
Well balanced ALE : on time dependent
adaptation for shallow water flows

L. Arpaia and M. Ricchiuto

INRIA Bordeaux - Sud-Ouest, project BACCHUS

SIAM conference on
Nonlinear Waves and Coherent Structures

August 11th - 14th, 2014

Churchill College, University of Cambridge

Scope and outline of the talk

Main objective
Discuss techniques allowing time dependent mesh adaptation for shallow water
flows in a cost effective manner :

1. simple to implement, no major code restructuring, no major modifications to
the scheme

2. minimize error vs CPU time

Milestones

I Simple mesh deformation based on solution smoothness

I ALE formulation for balance laws vs steady invariants
I Scheme-mesh adaptation coupling based on two strategies

1. Deformation-Projection-Evolution (DPE)
2. Deformation-ALE evolution (DALE)

Outline

Motivation and objectives

Time dependent mesh adaptation by elastic deformation

Well balanced ALE discretization of balance laws

Deformation-Projection-Evolution : DPE

Deformation-ALE evolution : DALE

Numerical experiments
Scalar balance laws
Shallow Water equations

Summary and future work

Mathematical setting

Model equation
Seek approximate solutions of

∂tu+∇ ·F(u) = S(u, g(~x)) (1)

on a time dependent unstructured mesh Th(t).

Th(t = t1)
Th(t = t2)

Mathematical setting

Model equations
Seek approximate solutions of

∂tu+∇ ·F(u) = S(u, g(~x)) (1)

on a time dependent unstructured mesh Th(t).

Remarks

I We focus on triangular meshes

I Equation (1) assumed to admit non-trivial steady equilibria characterized by

η(u) = η0 = const

I Shallow Water equations : no dry areas in this talk

I No local time stepping : no compensation for higher CPU time due to smaller ∆ts

Mathematical setting

Model equations
Seek approximate solutions of

∂tu+∇ ·F(u) = S(u, g(~x)) (1)

on a time dependent unstructured mesh Th(t).

Building blocks

1. Discrete model for Th(t) : Time dependent mesh adaptation

2. Well balanced discretization of (1) on moving meshes : Well balanced ALE

3. Coupling strategy : projection and evolution or ALE ?

1. Time dependent mesh adaptation

I Alauzet et al JCP 222, 2007 :
re-mesh and adapt to all solutions in a given time slab

I Guardone et al JCP 230, 2011 :
continuous deformation with ALE and edge swap (variable topology)

I Alauzet Eng.w.Computers 30, 2014 :
continuous deformations with edge swap (variable topology)

I Tang and Tang SINUM 41, 2003 :
continuous deformation with fixed mesh topology

I etc.

Mesh adaptation by elastic deformation with fixed topology
Fixed topology : point positions change, data structure is constant−→ simple

Thompson, Soni, and Weatherill Eds,

CRC Press, 1998

Adaptive mesh methods for one and

two dimensional hyperbolic conservation laws

H. Tang and T. Tang,

SIAM J.Numer.Anal. 2003

Adaptive moving finite volume scheme for

modelling flood inundation

F. Zhou et al.

Water Resources Reserach 2013

HANDBOOK OF GRID GENERATION,

Time dependent mesh adaptation by elastic deformation

Elliptic “elastic” mesh movement
Given the mesh in the reference frame ~X = (X1, X2), seek ~x = ~x(~X) such that

∇ ~X
·
(
ω(∇~xu)∇ ~X

~x
)

= bc.s

I Elliptic non-linear system of equations for the mapped (new) point positions ~x, in
particular (Tang and Tang, SINUM 2003) :

ω(∇~xuh) =
√

1 + α∇u∗ , ∇u∗ = min

(
1,

‖∇~xuh‖2

β2 maxi ‖∇~xui‖2

)

Time dependent mesh adaptation by elastic deformation

Elliptic “elastic” mesh movement
Elastic analogy : setting

~δ = ~x− ~X, σ = ω∇ ~X
δ, ~F = −I2 · ∇Xω

we can recast last equation as

∇X · σ = ~F + bc.s

I Role of ω = ω(∇~xu) : controlling the stiffness and the force.

Time dependent mesh adaptation by elastic deformation

Elliptic “elastic” mesh movement : in practice
Elliptic PDE discretized by means of standard P 1 continuous Galerkin∫

TX

∇ ~X
vh · ω(∇~xuh)∇ ~X

~δh =

∫
TX

I2 · ω(∇~xuh)∇Xvh + bc.s

Leading to the non-linear system

∑
j

κij(~δ)~δj = fi(~δ) ∀ i

with κij(δ) the FEM stiffness matrix and fi(~δ) the force

Time dependent mesh adaptation by elastic deformation

Elliptic “elastic” mesh movement : in practice
Solution algorithm : relaxed Newton-Jacobi iterations

~δk+1
i = ~δki −

∑
j 6=i

κkij
~δkj − fi

κkii

~xk+1 = ~xk + µ~δk+1

(2)

Important remarks

I At each iteration the FEM stiffness matrix κkij depends on ∇~xkuh via ω :

Need to compute uh(~xk), the projection of the function u on the mesh ~xk

2. Well balanced schemes on moving meshes

I ref ????

Well balanced ALE

ALE recap for ∂tu+∇ ·F(u) = 0

I Farahat et al IJNMF 21 1995 ;

I Lesoinne and Farahat, CMAME 134, 1996 ;

I Farahat et al JCP 174 2001

Well balanced ALE

ALE recap for ∂tu+∇ ·F(u) = 0

Definitions :

Deformation speed

σ =
d~x

dt

Deformation Jacobian

J = det
∂~x

∂ ~X

Volume :

V (t) =

∫
V (t)

d~x =

∫
V (t=0)

J d ~X

Well balanced ALE

ALE recap for ∂tu+∇ ·F(u) = 0

Main results :

I Geometric Conservation Law (GCL, evolution of volume) :

∂tJ
∣∣
~X

= J∇~x · σ (3)

I Conservation law in ALE form (ALE-CL) :

∂t(Ju)
∣∣
~X

+ J∇~x · (F(u)− σu) = 0 (4)

Fundamental relation
ALE-CL reduces to GCL for constant u !!!!

Well balanced ALE

ALE recap for ∂tu+∇ ·F(u) = 0

Discretization of ALE-CL, e.g. explicit FV on cell Vi :

V n+1
i un+1

i − V ni uni +

tn+1∫
tn

∫
∂Vi(t)

(
F̂ (un)− σ̂un

)
· ~n(t) = 0 (5)

I F̂ (u) and σ̂u FV numerical fluxes consistent with F(u) and σu

I Discrete point diplacement speed

σi =
~xn+1
i − ~xni

∆t
=

~δi

∆t

Well balanced ALE

ALE recap for ∂tu+∇ ·F(u) = 0

Discretization of ALE-CL, e.g. explicit FV on cell Vi :

V n+1
i un+1

i − V ni uni +

tn+1∫
tn

∫
∂Vi(t)

(
F̂ (un)− σ̂un

)
· ~n(t) = 0 (6)

Fundamental relation : Discrete-GCL
To be consistent with a constant state, for u = u0, the scheme MUST reduce to
the identity

u0

V n+1
i − V ni −

tn+1∫
tn

∫
∂Vi(t)

σ̂ · ~n(t)

 = 0

Well balanced ALE

ALE recap for ∂tu+∇ ·F(u) = 0

Discretization of ALE-CL, e.g. explicit FV on cell Vi :

V n+1
i un+1

i − V ni uni +

tn+1∫
tn

∫
∂Vi(t)

(
F̂ (un)− σ̂un

)
· ~n(t) = 0 (7)

Fundamental relation : Discrete-GCL
Possible solution (see e.g. Farahat et al IJNMF 1995, for the definition of σ̂)

V n+1
i un+1

i − V ni uni + ∆t

∫
∂Vi(t

n+1/2)

(
F̂ (un)− σ̂un

)
· ~n(tn+1/2) = 0

Well balanced ALE

ALE for a balance law

∂tu+∇ ·F(u) = S(u, g(~x))

admitting a steady state characterized by

η(u, g) = η0 = const⇒ ∇ ·F = S(u, g(~x))

Well balanced ALE

ALE for a balance law

∂tu+∇ ·F(u) = S(u, g(~x))

Straightforward application of ALE theory

∂t(Ju)
∣∣
~X

+ J∇~x · (F(u)− σu) = JS(u, g(~x))

plus the GCL
∂tJ
∣∣
~X

= J∇~x · σ

Well balanced ALE

ALE for a balance law

∂tu+∇ ·F(u) = S(u, g(~x))

Straightforward application of ALE theory

∂t(Ju)
∣∣
~X

+ J∇~x · (F(u)− σu) = JS(u, g(~x))

plus the GCL
∂tJ
∣∣
~X

= J∇~x · σ

Take now η(u, g) = η0 = const⇒ ∇ ·F = S and combine these two relations

Well balanced ALE

ALE for a balance law

∂tu+∇ ·F(u) = S(u, g(~x))

Straightforward application of ALE theory
If we take η(u, g) = η0 = const⇒ ∇ ·F = S and using both relations above

J∂tu
∣∣
~X
− Jσ · ∇~xu = 0

is this true ?

Well balanced ALE

ALE for a balance law

∂tu+∇ ·F(u) = S(u, g(~x))

Straightforward application of ALE theory
Yes (!!) since in the moving frame and for η(u, g) = η0 = const :

∂tg
∣∣
~X

= σ · ∇~xg

and

0 = ∂tη
∣∣
~X
− σ · ∇~xη = ∂uη(∂tu

∣∣
~X
− σ · ∇~xu) + ∂gη(∂tg

∣∣
~X
− σ · ∇~xg)

Well balanced ALE

A particular case

∂tu+∇ ·F(u) = S(u, g(~x))

Assume that the steady balance is described by the invariant

η(u, g) = u+ F (g)⇒ ∂η = ∂u+ F ′(g)∂g

Modified ALE form

Well balanced ALE

A particular case

∂tu+∇ ·F(u) = S(u, g(~x))

Assume that the steady balance is described by the invariant

η(u, g) = u+ F (g)⇒ ∂η = ∂u+ F ′(g)∂g

Modified ALE form
We can multiply by F (g) the GCL and by F ′(g) the time variation of g :

F (g)
(
∂tJ
∣∣
~X
− J∇~x · σ

)
= 0 and F ′(g)

(
J∂tg

∣∣
~X
− Jσ · ∇~xg

)
= 0

and add to the std. ALE form of the balance law

∂t(Ju)
∣∣
~X

+ J∇~x · (F(u)− σu) = JS(u, g(~x))

Well balanced ALE

A particular case

∂tu+∇ ·F(u) = S(u, g(~x))

Assume that the steady balance is described by the invariant

η(u, g) = u+ F (g)⇒ ∂η = ∂u+ F ′(g)∂g

Modified ALE form
Adding the resulting expressions to the original ALE form of the balance law we get

∂t(Jη)
∣∣
~X

+ J∇~x · (F(u)− ση) = JS(u, g(~x))

WELL BALANCED ALE formulation

Well balanced ALE

A particular case

∂tu+∇ ·F(u) = S(u, g(~x))

Assume that the steady balance is described by the invariant

η(u, g) = u+ F (g)⇒ ∂η = ∂u+ F ′(g)∂g

In summary

I Standard ALE

∂t(Ju)
∣∣
~X

+ J∇~x · (F − σu) = JS

I WELL BALANCED ALE

∂t(Jη)
∣∣
~X

+ J∇~x · (F − ση) = JS

Well balanced ALE

A particular case

∂tu+∇ ·F(u) = S(u, g(~x))

Assume that the steady balance is described by the invariant

η(u, g) = u+ F (g)⇒ ∂η = ∂u+ F ′(g)∂g

In summary

I Standard ALE for η = u+ F (g(~x)) = η0

J(∂tu
∣∣
~X
− σ · ∇~xu) + u(∂tJ

∣∣
~X
−∇~x · σ) + J(∇~xF − S) = 0

I WELL BALANCED ALE for η = u+ F (g(~x)) = η0

J(∂tη0
∣∣
~X
− σ · ∇~xη0) + η0(∂tJ

∣∣
~X
−∇~x · σ) + J(∇~xF − S) = 0

Well balanced ALE

A particular case

∂tu+∇ ·F(u) = S(u, g(~x))

Assume that the steady balance is described by the invariant

η(u, g) = u+ F (g)⇒ ∂η = ∂u+ F ′(g)∂g

In summary

I Standard ALE for η = u+ F (g(~x)) = η0

J(∂tu
∣∣
~X
− σ · ∇~xu) + u (∂tJ

∣∣
~X
−∇~x · σ)︸ ︷︷ ︸

DGCL

+J

Well Balanced︷ ︸︸ ︷
(∇~xF − S) = 0

A scheme which verifies the DGCL, and exactly well balanced on fixed meshes, will not
WB be on moving meshes. The error is related to the discretization of the term

∂tu
∣∣
~X

= σ · ∇~xu

embedded in the scheme ...

Well balanced ALE

A particular case

∂tu+∇ ·F(u) = S(u, g(~x))

Assume that the steady balance is described by the invariant

η(u, g) = u+ F (g)⇒ ∂η = ∂u+ F ′(g)∂g

In summary

I WELL BALANCED ALE for η = u+ F (g(~x)) = η0

J

∂η0=0︷ ︸︸ ︷
(∂tη0

∣∣
~X
− σ · ∇~xη0) +η0 (∂tJ

∣∣
~X
−∇~x · σ)︸ ︷︷ ︸

DGCL

+J

Well Balanced︷ ︸︸ ︷
(∇~xF − S) = 0

A scheme which is well balanced on fixed meshes will also be on moving meshes
provided it verifies the DGCL

Putting it together

3. Adaptation-discretization coupling : projection vs ALE

DPE method

EvolutionAdaptation phase

Jacobi

iteration

Update Project Fixed

explicit

mesh

iteration

Deformation-Projection-Evolution

DPE method

mesh

iteration

Evolution

Project Fixed

explicit

Update

Adaptation phase

Jacobi

iteration

Deformation-Projection-Evolution

DPE method

iteration

Evolution

Project Fixed

explicit

mesh

Adaptation phase

Jacobi

iteration

Update

I To get ~xn+1
i : nonlinear elliptic deformation eq. solved with initial guess ~xni

I We use 5 Jacobi iterations in all the results shown later (as suggested in Tang,
Tang SINUM 2003)

I To compute ω(∇~xu) we need to define a projection to get un onto each xn+1
k

(important bit)

DPE method

High order conservative projection as limit of ALE
FV scheme in ALE form for a balance law

V n+1
i ηn+1

i − V ni ηni + ∆t

∫
∂Vi(t

n+1/2)

(
F̂ (un)− σ̂ηn

)
· ~n(tn+1/2) = ∆tVi(t

n+1/2)S̃i

with

σ =
~xn+1 − ~xn

∆t
=

~δ

∆t

and ~δ given from the current mesh deformation step.

Take now the limit for ∆t = 0 and keep the displacement δ finite, moving the mesh

from yk = ~xn+1
k to yk+1 = ~xn+1

k+1

~δ = yk+1 − yk = ~xn+1
k+1 − ~x

n+1
k 6= 0

DPE method

High order conservative projection as limit of ALE
FV scheme in ALE form for a balance law

V n+1
i ηn+1

i − V ni ηni + ∆t

∫
∂Vi(t

n+1/2)

(
F̂ (un)− σ̂ηn

)
· ~n(tn+1/2) = ∆tVi(t

n+1/2)S̃i

with

σ =
~xn+1 − ~xn

∆t
=

~δ

∆t

and ~δ given from the current mesh deformation step.

Take now the limit for ∆t = 0 and keep the displacement δ finite, moving the mesh

from yk = ~xn+1
k to yk+1 = ~xn+1

k+1

~δ = yk+1 − yk = ~xn+1
k+1 − ~x

n+1
k 6= 0

DPE method

High order conservative projection as limit of ALE

Vi,k+1η
n
i (yk+1)− Vi,kηni (yk)−

∫
∂Vi,k+1/2

δ̂η
n
(yk) · ~nk+1/2 = 0

1. Conservative high order and well balanced projection obtained from a
conservative high order well balanced scheme

2. Repeated at each Jacobi iteration : costly for high order with limiter
(see next)

DPE method

Fixed

Adaptation phase

Jacobi

iteration

Update Project

explicit

iteration

Evolution

mesh

The scheme is applied on the fixed mesh as if no adaptation was used at all

1. Conservation requires the projection step needs to be conservative

2. Second order of accuracy requires the projection step to be second order accurate

3. Monotonicity requires the projection step needs to be monotone

The projection step might represent a considerable cost

DALE method

Adaptation phase

Jacobi

iteration

Update Project

Evolution

iteration

explicit

ALE

Moving

mesh

Deformation-ALE evolution

DALE method

mesh

Moving

Adaptation phase

Jacobi

iteration

Update Project

Evolution

iteration

explicit

ALE

Deformation-ALE evolution

DALE method

mesh

Adaptation phase

Jacobi

iteration

Update Project

Evolution

iteration

explicit

ALE

Moving

I To get ~xn+1
i : nonlinear elliptic deformation eq. solved with initial guess ~xni

I We use 5 Jacobi iterations in all the results shown later (as suggested in Tang,
Tang SINUM 2003)

I To compute ω(∇~xu) we need to define a projection to get un onto each xn+1
k

(important bit)

DALE method

mesh

Adaptation phase

Jacobi

iteration

Update Project

Evolution

iteration

explicit

ALE

Moving

The ALE evolution guarantees that the overall algorithm is

1. Conservative

2. Second order accurate

3. Monotone

The projection step can be simplified considerably...

Numerical examples : schemes implemented

Second order finite volume (only for scalar)

I Std well balanced Roe scheme (Bermudez-Vazquez, Computers and Fl. 23,1994)

I Muscl reconstruction with van Leer limiter

I Second order SSP Runge Kutta integration

I Standard ALE formulation following e.g. (Farahat et al JCP 174, 2001)

I Projections : zero ∆t limit of first and high order Roe scheme

Second order residual distribution

I Second order positivity preserving RK-RD of (Ricchiuto and Abgrall JCP 2010)

I ALE extension of (Arpaia, Ricchiuto, Abgrall JSC 2014)

I Projections : zero ∆t limit of first order Lax-Friedrich’s and high order centered
distributions

Scalar balance law mimicking the SW equations

∂tu+∇ ·F(u) = ~a(u) · ∇g(~x)

For ~a(u) = ∂uF we have a simple steady state invariant :

η = u+ g(~x)

Example 1 : linear transport with source

∂tu+ ·F = ~a · ∇g(~x)

with

~F = ~au, g = 0.8e−50(x−0.5)2−5(y−0.9)2), and ~a(~x) = (0, 1)

with initial solution (r2 = (x− 0.5)2 + (y − 0.5)2)

η = 1 + ψ(x, y), ψ =

{
cos2(2πr) if r < 1/4
0 otherwise

solved on [0, 1]× [0, 2] superimposing the time dependent mapping

{
x = X + 0.1 sin(2πX) sin(πY) sin(2πt)
y = Y + 0.2 sin(2πX) sin(πY) sin(4πt)

Example 1 : linear transport with source

Mesh movement (t = 0, 0.2, 0.4, 0.6, 1)

Example 1 : linear transport with source

Results with linear second order RD scheme

Well balanced ALE t = 1

Standard ALE t = 1

Exact t = 1

-4.2

-4

-3.8

-3.6

-3.4

-3.2

-3

-2.8

-2.6

-2.4

-2.2

-2

-2.3 -2.2 -2.1 -2 -1.9 -1.8 -1.7 -1.6 -1.5 -1.4

lo
g

||
ε
||

L
2

log h

UNIFORM RIVER, RK2-F2-SL SUPG

1st order
2nd order

ALE:sol. in η var.
ALE:sol. in u var.

Grid convergence

Example 2 : rigid body rotation with source

∂tu+ ·F = ~a · ∇g(~x)

with

~F = ~a(~x)u, g = 0.6e−5(x2+y2), and ~a(~x) = (y,−x)

with initial solution (r2 = (x+ 0.5)2 + y2)

η = 1 + ψ(x, y), ψ =

{
cos2(2πr) if r < 1/4
0 otherwise

solved on [−1, 1]2 testing both the DPE and DALE approaches.

Example 2 : rigid body rotation with source

Initial

X
Y

Z

Ofter one rotation

Example 2 : rigid body rotation with source

Grid convergence : error vs CPU time

FV scheme RD scheme

Example 3 : nonlinear balance law

∂tu+∇ ·F(u) = ~a(u) · ∇g(~x)

with

~F = (u2/2, u2/2), g = 0.6e−5(x2+y2), and ~a(u) = (u, u)

with initial solution (r2 = (x+ 0.5)2 + y2)

η = 1 + ψ(x, y), ψ =

{
1.4 if ~x ∈ [−0.9,−0.2]2

0.8 otherwise

solved on [−1, 1]2 testing both the DPE and DALE approaches.

Example 3 : nonlinear balance law

DPE results for FV

2nd order proj. High order proj. (VL limiter) 1st order proj.

Example 3 : nonlinear balance law

DALE results for FV

Simplified central 2nd order proj. 1st order proj.

CPU gain roughly 30% w.r.t DPE

Example 3 : nonlinear balance law

DPE results for RD

2nd order proj. 1st order proj.

Example 3 : nonlinear balance law

DALE results for RD

2nd order proj. 1st order proj.

Shallow water results with RD

Standard form
Used in the DPE algorithm

∂t

[
H
~q

]
+∇ ·

 ~q

~u⊗ ~q + g
H2

2

+ gH

[
0
∇b

]
= 0

Well balanced ALE form
Used in the DALE algorithm

∂t

[
Jη
J~q

]
+ J∇ ·

 ~q − ση

~u⊗ ~q + g
H2

2
− σ ⊗ ~q

+ J gH

[
0
∇b

]
= 0

Shallow water results with RD

Perturbation over smooth bathymetry
Over the domain [0, 2]× [0, 1] take

b(x, y) = 0.8e−50(x−0.9)2−5(y−0.5)2

and set as initial solution still flow and free surface level

η =

{
1.01 if 0.05 ≤ x ≤ 0.15
1 otherwise

Shallow water results with RD

Perturbation over smooth bathymetry

DPE with second order projection DALE with second order projection

Shallow water results with RD

Perturbation over smooth bathymetry

DPE with second order projection

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

DALE with second order projection

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Shallow water results with RD

Perturbation over smooth bathymetry

DPE with second order projection

 0.99

 0.995

 1

 1.005

 1.01

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

η

x

INT-GAL

FIXED-FINE

FIXED-COARSE

ADAPT-COARSE

DALE with second order projection

 0.99

 0.995

 1

 1.005

 1.01

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
η

x

ALE-GAL

FIXED-FINE

FIXED-COARSE

ADAPT-COARSE

CPU times :
Fixed fine : 843[s]
DPE : 246[s]
DALE : 360[s]

Shallow water results with RD

Dam break
Initial solution involving still flow and

Hleft = 10[m] and Hright = 5[m]

Shallow water results with RD
Dam break

DPE with second order projection DALE with second order projection

Shallow water results with RD

Dam break

DPE with second order projection

 4

 5

 6

 7

 8

 9

 10

 11

 0 50 100 150 200

η

x

INT-GAL

FIXED-FINE

FIXED-COARSE

ADAPT-COARSE

DALE with second order projection

 4

 5

 6

 7

 8

 9

 10

 11

 0 50 100 150 200
η

x

ALE

FIXED-FINE

FIXED-COARSE

ADAPT-COARSE

CPU times :
Fixed fine : 220[s]
DPE : 91[s]
DALE : 97[s]

Shallow water results with RD

Double dam break

(Double dam break)

export6.avi
Media File (video/avi)

Conclusions and perspectives

Done so far
I Simple mesh adaptation algorithm :

1. no major changes in code
2. constant data structure
3. simple point movement
4. simple explicit Jacobi iterations for mesh adaptation
5. need ALE formulas for projection and/or evolution

I General issue of well balanced ALE formulation

I Comparison of DPE approach and DALE approach

I DALE seems promising : better resolution/time, more flexibility

To be done

I Thorough comparison behavior of FV and RD for SW

I Dry fronts resolution (see e.g. Zhou et al Water Resources Research 2013)

I Implicit time stepping (with M.E. Hubbard)

I Improve resolution of nonlinear mesh deformation equation..

I Tsunami inundation, tidal bore formation, etc (with P. Bonneton)

I 3D and higher order schemes/curved meshes (with R. Abgrall and C. Dobrizynski)

I Local time stepping

	Motivation and objectives
	Time dependent mesh adaptation by elastic deformation
	Well balanced ALE discretization of balance laws
	Deformation-Projection-Evolution : DPE
	Deformation-ALE evolution : DALE
	Numerical experiments
	Scalar balance laws
	Shallow Water equations

	Summary and future work

