Well Balanced ALE : On time dependent ADAPTATION FOR SHALLOW WATER FLOWS

L. Arpaia and M. Ricchiuto

INRIA Bordeaux - Sud-Ouest, project BACCHUS

SIAM conference on
Nonlinear Waves and Coherent Structures
August 11th - 14th, 2014
Churchill College, University of Cambridge

Scope and outline of the talk

Main objective

Discuss techniques allowing time dependent mesh adaptation for shallow water flows in a cost effective manner :

1. simple to implement, no major code restructuring, no major modifications to the scheme
2. minimize error vs CPU time

Milestones

- Simple mesh deformation based on solution smoothness
- ALE formulation for balance laws vs steady invariants
- Scheme-mesh adaptation coupling based on two strategies

1. Deformation-Projection-Evolution (DPE)
2. Deformation-ALE evolution (DALE)

Outline

Motivation and objectives

Time dependent mesh adaptation by elastic deformation

Well balanced ALE discretization of Balance laws

Deformation-Projection-Evolution : DPE

Deformation-ALE evolution : DALE

Numerical experiments
Scalar balance laws
Shallow Water equations

Summary and future work

Mathematical setting

Model Equation

Seek approximate solutions of

$$
\begin{equation*}
\partial_{t} u+\nabla \cdot \mathcal{F}(u)=\mathcal{S}(u, g(\vec{x})) \tag{1}
\end{equation*}
$$

on a time dependent unstructured mesh $\mathcal{T}_{h}(t)$.

$$
\mathcal{T}_{h}\left(t=t_{1}\right)
$$

$\mathcal{T}_{h}\left(t=t_{2}\right)$

Mathematical setting

Model equations

Seek approximate solutions of

$$
\begin{equation*}
\partial_{t} u+\nabla \cdot \mathcal{F}(u)=\mathcal{S}(u, g(\vec{x})) \tag{1}
\end{equation*}
$$

on a time dependent unstructured mesh $\mathcal{T}_{h}(t)$.

Remarks

- We focus on triangular meshes
- Equation (1) assumed to admit non-trivial steady equilibria characterized by

$$
\eta(u)=\eta_{0}=\mathrm{const}
$$

- Shallow Water equations: no dry areas in this talk
- No local time stepping : no compensation for higher CPU time due to smaller Δt s

Mathematical setting

Model equations

Seek approximate solutions of

$$
\begin{equation*}
\partial_{t} u+\nabla \cdot \mathcal{F}(u)=\mathcal{S}(u, g(\vec{x})) \tag{1}
\end{equation*}
$$

on a time dependent unstructured mesh $\mathcal{T}_{h}(t)$.

Building blocks

1. Discrete model for $\mathcal{T}_{h}(t)$: Time dependent mesh adaptation
2. Well balanced discretization of (1) on moving meshes: Well balanced ALE
3. Coupling strategy : projection and evolution or ALE ?

1. Time dependent mesh adaptation

- Alauzet et al JCP 222, 2007 :
re-mesh and adapt to all solutions in a given time slab
- Guardone et al JCP 230, 2011 :
continuous deformation with ALE and edge swap (variable topology)
- Alauzet Eng.w.Computers 30, 2014 :
continuous deformations with edge swap (variable topology)
- Tang and Tang SINUM 41, 2003 : continuous deformation with fixed mesh topology
- etc.

Mesh adaptation by elastic deformation with fixed topology

Fixed topology : point positions change, data structure is constant \longrightarrow simple

INVENTEURS DU MONDE NUMERIQUE

Time dependent mesh adaptation by elastic deformation

Elliptic "Elastic" mesh movement

Given the mesh in the reference frame $\vec{X}=\left(X_{1}, X_{2}\right)$, seek $\vec{x}=\vec{x}(\vec{X})$ such that

$$
\nabla_{\vec{X}} \cdot\left(\omega\left(\nabla_{\vec{x}} u\right) \nabla_{\vec{X}} \vec{x}\right)=\mathrm{bc} . \mathrm{s}
$$

- Elliptic non-linear system of equations for the mapped (new) point positions \vec{x}, in particular (Tang and Tang, SINUM 2003) :

$$
\omega\left(\nabla_{\vec{x}} u_{h}\right)=\sqrt{1+\alpha \nabla u^{*}}, \quad \nabla u^{*}=\min \left(1, \frac{\left\|\nabla_{\vec{x}} u_{h}\right\|^{2}}{\beta^{2} \max _{i}\left\|\nabla_{\vec{x}} u_{i}\right\|^{2}}\right)
$$

Time dependent mesh adaptation by elastic deformation

Elliptic "Elastic" mesh movement
Elastic analogy : setting

$$
\vec{\delta}=\vec{x}-\vec{X}, \quad \sigma=\omega \nabla_{\vec{X}} \delta, \quad \vec{F}=-\mathbf{I}_{2} \cdot \nabla_{X} \omega
$$

we can recast last equation as

$$
\nabla_{X} \cdot \sigma=\vec{F}+\mathrm{bc} . \mathrm{s}
$$

- Role of $\omega=\omega\left(\nabla_{\vec{x}} u\right)$: controlling the stiffness and the force.

Time dependent mesh adaptation by elastic deformation

Elliptic "elastic" mesh movement : in practice
Elliptic PDE discretized by means of standard P^{1} continuous Galerkin

$$
\int_{\mathcal{T}_{X}} \nabla_{\vec{X}} v_{h} \cdot \omega\left(\nabla_{\vec{x}} u_{h}\right) \nabla_{\vec{X}} \vec{\delta}_{h}=\int_{\mathcal{T}_{X}} \mathbf{I}_{2} \cdot \omega\left(\nabla_{\vec{x}} u_{h}\right) \nabla_{X} v_{h}+\mathrm{bc} . \mathrm{s}
$$

Leading to the non-linear system

$$
\sum_{j} \kappa_{i j}(\vec{\delta}) \vec{\delta}_{j}=f_{i}(\vec{\delta}) \quad \forall i
$$

with $\kappa_{i j}(\delta)$ the FEM stiffness matrix and $f_{i}(\vec{\delta})$ the force

Time dependent mesh adaptation by elastic deformation

Elliptic "elastic" mesh movement : in practice Solution algorithm : relaxed Newton-Jacobi iterations

$$
\begin{align*}
& \vec{\delta}_{i}^{k+1}=\vec{\delta}_{i}^{k}-\frac{\sum_{j \neq i} \kappa_{i j}^{k} \vec{\delta}_{j}^{k}-f_{i}}{\kappa_{i i}^{k}} \tag{2}\\
& \vec{x}_{k+1}=\vec{x}_{k}+\mu \vec{\delta}^{k+1}
\end{align*}
$$

Important remarks

- At each iteration the FEM stiffness matrix $\kappa_{i j}^{k}$ depends on $\nabla_{\vec{x}_{k}} u_{h}$ via ω : Need to compute $u_{h}\left(\vec{x}_{k}\right)$, the projection of the function u on the mesh \vec{x}_{k}

2. Well balanced schemes on moving meshes

- ref ????

Well balanced ALE

ALE RECAP FOR $\partial_{t} u+\nabla \cdot \mathcal{F}(u)=0$

- Farahat et al IJNMF 21 1995;
- Lesoinne and Farahat, CMAME 134, 1996 ;
- Farahat et al JCP 1742001

Well balanced ALE

ALE RECAP FOR $\partial_{t} u+\nabla \cdot \mathcal{F}(u)=0$
Definitions:
Deformation speed

$$
\sigma=\frac{d \vec{x}}{d t}
$$

Deformation Jacobian

$$
J=\operatorname{det} \frac{\partial \vec{x}}{\partial \vec{X}}
$$

Volume :

$$
V(t)=\int_{V(t)} d \vec{x}=\int_{V(t=0)} J d \vec{X}
$$

Well balanced ALE

ALE RECAP FOR $\partial_{t} u+\nabla \cdot \mathcal{F}(u)=0$
Main results :

- Geometric Conservation Law (GCL, evolution of volume) :

$$
\begin{equation*}
\left.\partial_{t} J\right|_{\vec{X}}=J \nabla_{\vec{x}} \cdot \sigma \tag{3}
\end{equation*}
$$

- Conservation law in ALE form (ALE-CL) :

$$
\begin{equation*}
\left.\partial_{t}(J u)\right|_{\vec{X}}+J \nabla_{\vec{x}} \cdot(\mathcal{F}(u)-\sigma u)=0 \tag{4}
\end{equation*}
$$

Fundamental Relation
ALE-CL reduces to GCL for constant u !!!!

Well balanced ALE

ALE RECAP FOR $\partial_{t} u+\nabla \cdot \mathcal{F}(u)=0$
Discretization of ALE-CL, e.g. explicit FV on cell V_{i} :

$$
\begin{equation*}
V_{i}^{n+1} u_{i}^{n+1}-V_{i}^{n} u_{i}^{n}+\int_{t^{n}}^{t^{n+1}} \int_{\partial V_{i}(t)}\left(\widehat{F}\left(u^{n}\right)-\widehat{\sigma u}^{n}\right) \cdot \vec{n}(t)=0 \tag{5}
\end{equation*}
$$

- $\widehat{F}(u)$ and $\widehat{\sigma u}$ FV numerical fluxes consistent with $\mathcal{F}(u)$ and σu
- Discrete point diplacement speed

$$
\sigma_{i}=\frac{\vec{x}_{i}^{n+1}-\vec{x}_{i}^{n}}{\Delta t}=\frac{\vec{\delta}_{i}}{\Delta t}
$$

Well balanced ALE

ALE RECAP FOR $\partial_{t} u+\nabla \cdot \mathcal{F}(u)=0$
Discretization of ALE-CL, e.g. explicit FV on cell V_{i} :

$$
\begin{equation*}
V_{i}^{n+1} u_{i}^{n+1}-V_{i}^{n} u_{i}^{n}+\int_{t^{n}}^{t^{n+1}} \int_{\partial V_{i}(t)}\left(\widehat{F}\left(u^{n}\right)-\widehat{\sigma u}{ }^{n}\right) \cdot \vec{n}(t)=0 \tag{6}
\end{equation*}
$$

Fundamental Relation : Discrete-GCL

To be consistent with a constant state, for $u=u_{0}$, the scheme MUST reduce to the identity

$$
u_{0}\left(V_{i}^{n+1}-V_{i}^{n}-\int_{t^{n}}^{t^{n+1}} \int_{\partial V_{i}(t)} \widehat{\sigma} \cdot \vec{n}(t)\right)=0
$$

Well balanced ALE

ALE RECAP FOR $\partial_{t} u+\nabla \cdot \mathcal{F}(u)=0$
Discretization of ALE-CL, e.g. explicit FV on cell V_{i} :

$$
\begin{equation*}
V_{i}^{n+1} u_{i}^{n+1}-V_{i}^{n} u_{i}^{n}+\int_{t^{n}}^{t^{n+1}} \int_{\partial V_{i}(t)}\left(\widehat{F}\left(u^{n}\right)-\widehat{\sigma u}{ }^{n}\right) \cdot \vec{n}(t)=0 \tag{7}
\end{equation*}
$$

Fundamental Relation : Discrete-GCL
Possible solution (see e.g. Farahat et al IJNMF 1995, for the definition of $\widehat{\sigma}$)

$$
V_{i}^{n+1} u_{i}^{n+1}-V_{i}^{n} u_{i}^{n}+\Delta t \int_{\partial V_{i}\left(t^{n+1 / 2}\right)}\left(\widehat{F}\left(u^{n}\right)-\widehat{\sigma u}^{n}\right) \cdot \vec{n}\left(t^{n+1 / 2}\right)=0
$$

Well balanced ALE

ALE FOR A BALANCE LAW

$$
\partial_{t} u+\nabla \cdot \mathcal{F}(u)=\mathcal{S}(u, g(\vec{x}))
$$

admitting a steady state characterized by

$$
\eta(u, g)=\eta_{0}=\text { const } \Rightarrow \nabla \cdot \mathcal{F}=\mathcal{S}(u, g(\vec{x}))
$$

Well balanced ALE

ALE for a balance law

$$
\partial_{t} u+\nabla \cdot \mathcal{F}(u)=\mathcal{S}(u, g(\vec{x}))
$$

Straightforward application of ALE theory

$$
\left.\partial_{t}(J u)\right|_{\vec{X}}+J \nabla_{\vec{x}} \cdot(\mathcal{F}(u)-\sigma u)=J \mathcal{S}(u, g(\vec{x}))
$$

plus the GCL

$$
\left.\partial_{t} J\right|_{\vec{X}}=J \nabla_{\vec{x}} \cdot \sigma
$$

Well balanced ALE

ALE for a balance law

$$
\partial_{t} u+\nabla \cdot \mathcal{F}(u)=\mathcal{S}(u, g(\vec{x}))
$$

Straightforward application of ALE theory

$$
\left.\partial_{t}(J u)\right|_{\vec{X}}+J \nabla_{\vec{x}} \cdot(\mathcal{F}(u)-\sigma u)=J \mathcal{S}(u, g(\vec{x}))
$$

plus the GCL

$$
\left.\partial_{t} J\right|_{\vec{X}}=J \nabla_{\vec{x}} \cdot \sigma
$$

Take now $\eta(u, g)=\eta_{0}=$ const $\Rightarrow \nabla \cdot \mathcal{F}=\mathcal{S}$ and combine these two relations

Well balanced ALE

ALE for a balance law

$$
\partial_{t} u+\nabla \cdot \mathcal{F}(u)=\mathcal{S}(u, g(\vec{x}))
$$

Straightforward application of ALE Theory

If we take $\eta(u, g)=\eta_{0}=$ const $\Rightarrow \nabla \cdot \mathcal{F}=\mathcal{S}$ and using both relations above

$$
\left.J \partial_{t} u\right|_{\vec{X}}-J \sigma \cdot \nabla_{\vec{x}} u=0
$$

is this true ?

Well balanced ALE

ALE for a balance law

$$
\partial_{t} u+\nabla \cdot \mathcal{F}(u)=\mathcal{S}(u, g(\vec{x}))
$$

Straightforward application of ALE theory

Yes (!!) since in the moving frame and for $\eta(u, g)=\eta_{0}=$ const :

$$
\left.\partial_{t} g\right|_{\vec{X}}=\sigma \cdot \nabla_{\vec{x}} g
$$

and

$$
0=\left.\partial_{t} \eta\right|_{\vec{X}}-\sigma \cdot \nabla_{\vec{x}} \eta=\partial_{u} \eta\left(\left.\partial_{t} u\right|_{\vec{X}}-\sigma \cdot \nabla_{\vec{x}} u\right)+\partial_{g} \eta\left(\left.\partial_{t} g\right|_{\vec{X}}-\sigma \cdot \nabla_{\vec{x}} g\right)
$$

Well balanced ALE

A Particular case

$$
\partial_{t} u+\nabla \cdot \mathcal{F}(u)=\mathcal{S}(u, g(\vec{x}))
$$

Assume that the steady balance is described by the invariant

$$
\eta(u, g)=u+F(g) \Rightarrow \partial \eta=\partial u+F^{\prime}(g) \partial g
$$

Modified ALE form

Well balanced ALE

A particular case

$$
\partial_{t} u+\nabla \cdot \mathcal{F}(u)=\mathcal{S}(u, g(\vec{x}))
$$

Assume that the steady balance is described by the invariant

$$
\eta(u, g)=u+F(g) \Rightarrow \partial \eta=\partial u+F^{\prime}(g) \partial g
$$

Modified ALE FORM

We can multiply by $F(g)$ the GCL and by $F^{\prime}(g)$ the time variation of g :

$$
F(g)\left(\left.\partial_{t} J\right|_{\vec{X}}-J \nabla_{\vec{x}} \cdot \sigma\right)=0 \quad \text { and } \quad F^{\prime}(g)\left(\left.J \partial_{t} g\right|_{\vec{X}}-J \sigma \cdot \nabla_{\vec{x}} g\right)=0
$$

and add to the std. ALE form of the balance law

$$
\left.\partial_{t}(J u)\right|_{\vec{X}}+J \nabla_{\vec{x}} \cdot(\mathcal{F}(u)-\sigma u)=J \mathcal{S}(u, g(\vec{x}))
$$

Well balanced ALE

A particular case

$$
\partial_{t} u+\nabla \cdot \mathcal{F}(u)=\mathcal{S}(u, g(\vec{x}))
$$

Assume that the steady balance is described by the invariant

$$
\eta(u, g)=u+F(g) \Rightarrow \partial \eta=\partial u+F^{\prime}(g) \partial g
$$

Modified ALE FORM
Adding the resulting expressions to the original ALE form of the balance law we get

$$
\left.\partial_{t}(J \eta)\right|_{\vec{X}}+J \nabla_{\vec{x}} \cdot(\mathcal{F}(u)-\sigma \eta)=J \mathcal{S}(u, g(\vec{x}))
$$

WELL BALANCED ALE formulation

Well balanced ALE

A Particular case

$$
\partial_{t} u+\nabla \cdot \mathcal{F}(u)=\mathcal{S}(u, g(\vec{x}))
$$

Assume that the steady balance is described by the invariant

$$
\eta(u, g)=u+F(g) \Rightarrow \partial \eta=\partial u+F^{\prime}(g) \partial g
$$

In SUMMARY

- Standard ALE

$$
\left.\partial_{t}(J u)\right|_{\vec{X}}+J \nabla_{\vec{x}} \cdot(\mathcal{F}-\sigma u)=J \mathcal{S}
$$

- WELL BALANCED ALE

$$
\left.\partial_{t}(J \eta)\right|_{\vec{X}}+J \nabla_{\vec{x}} \cdot(\mathcal{F}-\sigma \eta)=J \mathcal{S}
$$

Well balanced ALE

A Particular case

$$
\partial_{t} u+\nabla \cdot \mathcal{F}(u)=\mathcal{S}(u, g(\vec{x}))
$$

Assume that the steady balance is described by the invariant

$$
\eta(u, g)=u+F(g) \Rightarrow \partial \eta=\partial u+F^{\prime}(g) \partial g
$$

In SUMMARY

- Standard ALE for $\eta=u+F(g(\vec{x}))=\eta_{0}$

$$
J\left(\left.\partial_{t} u\right|_{\vec{X}}-\sigma \cdot \nabla_{\vec{x}} u\right)+u\left(\left.\partial_{t} J\right|_{\vec{X}}-\nabla_{\vec{x}} \cdot \sigma\right)+J\left(\nabla_{\vec{x}} \mathcal{F}-\mathcal{S}\right)=0
$$

- WELL BALANCED ALE for $\eta=u+F(g(\vec{x}))=\eta_{0}$

$$
J\left(\left.\partial_{t} \eta_{0}\right|_{\vec{X}}-\sigma \cdot \nabla_{\vec{x}} \eta_{0}\right)+\eta_{0}\left(\left.\partial_{t} J\right|_{\vec{X}}-\nabla_{\vec{x}} \cdot \sigma\right)+J\left(\nabla_{\vec{x}} \mathcal{F}-\mathcal{S}\right)=0
$$

Well balanced ALE

A Particular case

$$
\partial_{t} u+\nabla \cdot \mathcal{F}(u)=\mathcal{S}(u, g(\vec{x}))
$$

Assume that the steady balance is described by the invariant

$$
\eta(u, g)=u+F(g) \Rightarrow \partial \eta=\partial u+F^{\prime}(g) \partial g
$$

In SUMMARY

- Standard ALE for $\eta=u+F(g(\vec{x}))=\eta_{0}$

$$
J\left(\left.\partial_{t} u\right|_{\vec{X}}-\sigma \cdot \nabla_{\vec{x}} u\right)+u \underbrace{\left(\left.\partial_{t} J\right|_{\vec{x}}-\nabla_{\vec{x}} \cdot \sigma\right)}_{\text {DGCL }}+J \overbrace{\left(\nabla_{\vec{x}} \mathcal{F}-\mathcal{S}\right)}^{\text {Well Balanced }}=0
$$

A scheme which verifies the DGCL, and exactly well balanced on fixed meshes, will not WB be on moving meshes. The error is related to the discretization of the term

$$
\left.\partial_{t} u\right|_{\vec{X}}=\sigma \cdot \nabla_{\vec{x}} u
$$

embedded in the scheme ...

Well balanced ALE

A Particular case

$$
\partial_{t} u+\nabla \cdot \mathcal{F}(u)=\mathcal{S}(u, g(\vec{x}))
$$

Assume that the steady balance is described by the invariant

$$
\eta(u, g)=u+F(g) \Rightarrow \partial \eta=\partial u+F^{\prime}(g) \partial g
$$

In SUMMARY

- WELL BALANCED ALE for $\eta=u+F(g(\vec{x}))=\eta_{0}$

$$
J \overbrace{\left(\left.\partial_{t} \eta_{0}\right|_{\vec{X}}-\sigma \cdot \nabla_{\vec{x}} \eta_{0}\right)}^{\partial \eta_{0}=0}+\eta_{0} \underbrace{\left(\left.\partial_{t} J\right|_{\vec{X}}-\nabla_{\vec{x}} \cdot \sigma\right)}_{\mathrm{DGCL}}+J \overbrace{\left(\nabla_{\vec{x}} \mathcal{F}-\mathcal{S}\right)}^{\text {Well Balanced }}=0
$$

A scheme which is well balanced on fixed meshes will also be on moving meshes provided it verifies the DGCL

Putting it together

3. Adaptation-discretization coupling : projection vs ALE

DPE METHOD

Deformation-Projection-Evolution

DPE method

Deformation-Projection-Evolution

DPE method

- To get \vec{x}_{i}^{n+1} : nonlinear elliptic deformation eq. solved with initial guess \vec{x}_{i}^{n}
- We use 5 Jacobi iterations in all the results shown later (as suggested in Tang, Tang SINUM 2003)
- To compute $\omega\left(\nabla_{\vec{x}} u\right)$ we need to define a projection to get u^{n} onto each x_{k}^{n+1} (important bit)

DPE METHOD

High order conservative projection as limit of ALE FV scheme in ALE form for a balance law

$$
V_{i}^{n+1} \eta_{i}^{n+1}-V_{i}^{n} \eta_{i}^{n}+\Delta t \int_{\partial V_{i}\left(t^{n+1 / 2}\right)}\left(\widehat{F}\left(u^{n}\right)-\widehat{\sigma \eta^{n}}\right) \cdot \vec{n}\left(t^{n+1 / 2}\right)=\Delta t V_{i}\left(t^{n+1 / 2}\right) \widetilde{\mathcal{S}}_{i}
$$

with

$$
\sigma=\frac{\vec{x}^{n+1}-\vec{x}^{n}}{\Delta t}=\frac{\vec{\delta}}{\Delta t}
$$

and $\vec{\delta}$ given from the current mesh deformation step.

DPE method

High order conservative projection as limit of ALE
FV scheme in ALE form for a balance law

$$
V_{i}^{n+1} \eta_{i}^{n+1}-V_{i}^{n} \eta_{i}^{n}+\Delta t \int_{\partial V_{i}\left(t^{n+1 / 2}\right)}\left(\widehat{F}\left(u^{n}\right)-\widehat{\sigma \eta}^{n}\right) \cdot \vec{n}\left(t^{n+1 / 2}\right)=\Delta t V_{i}\left(t^{n+1 / 2}\right) \widetilde{\mathcal{S}}_{i}
$$

with

$$
\sigma=\frac{\vec{x}^{n+1}-\vec{x}^{n}}{\Delta t}=\frac{\vec{\delta}}{\Delta t}
$$

and $\vec{\delta}$ given from the current mesh deformation step.

Take now the limit for $\Delta t=0$ and keep the displacement δ finite, moving the mesh

$$
\begin{aligned}
& \text { from } y_{k}=\vec{x}_{k}^{n+1} \text { to } y_{k+1}=\vec{x}_{k+1}^{n+1} \\
& \vec{\delta}=y_{k+1}-y_{k}=\vec{x}_{k+1}^{n+1}-\vec{x}_{k}^{n+1} \neq 0
\end{aligned}
$$

DPE method

High order conservative projection as limit of ALE

$$
V_{i, k+1} \eta_{i}^{n}\left(y_{k+1}\right)-V_{i, k} \eta_{i}^{n}\left(y_{k}\right)-\int_{\partial V_{i, k+1 / 2}} \widehat{\delta \eta}^{n}\left(y_{k}\right) \cdot \vec{n}^{k+1 / 2}=0
$$

1. Conservative high order and well balanced projection obtained from a conservative high order well balanced scheme
2. Repeated at each Jacobi iteration : costly for high order with limiter (see next)

DPE METHOD

The scheme is applied on the fixed mesh as if no adaptation was used at all

1. Conservation requires the projection step needs to be conservative
2. Second order of accuracy requires the projection step to be second order accurate
3. Monotonicity requires the projection step needs to be monotone

The projection step might represent a considerable cost

DALE method

Deformation-ALE evolution

DALE METHOD

Deformation-ALE evolution

DALE method

- To get \vec{x}_{i}^{n+1} : nonlinear elliptic deformation eq. solved with initial guess \vec{x}_{i}^{n}
- We use 5 Jacobi iterations in all the results shown later (as suggested in Tang, Tang SINUM 2003)
- To compute $\omega\left(\nabla_{\vec{x}} u\right)$ we need to define a projection to get u^{n} onto each x_{k}^{n+1} (important bit)

DALE METHOD

The ALE evolution guarantees that the overall algorithm is

1. Conservative
2. Second order accurate
3. Monotone

The projection step can be simplified considerably...

Numerical examples : SCHEMES implemented

SEcond order finite volume (only for scalar)

- Std well balanced Roe scheme (Bermudez-Vazquez, Computers and FI. 23,1994)
- Muscl reconstruction with van Leer limiter
- Second order SSP Runge Kutta integration
- Standard ALE formulation following e.g. (Farahat et al JCP 174, 2001)
- Projections : zero Δt limit of first and high order Roe scheme

Second order residual distribution

- Second order positivity preserving RK-RD of (Ricchiuto and Abgrall JCP 2010)
- ALE extension of (Arpaia, Ricchiuto, Abgrall JSC 2014)
- Projections : zero Δt limit of first order Lax-Friedrich's and high order centered distributions

Scalar balance law mimicking the SW equations

$$
\partial_{t} u+\nabla \cdot \mathcal{F}(u)=\vec{a}(u) \cdot \nabla g(\vec{x})
$$

For $\vec{a}(u)=\partial_{u} \mathcal{F}$ we have a simple steady state invariant:

$$
\eta=u+g(\vec{x})
$$

Example 1: Linear transport with source

$$
\partial_{t} u+\cdot \mathcal{F}=\vec{a} \cdot \nabla g(\vec{x})
$$

with

$$
\overrightarrow{\mathcal{F}}=\vec{a} u, \quad g=0.8 e^{\left.-50(x-0.5)^{2}-5(y-0.9)^{2}\right)}, \quad \text { and } \vec{a}(\vec{x})=(0,1)
$$

with initial solution $\left(r^{2}=(x-0.5)^{2}+(y-0.5)^{2}\right)$

$$
\eta=1+\psi(x, y), \quad \psi= \begin{cases}\cos ^{2}(2 \pi r) & \text { if } r<1 / 4 \\ 0 & \text { otherwise }\end{cases}
$$

solved on $[0,1] \times[0,2]$ superimposing the time dependent mapping

$$
\left\{\begin{array}{l}
x=X+0.1 \sin (2 \pi X) \sin (\pi Y) \sin (2 \pi t) \\
y=Y+0.2 \sin (2 \pi X) \sin (\pi Y) \sin (4 \pi t)
\end{array}\right.
$$

Example 1: Linear transport with source

Mesh movement $(t=0,0.2,0.4,0.6,1)$

Example 1: Linear transport with source

Results with linear second order RD scheme

Well balanced ALE $t=1$

Standard ALE $t=1$

Exact $t=1$

Grid convergence

Example 2 : RIGID body rotation with source

$$
\partial_{t} u+\cdot \mathcal{F}=\vec{a} \cdot \nabla g(\vec{x})
$$

with

$$
\overrightarrow{\mathcal{F}}=\vec{a}(\vec{x}) u, \quad g=0.6 e^{-5\left(x^{2}+y^{2}\right)}, \quad \text { and } \vec{a}(\vec{x})=(y,-x)
$$

with initial solution $\left(r^{2}=(x+0.5)^{2}+y^{2}\right)$

$$
\eta=1+\psi(x, y), \quad \psi= \begin{cases}\cos ^{2}(2 \pi r) & \text { if } r<1 / 4 \\ 0 & \text { otherwise }\end{cases}
$$

solved on $[-1,1]^{2}$ testing both the DPE and DALE approaches.

ExAmple 2 : RIGID BODY ROTATION WITH SOURCE

Initial

Ofter one rotation

Example 2 : RIGID body rotation with source

Grid convergence : error vs CPU time

Example 3 : NONLINEAR BALANCE LAW

$$
\partial_{t} u+\nabla \cdot \mathcal{F}(u)=\vec{a}(u) \cdot \nabla g(\vec{x})
$$

with

$$
\overrightarrow{\mathcal{F}}=\left(u^{2} / 2, u^{2} / 2\right), \quad g=0.6 e^{-5\left(x^{2}+y^{2}\right)}, \quad \text { and } \vec{a}(u)=(u, u)
$$

with initial solution $\left(r^{2}=(x+0.5)^{2}+y^{2}\right)$

$$
\eta=1+\psi(x, y), \quad \psi= \begin{cases}1.4 & \text { if } \vec{x} \in[-0.9,-0.2]^{2} \\ 0.8 & \text { otherwise }\end{cases}
$$

solved on $[-1,1]^{2}$ testing both the DPE and DALE approaches.

Example 3 : NONLINEAR BALANCE LAW

DPE Results for FV

Example 3 : NONLINEAR BALANCE LAW

DALE RESULTS FOR FV

Simplified central 2nd order proj.

1st order proj.

CPU gain roughly 30% w.r.t DPE

Example 3 : NONLINEAR BALANCE LAW

DPE RESULTS FOR RD

2nd order proj.

1st order proj.

Example 3 : NONLINEAR BALANCE LAW

DALE Results for RD

2nd order proj.

1st order proj.

Shallow water results with RD

Standard Form

Used in the DPE algorithm

$$
\partial_{t}\left[\begin{array}{c}
H \\
\vec{q}
\end{array}\right]+\nabla \cdot\left[\begin{array}{c}
\vec{q} \\
\vec{u} \otimes \vec{q}+g \frac{H^{2}}{2}
\end{array}\right]+g H\left[\begin{array}{c}
0 \\
\nabla b
\end{array}\right]=0
$$

Well Balanced ALE form
Used in the DALE algorithm

$$
\partial_{t}\left[\begin{array}{c}
J \eta \\
J \vec{q}
\end{array}\right]+J \nabla \cdot\left[\begin{array}{c}
\vec{q}-\sigma \eta \\
\vec{u} \otimes \vec{q}+g \frac{H^{2}}{2}-\sigma \otimes \vec{q}
\end{array}\right]+J g H\left[\begin{array}{c}
0 \\
\nabla b
\end{array}\right]=0
$$

Shallow water results with RD

Perturbation over smooth bathymetry

 Over the domain $[0,2] \times[0,1]$ take$$
b(x, y)=0.8 e^{-50(x-0.9)^{2}-5(y-0.5)^{2}}
$$

and set as initial solution still flow and free surface level

$$
\eta= \begin{cases}1.01 & \text { if } 0.05 \leq x \leq 0.15 \\ 1 & \text { otherwise }\end{cases}
$$

Shallow water results with RD

Perturbation over smooth bathymetry
DPE with second order projection

DALE with second order projection

Shallow water results with RD

Perturbation over smooth bathymetry

Shallow water results with RD

Perturbation over smooth bathymetry

DPE with second order projection
INT-GAL

DALE with second order projection

CPU times:
Fixed fine: 843[s]
DPE : 246[s]
DALE : 360[s]

Shallow water results with RD

DAM BREAK
Initial solution involving still flow and

$$
H_{\text {left }}=10[\mathrm{~m}] \quad \text { and } \quad H_{\text {right }}=5[\mathrm{~m}]
$$

Shallow water results with RD

DAM BREAK

DPE with second order projection

DALE with second order projection

Shallow water results with RD

Dam break

DPE with second order projection
INT-GAL

DALE with second order projection

CPU times :
Fixed fine : 220[s]
DPE : 91[s]
DALE : 97[s]

Shallow water results with RD

Double dam break

Done so far

- Simple mesh adaptation algorithm :

1. no major changes in code
2. constant data structure
3. simple point movement
4. simple explicit Jacobi iterations for mesh adaptation
5. need ALE formulas for projection and/or evolution

- General issue of well balanced ALE formulation
- Comparison of DPE approach and DALE approach
- DALE seems promising : better resolution/time, more flexibility

To be done

- Thorough comparison behavior of FV and RD for SW
- Dry fronts resolution (see e.g. Zhou et al Water Resources Research 2013)
- Implicit time stepping (with M.E. Hubbard)
- Improve resolution of nonlinear mesh deformation equation..
- Tsunami inundation, tidal bore formation, etc (with P. Bonneton)
- 3D and higher order schemes/curved meshes (with R. Abgrall and C. Dobrizynski)
- Local time stepping

