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Summary. In [LPS], F.Linares, G.Ponce, J-C.Saut have proved that a non-fully
dispersive Zakharov system arising in the study of Laser-plasma interaction, is lo-
cally well posed in the whole space, for fields vanishing at infinity. Here we show
that in the periodic case, seen as a model for fields non-vanishing at infinity, the
system develops strong instabilities of Hadamard’s type, implying that the Cauchy
problem is strongly ill-posed.
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1 Introduction

1.1 Physical context

The construction of powerful lasers allows new experiments where hot plas-
mas are created in which laser beams can propagate. The main goal is to
simulate in a laboratory nuclear fusion by inertial confinement. This requires
precise and reliable models for laser-plasma interactions which can be used
to produce numerical simulations that are usable to predict and illustrate the
experiments. The kinetic-type models are the more precise ones but their cost
in term of computations is exorbitant and, so far, no physically relevant situa-
tion for nuclear fusion can be simulated using these models. Another approach
uses a bi-fluid model for the plasma, coupling two compressible Euler systems
with Maxwell equations. Even in this form, it is not possible to perform di-
rect computations because of the high frequency motions and of the small
wavelength involved in the problem. At the beginning of the 70’s, Zakharov
and his collaborators introduced the so-called Zakharov’s equations [ZMR]
to describe electronic plasma waves. These systems couple the slowly varying
envelope of the electric field and the low-frequency variation of the density of
the ions. A typical non-dimensional form of such a system is:

i∂tu+∆u = nu
∂2

t n−∆n = ∆|u|2

When considering the propagation of a laser beam in a plasma, several such
systems have to be coupled in order to take into account the laser beam,
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the Raman component and the electronic plasma waves (see [CC1, CC2] for
example). The laser beam and the Raman component correspond to trans-
verse electromagnetic waves, while the electronic plasma waves are longitudi-
nal waves. In the latter case, the electric field is a gradient E = ∇ψ which is
linked to low-frequency variations of the density of the ions δn by the following
equations 

i∂t∇ψ + 3v2
th

2ωpe
∆(∇ψ) = ωpe

2n0
∇∆−1div(δn∇ψ),

∂2
t δn− c2s∆δn = 1

4πmi
∆(|∇ψ|2),

(1)

where vth is the thermal velocity of electrons, ωpe the plasma electronic fre-
quency, n0 the mean density of the plasma, mi the mass of the ions and cs
the sound velocity in the plasma. Typical values of vth is 0.1c where c is the
speed of light and ωpe ∼ 1015s−1. The underlying wavelength is of order of the
micro-meter. For laser propagation or for the Raman component, one often
uses the paraxial approximation and the Zakharov system that couples the
vector potential A of the electromagnetic field to the low-frequency variation
of the density of the ions reads i(∂t + k0

c2 ω0∂z)A+ c2

2ω0
∆xA = ω2

pe

2n0ω0
nA,

(∂2
t − c2s∆x)n = ω2

pe

4πmic2∆x|A|2,
(2)

where ω0 is the frequency of the laser and k0 its wave number; they are linked
by the dispersion relation ω2

0 = ω2
pe + k2c2. The space variables are (z, x),

z ∈ R and x ∈ R2 : z is the component in the direction of propagation of the
laser beam and x denotes the components in directions that are transversal to
the propagation. See [R] or [S] for a symmetric use of this kind of model. In
numerical simulations, systems (1) or (2) have to be used in various situations.
Usually one considers that the unit of space is 1

k0
while the relevant unit for

time is 1
ωpe

and the space and time steps have to be respectively of the order
of magnitude of 1

k0
and 1

ωpe
. For experiments concerning fusion by inertial

confinement, one has to consider domains with spatial dimension of order of
the centimeter and over several millions of 1

ω0
. In the 3-D configuration, this

is often out of reach of computational capacities and one restricts attention
to a small piece of the spatial domain. Moreover, in such scalings, it is not
realistic to consider that the fields are localized and, to do numerics, one
usually considers that the plasma as well as the laser have a locally periodic
structure at least at the scales that are considered here. The systems are
then endowed with periodic boundary conditions, since in such situations.
On the contrary, for propagation of lasers in the air or in crystals, one uses
propagation in the whole space Rn with functions tending to zero at infinity.
In this paper, we will focus on the former case, that is periodic boundary
conditions that are useful in the physical framework explained above. The
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propagation in the whole space studied in [LPS] would rather correspond to
the latter case.

1.2 The mathematical framework and the main result

The goal of this paper is to prove an illposedness result for a non-dimensional
form of system (2): {

i(∂t + ∂z)E +∆xE = nE,
(∂2

t −∆x)n = ∆x|E|2.
(3)

We consider the Cauchy problem for (3) with initial data{
E|t=0 = E0,
n|t=0 = n0, ∂tn|t=0 = n1.

(4)

The existence theorem (see [S, GTV, OT] and references therein) for the clas-
sical Zakharov system, that is when ∆x is replaced by ∆(z,x), does not apply.
In [LPS], it is proved that the Cauchy problem for (3)is well posed, locally
in time, for data in suitable Sobolev spaces. The proof is based on dispersion
estimates. For periodic data, these dispersion estimates are not valid. This is
a well known phenomenon, even in the simpler case of Schrödinger equations.
However, the new phenomenon here is that the consequences of this lack of
dispersive effects are much more dramatic since it implies strong instabilities
of Hadamard’s type, so that the Cauchy problem for periodic data is strongly
ill-posed in Sobolev spaces.

For the applications that we have described in the preceding section, it
is quite reasonable to consider that E ∼ E 6= 0 at infinity. Our result has
therefore a practical application and means that the paraxial approximation
is not a good model in this case: one should add the longitudinal dispersion,
that is replace ∆xE in the first equation by (α∂2

z + ∆x)E. A natural math-
ematical question will then be: how does the instability grow when one let
the longitudinal dispersion parameter α tend to zero? We will address this
question in a future work.

We look for solutions U = (E,n) of (3), which are periodic in x, with
period 2π in x and periodic in z with period 2πZ, where Z is arbitrary. We
denote by T the corresponding torus R/2πZ × (R/2π)2.

We consider the constant solution

U = (E, 0), E 6= 0, (5)

which of course does not belong to the spaces used in [LPS], and we prove
that this solution is strongly unstable.

Theorem 1.1 For all s, there are families of solutions Uk = U + (ek, nk), in
C1([0, Tk];Hs(T)) such that
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‖ek(0), nk(0), ∂tnk(0)‖Hs(T) → 0, (6)
Tk → 0, (7)
‖ek(Tk), nk(Tk)‖L2(T) → ∞. (8)

This nonlinear instability result is pretty strong: not only the amplification
‖u(T )‖0/‖u(0)‖s is arbitrarily large, in arbitrarily small time T , with arbitrary
loss of derivatives s, but there is an effective blow up of the L2 norm.

2 The instability mechanism

Our construction is based on the analysis of the dispersion relation for the
Zakharov system. Consider the linearized equations around (E, 0) :{

i(∂t + ∂z)e+∆xe− E n = f,
(∂2

t −∆x)n−∆x(2ReE e) = g
(9)

With (e, e, n) as unknowns the system reads:
−i(∂t + ∂z)e−∆xe+ E n = −f,
i(∂t + ∂z)e−∆e+ E n = −f,
(∂2

t −∆x)n− E ∆xe− E ∆xe = g.
(10)

Denoting by (τ, ζ, ξ) the frequency variables dual to (t, z, x), its symbol is (τ + ζ) + |ξ|2 0 E
0 −(τ + ζ) + |ξ|2 E

|ξ|2E |ξ|2E |ξ|2 − τ2

 (11)

and the relation dispersion is P = 0, where P is the determinant of the system,
that is

P = (|ξ|2 − τ2)
(
|ξ|4 − (τ + ζ)2

)
− 2|E|2|ξ|4 = P0 − 2|E|2|ξ|4. (12)

The remark is that for (ζ, ξ) real, P0 has 4 real roots in τ

−|ξ|, +|ξ|, −ζ − |ξ|2, −ζ + |ξ|2, (13)

with an intermediate double root when 0 < |ξ| = −ζ − |ξ|2. Note that P0 is
of degree 6 in ξ while the perturbation −|E|2|ξ|4 is of degree 4 and negative.
Therefore, for ξ large and ζ = −|ξ| − |ξ|2, the double root of P0 is perturbed
in two conjugated complex roots. More precisely, for

|ξ| � 0, ζ = −|ξ| − |ξ|2 and τ = |ξ|(1 + σ), (14)

the determinant P is

P = −|ξ|5
(
σ2(2− σ/|ξ|)(2 + σ) + 2|E|2/|ξ|

)
. (15)
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The implicit function theorem shows that there are two non-real roots

τ = ξ ± i
|E|√

2
|ξ| 12 + 0(1). (16)

This means that waves at frequency (ζ, ξ) with ζ = −|ξ|−|ξ|2 are amplified
by the exponential factor

eγt|ξ|
1
2 , γ =

|E|√
2
> 0. (17)

This implies that the Cauchy problem for the linearized equations (9) is ill-
posed in H∞ : there are Cauchy data in H∞ such that the homogeneous
problem with f = g = 0 has no solution in C0([0, T ];H−∞).

The goal of this paper is to translate this spectral instability into a non-
linear instability result for the Zakharov system (3).

Remark 2.1 How is it that this spectral instability does not intervene in the
analysis of [LPS]? The first answer is that the condition E 6= 0 is crucial for γ
to be positive. In their case, where solutions vanish at infinity, linearizing the
equation around non-vanishing constants has no real significance. However,
the symbolic calculus above also makes sense in the case of variable coefficients
and one expects that the dispersion relation P = 0, with E replaced by
E(t, z, x), which still has non-real roots, should play an important role in
the analysis. For instance, the symbolic analysis appears when one replaces
the plane wave analysis used for constant coefficients, by geometric optics
expansions associated to localized wave packets. In this case, for a wave packet
with mean frequency (−|ξ| − |ξ|2, ξ) an exponential amplification similar to
(17) is expected. But the group velocity in x of this packet is of order 2ξ;
therefore if E is confined (think of it as compactly supported) the time of
amplification is short (typically O(|ξ|−1) ) so that the overall effect of the
amplification is bounded. Of course, this is just a very rough explanation,
but it is rather intuitive. The detailed balance between amplification and
localization is indeed given by the dispersive estimates proved in [LPS].

Remark 2.2 The system can be reduced to first order in t, introducing
(∂xe, ∂tn, ∂xn) as unknowns, but it is not first order in x, because of the
Schrödinger part of the system. However, there is a good analogy with the
analysis of weakly hyperbolic system. Indeed, the analysis of the symbol (11)
shows that when for ζ = −|ξ|2 − |ξ|, there is a double eigenvalue with a 2× 2
Jordan block. The existence of non-real eigenvalues (16), simply means that
the natural analogue of the Levi condition for first order system is not sat-
isfied. Pursuing the analogy, the exponential growth (51) indicates that the
Cauchy problem should be well posed in Gevrey classes Gs for s ≤ 2.
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3 Scheme of the proof

It is certainly sufficient to prove the theorem with functions of x = (x1, x2)
independent of x2. To simplify notations, we assume from now on that x is
one real variable. Consider spatially periodic solutions of (3), with period 2π
in x and 2πZ in z. Moreover, we look for solutions n and E of the form

n = n(kx−mz, t)
E = E + e(kx−mz, t) (18)

with new functions n(θ, t) and e(θ, t) 2π periodic in θ. For the functions to be
2π periodic in x and 2π/Z periodic in z, it is sufficient that

k ∈ N, mZ ∈ N. (19)

To be close to the unstable frequencies, we require that |m − k − k2| �
√
k

and therefore we choose m ∈ N/Z such that

(k2 + k)− 1/Z < m ≤ (k2 + k). (20)

The new equations read{
i(∂t −m∂θ)e+ k2∂2

θe− En = ne,
(∂2

t − k2∂2
θ )n− k2∂2

θ (E e + E e) = k2∂2
θ |e|2.

(21)

written in short
Lk(∂t, ∂θ)U = Nk(U) (22)

where U = (e, n), Lk is the linear operator defined in the left hand side of
(21), and Nk(u) the quadratic term in the right hand side.

The first step concerns the homogeneous equation

LkU = 0, (23)

which is studied using Fourier series expansions in θ. The choice (20) together
with the spectral analysis of Section 2 and the choice (20) imply that for k
large, the harmonic 1 is unstable :

Proposition 3.1 There is k0 such that for k ≥ k0, there are solutions Ua =
(ea, na) of (23) such that{

ea = êa
1(t)eiθ + êa

−1(t)e
−iθ

na = sinh
(
tσ

)
cos

(
tReλ+ θ

) (24)

with
êa
±1(t) =

(
ea
±1,+e

tγ + ea
±1,−e

−tγ
)
eitλ, (25)

where the parameters λ, σ, e±1,± depend on k, λ and σ being real positive and
satisfy as k → +∞ :

ea
+1,+ ∼ −iE/4σ, ea

+1,− ∼ −iE/4σ, ea
−1,± = O(k−2). (26)

λ ∼ k, σ ∼ |E|
√
k/2. (27)

The proof is given in Section 4.
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Next, we consider δUa as a first approximation of the solution of (22) to
construct, with δ a small parameter to be chosen. More precisely look for
solutions of (22) as

U = δ(Ua + u), u = (e, n) (28)

with the same initial data as δUa. Because the nonlinearity is exactly
quadratic, the equation for u reads

Lk(∂t, ∂θ)u = δNk(Ua + u) , e|t=0 = n|t=0 = ∂tn|t=0 = 0. (29)

This equation is solved by Picard’s iteration; therefore the main step is to
solve the linear equation

LkU = F, e|t=0 = n|t=0 = ∂tn|t=0 = 0. (30)

in Banach spaces which are also well adapted to the nonlinearity. The choice
of these spaces, more precisely of their norm, is technical and dictated by the
computations detailed in the next sections. We just give here their definition.

For a periodic function v of θ, we denote by v̂p its Fourier coefficients so
that

v =
∑
p∈Z

v̂pe
ipθ. (31)

The first Fourier coefficient ê1 plays a special role and we use the notations

e(t, θ) = ê1(t)eiθ + e′(t, θ). (32)

For s ≥ 1 and T > 0 , se denote by E1(T ) the space of u = (e, n) with n real
valued, such that

e ∈ C0([0, T ];Hs+2) ∩ C1([0, T ];Hs), n ∈ C1([0, T ];Hs) (33)

equipped with the norm

‖u‖E1(T ) = supt∈[0,T ] e
−σt

{
k

1
2 |ê1(t)|+ k−

1
2 |∂tê1(t)|

+k
3
4 ‖e′(t)‖Hs+2 + k−

1
2 ‖∂te

′(t)‖Hs

+‖n(t)‖Hs + k−1‖∂tn(t)‖Hs

} (34)

where σ is defined at Proposition 3.1. The norm depends on k ≥ 1 and s,
but, to lighten the text, we do not mention this dependence explicitly in the
notations.

We denote by E2(T ) the same space (33), equipped with the norm

‖u‖E2(T ) = supt∈[0,T ] e
−2σt

{
k|ê1(t)|+ |∂tê1(t)|
+k‖e′(t)‖Hs+2 + k−

1
4 ‖∂te

′(t)‖Hs

+k
1
2 ‖n(t)‖Hs + k−

1
2 ‖∂tn(t)‖Hs

}
.

(35)
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There are two differences between (34) and (35) : first the weight e−σt is re-
placed by e−2σt and second all the powers of k in the coefficients are increased,
at least by a factor 1

4 . In particular,

‖u‖E1(T ) ≤ k−
1
4 eσT ‖u‖E2(T ) (36)

For the right hand sides, we denote by F2(T ) the space of F = (f, g) with
g real valued such that

f ∈ C1([0, T ];Hs), g ∈ C0([0, T ];Hs) with ĝ0 = 0, (37)

equipped with the norm

‖F‖E1(T ) = supt∈[0,T ] e
−2σt

{
k

1
2 ‖f(t)‖Hs +k−

1
2 ‖∂tf(t)‖Hs

+k−
3
4 ‖g(t)‖Hs

} (38)

The next three results justify the choices of these norms. We assume that
the parameter s ≥ 1 is fixed.

The first estimate is an immediate consequence of Proposition 3.1 and (26)
(27).

Lemma 3.2 There is a constant Ka such that for all k ≥ k0 and all T ≤ 1,
the approximate solution Ua of Proposition 3.1 satisfies

‖Ua‖E1(T ) ≤ Ka. (39)

The next two propositions are proved in Section 6.

Proposition 3.3 There is C1 > 0, such that for all k ≥ k0, all T ≤ 1 and all
F ∈ F2(T ), the Cauchy problem (30) has a unique solution U ∈ E2(T ) and

‖U‖E2(T ) ≤ C1‖F‖F2(T ). (40)

The nonlinearityNk(U) occurring in (22) is quadratic. Denote byNk(U, V )
the associated bilinear form such that Nk(U) = Nk(U,U).

Proposition 3.4 There is C2 > 0, such that for all k ≥ k0, all T ≤ 1 and
all U and V in E1(T ), there holds Nk(U, V ) ∈ F2(T ) and

‖Nk(U, V )‖F2(T ) ≤ C2‖U‖E1(T )‖V ‖E1(T ). (41)

These estimates easily imply the following:

Corollary 3.5 There are c0 > 0, C and k0, such that for all k ≥ k0 and all
δ ∈]0, 1], the problem (29) has a unique solution u = (e, n) in the unit ball of
E1(T ), provided that

δk−
1
4 eσT ≤ c0. (42)

Moreover, the solution satisfies

‖n(t)‖Hs ≤ Ck−
1
4 eσt (43)
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Proof. Denote by L−1
k F the solution of (30), and consider the mapping

u 7→ T u := δL−1
k Nk(ua + u)

which, by the lemma and propositions above, is well defined from E1(T ) to
E1(T ). Moreover,

‖T u‖E1(T ) ≤ C1C2δk
− 1

4 eσT (Ka + ‖u‖E(T ))2.

Thus it maps the unit ball to of E1(T ) to itself, if (42) holds with c0 small
enough. Similarly, decreasing c0 if necessary, one shows that this mapping
is contractive on the unit ball, implying the existence and uniqueness of the
solution of u = T u in the unit ball.

The equation u = T u and the estimates also imply that

‖n(t)‖Hs ≤ k−
1
2 e2σt‖u‖E2(T ) ≤ C1C2δk

− 1
2 e2σt(Ka + 1)2

≤ C1C2c0k
− 1

4 eσt(Ka + 1)2

finishing the proof of the Corollary.

We end this section by proving that the main Theorem 1.1 is a consequence
of this analysis.

Proof (Proof of Theorem 1.1).
We fix an integer s. With

δ = k−(2s+2), (44)

Corollary 3.5 provides us with solutions of (22), Uk = U + δ(Ua + uk), with
uk in the unit ball of E1(Tk) and Tk = 1

σ ln(k2s+2+ 1
4 /c0) satisfies

δk−1/4eσTk = c0. (45)

Since σ is of order k
1
2 by (88), Tk tends to 0 as k tends to infinity, at the rate

Tk ≈
ln k√
k
. (46)

Going back to the (z, x) variables, according to the change of variables
(18), we obtain solutions, denoted by Ũk = U + ũk, of the original Zakharov
system (3). Set ũk = (ẽk, ñk); these functions are deduced from δ(Ua +uk) by
the change of variables (18). Since m ≤ k2 + k, we can evaluate the Hs norm
(in the variables (z, x)) of the Cauchy data

‖(ẽk|t=0, ñk|t=0, ∂tñk|t=0‖Hs(T) ≤ C δ k2s+1 ‖Ua + uk‖E1(T )

≤ C δ k2s+1(Ka + 1).
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Note that there is no Jacobian factor because the L2 norms are taken for
(z, x) ∈ T in the left hand side and for θ ∈ R/2πZ in the right hand side so
that ∫

T
v(kx−mz)dzdx =

measT
2π

∫ 2π

0

v(θ)dθ. (47)

Therefore, with our choice of δ, the left hand side tends to zero as k tends to
infinity.

Finally we compute the L2 norm of ñk at time Tk. Using (47) and (24) we
see that

‖ñk(Tk)‖L2(T) ≥ c1δ sinh(Tkσ) − δ‖nk(Tk)‖L2

with c1 > 0 independent of k. Therefore, (43) (45) imply that

‖ñk(Tk)‖L2(T) ≥ 1
2c1δe

σTk − Cδk−
1
4 eσTk −O(δe−σTk)

≥ 1
2c1c0k

1
4 − Cc0 − o(1).

Therefore this L2 norm tends to +∞ and the proof of the theorem is complete.

4 The linear instability

We study the linear equation for U = (e, n) and F = (f, g)

LkU = F (48)

using Fourier series expansions in θ:

e(θ, t) =
∑

êp(t)eipθ, n(θ, t) =
∑

n̂p(t)eipθ. (49)

Since n and g are real,
n̂−p = n̂p, ĝ−p = ĝp, (50)

and (48) reduces to

L̃k(∂t, 0)U0 := ( ∂ )t ê0 − E0n̂0∂
2
t n̂0 = F0 := ( f̂0 ) ĝ0 (51)

and for p ≥ 1 
(i∂t +mp− k2p2)êp − En̂p = f̂p,

(i∂t +mp+ k2p2)ẽp + En̂p = f̃p,
(∂2

t + k2p2)n̂p + k2p2
(
Eêp + Eẽp) = ĝp,

(52)

with
ẽp = e−p, f̃p = −f−p (53)

are the Fourier coefficients of e and −f respectively. For p > 0, we denote by
L̃k(∂t, p) the linear operator in the left hand side of (52).
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In the remaining part of this section we concentrate on the case p = 1 and
prove Proposition 3.1. We reduce (52) for p = 1 to a first order system by
introducing v1 = −ik−1∂tn̂1. The equation reads

i∂tV1 +AV1 = F1, (54)

with
V1 = (ê1, ẽ1, n̂1, v1), F1 = (f̂1, f̃1, 0, k−1ĝ1) (55)

and

A =


m− k2 0 −E 0

0 m+ k2 E 0
0 0 0 k

kE kE k 0

 (56)

Lemma 4.1 If E 6= 0 and k is large enough, A has four distinct eigenvalues;
two, called λ1 and λ2 are real and the other two, λ3 and λ4, are non-real and
complex conjugated. There holds

λ1 ∼ 2k2, λ2 ∼ −k, Reλ3 ∼ k, σ := Imλ3 ∼ |E|
√
k/2. (57)

Proof. This follows from the analysis of the determinant equation in Section 2.
The eigenvalue equation is

P = (λ2 − k2)
(
(λ−m)2 − k4

)
− 2|E|2k4 = 0 (58)

Following (20), we write m = k2 + k +m′, and the equation reads

(λ2 − k2)(λ− k +m′)(λ− 2k2 − k +m′) = 2|E|2k4

Because m′ = O(1), the lemma easily follows by perturbation analysis of the
roots of

(λ2 − k2)(λ− k +m′)(λ− 2k2 − k +m′) = 0.

Next, to evaluate eitA, we need to analyze the eigenprojectors of A. Denote
by rj [resp. lj ] right [resp. left ] eigenvectors of A associated to the eigenvalue
λj . Then

eitAΦ =
4∑

j=1

eitλj
(lj · Φ)
(lj · rj)

rj . (59)

A detailed inspection of the eigenvector equations implies the following

r1 =


O(k−4)

1
O(k−2)
O(k−1)

 , l1 =
[
O(k−4), 1, O(k−2), O(k−3)

]
, (60)
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r2 ∼


O(k−1)
O(k−2)

1
−1

 , l2 ∼
[
O(1), O(k−1), 1, −1

]
, (61)

where, for vectors a and b, a ∼ b means that all the components satisfy
ak ∼ bk. Moreover,

r3 ∼


iE/σ
O(k−2)

1
1

 , l3 ∼
[
kE/iσ, O(k−1), 1, 1

]
, (62)

r4 = r3, l4 = l3 (63)

where σ2 = k|E|2/2 ≈ k. Note that r3,4 = 0(1) and r3 − r4 = O(|E|/
√
k)

and l3,4 = O(|E|
√
k) while r3,4 · l3,4 ∼ 4. This reflects that for E = 0, the

corresponding matrix has a Jordan block.

Proof (Proof of Proposition 3.1.).
With notations as above,

V a
1 = ( êa

1 ) ẽa
1n̂

a
1v

a
1 :=

1
4
(
eitλ4r4 − eitλ3r3

)
(64)

is a solution of (54) with F1 = 0. It corresponds to a solution (êa
1 , ẽ

a
1 , n

a
1) of

L̃1Ũ
a
1 = 0 and therefore to a solution

ea = êa
1e

iθ + ẽa
1e
−iθ, na = n̂a

1e
iθ + na

1e
−iθ (65)

of L1U
a = 0.

Choosing, as we may, r3 and r4 such that the third component is exactly
equal to one, we obtain that

na(t, θ) = sinh
(
tσ

)
cos

(
tReλ3 + θ

)
and the estimate (26) follows from the estimates of the eigenvectors above.
Moreover, (27) follows from Lemma 4.1.

Next we turn to the analysis of (54). The solution with vanishing initial
data is

V1(t) =
4∑

j=1

∫ t

0

ei(t−s)λj
(lj · F1(s))

(lj · rj)
rj ds. (66)

Introduce Φj = lj · F1. With f denoting (f̂1, f̃1) and g = ĝ1 there holds

Φ1 = ∗f + ∗k−4g,
Φ2 = ∗f + ∗k−1g,

Φ3,4 = ∗
√
kf + ∗k−1g.

(67)
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where ∗ denotes constants coefficients that are uniformly bounded in k. Let

Ψj(t) =
∫ t

0

eiλj(t−s)Φj(s)ds. (68)

The properties of the rj ’s and (66) imply that the components (ê1, ẽ1, n̂1, v1)
of V1 satisfy:

ê1 = ∗k−4Ψ1 + ∗k−1Ψ2 + ∗k−1/2Ψ3,4,
ẽ1 = ∗Ψ1 + ∗k−2Ψ2 + k−2Ψ3,4,
n̂1 = ∗k−2Ψ1 + ∗Ψ2 + ∗Ψ3,4,
v1 = ∗k−1Ψ1 + ∗Ψ2 + ∗Ψ3,4.

(69)

We use the following elementary estimates:

Lemma 4.2 Let

ψ(t) =
∫ t

0

eiλ(t−s)φj(s)ds. (70)

There holds

|ψ(t)| ≤
∫ t

0
e−Im λ(t−s)|φ(s)|ds,

|∂tψ(t)| ≤ |λj | |ψ(t)|+ |φ(t)|,
|∂tψ(t) | ≤ e−Im λt|φ(0)|+

∫ t

0
e−Im λ(t−s)|∂tφ(s)|ds,

|λ| |ψ(t)| ≤ |∂tψ(t)|+ |φ(t)|.

(71)

To simplify notations, we note A . B to mean that there is a constant C
independent of k such that A ≤ CB. We use the first and second estimate of
Lemma 4.2 to bound the contributions of g to the integrals in (66), and we
use the third and fourth estimate, when necessary, to bound the contributions
of f . Therefore,

|Ψ1(t)| .
∫ t

0
|f(s), k−4g(s)|ds,

|∂tΨ1(t)| . |f(0)|+ |k−4g(t)|+
∫ t

0
|∂tf(s), k−2g(s)|ds,

k2|Ψ1(t)| . |f(0)|+ |f(t)|+
∫ t

0
|∂tf(s), k−2g(s)|ds

(72)

|Ψ2(t)| .
∫ t

0
|f(s), k−1g(s)|ds,

|∂tΨ2(t)| . |f(0)|+ |k−1g(t)|+
∫ t

0
|∂tf(s), g(s)|ds,

k|Ψ2(t)| . |f(0)|+ |f(t)|+
∫ t

0
|∂tf(s), g(s)|ds,

(73)

|Ψ3,4(t)| .
∫ t

0
e(t−s)σ|

√
kf(s), k−1g(s)|ds,

|∂tΨ3,4(t)| . etσ|
√
kf(0)|+ |k−1g(t)|+

∫ t

0
e(t−s)σ|

√
k∂tf(s), g(s)|ds,

k|Ψ3,4(t)| . etσ|
√
kf(0)|+ |

√
kf(t)|+

∫ t

0
e(t−s)σ|

√
k∂tf(s), g(s)|ds.

(74)

Adding up the various estimates, we obtain:

Proposition 4.3 For p = 1, the solution (ê1, ẽ1, n̂1) of (52) with vanishing
initial data satisfies:
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|ê1(t)| .
∫ t

0
eσ(t−s)|f1(s), k−

3
2 ĝ1(s)|ds,

|∂tê1(t)| . eσt|f1(0)| +|k− 3
2 ĝ1(t)|

+
∫ t

0
eσ(t−s)|∂tf1(s), k−

1
2 ĝ1(s)|ds,

(75)

k2|ẽ1(t)|+ |∂tẽ1(t)| . eσt|f1(0)|+ |f1(t)|+ |k−3ĝ1(t)|
+

∫ t

0
eσ(t−s)|∂tf1(s), k−1ĝ1(s)|ds,

(76)

k|n̂1(t)|+ |∂tn̂1(t)| . eσtk
1
2 |f1(0)|+ |k 1

2 f1(t)|+ |k−1ĝ1(t)|
+

∫ t

0
eσ(t−s)|f1(s), k

1
2 ∂tf1(s), ĝ1(s)|ds,

(77)

where f1 = (f̂1, f̃1).

Corollary 4.4 There are k0 and C such that for all k ≥ k0, K, T > 0, and
all f1 = (f̂1, f̃1), g1 satisfying for t ∈ [0, T ]

k
1
2 |f1(t)|+ k−

1
2 |∂tf1(t)|+ k−

3
4 |ĝ1(t)| ≤ Ke2σt,

then the solution of (52) for p = 1 with vanishing initial data satisfies

k|ê1(t)|+ |∂tê1(t)| ≤ CKe2σt,

k|ẽ−1(t)|+ k−
1
4 |∂tẽ−1(t)| ≤ CKe2σt,

k
1
2 |n̂1(t)|+ k−

1
2 |∂tn̂1(t)| ≤ CKe2σt.

Proof. a) From Proposition 4.3 we deduce that

k|ê1(t)| ≤ CK1

√
k

∫ t

0

eσ(t−t′)e2σt′dt′ ≤ CKe2σt, (78)

where we have used that σ ≈
√
k. Similarly,

|∂tê1(t)| ≤ CK1

(
k−1/2eσt + k−3/4e2σt +

∫ t

0

√
keσ(t−t′)e2σt′dt′

)
≤ CKe2σt.

(79)
This implies the first estimate.

b) Similarly, (76) implies that

k2|ê−1(t)|+ |∂tê−1(t)| ≤ CK1

(
eσt + e2σt +

∫ t

0

√
keσ(t−t′)e2σt′dt′

)
≤ CKe2σt.

(80)

c) The estimate (77) implies that

k|n̂1(t)|+ |∂tn̂1(t)| ≤ CK1

(
eσt + e2σt +

∫ t

0
keσ(t−t′)e2σt′dt′

)
≤ CK

√
ke2σt

(81)

and the lemma is proved.
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5 The linear equation

We continue the analysis of the linear equation (48). As seen in (52), when
expanded in Fourier series, this equation couples the coefficients of indices p
and −p. The case of indices +1 and −1 is studied in the previous section.
Using the notations

v = v̂1e
iθ + v̂−1e

−iθ + v′′ (82)

we consider the equation (48) for functions with vanishing Fourier coefficients
of indices ±1 :

L′′kU
′′ = F ′′, (83)

which reduces to the analysis of equations (52) for Fourier p 6= 1.
The symbol of L̃k(∂t, p) is

L̃k(iτ, p) =

−τ +mp− k2p2 0 −E0

0 −τ +mp+ k2p2 E0

k2p2E0 k2p2E0 k2p2 − τ2

 (84)

which is of course equal to the symbol (11) with with ξ = kp, ζ = −mp, up
to a change of sign in the first line.

Assume first that p > 1. In this case, we consider L̃k(∂t, p) as a perturba-
tion of

Mk(∂t, p) :=

 i∂t +mp− k2p2 0 0
0 i∂t +mp+ k2p2 0
0 0 ∂2

t + k2p2

 (85)

For the wave operator, we use the classical estimates:

Lemma 5.1 There is C > 0, such that for all k ≥ 1 and p ≥ 1, the solution
n of

∂2
t n+ k2p2n = g, n(0) = ∂tn(0) = 0 (86)

satisfies
kp|n(t)|+ |∂tn(t)| ≤ C‖g‖L1([0,t]). (87)

For the Schrödinger equations, we use the following estimates.

Lemma 5.2 There are C > 0 and k0 ≥ 1, such that for all k ≥ k0 and p ≥ 2,
the solutions of

(i∂t +mp± k2p2)e = f, e(0) (88)

satisfy

k2p2|e(t)|+ |∂te(t)| ≤ C
(
‖f‖L1([0,t]) + ‖∂tf‖L1([0,t]) + |f(0)|

)
(89)
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Proof. Standard energy estimates imply that

|e(t)| ≤ C
(
|e(0)|+ ‖f‖L1([0,t])

)
. (90)

Differentiating in time the equation, we obtain

|∂te(t)| ≤ C
(
|∂te(0)|+ ‖∂tf‖L1([0,t])

)
. (91)

The initial condition in (88) implies that ∂te(0) = −if(0). Therefore,

|(k2p2 ±mp)e(t)|+ |∂te(t)| ≤ C
(
‖f‖L1([0,t]) + ‖∂tf‖L1([0,t]) + |f(0)|+ |f(t)|

)
(92)

Recall thatm is linked to k through (20). Thusmp ≤ k2p+kp and k2p2−mp ≥
k2(p2 − p)− kp ≥ ck2p2 for all p ≥ 2 if k is large enough.

Proposition 5.3 Consider the equation (52) with initial data

êp(0) = ẽp(0) = n̂p(0) = ∂tn̂p(0) = 0 (93)

Then, for p ≥ 2, k ≥ k0, there holds for t ∈ [0, 1]:

k2p2|êp(t), ẽp(t)|+ |∂t êp(t), ∂tẽp(t)|+ kp|n̂p(t)|+ |∂tn̂p(t)|
≤ C

(
‖f̂p, f̃p‖L1([0,t]) + ‖∂tf̂p, ∂tf̃p‖L1([0,t])

+|f̂p(0), f̃p(0)|+ |f̂p(t), f̃p(t)|+ ‖ĝp‖L1([0,t])

)
.

(94)

Proof. The lemmas above imply that the left hand side is estimated by the
right hand side plus

C
(
|n̂p(t)|+ ‖n̂p, ∂tn̂p, k

2p2êp(t), k2p2ẽp‖L1([0,t])

)
(95)

The first term is absorbed in the left hand side by kp|n̂p(t)| for k large enough.
With Gronwall’s lemma, this implies (94) for t ∈ [0, 1], with a larger constant
C.

When p = 0, there holds:

Lemma 5.4 When ĝ0 = 0, the solution of (51) with vanishing initial data is

n̂0 = 0, ê0(t) =
∫ t

0

f̂0(t′)dt′. (96)

With the estimates (94), one deduces the following result

Corollary 5.5 There are k0 and C such that for all k ≥ k0, K, T > 0, and
all (f ′′, g′′) with ĝ0 = 0, satisfying for t ∈ [0, T ]

k
1
2 ‖f ′′(t)‖Hs + k−

1
2 ‖∂tf

′′(t)‖Hs ≤ Ke2σt,

‖g′′(t)‖Hs ≤ Kk3/4e2σt.

the solution of (83) with vanishing initial data satisfies

k‖e′′(t)‖Hs+2 + k−
1
4 ‖∂te

′′(t)‖Hs ≤ CKe2σt,

k
1
2 ‖n′′(t)‖Hs + k−

1
2 ‖∂tn

′′(t)‖Hs ≤ CKe2σt.
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Proof. By Lemma 5.4, there holds

k|ê0(t)|+ |∂tê0(t)| ≤ CK1

(
e2σt +

∫ t

0

√
keσ(t−t′)e2σt′dt′

)
≤ CKe2σt. (97)

Next, Proposition 5.3 implies that e′′ satisfies

k2 ‖∂2
θe
′′(t)‖Hs + ‖∂te

′′(t)‖Hs

≤ CK
(
(1 + e2σt) +

∫ t

0
k3/4eσ(t−t′)e2σt′dt′

)
≤ k1/4CKe2σt.

(98)

Together with (97) this implies the first estimate.
Moreover, Proposition 5.3 implies that n′′ satisfies

k ‖n′′(t)‖Hs + ‖∂tn
′′(t)‖Hs

≤ CK
(
(1 + e2σt) +

∫ t

0
k3/4eσ(t−t′)e2σt′dt′

)
≤ k1/4CKe2σt.

(99)

Since n̂0 = 0, this implies the second estimate.

6 End of proofs

First, we note that Proposition 3.3 is an immediate consequence of Corollar-
ies 4.4 and 5.5.

It remains to prove Proposition 3.4. With U = (e, n) and U∗ = (e∗, n∗),
there holds

Nk(U,U∗) = (f, g)with (100)

f = ne∗ + n∗e, (101)
g = k2∂2

θ

{
Re (ee∗)

}
. (102)

Proposition 3.4 follows from the next estimates.

Lemma 6.1 There is a constant C, independent of k, such that

√
k‖f(t)‖Hs +

1√
k
‖∂tf(t)‖Hs ≤ Ce2σt‖U‖E1(T )‖U∗‖E1(T ), (103)

‖g(t)‖Hs ≤ Ck3/4e2σt‖U‖E1(T )‖U∗‖E1(T ). (104)

Moreover, the mean value ĝ0 of g vanishes.

Proof. The first estimate follows directly from the definitions and the inequal-
ity

‖ab‖Hs ≤ C‖a‖Hs‖b‖Hs . (105)

Next, we note that for e = ê1e
iθ + e′ and e∗ = ê∗1e

iθ + e∗′

∂2
θ (ee∗) = ∂2

θ (e′e∗′) + ê1∂
2
θ (e∗′e−iθ) + ê∗1∂

2
θ (e′eiθ). (106)



20 Contents

Hence, in Hs norms, there holds

‖∂2
θ (ee∗)‖Hs . ‖∂2

θe
′‖Hs

(
‖e∗′‖+ ‖∂θe

∗′‖2
)

+ ‖∂2
θe
∗′‖Hs

(
‖e′‖+ ‖∂θe

′‖2
)

+ |ê1|
(
‖∂2

θe
∗′‖+ ‖e∗′‖

)
+ |ê∗1|

(
‖∂2

θe
′‖+ ‖e′‖

)
(107)

and (104) follows.
In addition, the θ-mean value ĝ0 vanishes since g is a θ-derivative.
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