t, y) ∈ Rd}.

Theorem 2.1. There is C such that for all ε ∈]0, 1], all γ > 0 and all test
functions u, f satisfying (2.1), one has

(2.9)
γ‖e−γtu‖+

√
εγ‖e−γt∂yu‖+

√
εγ‖e−γt∂xu‖

+ε‖e−γt∂2
yu‖+ ε‖e−γt∂y∂xu‖ ≤ C‖e−γtf‖
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The trace ∂xu|x=0 can also be estimated as stated in section 4, but this
is unessential here. Introducing ũ = e−γtu, (2.5) is equivalent to

(2.10)


(∂t + γ)ũ+

d∑
j=1

A]j∂j ũ− ε

d∑
j,k=1

B]
j,k∂

2
j,kũ+

1
ε
E]ũ = f̃ ,

ũx=0 = 0 .

with f̃ = e−γtf . Thus (2.9) is equivalent to

(2.11) γ‖ũ‖+
√
εγ‖∂y,xũ‖+ ε‖∂y,x∂yũ‖ ≤ C‖f̃‖

for the solutions of (2.10) We write (2.10) in the condensed form

(2.12)

 − ε∂2
xũ+A]∂xũ+

1
ε
M ]ũ = (B]

d,d)
−1f̃ ,

ux=0 = 0 .

where
A] = (B]

d,d)
−1
(
A]1 −

d−1∑
j=1

(B]
j,d +B]

d,j)ε∂j
)

M ] = (B]
d,d)

−1
(
ε(∂t + γ) +

d−1∑
j=1

A]jε∂j −
d−1∑
j,k=1

B]
j,kε

2∂2
j,k + E]

)
.

We have used that, by Assumption (H1), Bd,d and thus B]
d,d are invertible.

Remark that A] and M ] are differential operators in ε(∂t+γ) and ε∂y. They
are respectively of order 1 and of order two for the natural parabolic weights,
where ε∂y has weight 1 and ε∂t and εγ have weight 2.

Write (2.12) as a first order system for U =
(

ũ
ε∂xũ

)
:

(2.13)

 ∂xU −
1
ε
G]U = F ,

ΓUx=0 = 0 .

with

Γ
(
u
v

)
= u G] =

(
0 Id
M ] A]

)
, F =

(
0

−(B]
d,d)

−1f̃

)
.
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Theorem 2.1 follows from the following estimates for the solutions of
(2.13): there is C such that for all ε ∈]0, ε0], all γ0 such that for all γ ≥ γ0

and all test functions U =
(
u
v

)
, F satisfying (2.13), one has

(2.14) γ‖u‖+
√
εγ‖∂yu‖+ ε‖∂2

yu‖+
√
γ

√
ε
‖v‖2 + ‖∂yv‖ ≤ C‖F‖2

2.1 Symmetrizers

Recall now the essence of the “method of symmetrizers” as it applies to
general boundary value problems

(2.15) ∂xu = G(x)u+ f , Γu(0) = 0 .

Here, u and f are functions on [0,∞[ values in some Hilbert space H, and
G(x) is a C1 family of (possibly unbounded) operators defined on D, dense
subspace of H.

A symmetrizer is a family of C1 functions x 7→ S(x) with values in
the space of operators in H such that there are C0, λ > 0, δ > 0 and C1

such that

∀x , S(x) = S(x)∗ and |S(x)| ≤ C0 ,(2.16)
∀x , 2ReS(x)G(x) + ∂xS(x) ≥ 2λId ,(2.17)
S(0) ≥ δId− C1Γ∗Γ .(2.18)

In (2.16), the norm of S(x) is the norm in the space of bounded operators
in H. Similarly S∗(x) is the adjoint operator of S(x). The notation ReT =
1
2(T + T ∗) is used in (2.17) for the real part of an operator T . When T
is unbounded, the meaning of ReT ≥ λ, is that all u ∈ D belongs to the
domain of T and satisfies

(2.19) Re
(
Tu, u

)
≥ λ|u|2 .

The property (2.17) has to be understood in this sense.

Lemma 2.2. If there is a symmetrizer S, then for all u ∈ C1
0 ([0,∞[;H) ∩

C0([0,∞[;D), one has

(2.20) λ‖u‖2 + δ|u(0)|2 ≤ C2
0

λ
‖f‖2 + C1|Γu(0)|2 ,

where f := ∂xu−Gu.
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Here, | · | is the norm in H and ‖ · ‖ the norm in L2([0,∞[;H).

Proof. Taking the scalar product of Su with the equation (2.15) and inte-
grating over [0,∞[, (2.16) implies

(2.21)
−(S(0)u(0), u(0)) =

∫
∂x(Su, u)dx

=
∫ (

(2ReSG+ ∂xS)u, u
)
dx+ 2Re

∫ (
Sf, u

)
dx .

By (2.17), ∫ (
(2ReSG+ ∂xS)u, u

)
dx ≥ 2λ‖u‖2 .

By (2.18) and the boundary condition Γu(0) = 0,

(S(0)u(0), u(0)) ≥ δ|u(0)|2 − C1|Γu(0)|2 .

By (2.16)

2
∣∣∣ ∫ (Sf, u)dx∣∣∣ ≤ 2C0‖f‖ ‖u‖ ≤

C2
0

λ
‖f‖2 + λ‖u‖2 .

Thus the identity (2.21) implies the energy estimate (2.20).

2.2 Laplace–Fourier transform

To obtain energy estimates for (2.13) we perform a Fourier transform in
variables (t, y). The matrix G] in (2.13) is a differential operator in ε∂t, ε∂y
with coefficients independent of (t, y). Denoting by Û(τ, η, x) the Fourier
transform of U(t, y, x), (2.13) is equivalent to

(2.22) ∂xÛ =
1
ε
G(
x

ε
, p, ετ, εγ, εη)Û + F , ΓÛ|x=0 = û|x=0 = 0 .

where

G(z, p, τ, γ, η) =
(

0 Id
M A

)
,

A(z, p, τ, γ, η) = (B]
d,d)

−1
(
A]1 −

d−1∑
j=1

iηj(B
]
j,d +B]

d,j)
)

M(z, p, τ, γ, η) = (B]
d,d)

−1
(
(iτ + γ) +

d−1∑
j=1

iηjA
]
j +

d−1∑
j,k=1

ηjηkB
]
j,k + E]

)
.
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and the functions A]j etc are evaluated at (p, z).
By Plancherel’s theorem, the energy estimates (2.14) are equivalent to

the following estimates for the solutions of (2.22):

(2.23) (γ + ε|η|2)‖û‖+ (
√
γ

√
ε

+ |η|)‖v̂‖ ≤ C‖F̂‖.

It is convenient to eliminate the ε in (2.22) by setting

(2.24) Ũ(z) = Û(εz) , F̃ (z) = εF̂ (εz) , (τ̃ , γ̃, η̃) = (ετ, εγ, εη) .

Then, (2.22) is transformed into

(2.25) ∂zŨ = G(z, p, τ̃ , γ̃, η̃)Ũ + F̃ , ΓŨ(0) = u(0) = 0 .

With (2.24), the energy estimate (2.23) is equivalent to the energy estimate

(2.26) (γ̃ + |η̃|2)‖ũ‖2 + (
√
γ̃ + |η̃|)‖ṽ‖+ ≤ C

γ
‖F̃‖

for the solutions of (2.25).
We now proceed to the proof of (2.26) and to the analysis of (2.25). We

denote by ζ = (τ̃ , γ̃, η̃) ∈ R× [0,∞[×Rd−1 the frequencies. There are three
different regimes, depending on the size of |ζ|:

1) |ζ| is small. (Remember that we will perform the substitution
(2.24), so that in the original variables this means that ε(|τ | + |γ| + |η|) is
small). In this regime, part of u is governed by an elliptic-parabolic equation
and the other part is governed by the limiting hyperbolic problem.

2) |ζ| ≈ 1. This is the intermediate regime, where (2.25) has an
“elliptic” behavior.

3) |ζ| is large. In this high frequency regime, the parabolic behavior
prevails. There is a natural quasi-homogeneity, where η has weight 1 and
(τ, γ) have weight 2. The length is given by 〈ζ〉 = (τ̃2 + γ̃2 + |η̃|4)1/4.

The next result summarizes the estimates in the different regimes. It
implies (2.26) and therefore Theorem 2.1. Introduce a weight function h(ζ)
such that

(2.27) h(ζ) ≈
{

(γ̃ + |ζ|2)1/2 when |ζ| ≤ 1 ,
〈ζ〉 when |ζ| ≥ 1 .

Note that both (γ̃ + |ζ|2)1/2 and 〈ζ〉 are ≈ 1 when |ζ| ≈ 1. Introduce next

(2.28) `(ζ) = h(ζ)(1 + 〈ζ〉)−1/2,

which is of order h when |ζ| ≤ 1 and of order 〈ζ〉1/2 when |ζ| ≥ 1.
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Theorem 2.3. There are a neighborhood of p and a constant C such that
for all p in this neighborhood, all ζ ∈ Rd+1 with γ̃ > 0 and all Ũ and F̃ in
C∞0 ([0,∞[) satisfying (2.25), one has

(2.29) h2‖ũ‖+ h‖ṽ‖+ `|ṽ(0)| ≤ C‖F‖ .

Remark 2.4. The inequality (2.29) implies the desired estimates (2.26)⇔
(2.23)⇔ (2.14) ⇒ (2.9) but is much more precise. It includes estimates of
the traces for v = ε∂xu and also estimates for

√
ε∂tu since h ≥ min (1,

√
γ) τ .

2.3 Reduction to constant coefficients

We prove Theorem 2.3 by constructing symmetrizers in the three different
regimes. Remember that the frequencies for (2.25) are smaller by a factor
ε than the actual frequencies for (2.22) (see (2.24)), so that the regime
ζ → 0 is crucial. The main idea is to conjugate system (2.25), for bounded
frequencies ζ, to a constant coefficient system

(2.30) ∂zU1 = G∞U1 + F1 , Γ1U1(0) = 0 ,

using the exponential convergence of the coefficients at z = ∞. Thus we
are reduced to constant coefficient equations and we perform the classical
analysis, looking at the growing and decaying modes of G∞. Here we extend
Kreiss’ analysis to parabolic-hyperbolic systems (2.30). The case where
|ζ| ≥ ρ0 > 0 falls in the so called elliptic region. The hyperbolic behavior
occurs in the limit ζ → 0. When ζ is large, the parabolic character prevails
and the equation (2.25) can be handled directly.

The coefficients C] which enter in the definition of G have limits at
infinity in z, see (2.8). Therefore, G(z, p, ζ) converges with an exponential
rate to a limit G∞(p, ζ) when z tends to +∞.

Lemma 2.5 (Spectral analysis of G). i) There are c > 0 and ρ1 > 0
such that for p in a compact neighborhood of p, |ζ| ≥ ρ1 with γ ≥ 0, and
z ∈ [0,∞[, G(z, p, ζ) has N eigenvalues, counted with their multiplicities, in
Reµ > 0 and N eigenvalues in Reµ < 0. They satisfy |Reµ| ≥ c〈ζ〉.

ii) When ζ 6= 0 and γ ≥ 0, G∞(p, ζ) has N eigenvalues, counted with
their multiplicities, in Reµ > 0 and N eigenvalues in Reµ < 0.

iii) When ζ = 0, G∞(p, 0) has 0 as a semi-simple eigenvalue, of mul-
tiplicity N . The nonvanishing eigenvalues are those of (B∞

d,d)
−1A∞d .
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Proof. a) When ζ is large, we use the quasi-homogeneity to write

M = 〈ζ〉2M̂ +O(〈ζ〉) , A = 〈ζ〉Â+O(1),

where

(2.31)


M̂ = (B]

d,d)
−1
(
(iτ̂ + γ̂)Id +

d−1∑
j,k≥1

η̂j η̂kB
]
j,k

)

Â = −i
d−1∑
k=1

η̂k(B
]
d,d)

−1(B]
k,d +B]

d,k)

with
τ̂ =

τ

〈ζ〉2
, γ̂ =

γ

〈ζ〉2
, η̂ =

η

〈ζ〉
.

Thus (
〈ζ〉Id 0

0 Id

)
G
(
〈ζ〉−1Id 0

0 Id

)
= 〈ζ〉

(
0 Id
M̂ Â

)
+O(1).

Tracing back the definitions, µ̂ is an eigenvalue of the matrix Ĝ, coefficient of
the 〈ζ〉 term in the right hand side, if and only if −(iτ̂ + γ̂) is an eigenvalue
of

d∑
j,k=1

ξjξkBj,k(b, wp(z))

with ξd = −iµ and (ξ1, . . . , ξd−1) = η̂. If µ belongs to imaginary axis, ξd
is real and by (H1) one must have γ̂ ≤ −c|ξ|2. For γ̂ ≥ 0, this implies
that ξ = 0, and therefore that τ̂ − iγ̂ = 0, which contradicts that 〈ζ̂〉 = 1.
Thus Ĝ has no eigenvalues on the imaginary axis. Therefore, the number of
eigenvalues in Reµ > 0 and in Reµ < 0 is independent of ζ̂ when γ̂ ≥ 0.
Moreover, when η̂ = 0, Ĝ reduces to(

0 Id
(B]

d,d)
−1 0

)
.

The eigenvalues are the square roots of the eigenvalues of B−1
1,1 , and therefore

N of them are in Reµ > 0 and N in Reµ < 0.
By a standard perturbation argument, for 〈ζ〉 large, the eigenvalues of

G are µ = 〈ζ〉µ̂+ O(1), where µ̂ is an eigenvalue of Ĝ, and i) of the lemma
follows.
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b) Similarly, tracing back the definitions and using (2.7), µ is an eigen-
value of G∞(p, ζ) if and only if −τ + iγ is an eigenvalue of

d∑
j=1

ηjAj(b, a+ c)− i
d∑

j,k=1

ξjξkBj,k(b, a+ c)

with ξd = −iµ and (ξ1, . . . , ξd−1) = η. If Reµ = 0, ξ is real and (H3) implies
that γ ≤ −c(|µ|2 + |η|2). For γ ≥ 0, this implies that γ = 0, µ = 0 and
η = 0. Thus the matrix above vanishes, the eigenvalue −τ must be zero and
therefore, ζ = 0. This shows that G∞ has no eigenvalues on the imaginary
axis when ζ 6= 0 and γ ≥ 0

The number of eigenvalues in Reµ > 0 and in Reµ < 0 is independent
of (p, ζ) when ζ 6= 0 and γ ≥ 0. Letting z tend to ∞, i) implies that for ζ
large, N eigenvalues lie on each half plane.

c) When ζ = 0, one has

G∞(p, 0) =
(

0 Id
0 B−1

d,dAd(b, a+ c)

)
.

By (H1) (H4) B−1
1,1A1(b, a+c) is invertible when p remains in a neighborhood

of p. Thus the eigenvalues of G∞ are zero with multiplicity N , and the
eigenvalues of B−1

1,1A1.

Lemma 2.6 (Conjugation to constant coefficient). For all ζ ∈ Rd+1

with γ ≥ 0, there is a neighborhood ω of (p, ζ) and there is a matrix W
defined and C∞ on [0,∞[×ω such that

i) W−1 is uniformly bounded and there is θ > 0 such that

(2.32) |W(z, p, ζ)− Id| ≤ Ce−θz,

ii) W satisfies

(2.33) ∂zW = G(z)W(z)−W(z)G∞ .

Proof. Consider (2.33) as an ordinary (linear) differential equation in the
space of matrices. Because G converges exponentially to G∞, it has the
form

∂zW = LW + δG(z)W ,

where L is the constant coefficient operator adG∞ = [G∞, · ], and δG(z) is
the left multiplication by G(z) − G(∞) = O(e−δz). Now we apply the Gap
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Lemma of [GZ], [ZH], [Z], which asserts that associated with the eigenvalue
0 and the eigenvector Id of L, there is a solution of (2.33) satisfying (2.32).
Recall that W is obtained as the solution of

W(z) = Id+
∫ z

0
e(z−s)LΠ−(s)δG(s)W(s)ds

−
∫ ∞

z
e(z−s)LΠ+δG(s)W(s)ds

where Π+ [resp Π−] is the spectral projector on the sum of the generalized
eigenspaces of L associated with eigenvalues in Reµ > −κ [resp. Reµ < −κ]
where κ is chosen in ]0, δ[ such that L has no eigenvalues on {Reµ = κ}.
Together with the estimates in [GZ], [ZH], [Z] which prove the existence of
a solutions such that W − Id = O(e−θz) for θ < κ, this shows that one can
choose W depending smoothly on the parameters, as long as the eigenvalues
of L, which are differences of eigenvalues of G∞, remain separated by a line
Reµ = κ for some κ ∈]0, δ[. This is true locally.

Consider D(z) := detW(z). Then

(2.34) ∂zD(z) = tr(G(z)− G∞)D(z) .

This clearly implies that D(z) never vanishes on [0,∞[. In addition, since
D(z) = 1+O(e−θz), this also provides uniform bounds for D(z) and 1/D(z).
To prove (2.34), denote by (W1, . . . ,W2N ) [resp denote by (G1, . . . , G2N )]
the columns of W [resp. G]. Then (2.33) implies that

∂zD =
∑
j

det
[
W1, . . . ,G(z)Wj , . . .W2N

]
−
∑
j

det
[
W1, . . . ,WGj(∞), . . .W2N

]
.

Next use the following algebraic identities for matricesW and G with columns
(W1, . . . ,W2N ) and (G1, . . . , G2N ):∑

j

det
[
W1, . . . ,GWj , . . .W2N

]
= (trG) detW ,

∑
j

det
[
W1, . . . ,WGj , . . .W2N

]
= (trG) detW ,

which are quite clear when (W1, . . . ,W2N ) is a basis, and extend alge-
braically to general W.
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The substitution U = WU1 transforms the equation (2.25) into (2.30)
with F1 = W−1F and Γ1(p, ζ) = ΓW−1(0, p, ζ)v. In particular, let E−(p, ζ)
[resp. F−(p, ζ)] denote the space of initial data U(0) [resp. U1(0)] such that
the corresponding solution of ∂zU = G(z, p, ζ)U [resp. ∂zU1 = G∞(p, ζ)U1]
is bounded as z tends to infinity. Then

(2.35) E−(p, ζ) = W(0, p, ζ)F−(p, ζ) .

Corollary 2.7. E−(p, ζ) and F−(p, ζ) have dimension N and vary smoothly
with (p, ζ) when ζ 6= 0 and γ ≥ 0. In addition,

(2.36) F−(p, ζ) ∩ ker Γ1(p, ζ) = {0} .

Proof. Since F− is the spectral subspace for G∞ associated to eigenvalues
lying in Reµ < 0, it has dimension N by Lemma 2.5 and varies smoothly
with the parameters (p, ζ) when ζ 6= 0. The identity (2.36) follows from
Assumption 1.4 which means that E−(p, ζ) ∩ ker Γ1(p, ζ) = {0}.

Remark 2.8. Lemmas 2.5, 2.6 and the first statement in Corollary 2.7
only use Assumptions 1.1 and 1.2. The transversality (2.36) relies on the
additional Assumption 1.4.

2.4 Kreiss analysis

To prove estimates for solutions of the constant coefficient equation (2.30),
we follow Kreiss’ analysis, with a slight but important generalization of the
block structure condition, needed to treat general viscosities in the non-
strictly hyperbolic case. (In the simpler, strictly hyperbolic or Laplacian
viscosity case, the usual block structure condition will suffice; see Remark
2.11b.) When ζ 6= 0 the block diagonalization of G∞ is quite easy since
the eigenvalues remain away from the imaginary axis. When working near
ζ = 0, one has to push further the analysis of G∞(p, ζ). We proceed in two
steps.

Lemma 2.9. There is a C∞ invertible matrix V defined on a neighborhood
ω0 of (p, 0) such that V−1G∞V has the block diagonal form

(2.37) V−1G∞V =
(
H 0
0 P

)
:= G2
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with H(p, 0) = 0 and P (p, 0) = (B∞
d,d)

−1A∞d and

(2.38) V(p, 0) =
(

Id (A∞d )−1B∞
d,d

0 Id

)
The eigenvalues of P satisfy |Reµ| ≥ c for some c > 0 and

(2.39) H = −(A∞d )−1
(
(iτ + γ)Id +

d−1∑
j=1

iηjA
∞
j

)
+ O(|ζ|2).

Proof. By (H1) (H4), 0 is not an eigenvalue of (B∞
1,1)

−1A∞1 . Lemma 2.5
implies that, on a small neighborhood Ω0 of the origin, there is a smooth
family of matrices V1 as indicated in the lemma.

The form of H follows from a direct perturbation argument. Moreover,
if µ is an eigenvalue of P (p, 0), then 0 is an eigenvalue of µA∞d − µ2B∞

d,d.
Thus (H2) implies that Reµ 6= 0. This remains true for ζ in a neighborhood
of 0.

Next, we analyze the structure of H. The block reduction of the first
order part is the key part in Kreiss’ analysis. We show that, with suitable
modification, the analysis can be extended to H. Introduce polar coordi-
nates for ζ :

(2.40)
ζ = ρζ̌ = ρ(τ̌ , γ̌, η̌) , with ρ = |ζ| , |ζ̌| = 1 ,

H(p, ζ) = ρȞ(p, ζ̌, ρ) .

Lemma 2.10 (The generalized block structure condition). For all ζ̌
with γ̌ ≥ 0 there is a neighborhood ω̌ of (p, ζ̌, 0) in Rd+1 × Sd ×R and there
are matrices V (p, ζ̌, ρ) C∞ on ω̌ such that V −1ȞV has the following block
diagonal structure:

(2.41) V −1ȞV = Q(p, ζ̌) + ρR(p, ζ̌, ρ),

with

(2.42) Q =

 Q1 · · · 0
...

. . .
...

0 · · · Qk

 , R =

 R1 · · · 0
...

. . .
...

0 · · · Rk


and

(2.43) Qk =

 Qk · · · 0
...

. . .
...

0 · · · Qk

 , Rk =

 Rk1,1 · · · Rk1,αk
...

. . .
...

Rkαk,1
· · · Rkαk,αk

 ,
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where the subblocks Qk, Rkp,q are νk × νk matrices, and the blocks Qk, Rk

are αkνk × αkνk matrices. Moreover, Qk, Rk satisfy one of the conditions
i) or ii) below if γ̌ > 0, and one of the conditions i) to iv) when γ̌ = 0 :

i) the spectrum of Qk(p, ζ̌) is contained in the open half plane {Reµ > 0};
ii) the spectrum of Qk(p, ζ̌) is contained in {Reµ < 0}.
iii) νk = 1, Qk is purely imaginary when γ̌ = 0, and ∂γ̌(ReQk)ReRk is

positive definite, where ReRk := 1
2(Rk +R∗

k).
iv) νk > 1, Qk has purely imaginary coefficients when γ̌ = 0, there is

µk ∈ R such that

(2.44) Qk(p, ζ̌) = i


µk 1 0

0 µk
. . . 0

. . . . . . 1
· · · µk

 ,

(2.45) Rkp,q(p, ζ̌, 0) =

 ∗ 0 . . . 0
... 0 . . . 0
rkp,q 0 . . . 0

 ,
and (∂γ̌Re ak)ReR[k is positive definite at (p, ζ̌, 0), where ak is the lower left
hand corner of Qk and R[k is the αk × αk matrix with entries rkp,q.

Remarks 2.11. a) This result (more precisely, assertions (2.41)–(2.44))
was originally established in [Z], by a closely related argument; see Observa-
tions 4.11–4.12 and equations (4.102)–(4.103) of that reference. In the main
analysis of [Z] there appears an additional “foliated structure” hypothesis
(H6) under which dependence on η is effectively suppressed in the bifurca-
tion problem (2.41), and this was used in an essential way in establishing the
L1 → Lp estimates on which the analysis of [Z] is based. The fact that we
may dispense with any such auxiliary hypotheses here reflects both the cor-
rectness of the L2 norm for the problem at hand, and the power/generality
of the Kreiss symmetrizer construction.

(There appears also in the main analysis of [Z] the assumption that
A(η, ξ) and B(η, ξ) be simultaneously symmetrizable, under which the ma-
trices R[k may be chosen to be diagonal, recovering a “weak block structure”
in (2.43). However, the latter is only a technical convenience, and could be
removed.)
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b) When ρ = 0, the block structure reduction V −1ȞV = Q with Q
as in (2.42) is established in [Mé3]. The construction there extends to the
case where the eigenvalues of the entire symbol iA(η, ξ) + ρB(η, ξ) are of
constant multiplicity with respect to all parameters including ρ. This holds
in particular, when A(η, ξ) is strictly hyperbolic or when B(η, ξ) = |η|2+ |ξ|2
corresponds to “artificial” Laplacian viscosity. However, constant multiplic-
ity with respect to ρ typically fails for multiple characteristics. Indeed, a
necessary condition is that, for all ξ ∈ Rd, Π

∑d
j,k=1B

jkξjξkΠ be a scalar
multiple of the identity, where Π is the eigenprojection associated with the
multiple eigenvalue of

∑d
j=1Ajξj ; this is violated, for example, for the “ef-

fective” strictly parabolic systems associated with gas dynamics and MHD
(see [HoZ] for a description of effective viscosity and its relation with time-
asymptotic behavior).

The independent proof of Lemma 2.10 is postponed to Appendix A.
We just give now a flavor of the arguments, assuming constant multiplicity
with respect to all parameters as in Remark b) above. One first performs
a block reduction of Ȟ, isolating the the purely imaginary eigenvalues from
the eigenvalues with non vanishing real part of Ȟ(p, ζ̌, 0). The later case
is easily handled. The former case occurs only when γ̌ = 0. In this case,
consider a purely imaginary eigenvalue µ = iξ̌

d
of Ȟ(p, ζ̌, 0). Note that ξ̌ =

(η̌, ξ̌
d
) 6= 0 since (τ̌ , η̌) 6= 0. Suppose that λ(p, ξ, ρ) an eigenvalue of constant

multiplicity of
∑
ξjA

∞
j (p)− iρ

∑
j,k ξjξkB

∞
j,k(p) such that τ̌ + λ(p, ξ̌, 0) = 0.

The key point is the following remark. By (H2), λ(p, ξ, ρ) is real when
ρ = 0 and ξ is real. Moreover, it satisfies

Imλ(ξ, 0) = 0 , Imλ(ξ, ρ) ≤ −cρ for ρ > 0 small .

Therefore, ∂ρλ(ξ, 0) < 0. This implies that the eigenvalue equation

F(τ̌ , γ̌, ξ̌, ρ) := τ̌ − iγ̌ + λ(ξ̌, ρ) = 0

satisfies

(2.46) ∂γ̌ImF(p, ζ̌, 0) < 0 and ∂ρImF(p, ζ̌, 0) < 0 .

In particular, by the implicit function theorem, if ξ̌
d

is a simple root (hy-
perbolic mode), there is a unique semi-simple eigenvalue µ(p, τ̌ , γ̌, η̌, ρ) of
multiplicity αk equal to the multiplicity of λ, close to µ. In this case,
Qk + ρRk = µId. Moreover, (2.46) implies that ∂γ̌Reµ and ∂ρReµ do
not vanish and have the same sign. This is why the sign condition occurs in
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blocks iii) which correspond to semi-simple real purely imaginary eigenval-
ues of H(p, ζ̌, 0).

If ξ
d

is a multiple root of the eigenvalue equation F = 0, we repeat
the proof in [Mé3]. The proof of the block reduction is unchanged. In this
case, the matrices Rk are also block-diagonal, meaning that Rkp,q = 0 when
p 6= q. The integer νk is the order of the root ξ

d
and αk the multiplicity of λ.

Moreover, all the matrices Qp+ρRkp,p, p ∈ {1, . . . , αk}, are equal. That they
are purely imaginary when γ̌ = ρ = 0 follows from Ralston’s Lemma (see
[Ral], [Ch-P] ). The property of the lower left hand corner of this matrix
follows from (2.46), exactly as the condition ∂γ̌Re a 6= 0 in the hyperbolic
case ([Ch-P]). We also have ∂ρRe a 6= 0 and the two derivatives have the
same sign.

2.5 Construction of symmetrizers

Next we construct symmetrizers for (2.30). To warm up, we consider first
the easy case where ζ 6= 0.

Lemma 2.12 (Symmetrizers for medium frequencies). For all ζ 6= 0
with γ ≥ 0 there is a neighborhood ω of (p, ζ) and there is a C∞ matrix
S(p, ζ) on Ω such that

S = S∗ ,(2.47)
Re (SG∞) ≥ Id ,(2.48)
S ≥ Id− C(Γ1)∗Γ1.(2.49)

where C is independent of (p, ζ) ∈ ω.

Proof. By Lemma 2.5, the eigenvalues of G∞(p, ζ) are away from the imag-
inary axis. Hence, there is a smooth invertible matrix V on a neighborhood
ω of (p, ζ), such that

V−1G∞V =
(
G+ 0
0 G−

)
whereG± have their spectrum in±Reµ > 0. In the terminology of boundary
value problems this is an elliptic situation. The symmetrizer is built in the
form

S = (V−1)∗
(
κ+S+ 0

0 −κ−S−

)
V−1
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with S± symmetric, positive definite, such that

Re (S+G+) ≥ Id , −Re (S−G−) ≥ Id .

For instance, one can choose

S+ = 2
∫ ∞

0
e−tG

∗
+e−tG+dt

and use a similar expression for S−. If κ+ and κ− are large enough, (2.48)
holds. Moreover, the form of S implies that there are constants c and C
such that

(2.50) (SV, V ) ≥ cκ+|Π+V |2 − Cκ−|Π−V |2 .

where Π+ [resp. Π−] is the spectral projector of G∞ on the space gener-
ated by generalized eigenvectors associated to eigenvalues in Reµ > 0 [resp.
Reµ < 0]. These projectors are smooth functions of (p, ζ) in a neighborhood
of (p, ζ) since the two groups of eigenvalues remain separated. The Evans-
Lopatinski stability condition (2.36) implies that kerΠ+ ∩ ker Γ1 = {0}.
Moreover each space has dimension equal to N . Thus there is a constant C
such that for (p, ζ) in a neighborhood of (p, ζ), one has:

∀V ∈ C2N : |V | ≤ C
(
|Π+(p, ζ)V |+ |Γ1(p, ζ)V |

)
.

Thus, for κ+/κ− large enough, the right hand side of (2.50) is larger than
c′κ+|V |2 − C|Γ1V |2 and (2.49) follows for κ+ large enough.

For ζ = 0, we construct a symmetrizer for the matrix G2 = V−1
1 G∞V1 in

(2.37), and more precisely for each block P and H. The associated bound-
ary conditions are Γ2 = Γ1V = ΓW(0, ·)V. We will use the notations of
Lemma 2.10. In particular, we use the polar coordinates (2.40), Sd denoting
the sphere |ζ̌| = 1 and Sd+ the closed half sphere where γ̌ ≥ 0.

Lemma 2.13 (Symmetrizers for low frequencies). i) There is a neigh-
borhood ω of (p, 0) and there is a C∞ N ×N matrix S2 on ω such that

S2 = (S2)∗ , Re (S2P ) ≥ Id .

ii) There is a C∞ matrix Š1 on a neighborhood ω̌ of {p} × Sd+ × {0}
such that Š1 = (Š1)∗ and

(2.51) Re (Š1Ȟ) =
∑

(V̌l)∗ǨlV̌l
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where {V̌l} is a finite collection of C∞ N ×N matrices and {Ǩl} is a finite
collection of C∞ matrices having the following block structure

(2.52) Ǩl =

 B̌1 · · · 0
...

. . .
...

0 · · · B̌q


with either B̌j = B̌∗

j positive definite or B̌j = γ̌B̌j,0 + ρB̌j,1 with B̌j,0 and
B̌j,0 positive definite. Moreover,

∑
V̌ ∗
l V̌l is positive definite on ω̌.

iii) The matrix S =
[
Š1 0
0 Š2

]
with

(2.53) Š2(p, ζ̌, ρ) = Š2(p, ρζ̌)

satisfies

(2.54) (SU,U) + C|Γ2U |2 ≥ |U |2

for some constant C independent of the parameters in ω̌.

The proof is given in Appendix A. It is a modification of Kreiss’ construc-
tion where the new ingredient is to control the dependence on the additional
parameter ρ.

We now consider the case where ζ is large. The reduction to (2.30) is
not true uniformly and we make a direct analysis of (2.25). This analysis is
possible in the high frequency regime, because the parabolic properties are
dominant. As in the proof of Lemma (2.5), we introduce “parabolic polar
coordinates at infinity”

(2.55)
ζ̂ = (τ̂ , η̂, γ̂) = (λ2τ, λη, λ2γ) with

λ = 〈ζ〉−1 = (τ2 + γ2 + |η|4)
1
4 .

and λ is small. Then

M(z, p, ζ) = 〈ζ〉2M̂(z, p, ζ̂, λ) A(z, p, ζ) = 〈ζ〉Â(z, p, ζ̂, λ)

where M̂ and Â are smooth for p close to p, ζ̂ in the “sphere” Ŝd := {〈ζ〉 =
1} and λ ∈ [−1, 1]. We denote by Ŝd+ the closed half sphere {γ̂ ≥ 0}.
It is convenient to reduce G to first order as in the proof of Lemma 2.5,
introducing the change of unknowns

(2.56) u1 = 〈ζ〉u, v1 = v.
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Then, (2.25) is transformed into

(2.57) ∂zU1 = 〈ζ〉G1(z)U1 + F1 , ΓU(0) = u(0) = 0 ,

G1(z, p, ζ) = Ĝ1(z, p, ζ̂, λ) :=
(

0 Id
M̂ Â

)
.

Lemma 2.14 (symmetrizers for high frequencies). There is a neigh-
borhood ω̂ of {p} × Ŝd+ × {0} and there is a C∞ self adjoint matrix Ŝ on
[0,+∞[×ω̂ such that

i) Ŝ and its derivatives converges with an exponential rate at z = +∞.
ii) Re (ŜĜ1) ≥ Id.
iii) Ŝ|z=0 ≥ Id− CΓ∗Γ.

Proof. We note that the coefficients C](z, p) of M̂ and Â are functions of
(z, p) through the substitution C](z, p) = C(p, w(p, z)). Thus Ĝ1 can be
written as

Ĝ1(z, p, ζ̂, λ) = G̃1(p, w(p, z), ζ̂, λ).

Moreover, w(p, ·) takes its values in a compact set. Therefore, we construct
Ŝ as a function of

Ŝ(z, p, ζ̂, λ) = S̃(p, w(z, p), ζ̂, λ)

Lemma 2.5 implies that for λ small the spectrum of G̃1 remains in a com-
pact set which does not intersect the imaginary axis when γ̂ ≥ 0. Therefore,
the spectral projectors Π±(p, w, ζ̂, λ) on the invariant spaces F∞± (p, w, ζ̂, λ)
of G̃1(p, w, ζ̂, λ) associated to eigenvalues with positive/negative real part
are defined and smooth for λ small. There is a smooth matrix V̂(p, w, ζ̂, λ)
such that

(2.58) V̂−1G̃1V̂ =
(
P+ 0
0 P−

)
where the spectrum of P+ [resp. P−] remains in a compact subset of {Reµ >
0} [resp. {Reµ < 0}]. One constructs t̃S as in Lemma 2.12

S̃ = (V−1)∗
(
κ+S+ 0

0 −κ−S−

)
V−1 .

with κ± > 0 large enough. This implies properties i) and ii).
To get the property iii), we use that there is C and λ0 small, such that

for (p, w) in a neighborhood of (p, 0), ζ̂ ∈ Ŝd+ and λ ∈ [0, λ0]

|U | ≤ C(|ΓU |+ |Π+(p, w, ζ̂, λ)U |) .
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This follows from the transversality

(2.59) F∞− (p, w, ζ̂, λ) ∩ ker Γ = {0} .

Indeed, for z = 0, we note that w(p, 0) = c is small and and therefore one
can chose the parameters κ± such that S̃(p, w, ζ̂, λ) ≥ Id − CΓ∗Γ provided
that w and λ are small, implying iii).

We now prove (2.59) when λ = 0 and w = 0. The property remains true
when w and λ are small enough. Towards this end, we give a link between
the spaces F∞− (p, 0, ζ̂, 0) and the spaces Ẽ−(b, u, ζ) introduced in section 1.

Recall that Ẽ−(b, u, ζ) is the set of (u̇,Λ−1v̇) such that the solution U =
(u, v) of the homogeneous equation (2.25) with initial data (u̇, v̇) is bounded.
Introduce then the change of unknowns and variables

u2(ẑ) = u(ẑ/Λ) , v2(ẑ) =
1
Λ
v(ẑ/Λ) .

Then the homogeneous equation (2.25) is transformed into

(2.60) ∂ẑU2 = G2(ẑ/Λ, p, ζ̂, λ)U2

with

G2(z, p, ζ̂, λ) =

(
0 Id

〈ζ̂〉2
Λ2 M̂ 〈ζ̂〉

Λ Â

)
The coefficients of M̂ and Â are functions of p and w(p, z). Remember that
w(p, 0) = 0. Therefore, as λ tends to zero (or equivalently, as Λ tends to
infinity),

G2(ẑ/Λ, p, ζ̂, λ) → G̃1(p, 0, ζ̂, 0) =
(

0 Id
M̂0 Â0

)
where M̂0 and Â0 are the evaluation at w = 0 of the functions M̂ and Â
defined at (2.31). By definition, Ẽ−(p, u, ζ) is the set of initial data (u̇1, v̇2)
such that the corresponding solution of (2.60) is bounded. The similar space
for the equation

(2.61) ∂zU = G̃1(p, 0, ζ̂, 0)

is F∞− (p, 0, ζ̂, 0). Using the exponential convergence of the coefficients and
the fact that G̃1 has no eigenvalues on the imaginary axis, one easily shows
that

E−(p, u, ζ) → F∞− (p, 0, ζ̂, 0)

36



as λ→ 0 and ζ = (λ−2τ̂ , λ−1η̂, λ−2γ̂) with ζ̂ 6= 0, γ̂ ≥ 0.
The uniform stability condition implies that the spaces Ẽ− and ker Γ are

uniformly transverse to each other. This remains true for the limit, implying
(2.59).

Remark 2.15. The transversality condition (2.59) is equivalent to the re-
quirement that the problem

(2.62) −∂2
zu+ Â0∂zu+ M̂0u = 0 , u(0) = 0

has no solution in H2([0,∞[). Suppose that the parabolic problem is sym-
metric, i.e. that there is a matrix S(b, u) such that

Re
∑

ξjξkS(b, u)Bj,k(b, u)

is definite positive. If u ∈ H2 satisfies (2.62), taking the real part of the
scalar product in L2 with (SBd,d)u yields

Re
(
SBd,du, u

)
+

d−1∑
j=1

Re iηj
(
(Bj,d +Bd,j)∂zu, u

)
+

d−1∑
j,k=1

Re ηjηk
(
(Bj,ku, u

)
+ γ
(
Su, u

)
= 0 .

The assumption on B implies that the sesquilinear form on the left hand
side is coercive on the space H1

0 ([0,+∞[), as easily seen by extending u by 0
for negative z. Thus (2.62) has no non trivial H2. Therefore, the symmetry
of the Parabolic operator implies te transversality (2.59) and thus that the
uniform stability condition is automatically satisfied for large ζ.

2.6 Proof of Theorem 2.3

We prove the estimate (2.29) in the three different regimes.
a) Medium frequencies. Lemmas 2.12 and 2.2 imply that for all ζ 6= 0,

there is a neighborhood ω of (u, ζ) such that the solutions of (2.30) satisfy

‖U1‖2 + |U1(0)|2 ≤ ‖F1‖2.

Therefore, shrinking ω if necessary, the solutions U = WU1 of (2.25) satisfy

‖U‖2 + |U(0)|2 ≤ ‖F‖2,

which implies (2.29) for (p, ζ) ∈ ω.
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b) Low frequencies. Let V be given by Lemma 2.9. Then U2 = V−1U1

satisfies

(2.63) ∂zU2 − G2U2 = F2 := V−1F1 , Γ2V2(0) = 0 .

We use the symmetrizers S1 and S2 given by Lemma 2.13. One has

Re (S1H) ≥ cρ(γ̌ + ρ) = c(γ + |ζ|2) ≈ h2 , Re (S2P ) ≥ Id .

Therefore, the components (u2, v2) and (f2, g2) of U2 and F2 respectively,
satisfy

h2‖u2‖2 +
(
S1u2(0), u2(0)

)
≤ C

1
h2
‖f2‖2 ,

‖v2‖2 +
(
S2v2(0), v2(0)

)
≤ C‖g2‖2 .

Summing, and using the third part of Lemma 2.13, we obtain that

h2‖u2‖2 + ‖v2‖2 + |U2(0)| ≤ C
( 1
h2
‖f2‖2 + ‖g2‖2

)
;

thus
h2‖u2‖+ h‖v2‖+ h|U2(0)| ≤ C

(
‖f2‖+ h‖g2‖

)
≤ C‖F2‖ .

Lemma (2.9) implies that U1 = VU2 and F1 = VF2 satisfy

u1 = O(1)U2 , v1 = O(1)v2 +O(ζ)u2 , F2 = O(1)F1 .

Since h ≤ 1 and |ζ| ≤ h, this implies that |ζ|h ≤ h2 and

h2‖u1‖+ h‖v1‖+ h|U1(0)| ≤ C‖F1‖ .

Since W = Id +O(e−θz), U = WU1, one has

u = O(1)U1 , v = O(1)v1 +O(e−θz)u1 , F1 = O(1)F .

We use here the following inequality:

(2.64) ‖e−θzu1‖L2([0,∞[) ≤ C
(
|u1(0) |+ ‖∂zu1‖L2([0,∞[)

)
.

Here, the equation (2.30) implies that ∂zu1 = v1. Thus

‖e−θzu1‖ ≤ C
(
|U1(0)|+ ‖v1‖

)
,

and therefore
h2‖u‖+ h‖v‖+ h|U(0)| ≤ C‖F‖ .

This implies that (2.29) holds for (p, ζ) in a small neighborhood of (p, 0).
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c) High frequencies. With notations as in Lemma 2.14, we use the
symmetrizer

S(z, p, ζ) = Ŝ(z, p, ζ̂, λ).

Then
ReSG1 ≥ Id

and Lemma 2.2 implies that

〈ζ〉‖U1‖2 + |U1(0)|2 ≤ C
( 1
〈ζ〉

‖F1‖2 + ‖∂zS‖L∞ ‖U1‖2
)
.

Thus, for 〈ζ〉 large enough, the second term in the right can be absorbed by
the left hand side and

〈ζ〉‖U1‖+ 〈ζ〉1/2|U1(0)| ≤ C‖F1‖ .

Going back to u = 〈ζ〉−1u1 and v = v1 this shows that (2.29) is valid for ζ
large enough. �
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3 Pieces of paradifferential calculus

We construct symmetrizers as para-differential operators in the variables
(t, y), depending on the parameters x, ε and γ. The analysis in section 2
shows that different homogeneities occur in different regions of the frequency
space. We first recall from [Mok], [Mé1] (see also [Mé2]) the handbook of
results about the homogeneous paradifferential calculus with parameter, to
be used in the hyperbolic regime. It is a modification of the original calculus
introduced by Bony ([Bo], [Mey]). Next we will state the similar results
for a semi-classical calculus associated to symbols having a parabolic type
homogeneity. This calculus will be used in the middle and high frequency
regimes. The symmetrizers will provide the basic L2 estimates. However,
the estimates of the derivatives also require a microlocal analysis. Indeed, a
direct differentiation of the equation reveals unbounded terms in ε−1 and a
detailed analysis of commutators yields to distinguish the different regimes.
This yields to study the action of the para-differential operators in conormal
spaces Hm (see the definition (1.28)). The idea is to replace the base space
L2 byHm, and to show that the calculus extends to this framework. Since we
make strong assumptions on the smoothness of the coefficients, this follows
from repeated application of Leibniz formula.

3.1 The homogeneous calculus

We consider operators on Rd. The variables are denoted ỹ = (t, y) and the
frequency variables η̃ = (τ, η). The symbols and operators also depend on
a parameter γ which plays a distinguished role. We denote by Rd+1

+ the set
of frequencies ζ := (η̃, γ) ∈ Rd+1 \ {0} such that γ ≥ 0 and by Sd+ the set of
(η̃, γ) ∈ Rd+1

+ such that |ζ| = 1.

Definition 3.1 (Symbols). Let µ ∈ R. i) Γµ0 denotes the space of locally
L∞ functions a(ỹ, ζ) on Rd×Rd+1

+ which are C∞ with respect to ζ and such
that for all α ∈ Nd there is a constant Cα such that

(3.1) ∀(ỹ, ζ) , |∂αη̃ a(ỹ, ζ)| ≤ Cα |ζ|µ−|α| .

ii) Γµ1 denotes the space of symbols a ∈ Γµ0 such that for all j, ∂ỹja ∈ Γµ0 .

For example, functions a(ỹ, ζ) which are C∞ and homogeneous of degree
m in (η̃, γ) ∈ Rd+1

+ and bounded on Rd × Sd+, are symbols in Γm0 .
In the applications, we consider families of symbols aε(x) in Γmk , depend-

ing on parameters ε ∈ [0, 1[ and x ∈ [0,∞[. The key argument is that they
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are bounded in Γmk . Moreover, we want to study the action of the operators
in conormal spaces. Consider the following set of vector fields on Rd+1

+ with
variables (t, y) ∈ Rd and x ≥ 0 :

(3.2) Z0 = ∂t , Zj = ∂yj for 1 ≤ j ≤ d− 1 , Zd = x∂x .

They commute, and for α ∈ Zd+1 Zα = Zα0
0 · · ·Zαd

d .

Definition 3.2. For µ ∈ R, m ∈ N and k ∈ {0, 1}, Γµk,m is the set of
functions a(x, ỹ, ζ) such that for all α ∈ Zd+1 with |α| ≤ m, the functions
(Zαa)(x, ·, ·) form a bounded family in Γµk .

The spaces Γµk,m are equipped with semi-norms

(3.3) ‖a‖(µ,k,m,N) := sup
|α|≤N

sup
|β|≤k

sup
|σ|≤m

sup
(x,ỹ,ζ)

|ζ||α|−m |Zσ∂αζ ∂
β
ỹ a(x, ỹ, ζ)| .

A family of symbols is bounded in Γµk,m when for all N , the semi norms are
bounded.

Example 3.3. Suppose that a(x, ỹ, ζ, ρ) is a function on [0,∞[×Rd×Rd+1
+ ×

[0,∞[, C∞ with respect to (ζ, ρ), homogeneous of degree µ in ζ, supported in
{ρ ≤ 1} and such that Zαa and Zα∂ỹa are bounded on [0,∞[×Rd×Sd+×[0, 1[
for all |α| ≤ m. Then, the family of symbols aε defined by

(3.4) aε(x, ỹ, η̃, γ) = a
(
x, ỹ, ζ, ε|ζ|

)
is bounded in Γµ1,m .

The para-differential calculus is a quantization of symbols in a ∈ Γµ0 to
which are associated operators denoted by T γa ; see Appendix B. They act
in the scale of Sobolev spaces Hs(Rd). These spaces are equipped with the
family of norms

(3.5)
∣∣u∣∣

0,s,γ
:=
(∫

Rd

(γ2 + |η̃|2)s |û(η̃)|2 dη̃
) 1

2
.

Adding the normal variable x, we introduce the norms

(3.6)
‖u‖0,s,γ =

(∫ ∣∣u(x, ·)∣∣2
0,s,γ

dx
) 1

2
,

‖u‖m,s,γ =
∑
|α|≤m

γm−|α| ‖Zαu‖0,s,γ ,
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which are parameter dependent norms on spaces called H0,s and Hm,s re-
spectively.

When a ∈ Γµ0,m, for all x, a(x) = a(x, ·) ∈ Γµ0 , and the action of para-
differential operators is extended to x-dependent functions:

(3.7) (T γa u)(x, ·) = T γa(x,·)u(x, ·).

The paradifferential calculus in Rd, was introduced by J.M.Bony [Bo]
(see also [Mey] , [Hör], [Tay]) with γ fixed, say γ = 1. The parameter
dependent version T γa is introduced in [Mé1] [Mok] and applies in the scale
of spaces H0,s. The extension to the scale Hm,s is immediate since one can
construct the T γ so that

(3.8) ZT γa u = T γa Zu+ T γZau .

This is explained in Appendix B, together with the details of the following
results.

Proposition 3.4 (Action). i) When a(ζ) is a symbol independent of ỹ,
the operator T γa is defined by the action of the Fourier multiplier a.

ii) For all a ∈ Γµ0,m, the family of operators {T γa }γ≥1 is of order ≤ µ,
meaning that for γ ≥ 1:

‖T γa u‖m,s,γ ≤ C ‖u‖m,s+µ,γ
where C is independent of γ ≥ 1 and u.

Proposition 3.5 (Symbolic calculus). Consider a ∈ Γµ1,m and b ∈ Γµ
′

1,m.

Then ab ∈ Γµ+µ′

1,m and {T γa ◦ T γb − T γab}γ≥1 is of order ≤ µ+ µ′ − 1, meaning
that for γ ≥ 1:

‖(T γa T
γ
b − T γab)u‖m,s,γ ≤ C ‖u‖m,s+µ+µ′−1,γ

where C is independent of γ ≥ 1 and u.
If b is independent of ỹ, then T γa ◦ T γb = T γab .

These results extend to matrix valued symbols and operators.

Proposition 3.6 (Adjoints). Consider a matrix valued symbol a ∈ Γµ1,0.
Denote by (T γa )∗ the adjoint operator of T γa in L2(Rd+1

+ ) and by a∗(ỹ, ζ) the
adjoint of the matrix a(ỹ, ζ). Then {(T γa )∗ − T γa∗}γ≥1 is of order ≤ m − 1,
meaning that for γ ≥ 1:

‖((T γa )∗ − T γa∗)u‖0,s,γ ≤ C‖∇ỹa‖(µ,0,0,N) ‖u‖0,s+µ−1,γ

where C and N only depend on the indices s and µ.
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Proposition 3.7 (G̊arding’s inequality). Consider a N×N matrix sym-
bol a ∈ Γµ1,0, a N ×M matrix symbol w ∈ Γ0

1,0, and a scalar symbol χ ∈ Γ0
1,0.

Assume that χw = w and there is constant c > 0 such that

(3.9) ∀(x, ỹ, ζ) : χ2(x, ỹ, ζ) Re a(x, ỹ, ζ) ≥ c χ2(x, ỹ, ζ) |ζ|µ

Then, there are C that for all γ ≥ 1 and u
c

2
‖T γwu‖2

0,µ
2
,γ ≤ Re

((
T γa T

γ
wu, T

γ
wu
))
L2 + C ‖u‖2

0,µ
2
−1,γ

where C is bounded the symbols remain bounded and (3.9) holds with a uni-
form constant c.

Remark 3.8. The meaning of the assumption is that Re a is definite positive
on the support of w. The symbol χ only plays an intermediate role. We give
two applications. Consider two open sets ω and ω̃ with ω relatively compact
in ω̃. Consider two cones in Rd+1

+ , C and C̃ such that the base of the cone
C, C ∩ Sd+ is relatively compact in C ∩ Sd+.

1. Suppose that a and w are homogeneous of degree µ and 0 respec-
tively, that w is supported in ω × C and that Re a ≥ c|ζ|µ on ω̃ × C̃. Then
there is χ ∈ Γ0

1,0 supported in ω̃ × C̃ such that χ = 1 on the support of w.
Thus χw = w and (3.9) holds.

2. Suppose that aε and wε are bounded families of homogeneous
symbols of degree µ and 0 respectively with w supported in ω × (C ∩ Br/ε)
where BR denotes the ball {|ζ| ≤ R}. Suppose that Re a ≥ c|ζ|µ on ω̃× (C̃∩
Br′/ε) where r′ > r. Then, there is χ ∈ Γ0

1,0 supported in ω̃ × (C̃ ∩ Br′/ε)
such that χ = 1 on the support of w. Thus χw = w and (3.9) holds

Bounded functions of ỹ are particular examples of symbols in the class
Γ0

0, independent of the frequency variables ζ. In this case, T γa is called a
para-product in [Bo]. In our case, we introduce the spaces Wm,k of function
on Rd+1

+ such that Zα∂βỹ u ∈ L∞(Rd+1
+ ) for all |α| ≤ m and |β| ≤ k, equipped

with the norms

(3.10) ‖a‖Wm,k =
∑
|α|≤m

∑
|β|≤k

‖Zα∂βỹ u‖L∞(Rd+1
+ ) .

When k = 0, we simply denote by Wm the corresponding space.

Proposition 3.9 (Para-products). There is a constant C such that for
all a ∈ Wm,1 and all u ∈ Hm,0

‖au− T γa u‖m,1,γ ≤ C ‖a‖Wm,1‖u‖m,0,γ ,
γ‖au− T γa u‖m,0,γ ≤ C ‖a‖Wm,1‖u‖m,0,γ ,

‖a∂ju− T γa ∂ju‖m,0,γ ≤ C ‖a‖Wm,1‖u‖m,0,γ .
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3.2 The semi-classical parabolic calculus

In the high frequency regime, the parabolic character of the equations pre-
vails. In this regime, the quasi-homogeneity is associated to the dilations
λ · (t, y) = (λ2t, λy) and similarly λ · (τ, γ, η) = (λ2τ, λ2γ, λη). The corre-
sponding quasi-norm is

(3.11) 〈ζ〉 =
(
γ2 + τ2 + |η|4

) 1
4
.

We also introduce the weight

(3.12) Λ(ζ) = (1 + 〈ζ〉4)
1
4 .

Typical example of symbols are smooth quasi-homogeneous functions of de-
gree µ away from the origin. They satisfy

|∂αζ a(ζ)| ≤ Cα〈ζ〉m−〈α〉

where, for α = (ατ , αη) ∈ N× Nd−1:

〈(ατ , αη)〉 := 2|ατ |+ |αη|.

Next we consider a semi-classical quantification of the symbols. In particu-
lar, when a(ζ) is independent of ỹ, the associated operator is defined by the
the Fourier multiplier a(εη̃, εγ) :

(3.13) P ε,γa = a(εDỹ, εγ).

Note that we use here the standard multiplication by ε, not the parabolic
dilation ε · η̃. We also extend the calculus to x dependent symbols and
functions, x being considered as a parameter. We also consider the action
in conormal spaces.

Definition 3.10 (Symbols). Let µ ∈ R.
i) PΓµ0 denotes the space of locally L∞ functions a(ỹ, ζ) on Rd × Rd+1

+

which are C∞ with respect to ζ and such that for all α ∈ Nd there is a
constant Cα such that

(3.14) ∀(ỹ, ζ) , |∂αη̃ a(ỹ, η̃, γ)| ≤ Cα Λ(ζ)µ−〈α〉 .

ii) PΓµ1 denotes the space of symbols a ∈ PΓµ0 such that for all j, ∂ỹja ∈
PΓµ0 .

iii) For m ∈ N and k ∈ {0, 1}, PΓµk,m is the set of functions a(x, ỹ, ζ)
such that for all α ∈ Zd+1 with |α| ≤ m, the functions (Zαa)(x, ·, ·) form a
bounded family in PΓµk .
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Examples 3.11. 1. If a(ỹ, ζ) has compact support in ζ, is C∞ in ζ and
the derivatives ∂αζ a are bounded, then a ∈ PΓ0

0.
2. If a(ỹ, ζ) is C∞ and quasi-homogeneous of degree µ in ζ, with deriva-

tives ∂αζ a bounded and bounded on Rd × Sd+, then
(
1− χ(ζ)a

)
∈ Γµ0 for all

χ ∈ C∞0 (Rd+1) which is equal to 1 on a neighborhood of the origin.
3. Suppose that a(x, ỹ, ζ, δ) is a function on [0,∞[×Rd×Rd+1

+ × [0,∞[,
C∞ with respect to (ζ, ρ), quasi-homogeneous of degree µ in ζ, supported
in {δ ≤ 1} and such that for all |α| ≤ m, the derivatives Zαa and Zα∂ỹa are
bounded on [0,∞[×Rd×{〈ζ〉 = 1, γ ≥ 0}× [0, 1[. Then, the symbol defined
by

(3.15) a(x, ζ) = (1− χ(ζ)) a
(
x, ỹ, ζ,

1
〈ζ〉
)

belongs to PΓµ1,m if χ ∈ C∞0 is equal to one near the origin.

The spaces PΓµk,m are equipped with semi-norms

(3.16) ‖a‖(µ,k,m,N) := sup
〈α〉≤N

sup
|β|≤k

sup
|σ|≤m

sup
(x,ỹ,ζ)

Λ〈α〉−µ|Zσ∂αζ ∂
β
ỹ a(x, ỹ, ζ)| .

The natural scale of Sobolev spaces are the spaces PHs of functions
whose Fourier transform belong to the L2 space with weight Λ2s. Because
we use a semi-classical analysis, this leads to introduce on PHs the following
family of norms

(3.17)
∣∣u∣∣

0,s,ε,γ
:=
(∫

Rd

Λ(εη̃, εγ)2s |û(η̃)|2 dη̃
) 1

2
.

Adding the normal variable x, we introduce the norms

(3.18)
‖u‖0,s,ε,γ =

(∫ ∣∣u(x, ·)∣∣2
0,s,ε,γ

dx
) 1

2
,

‖u‖m,s,ε,γ =
∑
|α|≤m

γm−|α|‖Zαu‖0,s,ε,γ ,

which are parameter dependent norms on spaces called PH0,s and PHm,s

respectively.
One first constructs the operators P ε,γa for symbols a ∈ PΓµ0 , acting in

the scale PHs of functions of ỹ. Next the action is extended to x dependent
functions in PH0,s and symbols in PΓµ0,0:

(3.19) (P ε,γa u)(x, ·) = P ε,γa(x,·)u(x, ·).
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The study is finally extended to functions in PHm,s and symbols in PΓµ0,m
using the identity

(3.20) ZP ε,γa u = P ε,γa Zu+ P ε,γZa u .

We refer to Appendix B for details and proofs of the following results.

Proposition 3.12 (Action). i) When a(ζ) is a symbol independent of ỹ,
the operator P ε,γa is defined by the action of the Fourier multiplier a(εη̃, εγ).

ii) For all a ∈ PΓµ0,m and s ∈ R, there is C such that for ε ∈]0, 1], γ ≥ 1
and u ∈ PHm,s :

‖P ε,γa u‖m,s−µ,ε,γ ≤ C ‖u‖m,s,ε,γ .

The constant C is bounded when a remains in a bounded set of PΓµ0,m.
iii) If a ∈ PΓµ0 is supported in Rd × {Λ(ζ) ≤ R}, then, for all u, the

spectrum of P ε,γa u is contained in {Λ(εζ) ≤ 2R}
iv) There is δ > 0, such that If a ∈ PΓµ0 is supported in Rd×{Λ(ζ) ≥ R}

then, for all u, the spectrum of P ε,γa u is contained in Rd × {Λ(εζ) ≥ δR}.

Proposition 3.13 (Symbolic calculus). Consider a ∈ PΓµ1,m and b ∈
PΓµ

′

1,m. Then ab ∈ PΓµ+µ′

1,m and there is C such that for ε ∈]0, 1], γ ≥ 1 and
u ∈ PHm,s :

‖(P ε,γa ◦ P ε,γb − P ε,γab )u‖m,s−µ−µ′+1,ε,γ ≤ C ε ‖u‖m,s,ε,γ .

The constant C is bounded when a and b remain bounded in PΓµ1,m and PΓµ
′

1,m

respectively.
Moreover, if b is independent of ỹ, then P ε,γa ◦ P ε,γb = P ε,γab .

Proposition 3.14 (Adjoints). Consider a matrix valued symbol a ∈ PΓµ1,0.
Denote by (P ε,γa )∗ the adjoint operator of P ε,γa in L2(Rd+1

+ ) and by a∗(x, ỹ, ζ)
the adjoint of the matrix a(x, ỹ, ζ). Then there is C such that for ε ∈]0, 1],
γ ≥ 1 and u ∈ PHm,s :

‖((P ε,γa )∗ − P ε,γa∗ )u‖m,s−µ+1,ε,γ ≤ C ε ‖u‖m,s,ε,γ .

The constant C is bounded when a remains in a bounded set of PΓµ1,0.
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Proposition 3.15 (G̊arding’s inequality). Consider a N × N matrix
symbol a ∈ PΓµ1,0, a N ×M matrix symbol w ∈ PΓ0

1,0 and a scalar symbol
χ ∈ PΓ0

1,0. Assume that χw = w and there is constant c > 0 such that

(3.21) ∀(x, ỹ, ζ) : χ2(x, ỹ, ζ)Re a(x, ỹ, ζ) ≥ cχ2(x, ỹ, ζ) Λ(ζ)µ.

Then, there is C such that for all γ ≥ 1, all ε ∈]0, 1] and u
c

2
‖P ε,γw u‖2

0,µ
2
,ε,γ ≤ Re

((
P ε,γa P ε,γw u, P ε,γw u

))
L2 + C ε2 ‖u‖2

0,µ
2
−1,ε,γ .

Moreover the constant C is bounded when the symbols remain in bounded
sets and (3.21) is satisfied with a uniform constant c.

Remark 3.16. Again, the meaning of the assumption is that Re a is definite
positive on the support of w. We give here two examples. Consider two open
sets ω and ω̃ with ω relatively compact in ω̃.

1. Consider two bounded open sets C and C̃ in Rd+1
+ with C relatively

compact in C̃. Suppose that w is supported in ω ×C and that Re a ≥ c|ζ|µ
on ω̃ × C̃. Then there is χ ∈ PΓ0

1,0 supported in ω̃ × C̃ such that χ = 1 on
the support of w. Thus χw = w and (3.21) holds.

2. Suppose that w is supported in ω×{〈ζ〉 ≥ R} and that Re a ≥ c〈ζ〉µ
on ω̃ × {〈ζ〉 ≥ R′} where R > R′ > 0. Then, there is χ ∈ Γ0

1,0 supported in
ω̃×{〈ζ〉 ≥ R′} such that χ = 1 on ω×{〈ζ〉 ≥ R}. Thus χw = w and (3.21)
holds

Next we consider para-products, i.e. symbols independent of ζ in the
class Wm,1 introduced just before (3.10).

Proposition 3.17 (Para-products). For all a ∈ Wm,1(Rd), there is a
constant C such that for all u ∈ PHm,1, ε ∈]0, 1], and γ ≥ 1:

(3.22)
‖au− P ε,γa u‖m,1,ε,γ +

∑
|α|=1

ε‖a∂αy u− P ε,γa ∂αy u‖m,0,ε,γ

≤ Cε‖u‖m,0,ε,γ ,

(3.23)
γ‖au− P ε,γa u‖m,0,ε,γ + ‖a∂tu− P ε,γa ∂tu‖m,0,ε,γ

+
∑
|α|=2

ε‖a∂αy u− P ε,γa ∂αy u‖m,0,ε,γ ≤ C‖u‖m,1,ε,γ .

Corollary 3.18. For all a ∈ Wm,2(Rd), there is a constant C such that for
all u ∈ PHm,2, ε ∈]0, 1], and γ ≥ 1:

‖au− P ε,γa u‖m,2,ε,γ ≤ Cε‖u‖m,1,ε,γ ,
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We now give a link between the two calculi. Remark first that for con-
stant coefficient symbols a, T γa and P ε,γa are Fourier multipliers by a(η̃, γ)
and a(εη̃, εγ) respectively. Thus

(3.24) P ε,γa = T γaε with aε(ζ) = a(εζ) when a is independent of (x, ỹ) .

The next result extends this relation to symbols which also depend on
the variables ỹ. The proof is given in Appendix B.

Proposition 3.19. Suppose that b ∈ PΓ0
1,0 has compact support in ζ. Then

the family of symbols

(3.25) bε(x, ỹ, ζ) = b(x, ỹ, εζ)

is bounded in Γ0
1,0 and there is a constant C such that for all u, ε ∈]0, 1] and

γ ≥ 1:

(3.26) γ‖T γbεu− P ε,γb u‖L2 + ‖T γbε∇ỹu− P ε,γb ∇ỹu‖L2 ≤ C‖u‖L2 .

Moreover, in the scale of norms (3.6)

(3.27) ‖T γbεu− P ε,γb u‖0,0,γ ≤ C‖u‖0,−1,γ .

3.3 Calculi on the boundary

We have developed above the para-differential calculus in the half space
{x ≥ 0}. By construction, x acts as a parameter, see the definitions (3.7),
(3.19) and Appendix B. When x = 0, we obtain two calculi, still denoted by
T γ and P ε,γ , on the boundary. We do not make specific statements in these
case, they are in fact particular cases of the results above, provided that the
set of vector fields {Zj} is restricted to the fields ∂ỹj . Taking traces, (3.7)
and (3.19) imply that

(3.28)

{
(T γa u)|x=0 = T γa|x=0

u|x=0 ,

(P ε,γa u)|x=0 = P ε,γa|x=0
u|x=0 .
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4 L2 and conormal estimates near the boundary

In this section, we start the analysis of the stability of the linearized equa-
tions (1.25). We concentrate here on the most difficult part, which is the
proof of the L2 and Hm conormal estimates for functions localized near a
point of the boundary. The main estimate is stated in Theorem 4.1. The
strategy is as follows : we mimic the analysis of Section 2, substituting the
paradifferential calculus to Fourier multipliers technics. We first replace the
differential linearized equation by paradifferential equations, at the price of
acceptable errors. This being done, we use the results of Section 3 : the
symbolic calculus only produces acceptable errors, and the calculus on sym-
bols is precisely the calculus on Fourier multipliers developed in Section 2.
Again we separate the three different regimes : low, medium and high fre-
quencies. At the end, we glue the estimates together using a partition of
unity. In each regime, the symmetrizers are paradifferential quantizations
of the multipliers constructed in Section 2; these are used to prove the ba-
sic L2 estimates. Finally, we prove the Hm estimates by differentiating the
equations, which requires a lot of care due to the presence of singular terms
in the equation.

4.1 The main estimate

Recall that (Z0, . . . , Zk) denote a basis of vector fields on R1+d tangent to
R × ∂Ω. With m ≥ 0, we consider u0 in Wm+2,∞([−T0, T0] × Ω) and b0
in Wm+2,∞([−T0, T0] × Ω). Following the notations of the introduction, b
denotes the function (t, x) 7→ (t, x, b0(t, x)). We always assume that (b, u0)
is valued in a compact subset of O.

In addition, we consider a family vε in Wm+2,∞([−T0, T0]×Ω) such that

(4.1) sup
ε

sup
|J |≤m

‖ZJvε‖L∞ + ε‖∇t,xZJv
ε‖L∞ + ε2‖∇2

xZJv
ε‖L∞ <∞ .

where ZJ = Zj1 · · ·Zj−k when J = (j1, . . . , jk) and |J | = k. Introduce

(4.2) uεa = W (b(t, x), u0(t, x), ϕ(x)/ε) + εvε(t, x)

The linearized equations from (1.1) around uεa read

(4.3)


∂tu+

d∑
j=1

Aεj∂ju− ε

d∑
j,k=1

Bε
j,k∂

2
j,ku+

1
ε
Eεu = f ,

u| [−T0,T0]×∂Ω = 0 .
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with

Aεjv = Ãjv − ε
∑
k

(B̃′
j,k · v)∂kuεa − ε

∑
k

(B̃′
k,j · ∂kuεa)v ,

Bε
j,k = B̃j,k ,

Eεv = ε
∑
j

(Ã′j · v)∂juεa − ε2
∑
j,k

(B̃′
j,k · v)∂2

j,ku
ε
a + B̃′′

j,k(v, ∂ju
ε
a)∂ku

ε
a ,

where Ã stands for the function A evaluated at (b(t, x), uεa(t, x)) and A′ is
the derivative of A with respect to the variable u.

It is convenient to extend u0, b and vε to R× Ω, as Wm+2,∞ functions.
We still denote by u0, b and vε the extended functions. We can assume
that the extended vε is bounded in Wm+2,∞(R×Ω) and that the extended
functions are independent of t for |t| ≥ |T1 > T0. We denote by uεa the
extension of uεa given by (4.2) and we consider the linearized equation (4.3)
around uεa.

Consider a point y ∈ ∂Ω and local coordinates (y, x) ∈ Rd−1 ×R near y
such that y corresponds to 0 and the defining function ϕ of ∂Ω is x, so that
Ω lies on the side {x > 0}. From now on, we work in these coordinates and
restrict attention to functions u and f supported in a small fixed neighbor-
hood ω̃ of (t, 0), where the coordinate patch is defined. We still denote by
u, b, f etc the functions in the local coordinates. For convenience, we keep
the notations in (4.3) for the linearized equations, x being the d-th spatial
variable. However, the new coefficients Aεj and Bε

j,k involve the derivatives
of the change of variables, which just introduce a new dependence of the
coefficients on the function b.

We do not give the explicit relation between the coefficients in the new
and old coordinates. We simply note that in the new set, they write as a
principal term plus a remainder as follows

(4.4) Aεj = Ã]j + εAεj,1 , Bε
j,k = B̃]

j,k , Eε = Ẽ] + εEε1

where:
- A]j , B

]
j,k and E] are C∞ functions of z ∈ [0,∞[ and p = (b, u, c) in a

neighborhood of p = (b, u, 0). Here, b = b(t, 0) and u = u0(t, 0). They have
the general structure

F ](z, p) = F (b,W (b, u, z) + c).

Moreover, when x = 0, that is when b ∈ B∂ , the coefficients A]j , B
]
j,k and E]

are those introduced in section two at (2.6).
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- In (4.4), F̃ ] stands for the function F ] evaluated at (pε(t, y, x), z)
with

pε(t, y, x) =
(
b(t, y, x), u0((t, y, x), εvε(t, y, x)

)
.

By (4.1) there holds

(4.5) sup
ε∈]0,1]

sup
|J |≤m

‖ZJ∇t,y,xp
ε‖L∞(ω) < +∞ .

- The remainders Aεj,1 and Eε1 are smooth functions of (t, y, x), uε0 and
its first and second derivatives, εv and its first order derivatives, ε2v and its
second order derivatives and z = x/ε. In particular, (4.1) implies that the
remainders satisfy

(4.6) sup
ε∈]0,1]

sup
|J |≤m

‖ZJF ε1 ‖L∞(ω) < +∞ .

We write (4.3) in the condensed form

(4.7)

 − ε∂2
xu+Aε∂xu+

1
ε
M εu = (Bε

d,d)
−1f ,

ux=0 = 0 ,

where 
Aε = (Bε

d,d)
−1
(
Aεd −

d−1∑
j=1

(Bε
j,d +Bε

d,j)ε∂j
)
,

M ε = (Bε
d,d)

−1
(
ε∂t +

d−1∑
j=1

Aεjε∂j −
d−1∑
j,k=1

Bε
j,kε

2∂2
j,k + Eε

)
.

Aε is a first order operator in ε∂y, while M ε is first order in ε∂t and second
order in ε∂y. Write (4.7) as a system for U = t(u, v), v = ε∂xu :

(4.8)

 ∂xU −
1
ε
GεU = F ,

ΓU|x=0 = 0 ,

with

Γ
(
u
v

)
= u , Gε =

(
0 Id
M ε Aε

)
, F =

(
0

−(Bε
d,d)

−1f

)
.
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To prove weighted estimates for the solutions of (4.3) or (4.8) we introduce
Ũ = e−γtU and f̃ = e−γtf . Then, (4.8) is equivalent to

(4.9)

 ∂xŨ −
1
ε
Gε,γŨ = F̃ =

(
0
−f̃

)
,

ΓŨ|x=0 = 0 ,

where Gε =
(

0 Id
M ε,γ Aε

)
and M ε,γ has the same definition as M ε with ∂t

replaced by ∂t + γ.

Following the analysis of section 2, we consider the following weight
functions : with ζ := (τ, γ, η),

(4.10) Λ = Λ(εζ) :=
(
1 + (εγ)2 + (ετ)2 + |εη|4

) 1
4
,

(4.11) ϕ =


(
γ + ε|ζ|2

) 1
2 when |εζ| ≤ 1,

≈ ε−
1
2 when 1 ≤ |εζ| ≤ 2,

Λ√
ε
≈
(
γ + |τ |+ ε|η|2

) 1
2 when |εζ| ≥ 2.

Note that the three terms have the same order when |εζ| ≈ 1.
Given a weight function ψ(τ, η), we introduce the norm

(4.12)
∣∣u∣∣

(ψ)
=
(∫

ψ(τ, η)2 |û(τ, η)|2 dτdη
) 1

2
,

where û is the Fourier transform of u(t, y) defined on Rd. When u also
depends on the variable x, we denote by ‖u‖(ψ) the norm

(4.13) ‖u‖(ψ) =
(∫ ∞

0
|u(x)|(ψ)dx

) 1
2
.

We use different weight functions, ϕ, ϕ2, ϕ/Λ etc. In these case, the weights
and the norms depend on the parameters ε and γ, but we do not make this
dependence explicit and use the notations ‖ · ‖(ϕ) etc.

Next, we introduce the conormal spaces. In the local coordinates, we
can choose

(4.14) Z0 = ∂t , Zj = ∂yj for 1 ≤ j ≤ d− 1, Zd = x∂x .
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Indeed, one should take `(x)∂x in place of x∂x with `(x) = x for |x| ≤ 1
and `(x) = 1 for x large. Because, we only consider compactly supported
functions, we make the choice above.

For m ∈ N, define

(4.15) ‖u‖m,(ϕ) =
∑
|α|≤m

γm−|α|‖Zαu‖(ϕ).

They are norms, depending on the parameters ε and γ on a space called
Hm
ϕ . Note that the norms ‖ · ‖m,s,ε,γ introduced in section 3, correspond to

the weights Λs. The L2 norm corresponds to m = 0 with weight ψ = 1. We
denote it by ‖ · ‖0 = ‖ · ‖0,(1). More generally, we note ‖ · ‖m = ‖ · ‖m,(1) the
norms associated to the weight ψ = 1.

Theorem 4.1. There are a neighborhood ω of (t, 0) in R1+d
+ , constants γ0,

ε0 > 0 and C, such that for all Ũ and f̃ supported in ω and satisfying (4.9),
for all γ ≥ γ0, ε ∈]0, ε0] with εγ ≤ 1, one has

(4.16) ‖ũ‖m,(ϕ2) +
1√
ε
‖ṽ‖m,(ϕ) + |ṽ(0)|m,(ϕ/√Λ) ≤ C‖f̃‖m .

Dropping the tildes, we will prove the apparently weaker estimate

(4.17)
‖u‖m,(ϕ2) +

1√
ε
‖v‖m,(ϕ) + |v(0)|m,(ϕ/√Λ) ≤

C
(
‖f‖m + ‖u‖m,(Λ) + ‖v‖m + |v(0)|m)

)
.

Since ϕ ≥ c
√
γ and ϕ2 ≥ c

√
γΛ, one has

‖u‖m,(Λ) . γ−1/2‖u‖m,(ϕ2) , ‖v‖m . γ−1/2‖v‖m,(ϕ)

|v(0)|m . γ−1/4|v(0)|m,(ϕ/√Λ) .

where . means that the left hand side is estimated by constant times the
right hand side, with a constant independent of ε, γ, U and f . This shows
that (4.17) implies the estimate (4.16) when γ is large enough.

Next we simplify further the equation. Using (4.4) and replacing the
coefficients Aεj and Eε by Ã]j and Ẽ], one obtains operators A] and M ] such
that

(4.18) Aε = A] + εAεd,1 , M ε = M ] + ε
d−1∑
j=1

Aεj,1ε∂j + εEε1 .
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Using (4.6), we see that

‖Aεv −A]v‖m . ε‖v‖m , ‖M εu−M ]u‖0 . ε
(
‖u‖m + ‖ε∂yu‖m

)
.

Therefore, if (U, f ′) satisfy (4.9), one has

(4.19)

 ∂xU −
1
ε
G]U = F

ΓU|x=0 = 0
, G] :=

(
0 Id
M ] A]

)
, F =

(
0
f ,

)
with

‖f‖m . ‖f ′‖m + ‖u‖m + ‖v‖m + ‖ε∂yu‖m . ‖f ′‖m + ‖u‖m,(Λ) + ‖v‖m .

Therefore, Theorem 4.1 follows from the following estimate.

Theorem 4.2. There are ω, γ0 and ε0 > 0, such that the estimate (4.17)
is satisfied for all U and f supported in ω and satisfying (4.19).

The strategy is as follows. We replace the equation (4.19) by a paradif-
ferential equation, at the price of adding a new source term with Hm norm
controlled by ‖u‖m,(Λ)+‖v‖m. Then we microlocalize the estimate. Next, we
prove the estimate with m = 0, using symmetrizers which are paradifferen-
tial operators whose symbols are given by the constant coefficient analysis
of section 2. Finally we prove the conormal estimates, using the special
structure of commutators

4.2 Paralinearisation

As in section 2, we introduce for z ∈ [0,∞[, p in a neighborhood of p =
(b(t, 0), u0(t, 0), 0) and ζ = (τ, η, γ) ∈ Rd+1:

A(z, p, ζ) = (B]
d,d)

−1
(
A]1 −

d−1∑
j=1

iηj(B
]
j,d +B]

d,j)
)
,

M(z, p, ζ) = (B]
d,d)

−1
(
(iτ + γ) +

d−1∑
j=1

iηjA
]
j +

d−1∑
j,k=1

ηjηkB
]
j,k + E]

)
.

Substituting pε in place of p, we define

aε(t, y, x, ζ) = κ1(t, y, x)A(
x

ε
, pε(t, y, x), ζ) ,

mε(t, y, x, ζ) = κ1(t, y, x)M(
x

ε
, pε(t, y, x), ζ) ,

where κ1 ∈ C∞0 (ω̃) and κ = 1 on a smaller neighborhood ω̃1.
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Lemma 4.3. The families {aε} and {mε} are uniformly bounded in PΓ1
1,m

and PΓ2
1,m respectively. Moreover,

‖κ1M
]u− P ε,γmε u‖m . ε ‖u‖m,(Λ) ,

‖κ1A
]v − P ε,γaε v‖m . ε ‖v‖m .

Proof. aε and mε are symbols of differential operators. aε is of degree one
in η (independent of τ and γ ) while m is first order in τ − iγ and second
order in η. By (4.5), the coefficients are bounded in Wm,1, implying the first
statement of the lemma.

The paradifferential operators P ε,γ are those introduced in section 3.2.
Recall that P ε,γiaηj

= P ε,γa ε∂yj , P
ε,γ
iaτ = P ε,γa ε∂t and P ε,γγa = εγP ε,γa . The

estimates immediately follow from (4.5) and the para-linearization Proposi-
tion 3.17.

Suppose that (U, f) are supported in ω̃1 and satisfy (4.19). Then G]U =
κ1G

]U and the lemma implies that

(4.20)

 ∂xU −
1
ε
P ε,γgε U = F ′

ΓU|x=0 = 0
, gε =

(
0 Id
mε aε

)
, F ′ =

(
0
f ′

)
,

where f ′ satisfies

(4.21) ‖f ′‖m . ‖f‖m + ‖u‖m,(Λ) + ‖v‖m .

Suppose that we have a finite collection of symbols independent of (t, y, x),
χl ∈ PΓ0, such that

(4.22)
∑
l

χl(ζ) = 1 on Rd+1
+ = {ζ ∈ Rd+1 | γ ≥ 0 }.

In addition, suppose that κ ∈ C∞0 (ω̃1) and κ = 1 on the smaller neighbor-
hood ω. Then, if U is supported in ω, U = κU and

U = (κ− P ε,γκ )U +
∑

P ε,γκχl
U .

Proposition 3.17 and Corollary 3.18 imply that

‖(κ− P ε,γκ )u‖m,(Λ2) . ε‖u‖m,(Λ) , ‖(κ− P ε,γκ )v‖m,(Λ) . ε‖v‖m .

Since ϕ2 . Λ2/ε, the definitions (4.13) and (4.15) of weighted norms implies
that

(4.23) ‖u‖m,(ϕ2) ≤
1
ε
‖u‖m,(Λ2) , ‖v‖m,(ϕ) ≤

1√
ε
‖v‖m,(Λ) .
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Therefore,

‖(κ− P ε,γκ )u‖m,(ϕ2) . ‖u‖m,(Λ) ,
1√
ε
‖(κ− P ε,γκ )v‖m,(ϕ) . ‖v‖m .

One has similar estimates for the traces. Therefore, the estimate (4.17)
and therefore Theorems 4.2 and 4.1 follow from the following microlocal
estimates.

Proposition 4.4. There are a neighborhood ω of (t, 0) in Rd+1
+ , κ ∈ C∞0 (ω̃1)

equal to one on ω, a finite partition of unity (4.22) and constants C and
γ0 ≥ 1, such that for all γ ≥ γ0, ε ∈]0, 1], all l and all solution of (4.19)
supported in ω, one has

(4.24)
‖P ε,γκχl

u‖m,(ϕ2) +
1√
ε
‖P ε,γκχl

v‖m,(ϕ) + |P ε,γκχl
v(0)|m,(ϕ/√Λ) ≤

C
(
‖f‖m + ‖u‖m,(Λ) + ‖v‖m + |v(0)|m

)
.

As in section 2, there are three different analysis according to the size of
|εζ|. We consider successively, the high, medium and low frequencies.

4.3 The high frequency regime

We consider here the case where χ is supported in a domain where Λ is large
enough :

(4.25) χ(ζ) = 0 when |ζ| ≤ R+ 1 and χ(ζ) = 1 when |ζ| ≥ 2R ,

and we assume that, at least, R ≥ 2.
As in section 2, in the high frequency regime, it is convenient to reduce

the symbol gε to first order, so we introduce:

(4.26) gε2 =
(

0 ΛId
mεΛ−1 aε

)
.

To prove the L2 estimates, we use the symmetrizers of section 2.

Lemma 4.5. There are R ≥ 2, c > 0, a neighborhood ω1 of (t, 0, 0) and a
bounded family of self adjoint matrix valued symbols σε(x) ∈ PΓ1

1,0 such that
ε∂xσ

ε(x) is bounded in PΓ1
0,0 and, for all U ∈ C2N , all ε ∈]0, 1], (t, y, x) ∈ ω1

and ζ such that |ζ| ≥ R, one has:
i) Re

(
σεgε2U,U

)
≥ cΛ2 |U |2.

ii) Re
(
σε(0)U,U

)
≥ cΛ |v|2 when u = 0.
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Proof. With the notation Ǧ1 introduced just before Lemma 2.14, there holds

gε2(t, y, x, ζ) = Λκ1(t, y, x) Ĝ1(z, pε, ζ̂, 1/Λ)

with z = x/ε, pε = pε(t, y, x), Λ = Λ(ζ) and, using the parabolic dilation as
in (2.55), ζ̂ = Λ−1 · ζ = (τ/Λ2, η/Λ, γ/Λ2).

Lemma 2.14 provides us with a symmetrizer Ŝ
(
z, p, ζ̂,Λ−1

)
for Ĝ1, de-

fined for p in some neighborhood of p and Λ(ζ) large enough, thus for
|ζ| ≥ R/2 if R is large. According to Example 3.11 3), the symbols

σε(x, ỹ, ζ) = κ2(t, y, x)χ2(ζ)Λ(ζ) Ŝ
(x
ε
, pε(t, y, x), ζ̂,

1
Λ(ζ)

)
are well defined bounded in PΓ1

1,0 if χ2 ∈ C∞ vanishes for |ζ| ≤ R/2 and is
equal to one on |ζ| ≥ R and κ2 ∈ C∞ is supported in a small neighborhood
of (t, 0) and equal to one on some smaller neighborhood ω1 ⊂ ω̃1. Moreover,
the properties of Ŝ imply that σε satisfies the desired conditions for ζ large
enough.

The neighborhood ω1 and R being given by this lemma, we choose χ
satisfying (4.25) and κ ∈ C∞0 (ω1) equal to one on a smaller open set ω. We
also choose κ′ ∈ C∞0 (ω1) and χ′ supported in {|ζ| ≥ R} such that

(4.27) κ′κ = κ, χ′χ = χ.

Introduce

(4.28) U1 = P ε,γκχ U = t(u1, v1).

Since κχ is scalar, the matrices mε and aε commute with κχId. Thus, by
Proposition 3.13, the commutators satisfy

‖[P ε,γmε , P ε,γκχ ]u‖m . ε‖u‖m,(Λ) , ‖[P ε,γaε , P ε,γκχ ]v‖m . ε‖v‖m .

We have used that the norms ‖ · ‖m,(Λs) are the norms denoted by ‖ · ‖m,s,ε,γ
in section 3. Hence,

(4.29)

 (∂x −
1
ε
P ε,γgε )U1 = F1 =

(
f1

g1

)
,

ΓU1|x=0 = u1|x=0 = 0 ,

with f1 = P ε,γ∂xκχ
u and g1 = f ′ + P ε,γ∂xκχ

v + 1
ε [P

ε,γ
κχ , P

ε,γ
mε ]u + 1

ε [P
ε,γ
κχ , P

ε,γ
aε ]v.

Thus

(4.30) ‖f1‖m,(Λ) + ‖g1‖m . ‖f ′‖m + ‖u‖m,(Λ) + ‖v‖m .
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The boundary condition in (4.29) follows from the trace relations (3.28).
Next, introduce U2 = t(u2, v2) with

(4.31) u2 = P ε,γΛ u1 , v2 = v1 .

Then, (4.29) implies that

(4.32) ∂xU2 −
1
ε
P ε,γgε

2
U2 = F2 u2|x=0 = 0 .

with F2 = t(f2, g2), f2 = P ε,γΛ f1 and g2 = g1. We have used that u1 =
P ε,γ

Λ−1u2 and P ε,γm P ε,γ
Λ−1 = P ε,γ

mΛ−1 . Because ϕ ≤ Λ/
√
ε (indeed ϕ = Λ/

√
ε on

the support of χ), the estimate (4.24) for U1 = P ε,γκχ U is implied by

(4.33)

1
ε
‖U2‖m,(Λ) +

1√
ε
|v2(0)|m,(√Λ) .

‖F2‖m + ‖u‖m,(Λ) + ‖v‖m + |v(0)|m ,

since ‖F2‖m . ‖f ′‖m + ‖u‖m,(Λ) + ‖v‖m by (4.30).

Proposition 4.6. If R is large enough, for all γ ≥ 1, all ε ∈]0, 1] and all
(U, f) ∈ C∞0 (ω) solution of (4.19), one has

(4.34)

1
ε
‖P ε,γκ′χ′U2‖0,(Λ) +

1√
ε
|P ε,γκ′χ′v2(0)|0,(√Λ) .

‖F2‖0 + ‖U2‖0 + |v2(0)|0 .

Proof. Introduce U ′2 = P ε,γκ′χ′U2. Then, using the symbolic calculus,

∂xU
′
2 −

1
ε
P ε,γgε

2
U ′2 = F ′2 , u′2|x=0 = 0 ,

with
‖F ′2‖0 . ‖F2‖0 + ‖U2‖0 .

Consider the symmetrizers S = ReP ε,γσε = 1
2(P ε,γσε +(P ε,γσε )∗). By Proposition

3.14, since the symbols σε ∈ PΓ1
1,0 are self adjoint, S − P ε,γσε is of order 0 in

the sense of section 3.2. The following identity holds:((
S(0)U ′2(0), U ′2(0)

))
+

2
ε
Re
((
SG2U

′
2, U

′
2

))
=

−
((
[∂x, S]U ′2, U

′
2)
))
− 2Re

((
SF ′2, U

′
2

))
,
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where G2 = P ε,γgε
2

. The symbolic calculus in Proposition 3.13 implies that
SG2 = P ε,γσεgε

2
+ εR with R of order one. Thus((

SG2U
′
2, U

′
2

))
=
((
P ε,γσεgε

2
U ′2, U

′
2

))
+ O

(
ε ‖U ′2‖0,(Λ)‖U ′2‖0

)
.

Moreover, σεgε2 ∈ PΓ2
1,0 and its real part is elliptic on the support of κχ.

Thus, with Remark 3.16, we are in position to apply Garding’s inequality
of Proposition 3.15, and therefore

Re
((
SG2U

′
2, U

′
2

))
≥ c‖U ′2‖2

0,(Λ) − C ε2‖U2‖2
0 .

Similarly, since u′2(0) = 0,((
S(0)U ′2(0), U ′2(0)

))
≥ c|v′2(0)|2

0,(
√

Λ)
− Cε2|v2(0)|2

0,(1/
√

Λ)
.

Using the symbolic calculus, we also have∣∣((SF ′2, U ′2))∣∣ ≤ ‖F ′2‖0 ‖S∗U ′2‖0 ≤
β

ε
‖U ′2‖2

0,(Λ) +
Cε

β
‖F2‖2

0

for all β > 0. We have used that S and thus S∗ are of order one.
Since ε∂xσε is bounded in PΓ1

0,0, [ε∂x, P
ε,γ
σε ] is of order 1, as well as its

adjoint. Thus ε[∂x, S] is also of order 1 and∣∣(([∂x, S]U ′2, U
′
2)
))∣∣ ≤ C1

ε
‖U ′2‖2

0,(
√

Λ)
.

This implies that

(4.35)

1
ε
‖U ′2‖2

0,(Λ) + |v′2(0)|2
0,(
√

Λ)
≤C1

1
ε
‖U ′2‖2

0,(
√

Λ)
+
β

ε
‖U ′2‖2

0,(Λ)

+ C2

( ε
β
‖F ′2‖2

0 + ε‖U2‖2
0 + ε2|v(0)|20

)
.

We first choose β ≤ 1/4 so that the second term in the right hand side can
be absorbed from the right to the right.

Next, we note note that the constant C1 depends only on norms of
the symbols σε. In particular, it is independent χ. If R is sufficiently
large in (4.25), the symbol κ′χ′ is supported in 〈ζ〉 ≥

√
R/2. Thus, by

iv) in Proposition 3.12, the spectrum of U ′2 is also contained in a domain
〈εζ〉 ≥ δ

√
R with δ > 0. If R is large enough, one has C1 ≤ 1

4

√
Λ(εζ) on the

spectrum of U ′2 and thus

4C1‖U2‖0,(
√

Λ) ≤ ‖U2‖0,(Λ) .

Therefore, the the first term in the right hand side of (4.35) can be also
absorbed by the left hand side, implying (4.34).
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Proposition 4.7. If R is large enough, there are C and γ0 ≥ 1 such that
the estimate (4.24) is satisfied by P ε,γκχ U , for all γ ≥ γ0, all ε ∈]0, 1] and all
(U, f) ∈ C∞0 (ω) satisfying (4.19).

Proof. Differentiate (4.32) with respect to Zα, for |α| ≤ m. The commuta-
tion relation (3.20) implies that

[Zα, P ε,γgε
2

] =
∑
β<α

(α
β

)
P ε,γ
Zα−βgε

1
Zβ .

Since gε1 is bounded in PΓ1
1,m, the following estimates hold for w ∈ PHm,1:

‖[Zα, P ε,γgε
2

]w‖0 .
∑
β<α

‖Zβw‖0,(Λ) .

Thus,
γm−|α|‖[Zα, P ε,γgε

2
]U2‖0 . γ−1‖U2‖m,(Λ) .

Therefore,  ∂xZ
αU2 −

1
ε
P ε,γgε

2
ZαU1 = ZαF2 +

1
ε
Fα ,

Zαu2|x=0 = 0 ,
where

γm−|α|‖Fα‖0 . γ−1‖U2‖m,(Λ) .

Proposition 4.6 implies that

(4.36)

1
ε
‖P ε,γκ′χ′Z

αU2‖0,(Λ) +
1√
ε
|P ε,γκ′χ′Z

αv1(0)|0,(√Λ) .

‖ZαF2‖0 +
1
ε
‖Fα‖0 + ‖ZαU2‖0 + |Zαv0(0)|0 .

We use the following Lemma.

Lemma 4.8. Suppose that a ∈ PΓ0
1,m and b ∈ Γ0

1,m satisfy ab = b. Then,
with h2 = P ε,γb h, one has

‖h2‖m,(Λ) .
∑
|α|≤m

γm−|α|‖P ε,γa Zαh2‖0,(Λ) + ε‖h‖m .

Taking this lemma for granted, since U2 = P ε,γκ′χ′U
′ with u′1 = P ε,γΛ u and

v′ = v, with (4.27) and (4.36) and the estimate of Fα, we obtain
1
ε
‖U2‖m,(Λ) +

1√
ε
|v1(0)|m,(√Λ) .

1
εγ
‖U2‖m,(Λ) + ‖F2‖m + ‖U ′‖m + |v(0)|m .

For γ large enough, this implies (4.33) and thus (4.24) for P ε,γκ1χU .
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Proof of Lemma 4.8
The symbolic calculus implies that P ε,γa h2 = P ε,γab h + εR where R is of

order −1. Because ab = b, this shows that P ε,γa h2 = h2 + εRh. Thus

‖h2‖m,(Λ) .
∑
|α|≤m

γm−|α|‖ZαP ε,γa h2‖0,(Λ) + ε‖h‖m.

Next we commute Zα and P ε,γa : [ZαP ε,γa ]h2 is a sum of terms

k = P ε,γ
Zβa

P ε,γ
Zβ′b

Zα−β−β
′
h

with β > 0 and β + β′ ≤ α. Because a = 1 on the support of b, for β > 0,
(Zβa)(Zβ

′
b) = 0, and the symbolic calculus implies that

γm−|α|‖k‖0,(Λ) . εγm−|α|‖Zα−β−β′h‖0 ≤ ε‖h‖m .

The lemma follows. �

4.4 Bounded frequencies

From now on, we consider bounded frequencies ζ. Fix ζ = (τ , η, γ) ∈ Rd+1

with γ ≥ 0 and ζ 6= 0. Lemma 2.6 provides us with invertible matrices
W(z, p, ζ) defined for (p, ζ) close to (p, ζ) and such that

(4.37) ∂zW +WG = G2W ,

where G2(p, ζ) is independent of z. Lemma 2.12 provides us with a sym-
metrizer S(p, ζ) for G2 in a neighborhood of (p, ζ). Introduce

gε2(t, y, x, ζ) = κ2(t, y, x)χ2(ζ)G2(pε(x, ỹ), ζ) ,
σε(t, y, x, ζ) = κ3(t, y, x)χ3(ζ)S(pε(t, y, x), ζ) ,

wε−1(t, y, x, ζ) = κ2(t, y, x)χ2(ζ)W−1(
x

ε
, pε(t, y, x), ζ) ,

Γ̃ε(t, y, ζ) = Γwε−1(t, y, 0, ζ) ,

with C∞ cut-offs κ2, κ3 and χ2, χ3, supported on small neighborhoods of
(t, 0) and ζ respectively. We further assume that κ2κ3 = κ3, χ2χ3 = χ3,
and that pε remains in the domain of definition of G2,S and W for (t, y, x)
in the support of κ2. We also assume that κ3 = 1 and χ3 = 1 on smaller
neighborhoods ω1, and C1. Thanks to (4.5), these symbols are bounded in
PΓ0

1,m for ε ∈]0, 1]. Note that the order, has no real meaning here, since the
symbols are compactly supported in ζ. Moreover, since S does not depend
on z, the family ∂xσε is also bounded in PΓ0

0,m. Lemma 2.12 implies:
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Lemma 4.9. With notations as above, there are constants C and c > 0 such
that the self adjoint matrices σε for ε ∈]0, 1] form a bounded family in PΓ0

1,0

with ∂xσε bounded in PΓ0
0,0 and for all U ∈ C2N , ε ∈]0, 1], (t, y, x) ∈ ω1 and

ζ ∈ C1 :
i) Re

(
σεgε2U,U

)
≥ c|U |2.

ii) Re
(
σε(0)U,U

)
+ C|Γ̃εU |2 ≥ c|U |2.

With κ ∈ C∞0 (ω1) equal to one on ω and χ ∈ C∞0 (C1) equal to one on
C, introduce

(4.38) wε(t, y, x, ζ) = κ(t, y, x)χ(ζ)W(
x

ε
, pε(t, y, x), ζ) .

The intertwining relation (4.37) is transformed to

(4.39) ε∂xw
ε + wεgε = gε2w

ε + εrε

with rε = ∂xκχW + κχ∂xp∇pW bounded in PΓ0
0,m.

Consider U2 = P ε,γwε U . Then, with (4.20) and (4.39) and using the sym-
bolic calculus, we obtain

∂xU2 = P ε,γwε ∂xU + P ε,γ∂xwεU

=
1
ε
P ε,γgε

2w
εU +

1
ε

(
P ε,γwε P

ε,γ
gε − P ε,γwεgε

)
U + P ε,γrε U + P ε,γwε F ′ .

But ε−1(P ε,γgε
2w

ε−P ε,γgε
2
P ε,γwε ) and ε−1(P ε,γwεgε−P ε,γwε P

ε,γ
gε ) are of order zero, since

wε is of any negative order, being compactly supported in ζ. Here, the im-
portant fact is not about the order of the operators, but that the remainders
in the the symbolic calculus are smaller by a factor ε. Thus

(4.40) ∂xU2 =
1
ε
P ε,γgε

2
U2 + F2 ,

where F2 satisfies

(4.41) ‖F2‖m . ‖f ′‖m + ‖U‖m .

Next, the symbols satisfy wε−1w
ε = κχId. Thus,

(4.42) P ε,γκχ U = P ε,γwε
−1
U2 + εRU ,

where R is of order −1. Thus

(4.43) ‖P ε,γκχ U‖m . ‖U2‖m + ε‖U‖m .
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The boundary condition u(0) = 0 and (4.42) imply that

(4.44)
∣∣P ε,γeΓε

U2(0)
∣∣
m

. ε
∣∣R(0)v(0)

∣∣
m

. ε
∣∣v(0)

∣∣
m
.

Similarly, (4.42) implies that

(4.45)
∣∣P ε,γκχ v(0)

∣∣
m

.
∣∣U2(0)

∣∣
m

+ ε
∣∣v(0)

∣∣
m
.

Moreover, since wε and χ are compactly supported, the spectrum of P ε,γκχ
is contained in a domain where εζ is uniformly bounded. Hence ϕ . 1/

√
ε

on this domain and

‖P ε,γκχ u‖m,(ϕ2) +
1√
ε
‖P ε,γκχ v‖m,(ϕ) .

1
ε
‖P ε,γκχ U‖m .

Similarly,

|P ε,γκχ v(0)|m,(ϕ/√Λ) .
1
ε
|P ε,γκχ v(0)|m .

Therefore, with (4.43) (4.45), we conclude that the estimate (4.24) for P ε,γκχ U
is implied by

(4.46)
1
ε
‖U2‖m +

1√
ε
|U2(0)|m, . ‖F2‖m + ‖U‖m + |v(0)|m .

Proposition 4.10. With notations as above, there are C and γ0 ≥ 1 such
that the estimate (4.24) is satisfied by P ε,γκχ U for all γ ≥ γ0, all ε ∈]0, 1] and
all u ∈ C∞0 (ω).

Proof. We prove (4.46).
a) Choose κ′1 ∈ C∞0 (ω1) and χ′ ∈ C∞0 (C) such that κ′κ = κ, χ′χ = χ

and introduce U ′2 = P ε,γ
κ′1χ

′U2. Then, using the symbolic calculus,

‖∂xU ′2 −
1
ε
P ε,γgε

2
U ′2‖0 . ‖F2‖0 + ‖U2‖0 , |P ε,γeΓε

U ′2(0)|0 . |P ε,γeΓε
U2(0)|0 .

Consider the symmetrizers S = ReP ε,γσε = 1
2(P ε,γσε +(P ε,γσε )∗). We now repeat

the proof of Proposition 4.6 using the symmetrizer S = ReP ε,γσε . The main
difference is that [∂x, S] is now a term of order 0, since

[∂x, S] =
1
2
P ε,γ∂xσε +

1
2
(
P ε,γ∂xσε

)∗
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and ∂xσε is bounded in PΓ0
0,0. Therefore, there is now no term in C1ε

−1‖U ′2‖0

in the right hand side of (4.35). In addition, ii) in Lemma 4.9 implies that((
S(0)U ′2(0), U ′2(0)

))
+ C|P ε,γeΓε

U2(0)|0 ≥ c|U ′2(0)|20 − C ′ε2|U2(0)|20 .

Adding up yields

1
ε
‖P ε,γ

κ′1χ
′U2‖0 +

1√
ε
|P ε,γ
κ′1χ

′U2(0)|0 . ‖F2‖0 + ‖U2‖0 + |U2(0)|0 .

b) The second part of the proof is identical to the proof of Proposi-
tion 4.7. We differentiate the equation (4.40) with respect to Zα. Using
part a), one obtains:

1
ε
‖P ε,γ

κ′1χ
′Z

αU2‖0+
1√
ε
|P ε,γ
κ′1χ

′Z
αU2(0)|0 . ‖F2‖m+(1+

1
εγ

)‖U2‖m+|U2(0)|m .

With Lemma 4.8, this implies

1
ε
‖U2‖m +

1√
ε
|U2(0)|m . ‖F2‖m +

1
εγ
‖U2‖m + ‖U‖m + |U(0)|m .

For γ large, this implies (4.46), finishing the proof of the proposition.

4.5 The low frequencies

We now turn to the most delicate part, where we consider frequencies sup-
ported in a small neighborhood of ζ = 0. We start the analysis as in the
previous subsection. With W and V given by Lemmas 2.6 and 2.9, we define
T = WV. Then, (4.37) reads

∂zT + T G = G2T , G2 =
(
H 0
0 P

)
.

We define

gε2(t, y, x, ζ) = κ2(t, y, x)χ2(ζ)G2(pε(x, ỹ), ζ) ,

wε−1(t, y, x, ζ) = κ2(t, y, x)χ2(ζ)T −1(
x

ε
, pε(t, y, x), ζ) ,

Γ̃ε(t, y, ζ) = Γwε−1(t, y, 0, ζ) ,

with C∞ cut-offs κ2 and χ2 supported on small neighborhoods of (t, 0) and
ζ respectively and equal to one on smaller neighborhoods. Now gε2 is block
diagonal:

gε2 =
(
hε 0
0 πε

)
.
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Again we use symmetrizers but we now have to combine the P ε,γ calculus
for the second block and the T γ calculus for the first one. We start with
some preparation. By definition,

hε(t, y, x, ζ) = κ2(t, y, x)χ2(ζ)H(pε(t, y, x), ζ) .

Moreover, H vanishes at the origin. Therefore, using a Taylor expansion of
H, we obtain

(4.47) hε = iτhε0 +
d−1∑
j=1

iηjh
ε
j + γhεd ,

where the hεk are bounded families of symbols in PΓ0
1,0, with compact support

in ζ. Introduce the symbols

hεk(t, y, x, ζ̌) := hεk(t, y, x, εζ̌) ,

hε(t, y, x, ζ̌) := iτhε0(t, y, x, ζ̌) +
d−1∑
j=1

iηjhεj(t, y, x, ζ̌) + γhεd(t, y, x, ζ̌) .

Then, since the hk have compact support in ζ, the hεk are bounded families
in Γ0

1,0 and the hε are bounded in Γ1
1,0 (see Example 3.3).

We now proceed to the construction of symmetrizers.

Lemma 4.11. There are neighborhoods ω1 of (t, 0) and C1 of the origin in
Rd+1

+ and there are C and c > 0 such that:
i) there is a bounded family of self adjoint matrix valued symbols σε2 ∈

PΓ0
1,0 such that ∂xσε2 is bounded in PΓ0

0 and, for all v ∈ CN , all ε ∈]0, 1],
(t, y, x) ∈ ω1 and ζ ∈ C1, one has Re

(
σε2π

εv, v
)
≥ c‖v‖2 .

ii) there is a bounded family of self adjoint matrix valued symbols sε1 ∈
Γ0

1,0 such that ∂xsε1 is bounded in Γ0
0,0 and

(4.48) Re (sε1h
ε) =

∑
(vεl )

∗kεl v
ε
l

where
a) the vε(t, y, x, ζ̌) are bounded families matrix valued symbols in

Γ0
1 such that

∑
(vεl )

∗vεl ≥ cId when (t, y, x) ∈ ω1 and εζ̌ ∈ C1,
b) the kεl (t, y, x, ζ̌) are bounded families of matrix valued symbols

in Γ1
1 having the following block structure:

(4.49) kεl =

 bε1 · · · 0
...

. . .
...

0 · · · bεq
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and either
bεj(t, y, x, ζ̌) ≥ c|ζ̌|

or bεj = γbj,0 + εbj,2 and

bεj,0(t, y, x, ζ̌) ≥ c and bεj,2(t, y, x, ζ̌) ≥ c|ζ̌|2

when (t, y, x) ∈ ω1 and εζ̌ ∈ C1.

iii) the matrices sε =
[

sε1 0
0 sε2

]
with sε2(t, y, x, ζ̌) = σε2(x, ỹ, εζ̌) and

gε(t, y, ζ̌) := Γ̃ε(t, y, εζ̌) satisfy for (t, y) ∈ ω1 ∩ {x = 0}) and εζ̌ ∈ C1

(4.50)
((
sε(0)U,U

))
+ C|gεU |2 ≥ c|U |2 .

Proof. This is a direct consequence of Lemma 2.13. In this lemma, two
symmetrizers Š1(p, ζ̌, ρ) and S2(p, ζ) are constructed for the blocks Ȟ and
E respectively. Define

(4.51)
sε1(t, y, x, ζ̌) = κ3(t, y, x)χ3(εζ̌) Š(pε(t, y, x)

ζ̌

|ζ̌|
, ε|ζ̌|)

σε3(t, y, x, ζ) = κ2(t, y, x)χ3(ζ)S2(pε(t, y, x), ζ)

with κ3 and χ3 appropriate cut off functions near (t, 0) and ζ = 0, such that
κ2κ3 = κ3, χ2χ3 = χ3 and κ3 on ω1 and χ3 = 1 on C1. Then, Lemma 2.13
implies the properties i), ii) and iii) above.

Given ω1 and C1, we choose κ ∈ C∞0 (ω1) and χ ∈ C∞0 (C1) with κ1 = 1
and χ = 1 on smaller neighborhoods ω and C. With

wε(t, y, x, ζ) = κ(t, y, x)χ(ζ)T (
x

ε
, pε(t, y, x), ζ) ,

we first give estimates for U2 = P ε,γwε U . With these notations, the intertwin-
ing relation (4.39) still holds, as well as equation (4.40) which now decouples
in two parts

∂xu2 = 1
εP

ε,γ
hε u2 + f2 ,(4.52)

∂xv2 = 1
εP

ε,γ
πε v2 + g2 ,(4.53)

where U2 = t(u2, v2) and F2 = t(f2, g2) satisfies (4.41).
We also choose κ′ ∈ C∞0 (ω1) and χ′ ∈ C∞0 (C1) such that κ′κ = κ and

χ′χ′ = χ. We introduce U ′2 = P ε,γ
κ′0χ

′U2 = t(u′2, v
′
2). These functions have

their spectrum contained in a domain where εζ is bounded (see Proposition
3.12). In this case ϕ2 ≈ γ + ε|η̃|2 and for such functions

(4.54) ‖u‖0,(ϕ2) ≈ γ‖u‖0 + ε‖∂2
ỹu‖0 , ‖v‖0,(ϕ) ≈

√
γ‖v‖0 +

√
ε‖∂ỹv‖0 .
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Proposition 4.12. There is C such that for all u ∈ C∞0 (ω)

‖u′2‖0,(ϕ2) +
1√
ε
‖v′2‖0,(ϕ) + |U ′2(0)|0,(ϕ) ≤ C

(
‖f2‖0 +

√
ε‖g2‖0,(ϕ)

+ |P ε,γeΓε
U2(0)|0,(ϕ) + ‖u2‖0,(ϕ) + ‖v2‖0 + |U2(0)|0

)
.

Proof. Applying P ε,γκ′χ′ to (4.52) and (4.53) yields

∂xu
′
2 = 1

εP
ε,γ
hε u′2 + f ′2 ,(4.55)

∂xv
′
2 = 1

εP
ε,γ
πε v′2 + g′2 ,(4.56)

where

(4.57) ‖f ′2‖0 ≤ ‖f2‖0 + ‖u2‖0 , ‖g′2‖0 ≤ ‖g2‖0 + ‖v2‖0 .

From (4.47), it follows that

1
ε
P ε,γhε u

′
2 = P ε,γhε

0
∂tu

′
2 +

d−1∑
j=1

P ε,γhε
j
∂ju

′
2 + γP ε,γhε

d
u′2 .

With Proposition 3.19, this implies that

(4.58) ‖1
ε
P ε,γhε u

′
2 − T γhεu

′
2‖0 . ‖u′2‖0 .

Therefore, we can replace equation (4.55) by

(4.59) ∂xu
′
2 = T γhεu

′
2 + f̃ ′2 ,

where f̃ ′2 satisfies ‖f̃ ′2‖0 . ‖f2‖0 + ‖u2‖0.

Introduce Σ1 = ReT γsε
1

and Σ2 = ReP ε,γσε
2

. We consider the symmetrizers

Sk = γΣk −
d−1∑
j=0

ε∂jΣk∂j , for k = 1, 2 .

We start from the identities

(4.60)

((
S1(0)u′2(0), u′2(0)

))
+ Re

((
S1T

γ
hεu

′
2, u

′
2

))
=−

((
[∂x, S1]u′2, u

′
2

))
− 2Re

((
f̃ ′2, S1u

′
2

))
,
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(4.61)

((
S2(0)v′2(0), v′2(0)

))
+

1
ε
Re
((
S2P

ε,γ
eε v′2, v

′
2)
))

=−
((
[∂xS2]v′2, v

′
2)
))
− 2Re

((
S2g

′
2, v

′
2

))
.

We now estimate the different terms.
a) The right hand side of (4.60). By Proposition 3.6, since ∂xsε is

bounded in Γ0
0,0 [∂x, T

γ
sε
1
] and therefore its adjoint and hence [∂x,Σ1], are

uniformly bounded in L2. Thus∣∣(((∂xS1)u′2, u
′2
))∣∣ . γ‖u′2‖2

0 + ε‖∇ỹu
′
2‖2

0 . ‖u2‖2
0,(ϕ) ,

where the second inequality follows from (4.54).
Similarly, Σ1 is of order zero in the sense of Proposition 3.4 and∣∣(((f̃ ′2, S1u

′
2)
))∣∣ ≤ ‖f̃ ′2‖0 ‖S1u

′
2‖0 . ‖f ′2‖0

(
γ‖u′2‖0 + ε‖∇2

ỹu
′
2‖0

)
. ‖f̃ ′2‖0 ‖u′2‖0,(ϕ2) .

b) The right hand side of (4.61). Since ∂xσε2 is bounded in PΓ0
0,0, the

commutators [∂x,Σ2] are uniformly bounded in L2 and∣∣(((∂xS2)v′2, v
′
2)
))∣∣ . γ‖v′2‖2

0 + ε‖∇ỹv2‖2
0 . ‖v′‖2

0,(ϕ) .

For the second term, we give a symmetric role to g2 and v2, using that Σ2

is uniformly bounded in L2:∣∣(((S2g
′
2, v

′
2)
))∣∣ . γ‖g′2‖0 ‖v′2‖0 +

∑
j

ε‖∂jg′2‖0 ‖∂jv′2‖0

. ‖g′2‖0,(ϕ) ‖v′2‖0,(ϕ) .

c) We apply Gardings’ inequality to the second term in the left hand
side of (4.60). Since, sε is bounded in Γ0

1,0, (T γsε)∗ − T γsε) is of order −1 by
Proposition adjoint. Thus Σ1 − T γsε is also of order −1. Together with the
symbolic calculus in Proposition 3.5, this implies that

S1T
γ
hε = γ

(
T γsε

1hε +R0

)
+
∑
j

ε∂j
(
T γsε

1hε∂j +Rj1
)
,

where R0 is of order zero and the Rj1 are of order one in the sense of section
3.1. With notations as in Lemma 4.11, we have

ReT γsε
1hε =

∑
(T γvε

l
)∗Tkε

l
T γvε

l
+R0
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with R0 of order 0. Thus,((
S1T

γ
hεu

′
2, u

′
1

))
−
∑
l

γ
((
Tkε

l
T γvε

l
u′2, T

γ
vε

l
u′2
))
−
∑
l,j

ε
((
Tkε

l
T γvε

l
∂ju

′
2, T

γ
vε

l
∂ju

′
2

))
= O(γ‖u′2‖2

0 + ε‖∂ỹu′2‖2
0) = O(‖u′2‖2

0,(ϕ)) .

Next, T γvε
l
T γκ′χ′ − T γvε

l κ
′χ′ is of order −1. Since kεl is of order 1, in the for-

mula above we can replace T γvε
l
u′2 and T γvε

l
∂ju

′
2 by T γvε

l κ
′χ′u2 and T γvε

l κ
′χ′∂ju2

respectively, at the price of an error of order O(‖u2‖2
0,(ϕ)).

We estimate the scalar products
((
Tkε

l
T γvε

l
u, T γvε

l
u
))

using Garding’s in-
equality. According to the block structure of kεl , there is a decomposition

vεl =

 vε1,l
...

vεq,l


so that ((

Tkε
l
T γvε

l
u, T γvε

l
u
))

=
q∑
j=1

((
Tbε

j
T γvε

j,l
uT γvε

j,l
u
))

When bj is elliptic on ω1 × ε−1C1 and w ∈ Γ0
1,0 is supported in this set,

Garding’s inequality implies that((
Tbε

j
T γwu, T

γ
wu
))
≥ c‖T γwu‖2

0, 1
2
,γ
− C‖u‖2

0,− 1
2
,γ

with norms as in (3.6) (see Proposition 3.7 and Remark 3.8 ).
When bj = γbj,0 + εbj,2 with bj,0 ∈ Γ0

1,0 elliptic and bj,2 ∈ Γ2
1,0 elliptic,

then Garding’s inequality implies that((
Tbε

j
T γwu, T

γ
wu
))
≥ c (γ‖T γwu‖2

0 + ε‖T γwu‖2
0,1,γ)− C(γ ‖u‖2

0,−1,γ + ε‖u‖2
0).

On the spectrum of T γwu, we have |ζ| ≥ γ + ε|ζ|2; thus in both case case, we
have ((

Tbε
j
T γwu, T

γ
wu
))
≥ c(γ‖T γwu‖2

0 + ε‖T γwu‖2
0,1,γ)− Cγ−1‖u‖2

0 .

We apply these estimates to u = u2 or u = ∂ỹu2 and w = vεj,lκ
′χ′. Adding

up, and using (4.54) for the remainders, we obtain

Re
((
S1T

γ
hεu

′
2,u

′
2

))
≥ c

∑
l

γ(γ‖T γvε
l κ

′χ′u2‖2
0 + ε‖T γvε

l κ
′χ′u2‖2

0,1,γ)

+
∑
l,j

ε(γ‖T γvε
l κ

′χ′∂ju2‖2
0, + ε‖T γvε

l κ
′χ′∂ju2‖2

0,1,γ)− C‖u2‖2
0,(ϕ) .
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Next we use the ellipticity of
∑

(vl)∗vl on the support of κ′χ′ which
implies that there are bounded families of symbols ṽεl in Γ0

1,0 such that

κ′χ′ =
∑
l

ṽεl v
ε
l κ
′χ′ .

Thus
‖T γκ′χ′u‖

2
0 .

∑
‖T γvε

l κ
′χ′u‖

2
0 + ‖u‖2

0,−1,γ .

Adding up all the estimates, and using (4.54), we have proved that

Re
((
S1T

γ
hεu

′
2, u

′
2

))
≥ c′‖u′2‖2

0,(ϕ2) − C ′‖u2‖2
0,(ϕ).

d) The second term in the left hand side of (4.61). The analysis of this
elliptic term is quite similar to the analysis made for bounded frequencies
in Proposition 4.10. The symbolic calculus implies that

Σ2P
ε,γ
πε = P ε,γσε

2π
ε + εR

with R of order 0 (in the calculus of section 3.2). Moreover [∂ỹ, P
ε,γ
πε ] = P ε,γ∂ỹeε

is also of order zero.

S2P
ε,γ
πε = γ P ε,γσε

2π
ε + εγR0 +

∑
j

ε∂j
(
P ε,γσε

2π
ε∂j +R′j + εR′′j ∂j

)
,

where the remainders R are of order 0. By Garding’s inequality (cf Propo-
sition 3.15 and Remark 3.16),

γ Re
((
P ε,γσε

2π
εv
′
2, v

′
2

))
≥ cγ‖v′2‖2

0 − Cε2‖v2‖2
0 ,

εRe
((
P ε,γσε

2π
ε∂ỹv

′
2, ∂ỹv

′
2

))
≥ cε‖∂ỹv′2‖2

0 − Cε3 ‖∂ỹv2‖2
0 .

Since εγ and ε∂ỹ are bounded in our domain of analysis and using also
(4.54), we conclude that

1
ε
Re
((
S2P

ε,γ
πε v′2, v

′
2

))
≥ c

ε
‖v2‖2

0,(ϕ) − C‖v2‖2
0 .

e) The boundary terms. Since aε := sε + C0(gε)∗gε is definite positive
on ω1 × ε−1C1, Proposition 3.7 implies that

c
∣∣U ′2(0)

∣∣2
0
≤
((
T γaεU ′2(0), U ′2(0

))
+ C

∣∣U2(0)
∣∣2
0,−1,γ

Next, we use again Proposition 3.19 and write

P ε,γσε
2(0) = T γsε

2(0) +R−1 , P ε,γeΓε
= T γgε +R−1
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where the remainders R−1 are of order −1 in the sense of (3.27). The
symbolic calculus yields Σ2(0) = T γsε

2(0) +R−1 and thus

Σ(0) :=
(

Σ1(0) 0
0 Σ2(0)

)
= T γsε +R−1

and
T γaε = Σ(0) + C(P ε,γeΓε

)∗P ε,γeΓε
+R−1 .

Therefore,∣∣U ′2(0)
∣∣2
0

.
((
Σ(0)U ′2(0), U ′2(0

))
+
∣∣P ε,γeΓε

U ′2(0)
∣∣2
0
+
∣∣U2(0)

∣∣2
0,−1,γ

.

There is a similar estimate for ∂ỹU ′2. Using again (4.54), yields∣∣U2(0)
∣∣2
0,(ϕ)

.
((
S(0)U2(0), U(0)

))
+
∣∣P ε,γeΓε

U2(0)
∣∣2
0,(ϕ)

+
∣∣U2(0)

∣∣2
0
.

f) Adding (4.60) and (4.61) and using the estimates above, one obtains

‖u′2‖2
0,(ϕ2) +

1
ε
‖v′2‖2

0,(ϕ) +
∣∣U ′2(0)

∣∣2
0,(ϕ)

.

‖f̃2‖0 ‖u′2‖0,(ϕ2) + ‖g′2‖0,(ϕ) ‖v′2‖0,(ϕ) +
∣∣P ε,γeΓε

U2(0)
∣∣2
0,(ϕ)

+ ‖u2‖2
0,(ϕ) + ‖v2‖2

0 +
∣∣U2(0)

∣∣2
0

and the proposition follows.

Proposition 4.13. There are C and γ0 such that for all u ∈ C∞0 (ω), ε ∈]0, 1
and γ ≥ γ0, the function U2 = P ε,γwε U satisfies

‖u2‖m,(ϕ2) +
1√
ε
‖v2‖m,(ϕ) + |U2(0)|m,(ϕ) ≤ C

(
‖f2‖m

+
√
ε‖g2‖m,(ϕ) + |P ε,γeΓε

U2(0)|m,(ϕ) + ‖U‖m + |U(0)|m
)
.

Proof. We differentiate the equations (4.52) and (4.53) with respect to Zα,
|α| ≤ m.

a) Equation for Zαu2.

[Zα, P ε,γhε ] =
∑
β<α

(α
β

)
P ε,γ
Zα−βhε Z

β .
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Using (4.47), one obtains

P ε,γ
Zα−βhε = ε

(
γP ε,γ

Zα−βhε
d
+ i

d−1∑
j=0

P ε,γ
Zα−βhε

j
∂ỹj

)
.

Since hε and thus the hεj are bounded in PΓ0
1,m, the Zα−βhεj are bounded in

PΓ0
1,0 and the operators P ε,γ

Zα−βhε
j

are uniformly bounded in L2. Since β < α,

we can incorporate the extra ∂ỹj to Zβ to obtain a conormal derivative Zβ
′

with |β′| ≤ |α|. Therefore

γm−|α| ‖[Zα, P ε,γhε ]u2‖0 . ε ‖u2‖m .

The commutator [Zβ , ∂x]u2 is a sum of terms Zβ∂xu2 = Zβf2+ε−1ZβP ε,γhε u2

with β < α. We repeat the same argument to commute Zβ to P ε,γhε , using
that |β| < m. This shows that

(4.62)
∂xZ

αu2 =
1
ε
P ε,γhε Z

αu2 + fα ,

γm−|α|‖fα‖0 . ‖f‖m + ‖u2‖m .

b) Equation for Zαv2. We note that for w ∈ PΓ0
1,0 and v such that εζ

is bounded on its spectrum one has

‖P ε,γw v‖0,(ϕ) . ‖v‖0,(ϕ) .

Indeed, using Proposition 3.4 and (4.54), there holds

‖P ε,γw v‖0,(ϕ) ≤
√
γ‖P ε,γw v‖0 +

√
ε‖∂ỹP ε,γw v‖0

.
√
γ‖v‖0 +

√
ε‖∂ỹv‖0 . ‖v‖0,(ϕ) .

Thus
‖[Zα, P ε,γeε ]v2‖0,(ϕ) .

∑
β<α

‖Zβv2‖0,(ϕ)

and
γm−|α| ‖[Zα, P ε,γeε ]v2‖0,(ϕ) .

1
γ
‖v2‖m,(ϕ) .

For future use, we note that we have proved that

(4.63) ‖P ε,γw v‖m,(ϕ) . ‖v‖m,(ϕ)

if εζ is bounded on the spectrum of v.
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The commutator [Zβ , ∂x]v2 is a sum of terms Zβg2 + ε−1ZβP ε,γeε u2 with
β < α and, finally, we see that

(4.64)
∂xZ

αv2 =
1
ε
P ε,γeε Zαv2 + gα ,

γm−|α|‖gα‖0 . ‖g‖m,(ϕ) +
1
εγ
‖v2‖m,(ϕ) .

c) The traces. One has ZαU2(0) = 0, except when Zα = ∂αỹ contains
no x∂x derivatives. In this case, repeating the analysis in b), one obtains

γm−|α|
∣∣[Zα, P ε,γeΓε

]U2(0)
∣∣
0,(ϕ)

.
1
γ

∣∣U2(0)
∣∣
m,(ϕ)

.

d) We apply Proposition 4.12 for each ZαU2 and |α| ≤ m. together
with the commutator estimates above, this yields

γm−|α|
(
‖P ε,γκ′χ′Z

αu2‖0,(ϕ2) +
1√
ε
‖P ε,γκ′χ′Z

αv2‖0,(ϕ) + |P ε,γκ′χ′Z
αU2(0)|0,(ϕ)

)
. ‖f2‖m +

√
ε‖g2‖m,(ϕ) + |P ε,γeΓε

U2(0)|m,(ϕ) + ‖u2‖m,(ϕ)

+‖v2‖m + |U2(0)|m +
1

γ
√
ε
‖v2‖m,(ϕ) +

1
γ
|U2(0)|m,(ϕ) .

We now argue as in Lemma 4.8, using that U2 = P ε,γwε U and κ′1χ
′ = 1 on the

support of wε. Using (4.54), we see that

‖u2‖m,(ϕ2) .
∑
|α|≤m

γm−|α|‖P ε,γκ′χ′Z
αu2‖0,(ϕ2) + ‖U‖m ,

‖v2‖m,(ϕ) .
∑
|α|≤m

γm−|α|‖P ε,γκ′χ′Z
αv2‖0,(ϕ) +

√
ε‖U‖m ,

|U2(0)|m,(ϕ) .
∑
|α|≤m

γm−|α||P ε,γκ′χ′Z
αU2(0)|0,(ϕ2) +

√
ε‖U(0)‖m .

Therefore,

‖u2‖m,(ϕ2) +
1√
ε
‖v2‖m,(ϕ) + |U2(0)|m,(ϕ) . ‖f2‖m

+
√
ε‖g2‖m,(ϕ) + |P ε,γeΓε

U2(0)|m,(ϕ) + ‖U‖m + |U(0)|m

+ ‖u2‖m,(ϕ) +
1

γ
√
ε
‖v2‖m,(ϕ) +

1
γ
|U2(0)|m,(ϕ) .

When γ is large enough, the last three terms the right hand side can be
absorbed from the right to the left and the proposition follows.
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Having proved the estimates for U2, we now prove the estimates for
U1 = PκχU .

Proposition 4.14. With notations as above, there are C and γ0 ≥ 1 such
that the estimate (4.24) is satisfied by PκχU . for all γ ≥ γ0, all ε ∈]0, 1] and
all u ∈ C∞0 (ω).

Proof. We fix the neighborhoods and cut-off functions so that Proposi-
tion 4.13 applies. Before estimating U1 we need some preparation.

a) First, we remark with (4.54) that

‖v2‖m,(ϕ)2 .
1√
ε
‖v2‖m,(ϕ) ,(4.65)

√
ε‖g2‖m,(ϕ) . ‖g2‖m .(4.66)

Next, we note that for ε|ζ| bounded, ε|ζ| ≤ C
√
εϕ and thus ε|ζ|ϕ/

√
ε ≤

Cϕ2. This implies that

1√
ε
‖ε∂ỹu2‖m,(ϕ) +

1√
ε
‖εγu2‖m,(ϕ) . ‖u2‖m,(ϕ2) .

If w ∈ PΓ0
1,m has compact support in ζ and vanishes at ζ = 0, one can write

w =
∑
wjiη̃j+γwd with wj ∈ PΓ0

1,m and P ε,γw =
∑
P ε,γwj ε∂ỹj +P ε,γwd εγ. Using

(4.63) for the action of the P ε,γwj , we get

(4.67)
1√
ε
‖P ε,γw u2‖m,(ϕ) . ‖u2‖m,(ϕ2) .

Moreover, εϕ/
√
ε is bounded when ε|ζ| is bounded and thus

1√
ε
‖εf2‖m,(ϕ) . ‖f2‖m .

With equation (4.52), and applying (4.67) to w = hε which vanishes at
ζ = 0, we conclude that

(4.68)
1√
ε
‖ε∂xu2‖m,(ϕ) . ‖u2‖m,(ϕ2) + ‖f2‖m .

Writing

u2(x) = u2(0) +
∫ x

0
∂xu2(x′)dx′ ,
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one obtains that for θ > 0,

‖e−θx/ε u2‖0 ≤ C
(√

ε
∣∣u2(0)

∣∣
0

+ ‖ε∂xu2‖0

)
.

This also holds for the tangential Fourier transform of u2, and extends to
any weighted space with weight depending only on ζ, in particular to the
norms (0, (ϕ)). Next we commute with Zα. Commuting with ∂αỹ is trivial.
Next we write

e−θx/εx∂xu2 = Φ(x/ε)ε∂xu2 with Φ(z) = ze−θz,

yielding the estimate

(4.69) ‖e−θx/ε u2‖m,(ϕ) ≤ C
(√

ε
∣∣u2(0)

∣∣
m,(ϕ)

+ ‖ε∂xu2‖m,(ϕ)

)
.

With (4.68), we conclude that

(4.70)
1√
ε
‖e−θx/ε u2‖m,(ϕ) . ‖u2‖m,(ϕ2) +

∣∣u2(0)
∣∣
m,(ϕ)

+ ‖f2‖m .

b) We now proceed to the proof of (4.24). The symbol wε−1 satisfies

wε−1w
ε = κ(t, y, x)χ(ζ)Id.

Therefore

(4.71) U1 = P ε,γκχ U = P ε,γwε
−1
U2 + εRU ,

where R is of order zero. Moreover, εζ is bounded on the spectrum of the
first two terms and thus on the spectrum of RU . Therefore

(4.72) ‖εRU‖m,(ϕ2) .
1√
ε
‖εRU‖m,(ϕ) . ‖RU‖m . ‖U‖m .

From (4.71) and the symbolic calculus, we get that

u1 = P ε,γwε
[
U2 + εr ,

where wε[ is the upper N × 2N block of wε−1 and εr satisfies estimates
analogous to (4.72). As for (4.63), we note that

(4.73) ‖P ε,γwε
[
U2‖m,(ϕ2) . ‖U2‖m,(ϕ2) .
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Indeed, since εζ is bounded on the spectrum of U2 and P ε,γwε
[
U2, one has

‖P ε,γwε
[
U2‖0,(ϕ2) ≈ γ‖P ε,γwε

[
U2‖0 + ε−1‖P ε,γ|ζ|2P

ε,γ
wε

[
U2‖0 .

Since
P ε,γ|ζ|2P

ε,γ
wε

[
= P ε,γwε

[
P ε,γ|ζ|2 + εR

with R of degree zero since wε[ is bounded in PΓ0
1,0. Therefore,

‖P ε,γwε
[
U2‖0,(ϕ2) . γ‖U2‖0 + ε−1‖P ε,γ|ζ|2U2‖0 + ‖U2‖0 . ‖U2‖0,(ϕ2) .

Commuting P ε,γwε
[

and Zα for |α| ≤ m and using that Zα−βwε[ ∈ PΓ0
1,0 yields

(4.73). Together with (4.72) we get that

(4.74) ‖u1‖m,(ϕ2) . ‖U2‖m,(ϕ)2 + ‖U‖m .

Next we remember that the matrices W and V which enter in the defi-
nition of wε−1 satisfy

W(z, p, ζ)− Id = e−θzW ′(z, p, ζ) , V(p, 0) =
(

Id ∗
0 Id

)
,

with W ′ uniformly bounded and smooth. This shows that

v1 = P ε,γwε
2
v2 + P ε,γw1

u2 + P ε,γw′ (e−θx/εu2) + εRU ,

where w1, w2 and w′ are symbols in PΓ0
1,m such that w1(t, y, x, 0) = 0, and

R is of degree zero as in (4.71). With (4.63), (4.67) and (4.70) we deduce
that

(4.75)

1√
ε
‖v1‖m,(ϕ) .

1√
ε
‖v2‖m,(ϕ) + ‖u2‖m,(ϕ2)

+
∣∣u2(0)

∣∣
m,(ϕ)

+ ‖f2‖m + ‖U‖m .

Similarly, one has Γ̃εwε = κχΓ and thus P ε,γκχ = P ε,γeΓε
P ε,γwε + εR with R

of order 0. Since ΓU = u = 0 at x = 0, one has P ε,γeΓε
U2(0) = εRU(0). Thus

(4.76)
∣∣P ε,γeΓε

U2(0)
∣∣
m,(ϕ)

.
∣∣U2(0)

∣∣
m
.

Collecting the various estimates, Proposition 4.14 implies that

‖u1‖m,(ϕ2) +
1√
ε
‖v1‖m,(ϕ) + |v(0)|m,(ϕ) .

‖f2‖m + ‖g2‖m + ‖U‖m + |U(0)|m .

Together with the estimates (4.41) for F2 = (f2, g2), this implies (4.24) and
the proposition is proved.

76



4.6 Proof of Proposition 4.4

One first uses Propositions 4.7 and 4.14 to find a neighborhood ω and cut-off
functions χ0 and χR with χ0 supported in a small neighborhood of the origin
and χR = 1 for large ζ. In the intermediate zone, we use Proposition 4.10
to find a finite covering, decreasing ω a finite number of times.
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5 Linear stability

In this section, we prove the main stability estimates announced in Theorems
1.9 and 1.10. Note that they contain both conormal Hm estimates and L∞

type estimates, which are crucial for the analysis of nonlinear stability in the
next section. The basic conormal estimates for functions globally defined
in time are stated in Theorem 5.1. By standard techniques, they imply
local in time estimates and the well posedness of the linearized equation
(Section 5.1). In Section 5.2, we show that the estimates of Theorem 5.1
are combinations of the estimates of Theorem 4.1 near the boundary and
of estimates in the interior that are stated in Proposition 5.5 and proved in
Section 5.3. Finally, the L∞ estimates are proved in Section 5.4.

Consider functions u0, b0, and vε in Wm+2,∞([−T0, T0]×Ω), with vε sat-
isfying (4.1). Introduce ua as in (4.2), and consider the linearized equation
(4.3) of (1.25) around ua. As in section 4, we extend u0, vε and thus ua to
R × Ω, and we assume that the extended function are independent of t for
|t| ≥ T1 > T0. We first consider the linearized equation on R× Ω :

(5.1)


Pεu := ∂tu+

d∑
j=1

Aεj∂ju− ε
d∑

j,k=1

Bε
j,k∂

2
j,ku+

1
ε
Eεu = f ,

u|R×∂Ω = 0 .

We introduce the space Hm
γ of functions u ∈ eγtL2(R×Ω) such that ZIu ∈

eγtL2(R × Ω) for all sequence I = (i1, . . . , ik) of length k = |I| ≤ m, where
ZI = Zi1 · · ·Zik . As usual, we agree that ZI = Id when |I| = 0. This space
is equipped with the norm

(5.2) ‖u‖Hm
γ

:=
∑
|I|≤m

γm−|I| ‖e−γt ZIu‖L2(R×Ω), .

The basic estimate is the following.

Theorem 5.1. There are C > 0 and γ0 such that for all ε ∈]0, 1], all γ ≥ γ0

and all u in C∞0 (R× Ω) vanishing on R× ∂Ω, one has

(5.3)
γ‖u‖Hm

γ
+
√
εγ‖∇xu‖Hm

γ
+
√
ε‖∂tu‖Hm

γ
+ ε3/2‖∇2

xu‖Hm
γ

≤ C ‖Pεu‖Hm
γ
.

5.1 Proof of Theorem 1.10 part one, assuming Theorem 5.1

Denote by Hm
γ,0 the space of functions f ∈ Hm which vanish for t < 0.

Introduce next the space Kmγ of functions u ∈ Hm
γ such that ∇t,xu ∈ Hm

γ ,
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∇2
xu ∈ Hm

γ and vanishing on the boundary R × ∂Ω. Let Kmγ,0 denote the
subspace of the u ∈ Kmγ which vanish for t < 0. Note that for all ε > 0, Pε
is a bounded operator from Kmγ to Hm

γ and from Kmγ,0 to Hm
γ,0. We denote

by Pεγ this mapping.

Lemma 5.2. For all γ ≥ γ0 and ε ∈]0, 1], P εγ is an isomorphism from Kmγ,0
to Hm

γ,0 and for all u ∈ Kmγ,0 the estimate (5.3) holds.
Moreover, if f ∈ Hm

γ,0 vanishes for t > T0, then u = (Pεγ)−1f also
vanishes for t < T0.

Proof. By density, the estimate (5.3) extends to functions u ∈ Kmγ , and thus
Pγ is injective for γ ≥ γ0.

Next, we use the classical theory of parabolic systems, for a given fixed
ε ∈]0, 1]. It implies that there is γ(ε) such that for γ ≥ γ(ε) and f ∈ Hm

γ,0

there is a unique solution u of (5.1) in Kmγ,0. This shows that Pεγ is an
isomorphism from Kmγ,0 to Hm

γ,0 for γ ≥ γ(ε). We show that (5.3) implies
that it is an isomorphism for γ ≥ γ0. Indeed, let γ∗ denote the infimum of
the set of γ ≥ γ0 such that Pεγ is an isomorphism. For the given ε, the norms
of Pεγ and, by (5.3), the norms of (Pεγ)−1 are bounded by uniform constants
when γ∗ < γ ≤ γ(ε). Therefore, there is δ0 = δ0(ε) > 0, independent of
γ > γ∗ such that P εγ − δId is an isomorphism from Kmγ,0 to Hm

γ,0 for |δ| ≤ δ0.
Next we note that

Pεγ−δ = e−δt (P εγ − δId) eδt .

Therefore, if γ > γ∗ ≥ γ0, Pγ′ is still an isomorphism for γ′ ∈ [γ− δ0, γ+ δ0].
This implies that γ∗ = γ0 and the first part of the lemma follows.

Suppose that f vanishes for t < T0. Since Hm
γ,0 ⊂ Hm

γ′,0 for γ′ ≥ γ,
we can use estimate (5.3) for m = 0 and γ′ ≥ γ. It implies that the L2

norm of eγ
′(T−t)u is bounded as γ′ tends to infinity and thus u = 0 on

]−∞, T0[×Ω.

Consider now f ∈ Hm([−T0, T0] × Ω) which vanishes for t < 0. We can
extend it to t > T0, as a function f∗ ∈ Hm(R×Ω) which vanishes for t > T1,
for some given T1 > T0. Therefore, f∗ ∈ Hm

γ,0 for all γ ≥ 1. Moreover, we
can construct the extension so that

(5.4) ‖f∗‖Hm
γ0
≤ C ‖f‖Hm ,

where γ0 is given by Theorem 5.1 and we use the notation ‖ · ‖Hm for the
norm in Hm([−T0, T0]× Ω) as in section 1.
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Lemma 5.2 implies that the equation (5.1) with right hand side f∗ as a
solution u∗ ∈ Kmγ0,0. Therefore u = u∗|{t<T0} is a solution of

Pεu = f , u|[−T0,T0]×∂Ω = 0 , u|t<0 = 0 .

The second part of the lemma implies that u is independent of the extension
f∗ of f . By standard uniqueness for parabolic systems, it is also independent
of the extension of the coefficients.

For t ∈ [−T0, T0] the weight eγ0t is bounded and thus, with notations as
in section 1,

(5.5) ‖u‖Hm ≤ C ‖u∗‖Hm
γ
.

There are similar estimates for the derivatives.
This proves the existence and uniqueness part in Theorems 1.9 and 1.10,

and it is now clear that the L2 and Hm estimates in these theorems follow
from (5.3) (5.4) and (5.5).

5.2 Reduction to interior estimates

It remains to prove Theorem 5.1. As in section 4, we change the unknown u
to ũ = e−γtu and the source term f to f̃ = e−γtf . In this case, the equation
(5.1) reads

(5.6)

{
P̃εũ := (Pε + γ)ũ = f̃ ,

ũ|R×∂Ω = 0 .

We introduce the weighted norms

(5.7) ‖u‖Hm,γ :=
∑
|I|≤m

γm−|I| ‖ZIu‖L2(R×Ω) .

Since the commutators of ZI with e−γt are of the form γ|J |ZI−J it is clear
that

(5.8)
1
C
‖e−γtu‖Hm,γ ≤ ‖u‖Hm

γ
≤ C‖e−γtu‖Hm,γ

with C independent of γ ≥ 1. Therefore, it is sufficient to prove that there
are C and γ0 such that for γ ≥ γ0, ε ∈]0, 1], ũ ∈ C∞0 (R×Ω) and f̃ given by
(5.6), one has

γ‖ũ‖Hm,γ +
√
εγ‖∇xũ‖Hm,γ +

√
ε‖∂tũ‖Hm,γ

+ ε3/2‖∇2
xũ‖Hm,γ ≤ C ‖f̃‖Hm,γ .
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Enlarging γ0 and C if necessary, it is sufficient to prove that

(5.9)
γ‖ũ‖Hm,γ +

√
εγ‖∇xũ‖Hm,γ +

√
ε‖∂tũ‖Hm,γ + ε3/2‖∇2

xũ‖Hm,γ

≤ C ‖f̃‖Hm,γ + ‖ũ‖Hm,γ +
√
ε‖∇xũ‖Hm,γ .

We show that this estimate, and therefore Theorem 5.1, follow from the
next result.

Proposition 5.3. For all (t, x) ∈ R × Ω, there are a neighborhood ω and
constants C and γ0 such that the estimate (5.9) is satisfied for all γ ≥ γ0,
ε ∈]0, 1] and u ∈ C∞0 (ω ∩ Ω) which vanishes ω ∩ (R× ∂Ω).

Assuming this proposition, we cover [−T1, T1] × Ω by a finite number
of open sets where the conclusion of the proposition holds. Refining the
covering gives C, γ0, a finite covering

⋃
Ωj of Ω and δ > 0 such that the

estimate (5.9) holds for γ ≥ 0, ε ∈]0, 1] and u supported in ωj,k∩Ω vanishing
on ωj,k ∩ (R × ∂Ω), with ωj,k = [(k − 1)δ, (k + 1)δ] × Ωj , for all j and all
k ∈ [−k1, k1], where (k1 − 1)δ ≥ T1.

Because the coefficients of Pε are independent of time for t ≥ T1, the
estimate on ωj,k is implied by the estimate on ωj,k1 for k > k1 since the
equation is invariant by the translation t 7→ t− (k− k1)δ from ωj,k to ωj,k1 .
Similarly, the estimate on ωj,k is implied by the estimate on ωj,−k1 for k < k1.
Therefore the estimate holds for all j and all k ∈ Z.

Choose a partition of unity
∑
χj(x) = 1 on Ω, with χj ∈ C∞0 (Ωj).

Choose next θ ∈ C∞0 (] − δ, δ[) such that
∑

k θk(t) = 1 on R where θk(t) =
θ(t− kδ). For all ũ ∈ C∞0 (R× Ω) which vanishes on R× ∂Ω, we can apply
the estimate (5.9) to ũj,k = χj(x)θk(t)ũ. We note that

P̃εũj,k =χjθkf̃ + (∂tθk)χj ũ+
d∑
p=1

Aεpθk(∂pχj)ũ

− ε
d∑

p,q=1

Bε
p,qθk

(
(∂pχj)∂qũ+ (∂qχj)∂pũ+ (∂2

p,qχj)ũ
)
.

Therefore, since θ]k = θk−1 + θk + θk+1 = 1 on the support of θk, one has

‖P̃εũj,k‖Hm,γ ≤ ‖χjθkf̃‖Hm,γ + C
(
‖θ]kũ‖Hm,γ + ε‖θ]k∇xu‖Hm,γ

)
.

The left hand side of (5.9) for ũ, is clearly less than or equal to the sum of
the left hand sides for the ũj,k. Moreover, since the supports of the θk do
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not overlap three by three, one has∑
j,k

‖χ̃jθkf̃‖Hm,γ ≤ C‖f̃‖Hm,γ , ‖θ]kũ‖Hm,γ ≤ C‖ũ‖Hm,γ ,

where C is independent of γ, u and f . There is a similar estimate for the x
derivatives. Therefore, adding the different estimates (5.9) for the ũj,k yields
an estimate (5.9) for ũ, where the only modification is that the constant C
is increased.

Proposition 5.4. For all (t, x) ∈ R× ∂Ω, there are a neighborhood ω and
constants C and γ0 such that the estimate (5.9) is satisfied for all γ ≥ γ0,
ε ∈]0, 1] and ũ ∈ C∞0 (ω ∩ Ω) which vanishes ω ∩ (R× ∂Ω).

Proof. We consider local coordinates near (t, x) and use the notations of
section 4, where x denotes the normal coordinates and y = (y1, . . . , yd−1)
the tangential variables.

With notations as in Theorem 4.1, we remark that the weight function
ϕ defined in (4.11) satisfies

ϕ2 ≥ c
(
γ + ε|η|2 + min(ετ2, |τ |)

)
.

Thus

ϕ2 ≥ c′
(
γ +

√
εγ|η|+ ε|η|2 +

√
ε|τ |
)
, ϕ ≥ c′

(√
γ +

√
ε|η|
)
.

Therefore, for u supported in ω satisfying u = 0 on {x = 0}, since v = ε∂xu,
Theorem 4.1 implies that

(5.10)
γ ‖u‖Hm,γ +

√
εγ ‖∇yu‖Hm,γ +

√
ε ‖∂tu‖Hm,γ + ε ‖∇2

yu‖Hm,γ

+
√
εγ ‖∂xu‖Hm,γ + ε ‖∇y∂xu‖Hm,γ ≤ C ‖f‖Hm,γ ,

where, for simplicity, we have dropped the tildes. From the equation, we
have

(5.11)
ε∂2
xu = −Φε

1f+Φε
2(∂tu+ γu) + Φε

3∇yu

+ εΦε
4∇2

yu+ Φε
5∂xu + εΦ6∇y∂xu+

1
ε
Eεu ,

where the Φε
j are coefficients depending on ua as in (4.7). In particular, by

4.1 they satisfy

(5.12) sup
ε

sup
|α|≤m

‖ZαΦε
j‖L∞ < +∞ .
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Multiply the identity (5.11) by ε1/2. Then, all the terms in the right hand
side are controlled by ‖f‖Hm,,γ and the left hand side of (5.10), except

ε−1/2Eεu .

Here we use that Eε = E] + εEε1 (see (4.4)) and E] = e−θx/εEε2 where Eε1
and Eε2 satisfy (5.12). By (4.69), we have

ε−1/2‖e−θx/εu‖Hm,γ ≤ C ε1/2‖∂xu‖Hm,γ

and thus

ε−1/2‖Eεu‖Hm,γ ≤ C
(
ε1/2‖∂xu‖Hm,γ +

√
ε‖u‖Hm,γ

)
.

With (5.11), we see that ε3/2‖∂2
xu‖Hm,γ can be added to the left hand side,

increasing the constant C. In order to have a formulation invariant under
the change of coordinates, we give a symmetric role to the second normal
and tangential derivatives, and (5.10) implies

γ‖u‖Hm,γ +
√
εγ‖∇y,xu‖Hm,γ +

√
ε‖∂tu‖Hm,γ

+ ε3/2 ‖∇2
y,xu‖Hm,γ ≤ C ‖f‖Hm,γ .

Going back to the original coordinates, this implies (5.9)

The next result implies that the statement in Proposition 5.3 is satisfied
when x ∈ Ω, finishing the proof of this proposition and therefore of The-
orem 5.1. The estimate we prove below is indeed a slight improvement of
(5.9) for functions supported away from ∂Ω.

Proposition 5.5. Suppose that Ω1 is an open set such that Ω1 ⊂ Ω. Then,
there are C and γ0 such that for ε ∈]0, 1], all γ ≥ γ0 and all u in C∞0 (R×Ω1),

(5.13)
γ‖u‖Hm,γ +

√
εγ‖∇xu‖Hm,γ +

√
ε ‖∂tu‖Hm,γ + ε‖∇2

xu‖Hm,γ

≤ C
(
‖(Pε + γ)u‖Hm,γ + ‖u‖Hm,γ + ε‖∇xu‖Hm,γ

)
.

Introduce

(5.14) P[ = ∂t + γ +
d∑
j=1

Ãj∂j − ε
d∑

j,k=1

B̃j,k∂j∂k ,

where Ã stands for the function A evaluated at (t, x, uεa(t, x)). For simplic-
ity, we do not mention in the notation that this operator depends on the
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parameters ε and γ. The definition of the coefficients given after (4.3) shows
that

Pε − P[ =
∑
j

A′jε∂j + E′ ,

where the coefficients have the form

A′j = Φ̃∂kua , E′ =
∑

Φ̃∂jua ,+
∑

εΦ̃∂2
j,kua +

∑
εΦ̃∂jua∂kua ,

where the Φ’s are smooth functions of (t, x, u) and Φ̃ stands for the evalua-
tion of Φ at u = ua(t, x). Since Ω1 is compact in Ω, the assumptions (4.1)
on u0 and vε imply that

(5.15) sup
ε

sup
|α|≤m

(∑
j

‖∂αt,xA′j‖L∞(R×Ω1) + ‖∂αt,xE′‖L∞(R×Ω1)

)
<∞.

Therefore,

‖(Pε − P[)u‖Hm,γ . ‖u‖Hm,γ + ε‖∇xu‖Hm,γ .

Moreover, the conormal vector fields generate all the derivatives on ω,
and the spaces Hm(ω) are the usual Sobolev spaces Hm(ω). Thus, intro-
ducing the norms

(5.16) ‖u‖m,γ =
∑
|α|≤m

γm−|α|‖∂αt,xu‖L2 ,

we see that Proposition 5.5 follows from the estimate

(5.17)
γ‖u‖m,γ +

√
εγ‖∇xu‖m,γ +

√
ε ‖∂tu‖m,γ + ε‖∇2

xu‖m,γ

≤ C
(
‖P[u‖m,γ + ‖u‖m,γ + ε‖∇xu‖m,γ

)
for u ∈ C∞0 (R×Ω1). We first prove this estimate for m = 0 and next prove
it for general m, differentiating the equation.

5.3 Proof of Proposition 5.5

The analysis is quite similar to the analysis made in section 4, but much
simpler since there are no boundary conditions, no glancing modes and no
singular terms. However, the proof relies again on the construction of a
(para-differential) symmetrizer, where we now use the “usual” Bony-Meyer
paradifferential calculus (see Appendix B). To avoid repetitions, we just give
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now the general scheme of the analysis, leaving the details to the reader, who
can easily fill in the gaps repeating the computations of section 4 and using
the results recalled in Appendix B.

We start with a symbolic analysis. With obvious notations we write

(5.18) P[ = (∂t + γ)Id + A[(t, x, ∂x) + εB[(t, x, ∂x) .

The symbol of A[ and B[ are

(5.19) aε(t, x, ξ) =
d∑
j=1

iξj Ãj(t, x) , bε(t, x, ξ) =
d∑

j=1,k

ξjξk Bj,k(t, x) .

We look for symmetrizers sε(t, x, ξ) that are N ×N matrix valued symbols
of degree zero, i.e. such that

(5.20)
∀α ∈ Nd , ∃Cα , ∀ε ∈]0, 1] , ∀(t, x, ξ) ∈ R1+d × Rd :∣∣∂αξ s(t, x, ξ)

∣∣+ ∣∣∂αξ ∇t,xs(t, x, ξ)
∣∣ ≤ C(1 + |ξ|)−|α| .

In the sequel, we fix κ ∈ C∞0 (Ω), non negative and equal to one on Ω1, and
ψ ∈ C∞(Rd) equal to one for |ξ| ≥ 2 and vanishing for |ξ| ≤ 1.

Proposition 5.6. There are families of symbols sε(t, x, ξ) and rε which
satisfies (5.20) and

sε = (sε)∗ and κ2sε ≥ κ2Id ,(5.21)
Re
(
sε(aε + εbε)

)
= ε|ξ|2rε , with κ2rε ≥ κ2 ψ2 Id .(5.22)

Proof. The symbols aε and bε are the evaluation at u = uεa(t, x) and b =
b(t, x) = (t, x, b0(t, x) of smooth symbols

A(b, u, ξ) =
d∑
j=1

iξj Aj(b, u) , B(b, u, ξ) =
d∑

j=1,k

ξjξk Bj,k(b, u) .

We construct symmetrizers Sε(b, u, ξ) and next choose sε = κ1(t, x)S(uεa(t, x), ξ)
with κ1 ∈ C∞0 (Ω), such that κκ1 = κ.

We proceed in two steps. When ε|ξ| is small, we consider εB as a per-
turbation of A. Introduce the notations ξ = |ξ|ξ̂, ρ = ε|ξ| so that, forgetting
the dependence on the parameter (b, u),

A(ξ) + εB(ξ) = |ξ|
(
A(ξ̂) + ρB(ξ̂)

)
.
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The constant multiplicity Assumption (H2) implies that there is a smooth
invertible matrix V(ξ), homogeneous of degree zero, such that V−1AV is
block diagonal. Thus, there is ρ0 > 0 such that for ρ ∈ [0, ρ0[, there is
V(ξ, ρ) such that

V−1(ξ̂, ρ)
(
A(ξ̂) + ρB(ξ̂)

)
V(ξ̂, ρ) =

iλ1Id + ρB1 0

0
. . . 0
0 iλνId + ρBν

 .

Moreover, Assumption (H3) implies that the eigenvalues of the blocksBk(ξ̂, ρ)
remain in Reµ ≥ c when ξ̂ is in the unit sphere and ρ remains small. There-
fore, there are matrices Sj(ξ̂, ρ) such that Sj = S∗j and ReSjBj are uniformly
positive definite. With

Ŝ(ξ̂, ρ) =

S1 0

0
. . . 0
0 Sν


and

Sε1(ξ) = ψ(ξ)Ŝ(
ξ

|ξ|
, ε|ξ|)

we obtain a symmetrizer for ε|ξ| ≤ ρ0.
When ε|ξ| ≥ ρ0/2, we consider that the leading term is εB and write

A(ξ) + εB(ξ) = ε|ξ|2
(
λA(ξ̂) + B(ξ̂)

)
with λ = 1/ε|ξ| ≤ λ0 := 2/ρ0. By Assumption (H3), the eigenvalues of
λA(ξ̂) + B(ξ̂) remain in Reµ ≥ c > 0 and thus there is a symmetrizer
S̃(ξ̂, λ) for λA(ξ̂) + B(ξ̂). With

Sε2(ξ) = S̃(
ξ

|ξ|
, 1/ε|ξ|)

we obtain a symmetrizer for ε|ξ| ≥ ρ2.
We paste the two symmetrizers, defining

Sε(ξ) = χ(ξ/ρ0)Sε1(ξ) + (1− χ(ξ/ρ0)Sε2(ξ) ,

with χ ∈ C∞0 ({|ξ| ≤ 1} equal to one for |ξ| ≤ 1/2.
The construction holds as long as the parameters (b, u) remain in a

compact of the set O where Assumptions (H2) and (H3) are satisfied. Thus,
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it holds for b = b(t, x) and u = uεa(t, x) when x remains in the support of κ
and ε is small enough (note that uεa is independent of time when t is large).

Thus sε(t, x, ξ) = Sε(uεa(t, x), ξ) satisfies the properties listed in Proposi-
tion 5.6. When ε ≥ ε0 > 0, it is sufficient to use Assumption (H1), because
in this case A is a bounded perturbation of εB when |ξ| ≥ 1.

Since κ1 = 0 near ∂Ω, note that uεa is smooth in the support of κ1 so
that x derivatives are allowed as in estimate (5.20).

Proposition 5.7. There are constants C and γ0 such that the estimate
(5.17) with m = 0 holds all ε ∈]0, 1], all γ ≥ γ0 and u ∈ C∞0 (R× Ω1).

Proof. We use para-differential operators acting on functions of in x ∈ Rd,
t being considered as a parameter (see Appendix B). For a symbol a, we
denote by Ta the corresponding operator.

We fix a cut off function κ1 ∈ C∞0 (Ω), which is equal to one on the
support of κ, and thus on Ω1. Therefore, for u ∈ C∞0 (R×Ω1), P[u = κ1P[u.
The coefficients κ1Ãj and κ1B̃j,k, extended by zero outside Ω, are bounded
in W 1,∞(R1+d). Therefore

‖A[u− Tκ1aεu‖0 . ‖u‖0 , ‖B[u− Tκ1bεu‖0 . ‖∇xu‖0

and it is sufficient to prove (5.17) with P[u replaced by

(5.23) f := (∂t + γ)u+ Tκ1aεu+ εTκ1bεu .

We use the symmetrizer S = γΣ − ε
∑
∂xjΣ∂xj , where Σ = ReTsε and

sε is the family of symbols given by Proposition 5.6. S is self adjoint in
L2(R1+d). Moreover, [∂t,Σ] = ReT∂tsε and ∂tsε is a bounded family of
symbols of degree zero. Thus

Re
((
S(∂t + γ)u , u

))
= γ2

((
Σu, u

))
+ εγ

d∑
j=1

((
Σ∂ju, ∂ju

))
+ err1 ,

where err1 =
((
([S, ∂t]u, u

))
satisfies

(5.24) |err1| . γ‖u‖2
0 + ε ‖∇xu‖2

0 .

The symbolic calculus (see Appendix B) implies that ΣTκ1aε = Tκ1sεaε

is of degree zero while [∂j , T εκ1aε ] = T∂j(κ1aε) is of degree one. Thus,

Re
((
STκ1aεu, u)

))
= γRe

((
Tκ1sεaεu, u

))
+ ε

d∑
j=1

((
Tκ1sεaε∂ju, ∂ju

))
+ err2 ,
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where err2 satisfies (5.24). Similarly, since bε is of degree two,

Re
((
STκ1bεu, u)

))
= γRe

((
Tκ1sεbεu, u

))
+ ε

d∑
j=1

((
Tκ1sεbε∂ju, ∂ju

))
+ err3 ,

where
|err3| . γ‖u‖0‖∇xu‖0 + ε ‖∇xu‖0‖∇2

xu‖0 .

Next we use that sε(aε + εbε) = εrε|ξ|2 and that Tκ1rε|ξ|2 +
∑

k ∂kTκ1rε∂k is
of order one. Thus, adding the various estimates above, we get that

γ2
((
Σu, u

))
+ εγ

d∑
j=1

((
Σ∂ju, ∂ju

))
+ γε

d∑
k=1

Re
((
Tκ1rε∂ku, ∂ku

))
+ ε2

d∑
j,k=1

((
Tκ1rε∂j∂ku, ∂j∂ku

))
= Re

((
Sf, u

))
+ err

with
|err| .

(
γ‖u‖0 + ε‖∇2

xu‖0

) (
‖u‖0 + ε‖∇xu‖0

)
(we have used that ‖∇xu‖2

0 ≤ ‖u‖0‖∇2
xu‖0 ). Moreover,

|
((
Sf, u

))
| = |

((
f, Su

))
| . ‖f‖0

(
γ‖u‖0 + ε‖∇2

xu‖0

)
.

For v ∈ C∞0 (R × Ω1), writing that v = κv, the positivity conditions
(5.21) and (5.22) imply that

γ‖v‖2
0 .

((
Σv, v

))
+ ‖v‖2

0 , ‖∂jv‖2
0 .

((
Σ∂jv, ∂jv

))
+ ‖v‖2

0

and
‖∂kv‖2

0 .
((
Tκ1sε∂kv, ∂kv

))
+ ‖v‖2

0 .

Therefore, we have proved that

γ2‖u‖2
0+εγ‖∇xu‖2

0+ε2‖∇2
x‖0 .

(
‖f‖0+‖u‖0+‖∇xu‖0

)(
γ‖u‖0+ε‖∇2

xu‖0

)
and thus

(5.25) γ‖u‖0 +
√
εγ‖∇xu‖0 + ε‖∇2

x‖ . ‖f‖0 + ‖u‖0 + ‖∇xu‖0 .

Moreover, (5.23) implies that

‖∂tu‖0 . ‖f‖0 + γ‖u‖0 + ‖∇xu‖0 + ε‖∇2
xu‖0

and (5.25) also provides an estimate for
√
ε‖∂tu‖0. Adding up, we obtain

the estimate (5.17) for m = 0.
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Proof of Proposition 5.5
It remains to prove that the estimate (5.17) holds for all m ≥ 1. We

differentiate the equation in space time. Using that the derivatives of the
coefficients of A[ and B[ up to order m are bounded on R×Ω1, one has for
all |α| ≤ m, P[∂αt,xu = ∂αt,xP[u+ gα, with

γm−|α|‖gα‖0 . ‖u‖m,γ + ε‖∇xu‖m,γ .

Applying Proposition 5.7 to the derivatives ∂αt,xu and adding the various
estimates one obtain (5.17). �

5.4 Proof of the L∞ estimates

We now prove the estimates (1.32), finishing the proof of Theorem 1.10.

Theorem 5.8. If m > d+1
2 + 2, there is a constant C such that for all

ε ∈]0, 1], all f ∈ Hm([−T0, T0] × Ω) vanishing for t < 0, the solution u of
(5.1) which vanishes for t < 0, satisfies

(5.26)
∑
|I|≤2

‖ZIu‖L∞ + ε
∑
|I|≤1

‖ZI∇t,xu‖L∞ ≤ C‖f‖Hm .

If in addition f ∈ L∞([−T0, T0]× Ω), then

(5.27) ε2‖∇2
xu‖L∞ ≤ C

(
‖f‖Hm + ε‖f‖L∞

)
.

Proof. a) By Theorem 1.10, we already know that

(5.28) ‖u‖Hm +
√
ε ‖∇xu‖Hm . ‖f‖Hm .

Because m > d+1
2 + 2, the Sobolev embedding implies that for all open set

Ω1 with Ω1 ⊂ Ω, one has

‖u‖W 2,∞([−T0,T0]×Ω1) ≤ C‖u‖Hm .

Therefore, it is sufficient to prove the L∞ estimates near the boundary.
Near y ∈ ∂Ω, consider a coordinate patch with coordinates (x, y) ∈

R × Rd−1 such that Ω is defined by {x > 0}. With κ ∈ C∞0 (ω), u1 =
κu satisfies Pεu1 = f with f1 = κf + [cP ε, κ]u ∈ Hm and, using (5.28),
‖f1‖Hm . ‖f‖Hm . Therefore, to prove (5.26), it is sufficient to prove it for
u1, that is:

(5.29)
∑
|α|≤2

‖Zαu1‖L∞ + ε
∑
|α|≤1

‖Zα∇t,y,xu1‖L∞ . ‖f‖Hm−1 .
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b) In the local coordinates, the equation reads

(5.30) −ε∂2
xu1 +Aε∂xu1 +

1
ε
M εu1 = (Bε

d,d)
−1f1

(see (4.7)). We put in the right hand side all the derivatives ∂tu1 ∂yu1,
ε∂x∂yu1 and ε∂2

yu1, which satisfy

‖∂t,yu‖Hm−1 + ε‖∂y∂x,yu‖Hm−1 . ‖u‖Hm + ε‖∇y,xu‖Hm ≤ ‖f‖Hm .

Hence, using the notations introduced in (2.6), we obtain

(5.31) −ε∂2
xu1 +Aε0∂xu1 +

1
ε
Eε0u1 = f̃1

with
‖f̃1‖Hm−1 . ‖f‖Hm

and
Aε0 = (Bε

d,d)
−1A]d , Eε0 = (Bε

d,d)
−1E] .

We write this equation as a first order system:

(5.32) ∂xU1 =
1
ε
Gε0U1 + F1

with

U1 =
(
u1

v1

)
, Gε0 =

(
0 Id
Eε0 Aε0

)
, F1 =

(
0
−f̃1

)
.

We prove that

(5.33)
∑
|α|≤2

‖ZαU1‖L∞ . ‖F‖Hm−1 + ‖u1‖Hm +
1√
ε
‖v1‖Hm .

By (5.28), the right hand side is . ‖f‖Hm and therefore (5.33) implies
(5.29).

c) With notations as in sections 2 and 4, one has

Gε0(t, x) = G(
x

ε
, pε(t, y, x), 0) .

Moreover, G0(z, p) := G(z, p, 0) converges at an exponential rate to a limit
G∞0 (p) as z tends to infinity and the limit has the form

G∞0 (p) =
(

0 Id
0 D(p)

)
.
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By Lemma 2.6, there is a smooth matrix W0(z, p) = W(z, p, 0) such that
W(z, p)− Id = O(e−θz) and

(5.34) ∂zW0 = G0W0 −W0G∞0 .

Moreover, by Lemma 2.9 there is a matrix V0 = V(p, 0) such that

(5.35) V−1
0 G∞0 V0 =

(
0 0
0 D(p)

)
, V0 =

(
Id D(p)
0 Id

)
.

With these notations, we introduce R0(z, p) = W0(z, p)V0(p) and

Rε0(t, y, x) = R0(
x

ε
, pε(t, y, x) , Dε

0(t, y, x) = D0(pε(t, y, x).

Introduce U2 = (Rε0)
−1U1. Then, (5.34) implies that

(5.36) ∂xU2 =
1
ε

(
0 0
0 Dε

)
U2 +

(
f2

g2

)
where F2 :=

(
f2

g2

)
= F1 + (∂xpε) · ∇pR0(xε , p

ε)U1 satisfies

‖F2‖Hm−1 . ‖F1‖Hm−1 + ‖U1‖Hm−1 .

The commutators of Rε and (Rε)−1with Zα are bounded for |α| ≤ m, thus∑
|α|≤2

‖ZαU1‖L∞ .
∑
|α|≤2

‖ZαU2‖L∞ , ‖U2‖Hm . ‖U1‖Hm .

Moreover, (5.35) implies that v2 = v1 +O−θx/εU1. Therefore,

‖v2‖Hm . ‖v1‖Hm + ‖e−θx/εu1‖Hm .

Using that u1|x=0 = 0, (4.69) implies that ‖e−θx/εu1‖Hm . ‖ε∂xu1‖Hm =
‖v1‖Hm . Thus

‖u2‖Hm +
1√
ε
‖v2‖Hm . ‖u1‖Hm +

1√
ε
‖v1‖Hm .

Therefore, (5.33) follows from the estimate

(5.37)
∑
|α|≤2

‖ZαU2‖L∞ . ‖F2‖Hm−1 + ‖u2‖Hm +
1√
ε
‖v2‖Hm .

d) Introduce the Sobolev spaces of tangentially smooth functions: we
say that u ∈ Hm

tg if the tangential derivatives ∂αt,yu of order |α| ≤ m belong
to L2([−T0, T0] × Rd

+), equipped with the obvious norm. Then Hm ⊂ Hm
tg

and
‖u‖Hm

tg
≤ ‖u‖Hm .

Next, we use the following lemma
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Lemma 5.9. If s > d+1
2 , there is C such that for all u ∈ Hs

tg such that
∂xu ∈ Hs−1

tg , one has u ∈ L∞([−T0, T0]× Rd
+) and

‖u‖2
L∞ ≤ C ‖u‖Hs

tg
‖∂xu‖Hs−1

tg
.

Applied to Zαu for |α| ≤ 2, since m− 2 > d+1
2 , this lemma implies that

(5.38) ‖Zαu‖2
L∞ . ‖u‖Hm ‖∂xu‖Hm−1 .

By (5.36),

‖∂xu2‖Hm−1 = ‖f2‖Hm−1 and ‖∂xv2‖Hm−1 ≤
1
ε
‖v2‖Hm−1 + ‖g2‖Hm−1 .

Therefore, (5.38) implies that

‖Zαu2‖2
L∞ . ‖u‖2

Hm + ‖f2‖2
Hm−1 , ‖Zαv2‖2

L∞ .
1
ε
‖v2‖2

Hm + ‖g2‖2
Hm−1 .

The estimate (5.37) follows and the proof of (5.29) is complete.
e) It remains to prove (5.27) near the boundary, that is for localized

functions u1. The only missing estimate is for the second normal derivative
ε2∂xu1. Using (5.30), one obtains

ε2‖∂2
xu1‖L∞ . ε‖f‖L∞ + ‖u‖L∞ + ε‖∇t,y,xu1‖L∞

+ ε2‖∇2
yu1‖L∞ + ε2‖∇y∂xu1‖L∞ .

With (5.29) this implies (5.28) and the proofs of Theorems 5.8 and are
complete.
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6 Nonlinear stability

In this section we prove Theorem 1.11. Consider integers m > d+1
2 and

s0 > m + 3 + d+1
2 . Consider the hyperbolic boundary value problem (1.1)

(1.8):

(6.1) L(b, u, ∂)u := ∂tu+
d∑
j=1

Aj(b, u)∂ju = F (b, u) , u∣∣[−T0,T0]×∂Ω
∈ C

with a forcing term F (b, u) such that F (0, 0) = 0 and b ∈ Hs0([−T0, T0] ×
Ω) such that b = 0 for t < 0. We assume that the state u = 0 belongs
the domain of hyperbolicity O in Assumption 1.1. The Assumption 1.4
implies that (6.1) satisfies the uniform Lopatinski condition. Shrinking T0 if
necessary, consider a solution u0 ∈ Hs0([−T0, T0]×Ω) of the mixed Cauchy
problem (1.1) (1.8) which vanishes for t < 0. Since s > d+1

2 + m + 3, one
has

(6.2) u0 ∈Wm+3,∞([−T0, T0]× Ω) , b0 ∈Wm+3,∞([−T0, T0]× Ω).

Consider

(6.3) uε0(t, x) = W
(
b(t, x), u0(t, x), ϕ(x)/ε

)
.

Then uε0 vanishes for t < 0 and thus is an exact solution on [−T0, 0]× Ω of

(6.4) L(b, u, ∂)u− ε

d∑
j,k=1

∂j
(
Bj,k(b, u)∂ku

)
= F (b, u) , u∣∣[−T0,T0]×∂Ω

= 0 .

We assume that for all (t, x) ∈ [−T0, T0]×Ω), (b(t, x), u0(t, x)) remains in a
compact subset of O where the Assumptions 1.1, 1.2 and 1.4 are satisfied.

Theorem 6.1. There is ε0 > 0 such that for all ε ∈]0, ε0] the problem (6.4)
has a unique solution uε which vanishes for t < 0. Moreover,

(6.5) ‖uε − uε0‖Hm + ‖u− uε0‖L∞ = O(ε) .

We first construct a corrector uε1 such that uεa = uε0 + εuε1 is a solution
of (6.1) up to an error of size O(ε).
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Lemma 6.2. There is a family uε1 in Wm+2,∞([−T0, T0] × Ω) such that
uε0 = 0 on [−T0, T0]× ∂Ω and on {t < 0},

(6.6) sup
ε

sup
|J |≤m

(
‖ZJuε1‖L∞ + ε‖∇t,xZJu

ε
1‖L∞ + ε2‖∇2

xZJu
ε
1‖L∞

)
<∞ ,

and uε0 = uε0 + εuε1 satisfies

(6.7) L(b, uεa, ∂)uεa − ε
∑

1≤j,k≤d
∂j
(
Bj,k(b, uεa)∂ku

ε
a

)
− F (b, uεa) = εfε ,

with

(6.8) sup
ε∈]0,1]

(
‖fε‖Hm + ‖fε‖L∞

)
< +∞ .

Proof. By definition

uε0 − u0 = W ′(x, b, u0, ϕ/ε) ,

where W ′(x, u, z) is a smooth function of its arguments which converges at
an exponential rate to zero when z tends to infinity. When uε0 is substituted
in a smooth function A(b, u), one has

A
(
b(t, x), uε0(t, x)

)
= A

(
b(t, x), u0(t, x)

)
+A′

(
b(t, x), u0(t, x), ϕ(x)/ε

)
,

whereA′ is a smooth function of (x, b, u, z), exponentially decaying at infinity
in z. This implies that

(6.9)

L(b, uε0, ∂)uε0 − ε
∑

1≤j,k≤d
∂j
(
Bj,k(b, uε)∂kuε

)
− F (b, uε)

=
1
ε
R0(b, u0,

ϕ

ε
) +R′(q(t, x),

ϕ

ε
) + εfε0 ,

where
R0(b, u0, z) = An(b,W )∂zW − ∂z

(
Bn(b,W )∂zW

)
.

R′(q, z) is a smooth function of its arguments, exponentially decaying at
infinity in z, and q = (b, u0, ∂t,xb, ∂t,xu). Moreover

fε0 = −
d∑

j,k=1

∂j
(
Bj,k(b, u0)∂ku0

)
+ R̃′(x, q̃, ϕ(x)/ε) ,
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where R̃′ is similar to R′ with now q̃ = (b, u0, ∂t,xb, ∂t,xu, ∂
2
xb, ∂

2
xu0). In

particular,
sup
ε∈]0,1]

(
‖fε0‖Hm + ‖fε0‖L∞

)
< +∞ .

By Lemma 1.8, R0 = 0 when (b, u) ∈ C. Because u0 satisfies the boundary
condition, this function vanishes when b = b(t, x), u = u0(t, x) and x ∈
∂Ω. Thus one can factor out x in R0(b(t, x), u0(t, x), z) and, since W is
exponentially decaying

1
ε
R0(b(t, x), u0(t, x),

ϕ

ε
) = R′1(q(t, x),

ϕ

ε
) .

Define R1 = R′ +R′1.
We look for uε1 as a function

(6.10) uε1(t, x) = W1(q(t, x), ϕ(x)/ε)

with W1 C
∞ in the variables (q, z), and exponentially converging to a limit

at z = ∞. With (6.9), we get that the left hand side of (6.7) is

(R1 + LW1)(x, q, ϕ/ε) + εfε0 + εRε1(x, ˜̃q, ϕ/ε) ,
where ˜̃q = (q, ∂t,xq, ∂2

xq) belongs to Wm,∞ and L is the linearized operator
defined in (1.9):

LW1 = An(W)∂zW1+(A′n(W) · W1)∂zW

− ∂z

(
Bn(W)∂zW1 + (B′

n(W) · W1)∂zV
)
,

where An =
∑
∂jϕAj , Bn =

∑
∂jϕ∂jkBj,k and the coefficients also depend

on the parameters (x, b). Since R′ is exponentially decaying at infinity, the
Assumption 1.2 implies that the equation

(6.11) LW1 = −R′ , W1|z=0 = 0 ,

has solutions W1 which converge at an exponential rate at infinity. With
this choice, the left hand side of (6.9) is εfε with fε = fε0 + Rε(x, ˜̃q, ϕ/ε)
which satisfies (6.8).

In addition, since q ∈ Wm+2,∞ and W1 is smooth, the estimates (6.6)
are satisfied.

Remark 6.3. In [Gr-Gu],the authors construct approximate solutions at
all order, using BKW expansions. The construction of W1 is just one piece
of their construction of the first corrector.
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Next we solve the equation (6.4), looking for a solution uε = uεa + εvε.
The equation for vε reads

(6.12) Puε
a
vε +Qε(vε) = fε ,

where Puε
0

is the linearized operator defined in (5.1) and Qε is a family
of second order nonlinear operators acting on vε. An examination of the
expansions, shows that Qε(vε) is a sum of terms of the form

Q1 = εΦ(b, uεa, εv
ε) vε ∂jvε ,

Q2 = εΦ(b, uεa, εv
ε) vε vε ∂juεa ,

Q3 = ε2∂k
(
Φ(b, uεa, εv

ε) vε∂jvε
)
,

Q4 = ε2∂k
(
Φ(b, uεa, εv

ε) vε vε ∂juεa
)
,

where the Φ’s are smooth functions of their arguments, Q1 and Q3 stand for
bilinear expressions in vε and ∂jv

ε, while Q2 and Q4 are bilinear in vε and
linear in ∂ju

ε
a. Moreover, indices j and k run in {1, . . . , d}, which means

that only spatial derivatives are present in Qε. The terms Q3 and Q4 involve

Q1,1 = ε2Φ(b, uεa, εv
ε) vε ∂jvε∂kb ,

Q1,2 = ε2Φ(b, uεa, εv
ε) vε vε ∂juεa∂kb ,

Q3,1 = ε2Φ(b, uεa, εv
ε) vε ∂2

j,kv
ε ,

Q3,2 = ε2Φ(b, uεa, εv
ε) ∂kvε ∂jvε ,

Q3,3 = ε2Φ(b, uεa, εv
ε) vε ∂jvε ∂kuεa ,

Q4,1 = ε2Φ(b, uεa, εv
ε) vε∂kvε∂juεa ,

Q4,2 = ε2Φ(b, uεa, εv
ε) vε vε ∂kuεa∂ju

ε
a ,

Q4,3 = ε2Φ(b, uεa, εv
ε) vε vε ∂2

j,ku
ε
a .

Introduce the norms

(6.13) ‖f‖Ym,ε := ‖f‖Hm + ε‖f‖L∞ ,

(6.14)
‖u‖Xm,ε := ‖u‖Hm + ε1/2‖∇xu‖Hm + ε3/2‖∇2

xu‖Hm

+
∑
|I|≤2

‖ZIu‖L∞ + ε
∑
|I|≤1

‖ZI∇xu‖L∞ + ε2‖∇2
xu‖L∞ .

We denote by Ym and Xm the natural spaces (independent of ε) associated
to these norms. We denote by Ym0 [resp. Xm

0 ] the subspace of v ∈ Ym
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[resp. Xm ] which vanish for t < 0 [resp. which vanish for t < 0 and satisfy
the boundary condition v = 0 on [−T0, T0] × ∂Ω ]. In section 5, we have
proved that there is a constant C0 such that for all ε ∈]0, 1] and f ∈ Ym0 the
problem

(6.15) Pεv = f , v ∈ Xm
0

has a unique solution which satisfies

(6.16) ‖v‖Xm,ε ≤ C0‖f‖Ym,ε .

In order to use the implicit function theorem to the equation (6.12), the
main step is to prove the following estimates.

Proposition 6.4. For all M ≥ 0, there is a constant C(M) such that for
all ε ∈]0, 1] and all v1 and v2 in Xm

0 , Qε(v1) and Qε(v2) belong to Ym0 and

‖Qε(v1)‖Ym
ε
≤ ε1/4C(M) ,(6.17)

‖Qε(v1)−Qε(v2)‖Ym
ε
≤ ε1/4C(M) ‖v1 − v2‖Xm

ε
,(6.18)

provided that

(6.19) ε‖v1‖L∞ ≤ 1 , ε‖v2‖L∞ ≤ 1 ,

and

(6.20) ‖v1‖Xm,ε ≤M , ‖v2‖Xm,ε ≤M .

We first investigate the L∞ bounds. The expressions Qα are bilinear
in v, ε∇xv, ε2∇xv with coefficients C(b, uεa, εv), ε∇xb, ε∇xu

ε
a, and ε2∇xu

ε
a

which are bounded when |εv| ≤ 1. Therefore, if v1 and v2 satisfy (6.19) and

‖vk‖L∞ε := ‖vk‖L∞ + ε‖∇xvk‖L∞ + ε2‖∇2
xvk‖L∞ ≤ ‖vk‖Xm

ε
≤M ,

one has

(6.21)
‖Qε(v1)‖L∞ ≤ C(M) ,
‖Qε(v1)−Qε(v2)‖L∞ ≤ C(M) ‖v1 − v2‖L∞ε .

Next we consider the Hm-bounds. We use he following estimates, which
follow from Gagliardo-Nirenberg inequalities.
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Lemma 6.5. i) There is a constant C such that for all v and w in Hm∩L∞:

(6.22) ‖vw‖Hm ≤ C
(
‖v‖Hm‖w‖L∞ + ‖v‖L∞‖w‖Hm

)
.

ii) If Φ(b, u, v) is a smooth function of its arguments such that Φ(b, u, 0) =
0, then for all v ∈ Hm ∩ L∞) which satisfies ‖εv‖L∞ ≤ 1, the function
Φε(t, x) = Φ

(
b(t, x), uεa(t, x), εv(t, x)

)
satisfies

(6.23) ‖Φε‖Hm ≤ C ε‖v‖Hm .

In addition, one has the following estimates, where ϕ denotes the defining
function of ∂Ω.

Lemma 6.6. There is a constant C such that for all v ∈ Xm which vanishes
on the boundary and all ε′ ∈]0, 1],

(6.24) ‖e−ϕ/ε′v‖Hm ≤ Cε′‖∇xv‖Hm .

Proof. For ε′ away from zero, or in any compact domain Ω1 ⊂ Ω such
that e−ϕ/ε

′
. ε′, the estimate follows from Poincaré’s inequality. Near the

boundary, one can prove the estimate in local coordinates patches, and then
the estimate follows from (4.70).

Proposition 6.7. Suppose that Q is a bilinear mapping on CN × CN and
θ > 0 is given. There there is a constant C such that for all ε ∈]0, 1] and
all v1 and v2 in Xm

0 , one has

(6.25) ‖Q(v1, ε∂jv2)‖Hm ≤ C ε1/4 ‖v1‖Xm,ε ‖v2‖Xm,ε ,

(6.26) ‖Q(v1, ε2∂2
j,kv2)‖Hm ≤ C ε1/4 ‖v1‖Xm,ε ‖v2‖Xm,ε ,

(6.27) ‖Q(ε∂kv1, ε∂jv2)‖Hm ≤ C ε1/2 ‖v1‖Xm,ε ‖v2‖Xm,ε ,

(6.28) ‖e−θϕ/εQ(v1, v2)‖Hm ≤ C ε1/2 ‖v1‖Xm,ε ‖v2‖Xm,ε .

Proof. The estimate (6.27) follows directly from the inequality (6.22) in
Lemma 6.5, since

(6.29) ‖ε∇xv‖L∞ ≤ ‖v‖Xm,ε and ‖ε∇xv‖Hm ≤
√
ε‖v‖Xm,ε .
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Similarly, the estimate (6.28) follows from Lemma 6.5, since, by Lemma
6.6,

‖e−θϕ/2εv‖L∞ ≤ ‖v‖Xm,ε and ‖e−θϕ/2εv‖Hm . ‖ε∇xv‖Hm .
√
ε‖v‖Xm,ε.

The proof of (6.25) is a little more subtle. With ε′ = ε3/4, we split the
Q(v1, ε∂jv2) into

Q(v1, ε∂jv2) = Q(e−ϕ/ε
′
v1, ε∂jv2) + Q(v1, (1− e−ϕ/ε

′
)ε∂jv2)

Using (6.29) for v2 and the bounds

‖v′1‖L∞ ≤ ‖v1‖Xm,ε and ‖v′1‖Hm . ε′‖∇xv1‖Xm,ε . ε1/4‖v1‖Xm,ε

for v′1 = e−ϕ/ε
′
v1, the estimate (6.22) implies that ‖Q(v′1, ε∂jv2)‖Hm is

bounded by the right hand side of (6.25).
On the other hand, we use that

‖v1‖L∞ ≤ ‖v1‖Xm,ε , ‖v1‖Hm ≤ ‖v1‖Xm,ε .

Moreover, w = (1− e−ϕ/ε
′
)ε∂jv satisfies

‖w‖Hm . ‖ε∂jv2‖Hm .
√
ε‖v2‖Xm,ε .

since, for all I, the functions ZI(1− ε−ϕ/ε
′
) are bounded on Ω uniformly in

ε′ ∈]0, 1]. In addition, since 1− e−z ≤ z, for z ≥ 0, we have

‖w‖L∞ ≤ ε1/4‖ϕ∂jv2‖L∞ . ε1/4
∑
|I|=1

‖ZIv2‖L∞ . ε1/4‖v2‖Xm,ε .

Thus, using (6.22), one obtains that ‖Q(v1, w)‖Hm is bounded by the right
hand side of (6.25).

The proof of (6.26) is similar. One has

‖ε2∂2
j,kv2‖L∞ ≤ ‖v2‖Xm,ε , ‖ε2∂2

j,kv2‖Hm ≤ ε1/2‖v2‖Xm,ε

Hence, with v′1 = e−ϕ/ε
′
v1 as above, ‖Q(v′1, ε

2∂j,kv2)‖Hm is bounded by the
right hand side of (6.26). On the other hand, w′ = (1 − e−ϕ/ε

′
)ε2∂j,kv

satisfies
‖w′‖Hm .

√
ε‖v2‖Xm,ε .

‖w′‖L∞ ≤ ε1/4‖ϕε∂2
j,kv2‖L∞ . ε1/4

∑
|I|=1

‖εZI∇xv2‖L∞ . ε1/4‖v2‖Xm,ε .

Therefore, ‖Q(v1, w′)‖Hm is also bounded by the right hand side of (6.26).
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Proof of Proposition 6.4
a) Recall that the L∞ bounds follow from (6.21). We prove the estimates

(6.17) (6.18) with Hm norms in the left hand sides, for each term Q1 . . .Q4,3.
We write

Φ(b, uεa, εv) = Φ(b, uεa, 0) + Φ′(b, uεa, εv) ,

where the function Φ′(b, u, v) vanishes when v = 0. We first consider the
terms Q0

α obtained by replacing Φ(b, uεa, εv) by Φ0(b, uεa) = Φ(b, uεa, 0) in the
definition of Qα. Then Q0

α = Φ0Qα with Qα one of the following quadratic
terms:
(6.30)

Q(v, ∂jv) , Q(∂kv, ∂jv) , Q(v, ∂2
j,kv) , Q(v, v)hε , Q(v, ∂jv)hε ,

with hε either ε∂kuεa, ε∂kb, ε
2∂ju

ε
a∂kb, ε

2∂ju
ε
a∂ku

ε
a or ε2∂j,kuεa. In any case,

we see that
hε = εΨε +H(x, b, u0, ϕ/ε) ,

where the conormal derivatives ZIΨε are uniformly bounded for |I| ≤ m, and
H(x, b, u, z) is smooth and exponentially decaying in z (it is a z-derivative of
the profile W, multiplied by derivatives of ϕ). In particular, one can factor
out a small exponential e−θz in H and write

hε = εΨε + e−θϕ/εΨε
1

with Ψε
1 uniformly bounded with uniformly bounded conormal derivatives.

The conormal derivatives of the coefficients Φ0 are uniformly bounded and
thus

‖Φ0Q‖Hm . ‖Q‖Hm .

Therefore, to prove the estimates (6.21) for Q0
α it is sufficient to prove them

for Qα. Thus, they directly follow from Proposition 6.7 in the first three
cases. In the fifth case, it also follows from (6.25) using that the conormal
derivatives of hε are bounded. In the fourth case, we split hε as indicated
above and reduce the problem to estimating

εQ(v1, v2) , e−θϕ/εQ(v1, v2) .

The second case also follows from Proposition 6.7 and the first case is easier:
thanks to the extra factor ε, it is an immediate consequence of the estimate
(6.22).

b) It remains to prove the estimates (6.21) in Hm norm for Qα − Q0
α

which has the form
Φ′(b, uεa, εv

ε)Qα(v, v) .
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To prove the estimates simultaneously, it is sufficient to prove that if Φ′(b, u, v)
vanishes when v = 0, then

(6.31) ‖Φ′(b, uεa, εv3)Qα(v1, v2)‖Hm . ε‖v1‖Hm,ε ‖v2‖Hm,ε ‖v3‖Hm,ε .

We use the estimate (6.22):

‖Φ′Qα‖Hm . ‖Φ′‖L∞‖Qα‖Hm + ‖Φ′‖Hm‖Qα‖L∞ .

Since Φ′ vanishes when v = 0, one has, when ε‖v‖L∞ ≤ 1,

‖Φ′(b, uεa, εv3)‖L∞ ≤ ε‖v3‖L∞

and, with Lemma 6.5,

‖Φ′(b, uεa, εv3)‖Hm . ε ‖v3‖Hm .

The Hm norms of Qα are given by step a). It is sufficient here to use the
weaker estimates which follow directly from (6.22) in Lemma 6.5:

‖Qα(v1, v2)‖L∞ + ‖Qα(v1, v2)‖Hm . ‖v1‖Xm,ε ‖v2‖Xm,ε .

Thanks to the extra factor ε in the estimates of Φ′, these estimate imply
(6.31) and the proof of Proposition 6.4 is now complete. �

Proof of Theorem 6.1
Theorems 5.1 and 5.8 imply that Pε is an isomorphism from Xm

0 onto
Ym0 . Thus the equation (6.12) is equivalent to

(6.32) vε = (Pε)−1
(
fε −Qε(v)

)
, vε ∈ Xm

0 .

The estimates in Theorems 5.1 5.8 and Lemma 6.2 imply that there is a
constant C1 such that for all ε ∈]0, 1]

‖(Pε)−1fε‖Xm,ε ≤ C1 .

For all M > 0, introduce

Xm
0 (M, ε) =

{
v ∈ Xm

0 , ε‖v‖L∞ ≤ 1 and ‖v‖Xm,ε ≤ 1
}
.

Moreover, Theorems 5.1 and 5.8 and Proposition (6.4) imply that for all
M > 0, there is C(M) such that for all ε ∈]0, 1] :

‖(Pε)−1Qε(v)‖Xm
ε
≤ ε1/4C(M) ,
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‖(Pε)−1Qε(v1)−Qε(v2)‖Xm
ε
≤ ε1/4C(M) ‖v1 − v2‖Xm

ε
,

for v’s in Xm
0 (M, ε). Choosing first M > C1, the estimates above imply that

there is ε0 > 0 such that for all ε ∈]0, ε0], the equation (6.32) has a unique
solution in Xm

0 (M, ε). In particular

∀ε ∈]0, ε0] , ‖vε‖Hm + ‖vε‖L∞ ≤ ‖vε‖Xm,ε ≤M .

Thus we have constructed a solution uε = uεa + εvε of (6.4) and uε − uε0 =
ε(uε1 + vε) satisfies the uniform estimates (6.5), proving Theorem 6.1. �
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A Appendix A. Kreiss symmetrizers

The goal of this appendix is to construct symmetrizers in the low frequency
regime, as indicated in Lemma 2.13. This is an extension to our hyper-
bolic/parabolic setting of Kreiss’ construction for hyperbolic systems (see
[Kr] or [Ch-P] for another presentation). We first prove the block decom-
position announced in Lemma 2.10. Next we define the extension of the
spaces E− to ρ = 0 and prove (the main part of) Proposition 1.6. Finally
we proceed to the construction of the symmetrizers.

A.1 The block structure condition. Proof of Lemma 2.10

We use the notations of section 2 assuming only that Assumption 1.1 is
satisfied. The matrix H is given by Lemma 2.9 and in polar coordinates
ζ = ρζ̌ we write H(p, ζ) = ρȞ(p, ζ̌, ρ) as in (2.40). We start with several
remarks about the symbols of the equations. We denote here by

A(p, η, ξ) =
∑
j<d

ηjAj(p) + ξAd(p)

the symbol of the hyperbolic part of the equation and by

B(p, η, ξ) =
∑
j,k<d

ηjηkBj,k(p) +
∑
j<d

ξηj
(
Bj,d(p) +Bd,j(p)

)
+ ξ2Bd,d(p)

the symbol of the parabolic part. Then

det
(
(iτ + γ)Id + iA(p, η, ξ) +B(p, η, ξ)

)
= det

(
Bd,d(p)

)
det
(
iξId− G(p, ζ)

)
and in the polar coordinates (2.40)

(A.1)
det
(
(iτ̌ + γ̌)Id + iA(p, η̌, ξ̌) + ρB(p, η̌, ξ̌)

)
=

det
(
Bd,d(p)

)
det
(
iξ̌Id− Ȟ(p, ζ̌, ρ)

)
det
(
iρξ̌ − P (p, ρζ̌)

)
.

Denote by λj(p, η, ξ) the eigenvalues (of constant multiplicity by (H2))
of the hyperbolic symbol A(p, η, ξ) and by Πj(p, ξ) the associated eigenpro-
jectors. For ρ small, there is spectral projector Πj(p, ξ, ρ) of iA(p, η, ξ) +
ρB(p, η, ξ) yielding a diagonal block decomposition, with αj × αj diagonal
blocks

iλj(p, η, ξ)Id + ρB′
j(p, η, ξ, ρ).

where αj is the multiplicity of λj . The eigenvalues of iA(p, ξ) + ρB(p, ξ, ρ)
close to iλj are iλj + ρλ′ + O(ρ2), λ′ being an eigenvalue of B′

j . By (H3),
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one must have Reλ′ > 0 and therefore the spectrum of B′
j is contained in

{Reλ′ > 0}. One has

(A.2) ∆(p, τ, η, ξ, ρ) := det
(
iτ Id + iA+ ρB) =

∏
∆j(p, τ, η, ξ, ρ)

with

(A.3) ∆j(p, τ, η, ξ, ρ) := det
(
i(τ + λj)Id + ρB′

j(p, η, ξ, ρ)
)
.

We now proceed to the proof of Lemma 2.10. Denote by H0 the leading,
first order part of H:

H0(p, ζ̌) = −(A∞d (p))−1
(
iτ̌ + γ̌)Id +

d−1∑
j=1

iη̌jA
∞
j (p)

)
.

Then
Ȟ(p, ζ̌, ρ) = H0(p, ζ̌) +O(ρ) .

The hyperbolicity assumption (H2) implies that the real part of the eigen-
values of H0 do not vanish when γ̌ > 0. This remains true for small ρ. Thus,
when γ̌ > 0, the block reduction (2.41) holds in a neighborhood of (p, ζ̌, 0)
with two blocks corresponding to the eigenvalues with positive/negative real
part. The first block satisfies item i) in Lemma 2.10 and the second satisfies
ii).

Next consider the critical case that γ̌ = 0. We can perform a first smooth
spectral block reduction around (p, ζ̌, 0):

(A.4) V −1ȞV = Diag(Qk + ρRk)

which corresponds to distinct eigenvalues of H0(p, ζ̌). The blocks corre-
sponding to eigenvalues with positive or negative satisfy i) and ii) respec-
tively.

Consider a purely imaginary eigenvalue µ = iξ̌ of H0(p, ζ̌). Note that
(η̌, ξ̌

d
) 6= 0 since (τ̌ , η̌) 6= 0. We proceed by a series of steps paralleling the

approach of [Mé3].
Since µ = iξ̌ is an eigenvalue of H0(p, ζ̌), there is a unique eigenvalue λj

of A(p, η, ξ) such that τ̌ +λj(p, η̌, ξ̌) = 0. Since λj is real analytic in ξ, there
is an integer ν ≥ 1 such that

∂ξλj = · · · = ∂ν−1
ξ λj = 0 , ∂νξ λj = ν!β 6= 0 at (p, η̌, ξ̌).
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Note that β is real. Then, with ξ′ = ξ− ξ̌ and τ ′ = τ − τ̌ , possibly complex,
there holds

(A.5)
∆j(p, τ, η, ξ, ρ) =det

(
(i(τ ′ + βξ′

ν)Id+ ρB′
j

)
+O

(
(|ρ|+ |ξ′|) (|τ ′|+ |ξ′|ν + ρ)αj

)
with αj equal to the dimension of the block, i.e. the multiplicity of λj ,
B′
j = B′

j(p, η̌, ξ̌, 0). Indeed,(
iτ + λj(p, η̌, ξ)

)
Id + ρB′

j = i(τ ′ + βξ′
ν)Id + ρB′

j +O
(
|ξ′|ν+1 + ρ|ξ′|+ ρ2

)
and (A.5) follows.

In the block reduction (A.4) of the boundary problem near (p, τ̌ , η̌, 0),
the eigenvalue iξ̌ yields for ρ0 small a block Q(p, ζ̌)+ρR(p, ζ̌, ρ). According
to [Mé3] applied when ρ = 0, the constant multiplicity assumption (H2)
implies that one can choose the conjugation matrix V such that

(A.6) Q(p, ζ̌) =

 Q . . . 0

0
. . . 0

0 · · · Q


with αj diagonal blocks all equal to the same matrix Q of size ν. Moreover,
at the base point

Q(p, ζ̌) = Q = i(ξId+Nj),

where Nj is the Jordan’s matrix of size αj . This proves (2.44).
In addition, following [Ral] [Ch-P] one can choose the basis such that Q

has the form

(A.7) Q(p, ζ̌) =

 ∗ 0 . . . 0
... 0 . . . 0
a 0 . . . 0


and Q is purely imaginary when γ = 0 (see [Mé3]).

WriteR as a block matrix, with blocks Rp,q as in (2.43). One can perform
a change of basis such that, in addition to the other properties, there holds
at the base point (p, ζ̌, 0)

(A.8) Rp,q(p, ζ̌, 0) = Rp,q =

 ∗ 0 . . . 0
... 0 . . . 0
rp,q 0 . . . 0

 .
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The change of basis is Id+ ρT . Then,

(Id+ ρT )−1Q(Id+ ρT ) = Q+ ρR+ ρ[Q, T ] +O(ρ2).

Denoting by Tp,q the blocks of T , at the base point (p, ζ̌, 0), the blocks of
R+[Q, T ] are Rp,q+[N,T p,q]. Thus, to get (A.8), it is sufficient to choose the
blocks Tp,q such that the columns of index 2 to ν in Rp,q + [N,T p,q] vanish.
Dropping the indices (p, q) for simplicity, this can be achieved as follows.
Consider the canonical basis (e1, . . . , eν) of Cν . Then Ne1 = 0 and Nel =
el−1 for l ≥ 2. Define T by Teν = 0 and inductively Tel = NTel+1 +Rel+1

for l < ν. Then [T,N ]el = Rel for l = 2, . . . ν. This reduction is already
used in the proof Ralston’s lemma to prove that (A.7) can be achieved (see
[Ral] and the proof of Lemma 5.4 chap 7 in [Ch-P]).

Comparing the eigenvalues equations (A.1) and (A.2) we see that

(A.9) ∆j(p, τ̌ − iγ̌, η̌, ξ̌, ρ) = c det
(
iξ̌Id−Q(p, ζ̌)− ρR(p, ζ̌, ρ)

)
,

with c 6= 0 near the base point. We now compare the Taylor expansion
(A.5) of ∆j to the Taylor expansion of the right hand side. There we use
the following lemma, in which N is the block diagonal matrix

N =

 Nj . . . 0

0
. . . 0

0 · · · Nj

 .
Lemma A.1. Suppose that M(h) is a αjν×αjν matrix with blocks Mp,q(h)
depending smoothly on the parameter h, satisfying (A.8) and such that
M(0) = 0. Then there holds

det
(
ξId−N + iM(h)

)
= det(ξνId+ ih∂hM

[(0))
+O

(
(|h|+ |ξ|) (|ξ|ν + |h|)αj

)
,

where M [ is the αj × αj matrix with entries mp,q which are the lower left
hand corner coefficient of Mp,q.

We apply this lemma first with h = γ and M(h) = Q(p, τ̌ , η̌, γ) − Q.
Then M [ = aId where a is the lower left hand corner coefficient of Q as in
(A.7). Then with ξ′ = ξ̌ − ξ̌,

det
(
iξ −Q(p, τ̌ , η̌, γ)

)
= det

(
iξ′Id− iN −M)

= iναj det
(
ξ′Id−N + iM)

= iναj

(
ξ′
ν + iγ∂γa(p, ζ̌)

)αj

+ h.o.t.
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where h.o.t. stands for higher order terms which are O
(
γ+ |ξ′|)(|ξ′|ν+γ)αj

)
.

On the other hand,

∆j(p, τ̌ − iγ, η̌, ξ̌) = iαj
(
iγ + βξ′

ν)
)αj + h.o.t.

Thus
iγ + βξ′

ν = ci(ν−1)αj
(
ξ′
ν + iγ∂γa(p, ζ̌)

)
and

∂γa(p, ζ̌) = β−1 .

Since a is holomorhic in τ−iγ and purely imaginary when γ = 0, we already
knew that ∂γa is real when γ = 0. Thus, we have

(A.10) ∂γa(p, ζ̌) = ∂γRe a(p, ζ̌) = β−1 .

In particular, since β 6= 0, we recover here that ∂γa(p, ζ̌) 6= 0 as already
shown in [Kr] [Ch-P] [Mé3]. With (A.10), we will be able to discuss its sign.

Next, we make a second application of Lemma A.1 with parameter h = ρ
and M = ρR(p, ζ̌, ρ). Thus

(A.11)
det
(
iξId−Q−ρR(p, ζ̌, ρ)

)
= iναj det

(
ξ′
ν
Id+ iρR[

)
+ h.o.t.

where R[ is the αj ×αj matrix with entries rp,q and R[ its value at the base
point. Thus, comparing the Taylor expansions (A.5) and (A.11), we find
that

det
(
βξ′

νId + iρB′
j

)
= ci(ν−1)αj det

(
ξ′
νId + iR[

)
.

Therefore, the eigenvalues of R[ are the eigenvalues of β−1B′
j . In particular,

(A.12) Spectrum
(
βR[

)
⊂ {Reλ′ > 0} .

With (A.10), we see that the real part of the spectrum of R[ has the same
sign as ∂γa(p, ζ̌), which we call κ.

From (A.12), it is a standard fact that there there is a basis such that
Re (κR[) is positive definite, as claimed in Lemma 2.10. Thus, let T be a
αj × αj matrix such that ReT−1κR[T is positive definite. Consider T the
ναj×ναj matrix with ν×ν blocks Tp,q = tp,qId where tp,q are the coefficients
of T . Then S = T −1 has blocks Sp,q = sp,qId where the sp,q are the entries
of S = T−1. Straightforward computations show that

T −1QT = Q ,
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since the blocks of the first matrix in the left hand side are∑
n

t−1
p,nQtn,q = Qδp,q .

Next, the blocks of R̃ := T −1RT are

(A.13) R̃p,q =
∑
n,m

sp,nRn,mtm,q .

At the base point (p, ζ̌, 0) the columns 2 to ν of the Rn,m vanish. Since
the sp,n and tm,q are scalar, the same property holds for R̃p,q. Therefore,
the form of the matrix R̃ at the base point is unchanged. Moreover, (A.13)
implies that the matrix of lower left hand corner elements in R̃ is R̃[ =
T−1R[T and thus κ(R̃[ + (R̃[)∗) is positive definite at the base point.

This finishes the proof that one can chose a basis such that the blocks
Q+ ρR associated to eigenvalues ν which are purely imaginary satisfies the
properties iv) listed in Lemma 2.10.

Note. We have given an argument valid for either of cases iii) or iv). When
ν = 1 (nonglancing modes), case iii), the construction above is much sim-
pler, with “blocks” Q of dimension 1, and the matrix R[ = R.

Proof of Lemma A.1
a) We start with a general remark. Consider a N ×N matrix A with

entries aj,k depending on variables x. Assume that

aj,k(x) = aj,k(x) + h.o.t.

where aj,k is homogeneous of degree µj − νk and h.o.t means something of
higher degree, here O(|x|µj−νk+1). Then

(A.14) detA(x) = detA(x) + h.o.t.

and detA is homogeneous of degree µ :=
∑
µj −

∑
νk. Indeed,

detA =
∑

ε(σ)aσ1,1 · · · aσN ,N

where the sum is extended over all the permutations σ of {1, . . . , N} and
ε(σ) is the signature of σ. Each monomial is equal to the corresponding one
with a in place of a plus higher order terms, and the term with the a is
homogeneous of degree∑

(µσk
− νk) =

∑
µσk

−
∑

νk =
∑

µj −
∑

νk = µ.
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b) In our case, we consider the matrix A = ξId−N + iρM. Be denote
by Ap,q the blocks in A and by Ap,a,p,b the entries of Ap,q. Remember that
1 ≤ p, q ≤ α and 1 ≤ a, b ≤ ν. We use a quasi-homogeneous version of
(A.14). We consider using weight 1 on the variable ξ and weight ν on the
variable ρ. To be more specific, with ξ0 and h0 fixed, consider ξ = tξ0 and
h = tνh0 with t ∈ [0, 1]. Introduce the weights

µp,a = a+ 1 , νq,b = b .

The diagonal terms inA are equal to ξ, homogeneous of degree 1 = µp,a−νp,a
in t. The entriesNp,a,q,b ofN are zero or equal to−1 when p = q and b = a+1
which is homogeneous of degree 0 = µp,a− νp,a+1. Introduce M = ∂hM(0).
Then the form (A.8) of M implies that Mp,a,q,b(th) vanishes when b > 1.
When b = 1

Mp,a,q,1(th) = tνh0Mp,a,q,b +O(t2ν) .

The leading term is homogeneous of degree ν which is strictly larger than
µp,a − νq,1 = a if a < ν, and exactly equal to µp,a − νq,1 = ν if a = ν. Thus,
only the lower left hand corners of Mp,q have a non vanishing principal part
in the sense of a). Thus

(A.15)
det
(
tξ0Id−N+iM(tνh0)

)
=

det
(
tξId−N + itνh0M[

)
+O(tαν+1)

where the leading term is homogeneous in t of degree αν and M[ is the
matrix with all entries equal to zero except M [

p,ν,q,1 = mp,q.

c) Grouping the indices the other way, i.e. considering the matrix A as
a the block matrix with blocks Âa,b with entries Âp,a,q,b, we see that there
is a permutation matrix P such that

P−1
(
−N + hM[

)
P =


0 −Id 0 · · ·

0 0
. . . 0

0 · · · 0 −Id
hM [ 0 · · · 0

 := M̂

where M [ is the matrix with entries mp,q. Thus u ∈ ker(ξId − N + hM[)
if and only if v = P−1u ∈ ker(ξId + M̂), which means that the blocks
components va of v satisfy va = ξ′a−1v1 and v1 ∈ ker(hM [ + ξ′ν−1Id).
Therefore

det
(
ξIdN + ihM[

)
= det

(
ξνId+ hM [

)
.
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With (A.15) this implies that

(A.16)
det
(
tξ0Id−N+iM(tνh0)

)
=

det
(
(tξ0)νId+ itνh0M

[
)

+O(tαν+1)

and the Lemma follows. �

A.2 Stability for low frequencies. Proof of Proposition 1.6

We now assume that Assumptions 1.1 and 1.2 are satisfied. By Lemma
2.6 and (2.35), for ζ 6= 0, the spaces E−(p, ζ) are related to the spaces
F−(p, ζ) generated by the generalized eigenspaces of G∞(p, ζ) associated to
eigenvalues in {Reµ < 0}:

E−(p, ζ) = W(0, p, ζ)F−(p, ζ) .

Since the mapping W is smooth up to ζ = 0, the limits of E− as ζ → 0 are
related to the limits of F−. By Lemma 2.5, F− and thus E− have dimension
N and depends smoothly on ζ for ζ 6= 0.

Consider polar coordinates ζ = ρζ̌, with |ζ̌| = 0. We use the notations

Ě−(p, ζ̌, ρ) = E−(p, ρ, ζ̌) , F̌−(p, ζ̌, ρ) = F−(p, ρ, ζ̌) .

They are defined for ρ > 0.

Lemma A.2. Under Assumptions 1.1 and 1.2
i) the vector bundles Ě− and F̌− have C∞ extensions up to ρ = 0 near

points where γ̌ > 0. We denote them by E0
−(p, ζ̌) and F0

−(p, ζ̌);
ii) the vector bundles E0

− and F0
− have continuous extensions to γ̌ = 0.

Proof. a) By Lemma 2.9, G∞ is conjugated to the block diagonal matrix
G2 (see (2.37)). Thus, for ζ 6= 0 small

(A.17) F−(p, ζ) = V(p, ζ)G−(p, ζ)

where G− is the space generated by the generalized eigenspaces of G2(p, ζ)
associated to eigenvalues in {Reµ < 0}. In addition, in the block decompo-
sition (2.37),

(A.18) G−(p, ζ) = GH
− (p, ζ)⊕GP

−(p, ζ)

where the spaces GH
− and GP

− are associated respectively to H and P . Since
P (p, ζ) has no purely imaginary eigenvalue, it follows that GP

−(p, ζ) is smooth
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in a neighborhood of ζ = 0. Therefore, it is sufficient to study the spaces
GH
− (p, ζ).

There we use the polar coordinates ζ = ρζ̌, H = ρȞ, and we have

(A.19) GH
− (p, ζ) = H−(p, ζ, ρ)

where H−(p, ζ̌, ρ) is associated to Ȟ(p, ζ̌, ρ).
Suppose that γ̌ > 0. Then (H2) implies that H0(p, ζ̌) = Ȟ(p, ζ̌, 0) has

no eigenvalues on the imaginary axis. This remains true for ρ small, and
therefore F̌−(p, ζ̌, ρ) is a C∞ vector bundle for p in a neighborhood of p,
and (ζ̌, ρ) ∈ Rd+2 with |ζ̌| = 0, γ̌ ≥ 0, ρ ≥ 0 and γ̌ρ > 0. In particular,
H−(p, ζ̌, 0) is well defined for γ̌ > 0.

Tracing back, we see that this defines F̌(p, ζ̌, ρ) as a C∞ vector bundle
for γ̌ > 0 and ρ ≥ 0, and

(A.20) F̌−(p, ζ̌, 0) = V(p, 0)
(
H−(p, ζ̌, 0)⊕GP

−(p, 0)
)

for γ̌ > 0 .

This is transported to E− using 2.35, proving that Ě(p, ζ̌, ρ) as a C∞ vector
bundle for γ̌ > 0 and ρ ≥ 0 with

(A.21) Ě−(p, ζ̌, 0) = W(0, p, 0)F̌−(p, ζ̌, 0) for γ̌ > 0 .

This proves i).

b) To prove ii) it is sufficient to show that H−(p, ζ̌, 0) extends contin-
uously to γ̌ = 0. We can argue locally, and work around p and ζ̌.

In a small neighborhood of (p, ζ̌), we use the block decomposition (A.4)
of Ȟ given by Lemma 2.10. There, one has

(A.22) H−(p, ζ̌, ρ) = ⊕Hk
−(p, ζ̌, ρ)

where the Hk
− are associated to Qk + ρRk. Recall that Qk = Diag(Qk) as

in (A.6) or (2.43). We investigate the different possibilities.
i) If the spectrum of Qk(p, ζ̌) is contained in {Reµ > 0}, this is true

for Qk and remains true for Qk + ρRk. Thus, for ρ small

(A.23) Hk
−(p, ζ̌, ρ) = {0} .

ii) Similarly, if the spectrum of Qk(p, ζ̌) is contained in {Reµ < 0},
then, for ρ small

(A.24) Hk
−(p, ζ̌, ρ) = CNk .

where Nk is the dimension of the k-th block Qk.
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Only these two cases can occur when γ̌ > 0, and we recover here that
H− is smooth up to ρ = 0. Suppose now that γ̌ = 0. We consider next the
other two possibilities.

iii) Suppose now that the blocks Qk have dimension νk = 1. Then
Qk(p, ζ̌) is a complex number, purely imaginary when γ̌ = 0 and ∂γ̌ReQk 6=
0 on the given neighborhood of (p, ζ̌). If it is positive, then ReQk > 0
when γ̌ > 0. In addition, we have that Rk is positive definite. Thus the
spectrum of Qk + ρRk = QkId + ρRk is contained in {Reµ > 0}. Similarly,
if ∂γ̌Qk < 0, the spectrum of Qk + ρRk is contained in {Reµ < 0}. Thus

Hk
−(p, ζ̌, ρ) = {0} if ∂γ̌Qk > 0 ,(A.25)

Hk
−(p, ζ̌, ρ) = CNk if ∂γ̌Qk < 0 .(A.26)

In the cases i), ii) and iii) the formulas (A.23) to (A.26) have clear C∞

extension to ρ = 0 and γ̌ = 0.

iv) This is the most delicate case of glancing modes. Our goal is to
continuously extend to γ̌ = 0 the bundle Hk

−(p, ζ̌, 0). This space is associated
to the operator Qk. In the block decomposition (2.43) Qk = Diag(Qk), we
see that for γ̌ > 0

Hk
−(p, ζ̌, 0) = Hk

−(p, ζ̌)⊕ · · · ⊕Hk
−(p, ζ̌)

where Hk
− is the negative space associated to Qk and the sum has αk terms,

αk being the number of blocks Qk in Qk. Recall that, by (H2), Qk has no
purely imaginary eigenvalues when γ̌ > 0, so that the spaces Hk

− are well
defined for γ̌ > 0.

From (2.44), Qk is a perturbation of the matrix i(µkId+Nk). We are now
in the classical situation met in the analysis of strictly hyperbolic bound-
ary value problems. It is known (see, e.g. [Kr],[Ch-P], [ZS], [Z]) that the
subspaces Hk

− have well-defined limits when (p, ζ̌) → (p, ζ̌). In addition (see
e.g. Remark 3.6 and Proposition 3.7, chap 7 in [Ch-P])

(A.27) Hk
−(p, ζ̌) = Cβk × {0}νk−βk

the space generated by the first βk elements of the canonical basis in Cνk

where

(A.28) βk =
{

1
2νk when νk is even ,
1
2(νk ± 1) when νk is odd and ∓ ∂γ̌Re ak > 0 .

Recall that ak is the lower left hand corner entry of Qk.
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Adding the different blocks, this shows that Hk
−(p, ζ̌, 0) and thus

H−(p, ζ̌, 0) have limits when (p, ζ̌) with γ̌ > 0 converge to (p, ζ̌). Since
(p, ζ̌) is arbitrary, the limit is defined for all p and ζ̌ with ζ̌ = 0. As in
[Ch-P], one can show that the bundle H− is continuous also on γ̌ = 0. and
this finishes the proof of the lemma.

From the proof above, we see that the bundles on ρ = 0 are linked by
the identities:

(A.29)
E0
−(p, ζ̌) = W(0, p, 0)F0

−(p, ζ̌) , F0
−(p, ζ̌) = V(p, 0)G0

−(p, ζ̌),

G0
−(p, ζ̌) = H−(p, ζ̌, 0)⊕GP

−(p, 0) .

We also supplement the discussion above with the following definition.
We consider a point (p; ζ̌) with |ζ̌| = 1 and γ̌ ≥ 0.

• If the block Qk(p, ζ̌) satisfies property i) in Lemma 2.10, we define

Hk
+(p, ζ̌, 0) = CNk .

where Nk is the dimension of the k-th block Qk.
•If the block Qk(p, ζ̌) satisfies property ii), then :

Hk
+(p, ζ̌, ρ) = {0} .

• If γ̌ = 0 and the block Qk(p, ζ̌) satisfies property iii), then we define

Hk
+(p, ζ̌, 0) = CNk if ∂γ̌Qk > 0 ,

Hk
+(p, ζ̌, 0) = {0} if ∂γ̌Qk < 0 .

In the three cases above the spaces H+ are associated to the eigenvalues
of Qk with positive real parts. For glancing modes, this construction fails
since the limits of positive and negative spaces intersect when γ̌ = 0. Instead,
we choose the supplementary space as in [Kr].

• If γ̌ = 0 and the block Qk(p, ζ̌) satisfies property iii), we first define

Hk
+(p, ζ̌) = {0}βk × Cνk−βk

where βk is defined in (A.28). In the block decomposition Qk = Diag(Qk),
we next define

Hk
+p, ζ̌, 0) = Hk

+(p, ζ̌)⊕ · · · ⊕Hk
+(p, ζ̌)

where the sum has αk terms.
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Adding up, we next introduce

(A.30) G0
+(p, ζ̌) = H+(p, ζ̌, 0)⊕GP

+(p, 0)

where GP
+(p, ζ) is the space spanned by the eigenvectors of P (p, ζ) with

eigenvalues in {Reµ > 0}.
Clearly, there holds

(A.31)

GP
−(p, 0)⊕GP

+(p, 0) = CN ,

H−(p, ζ̌, 0)⊕H+(p, ζ̌, 0) = CN ,

G0
−(p, ζ̌)⊕G0

+(p, ζ̌) = C2N .

We denote by ΠP
±(p), ΠH

± (p, ζ̌) and Π±(p, ζ̌) = ΠH
± ⊕ ΠP

± the projectors
associated to these decompositions.

Recall that Γ1(p, ζ) = ΓW−1(0, p, ζ) is the boundary operator deduced
from Γ through the substitution U(z) = W(z, p, ζ)U1(z). We will also use
the substitution U1(z) = V(p, ζ)U2(z) and the corresponding boundary con-
dition is Γ2(p, ζ) = V(p, ζ)Γ1(p, ζ).

Proposition A.3. In addition to Assumptions 1.1 and 1.2, suppose that As-
sumption 1.4 holds. Consider (p, ζ̌) with |ζ̌| = 1 and γ̌ ≥ 0. Then, E0

−(p, ζ̌),
F0
−(p, ζ̌) and G0

−(p, ζ) are transverse to ker Γ, ker Γ1(p, 0) and ker Γ2(p, 0)
respectively. In particular, there is C such that

(A.32) ∀V ∈ C2N : |Π−(p, ζ̌)V | ≤ C
(
|Γ2(p, 0)V |+ |Π+(p, ζ̌)V |

)
.

Proof. If E is a N -dimensional space transversal to ker Γ, there is an N ×
N matrix such that E = {(u, v) ∈ CN × CN ; v = Av}. In this case, an
orthonormal basis in E is obtained as the image of the canonical basis in
CN by u 7→ (Ou,AOu) with O = (Id + A∗A)−1/2. Thus det(E, ker Γ) =
det(Id+A∗A)−1/2. This shows that if det(E, ker Γ) is bounded from below by
a positive constant, then A is bounded. Therefore, Assumption 1.4 implies
that there is C such that for all ζ with 0 < |ζ| ≤ 1 and γ ≥ 0, one has

∀U ∈ E−(p, ζ) : |U | ≤ C|ΓU | .

Thus for all ρ ∈]0, 1], ζ̌ such that |ζ̌| = 1 and γ̌ > 0,

∀U ∈ Ě−(p, ζ̌, ρ) : |U | ≤ C|ΓU | .
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By continuity, this extends to ρ = 0, proving that for allζ̌ such that |ζ̌| = 1
and γ̌ > 0, there holds

∀U ∈ E0
−(p, ζ̌) : |U | ≤ C|ΓU | ,

with the same constant C. By continuity, this extends to γ̌ = 0. This
implies that E0(p, ζ̌) is transverse to ker Γ. This is transported to F0

− and
G0
− using W(0, p, 0)−1 and V(p, 0)−1. The estimate (A.32) follows since

G0
−(p, ζ̌) = kerΠ+(p, ζ̌).

The next result establishes the main assertion (for our purposes) of
Proposition 1.6.

Proposition A.4. The hyperbolic boundary value problem (1.1) (1.8) sat-
isfies the uniform Kreiss-Lopatinski stability condition.

Proof. The Fourier Laplace transform at frequency ζ̌ of the frozen coefficient
linearized hyperbolic problem at (b, u) reads

∂zu−H0(p, ζ)u = f , u(0) ∈ TuCb ,

with (p = b, u, 0) as in section 2. The spaces generated by eigenfunctions of
H0 associated to eigenvalues in {Reµ < 0} are precisely H−(p, ζ̌, 0). Thus,
the uniform Kreiss-Lopatinski condition for (1.1) (1.8) reads : for all p and
ζ̌ with |ζ̌| = 1 and γ̌ ≥ 0, one has

(A.33)
i) the dimension of H−(p, ζ̌, 0) is equal to N −N− ,

ii) H−(p, ζ̌, 0) and TuCb are transverse.

Conditions (i)–(ii) of Definition 1.3 imply that TuCb is the set of end
state values of solutions to the linearized equation (1.9). Written as a first
order system, this equation reads

∂zU − G(z, 0)U = 0, ΓU(0) = 0 .

Through the change of unknowns U(z) = W(z, p, 0)V(p, 0)U2(z), the equa-
tion is transformed into

∂zU2 −
[

0 Id
0 P (p, 0)

]
U2 = 0, Γ2(p, 0)U2(0) = 0 .

Moreover, since W(z) → Id at infinity, and thanks to the special form (2.38)
of V(p, 0), u(z) has a finite limit at infinity if and only if v2(0) ∈ GP

−(p, 0)
and in this case limu(z) = u2(0).
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Therefore, TuCb is the set of u ∈ CN such that there is v ∈ GP
−(p, 0)

such that U2(0) = (u, v) ∈ ker Γ2(p, 0). Thus, if u ∈ TuCb ∩H−(p, ζ̌, 0), with
(A.29), one must have (u, v) ∈ G0

−(p, ζ̌)∩ker Γ2(p, 0) and therefore (u, v) = 0
by Proposition A.3. This shows that TuCb ∩H−(p, ζ̌, 0) = {0}.

By Lemma 2.9, P (p, 0) = (B∞
d,d)

−1A∞d . It has N− eigenvalues in {Reµ <
0}. Thus GP

−(p, 0) has dimension N−. Since the total dimension of G0
−(p, ζ̌)

is N , by (A.29) we deduce that H−(p, ζ̌, 0) has dimension N −N−.
Therefore (A.33) holds and the proposition is proved.

A.3 Symmetrizers. Proof of Lemma 2.13

We now proceed to the construction of the symmetrizers. We work in a
small neighborhood of p. We use the block structure of G2 and construct
a symmetrizer for each block separately. We first construct a symmetrizer
S2(p, ζ) for P (p, ζ) for p close to p and ζ small. Next we construct Š1(p, ζ̌, ρ)
adapted to Ȟ(p, ζ̌, ζ), for p close to p, |ζ̌| = 1 with γ̌ ≥ 0 and ρ ≥ 0. We
first argue locally around a given point ζ̌ of length one, with γ̌ ≥ 0.

For the estimate S + CΓ∗2Γ2 ≥ cId, for some c > 0, to hold on a small
neighborhood of (p, ζ̌, 0) it is sufficient that it holds at (p, ζ̌, 0), since the
symbols S(p, ζ̌, ρ) will be C∞ up to ρ = 0 and γ̌ = 0. Thus, by estimate
(A.32) of Proposition A.3, it is sufficient that for all κ0 > 0 large, one can
choose Š1 and S2 such that there is C > 0, possibly depending on κ0, such
that (

S(p, ζ̌, 0
)
)U,U) ≥ C

(
κ0|Π+(p, ζ̌)U |2 − |Π−(p, ζ̌)U |2

)
.

This is satisfied, if for all κ0 one can choose Š1 and S2 and C > 0 such that

(A.34)
(
Š1(p, ζ̌, 0)u, u

)
≥ C

(
κ0|ΠH

+ (p, ζ̌)u|2 − |ΠH
− (p, ζ̌)u|2

)
,

(A.35)
(
S2(p, 0)v, v

)
≥ C

(
κ0|ΠP

+(p)v|2 − |ΠP
−(p)v|2

)
.

a) S2 is constructed as in the proof of Lemma 2.12. We can assume
that

P =
[
P+ 0
0 P−

]
with P± having their spectrum in {±Reµ > 0}. We choose

S2 =
[
κS2,+ 0

0 −S2,−

]
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with S2,± = S∗2,± ≥ Id such that ±Re (S2,±P±) ≥ Id. If κ is large enough,
then (A.35) is satisfied.

b) To construct Š1, we argue similarly as in [Kr] [Ch-P]. We construct
Š1 in the block decomposition of V −1ȞV = Diag(Qk) of Lemma 2.10 :

Š1 = (V −1)∗

 S1

. . .
Sk

V −1.

• If Qk satisfies condition i) of Lemma 2.10, we choose Sk = κSk,1
where Sk,1 = S∗k,1 ≥ Id and Re (Sk,1Qk) ≥ Id.

• If Qk satisfies condition i) of Lemma 2.10, we choose Sk = Sk =
S∗k,1 ≥ Id and −Re (SkQk) ≥ Id.

• Suppose now that γ̌ = 0 and Qk satisfies condition iii). Then
Qk(p, ζ̌, ρ) = Qk(p, ζ̌) + ρRk(p, ζ̌, ρ) with Qk scalar, and purely imaginary
when γ̌ = 0. Thus, ReQk(p, ζ̌) = γ̌Q′k(p, ζ̌) with Q′k smooth near (p, ζ̌).

1) If ∂γQk(p, ζ̌) < 0 and R(p, ζ̌, 0) is negative definite, we choose
Sk(p, ζ̌, ρ) = −Id so that

Re (−Qk) = γ̌(−Q′kId) + ρRe (−Rk)

where (−Q′kId and Re (−Rk) are positive definite at (p, ζ̌, 0).
2) If ∂γQk(p, ζ̌) > 0 and R(p, ζ̌, 0) is positive definite, we choose

Sk(p, ζ̌, ρ) = κId so that

Re (Qk) = κγ̌(Q′kId) + ρRe (Rk)

where (Q′kId and Re (Rk) are positive definite at (p, ζ̌, 0).

• We now come to the most delicate part when γ̌ = 0 and Qk satisfies
condition iv). Next, in the block reduction of Qk, we choose the Sk diagonal:

(A.36)
Sk =

 Sk 0
0 Sk

. . .

 ,
Sk(p, ζ̌, ρ) = Ek + Ẽk(p, ζ̌)− iγFk − iρF ′k
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where Ek and Ẽk are real symmetric matrices, and Fk and Hk are real and
skew symmetric. Moreover, Ek have the special form

Ek =


0 · · · · · · 0 ek,1
... . .. ek,2
... . .. . ..

0 . .. . ..

ek,1 ek,2 ek,νk

 ,

and Ẽk(p, ζ̌) = 0.
The order of the construction is as follows. One first chooses Ek, Ẽk and

Fk as in [Kr] to construct a symmetrizer for Qk, that is for ρ = 0. The new
part lies in the choice of F ′k.

1. Choose Ek such that

(A.37) Re
(
Ek∂γQk(p, ζ̌)w,w

)
≥ 2|w1|2 − C|w′|2

with w1 the first component of w ∈ Cνk and w′ ∈ Cνk−1 denotes the other
components, and

(A.38) (EkU,U) ≥ C1

(
κ|Πk

+U |2 − |Πk
−U |2

)
,

where Πk
± is the projection onto Hk

±(p, ζ̌) in the decomposition Cνk = Hk
+⊕

Hk
−. This is one of the basic points of the construction in [Kr]. According

to [Ch-P], one first chooses the coefficient ek,1 such that

(A.39) ek,1∂γRe ak(p, ζ̌) ≥ 3.

This is sufficient to imply (A.37) (cf (equation (5.5.3) in [Ch-P], Chap.
7). Next, the coefficients ek,l for l > 1 are chosen successively to achieve
(A.38) (cf Lemma 5.6 in [Ch-P], Chap. 7).2 Note that the constant C in
(A.37) depends the coefficients ek,l thus on κ, but the condition (A.39) is
independent of κ.

2. Recall that Qk(p, ζ̌) = i(µkId + Nk) with µk ∈ R and Nk the
Jordan’s matrix of size νk. The form of Ek is chosen so that Ek(µkId +Nk)
is real and symmetric. Next, the real matrix Ẽk(p, ζ̌) is chosen so that such
that (Ek + Ẽk)(1

iQk) is real and symmetric when γ̌ = 0. This is achieved in

2The reader must be aware that the symbol of our symmetrizer is the opposite of the
symbol constructed in [Ch-P], where the symbol of the equation A is 1

i
Ȟ in our notation,

so that Re (SH) = Im (−SA).
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[Kr] [Ch-P] using the implicit function theorem and the property that 1
iQk

is real when γ̌ = 0.
3. Following [Kr] [Ch-P], for all C, there is Fk real and skew symmetric

such that
Re (FkNkw,w) ≥ −|w1|2 + (C + 1)|w′|2.

We take C the constant found in (A.37). As a consequence, we have

(A.40)
Re
(
(Ek + Ẽk − iγ̌Fk)Qk

)
= γ̌Dk ,

Dk(p, ζ̌) = Re (Ek∂γQk(p, ζ̌) + Re (FkNk) ≥ Id .

4. We come to the new part. Denote by Ek the block diagonal matrix
Diag(Ek). A vector w ∈ CNk , Nk = νkαk being the dimension of Qk, is
broken into αk blocks wp ∈ Cνk , with components denoted by wp,a. We
denote by Rp,q the νk × νk blocks of Rk and by Rp,a,q,b their entries. The
entries of Ek are denoted by Ea,b. Then, since Rp,a,q,b = 0 when b > 1 and
taking into account the special form of Ek,

Re (EkRkw,w) = Re
∑

Ea,cRp,a,q,1wq,1wp,c

= Re
∑

ek,1rp,qwq,1wp,1 +O(|w∗,1| |w′∗|)

where w∗,1 ∈ Cαk is the collection of the first components wp,1, w′∗ the
remainder components and rp,q = Rp,νk,q,1 the lower left hand corner entry
of Rp,q. The matrix Re (R[k) is definite, positive or negative according to
the sign of ∂γak. Moreover ek,1 has the sign of ∂γak by (A.39). Thus,
multiplying Ek by some positive constant, we can achieve that in addition
to (A.38) (A.40), the following inequality holds:

(A.41) Re
(
EkRk(p, ζ̌, 0)w,w

)
≥ 2|w∗,1|2 − C ′|w′∗|2.

5. Next, as in 3, there is F ′k real and skew symmetric such that for all
w ∈ Cνk :

Re (F ′kNkw,w) ≥ −|w1|2 + (C ′ + 1)|w′|2.

Thus, with F ′
k = Diag(F ′k), Nk = Diag(Nk) and w ∈ CNk :

Re (F ′
kNkw,w) ≥ −|w∗,1|2 + (C ′ + 1)|w′∗|2.

Therefore, with (A.41), we have

(A.42) Re
(
EkRk(p, ζ̌, 0)− iF ′

kQk(p, ζ̌)
)
≥ Id .
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Adding up, we see that the matrix defined in (A.36) satisfies

Re
(
Sk(Qk + ρRk)

)
= γ̌Dk(p, ζ̌) + ρD′k(p, ζ̌, ρ)

with Dk = Diag(Dk) and at the base point

D′k(p, ζ̌, 0) = Re
(
EkRk(p, ζ̌, 0)− iF ′

kQk(p, ζ̌)
)
.

By (A.40) and (A.42), the matrices Dk and D′k are positive definite on a
neighborhood of the base point (p, ζ̌, 0).

This shows that the symmetric matrix Š1 = (V −1)Diag(Sk)V −1 is de-
fined on a neighborhood of the base point (p, ζ̌, 0) and satisfies

Re (Š1Ȟ) = (V −1)Diag
(
ReSk(Qk + ρRk)

)
V −1

and the blocks ReSk(Qk + ρRk) are either positive definite or of the form
γ̌Dk + ρD′k with Dk and D′k are positive definite. Moreover, recalling the
form of the spaces H− and H+, we see that the condition (A.34) is satisfied
on a neighborhood (p, ζ̌, 0).

c) So far we have constructed S1 on a neighborhood of a given point
(p, ζ̌, 0) with ζ̌ in the closed half unit sphere Sd+1

+ = {|ζ̌| = 1 , γ̌ ≥ 0}.
Using a partition of unity on Sd+1

+ , we define Š1 =
∑
φl(V −1

l )∗S̃lV −1
l φl

where φl is nonnegative, smooth and supported on a small neighborhood
of (p, ζ̌

l
, 0), H̃l := V −1

l ȞVl block diagonal on this neighborhood and S̃l is
block diagonal as in part b) above. Moreover,

∑
φ2
l = 1 on a neighborhood

of {p}×Sd+1
+ ×{0}. We see that

∑
φ2
l (V

−1
l )∗V −1

l is positive definite on this
neighborhood, that Re (S1Ȟ) =

∑
φl(V −1

l )∗Re
(
S̃lH̃l)V −1

l φl satisfies the
properties listed in part ii) of Lemma 2.13. In addition, because the φl are
non negative and

∑
φ2
l = 1, the condition (A.34) holds on a neighborhood

of {p} × Sd+1
+ × {0}.

The proof of Lemma 2.13 is now complete.
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B Appendix B. Para-differential calculus

In this appendix, we prove the different results stated in section 3. Most
of the analysis follows known results from [Bo] [Mey] (see also [Hör] [Tay])
for the classical calculus and from [Mok] [Mé1] for the calculus with a large
parameter γ. Most of the present work is to check that these results extend
to symbols with parabolic homogeneity and next to a semi-classical calculus.

B.1 The quasi-homogeneous calculus

To include in the same analysis both the homogeneous case and the parabolic
case, we first consider a general quasi-homogenous framework. With little
risk of confusion with our previous notation, we denote by x the variable in
Rd, and ξ its dual variable.

For given positive integers pj , consider on R1+d the quasi-homogeneous
pseudo-norm

(B.1) for ζ = (ξ, γ) : 〈ζ〉 =
(
γ2p0 +

d∑
j=1

ξ
2pj

j

)1/2p
, p := max pj .

The case pj = p = 1 for all j corresponds to the usual Euclidean norm. It
will be referred to as the homogeneous case. The parabolic case corresponds
to pj = 2 for the spatial directions and pj = 1 for the time direction. We
agree that 〈ξ〉 = 〈ξ, 0〉. We also introduce the weight

(B.2) Λ(ζ) = (1 + 〈ζ〉2p)1/2p.

Note that

(B.3) 〈ζ + ζ ′〉 ≤ 〈ζ〉+ 〈ζ ′〉 , Λ(ζ + ζ ′) ≤ Λ(ζ) + 〈ζ ′〉 .

Introduce the quasi-homogeneous dilations

(B.4) ρ · (ξ, γ) = (ρp/p1ξ1, . . . , ρp/pdξd, ρ
p/p0γ)

and define similarly ρ · ξ. Then

(B.5) 〈ρ · ζ〉 = ρ〈ζ〉 .

The pseudo-norm defines a distance d(ξ, η) = 〈ξ−η〉. Denote by B(η, ρ) the
ball centered at η of radius ρ, i.e. the set of η′ ∈ Rd such that 〈η − η′〉 ≤ ρ.
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The following properties are elementary :

measB(η, ρ) = ρDmeasB(η, 1) with D =
d∑
1

p/pj .(B.6)

There is an integer N, such that for all η and ρ, the ball B(η, ρ)
is contained in the union of at most N balls of radius ρ/2.

(B.7)

The dilations and quasi-homogeneous norms are also defined in the x space :

ρ · x = (ρp/p1x1, . . . , ρ
p/pdxd) , 〈x〉 =

( d∑
j=1

(xj)2pj

)1/2p
.

B.1.1 The Littlewood-Paley decomposition

Introduce χ ∈ C∞0 (R), such that 0 ≤ χ ≤ 1 and

(B.8) χ(λ) = 1 for |λ| ≤ 1.1 , χ(λ) = 0 for |λ| ≥ 1.9 .

For k ∈ Z, introduce χk(ξ, γ) := χ
(
2−kΛ(ξ, γ)

)
, χ̃γk(x) its inverse Fourier

transform with respect to ξ and the operators

(B.9) Sγku := χ̃γk ∗ u = χk(Dx, γ)u , ∆γ
k+1 = Sγk+1 − Sγk .

For all temperate distribution u, the spectrum of ∆γ
ku (i.e. the support of

its Fourier transform) satisfies

(B.10) spec(∆γ
ku) ⊂

{
ξ : 2k−1 < Λ(ξ, γ) < 2k+1

}
.

Hence ∆γ
ku = 0 when (1 + γ2p0)1/2p ≥ 2k+1, and in particular when k < 0.

Thus, for all temperate distribution u, one has for γ ≥ 0:

(B.11) u =
∑
k≥0

∆γ
ku .

The natural Sololev spaces associated to the weights Λs, s ∈ R, are the
spaces Hs(Rd) of temperate distributions u such that their Fourier transform
û satisfies Λ(ξ, 0)sû ∈ L2(Rd). This space is equipped with the family of
norms :

(B.12) ‖u‖2
s,γ :=

∫
Λ2s(ξ, γ)|û(ξ)|2 dξ .

The next propositions immediately follow from the definitions. The im-
portant point is that the constants C do not depend on γ ≥ 0.

122



Proposition B.1. Consider s ∈ R and γ ≥ 0. A temperate distribution u
belongs to Hs(Rd) if and only if

i) for all k ∈ N, ∆γ
ku ∈ L

2(Rd).
ii) the sequence δk = 2ks‖∆γ

ku‖L2(Rd) belongs to `2(N).
Moreover, there is a constant C, independent of γ ≥ 0 and u in Hs, such

that
1
C
‖u‖2

s,γ ≤
∑
k≥0

δ2k ≤ C‖u‖2
s,γ

Proposition B.2. Consider s ∈ R, γ ≥ 0 and R > 0. Suppose that {uk}k∈N
is a sequence of functions in L2(Rd)such that:

i) the spectrum of uk is contained in
{

1
R2k ≤ Λ(ξ, γ) ≤ R2k

}
.

ii) the sequence δk = 2ks‖uk‖L2(Rd) belongs to `2(N).
Then u =

∑
uk belongs to Hs(Rd) and there is a constant C, independent

of γ ≥ 0 and the sequence {uk}, such that

‖u‖2
s,γ ≤ C

∑
k

δ2k .

When s > 0, it is sufficient to assume that the spectrum of uk is contained
in
{
Λ(ξ, γ) ≤ R2k

}
.

We also use the space W 1,∞(Rd) of functions u ∈ L∞ such that ∇xu ∈
L∞. It is equipped with the obvious norm. With χ as in (B.8), we denote
by Ṡk, ∆̇k the Littlewood-Paley decomposition associated to the Fourier
multipliers χ̇k(ξ) = χ(2−k〈ξ〉) = χ(〈2−k · ξ〉), that is with γ = 0:

(B.13) Ṡk = χ̇k(Dx), ∆̇k = Ṡk − Ṡk−1 .

Proposition B.3. There is a constant C such that :
i ) for all u ∈ L∞ and all k ∈ Z, one has

‖Ṡku‖L∞ ≤ C‖u‖L∞ .

ii) for all u ∈W 1,∞ and all k ∈ N, one has

‖∆̇ku‖L∞ ≤ C2−k‖∇u‖L∞ , ‖u− Ṡku‖L∞ ≤ C2−k‖∇xu‖L∞ .

Proof. Ṡk is a convolution operator with kernel Ṡk(x) = 2kDṠ0(2k ·x) where
Ṡ0(·) is the inverse Fourier transform of χ̇0(ξ) = χ(〈ξ〉). Since χ̇0 ∈ C∞0 (Rd),
Ṡ0(·) belongs to the Schwartz class, hence to L1. Thus Ṡk(·) ∈ L1 and
‖Ṡk‖L1 = ‖Ṡ0‖L1 , implying i).
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Since χ(0) = 1, the integral of the kernel Ṡk is one and

|u(x)− Ṡku(x)| =
∣∣∣ ∫ Ṡk(y)(u(x)− u(x− y))dy

∣∣∣
≤ ‖∇u‖L∞

∫
|Ṡk(y)| |y| dy

where |y| denotes the Euclidean norm of y ∈ Rn. Then the second estimate
in ii) follows from the inequalities∫

|Ṡk(y)| |y| dy =
∫
|Ṡ0(y)||2−k · y|dy

≤
∑
j

2−kp/pj

∫
|Ṡ0(y)| |yj |dy ≤ C2−k.

The proof of the estimate for ∆̇ku is similar.

B.1.2 Paradifferential operators with parameters

If a(ζ) is smooth then

∂αξ (a(λ · ζ)) = λ〈α〉(∂αξ a)(λ · x)

where

(B.14) for α ∈ Nd : 〈α〉 =
d∑
j=1

p

pj
αj .

In particular, if a(ζ) is smooth and quasi-homogenous of degree µ for ζ 6= 0,
meaning that a(ρ · ζ) = ρµa(ζ) for all ρ > 0, then its derivatives ∂αξ a are
quasi-homogeneous of degree µ − 〈α〉 and thus are bounded by C〈ζ〉µ−〈α〉.
Similarly, for all α ∈ Nd, there is Cα such that

(B.15) ∀(ξ, γ) : |∂αξ Λ(ξ, γ)| ≤ CαΛ(ξ, γ)1−〈α〉 .

This motivates the following definition.

Definition B.4 (Symbols). Let µ ∈ R.
i) Γµ0 denotes the space of locally bounded functions a(x, ξ, γ) on Rd×

Rd × [0,∞[ which are C∞ with respect to ξ and such that for all α ∈ Nd

there is a constant Cα such that

(B.16) ∀(x, ξ, γ) , |∂αξ a(x, ξ, γ)| ≤ Cα Λ(ξ, γ)µ−〈α〉.
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ii) Γµ1 denotes the space of symbols a ∈ Γµ0 such that for all j, ∂xja ∈
Γµ0 .

iii) For k = 0, 1, Σµ
k is the space of symbols σ ∈ Γµk such that there

exists δ ∈]0, 1[ such that for all (ξ, γ) the spectrum of x 7→ σ(x, ξ, γ) is
contained in the quasi-homogeneous ball {〈η〉 ≤ δΛ(ξ, γ)}.

The spaces Γµ0 are equipped with semi-norms

(B.17) ‖a‖(µ,N) := sup
|α|≤N

sup
Rd×Rd×[0,∞[

Λ(ξ, γ)〈α〉−µ|∂αξ a(x, ξ, γ)| .

Consider a C∞ function ψ(η, ξ, γ) on Rd × Rd × [0,∞[ such that:
1) there are δ1 and δ2 such that 0 < δ1 < δ2 < 1 and

(B.18)

{
ψ(η, ξ, γ) = 1 for 〈η〉 ≤ δ1Λ(ξ, γ)
ψ(η, ξ, γ) = 0 for 〈η〉 ≥ δ2Λ(ξ, γ) .

2) for all (α, β) ∈ Nd × Nd, there is Cα,β such that

(B.19) ∀(η, ξ, γ) , |∂αξ ∂βηψ(η, ξ, γ)| ≤ Cα,βΛ(ξ, γ)−〈α〉−〈β〉 .

For instance, with N ≥ 3, δ1 = 2−N−2 and δ2 = 22−N , one can consider

(B.20) ψ(η, ξ, γ) =
∑
k≥0

χ(2−k+N 〈η〉)(χk(ξ, γ)− χk−1(ξ, γ)).

We will say that such a function ψ is an admissible cut-off. Consider next
Gψ( · , ξ, γ) the inverse Fourier transform of ψ( · , ξ, γ). It satisfies

(B.21) ∀(ξ, γ) , ‖∂αξ Gψ( · , ξ, γ)‖L1(Rd) ≤ CαΛ(ξ, γ)−〈α〉 .

Indeed, Gψ(x, ζ) = ΛDG[ζ(Λ · x) where G[ζ is the inverse Fourier transform
of ψ[ζ(η) = ψ(Λ · η, ζ) and Λ = Λ(ζ). The estimates (B.19) imply that the
ψ[ζ are bounded in C∞(Rd) with support in the ball {〈η〉 ≤ δ2}. Thus the
G[ζ and hence the Gψ(·, ζ) are uniformly bounded in L1. The analysis of the
ξ derivatives is analogous.

The argument above applied to a fixed ζ, implies the following version
of Bernstein’s inequality which is used at several places:

Lemma B.5. If the spectrum of a ∈ Lp(Rd) is contained in the ball {〈ξ〉 ≤
λ}, then a ∈ C∞ and for all α ∈ Nd

‖∂αx a‖Lp ≤ Cλ〈α〉‖a‖Lp

with Cα independent of a and λ.
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Remark B.6. The main difference with [Bo] [Mey] in the choice of admissi-
ble cut-off functions ψ (B.18) is the treatment of low frequencies : we assume
that ψ is one for small η, even when ξ is small. This has no importance in
the study of smoothness, but it plays a crucial role in the semi-classical ver-
sion of the calculus and also when one considers parameters to absorb lower
order terms.

Proposition B.7. Let ψ be an admissible cut-off. Then, for all µ ∈ R and
k = 0, 1, the operators

(B.22) a 7→ σψa (x, ξ, γ) :=
∫
Gψ(x− y, ξ, γ) a(y, ξ, γ) dy

are bounded from Γµk to Σµ
k and

‖σψa ‖(µ,N) ≤ CN‖a‖(µ,N) .

Moreover, if a ∈ Γµ1 , then a−σψa ∈ Γµ−1
0 . In particular, if ψ1 and ψ2 are

admissible and a ∈ Γµ1 then σψ1
a − σψ2

a ∈ Σµ−1
0 . More precisely

‖σψ1
a − σψ2

a ‖(µ−1,N) ≤ CN‖∇xa‖(µ,N) .

Proof. The bounds (B.21) imply that the estimates (B.16) are preserved by
the convolution (B.22). Thus σψa ∈ Γµ0 if a ∈ Γµ0 . Moreover, ∂xσ

ψ
a = σψ∂xa

and the operator (B.22) maps Γµ1 into itself. On the Fourier side, one has

σ̂ψa (η, ξ, γ) = ψ(η, ξ, γ) â(η, ξ, γ).

Thus, the spectral property is clear and the first part of the proposition is
proved.

For fixed ζ = (ξ, γ), the mapping a(·, ζ) 7→ σψa (·, ζ) is a convolution
operator with the inverse Fourier transform of ψ(·, ζ). The estimates (B.19)
imply that the family of mappings η 7→ ψ(Λ·η, ζ) with Λ = Λ(ζ), is bounded
in C∞0 (Rd) with support in a fixed ball. Therefore, arguing as in the proof
of Proposition B.3 part two, one shows that

‖(a− σψa )( · , ξ, γ)‖L∞ ≤ C Λ(ξ, γ)−1‖∇xa( · , ξ, γ)‖L∞ .

One has similar estimates for the ξ-derivatives. Thus a − σψa ∈ Γµ−1
0 if

a ∈ Γµ1 .
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The spectral property and Lemma B.5 imply that the symbols σ ∈ Σµ
0

are C∞ in x too and satisfy:

(B.23) |∂βx∂αξ σ(x, ξ, γ)| ≤ CαβΛµ−〈α〉+〈β〉.

The associated pseudo-differential operators are defined as

(B.24) Opγ(σ)u(x) :=
1

(2π)d

∫
eiξ·x σ(x, ξ, γ) û(ξ) dξ

or on the Fourier side

(B.25) ̂Opγ(σ)u(ξ) =
∫
σ̂1(ξ − ξ′, ξ′, γ) û(ξ′) dξ′

where σ̂1 denotes the Fourier transform of σ with respect to x. They act
continuously in the Schwartz class. Using Proposition B.7 we can associate
operators to symbols a ∈ Γµ0 . Given an admissible cut-off ψ, define

(B.26) Tψ,γa u := Opγ(σψa )u.

Introduce the following terminology.

Definition B.8. A family of operators {P γ} is of order less than or equal
to µ if for all s ∈ R, P γ maps Hs into Hs−µ and there is a constant C such
that

∀γ ≥ 0 , ∀u ∈ Hs(Rn) : ‖P γu‖s−µ,γ ≤ C‖u‖s,γ .

Proposition B.9. i) For all σ ∈ Σµ
0 , the family of operators Opγ(σ) extends

as a family of operators of order ≤ µ. More precisely, one has

‖Opγ(σ)u‖s,γ ≤ C‖σ‖(µ,N) ‖u‖s+µ,γ

where C and N only depend on the indices s and m and on the confinement
parameter δ of σ.

ii) For all admissible cut-off ψ and all a ∈ Γµ0 , the family of operators
Tψ,γa is of order ≤ µ.

iii) If ψ1 and ψ2 are admissible and a ∈ Γµ1 , then Tψ1,γ
a − Tψ2,γ

a is of
order ≤ µ− 1. More precisely, one has

‖(Tψ1,γ
a − Tψ2,γ

a )u‖s,γ ≤ C‖∇xa‖(µ,N) ‖u‖s+µ−1,γ

where C and N only depend on the indices s and µ and on the confinement
parameters δ of ψ1 and ψ2.
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Proof. Using (B.11), one obtains that

Opγ(σ) =
∑

|k−l|≤2

Opγ(σk)∆
γ
l

where
σk(x, ξ, γ) =

(
χk(ξ, γ)− χk−1(ξ, γ)

)
σ(x, ξ, γ) .

The estimates (B.23) imply that

σ̃k(x, ξ, γ) = σk
(
2−k · x, 2k · (ξ, γ)

)
is supported in {〈ζ〉 ≤ 2} and satisfies∣∣∂αx ∂βξ σ̃k(x, ξ, γ)∣∣ ≤ Cα,β 2kµ.

Therefore, by Calderon-Vaillancourt’s theorem, the operators Opγ
′
(σ̃k) are

bounded in L2 with norm O(2kµ) (see e.g. [Co-Me] ). Since Opγ(σk) =
HkOpγ

′
(σ̃k)H−1

k with γ′ = 2−kp/p0γ and Hku = u(2k · x), this implies that

‖Opγ(σk)u‖L2 ≤ C ‖σ‖(µ,N)2
kµ ‖u‖L2 .

Moreover, by (B.25), the spectrum of Opγ(σk)u is contained in the set of ξ
such that there is ξ′ satisfying 〈ξ − ξ′〉 ≤ δΛ(ξ′, γ) and 2k−1 ≤ 〈Λ(ξ′, γ)〉 ≤
2k+1. Hence, it is contained in the domain{

(1− δ)2k−1 ≤ Λ(ξ, γ) ≤ (1 + δ)2k+1
}
.

Proposition B.2 implies that uk =
∑

|l−k|≤2 ∆γ
l u satisfies

‖uk‖L2 ≤ C2−ks εk ‖u‖s,γ with
∑

ε2k ≤ 1 .

Therefore
‖Opγ(σk)uk‖L2 ≤ C2k(µ−s) εk ‖σ‖(µ,N) ‖u‖s,γ .

Using Proposition B.3, these estimates and the spectral localization imply
i). The other two parts follow from Proposition B.7.

Remark B.10. It follows directly from the definition (B.25) that if the
symbol σ ∈ Σµ

0 [resp. a ∈ Γµ0 ] is supported in Rd × {Λ(ζ) ≤ R}, then, for
all u, the spectrum of Opγ(σ)u [resp. Tψ,γa u ] is contained in {Λ(ζ) ≤ 2R}.
Similarly, if a is supported in {Λ(ζ) ≥ R}, then the spectrum of Tψ,γa u is
contained in {Λ(ζ) ≤ (1− δ1)−1R} with δ1 as in (B.18).
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B.1.3 Paraproducts

A function a(x) ∈ L∞ can be seen as a symbol in Γ0
0, independent of (ξ, γ).

With ψ given by (B.20) the symbol (B.22) associated to a is

σa(x, ξ, γ) =
∑
k≥0

(
Ṡk−Na

)
(x)
(
χk(ξ, γ)− χk−1(ξ, γ)

)
and the associated operator is

(B.27) T γa u := Tψ,γa u =
∑
k≥0

Ṡk−Na∆γ
k u .

Theorem B.11. i) For all a ∈ L∞, T γa is of order ≤ 0.
ii) There is a constant C such that for all a ∈ W 1,∞ and all u in the

Schwartz class S(Rd):

‖au− T γa u‖1,γ ≤ C ‖∇a‖L∞‖u‖0,γ ,(B.28)
γ‖au− T γa u‖0,γ ≤ C ‖∇a‖L∞‖u‖ p

p0
−1,γ ,(B.29)

‖a∂ju− T γa ∂ju‖0,γ ≤ C ‖∇a‖L∞‖u‖ p
pj
−1,γ .(B.30)

Proof. The first statement is clear from Proposition B.9.
a) Because [∂j , T

γ
a ] = T γ∂ja

, p/pj − 1 ≥ 0, and

(B.31) ‖(∂ja)u‖L2 + ‖T γ∂ja
u‖L2 . ‖(∂ja)‖L∞‖u‖L2 ,

the estimate (B.30) follows from

(B.32) ‖∂j(au− T γa u)‖L2 ≤ C ‖∇a‖L∞‖u‖ p
pj
−1,γ .

Thus we prove (B.28), (B.29) and (B.32). Start from the identity

R(u) := au− T γa u =
∑
k>−N

∆̇kaS
γ
k+N−1u .

We first consider

R1(u) =
∑
k>−N

vk , vk := ∆̇ka
( ∑
|l−k|<N

∆γ
l u
)
.

Propositions B.1 and B.3 imply

‖vk‖L2 . 2−k ‖∇a‖L∞ 2k(1−q)εk ‖u‖q−1,γ
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where
∑
ε2k ≤ 1. Moreover, the spectrum of ∆̇ka is contained in the ball

{〈ξ′〉 ≤ 2k+1}, while the spectrum of ∆γ
l u is contained in the set {Λ(ξ′′, γ) ≤

2l+1}. Therefore the spectrum of vk is contained in {Λ(ξ, γ) ≤ 2k+N+2}.
Thus, Proposition B.2 implies that for q > 0

(B.33) ‖R1u‖q,γ . ‖∇a‖L∞ ‖u‖q−1,γ , q > 0.

Because
γ ≤ Λ(ξ, γ)p/p0 and |ξj | ≤ Λ(ξ, γ)p/pj ,

we conclude that

(B.34)

‖R1(u)‖L2 ≤ ‖R1(u)‖1,γ . ‖∇a‖L∞ ‖u‖0,γ ,

γ‖R1(u)‖L2 ≤ ‖R1(u)‖ p
p0
,γ . ‖∇a‖L∞ ‖u‖ p

p0
−1,γ ,

‖∂jR1(u)‖L2 ≤ ‖R1(u)‖ p
pj
,γ . ‖∇a‖L∞ ‖u‖ p

pj
−1,γ .

b) It remains to prove similar estimates for

R2(u) =
∑
k>−N

∆̇kaS
γ
k−Nu .

Since N ≥ 3, the spectrum of w′k := ∆̇kaS
γ
k−Nu is contained in the set

{2k−2 ≤ Λ(ξ, γ) ≤ 2k+2}. Moreover,

‖∆γ
l u‖L2 . 2l(1−q)εl‖u‖q−1,γ

with
∑
ε2l ≤ 1. Therefore,

‖w′k‖L2 . ‖∇a‖L∞‖u‖q−1,γ2−kq ε̃k with ε̃k =
∑

l≤k−N
2(l−k)(1−q)εl .

If q < 1,
∑
ε̃2k .

∑
ε2l and Proposition B.2 implies that

(B.35) ‖R2(u)‖q,γ . ‖∇a‖L∞‖u‖q−1,γ , q < 1 .

c) For j > 0, we write ∂jR2(u) = R2(∂ju) +R′j

R′j =
∑
k>−N

∆̇k∂jaS
γ
k−Nu .

Suppose that we have proved the estimate

(B.36) ‖R′j‖L2 . ‖∇a‖L∞‖u‖0,γ .

130



Applying (B.35) with q = 0, we obtain that

‖γR2(u)‖L2 . ‖∇a‖L∞‖γu‖−1,γ . ‖∇a‖L∞‖u‖ p
p0
−1,γ

With (B.34), this implies (B.29). Similarly, (B.35) implies that

‖R2(∂ju)‖L2 . ‖∇a‖L∞‖∂ju‖−1,γ . ‖∇a‖L∞‖u‖ p
pj
−1,γ

With (B.36), this implies that

‖∂jR2(u)‖L2 . ‖∇a‖L∞‖u‖ p
pj
−1,γ

and with (B.34), the estimates (B.32) and (B.30) follow. This result still
holds for j = 0, replacing ∂ju by γu in the estimates above. With the second
estimate in (B.34) this implies (B.29).

Next, we note that

1 + γΛ1−p/p0 +
∑

|ζj |Λ1−p/pj ≈ Λ

implying

(B.37) ‖R2(u)‖1,γ . ‖R2(u)‖0,γ + γ‖R2(u)‖1− p
p0
,γ +

∑
‖∂jR2(u)‖1− p

pj
,γ .

The first term is controlled by (B.35) which implies

‖R2(u)‖0,γ . ‖∇a‖L∞‖u‖−1,γ . ‖∇a‖L∞‖u‖0,γ .

Similarly, (B.35) implies that

‖γR2(u)‖1− p
p0
,γ . ‖∇a‖L∞‖γu‖− p

p0
,γ . ‖∇a‖L∞‖u‖0,γ

‖R2(∂ju)‖1− p
pj
,γ . ‖∇a‖L∞‖∂ju‖− p

pj
,γ . ‖∇a‖L∞‖u‖0,γ

Together with (B.36), the later inequality implies

‖∂jR2(u)‖1− p
pj
,γ . ‖∇a‖L∞‖u‖0,γ

Therefore, we have proved that each term in the right hand side of (B.37)
is dominated by the right hand side of (B.28), which finishes the proof of
(B.28).
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d) It only remains to prove (B.36). The spectrum of w′′k := ∆̇k∂jaS
γ
k−Nu

is contained in the set {2k−2 ≤ Λ(ξ, γ) ≤ 2k+2}. Hence,

‖R′j‖2
L2 .

∑
k>−N

‖w′′k‖2
L2 .

Thus, the inequality stated in the next proposition implies (B.36), finishing
the proof of Theorem B.11.

Proposition B.12. There is a constant C such that for all b ∈ L∞, u ∈ L2

and γ ≥ 0:

(B.38)
∑
k>−N

‖∆̇kb S
γ
k−Nu‖

2
L2 ≤ C ‖b‖2

L∞ ‖u‖2
L2 .

This is a classical result from Harmonic Analysis (see [Co-Me], [St], at
least in the homogeneous case), based on the fact that

∑
k |∆̇kb(x)|2⊗δt=2−k

is a Carleson measure, which is true if b ∈ BMO. For the convenience of
the reader, and to cover the quasi-homogeneous case, we sketch a proof of
(B.38) in the easier case b ∈ L∞. The first step is the following.

Lemma B.13. There is a constant C such that for all b ∈ L∞(Rd) and all
open set Ω ⊂ Rd :

(B.39)
∑
k>−N

‖∆̇kb‖2
L2(Ωk) ≤ C meas(Ω) ‖b‖2

L∞ ,

where Ωk denotes the set of points x ∈ Ω such that the ball B(x, 2−k) :=
{y ∈ Rd : 〈x− y〉 < 2−k} is contained in Ω.

Proof. Write b = b′ + b′′ with b′ = b1Ω. Denote by I(b) the left hand side of
(B.39). Then I(b) ≤ 2I(b′) + 2I(b′′). Therefore, it is sufficient to prove the
inequality separately for b′ and b′′. One has∑

k>−N
‖∆̇kb

′‖2
L2(Ωk) ≤

∑
k>−N

‖∆̇kb
′‖2
L2(Rd) ≤ ‖b′‖2

L2 ≤ ‖b‖2
L∞ meas(Ω) .

Thus, it remains to prove (B.39) for b′′.
The kernel of ∆̇k is Gk(x) = 2kDG0(2k · x) where G0 belongs to the

Schwartz class S. Thus

∆̇kb
′′(x) =

∫
2kDG0(2k · (x− y))b′′(y) dy .
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On the support of b′′, y /∈ Ω and for x ∈ Ωl, the distance 〈x − y〉 is larger
than 2−l. Thus, for x ∈ Ωl

|∆̇kb
′′(x)| ≤ ‖b′′‖L∞

∫
{〈y〉≥2−l}

2kD |G0(2k · y)| dy = ‖b′′‖L∞ g∗k−l

with
g∗l =

∫
{〈y〉≥2l}

|G0(y)| dy.

Let Ω′
−N := Ω−N and for l > −N , let Ω′

l = Ωl \ Ωl−1. Then the pointwise
estimate above implies that

(B.40) ‖∆̇kb
′′‖2
L2(Ω′

l)
≤ ‖b‖2

L∞ meas(Ω′
l)
(
g∗k−l

)2
.

Since Ωk =
⋃
l≤k Ω′

l,

∑
k>−N

‖∆̇kb
′′‖2
L2(Ωk) =

∑
k>−N

k∑
l=−N

‖∆̇kb
′′‖2
L2(Ω′

l)
.

Using (B.40), this implies∑
k>−N

‖∆̇kb
′′‖2
L2(Ωk) ≤

∑
l≥−N

∑
k≥l

‖b‖2
L∞
(
g∗k−l

)2meas(Ω′
l) .

Since G0 ∈ S, the sequence g∗k is rapidly decreasing and thus in `2(N).
Therefore,∑

k>−N
‖∆̇kb

′′‖2
L2(Ωk) . ‖b‖2

L∞

∑
l≥−N

meas(Ω′
l) = ‖b‖2

L∞ meas(Ω) .

Corollary B.14. There is a constant C such that for all b ∈ L∞(Rd) and
all sequence vk in L2, one has

(B.41)
∑
k>−N

‖(∆̇kb) vk‖2
L2 ≤ C ‖b‖2

L∞ ‖v∗‖2
L2 ,

where

(B.42) v∗(x) = sup
k>−N

sup
B(x,2−k)

|vk(y)| .
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Proof. Let bk = ∆̇kb. Then

‖bkvk‖2
L2 = 2

∫ ∞

0
λ‖bk‖2

L2(Uk(λ)) dλ , where Uk(λ) = {|vk| > λ}.

For λ > 0, let Ω(λ) = {|v∗| > λ}. This is the set of points x such that there
are k > −N and y such that 〈x − y〉 < 2−k and |vk(y)| > λ. Thus Ω(λ) is
open and if |vk(y)| > λ, the ball B(y, 2−k) is contained in Ω(λ). This shows
that for all k, Uk(λ) ⊂ Ωk(λ), where the Ωk’s are defined as in Lemma B.13.
Thus ∑

k>−N
‖bk‖2

L2(Uk(λ)) ≤
∑
k>−N

‖bk‖2
L2(Ωk(λ)) . ‖b‖2

L∞ meas(Ω(λ)) ,

and ∑
k>−N

‖bkvk‖2
L2 . ‖b‖2

L∞

∫ ∞

0
2λmeas(Ω(λ)) dλ = ‖b‖2

L∞ ‖v∗‖2
L2 .

Lemma B.15. There is a constant C such that for all u ∈ L2 and all γ ≥ 0,
the function v∗ defined by (B.42) and vk = Sγk−Nu satisfies

(B.43) v∗(x) ≤ Cu∗(x) := sup
r>0

1
meas(B(x, r))

∫
B(x,r)

|u(y)|dy .

Proof. Sγk is a convolution operator with kernel Gk(·, γ) equal to the inverse
Fourier transform of ξ 7→ χ(2−kΛ(ξ, γ)) Note that

2−kΛ(ξ, γ) =
(
2−2kp + 〈2−k · (ξ, γ)〉2p

) 1
2p
.

Thus,
Gk(x, γ) = 2kDHk(2k · x, 2−kp/p0γ) .

where Hk(·, γ′) is the inverse Fourier transform of χ
(
(2−kp + 〈·, γ′〉2p)1/2p

)
.

It vanishes when γ′ is large, more precisely when 〈0, γ′〉 > 2. For γ′ ≤ 2, the
Hk(·, γ′) remain in a bounded set of the Schwartz’ space S. Thus

G∗l := sup
k,γ′

sup
Al

|Hk(x, γ′)| ,
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where Al is the annulus {2l−1 ≤ 〈x〉 ≤ 2l} for l > 0 and the ball {〈x〉 ≤ 1}
for l = 0, is rapidly decreasing. In particular

(B.44)
∑
l≥0

2lDG∗l <∞ .

With γ′ = 2(N−k)p/p0γ, one has

|vk(x− x′)| ≤ 2(k−N)D

∫
|Hk(2k−N · y, γ′)| |u(x− x′ − y)|dy.

Splitting the domain of integration into the union over l of the Akl = {y :
2k−N · y ∈ Al}, yields

|vk(x− x′)| ≤ 2(k−N)D
∑
l≥0

G∗l

∫
Ak

l

|u(x− x′ − y)|dy .

When y ∈ Akl , 〈y〉 ≤ 2l−k+N . If in addition 〈x − x′〉 ≤ 2−k ≤ 2l−k+N , then
x′ + y belongs to the ball centered at x of radius 2−k+l+N+1 whose measure
is equal to c02(l−k+N+1)D (see (B.6)). Thus∫

Ak
l

|u(x− x′ − y)|dy ≤ c02(l−k+N+1)D u∗(x)

and therefore

sup
|x′|≤2−k

|vk(x− x′)| ≤ 2c0
∑
l≥0

2lDG∗l u
∗(x) .

With (B.44), the estimate (B.43) follows.

Proof of Proposition B.12
The Corollary B.14 and Lemma B.15 imply that∑

k>−N
‖∆̇kbS

γ
k−Nu‖

2
L2 ≤ C ‖b‖2

L∞ ‖u∗‖2
L2 .

That ‖u∗‖L2 ≤ C‖u‖L2 is a general fact about maximal functions (see e.g.
[St], [Co-Me]) which only uses the properties (B.6) (B.7). �
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B.1.4 Symbolic calculus

Theorem B.16. Consider a ∈ Γµ1 and b ∈ Γm
′

1 . Then ab ∈ Γµ+µ′

1 and
T γa ◦ T γb − T γab is of order ≤ µ+ µ′ − 1. More precisely, one has

‖(T γa T
γ
b − T γab)u‖s,γ ≤ C

(
‖a‖(µ,N) ‖∇xb‖(µ′,N)

+ ‖∇xa‖(µ,N) ‖b‖(µ′,N)

)
‖u‖s+µ+µ′−1,γ

where C and N depend only on the indices s and µ.
This extends to matrix valued symbols and operators.
Moreover, if b is independent of x, then T γa ◦ T γb = T γab .

Remark. The definition of the operators T γa involves the choice of admis-
sible functions ψ. Proposition B.9 implies that the result does not depend
on the particular choice of ψ. To be precise, in the statements below, we
consider that the quantification T is associated to a fixed given admissible
function ψ, for instance (B.20) with N = 3. However, within the proofs,
we use other functions ψ, at the price of error terms controlled by Proposi-
tion B.9.

Proof. a) The last statement of the theorem is clear using the definitions,
since T γb is just the action of the Fourier multiplier b(ζ). We now focus on
the main part of the theorem.

b) We first consider two symbols σ1 ∈ Σµ
1 and σ2 ∈ Σµ′

1 satisfying the
spectral condition in Definition B.4 with a parameter δ < 1/3. Using (B.24)
and (B.25), one gets that Opγ(σ1) ◦Opγ(σ2) = Opγ(σ) with

σ(x, ξ, γ) =
1

(2π)d

∫
eix(η−ξ) σ1(x, η, γ) σ̂1

2(η − ξ, ξ, γ) dη

=
1

(2π)d

∫
eixη σ1(x, ξ + η, γ) σ̂1

2(η, ξ, γ) dη .

Thus
σ̂1(η, ξ, γ) =

1
(2π)d

∫
σ̂1

1(η − η′, ξ + η′, γ) σ̂1
2(η

′, ξ, γ) dη′ .

On the support of the integral, 〈η − η′〉 ≤ δΛ(ξ + η′, γ) and 〈η′〉 ≤ δΛ(ξ, γ).
Thus 〈η〉 ≤ (1 + δ)〈η′〉 + δΛ(ξ, γ) ≤ (2δ + δ2)Λ(ξ, γ) and σ satisfies the
spectral property in iii) of Definition B.4, since δ < 1/3.
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Since σ2 satisfies the spectral property, there is an admissible function θ
such that θσ̂1

2 = σ̂1
2. Inserting θ in the definition of σ yields

σ(x, ξ, γ) =
∫
H(x, y, ξ, γ)σ2(y, ξ, γ) dy

with

H(x, y, ξ, γ) :=
1

(2π)d

∫
ei(x−y)ησ1(x, ξ + η, γ)θ(η, ξ, γ) dη .

Next, we use Taylor’s formula,

σ1(x, ξ + η, γ) = σ1(x, ξ, γ) +
∑

σ1,j(x, η, ξ, γ)ηj

with

σ1,j(x, η, ξ, γ) =
∫ 1

0
∂ξjσ1(x, ξ + tη, γ)dt .

Note that here, tη is the usual multiplication of η by t, not the dilation t · η.
The first term contributes in σ to σ1(x, ξ, γ)σ2(x, ξ, γ). The remainder

r := σ − σ1σ2 satisfies

r(x, ξ, γ) =
d∑
j=1

∫
Gj(x, x− y, ξ, γ) (∂xjσ2)(y, ξ, γ) dy ,

Gj(x, y, ξ, γ) =
−i

(2π)d

∫
eiyησ1,j(x, η, ξ, γ)θ(η, ξ, γ) dη .

For (η, ξ, γ) in the support of θ and for t ∈ [0, 1], 〈tη〉 ≤ 〈η〉 ≤ δΛ(ξ, γ) and
thus Λ(ξ + tη, γ) ≈ Λ(ξ, γ). With the estimates (B.19) for θ and (B.16) for
σ1, this implies that

|∂αξ ∂βη (σ1,jθ)(η, ξ, γ)| ≤ Cα,βΛ(ξ, γ)µ−〈α〉−〈β〉−p/pj .

(Recall that σ1,j involves the derivative ∂ξjσ1, yielding the extra factor p/pj
in the estimate above). As for (B.21), these estimates imply

‖∂αξ Gj(x, ·, ξ, γ)‖L1(Rd) ≤ CαΛµ−1−〈α〉 .

We have used that p/pj ≥ 1. Together with the estimates (B.16) for ∂xjσ2,
this shows that r ∈ Γµ+µ′−1

0 . More precisely, there is N ′, such that for all
N , there is C such that

(B.45) ‖r‖(µ+µ′−1,N) ≤ C ‖σ1‖(µ,N+N ′) ‖∇xσ2‖(µ′,N).

Because σ and σ1σ2 both satisfy the spectral condition, we conclude that
r ∈ Σµ+µ′−1

0 .
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c) Consider a ∈ Γµ1 and b ∈ Γµ
′

1 . By Proposition B.9, changing the
admissible function in the definition of T γ changes T γa and T γb by operators
of order µ− 1 and µ′ − 1, with norms controlled by the semi-norms of ∇xa
and ∇xb. This does not alter the result. Therefore, changing ψ (for instance
increasing N in (B.20)) if necessary, we can assume that the parameter δ2
occurring in (B.18) is small enough. In this case, the associated symbols
σa ∈ Σµ

1 and σb ∈ Σµ′

1 satisfy the spectral condition with a parameter
δ < 1/3. Therefore, T γa ◦ T γb = Opγ(σa) ◦ Opγ(σb) = Opγ(σaσb) + Opγ(r)
with r ∈ Σµ+µ′−1

0 .
On the other hand, Proposition B.7 implies that a−σa ∈ Γµ−1

0 , b−σb ∈
Γµ

′−1
0 and ab− σab ∈ Γµ+µ′−1

0 . Thus, r′ = σaσb − σab ∈ Σµ+µ′−1
0 . Moreover,

the norms of r′ involve bounds of ∇xa or ∇xb. One has T γab = Opγ(σab) =
Opγ(σaσb)−Opγ(r′), and thus T γa ◦T γb −T

γ
ab = Opγ(r+r′), which is of order

≤ µ+ µ′ − 1 and the theorem follows.

Similarly, the next two theorems are extensions of known results ([Bo],
[Mey]) to the framework of quasi-homogeneous symbols.

Theorem B.17. Consider a matrix valued symbol a ∈ Γµ1 . Denote by
(T γa )∗ the adjoint operator of T γa and by a∗(x, ξ, γ) the adjoint of the matrix
a(x, ξ, γ). Then (T γa )∗ − T γa∗ is of order ≤ µ− 1. More precisely, one has

‖((T γa )∗ − T γa∗)u‖s,γ ≤ C‖∇xa‖(µ,N) ‖u‖s+µ−1,γ

where C and N only depend on the indices s and µ.

Proof. It is sufficient to consider scalar symbols.
a) Consider σ ∈ Σµ

1 with parameter δ < 1/2. On the Fourier side, the
kernel of Opγ(σ) is σ̂1(ξ−η, η, γ) (see (B.25)). Thus the kernel of its adjoint
is σ̂1(η − ξ, ξ, γ) = σ̂

1
(ξ − η, ξ, γ). Therefore, the adjoint (Opγ(σ))∗ is the

operator Opγ(σ̃) with symbol σ̃ defined by ̂̃σ1
(ξ − η, η, γ) = σ̂

1
(ξ − η, ξ, γ),

that is ̂̃σ1
(η, ξ, γ) = σ̂

1
(η, ξ + η, γ) .

On the support of ̂̃σ1
, 〈η〉 ≤ δΛ(ξ + η, γ) ≤ δ(Λ(ξ, γ) + 〈η〉), and therefore

〈η〉 ≤ δ
1−δΛ(ξ, γ). Since δ < 1/2, the spectral condition is satisfied.

Since both σ̂1(η, ξ, γ) and ̂̄σ1(η, ξ + η, γ) satisfy the spectral condition,

there is an admissible cut-off function θ such that θσ̂1 = σ̂1 and θ̂̃σ1
= ̂̃σ1

.
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Then

σ̂
1
(η, ξ + η, γ) = σ̂

1
(η, ξ, γ) +

d∑
j=1

θ(η, ξ, γ)
∫ 1

0
ηj ∂ξj σ̂

1
(η, ξ + tη, γ)dt .

Taking the inverse Fourier transform with respect to the first set of variables,
we obtain that σ̃ = σ + r, where

r(x, ξ, γ) =
∑
j

1
(2π)d

∫
ei(x−y)ηρj(y, η, ξ, γ) dy dη ,

and

ρj(x, η, ξ, γ) = −iθ(η, ξ, γ)
∫ 1

0
∂xj∂ξjσ(x, ξ + tη, γ) dt .

As in the proof of Theorem B.16, 〈η〉δ ≤ Λ(ξ, γ) and Λ(ξ + tη, γ) ≈ Λ(ξ, ϕ)
on the support of θ(η, ξ, γ)σ(x, ξ + tη, γ) and for |α|+ |β ≤ N ,

|∂αξ ∂βη ρj(x, η, ξ, γ)| ≤ C‖∇xσ‖(µ,N+1) Λ(ξ, γ)µ−〈α〉−〈β〉−p/pj .

Therefore, the integrals

Gj(x, y, ξ, γ) =
1

(2π)d

∫
eixη ρj(y, η, ξ, γ) dη

satisfy for all α and N ′:

|∂αξ Gj(x, y, ξ, γ)| ≤ C‖∇xσ‖(µ,N+1+N ′)
ΛD

(1 + 〈Λ · x〉)N
Λµ−〈α〉−1

with Λ = Λ(ξ, γ). Thus, with N ′ large enough

‖∂αξ Gj(x− ·, ·, ξ, γ)‖L1(Rd) ≤ Cα‖∇xσ‖(µ,N ′) Λ(ξ, γ)µ−〈α〉−1 .

This implies that r ∈ Γµ−1
0 , and, because both σ and σ̃ satisfy the spectral

property, r ∈ Σµ−1
0 and Opγ(r) = (Opγ(σ))∗−Opγ(σ̃) is of order µ−1, with

bounds depending on the semi-norms of ∇xσ in Γµ0 .

b) Consider now a ∈ Γµ1 . Changing the admissible function ψ in the
definition of T γ , changes T γa by an operator R of order ≤ µ−1. The adjoint
R∗ is also bounded from Hs to Hs−µ+1 for all s ∈ R. Moreover, the norms
only depend on semi-norms of ∇xa. Thus, to prove Theorem (B.17), we
can assume that the parameters δ of the admissible cut-off ψ are smaller
than 1/2. In this case, the analysis in a) applies to σa and the theorem
follows.
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Theorem B.18. Consider a N × N matrix symbol a ∈ Γµ1 and a N ×M
matrix symbol w ∈ Γ0

1. Suppose that there is a scalar real symbol χ ∈ Γ0
1 and

c > 0 such that χ ≥ 0, χw = w and

∀(x, ξ, γ) : χ2(x, ξ, γ) Re a(x, ξ, γ) ≥ cχ2(x, ξ, γ) Λµ(ξ, γ).

Then, there are C and N such that for all u ∈ Hµ/2 and all γ ≥ 0,

(B.46)
c

2
‖T γwu‖2

µ
2
,γ ≤ Re

((
T γa T

γ
wu, T

γ
wu
))
L2 + C K2‖u‖2

µ
2
−1,γ

where
K = ‖∇xa‖(µ,N) + ‖∇xχ‖(0,N) + ‖∇xw‖(0,N)

and C is bounded when a, χ and w remain in bounded sets.

Here,
((
·, ·
))

denotes the scalar product in L2(Rd), which can be extended
as the duality pairing Hs ×H−s.

Proof. The assumption implies that Re a − 3c
4 Λµ is positive definite on the

support of χ. Therefore, one can define

b = b∗ = χ
(
Re a− 3c

4
Λµ
)1/2 ∈ Γµ/21 .

Then,

Re a = b∗b+
3c
4

Λµ + a′ , a′ := (1− χ2)(Re a− 3c
4

Λµ) .

One has
Re
((
T γa v, v

))
=

1
2
((
(T γa + (T γa )∗)v, v

))
.

The symbolic calculus implies that

1
2
(T γa + (T γa )∗) = T γRe a +Rγ1 = (T γb )∗T γb +

3c
4
T γΛµ + T γa′ +Rγ2

where R1 and R2 are families of order ≤ µ− 1. Hence,

Re
((
T γa v, v

))
= ‖T γb v‖

2
L2 +

3c
4
‖v‖2

µ
2
,γ + Re

((
T γa′v, v

))
+ Re

((
Rγ2v, v

))
.

We apply these identity to v = T γwu. Note that a′w = 0 since (1−χ2)w = 0.
Thus, T γa′T

γ
w = Rγ3 is of order µ− 1. This implies that

3c
4
‖T γwu‖2

µ
2
,γ ≤ Re

((
T γa T

γ
wu, T

γ
wu
))

+M‖u‖µ
2
−1,γ‖T γwu‖µ

2
,γ ,
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with M = ‖Rγ3‖ + ‖Rγ2T
γ
w‖, where the norms are taken in the space of

bounded operators from H
µ
2
−1 to H−µ

2 . The symbolic calculus implies that

M ≤ C
(
‖∇xa‖(µ,N) + ‖∇xb‖(µ/2,N) + ‖∇xχ‖(0,N) + ‖∇xw‖(0,N)

)
for some N . Therefore M ≤ CK and the theorem follows.

B.2 The semi-classical calculus

The semi-classical quantization associates to a symbol σ(ỹ, η̃, γ) the operator

Opε,γ(σ)u(ỹ) :=
1

(2π)d

∫
eieη·ey σ(ỹ, εη̃, εγ) û(η̃) dη̃ ,

so that, if σ is independent of ỹ, the operator is defined by the Fourier
multiplier σ(εη̃, εγ). Note that here εη̃ is the usual multiplication by ε, not
the quasi-homogeneous dilation ε · η̃. An alternate definition is

Opε,γ(σ) = (Hε)−1Opγ
′
(σε)Hε for γ′ = εγ ,

where Hεu = εd/2 u(εx) and σε(x, ξ, γ) = σ(εx, ξ, γ). We extend this defini-
tion to the para-differential context.

Definition B.19. For a symbol a ∈ Γµ0 , ε > 0 and γ ≥ 0, P ε,γa is the
operator defined by

(B.47) P ε,γa = (Hε)−1T γ
′

aεHε for γ′ = εγ and aε(x, ξ, γ) = a(εx, ξ, γ) .

On Hs, we introduce the norms

(B.48) ‖u‖s,ε,γ =
(∫

Λ(εξ, εγ)2s|û(ξ)|2 dξ
)1/2

.

We note that

(B.49) ‖u‖s,ε,γ = ‖Hεu‖s,γ′ , with γ′ = εγ .

When a ∈ Γµ0 , the family {aε : ε ∈]0, 1]} is bounded in Γµ0 . Therefore, by
Proposition B.9 there is a constant C such that for all ε ∈]0, 1], all γ′ ≥ 0
and all v ∈ Hs,

‖T γ
′

aεv‖s−µ,γ′ ≤ C‖v‖s,γ′ .
Applied to v = Hεu and γ′ = εγ, we deduce that

Proposition B.20. For a ∈ Γµ0 , there is C such that for all ε ∈]0, 1], all
γ ≥ 0 and all u ∈ Hs,

‖P ε,γa u‖s−µ,ε,γ ≤ C‖u‖s,ε,γ .
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Next, we remark that when a ∈ Γµ1 , the ∇xa
ε are O(ε) in Γµ0 . Thus,

Theorem B.16 implies that for a ∈ Γµ1 and b ∈ Γµ
′

1 , one has

‖(T γ
′

aεT
γ′

bε − T γ
′

aεbε)v‖s,γ′ ≤ C ε ‖v‖s+µ+µ′−1,γ′ .

Using (B.47) and (B.49), this implies the next result.

Proposition B.21. For a ∈ Γµ1 and b ∈ Γm
′

1 , there is C such that for all
ε ∈]0, 1], all γ ≥ 0 and all u ∈ Hs+µ+µ′−1,

‖
(
P ε,γa P ε,γb − P ε,γab

)
u‖s,ε,γ ≤ C ε ‖u‖s+µ+µ′−1,ε,γ .

Since the Hε are unitary,

(P ε,γa )∗ = (Hε)−1(T εγaε )∗Hε,

and Theorem (B.17) implies

Proposition B.22. Consider a matrix valued symbol a ∈ Γµ1 . There is C
such that for all ε ∈]0, 1], all γ ≥ 0 and all u ∈ Hs+µ−1,

‖((P ε,γa )∗ − P ε,γa∗ )u‖s,ε,γ ≤ Cε ‖u‖s+µ−1,ε,γ .

Similarly, applying Theorem B.18 to T γ
′

aε and T g
′

wε implies:

Proposition B.23. Consider symbols a ∈ Γµ1 and w ∈ Γ0
1. Suppose that

there is χ ∈ Γ0
1 and c > 0 such that χ ≥ 0, χw = w and

∀(x, ξ, γ) : χ2(x, ξ, γ) Re a(x, ξ, γ) ≥ cχ2(x, ξ, γ) Λµ(ξ, γ).

Then, there is C such that for all ε ∈]0, 1], all γ ≥ 0 and all u ∈ Hµ/2

c

2
‖P ε,γw u‖2

µ
2
,ε,γ ≤ Re

((
P ε,γa P ε,γw u, P ε,γw u

))
L2 + Cε2 ‖u‖2

µ
2
−1,ε,γ .

Finally, we note that for a ∈W 1,∞(Rd)

au− P ε,γa u = (Hε)−1
(
aεHεu− T γ

′

aεHεu
)
,

with γ′ = εγ. Since ∂jHεu = εHε∂ju, one also has

a∂ju− P ε,γa ∂ju =
1
ε
(Hε)−1

(
aε∂jHεu− T γ

′

aε∂jHεu
)
.
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By Theorem B.11, using that ‖∇aε‖L∞ = O(ε),

‖aεv − T γ
′

aεv‖1,γ′ . ε‖v‖0,γ′

γ′‖aεv − T γ
′

aεv‖L2 . ε‖u‖ p
p0
−1,γ′

‖aε∂jv − T γ
′

aε∂jv‖L2 . ε‖v‖ p
pj
−1,γ′ .

Using (B.49), this implies

Proposition B.24. For all a ∈W 1,∞, there is C such that for all ε ∈]0, 1],
all γ ≥ 0 and all u ∈ L2,

‖au− P ε,γa u‖1,ε,γ ≤ Cε‖u‖0,ε,γ ,

γ‖au− P ε,γa u‖L2 ≤ C‖u‖ p
p0
−1,ε,γ ,

‖a∂ju− P ε,γa ∂ju‖L2 ≤ C‖v‖ p
pj
−1,ε,γ .

B.3 The homogeneous calculus

We now prove the results announced in section 3.1 and we take the notations
used in that section. On one hand, we consider the variables ỹ = (t, y) ∈ Rd.
On the other hand we consider and extra variable x ∈ R, considered as a
parameter.

Denote by η̃ the dual variable of ỹ. We consider here the homogeneous
case where all the weights pj and p in (B.1) are equal to one. In this case
〈ζ〉 = |ζ| = (γ2 +

∑
(ỹj)2)1/2. We restrict attention to γ ≥ 1, and thus

Λ(ζ) ≈ |ζ|. In this framework, the Definition 3.1 of class of symbols Γµk
coincide with Definition B.4. For a ∈ Γµ0 , the operator T γa is thus defined
accordingly. In the homogeneous case, the spaces Hs(Rd) introduced in
section B1, are the usual Sobolev spaces Hs(Rd) and the norms in (B.12)
are equivalent to the norms (3.5), with constant independent of γ ≥ 1.

A symbol a is in the class Γµk,0 introduced in Definition 3.2, if and only
if {a(x, ·) : x ∈ R} is a bounded family in Γµk . Thus the definition

(T γa u)(x, ·) = T γa(x,·)u(x, ·)

makes sense for u in the space L2(R;Hs(Rd)), called H0,s in section 3.1.
As in section 3, introduce the vector fields Z0 = x∂x and for j ∈

{1, . . . , d}, Zj = ∂eyj
. For a ∈ Γµ0,0 such that Zja ∈ Γµ0,0, the definition

of T γ shows that
ZjT

γ
a u = T γa Zju+ T γZja

u .
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Indeed, for the pseudodifferential operators, Opγ(σ) defined in (B.24), one
has [∂eyj

,Opγ(σ)] = Opγ(∂eyj
σ). Moreover, x being a parameter, one also

has [x∂x,Opγ(σ)] = Opγ(x∂xσ). Finally, T γa = Opγ(σa) and Zjσa = σZja

since the mapping a 7→ σa is given by a convolution in the variables ỹ, x
and (η̃, γ) being parameters. More generally, the following Leibniz’ formula
is valid for a ∈ Γµ0,m and |α| ≤ m:

(B.50) ZαT γa =
∑
β≤α

(α
β

)
T γ
Zβa

Zα−β .

Proposition B.9 implies, with notations as in section 3.1, that for a ∈
Γµ0,0, there is C such that for all x ∈ R and all γ ≥ 1 :∣∣(T γa u)(x, ·)∣∣0,s,γ ≤ C

∣∣u(x, ·)∣∣
0,s+µ,γ

.

Squaring and integrating in x, yields

‖T γa u‖0,s,γ ≤ C ‖u‖0,s+µ,γ .

Using (B.50), one obtains that for a ∈ Γµ0,m one has, for γ ≥ 1,

‖T γa u‖m,s,γ ≤ C ‖u‖m,s+µ,γ .

This proves Proposition 3.4.
Similarly, Theorem(B.16) implies that for a ∈ Γµ1,0 and b ∈ Γµ

′

1,0, R
γ(a, b) =

T γa ◦ T γb − T γab satisfies∣∣(Rγ(a, b)u)(x, ·)∣∣
0,s,γ

≤ C
∣∣u(x, ·)∣∣

0,s+µ+µ′−1,γ

and thus
‖(Rγ(a, b)u)‖0,s,γ ≤ C ‖u‖0,s+µ+µ′−1,γ

where C is independent of γ ≥ 1 and u. Repeated applications of Leibniz’
rule (B.50) implies that

ZαRγ(a, b) =
∑

α1+α2+α3=α

α!
α1!α2!α3!

Rγ(Zα
1
a, Zα

2
b)Zα

3
.

Therefore, for a ∈ Γµ1,m and b ∈ Γµ
′

1,m, there is C such that for all γ ≥ 1 and
all u ∈ Hm,s+µ+µ′−1 ,

‖(Rγ(a, b)u)‖m,s,γ ≤ C ‖u‖m,s+µ+µ′−1,γ
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and Proposition 3.5 is proved.
Propositions 3.6 and 3.7, which involve estimates with m = 0, directly

follow from Theorems B.17 and B.18.
Next, Theorem B.11 implies that for a ∈ L∞ such that ∇eya ∈ L∞, the

operators Rγau = γ(au− T γa u) and Rγau = a∂eyj
u− T γa ∂eyj

u, satisfy

‖(Rγau)‖0,1,γ ≤ C‖∇eya‖L∞‖u‖0,0,γ .

Since
ZαRγa =

∑
β≤α

(α
β

)
Rγ
Zβa

Zα−β ,

this implies that for a in the space Wm,1, and u ∈ Hm,O,

‖(Rγau)‖m,1,γ ≤ C‖a‖Wm,1‖u‖m,0,γ ,

implying Proposition 3.9.

B.4 The semi-classical parabolic calculus

We now prove the results announced in section 3.2. We consider the parabolic
weights p0 = p1 = 1 for the variables γ and τ , and pj = 2 for the spatial
tangential variables yj (compare (3.11) and (B.1)). x ∈ R is an extra vari-
able.

The class of symbols PΓµk in Definition 3.10 is the class Γµk of Defini-
tion B.4 corresponding to our present quasi-homogeneous structure. For a
is in the class PΓµk,0, {a(x, ·) : x ∈ R} is a bounded family in PΓµk and thus
we can define

(P ε,γa u)(x, ·) = P ε,γa(x,·)u(x, ·)

for u in the space L2(R; Hs(Rd)), called PH0,s in section 3.2.
We consider again the vector fields Z0 = x∂x and Zj = ∂eyj

. For a ∈ PΓµ1,0,
one has

(B.51) ZjP
ε,γ
a u = P ε,γa Zju+ P ε,γZja

u .

To prove this identity, we use the definition (B.47) of P ε,γ . The equality
(B.51) is quite clear for Z0 since Hε and x∂x commute and [x∂x, T

γ′

aε ] =
T γ

′

x∂xaε = T γ
′

(x∂xa)ε . Next, for j ∈ {i, . . . , d}, (B.51) follows directly from the
identities :

∂eyj
(Hε)−1 = ε−1(Hε)−1∂eyj

,

[∂eyj
, T γ

′

aε ] = T γ
′

∂eyj
(aε) = εT γ

′

(∂eyj
a)ε ,

∂eyj
Hε = εHε∂eyj

.
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The identity (B.51) extends to a ∈ PΓµ0,m and |α| ≤ m :

(B.52) ZαP ε,γa =
∑
β≤α

(α
β

)
P ε,γ
Zβa

Zα−β .

As in section B.3, the Propositions of section B.2 immediately imply
Propositions 3.14 (adjoints) and 3.15 (Garding’s inequality) and the esti-
mates in Propositions 3.12 and 3.13 when m = 0. Using Leibniz’s formula
and (B.52) they immediately extends to general m, as in section B.3. The
localization of the spectrum of P ε,γa u when a is compactly supported or sup-
ported outside a ball, as stated in iii) and iv) of Proposition 3.12, follows
directly from Remark B.10.

Moreover, Proposition B.24 immediately implies

‖au− P ε,γa u‖0,1,ε,γ +
∑
|α|=1

ε‖a∂αy u− P ε,γa ∂αy u‖0,0,ε,γ . ε‖u‖0,0,ε,γ

and
γ‖au− P ε,γa u‖0,0,ε,γ + ‖a∂tu− P ε,γa ∂tu‖0,0,ε,γ . ‖u‖0,1,ε,γ .

Moreover, it also implies that∑
|α|=2

ε‖a∂αy u− P ε,γa ∂αy u‖0,0,ε,γ . ‖ε∇yu‖0,0,ε,γ . ‖u‖0,1,ε,γ .

This shows that the estimates (3.22) and (3.23) of Proposition 3.17 are
satisfied when m = 0. Commuting with the Zα and using the Leibniz’
formula (B.51) to the remainder Rε,γa u = au−P ε,γa u, we obtain the estimates
for m > 0 and the Proposition 3.17 follows.

To prove Corollary 3.18, we use that

‖R‖m,2,ε,γ . ‖R‖m,0,ε,γ + εγ‖R‖m,0,ε,γ + ε‖∂tR‖m,0,ε,γ
+ ε‖∇yR‖m,0,ε,γ + ε2‖∇2

yR‖m,0,ε,γ .

We apply this estimate to R = R(a, u) := au − P ε,γa u and show that each
term is bounded by

C(ε‖∇a‖L∞ + ε2‖∇2a‖L∞)‖u‖m,1,ε,γ
This is true for the first two terms, by Proposition 3.17. Next we write
that ∂R(a, u) = R(a, ∂u) + R(∂a, u) and ∂2

yR(a, u) as a linear combination
of R(a, ∂2

yu), R(∂ya, ∂yu) and R(∂2
ya, u). The terms R(b, u), b = ∂t,ya or

b = ∂2
ya are controlled by Proposition 3.12 for the part P ε,γb u and directly by

Leibniz’s rule for the part bu. The other terms are estimated by Proposition
3.17 applied to u or ε∂ju.

It only remains to prove Proposition 3.19.
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Proof of Proposition 3.19
The goal is to compare P ε,γb and T γbε when b ∈ PΓ0

1,0 has compact support
in ζ = (η̃, γ) and bε(x, ỹ, ζ) = b(x, ỹ, εζ).

a) First, we note that b can be expanded into a rapidly convergent series

b(x, ỹ, ζ) =
∑
ν

bν(x, ỹ) cν(ζ),

where cν ∈ C∞0 (Rd), bν ∈ W 1,∞(R1+d) and for all α ∈ Nd+1, the sequence
‖bν‖W 1,∞‖∂αcν‖L∞ is rapidly decreasing. Indeed, since b has compact sup-
port in ζ, there is θ ∈ C∞0 such that θ(ζ)b = b. Let L be so large that the
support of θ is contained in the box B = [−L,L]d+1. Then, since b is C∞,
θ(·) b(x, ỹ, ·) can be expanded into rapidly convergent Fourier series, yielding

b(x, ỹ, ζ) =
∑

ν∈Zd+1

bν(x, ỹ) θ(ζ)e2iπνζ/L .

b) Next, we note that when c = c(ζ) and cε(ζ) = c(εζ), then

P ε,γc = T γcε = c(εDey, εγ)
is the operator defined by the Fourier multiplier η̃ 7→ c(εη̃, εγ). Moreover,
the definitions imply that

P ε,γbνcν = P ε,γbν P ε,γcν , T γbνcε
ν

= T γbνT
γ
cε
ν
.

Therefore
P ε,γb − T γbε =

∑
ν

(
P ε,γbν − T γbν

)
P ε,γcν .

Since ∂eyj
and P ε,γcν commute, one also has

(P ε,γb − T γbε)∂eyj
=
∑
ν

(
P ε,γbν ∂eyj

− T γbν∂eyj

)
P ε,γcν .

Propositions 3.9 and 3.17 imply that

γ‖bνu− T γbνu‖L2 + ‖bν∇eyu− T γbν∇eyu‖L2 . ‖∇eybν‖L∞‖u‖L2 ,

γ‖bνu− P ε,γbν u‖L2 + ‖bν∇eyu− P ε,γbν ∇eyu‖L2 . ‖∇eybν‖L∞‖u‖0,1,ε,γ .

Moreover,
‖T γcε

ν
u‖L2 ≤ ‖cν‖L∞ ‖u‖L2 ,
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and, since cν is supported in a fixed compact set,

‖P ε,γcν u‖0,1,ε,γ . ‖cν‖L∞ ‖u‖L2 .

Therefore,

γ‖T γbνcε
ν
− P ε,γbνcνu‖L2 + ‖T γbνcε

ν
∇eyu−P ε,γbνcν∇eyu‖L2

. ‖∇eybν‖L∞‖cν‖L∞‖u‖L2 .

Since the series
∑
‖∇eybν‖L∞‖cν‖L∞ is convergent, we conclude that

(B.53) γ‖T γbε − P ε,γb u‖L2 + ‖T γbε∇eyu− P ε,γb ∇eyu‖L2s . ‖u‖L2 .

c) For all temperate distribution u and γ ≥ 1, there holds

u = γv0 +
∑

∂eyj
vj ,

where the Fourier transform of the vj ’ are given by

v̂0(η̃) = γ|ζ|−2û(η̃) , v̂j(η̃) = −iη̃j/|ζ|−2û(η̃) .

Thus, for all j, one has in the scale of norms (3.6):

‖vj‖L2 ≤ ‖u‖0,−1,γ .

Therefore, using (B.53) for the vj , we obtain that

‖T γbεu− P ε,γb u‖0,0,γ . ‖u‖0,−1,γ ,

finishing the proof of Proposition 3.19. �
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