RESIDUAL BASED SCHEMES FOR SHALLOW WATER FLOWS: APPLICATION TO TSUNAMI PROPAGATION & URBAN FLOODS

Mario Ricchiuto

Team CARDAMOM INRIA Bordeaux - Sud-Ouest

Melosh Medal Lecture

April 27th, 2018 Duke University, Durham (NC)

INITIAL WATER ELEVATION DUE TO SEABED DEFORMATION

Model by [Satake et a., Bull. Seismol. Soc. Am. 2012], courtesy of BRGM Orleans.

Grid, and close up view of the lwate prefecture (initial state).

Ínnía -

Grid, and close up view of the lwate prefecture (initial state).

Ínnía -

Ínnía-

Ínnia-

Ínría

Grid, and close up view of the lwate prefecture (initial state).

Ínnía -

lwate prefecture: t = 40 min (left), t = 50 min (center), runup plot (right).

These problems can be studied using the shallow water model¹

$$\vec{q} = h\vec{u}$$

$$p_h = g\frac{h^2}{2}$$

$$\vec{f} = \varphi_f^q \|\vec{q}\| \vec{q} = \frac{n^2 \|\vec{q}\|}{h^{10/3}} \vec{q}$$

$$\eta = h + b$$

$$\partial_t h + \nabla \cdot \vec{q} = 0$$

 $\partial_t \vec{q} + \nabla \cdot (\vec{u} \otimes \vec{q}) + \nabla p_h + gh \nabla b + gh \vec{f} = 0$

naío -

 $^{^{1}\}ensuremath{\mathsf{possibly}}$ in curvilinear coord.s for large scale simulations as e.g. for the Tohoku case

Ínnia-

Ínnia-

Ínnia-

Ínnía-

RESIDUAL BASED SHALLOW WATER MODELLING

Joint effort over the last years with the members of my Inria team, and with many colleagues :

- R. Abgrall, U. Zurich (Switzerland)
- L. Arpaia, former PhD at Inria, now BRGM (France)
- A. Bollerman, former PhD at RWTH Aachen (Germany)
- H. Deconinck, von Karman Institute (Belgium)
- M. Hubbard, U. Nottingham (UK)
- M. Kazolea, Inria BSO (France)
- D. Sarmany, former post-doc at Leeds U. (UK)

RESIDUAL BASED SHALLOW WATER MODELLING

Joint effort over the last years, acknowledging funding of

- PIA-ANR TANDEM (coordinated by the French CEA)
- EU-ERANET MIDWEST (coordinated by Inria)
- EDF (Electricité de France)
- Région Nouvelle Aquitaine
- Inria and Université de Bordeaux
- BGS IT&E GMBH (German SME)

Residual based shallow water modelling

Shallow water papers :

Application of conservative RD to the solution of the SWEs on unstructured meshes. *J.Comput.Phys.* 222, 2007 (with R. Abgrall and H. Deconinck)

Stabilized RD for SW simulations. *J.Comput.Phys.* 228, 2009 (with A. Bollermann)

On the C-property and generalized C-property of RD for the SWEs. J.Sci.Comp. 48, 2011

Unconditionally stable space-time discontinuous RD for SW flows. *J.Comput.Phys.* 253, 2014 (with D. Sarmany and M. Hubbard)

An explicit residual based approach for SW flows. J.Comput.Phys. 280, 2015

r-adaptation for SW: conservation, well balancedness, efficiency. Computers & Fluids, 160, 2018 (with L. Arpaia)

Residual distribution and finite volumes for SW in adaptive moving curvilinear coordinates, in preparation (with L. Arpaia)

Residual distribution papers :

Explicit Runge-Kutta RD for time dependent problems: Second order case. *J.Comput.Phys.* 229, 2010 (with R. Abgrall)

Discontinuous upwind RD: A route to unconditional positivity and high order accuracy. Computers & Fluids 46, 2011 (with M. Hubbard)

An ALE formulation for explicit Runge-Kutta RD. J.Sci.Comp. 63, 2014 (with L. Arpaia and R. Abgrall)

Ínnía -

OUTLINE

SHALLOW WATER EQUATIONS AND WELL BALANCING

FINITE VOLUMES AND FLUCTUATION SPLITTING

MultiD: well balanced via residual distribution

INCLUDING MESH MOVEMENT AND CURVILINEAR COORDINATES

Wetting-drying

EFFICIENT TIME STEPPING WITH MASS MATRICES

Applications and examples

CONCLUSION AND PERSPECTIVES

$$ec{q} = hec{u}$$

 $p_h = g rac{h^2}{2}$
 $ec{f} = arphi_f^q ||ec{q}||ec{q} = rac{n^2 ||ec{q}||}{h^{10/3}}ec{q}$
 $\eta = h + b$

$$\partial_t h + \nabla \cdot \vec{q} = 0$$

$$\partial_t \vec{q} + \nabla \cdot (\vec{u} \otimes \vec{q}) + \nabla p_h + gh\nabla b + gh\vec{f} = 0$$

Simplified model

$$\partial_t u + \partial_x \mathcal{F}(u) + \gamma \partial_x b(x) = 0$$

For this kind of problem, consistency w.r.t. u = const has no meaning as this is a state that cannot occur

So, what is a good notion of consistency here ?

Simplified model

$$\partial_t u + \partial_x \mathcal{F}(u) + \gamma \partial_x b(x) = 0$$

Simple example: If γ is constant the state

$$\mathcal{F}(u(x)) + \gamma b(x) = \eta_0 = c^t$$

defines an exact steady equilibrium

Consistency w.r.t. η seems like a better notion than consistency with respect to constant values of \boldsymbol{u}

Simplified model

$$\partial_t u + \partial_x \mathcal{F}(u) + \gamma \partial_x b(x) = 0$$

Simple example: If γ is constant the state

$$\mathcal{F}(u(x)) + \gamma b(x) = \eta_0 = c^t$$

defines an exact steady equilibrium

Well-balancedness or C-property is defined as the ability of preserving this equilibrium EXACTLY at the discrete level^2

²Bermudez and Vazquez, Computers & Fluids 1994

Vast literature on designing well balanced numerical methods

- Bermudez and Vazquez, Computers & Fluids 1994
- FV: Hubbard and Garcia Navarro, J.Comput.Phys. 2000; Audusse et al, SIAM SISC 2004; M.J. Castro et al, Math. & Computer Mod. 2006, Noelle et al, J.Comput.Phys. 2007; Xing & Shu Adv.Wat.Res. 2011, etc.
- DG: Xing & Zhang J.Sci.Comput. 2013 ; Duran & Marche Computers & Fluids 2014; Xing J.Comput.Phys. 2014, etc.
- cG + stabilization and RD: Hauke CMAME 1998; Hubbard & Baines J.Comput.Phys. 1997; Brufau & Garcia Navarro J.Comput.Phys. 2003, Pasquetti et al ICOSAHOM 2014; Azerat et al, SINUM 2017; etc.

etc.

etc. etc.

Conservative approximation ($\hat{\cdot}$ denotes numerical fluxes/source)

$$\Delta x_i \frac{du_i}{dt} + \widehat{\mathcal{F}}_{i+1/2} - \widehat{\mathcal{F}}_{i-1/2} + \gamma \widehat{\Delta b}_i = 0$$

Conservative approximation in fluctuation form

$$\Delta x_i \frac{du_i}{dt} + \widehat{\mathcal{F}}_{i+1/2} - \mathcal{F}(u_i) + \mathcal{F}(u_i) - \widehat{\mathcal{F}}_{i-1/2} + \gamma \widehat{\Delta b}_i = 0$$

Conservative approximation in fluctuation form

$$\Delta x_i \frac{du_i}{dt} + \underbrace{\widehat{\mathcal{F}}_{i+1/2} - \mathcal{F}(u_i)}_{\psi_i^{i+3/2}} + \underbrace{\mathcal{F}(u_i) - \widehat{\mathcal{F}}_{i-1/2}}_{\psi_i^{i-1/2}} + \gamma \widehat{\Delta b}_i = 0$$

Conservative approximation in fluctuation form

$$\Delta x_i \frac{du_i}{dt} + \underbrace{\widehat{\mathcal{F}}_{i+1/2} - \mathcal{F}(u_i)}_{\psi_i^{i+1/2}} + \underbrace{\mathcal{F}(u_i) - \widehat{\mathcal{F}}_{i-1/2}}_{\psi_i^{i-1/2}} + \gamma \widehat{\Delta b}_i = 0$$

Conservation $\Delta x_i \frac{du_{i+1}}{dt} + \widehat{\mathcal{F}}_{i+3/2} - \widehat{\mathcal{F}}_{i+1/2} + \gamma \widehat{\Delta b}_{i+1} = 0$

Conservative approximation in fluctuation form

Conservative approximation in fluctuation form

$$\Delta x_i \frac{du_i}{dt} + \underbrace{\widehat{\mathcal{F}}_{i+1/2} - \mathcal{F}(u_i)}_{\psi_i^{i+1/2}} + \underbrace{\mathcal{F}(u_i) - \widehat{\mathcal{F}}_{i-1/2}}_{\psi_i^{i-1/2}} + \gamma \widehat{\Delta b}_i = 0$$

Conservation $\psi_i^{i+1/2} + \psi_{i+1}^{i+1/2} = \mathcal{F}(u_{i+1}) - \mathcal{F}(u_i)$ $\psi_i^{i-1/2} + \psi_{i-1}^{i-1/2} = \mathcal{F}(u_i) - \mathcal{F}(u_{i-1})$

Conservative approximation in fluctuation form

$$\Delta x_i \frac{du_i}{dt} + \psi_i^{i+1/2} + \psi_i^{i-1/2} + \gamma \widehat{\Delta b}_i = 0$$

Conservative approximation in fluctuation form

$$\Delta x_i \frac{du_i}{dt} + \psi_i^{i+1/2} + \psi_i^{i-1/2} + \gamma \widehat{\Delta b}_i = 0$$

Well balanced

$$\gamma \widehat{\Delta b}_i = \gamma \widehat{\Delta b}_i^{i+1/2} + \gamma \widehat{\Delta b}_i^{i-1/2}$$

Conservative approximation in fluctuation form

$$\Delta x_i \frac{du_i}{dt} + \psi_i^{i+1/2} + \psi_i^{i-1/2} + \gamma \widehat{\Delta b}_i = 0$$

Conservative approximation in fluctuation form

Well balanced

Conservative approximation in fluctuation form

$$\Delta x_i \frac{du_i}{dt} + \phi_i^{i+1/2} + \phi_i^{i-1/2} = 0$$

Well balanced

Design $\gamma\widehat{\Delta b}_i^{i\pm 1/2}$ so that

$$\phi_i^{\pm 1/2} = \psi_i^{i\pm 1/2} + \gamma \widehat{\Delta b}_i^{i\pm 1/2} = 0$$

If
$$\eta_i := \mathcal{F}(u_i) + \gamma b(x_i) = \eta_0 = c^t$$
, $\forall i$
Well balanced via fluctuation splitting

Conservative approximation in fluctuation form

$$\Delta x_i \frac{du_i}{dt} + \phi_i^{i+1/2} + \phi_i^{i-1/2} = 0$$

Five set

$$\begin{aligned} & = \int_{x_i}^{x_{i+1}} \left(\partial_x \mathcal{F} + \gamma \partial_x b \right) \\ & = \mathcal{F}(u_{i+1}) - \mathcal{F}(u_i) + \gamma(b(x_{i+1}) - b(x_i)) \\ & = \eta_{i+1} - \eta_i \end{aligned}$$

All schemes of the form $\phi_i^{i+1/2} := \beta_i^{i+1/2} \phi^{i+1/2}$ are well balanced !

Well balanced via fluctuation splitting

Conservative approximation in fluctuation form

$$\Delta x_i \frac{du_i}{dt} + \phi_i^{i+1/2} + \phi_i^{i-1/2} = 0$$

Example:

$$\begin{aligned} \widehat{\mathcal{F}}_{i+1/2} &= \frac{\mathcal{F}(u_i) + \mathcal{F}(u_{i+1})}{2} \Rightarrow \psi_i^{i+1/2} = \frac{\mathcal{F}(u_{i+1}) - \mathcal{F}(u_i)}{2} \\ &\gamma \widehat{\Delta b}_i^{i+1/2} = \frac{\gamma(b(x_{i+1}) - b(x_i))}{2} \\ &\phi_i^{i+1/2} = \frac{1}{2} \phi^{i+1/2} \end{aligned}$$

Well balanced via fluctuation splitting

Conservative approximation in fluctuation form

$$\Delta x_i \frac{du_i}{dt} + \phi_i^{i-1/2} + \phi_i^{i-1/2} = 0$$

Example:

$$\begin{split} \widehat{\mathcal{F}}_{i+1/2} &= \frac{\mathcal{F}(u_i) + \mathcal{F}(u_{i+1})}{2} - \frac{|\partial_u \mathcal{F}|_{i+1/2}^{\text{noe}}}{2} (u_{i+1} - u_i) \\ \gamma \widehat{\Delta b}_i^{i+1/2} &= \frac{\gamma(b(x_{i+1}) - b(x_i))}{2} - \frac{\text{sign}(\partial_u \mathcal{F}_{i+1/2}^{\text{Roe}})}{2} \gamma(b(x_{i+1}) - b(x_i)) \\ \phi_i^{i+1/2} &= \frac{1 - \text{sign}(\partial_u \mathcal{F}_{i+1/2}^{\text{Roe}})}{2} \phi^{i+1/2} \end{split}$$

Well balanced via residual distribution in 2D

 $\partial_t u + \nabla \cdot \boldsymbol{\mathcal{F}}(u) + S = 0$

MULTIDIMENSIONAL FLUCTUATION SPLITTING

$$|C_i|\frac{du_i}{dt} + \sum_{K\ni} \phi_i^K = 0$$

$$\sum_{j \in K} \phi_j^K = \phi^K := \int_K \left(\nabla \cdot \boldsymbol{\mathcal{F}}(u) + S \right)$$

$$\partial_t u + \nabla \cdot \boldsymbol{\mathcal{F}}(u) + S = 0$$

Some remarks:

• The approximation is continuous in space. For this talk P^1 finite elements:

$$u = \sum_{K} \sum_{j \in K} \varphi_j u_j(t) \quad \varphi_j$$
 piecewise linear continuous basis fcns

- There is no additional reconstruction involved
- There is no Riemann problem involved (cf. examples that follow)

$$\partial_t u + \nabla \cdot \boldsymbol{\mathcal{F}}(u) + S = 0$$

Some examples: central splitting

$$\phi_i^K = \frac{1}{3}\phi^K$$

 $\partial_t u + \nabla \cdot \boldsymbol{\mathcal{F}}(u) + S = 0$

SOME EXAMPLES: CENTRAL PLUS STREAMLINE DISSIPATION Streamline dissipation stabiilzation³

$$\begin{split} \phi_i^K = &\frac{1}{3}\phi^K + \int\limits_K \partial_u \boldsymbol{\mathcal{F}} \cdot \nabla \varphi_i \, \boldsymbol{\tau}_{\mathsf{stab}} \left(\nabla \cdot \boldsymbol{\mathcal{F}}(u) + S \right) \\ = & \left(\frac{1}{3} + \frac{1}{|K|} (\partial_u \boldsymbol{\mathcal{F}})_K \cdot \vec{n}_i \, \boldsymbol{\tau}_{\mathsf{stab}} \right) \phi^K \end{split}$$

³Brooks and Hughes, CMAME 1982

 $\partial_t u + \nabla \cdot \boldsymbol{\mathcal{F}}(u) + S = 0$

Some examples: multidimensional upwiniding

Multidimensional upwind fluctuation splitting⁴

$$\phi_i^K = \beta_i^{\mathsf{LDA}} \phi^K \,, \quad \beta_i^{LDA} = (\partial_u \pmb{\mathcal{F}} \cdot \vec{n}_i)^+ \, \pmb{\tau}_{\mathsf{LDA}}$$

⁴Roe 1986, Deconinck et al., 1993

 $\partial_t u + \nabla \cdot \boldsymbol{\mathcal{F}}(u) + S = 0$

A FRAMEWORK FOR WELL BALANCED IN MULTI DIMENSIONS

$$|C_i|\frac{du_i}{dt} + \sum_{K\ni} \phi_i^K = 0$$

$$\sum_{j \in K} \phi_j^K = \phi^K := \int_K \left(\nabla \cdot \boldsymbol{\mathcal{F}}(u) + S \right)$$

Well balanced (MR, JCP 2015)

We consider a steady equilibrium associated to a set of invariants v (in space). Any scheme of the form $\phi_i^K = \beta_i^K \phi^K$ with bounded coefficient (matrix) β_i^K will be exactly well balanced provided that the evaluation of ϕ^K is done

- 1. by approximating $v = \sum_j \varphi_j v_j$
- 2. with exact quadrature

$$\begin{split} \vec{q} &= h\vec{u} \\ p_{h} &= g\frac{h^{2}}{2} \\ \vec{f} &= \varphi_{f}^{q} \|\vec{q}\| \vec{q} = \frac{n^{2} \|\vec{q}\|}{h^{10/3}} \vec{q} \\ \eta &= h + b \end{split}$$

$$\begin{aligned} \partial_t h + \nabla \cdot \vec{q} &= 0\\ \partial_t \vec{q} + \nabla \cdot (\vec{u} \otimes \vec{q}) + \nabla p_h + gh \nabla b + gh \vec{f} &= 0 \end{aligned}$$

LAKE AT REST

Steady equilibrium defined by the invariant $v = [\eta, \vec{q}]^t$.

In particular we have $v(x,y) = v_0 = [\eta_0, 0]^t$ (no flow, but multiD) How to handle this

1. Approximation: quite natural

$$h = \sum_{i} \varphi_{i} h_{i}$$
 and $b = \sum_{i} \varphi_{i} b_{i} \Longrightarrow \eta = \sum_{i} \varphi_{i} \eta_{i} = \eta_{0}$

2. Quadrature : easy

$$\phi^{K} = \oint_{\substack{\partial K \\ \text{polynomial exactly}}} \begin{bmatrix} 0 \\ p_{h} \end{bmatrix} \vec{n} + \int_{K} gh \begin{bmatrix} 0 \\ \nabla b \end{bmatrix} = \int_{K} \begin{bmatrix} 0 \\ \nabla p_{h} \end{bmatrix} + \int_{K} gh \begin{bmatrix} 0 \\ \nabla b \end{bmatrix}$$

$$= \int_{K} gh \begin{bmatrix} 0 \\ \nabla p_{h} \end{bmatrix} = 0$$

LAKE AT REST

- Steady equilibrium defined by the invariant $v = [\eta, \vec{q}]^t$.
- ▶ In particular we have $v(x, y) = v_0 = [\eta_0, 0]^t$ (no flow, but multiD)

LAKE AT REST

- Steady equilibrium defined by the invariant $v = [\eta, \bar{q}]^t$.
- ▶ In particular we have $v(x, y) = v_0 = [\eta_0, 0]^t$ (no flow, but multiD)

main

CONSTANT ENERGY

- Steady equilibrium defined by the invariant $v = [\mathcal{E} = \eta + ||\vec{u}||^2/2g, \vec{q}]^t$.
- ▶ In particular we have $v(x, y) = v_0 = [\mathcal{E}_0, \vec{q_0}]^t$ (moving, but 1D + no \vec{f})
- Assume that it makes sens to look at this in 2D
- Let \vec{q} and \vec{q}^{\perp} the flux components parallel and orthogonal to \vec{q}_0 :

$$\begin{aligned} \partial_t h + \nabla \cdot (\vec{q} + \vec{q}^{\perp}) &= 0 \\ \partial_t (\vec{q} + \vec{q}^{\perp}) + (\vec{u} \cdot \nabla) \vec{q} - (\vec{u}^{\perp} \cdot \nabla) \vec{q}^{\perp} + \frac{gh}{gh - \|\vec{u}\|^2} (\underline{gh} \nabla \mathcal{E} - \vec{u} \vec{u} \cdot \nabla \mathcal{E}) \\ &+ \frac{gh}{gh - \|\vec{u}\|^2} (\underline{\vec{u}}_{\underline{gh}} \vec{u} \cdot (\nabla \vec{q} \cdot \vec{u}) - \frac{\|\vec{u}\|^2}{gh} (\nabla \vec{q})^t \cdot \vec{u}) = \underline{gh} \frac{\vec{u}^{\perp} \cdot \nabla b}{gh - \|\vec{u}\|^2} \vec{u}^{\perp} \end{aligned}$$

When setting $v = v_0$ on an unstructured mesh The bathymetry cannot have cross-flow variations !!

CONSTANT ENERGY

Steady equilibrium defined by the invariant $v = [\mathcal{E} = \eta + \|\vec{u}\|^2/2g, \vec{q}]^t$.

In particular we have $v(x,y) = v_0 = [\mathcal{E}_0, \vec{q}_0]^t$ (moving, but 1D + no \vec{f}) How to handle this

1. Approximation: less trivial

$$\mathcal{E} = \sum_i \varphi_i \mathcal{E}_i = \mathcal{E}_0 \,, \ \ \vec{q} = \sum_i \varphi_i \vec{q}_i = \vec{q}_0 \,, \qquad \text{and} \qquad b = ?$$

▶ Passing from \mathcal{E} to physical var.s : solution of non-linear algebraic eq.¹

• Simply expanding b on the same basis will not work as $\nabla b \cdot \hat{q}^{\perp} \neq 0$

 \blacktriangleright We assume some analytical approximation of b is available

2. Quadrature: complex but (MR, JCP 2015)

Proposition

Schemes with $\phi_i^K = \beta_i^K \phi^K$ with bounded coefficients β_i^K preserve exactly the initial steady equilibrium for exact quadrature.

For approximate integration, the truncation error is $\epsilon \leq C\Delta x^{1+\min(p_f,p_v)}$ where p_f and p_v are the line and surface quadrature orders.

¹Noelle, Xing, Shu, JCP 2007

CONSTANT ENERGY

Ínría

CONSTANT ENERGY

	(0h, 0)	$[e_{24} u(o_h, o)]$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25/50	1.452714e-07	3.698282e-10	3.35738e-04
25/100	9.508237e-09	4.450410e-12	8.85116e-05
rate	3.947	6.399 👟	1.930
25/200	6.584230e-10	4.688134e-14	2.36592e-05
rate	3.865	6.591 🗲	1.913

Ínría_

Extension to SWEs in **ALE** framework and curvilinear coords in (Arpaia and Ricchiuto, SIAM-GS 2017) and (Arpaia and Ricchiuto, in preparation).

$$\frac{\partial}{\partial t} \left(\sqrt{G} J_A \begin{bmatrix} h \\ hu^i \end{bmatrix} \right) + J_A \frac{\partial}{\partial x^j} \left(\mathsf{F}^j - \sqrt{G} \sigma^j \mathsf{u} \right) = \sqrt{G} J_A \mathsf{S}$$

$$\mathbf{F}^{j} = \sqrt{G} \begin{bmatrix} hu^{j} \\ T^{ij} \end{bmatrix}, \quad \mathbf{S} = -\begin{bmatrix} 0 \\ G^{ij}gh\frac{\partial b}{\partial x^{j}} \end{bmatrix} - \begin{bmatrix} 0 \\ \Gamma^{i}_{jk}\left(T^{jk} - hu^{j}\sigma^{k}\right) \end{bmatrix}$$

Extension to SWEs in **ALE** framework and curvilinear coords in (Arpaia and Ricchiuto, SIAM-GS 2017) and (Arpaia and Ricchiuto, in preparation).

$$\frac{\partial}{\partial t} \left(\sqrt{G} J_A \begin{bmatrix} h \\ h u^i \end{bmatrix} \right) + J_A \frac{\partial}{\partial x^j} \left(\mathsf{F}^j - \sqrt{G} \sigma^j \mathsf{u} \right) = \sqrt{G} J_A \mathsf{S}$$

G Jacobian of metric tensor (curv. coord.) $J_A = \det(\partial x_i/\partial x_i^0)$ ALE coord. transformation Jacobian

(Discrete) geometric conservation in curvilinear coordinates:

Classical characterization by Thomas & Lombard (AIAA J., 1979) in Cartesian coordinates and in absence of sources:

$$\frac{\partial}{\partial t} \left(J_A u \right) + J_A \frac{\partial}{\partial x^j} (F_j(u) - \sigma^j u) = 0 \underset{u \text{ constant in space/time}}{\Longrightarrow} \frac{\partial}{\partial t} J_A - J_A \frac{\partial}{\partial x^j} \sigma^j = 0$$

(Discrete) geometric conservation in curvilinear coordinates:

In curvilinear coord.s and/or with sources, not all constant states are admissible. Schemes designed by combining geometric conservation and well balancing ! Example

$$\frac{\partial}{\partial t}(\sqrt{G}J_{A}h) = -J_{A}\frac{\partial}{\partial x^{j}}(\sqrt{G}hu^{j} - \sqrt{G}\sigma^{j}h)$$

$$\frac{\partial}{\partial t}(\sqrt{G}J_{A}hu^{i}) = -J_{A}\frac{\partial}{\partial x^{j}}(\sqrt{G}T^{i}j - \sqrt{G}\sigma^{j}hu^{i}) - \sqrt{G}J_{A}S$$

$$\frac{\partial}{\partial t}(\sqrt{G}J_{A}b) = -J_{A}\frac{\partial}{\partial x^{j}}(\sqrt{G}\sigma^{j}b) \quad \text{ALE remap}$$

(Discrete) geometric conservation in curvilinear coordinates:

In curvilinear coord.s and/or with sources, not all constant states are admissible. Schemes designed by combining geometric conservation and well balancing ! Example, setting $u^i = 0$ in the RHS

$$\begin{aligned} \frac{\partial}{\partial t} (\sqrt{G} J_A h) &= J_A \frac{\partial}{\partial x^j} (\sqrt{G} \sigma^j h) \\ \frac{\partial}{\partial t} (\sqrt{G} J_A h u^i) &= -J_A \frac{\partial}{\partial x^j} (\sqrt{G} G^{ij} g \frac{h^2}{2}) - \sqrt{G} J_A G^{ij} g h \frac{\partial b}{\partial x^j} - \Gamma^i_{jk} G^{jk} g \frac{h^2}{2} \\ \frac{\partial}{\partial t} (\sqrt{G} J_A b) &= -J_A \frac{\partial}{\partial x^j} (\sqrt{G} \sigma^j b) \quad \text{ALE remap} \end{aligned}$$

(Discrete) geometric conservation in curvilinear coordinates:

In curvilinear coord.s and/or with sources, not all constant states are admissible. Schemes designed by combining geometric conservation and well balancing !

Example, summing the ALE remap for \boldsymbol{b} with mass conservation

$$\frac{\partial}{\partial t}(\sqrt{G}J_{A}\eta) = J_{A}\frac{\partial}{\partial x^{j}}(\sqrt{G}\sigma^{j}\eta)$$

$$\frac{\partial}{\partial t}(\sqrt{G}J_{A}hu^{i}) = -J_{A}\frac{\partial}{\partial x^{j}}(\sqrt{G}G^{ij}g\frac{h^{2}}{2}) - \sqrt{G}J_{A}G^{ij}gh\frac{\partial b}{\partial x^{j}} - \Gamma^{i}_{jk}G^{jk}g\frac{h^{2}}{2}$$

$$\frac{\partial}{\partial t}(\sqrt{G}J_{A}b) = -J_{A}\frac{\partial}{\partial x^{j}}(\sqrt{G}\sigma^{j}b) \quad \text{ALE remap}$$

(Discrete) geometric conservation in curvilinear coordinates:

In curvilinear coord.s and/or with sources, not all constant states are admissible. Schemes designed by combining geometric conservation and well balancing ! Example, if $\eta = \eta^0 = \text{const}$ in the RHS

$$\begin{aligned} \frac{\partial}{\partial t}(\sqrt{G}J_A\eta) &= 0\\ \frac{\partial}{\partial t}(\sqrt{G}J_Ahu^i) &= -\sqrt{G}J_AG^{ij}\left(\frac{\partial}{\partial x^j}\left(g\frac{h^2}{2}\right) + gh\frac{\partial b}{\partial x^j}\right)\\ &- J_A\left(\frac{\partial}{\partial x^j}\left(\sqrt{G}G^{ij}\right) + \Gamma^i_{jk}G^{jk}\right)g\frac{h^2}{2}\end{aligned}$$

(Discrete) geometric conservation in curvilinear coordinates:

In curvilinear coord.s and/or with sources, not all constant states are admissible. Schemes designed by combining geometric conservation and well balancing ! Example, if $\eta = \eta^0 = \text{const}$ in the RHS

 $\frac{\partial}{\partial t}(\sqrt{G}J_A\eta) = 0$ $\frac{\partial}{\partial t}(\sqrt{G}J_Ahu^i) = -\sqrt{G}J_AG^{ij}\left(\frac{\partial}{\partial x^j}(g\frac{h^2}{2}) + gh\frac{\partial b}{\partial x^j}\right)$ $-J_A\left(\frac{\partial}{\partial x^j}(\sqrt{G}G^{ij}) + \Gamma^i_{jk}G^{jk}\right) g\frac{h^2}{2}$

=0 Ricci's Lemma, and metric properties

(Discrete) geometric conservation in curvilinear coordinates.

Clever combination of

- (Discrete) geometric conservation
- well balanced
- ALE remap
- Metric properties of the sphere

Constraints to be embedded in the discrete evaluation of

$$\phi^{K} = \int_{K} \left\{ J_{A} \frac{\partial}{\partial x^{j}} \left(\mathsf{F}^{j} - \sqrt{G} \sigma^{j} \mathsf{u} \right) - \sqrt{G} J_{A} \mathsf{S} \right\}$$

Extension to SWEs in **ALE** framework and curvilinear coords in (Arpaia and Ricchiuto, SIAM-GS 2017) and (Arpaia and Ricchiuto, in preparation).

- Discrete geometric conservation in curvilinear coordinates
- Mass conservation vs ALE remap of the bathymetric, cf (Arpaia and Ricchiuto, Computers & Fluids, 2018)
- Adaptive mesh movement

WETTING DRYING

(nría_

MAIN ISSUES

- Well balancedness and ∇b in partially wet cells
- Non-negativity of h
- \blacktriangleright Velocity approximation and singularity for $h\ll 1$

Innin -

MODIFIED APPROXIMATION OF THE BATHYMETRY Generalzation of the so-called modified hydrostatic reconstruction, see (Chen-Noelle, *SINUM* 2017) for a review.

Contribution of the bathymetry term in the residual:

$$\int_{K} gh\nabla b = |K| gh_{K} \sum_{j \in K} b_{j} \nabla \varphi_{j}$$
$$b_{j} = b(x_{j})$$

MODIFIED APPROXIMATION OF THE BATHYMETRY Generalzation of the so-called modified hydrostatic reconstruction, see (Chen-Noelle, *SINUM* 2017) for a review.

Contribution of the bathymetry term in the residual:

$$\int_{K} gh\nabla b = |K| gh_{K} \sum_{j \in K} b_{j}^{*} \nabla \varphi_{j}$$
$$b_{j}^{*} = \min\left(b(x_{j}), \max_{l \in K|h_{l} > 0}(h_{l} + b_{l})\right)$$

See (Brufau & Garcia-Navarro, *JCP* 2003) and (Ricchiuto & Bollermann, *JCP* 2009), (Ricchiuto, *JCP* 2015).

Modified Approximation of the bathymetry

Generalzation of the so-called modified hydrostatic reconstruction, see (Chen-Noelle, *SINUM* 2017) for a review.

Contribution of the bathymetry term in the residual:

$$\int_{K} gh\nabla b = |K| gh_{K} \sum_{j \in K} b_{j}^{*} \nabla \varphi_{j}$$

$$b_{j}^{*} = \min\left(b(x_{j}), \max_{l \in K \mid h_{l} > 0} (h_{l} + b_{l} + \alpha \|\vec{u}_{l}\|/2g)\right)$$

Generalizing the modified H-reconstruction of (Gallardo et al, JCP 2007).

MODIFIED APPROXIMATION OF THE BATHYMETRY

Generalzation of the so-called modified hydrostatic reconstruction, see (Chen-Noelle, *SINUM* 2017) for a review.

In all cases for η constant in the wet region, and $\vec{u}=0$ we have $\int_{K} gh\nabla b + \int_{K} gh\nabla h = 0$ $b_{2}^{*} = \min(b_{2},h_{1}+b_{1}+\alpha\frac{u_{1}^{2}}{2g})$

holds exactly. So dry areas do not perturb the initial equilibrium !

Positivity preserving distribution

Relies on principles dating back to

- ► A. Harten, JCP 1983 (LED and TVD conditions)
- S.P. Spekreijse, *Math. Comp.* 1987 (positive coeff. schemes)
- Roe, ICASE rep. 1990, Deconinck et al. CAF 1993 (limited distribution)

POSITIVITY PRESERVING DISTRIBUTION LED scheme: Local Extremum Diminishing.

$$C_i \left| \frac{du_i}{dt} + \sum_{K \ni i} \phi_i^K = 0 \right.$$
$$\phi_i^K = \sum_{j \in K} c_{ij}(u_i - u_j) , \ c_{ij} \ge 0$$

- Local maxima are non increasing $(du_i/dt \leq 0)$
- Local maxima are non decreasing $(du_i/dt \ge 0)$

WETTING DRYING

POSITIVITY PRESERVING DISTRIBUTION

Two step construction given $\phi^{\boldsymbol{K}}$

1. Define a positive coefficient first order distribution. Example:

$$(\phi_i^K)^{O1} = \frac{\phi^K}{3} + \alpha_K \sum_{j \in K} (u_i - u_j)$$

2.

Innin -

WETTING DRYING

POSITIVITY PRESERVING DISTRIBUTION

Two step construction given $\phi^{\boldsymbol{K}}$

1. Define a positive coefficient first order distribution. Example:

$$(\phi_i^K)^{O1} = \frac{\phi^K}{3} + \alpha_K \sum_{j \in K} (u_i - u_j) \xleftarrow{}_{\text{not well balanced}} \text{first order and LED}_{\text{not well balanced}}$$

2.

Innin -

Wetting drying

POSITIVITY PRESERVING DISTRIBUTION

Two step construction given $\phi^{\boldsymbol{K}}$

1. Define a positive coefficient first order distribution. Example:

$$(\phi_i^K)^{O1} = \frac{\phi^K}{3} + \alpha_K \sum_{j \in K} (u_i - u_j)$$

2. apply a (multiple entries) bounded positive limiter:

$$\phi_i^K = \frac{\theta}{\sum\limits_{j \in K} \theta} \phi^K, \quad \theta_i = \max\left(0, (\phi_i^K)^{O1} \phi^K\right)$$

Step 2. can be performed eq. by eq. or projecting on a relevant space (characteristic var.s, primitive var.s, etc). On the scalar level one can show that

$$\phi_i^K = \gamma_i (\phi_i^K)^{O1} , \ \gamma_i \in [0, 1]$$

Wetting drying

POSITIVITY PRESERVING DISTRIBUTION

When applied eq. by eq., we can show that

$$|C_i|\frac{dh_i}{dt} = -\sum_{K\ni i}\sum_{j\in K}c^K_{ij}(\vec{u})h_j$$

with $c_{ii}^K = \gamma_i c_{ii}^{O1} \ge 0$ and $c_{ij}^K = \gamma_i c_{ij}^{O1} \le 0$. Integrated with explicit Euler this leads to a classical positivity preservation result (under a Δt constraint):

$$h_i^{n+1} = (1 - \frac{\Delta t \sum_{K \ni i} c_{ii}^K}{|C_i|})h_i^n + \sum_{K \ni i} \sum_{j \in K} |c_{ij}^K|h_j^r$$

Wetting drying

BOUNDED COMPUTATION OF THE VELOCITY

A key issue. Unbounded velocities in wet/dry cells can occur due to division by a small depth:

$$(\vec{q}_i^{n+1})_{\text{update}} \to \vec{u}_i^{n+1} = \begin{cases} \frac{(\vec{q}_i^{n+1})_{\text{update}}}{h_i^{n+1}} & \text{if } h_i^{n+1} > c_h \Delta x^2 \\ h_i^{n+1} & \to \vec{q}_i^{n+1} = h_i^{n+1} \vec{u}_i^{n+1} \\ \alpha_i \frac{(\vec{q}_i^{n+1})_{\text{update}}}{h_i^{n+1}} & \text{otherwise} \end{cases}$$

with $\alpha_i = \min(1, h_i^{n+1}U_i/\|\vec{q}_i^{n+1}\|)$, where U_i is a local estimate of an upper bound for the velocity norm, e.g.

$$U_i = \max_{K \ni i} \max\left(\max_{\substack{j \in K \\ j \text{ is wet}}} \|u_j^n\|, \max_{j \in K} \sqrt{gh_j^n}\right)$$

Ínnia -

UPWIND FEM AND MASS MATRIX Let's look at

$$\partial_t u + a \partial_x u + \gamma \partial_x b = 0$$

Consider the streamline upwind finite element method (no or periodic BCs)

$$\int_{\Omega} \varphi_i \partial_t u + \int_{\Omega} \varphi_i (a \partial_x u + \gamma \partial_x b) + \sum_K \int_K a \partial_x \varphi_i \tau u_t + \sum_K \int_K a \partial_x \varphi_i \tau (a \partial_x u + \gamma \partial_x b) = 0$$

I promise (no cheating) this is almost exactly the same as the first order upwind splitting, if the stabilization parameter is taken as $\tau = \Delta x_K/2|a|$.

$$\partial_t u + a \partial_x u + \gamma \partial_x b = 0$$

take a > 0 and consider the stabilized finite element method ($\tau = \Delta x_K/2|a|$)

$$\int_{\Omega} (\varphi_i + \frac{\Delta x}{2} \partial_x \varphi_i) \partial_t u + a(u_i - u_{i-1}) + \gamma(b_i - b_{i-1}) = 0$$

this is almost the same as the first order upwind splitting. What we miss to get high order is a mass matrix...

The RD case is very similar.

(IMPLICIT-EXPLICIT) TIME STEPPING FOR RD

FULLY EXPLICIT RESIDUAL BASED SCHEMES

To develop the main idea we consider stabilized finite elements writing⁵

$$\int_{\Omega} \varphi_i(\partial_t u + \nabla \cdot \mathcal{F} + S) + \sum_{K \ni i} \int_K \gamma_i(\partial_t u + \nabla \cdot \mathcal{F} + S) = 0$$

with the consistency condition $\sum_{j\in K}\gamma_j=0$ The analogy with RD implies that

$$\int_{K} (\varphi_i + \gamma_i) \partial_t u = \sum_{j \in K} m_{ij}^{\mathsf{RD}} \frac{du_j}{dt}$$
$$\int_{K} (\varphi_i + \gamma_i) (\nabla \cdot \mathcal{F} + S) = \beta_i^K \phi^K$$

and allows to construct explicit forms of mass matrices.

⁵Ricchiuto and Abgrall, JCP 2010

How to do fully explicit

Step 1 : Consider a semi-discrete explicit time approximation

$$r^{n+1} = \sum_{l \ge 0} \alpha_l \frac{\Delta^{n+1-l} u}{\Delta t} + \sum_{l \ge 1} \theta_l (\nabla \cdot \mathcal{F} + S)^{n+1-l}$$

Step 2 : write the unstabilized formulation (m^{G} the Galerkin mass matrix):

$$\sum_{K\ni i} \sum_{j\in K} m_{ij}^{\mathsf{G}} \sum_{l\geq 0} \alpha_l \frac{\Delta^{n+1-l} u_j}{\Delta t} + \sum_{K\ni i} \int_K \varphi_i \sum_{l\geq 1} \theta_l (\nabla \cdot \mathcal{F} + S)^{n+1-l} = 0$$

Step 3 : stabilize with a modified residual in which u^{n+1} is replaced by some explicit predictor:

$$\sum_{K\ni i} \sum_{j\in K} m_{ij}^{\mathsf{G}} \sum_{l\geq 0} \alpha_l \frac{\Delta^{n+1-l} u_j}{\Delta t} + \sum_{K\ni i} \int_K \varphi_i \sum_{l\geq 1} \theta_l (\nabla \cdot \mathcal{F} + S)^{n+1-l} + \sum_{K\ni i} \int_K \gamma_i \sum_{l\geq 1} \hat{\alpha}_l \frac{\widehat{\Delta^{n+1-l} u}}{\Delta t} + \sum_{K\ni i} \int_K \gamma_i \sum_{l\geq 1} \theta_l (\nabla \cdot \mathcal{F} + S)^{n+1-l} = 0$$

HOW TO DO FULLY EXPLICIT

Lumping the Galerkin mass matrix and recasting as an error correction we get

$$\begin{aligned} |C_i| \left\{ \sum_{l \ge 0} \alpha_l \frac{\Delta^{n+1-l} u_i}{\Delta t} - \sum_{l \ge 1} \hat{\alpha}_l \frac{\widehat{\Delta^{n+1-l} u_i}}{\Delta t} \right\} = \\ - \sum_{K \ni i} \left\{ \sum_{j \in K} m_{ij}^{\text{RD}} \sum_{l \ge 1} \hat{\alpha}_l \frac{\widehat{\Delta^{n+1-l} u_j}}{\Delta t} + \beta_i^K \sum_{l \ge 0} \theta_l \phi^K(u^{n+1-l}) \right\} \end{aligned}$$

How to choose $\Delta^{n+1-l}u_j$????

Result (Ricchiuto and Abgrall, JCP 2010)

Proposition Given a time semi-discretization with a truncation error estimate of the type $|r^{n+1}| \leq c_t \Delta t^{k_t+1}$, for a P^k finite element approximation, the scheme verifies a consistency estimate of the type $\epsilon < C\Delta x^{k+1}$ provided that $k_t \geq k$, that β_i^K and γ_i are uniformly bounded, and that the modified residual verifies the lower order consistency estimate $|\hat{r}^{n+1}| \leq c_t \Delta t_t^k$.

EXAMPLE 1: RK2-RD SCHEME

$$r^{n+1} = \frac{u^{n+1} - u^n}{\Delta t} + \frac{1}{2} (\nabla \cdot \mathcal{F} + S)^n + \frac{1}{2} (\nabla \cdot \mathcal{F} + S)^*$$
$$\hat{r}^{n+1} = \frac{u^* - u^n}{\Delta t} + \frac{1}{2} (\nabla \cdot \mathcal{F} + S)^n + \frac{1}{2} (\nabla \cdot \mathcal{F} + S)^*$$

The predicted u^* value can be obtained by a first explicit step without mass matrix:

$$|C_i|\frac{u_i^* - u_i^n}{\Delta t} = -\sum_{K \ni i} \beta_i^K \phi^K(u^n)$$

Example 2: EBDF-RD Scheme

$$r^{n+1} = \frac{3}{2} \frac{u^{n+1} - u^n}{\Delta t} - \frac{1}{2} \frac{u^n - u^{n-1}}{\Delta t} + (\nabla \cdot \mathcal{F} + S)^*$$
$$\hat{r}^{n+1} = \frac{u^n - u^{n-1}}{\Delta t} + (\nabla \cdot \mathcal{F} + S)^*$$

The * value is now he time extrapolated one $x^* = 2x^n - x^{n-1}$.

EXPLICIT RD: THACKER OSCILLATIONS

Thacker oscillations

IMPLICIT-EXPLICIT EBDF-RD

For stiff problems, an IMEX version of EBDf can be constructed :

$$\sum_{K \ni i} \sum_{j \in K} m_{ij}^{\mathsf{G}} \frac{3}{2} \frac{u_j^{n+1} - 2u_j^n + u_j^{n-1}}{\Delta t} = -\sum_{K \ni i} \left\{ \sum_{j \in K} m_{ij}^{\mathsf{RD}} \frac{u_j^n - u_j^{n-1}}{\Delta t} + \beta_i^K \left(\nabla \cdot \mathcal{F} + S \right)^* + \sum_{j \in K} m_{ij}^{\mathsf{RD}} f_j^* \right\}$$

 $\blacktriangleright \ m^{\rm RD}_{ij}f^*_j \text{ is an approximation of } m^{\rm RD}_{ij}f^{n+1}_j = m^{\rm G}_{ij}f^{n+1}_j + m^{\rm Stab}_{ij}f^{n+1}_j$

- ▶ We will keep the full A-stable implicit unstabilized form $:m_{ij}^{\mathsf{G}}f_j^{n+1}$
- We will still use the modified residual for the stabilization: $m_{ij}^{\text{Stab}} f_j^*$

IMPLICIT-EXPLICIT EBDF-RD

Putting back together all the terms we end with the implicit update:

$$\begin{split} \sum_{K \ni i} \sum_{j \in K} m_{ij}^{\mathsf{G}} \left\{ \frac{3}{2} \; \frac{u_j^{n+1} - 2u_j^n + u_j^{n-1}}{\Delta t} + f^{n+1} - f^* \right\} = \\ & - \sum_{K \ni i} \left\{ \sum_{j \in K} m_{ij}^{\mathsf{RD}} \frac{u_j^n - u_j^{n-1}}{\Delta t} + \beta_i^K \left(\nabla \cdot \mathcal{F} + S \right)^* + \sum_{j \in K} m_{ij}^{\mathsf{RD}} f_j^* \right\} \end{split}$$

IMPLICIT PHASE

The implicit equation

$$|C_i|\left\{\frac{3}{2}\frac{u_j^{n+1} - 2u_j^n + u_j^{n-1}}{\Delta t} + f^{n+1} - f^*\right\} = -R_i$$

is solved analytically

IMPLICIT-EXPLICIT EBDF-RD

Putting back together all the terms we end with the implicit update:

$$\begin{split} \sum_{K \ni i} \sum_{j \in K} m_{ij}^{\mathsf{G}} \left\{ \frac{3}{2} \; \frac{u_j^{n+1} - 2u_j^n + u_j^{n-1}}{\Delta t} + f^{n+1} - f^* \right\} = \\ & - \sum_{K \ni i} \left\{ \sum_{j \in K} m_{ij}^{\mathsf{RD}} \frac{u_j^n - u_j^{n-1}}{\Delta t} + \beta_i^K \left(\nabla \cdot \mathcal{F} + S \right)^* + \sum_{j \in K} m_{ij}^{\mathsf{RD}} f_j^* \right\} \end{split}$$

(LINEAR) STABILITY

By Kreiss (1962) and Strang (1964) (cf. book by Richtmyer & Morton (1967)): If the discrete system

$$u^{n+1} = C(\Delta t)u^n$$

is stable, that given a bounded operator $Q(\Delta t)$, the discrete perturbed system

$$u^{n+1} = C(\Delta t)u^n + \Delta t Q(\Delta t)u^n$$

is also stable

Some applications

Ínría

DAM BREAK PROBLEMS

DAM BREAK EXPERIMENT BY SCHOKLITSCH (1917)

Innin -

WAVE TANK REPRODUCTION OF SEASIDE (OREGON)

Full details in (Park et al, Coast.Eng. 2013)

Ínsia -

WAVE TANK REPRODUCTION OF SEASIDE (OREGON)

Seaside back

Seaside top

WAVE TANK REPRODUCTION OF SEASIDE (OREGON)

Full details in (Park et al, Coast.Eng. 2013)

Ínsia -

WAVE TANK REPRODUCTION OF SEASIDE (OREGON)

Full details in (Park et al, Coast.Eng. 2013)

Ingia

Simulations Experiments LocationA1 Location B1 Location/C1 LocationA3 t (s) LocationB3 t (s) LocationAS LocationBS LocationCS c (s) c (s) t (s) LocationA9 LocationBS LocationC9

Ínría

CURVILINEAR COORD.S: GLOBAL ZONAL GEOSTROPHIC FLOW

Case #5 from [Williamson et al., 1992] is a zonal flow perturbed by a mountain

Innin -

GLOBAL ZONAL GEOSTROPHIC FLOW

Ínsia-

2011 Tohoku tsunami

Mesh 1: 5 km to 120 m

• Mesh 2: 15 km to 360 m (half the number of cells)

Source: vertical + horizontal displacement (courtesy of BRGM)

Left and center: Embedded mesh and initial state in the vicinity of lwate prefecture. Right: initial vertical displacement.

Adaptive ALE simulations

Ínsia-

Adaptive ALE simulations

SHORELINE ADAPTATION

Initial shoreline (Iwate prefecture)

Initial shoreline (Miyagi prefecture)

ALE SIMULATION AGAINST REFERENCE

- Mesh a (Reference) - Mesh b + ADAPT-ALE - Obs.Data

Ínnia-

Collaboration with BGS IT&E (German SME):

A. Roland et al, EGU meeting 2018

Ingia

Collaboration with BGS IT&E (German SME):

A. Roland et al, EGU meeting 2018

Ínnía -

Collaboration with BGS IT&E (German SME):

A. Roland et al, EGU meeting 2018

Innia

Collaboration with BGS IT&E (German SME):

A. Roland et al, EGU meeting 2018

2-way coupling with sub-models for sewage system (Bernoulli-type models), and unresolved structures (pressure patches)

FLASH FLOODS IN THE CITY OF WORMS (RHINELAND-PALATINATE)

Collaboration with BGS IT&E (German SME):

A. Roland et al, EGU meeting 2018

Worms city movie

naío

FLASH FLOODS IN THE CITY OF WORMS (RHINELAND-PALATINATE)

December 2nd, 2017: results presented during a public audition in the city aiming at raising the population's awareness on the risks of floods, and on the importance of proper forecasting in the development of hazard reduction policies

SUMMARY AND OUTLOOK

- Residual distribution: genuinely multidimensional well balanced schemes
- general framework to solve balance laws on unstructured moving grids
- close relations to continuous stabilized finite elements (e.g. SUPG)
- mass matrix requires careful design of efficient time stepping (error correction approach)
- numerical results are extremely satisfactory/promising

SUMMARY AND OUTLOOK

ONGOING AND FUTURE WORK

- More on IMEX: stiffly stable RK, application to kinetic approximations
- Higher order (≥ 3) unsteady for complex/realistic applications ?
- Other constraints : e.g. energy/entropy conservation
- Immersed/embedded BCs: feasible for urban inundation?
- Dispersive waves
- etc. etc.

THX !!! 😳

