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Setting: shallow water modelling for hazard prediction



Setting: shallow water modelling for hazard prediction

Initial water elevation due to seabed deformation

Model by [Satake et a., Bull. Seismol. Soc. Am. 2012], courtesy of BRGM Orleans.



Setting: shallow water modelling for hazard prediction

blabla

Grid, and close up view of the Iwate prefecture (initial state).
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Setting: shallow water modelling for hazard prediction


tohoku.mov
Media File (video/quicktime)



Setting: shallow water modelling for hazard prediction

Signals in GPS buoys

bl



Setting: shallow water modelling for hazard prediction

Signals in GPS buoys

Finer mesh
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Setting: shallow water modelling for hazard prediction

blabla

Grid, and close up view of the Iwate prefecture (initial state).



Setting: shallow water modelling for hazard prediction

Iwate prefecture: t = 40 min (left), t = 50 min (center), runup plot (right).



Setting: shallow water modelling for hazard prediction

These problems can be studied using the shallow water model1

~q = h~u

ph = g
h2

2

~f = ϕqf‖~q‖~q =
n2‖~q‖
h10/3

~q

η = h+ b

∂th+∇ · ~q = 0

∂t~q +∇ · (~u⊗ ~q) +∇ph + gh∇b+ gh~f = 0

1possibly in curvilinear coord.s for large scale simulations as e.g. for the Tohoku case
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Setting: shallow water modelling for hazard prediction



Residual based shallow water modelling

Joint effort over the last years with the members of my Inria team, and with
many colleagues :

I R. Abgrall, U. Zurich (Switzerland)

I L. Arpaia, former PhD at Inria, now BRGM (France)

I A. Bollerman, former PhD at RWTH Aachen (Germany)

I H. Deconinck, von Karman Institute (Belgium)

I M. Hubbard, U. Nottingham (UK)

I M. Kazolea, Inria BSO (France)

I D. Sarmany, former post-doc at Leeds U. (UK)



Residual based shallow water modelling

Joint effort over the last years, acknowledging funding of

I PIA-ANR TANDEM (coordinated by the French CEA)

I EU-ERANET MIDWEST (coordinated by Inria)

I EDF (Electricité de France)

I Région Nouvelle Aquitaine

I Inria and Université de Bordeaux

I BGS IT&E GMBH (German SME)



Residual based shallow water modelling

Shallow water papers :

Application of conservative RD to the solution of the SWEs on unstructured meshes. J.Comput.Phys. 222, 2007
(with R. Abgrall and H. Deconinck)

Stabilized RD for SW simulations. J.Comput.Phys. 228, 2009
(with A. Bollermann)

On the C-property and generalized C-property of RD for the SWEs. J.Sci.Comp. 48, 2011

Unconditionally stable space-time discontinuous RD for SW flows. J.Comput.Phys. 253, 2014
(with D. Sarmany and M. Hubbard)

An explicit residual based approach for SW flows. J.Comput.Phys. 280, 2015

r-adaptation for SW: conservation, well balancedness, efficiency. Computers & Fluids, 160, 2018
(with L. Arpaia)

Residual distribution and finite volumes for SW in adaptive moving curvilinear coordinates, in preparation
(with L. Arpaia)

Residual distribution papers :

Explicit Runge-Kutta RD for time dependent problems: Second order case. J.Comput.Phys. 229, 2010
(with R. Abgrall)

Discontinuous upwind RD: A route to unconditional positivity and high order accuracy. Computers & Fluids 46,
2011
(with M. Hubbard)

An ALE formulation for explicit Runge-Kutta RD. J.Sci.Comp. 63, 2014
(with L. Arpaia and R. Abgrall)



Outline

Shallow water equations and well balancing

Finite volumes and fluctuation splitting

MultiD: well balanced via residual distribution

Including mesh movement and curvilinear coordinates

Wetting-drying

Efficient time stepping with mass matrices

Applications and examples

Conclusion and perspectives



Setting: shallow water modelling for hazard prediction

~q = h~u

ph = g
h2

2

~f = ϕqf‖~q‖~q =
n2‖~q‖
h10/3

~q

η = h+ b

∂th+∇ · ~q = 0

∂t~q +∇ · (~u⊗ ~q) +∇ph + gh∇b+ gh~f = 0



Well balanced via fluctuation splitting

Simplified model
∂tu+ ∂xF(u) + γ∂xb(x) = 0

I For this kind of problem, consistency w.r.t. u = const has no meaning as
this is a state that cannot occur

I So, what is a good notion of consistency here ?



Well balanced via fluctuation splitting

Simplified model
∂tu+ ∂xF(u) + γ∂xb(x) = 0

Simple example: If γ is constant the state

F(u(x)) + γb(x) = η0 = ct

defines an exact steady equilibrium

Consistency w.r.t. η seems like a better notion than consistency with
respect to constant values of u



Well balanced via fluctuation splitting

Simplified model
∂tu+ ∂xF(u) + γ∂xb(x) = 0

Simple example: If γ is constant the state

F(u(x)) + γb(x) = η0 = ct

defines an exact steady equilibrium

Well-balancedness or C-property is defined as the ability of preserving
this equilibrium EXACTLY at the discrete level2

2Bermudez and Vazquez, Computers & Fluids 1994



Well balanced via fluctuation splitting

Vast literature on designing well balanced numerical methods

I Bermudez and Vazquez, Computers & Fluids 1994

I FV: Hubbard and Garcia Navarro, J.Comput.Phys. 2000; Audusse
et al, SIAM SISC 2004; M.J. Castro et al, Math. & Computer
Mod. 2006, Noelle et al, J.Comput.Phys. 2007; Xing & Shu
Adv.Wat.Res. 2011, etc.

I DG: Xing & Zhang J.Sci.Comput. 2013 ; Duran & Marche
Computers & Fluids 2014; Xing J.Comput.Phys. 2014, etc.

I cG + stabilization and RD: Hauke CMAME 1998; Hubbard &
Baines J.Comput.Phys. 1997; Brufau & Garcia Navarro
J.Comput.Phys. 2003, Pasquetti et al ICOSAHOM 2014; Azerat
et al, SINUM 2017; etc.

I etc.

I etc. etc.



Well balanced via fluctuation splitting

Conservative approximation ( ·̂ denotes numerical fluxes/source)

∆xi
dui
dt

+ F̂i+1/2 − F̂i−1/2 + γ∆̂bi = 0

How to define ∆̂bi ?



Well balanced via fluctuation splitting

Conservative approximation in fluctuation form

∆xi
dui
dt

+ F̂i+1/2 −F(ui) + F(ui)− F̂i−1/2 + γ∆̂bi = 0
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Conservative approximation in fluctuation form

∆xi
dui
dt

+ F̂i+1/2 −F(ui)︸ ︷︷ ︸
ψ

i+3/2
i

+F(ui)− F̂i−1/2︸ ︷︷ ︸
ψ

i−1/2
i

+ γ∆̂bi = 0



Well balanced via fluctuation splitting

Conservative approximation in fluctuation form

∆xi
dui
dt

+ F̂i+1/2 −F(ui)︸ ︷︷ ︸
ψ

i+1/2
i

+F(ui)− F̂i−1/2︸ ︷︷ ︸
ψ

i−1/2
i

+ γ∆̂bi = 0

Conservation

∆xi
dui+1

dt
+ F̂i+3/2−F(ui+1)

+F(ui+1)− F̂i+1/2 + γ∆̂bi+1 = 0

mmm



Well balanced via fluctuation splitting

Conservative approximation in fluctuation form

∆xi
dui
dt

+ F̂i+1/2 −F(ui)︸ ︷︷ ︸
ψ

i+1/2
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ψ

i+1/2
i+1

+γ∆̂bi+1 = 0



Well balanced via fluctuation splitting

Conservative approximation in fluctuation form

∆xi
dui
dt

+ F̂i+1/2 −F(ui)︸ ︷︷ ︸
ψ

i+1/2
i

+F(ui)− F̂i−1/2︸ ︷︷ ︸
ψ

i−1/2
i

+ γ∆̂bi = 0

Conservation

ψ
i+1/2
i + ψ

i+1/2
i+1 =F(ui+1)−F(ui)

ψ
i−1/2
i + ψ

i−1/2
i−1 =F(ui)−F(ui−1)

mmm



Well balanced via fluctuation splitting

Conservative approximation in fluctuation form

∆xi
dui
dt

+ ψ
i+1/2
i + ψ

i−1/2
i + γ∆̂bi = 0

Well balanced

γ∆̂bi =γ∆̂b
i+1/2

i + γ∆̂b
i−1/2

i

γ∆̂b
i+1/2

i +γ∆̂b
i+1/2

i+1 = γ(b(xi+1)− b(xi))



Well balanced via fluctuation splitting

Conservative approximation in fluctuation form

∆xi
dui
dt

+ ψ
i+1/2
i + ψ

i−1/2
i + γ∆̂bi = 0

Well balanced
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i−1/2

i
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i+1 = γ(b(xi+1)− b(xi))

ψ
i+1/2
i +ψ

i+1/2
i+1 = F(ui+1)−F(ui) (reminder)



Well balanced via fluctuation splitting

Conservative approximation in fluctuation form

∆xi
dui
dt
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i−1/2
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Well balanced
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ψ
i+1/2
i +ψ

i+1/2
i+1 = F(ui+1)−F(ui) (reminder)



Well balanced via fluctuation splitting

Conservative approximation in fluctuation form

∆xi
dui
dt

+ ψ
i+1/2
i + γ∆̂b

i+1/2

i︸ ︷︷ ︸
φ
i+1/2
i

+ψ
i−1/2
i + γ∆̂b

i−/2
i︸ ︷︷ ︸

φ
i−1/2
i

= 0

Well balanced

γ∆̂bi =γ∆̂b
i+1/2

i + γ∆̂b
i−1/2

i

ψ
i+1/2
i =F̂i+1/2 −F(ui)

ψ
i−1/2
i =F(ui)− F̂i−1/2



Well balanced via fluctuation splitting

Conservative approximation in fluctuation form

∆xi
dui
dt

+ φ
i+1/2
i + φ

i−1/2
i = 0

Well balanced

Design γ∆̂b
i±1/2

i so that

φ
±1/2
i = ψ

i±1/2
i + γ∆̂b

i±1/2

i = 0

If ηi := F(ui) + γb(xi) = η0 = ct , ∀ i



Well balanced via fluctuation splitting

Conservative approximation in fluctuation form

∆xi
dui
dt

+ φ
i+1/2
i + φ

i−1/2
i = 0

Well balanced

If we set

φi+1/2 :=

∫ xi+1

xi

(∂xF + γ∂xb)

= F(ui+1)−F(ui) + γ(b(xi+1)− b(xi))

= ηi+1 − ηi
All schemes of the form φ

i+1/2
i := β

i+1/2
i φi+1/2

are well balanced !



Well balanced via fluctuation splitting

Conservative approximation in fluctuation form

∆xi
dui
dt

+ φ
i+1/2
i + φ

i−1/2
i = 0

Example:

F̂i+1/2 =
F(ui) + F(ui+1)

2
⇒ ψ

i+1/2

i =
F(ui+1)−F(ui)

2

γ∆̂b
i+1/2

i =
γ(b(xi+1)− b(xi))

2

φ
i+1/2

i =
1

2
φi+1/2



Well balanced via fluctuation splitting

Conservative approximation in fluctuation form

∆xi
dui
dt

+ φ
i−1/2
i + φ

i−1/2
i = 0

Example:

F̂i+1/2 =
F(ui) + F(ui+1)

2
−
|∂uF|Roe

i+1/2

2
(ui+1 − ui)

γ∆̂b
i+1/2

i =
γ(b(xi+1)− b(xi))

2
−

sign(∂uFRoe
i+1/2)

2
γ(b(xi+1)− b(xi))

φ
i+1/2

i =
1− sign(∂uFRoe

i+1/2)

2
φi+1/2



Residual distribution

Well balanced via residual distribution in 2D



Residual distribution

∂tu+∇ ·FFF(u) + S = 0

Multidimensional fluctuation splitting

|Ci|
dui
dt

+
∑
K3

φKi = 0

∑
j∈K

φKj = φK :=

∫
K

(∇ ·FFF(u) + S)



Residual distribution

∂tu+∇ ·FFF(u) + S = 0

Some remarks:

I The approximation is continuous in space. For this talk P 1 finite elements:

u =
∑
K

∑
j∈K

ϕjuj(t) ϕj piecewise linear continuous basis fcns

I There is no additional reconstruction involved

I There is no Riemann problem involved (cf. examples that follow)



Residual distribution

∂tu+∇ ·FFF(u) + S = 0

Some examples: central splitting

φKi =
1

3
φK



Residual distribution

∂tu+∇ ·FFF(u) + S = 0

Some examples: central plus streamline dissipation

Streamline dissipation stabiilzation3

φKi =
1

3
φK +

∫
K

∂uFFF · ∇ϕi τττ stab (∇ ·FFF(u) + S)

=
(1

3
+

1

|K| (∂uF
FF)K · ~ni τττ stab

)
φK

3Brooks and Hughes, CMAME 1982



Residual distribution

∂tu+∇ ·FFF(u) + S = 0

Some examples: multidimensional upwiniding

Multidimensional upwind fluctuation splitting4

φKi = βLDA
i φK , βLDAi = (∂uFFF · ~ni)+ τττLDA

4Roe 1986, Deconinck et al., 1993



Residual distribution

∂tu+∇ ·FFF(u) + S = 0

A framework for well balanced in multi dimensions

|Ci|
dui
dt

+
∑
K3

φKi = 0

∑
j∈K

φKj = φK :=

∫
K

(∇ ·FFF(u) + S)

Well balanced (MR, JCP 2015)

We consider a steady equilibrium associated to a set of invariants v (in space).
Any scheme of the form φKi = βKi φ

K with bounded coefficient (matrix) βKi
will be exactly well balanced provided that the evaluation of φK is done

1. by approximating v =
∑
j ϕjvj

2. with exact quadrature



Shallow water examples

~q = h~u

ph = g
h2

2

~f = ϕqf‖~q‖~q =
n2‖~q‖
h10/3

~q

η = h+ b

∂th+∇ · ~q = 0

∂t~q +∇ · (~u⊗ ~q) +∇ph + gh∇b+ gh~f = 0



Shallow water examples

Lake at rest

I Steady equilibrium defined by the invariant v = [η, ~q]t.

I In particular we have v(x, y) = v0 = [η0, 0]t (no flow, but multiD)

How to handle this

1. Approximation: quite natural

h =
∑
i

ϕihi and b =
∑
i

ϕibi =⇒ η =
∑
i

ϕiηi = η0

2. Quadrature : easy

φK =

∮
∂K

[
0
ph

]
~n

︸ ︷︷ ︸
Integrate h2

polynomial exactly

+

∫
K

gh

[
0
∇b

]
=

∫
K

[
0
∇ph

]
+

∫
K

gh

[
0
∇b

]

=︸︷︷︸
∇ph=gh∇h

∫
K

gh

[
0
∇η

]
= 0



Shallow water examples

Lake at rest

I Steady equilibrium defined by the invariant v = [η, ~q]t.

I In particular we have v(x, y) = v0 = [η0, 0]t (no flow, but multiD)



Shallow water examples

Lake at rest

I Steady equilibrium defined by the invariant v = [η, ~q]t.

I In particular we have v(x, y) = v0 = [η0, 0]t (no flow, but multiD)



Shallow water examples

Constant energy

I Steady equilibrium defined by the invariant v = [E = η + ‖~u‖2/2g, ~q]t.
I In particular we have v(x, y) = v0 = [E0, ~q0]t (moving, but 1D + no ~f)

I Assume that it makes sens to look at this in 2D ....

I Let ~q and ~q⊥ the flux components parallel and orthogonal to ~q0:

∂th+∇ · (~q + ~q⊥) = 0

∂t(~q + ~q⊥) +��
��(~u · ∇)~q −���

��
(~u⊥ · ∇)~q⊥ +

gh

gh− ‖~u‖2(((
(((

((
(gh∇E − ~u~u · ∇E)

+
gh

gh− ‖~u‖2((((
((((

(((
(((

(
~u

gh
~u · (∇~q · ~u)− ‖~u‖

2

gh
(∇~q)t · ~u) = gh

~u⊥ · ∇b
gh− ‖~u‖2 ~u

⊥

When setting v = v0 on an unstructured mesh
The bathymetry cannot have cross-flow variations !!



Shallow water examples

Constant energy

I Steady equilibrium defined by the invariant v = [E = η + ‖~u‖2/2g, ~q]t.
I In particular we have v(x, y) = v0 = [E0, ~q0]t (moving, but 1D + no ~f)

How to handle this

1. Approximation: less trivial

E =
∑
i

ϕiEi = E0 , ~q =
∑
i

ϕi~qi = ~q0 , and b =?

I Passing from E to physical var.s : solution of non-linear algebraic eq.1

I Simply expanding b on the same basis will not work as ∇b · q̂⊥ 6= 0

I We assume some analytical approximation of b is available

2. Quadrature: complex but (MR, JCP 2015)

Proposition
Schemes with φKi = βKi φ

K with bounded coefficients βKi preserve exactly
the initial steady equilibrium for exact quadrature.
For approximate integration, the truncation error is ε ≤ C∆x1+min(pf ,pv)

where pf and pv are the line and surface quadrature orders.

1Noelle, Xing, Shu, JCP 2007



Shallow water examples

Constant energy



Shallow water examples

Constant energy



Adaptive ALE in curvilinear coordinates

Extension to SWEs in ALE framework and curvilinear coords in (Arpaia and

Ricchiuto, SIAM-GS 2017) and (Arpaia and Ricchiuto, in preparation).

∂

∂t

(√
GJA

[
h
hui

])
+ JA

∂

∂xj

(
Fj−
√
Gσju

)
=
√
GJAS

Fj =
√
G

[
huj

T ij

]
, S = −

[
0

Gijgh
∂b

∂xj

]
−
[

0

Γijk
(
T jk − hujσk

) ]



Adaptive ALE in curvilinear coordinates

Extension to SWEs in ALE framework and curvilinear coords in (Arpaia and

Ricchiuto, SIAM-GS 2017) and (Arpaia and Ricchiuto, in preparation).

∂

∂t

(√
GJA

[
h
hui

])
+ JA

∂

∂xj

(
Fj−
√
Gσju

)
=
√
GJAS

G Jacobian of metric tensor (curv. coord.)

JA = det(∂xi/∂x
0
j ) ALE coord. transformation Jacobian



Adaptive ALE in curvilinear coordinates

I (Discrete) geometric conservation in curvilinear coordinates:

Classical characterization by Thomas & Lombard (AIAA J., 1979) in Cartesian
coordinates and in absence of sources:

∂

∂t
(JAu) + JA

∂

∂xj
(Fj(u)− σju) = 0 =⇒︸︷︷︸

u constant in space/time

∂

∂t
JA − JA

∂

∂xj
σj = 0



Adaptive ALE in curvilinear coordinates

I (Discrete) geometric conservation in curvilinear coordinates:

In curvilinear coord.s and/or with sources, not all constant states are admissible.
Schemes designed by combining geometric conservation and well balancing !

Example

∂

∂t
(
√
GJAh) =− JA

∂

∂xj
(
√
Ghuj −

√
Gσjh)

∂

∂t
(
√
GJAhu

i) =− JA
∂

∂xj
(
√
GT ij −

√
Gσjhui)−

√
GJAS

∂

∂t
(
√
GJAb) =− JA

∂

∂xj
(
√
Gσjb) ALE remap



Adaptive ALE in curvilinear coordinates

I (Discrete) geometric conservation in curvilinear coordinates:

In curvilinear coord.s and/or with sources, not all constant states are admissible.
Schemes designed by combining geometric conservation and well balancing !

Example, setting ui = 0 in the RHS

∂

∂t
(
√
GJAh) =JA

∂

∂xj
(
√
Gσjh)

∂

∂t
(
√
GJAhu

i) =− JA
∂

∂xj
(
√
GGijg

h2

2
)−
√
GJAG

ijgh
∂b

∂xj
− ΓijkG

jkg
h2

2
∂

∂t
(
√
GJAb) =− JA

∂

∂xj
(
√
Gσjb) ALE remap



Adaptive ALE in curvilinear coordinates

I (Discrete) geometric conservation in curvilinear coordinates:

In curvilinear coord.s and/or with sources, not all constant states are admissible.
Schemes designed by combining geometric conservation and well balancing !

Example, summing the ALE remap for b with mass conservation

∂

∂t
(
√
GJAη) =JA

∂

∂xj
(
√
Gσjη)

∂

∂t
(
√
GJAhu

i) =− JA
∂

∂xj
(
√
GGijg

h2

2
)−
√
GJAG

ijgh
∂b

∂xj
− ΓijkG

jkg
h2

2
∂

∂t
(
√
GJAb) =− JA

∂

∂xj
(
√
Gσjb) ALE remap



Adaptive ALE in curvilinear coordinates

I (Discrete) geometric conservation in curvilinear coordinates:

In curvilinear coord.s and/or with sources, not all constant states are admissible.
Schemes designed by combining geometric conservation and well balancing !

Example, if η = η0 = const in the RHS

∂

∂t
(
√
GJAη) =0

∂

∂t
(
√
GJAhu

i) =−
√
GJAG

ij( ∂

∂xj
(g
h2

2
) + gh

∂b

∂xj
)

−JA
( ∂

∂xj
(
√
GGij) + ΓijkG

jk)g h2

2



Adaptive ALE in curvilinear coordinates

I (Discrete) geometric conservation in curvilinear coordinates:

In curvilinear coord.s and/or with sources, not all constant states are admissible.
Schemes designed by combining geometric conservation and well balancing !

Example, if η = η0 = const in the RHS

∂

∂t
(
√
GJAη) =0

∂

∂t
(
√
GJAhu

i) =−
√
GJAG

ij

=0⇒well balanced condition︷ ︸︸ ︷( ∂

∂xj
(g
h2

2
) + gh

∂b

∂xj
)

−JA
( ∂

∂xj
(
√
GGij) + ΓijkG

jk)︸ ︷︷ ︸
=0 Ricci’s Lemma, and metric properties

g
h2

2



Adaptive ALE in curvilinear coordinates

I (Discrete) geometric conservation in curvilinear coordinates.

Clever combination of
I (Discrete) geometric conservation
I well balanced
I ALE remap
I Metric properties of the sphere

Constraints to be embedded in the discrete evaluation of

φK =

∫
K

{
JA

∂

∂xj

(
Fj−
√
Gσju

)
−
√
GJAS

}



Adaptive ALE in curvilinear coordinates

Extension to SWEs in ALE framework and curvilinear coords in (Arpaia and

Ricchiuto, SIAM-GS 2017) and (Arpaia and Ricchiuto, in preparation).

I Discrete geometric conservation in curvilinear coordinates

I Mass conservation vs ALE remap of the bathymetric, cf (Arpaia and

Ricchiuto, Computers & Fluids, 2018)

I Adaptive mesh movement



Wetting drying



Wetting drying

Main issues

I Well balancedness and ∇b in partially wet cells

I Non-negativity of h

I Velocity approximation and singularity for h� 1



Wetting drying

Modified approximation of the bathymetry
Generalzation of the so-called modified hydrostatic reconstruction, see
(Chen-Noelle, SINUM 2017) for a review.

Contribution of the bathymetry term in the residual:∫
K

gh∇b = |K| ghK
∑
j∈K

bj∇ϕj

bj = b(xj)

Initially proposed in (Brufau and Garcia-Navarro, JCP, 2003) and used in
(Ricchiuto and Bollermann, JCP, 2009), (Ricchiuto and Bollermann, JCP, 2015).



Wetting drying

Modified approximation of the bathymetry
Generalzation of the so-called modified hydrostatic reconstruction, see
(Chen-Noelle, SINUM 2017) for a review.

Contribution of the bathymetry term in the residual:∫
K

gh∇b = |K| ghK
∑
j∈K

b∗j∇ϕj

b∗j = min

(
b(xj), max

l∈K|hl>0
(hl + bl)

)

See (Brufau & Garcia-Navarro, JCP 2003) and (Ricchiuto & Bollermann, JCP 2009),

(Ricchiuto, JCP 2015).



Wetting drying

Modified approximation of the bathymetry
Generalzation of the so-called modified hydrostatic reconstruction, see
(Chen-Noelle, SINUM 2017) for a review.

Contribution of the bathymetry term in the residual:∫
K

gh∇b = |K| ghK
∑
j∈K

b∗j∇ϕj

b∗j = min

(
b(xj), max

l∈K|hl>0
(hl + bl + α‖~ul‖/2g)

)

Generalizing the modified H-reconstruction of (Gallardo et al, JCP 2007). Initially
proposedInitially proposedInitially proposed



Wetting drying

Modified approximation of the bathymetry
Generalzation of the so-called modified hydrostatic reconstruction, see
(Chen-Noelle, SINUM 2017) for a review.

In all cases for η constant in the wet region, and ~u=0
we have

b∗j = min

(
b(xj), max

l∈K|hl>0
(hl + bl + α‖~ul‖/2g)

)∫
K

gh∇b+

∫
K

gh∇h = 0

holds exactly. So dry areas do not perturb the initial equilibrium ! Initially
proposedInitially proposedInitially proposed



Wetting drying

Positivity preserving distribution

Relies on principles dating back to

I A. Harten, JCP 1983 (LED and TVD conditions)

I S.P. Spekreijse, Math. Comp. 1987 (positive coeff. schemes)

I Roe, ICASE rep. 1990, Deconinck et al. CAF 1993 (limited distribution)



Wetting drying

Positivity preserving distribution
LED scheme: Local Extremum Diminishing.

|Ci|
dui
dt

+
∑
K3i

φKi = 0

φKi =
∑
j∈K

cij(ui − uj) , cij ≥ 0

I Local maxima are non increasing (dui/dt ≤ 0)

I Local maxima are non decreasing (dui/dt ≥ 0)



Wetting drying

Positivity preserving distribution

Two step construction given φK

1. Define a positive coefficient first order distribution. Example:

(φKi )O1 =
φK

3
+ αK

∑
j∈K

(ui − uj)⇐= first order and LED
not well balanced

2. apply a (multiple entries) bounded positive limiter:

φKi =
θ∑

j∈K
θ
φK , θi = (φKi )O1φK

Step 2. can be performed eq. by eq. or projecting on a relevant sol. space
basis (characteristic ariables, primitive variables, etc). On the scalar level one
can show that

φKi = γi(φ
K
i )O1 , γi ∈ [0, 1]
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Wetting drying

Positivity preserving distribution

Two step construction given φK

1. Define a positive coefficient first order distribution. Example:

(φKi )O1 =
φK

3
+ αK

∑
j∈K

(ui − uj)⇐= first order and LED
not well balanced

2. apply a (multiple entries) bounded positive limiter:

φKi =
θ∑

j∈K
θ
φK , θi = max

(
0, (φKi )O1φK

)

Step 2. can be performed eq. by eq. or projecting on a relevant space
(characteristic var.s, primitive var.s, etc). On the scalar level one can show that

φKi = γi(φ
K
i )O1 , γi ∈ [0, 1]



Wetting drying

Positivity preserving distribution

When applied eq. by eq., we can show that

|Ci|
dhi
dt

= −
∑
K3i

∑
j∈K

cKij (~u)hj

with cKii = γic
O1
ii ≥ 0 and cKij = γic

O1
ij ≤ 0. Integrated with explicit Euler this

leads to a classical positivity preservation result (under a ∆t constraint):

hn+1
i = (1−

∆t
∑
K3i

cKii

|Ci|
)hni +

∑
K3i

∑
j∈K

|cKij |hnj



Wetting drying

Bounded computation of the velocity
A key issue. Unbounded velocities in wet/dry cells can occur due to division by
a small depth:

(~qn+1
i )update → ~un+1

i =


(~qn+1
i )update

hn+1
i

if hn+1
i > ch∆x2

αi
(~qn+1
i )update

hn+1
i

otherwise

→ ~qn+1
i = hn+1

i ~un+1
i

with αi = min(1, hn+1
i Ui/‖~qn+1

i ‖), where Ui is a local estimate of an upper
bound for the velocity norm, e.g.

Ui = max
K3i

max

max
j∈K
j is wet

‖unj ‖,max
j∈K

√
ghnj





(Implicit-explicit) time stepping for RD



(Implicit-explicit) time stepping for RD

Upwind FEM and mass matrix
Let’s look at

∂tu+ a∂xu+ γ∂xb = 0

Consider the streamline upwind finite element method (no or periodic BCs)

∫
Ω

ϕi∂tu+

∫
Ω

ϕi(a∂xu+ γ∂xb)

+
∑
K

∫
K

a∂xϕi τ ut +
∑
K

∫
K

a∂xϕi τ (a∂xu+ γ∂xb) = 0

I promise (no cheating) this is almost exactly the same as the first order
upwind splitting, if the stabilization parameter is taken as τ = ∆xK/2|a|.



(Implicit-explicit) time stepping for RD

Upwind FEM and mass matrix
Let’s look at

∂tu+ a∂xu+ γ∂xb = 0

take a > 0 and consider the stabilized finite element method (τ = ∆xK/2|a|)

∫
Ω

(ϕi +
∆x

2
∂xϕi)∂tu+ a(ui − ui−1) + γ(bi − bi−1) = 0

this is almost the same as the first order upwind splitting. What we miss to get
high order is a mass matrix...

The RD case is very similar.



(Implicit-explicit) time stepping for RD

Fully explicit residual based schemes
To develop the main idea we consider stabilized finite elements writing5∫

Ω

ϕi(∂tu+∇ · F + S) +
∑
K3i

∫
K

γi(∂tu+∇ · F + S) = 0

with the consistency condition
∑
j∈K γj = 0

The analogy with RD implies that

∫
K

(ϕi + γi)∂tu =
∑
j∈K

mRD
ij
duj
dt∫

K

(ϕi + γi)(∇ · F + S) = βKi φ
K

and allows to construct explicit forms of mass matrices.

5Ricchiuto and Abgrall, JCP 2010



(Implicit-explicit) time stepping for RD

How to do fully explicit
Step 1 : Consider a semi-discrete explicit time approximation

rn+1 =
∑
l≥0

αl
∆n+1−lu

∆t
+
∑
l≥1

θl(∇ · F + S)n+1−l

Step 2 : write the unstabilized formulation (mG the Galerkin mass matrix):∑
K3i

∑
j∈K

mG
ij

∑
l≥0

αl
∆n+1−luj

∆t
+
∑
K3i

∫
K

ϕi
∑
l≥1

θl(∇ · F + S)n+1−l = 0

Step 3 : stabilize with a modified residual in which un+1 is replaced by some
explicit predictor:∑

K3i

∑
j∈K

mG
ij

∑
l≥0

αl
∆n+1−luj

∆t
+
∑
K3i

∫
K

ϕi
∑
l≥1

θl(∇ · F + S)n+1−l+

+
∑
K3i

∫
K

γi
∑
l≥1

α̂l
̂∆n+1−lu

∆t
+
∑
K3i

∫
K

γi
∑
l≥1

θl(∇ · F + S)n+1−l = 0



(Implicit-explicit) time stepping for RD

How to do fully explicit
Lumping the Galerkin mass matrix and recasting as an error correction we get

|Ci|

∑
l≥0

αl
∆n+1−lui

∆t
−
∑
l≥1

α̂l
̂∆n+1−lui
∆t

 =

−
∑
K3i

∑
j∈K

mRD
ij

∑
l≥1

α̂l
̂∆n+1−luj
∆t

+ βKi
∑
l≥0

θlφ
K(un+1−l)


How to choose ̂∆n+1−luj ????



(Implicit-explicit) time stepping for RD

Result (Ricchiuto and Abgrall, JCP 2010)

Proposition Given a time semi-discretization with a truncation error estimate
of the type |rn+1| ≤ ct∆tkt+1, for a P k finite element approximation, the
scheme verifies a consistency estimate of the type ε < C∆xk+1 provided that
kt ≥ k, that βKi and γi are uniformly bounded, and that the modified residual
verifies the lower order consistency estimate |r̂ n+1| ≤ ct∆tkt .



(Implicit-explicit) time stepping for RD

Example 1: RK2-RD scheme

rn+1 =
un+1 − un

∆t
+

1

2
(∇ · F + S)n +

1

2
(∇ · F + S)∗

r̂ n+1 =
u∗ − un

∆t
+

1

2
(∇ · F + S)n +

1

2
(∇ · F + S)∗

The predicted u∗ value can be obtained by a first explicit step without mass
matrix:

|Ci|
u∗i − uni

∆t
= −

∑
K3i

βKi φ
K(un)



(Implicit-explicit) time stepping for RD

Example 2: EBDf-RD scheme

rn+1 =
3

2

un+1 − un

∆t
− 1

2

un − un−1

∆t
+ (∇ · F + S)∗

r̂ n+1 =
un − un−1

∆t
+ (∇ · F + S)∗

The ∗ value is now he time extrapolated one x∗ = 2xn − xn−1.



(Implicit-explicit) time stepping for RD

Explicit RD: Thacker oscillations

Thacker oscillations


thk.avi
Media File (video/avi)



(Implicit-explicit) time stepping for RD

Implicit-explicit EBDf-RD
For stiff problems, an IMEX version of EBDf can be constructed :

∑
K3i

∑
j∈K

mG
ij

3

2

un+1
j − 2unj + un−1

j

∆t
=

−
∑
K3i

{∑
j∈K

mRD
ij

unj − un−1
j

∆t
+ βKi (∇ · F + S)∗ +

∑
j∈K

mRD
ij f

∗
j

}

I mRD
ij f

∗
j is an approximation of mRD

ij f
n+1
j = mG

ijf
n+1
j +mStab

ij fn+1
j

I We will keep the full A-stable implicit unstabilized form :mG
ijf

n+1
j

I We will still use the modified residual for the stabilization: mStab
ij f∗j



(Implicit-explicit) time stepping for RD

Implicit-explicit EBDf-RD
Putting back together all the terms we end with the implicit update:

∑
K3i

∑
j∈K

mG
ij

{
3

2

un+1
j − 2unj + un−1

j

∆t
+ fn+1 − f∗

}
=

−
∑
K3i

{∑
j∈K

mRD
ij

unj − un−1
j

∆t
+ βKi (∇ · F + S)∗ +

∑
j∈K

mRD
ij f

∗
j

}

Implicit phase
The implicit equation

|Ci|

{
3

2

un+1
j − 2unj + un−1

j

∆t
+ fn+1 − f∗

}
= −Ri

is solved analytically



(Implicit-explicit) time stepping for RD

Implicit-explicit EBDf-RD
Putting back together all the terms we end with the implicit update:

∑
K3i

∑
j∈K

mG
ij

{
3

2

un+1
j − 2unj + un−1

j

∆t
+ fn+1 − f∗

}
=

−
∑
K3i

{∑
j∈K

mRD
ij

unj − un−1
j

∆t
+ βKi (∇ · F + S)∗ +

∑
j∈K

mRD
ij f

∗
j

}

(Linear) Stability

By Kreiss (1962) and Strang (1964) (cf. book by Richtmyer & Morton (1967)):

If the discrete system
un+1 = C(∆t)un

is stable, that given a bounded operator Q(∆t), the discrete perturbed system

un+1 = C(∆t)un + ∆tQ(∆t)un

is also stable



Some applications



Dam break problems

Dam break experiment by Schoklitsch (1917)

I Friction dominated

I Friction coefficient
“blow up” at the
wet/dry point



Seaside experiment

Wave tank reproduction of Seaside (Oregon)

Full details in (Park et al, Coast.Eng. 2013)



Seaside experiment

Wave tank reproduction of Seaside (Oregon)

Seaside back Seaside top


seaside1.avi
Media File (video/avi)


seaside3.avi
Media File (video/avi)



Seaside experiment

Wave tank reproduction of Seaside (Oregon)

Full details in (Park et al, Coast.Eng. 2013)



Seaside experiment

Wave tank reproduction of Seaside (Oregon)

Full details in (Park et al, Coast.Eng. 2013)



Seaside experiment

—— Simulations —— Experiments



Curvilinear coord.s: global zonal geostrophic flow

Case #5 from [Williamson et al., 1992] is a zonal flow perturbed by a mountain

Relative energy error



Global zonal geostrophic flow


export-mon1.mov
Media File (video/quicktime)


export-mon-mesh1.mov
Media File (video/quicktime)



2011 Tohoku tsunami

I Mesh 1: 5 km to 120m

I Mesh 2: 15 km to 360m (half the number of cells)

I Source: vertical + horizontal displacement (courtesy of BRGM)

Left and center: Embedded mesh and initial state in the vicinity of Iwate prefecture.

Right: initial vertical displacement.



Adaptive ALE simulations


export31.mov
Media File (video/quicktime)


export3-mesh1.mov
Media File (video/quicktime)



Adaptive ALE simulations


export21.mov
Media File (video/quicktime)


export2-mesh1.mov
Media File (video/quicktime)



Shoreline adaptation

Initial shoreline (Iwate prefecture)

Initial shoreline (Miyagi prefecture)



ALE simulation against reference

− Mesh a (Reference) − Mesh b + ADAPT-ALE − Obs.Data
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Flash floods in the city of Worms (Rhineland-Palatinate)

Collaboration with BGS IT&E (German SME):
A. Roland et al, EGU meeting 2018
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Flash floods in the city of Worms (Rhineland-Palatinate)

Collaboration with BGS IT&E (German SME):
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Flash floods in the city of Worms (Rhineland-Palatinate)
Collaboration with BGS IT&E (German SME):
A. Roland et al, EGU meeting 2018

2-way coupling with sub-models
for sewage system (Bernoulli-type
models), and unresolved structures
(pressure patches)



Flash floods in the city of Worms (Rhineland-Palatinate)

Collaboration with BGS IT&E (German SME):
A. Roland et al, EGU meeting 2018

Worms city movie


worms-crop.mp4
Media File (video/mp4)



Flash floods in the city of Worms (Rhineland-Palatinate)

December 2nd, 2017:
results presented during a public audition in

the city aiming at raising the population’s
awareness on the risks of floods, and on the

importance of proper forecasting in the
development of hazard reduction policies



Summary and outlook

I Residual distribution: genuinely multidimensional well balanced schemes

I general framework to solve balance laws on unstructured moving grids

I close relations to continuous stabilized finite elements (e.g. SUPG)

I mass matrix requires careful design of efficient time stepping (error
correction approach)

I numerical results are extremely satisfactory/promising



Summary and outlook

Ongoing and future work

I More on IMEX: stiffly stable RK, application to kinetic approximations

I Higher order (≥ 3) unsteady for complex/realistic applications ?

I Other constraints : e.g. energy/entropy conservation

I Immersed/embedded BCs: feasible for urban inundation?

I Dispersive waves

I etc. etc.



THX !!! ,
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