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In this paper we evaluate hybrid strategies for the solution of the Green–Naghdi system of 
equations for the simulation of fully nonlinear and weakly dispersive free surface waves. 
We consider a two step solution procedure composed of: a first step where the non-
hydrostatic source term is recovered by inverting the elliptic coercive operator associated to 
the dispersive effects; a second step which involves the solution of the hyperbolic shallow 
water system with the source term, computed in the previous phase, which accounts for 
the non-hydrostatic effects. Appropriate numerical methods, that can be also generalized 
on arbitrary unstructured meshes, are used to discretize the two stages: the standard C0

Galerkin finite element method for the elliptic phase; either third order Finite Volume 
or third order stabilized Finite Element method for the hyperbolic phase. The discrete 
dispersion properties of the fully coupled schemes obtained are studied, showing accuracy 
close to or better than that of a fourth order finite difference method. The hybrid approach 
of locally reverting to the nonlinear shallow water equations is used to recover energy 
dissipation in breaking regions. To this scope we evaluate two strategies: simply neglecting 
the non-hydrostatic contribution in the hyperbolic phase; imposing a tighter coupling of 
the two phases, with a wave breaking indicator embedded in the elliptic phase to smoothly 
turn off the dispersive effects. The discrete models obtained are thoroughly tested on 
benchmarks involving wave dispersion, breaking and run-up, showing a very promising 
potential for the simulation of complex near shore wave physics in terms of accuracy and 
robustness.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The accurate mathematical and numerical simulations of water wave propagation in near-shore regions have received 
considerable attention in the last decades, since they have largely replaced laboratory experiments in the coastal engineering 
community. Significant efforts have been made in the development of depth averaged models or in the improvement of 
the existing ones, in order to give accurate description of the nonlinear and non-hydrostatic propagation over complex 
bathymetries.

The use of asymptotic depth averaged models on this task is quite common, since they lead to numerical models that 
are of practical use in design compared to the ones produced by more complicated mathematical models like the Euler 
equations. One of the most known depth averaged models, widely used, is the non-linear shallow water equations (NLSW). 
This set of equations is capable of providing a good description of the non-linear transformation of the waves, including also 
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wave breaking but they lack on describing all the dispersive effects that play an important role on deeper waters and on 
wave shoaling. As to take into account the dispersion effects, the use of asymptotic depth averaged Boussinesq and enhanced 
Boussinesq [54,48,46,10,80] type models is quite common. A review on the history and all the fundamental aspects of the 
Boussinesq-type models can be found in [15].

In the last decades a system of equations, produced by the Euler equations, has gained a lot of attention. Green and 
Naghdi [31] derived a fully non-linear and weakly dispersive set of equations for an uneven bottom, which represents a 
two dimensional extension of the Serre equations [66]. They are known as Serre or Green–Naghdi (GN), or fully non-linear 
Boussinesq equations. The range of validity of the model may vary as much as far the non-linearity parameter ε (defined as 
the ratio of wave amplitude to water depth A/h0) is concerned, but it requires the shallowness parameter μ (defined as the 
water depth to wavelength ratio h0/L) to be small (less than one). The GN model has been fully justified mathematically 
[40] in the sense that the error between the solutions of the GN system and the Euler equations is small and of size O (μ2). 
We refer to [41,12] for more details.

From the numerical point of view the GN equations have been discretized using different numerical techniques like 
Finite Differences (FD), Finite Elements (FE) and Finite Volume (FV) approaches. We refer to [3,22,23,20,12,42,44,50,27]
among others. For example, in [22,23] the authors derive a higher order FV scheme in one dimension. In [20,12] a hybrid 
FV/FD splitting approach is used, while [42] follows the same idea for the solution of a new class of two-dimensional GN 
equations on structured meshes. In [44] a coupled Discontinuous Galerkin and Continuous Galerkin method is developed in 
one dimension but using only flat bottom topographies. Most of them are also really hard to extend in two dimensions. Up 
to now and to the authors knowledge there is no work that involves the solution of the later equations in 2D unstructured 
meshes.

Like all the Boussinesq-type models, GN equations cannot reproduce the energy dissipation that take place when a wave 
is breaking, producing satisfactory results only outside the breaking region. For this reason the numerical model must be 
incorporated with a wave breaking mechanism as to handle broken waves. Several approaches have been developed among 
the years. An extensive review of the existing wave breaking techniques can be found in [37].

In this work, our first aim is to evaluate a strategy that can be easily generalized on arbitrary unstructured meshes, 
and in the multidimensional case, for the solution of fully nonlinear, weakly dispersive free surface waves. For this reason 
we consider the hybrid approach, used e.g. in [12] and [37], simulating the propagation and shoaling by means of the 
Green–Naghdi partial differential equations (PDEs), while locally reverting to the non-linear shallow water equations to 
model energy dissipation in breaking regions. Starting from the form of the Green–Naghdi equations proposed in [12]
and [20], we consider a two step solution procedure: an elliptic phase in which a source term is computed by inverting 
the coercive operator associated to the dispersive effects; an hyperbolic phase in which the flow variables are evolved by 
solving the nonlinear shallow water equations, with all the non-hydrostatic effects accounted for by the source computed in 
the elliptic phase. For the numerical discretization of these two steps we consider methods which can be easily generalized
on arbitrary unstructured meshes in the multidimensional case. In particular, we focus on the use of a standard C0 Galerkin 
finite element method for the elliptic phase, while high order finite volume (FV) and stabilized finite element (FE) methods 
are used independently in the hyperbolic phase. The discrete dispersion properties of the fully coupled methods obtained 
are also studied, showing phase accuracy very close to that of a fourth order finite difference method.

In addition, we will exploit the two step solution procedure to obtain a robust embedding of wave breaking. We eval-
uate two strategies: one, based on simply neglecting the non-hydrostatic contribution in the hyperbolic phase; the second, 
involving a tighter coupling of the two phases, with a wave breaking indicator embedded in the elliptic phase to smoothly 
turn off the dispersive effects. The discrete models obtained are thoroughly tested on benchmarks involving wave dispersion, 
breaking and run-up, showing a very promising potential for the simulation of complex near shore wave physics.

The paper is organized as follows: The second section describes the mathematical model and the notation used in this 
work. Then, the equations are re-written obtaining an elliptic–hyperbolic decoupling and the details of two discretization 
strategies are presented. Section four completes the description of the basic discretizations with a discussion on the time 
integration schemes along with boundary condition treatment and friction. In section five, the dispersion behavior of both 
the spatial and temporal discretizations is analyzed in detail, while two alternative ways of embedding wave breaking are 
proposed in section six. Finally, in section seven, the performance of the proposed methodology is extensively validated 
against experimental measurements from a series of relevant benchmark problems.

2. The physical model

In this work we refer to the improved Green–Naghdi (GN) system of equations in the form proposed in [12]. This 
formulation has been recovered by adding some terms of O (μ2) to the momentum equation in order to improve the 
frequency dispersion description of the original GN model. In the following we use the notation sketched in Fig. 1, thus we 
denote by h(x, t) = h0 + η(x, t) − b(x) the total water depth and by u(x, t) the flow velocity (being η(x, t) the free surface 
elevation with respect to the water rest state, h0 a reference depth and b(x) the topography variation).

The system of equations can be written in its one-dimensional form as:

ht + (hu)x = 0 (1)

(I + αT )

[
(hu)t + (hu2)x + g

α − 1
hηx

]
+ g

hηx + hQ(u) = 0

α α
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Fig. 1. Sketch of the free surface flow problem, main parameter description.

where the non-linear operator Q(·) is defined by

Q(·) = 2hhx(·)2
x + 4

3
h2(·)x(·)xx + bxh(·)2

x + bxxh(·)(·)x +
[

bxxhx + 1

2
hbxxx + bxbxx

]
(·)2 (2)

The operator T (·) plays a key role, as its inversion is necessary to be able to obtain evolution equations for the physical 
variables. For this reason, following [2] it is important to stress that T (·) can be written in a compact form involving two 
operators S1(·) and S2(·) and their adjoints S∗

1(·) and S∗
2(·), namely

T (·) = S∗
1

(
hS1

( (·)
h

))
+ S∗

2

(
hS2

( (·)
h

))
(3)

where, in multiple space dimensions

S1(·) = h√
3
∇ · (·) −

√
3

2
∇b · (·) , S2(·) = 1

2
∇b · (·) (4)

reducing in 1D to

S1(·) = h√
3

(·)x −
√

3

2
bx (·) , S2(·) = 1

2
bx (·) (5)

Note that this formulation is essential to show the coercivity of the operator I +αT , via the corresponding variational form 
of T :

aT (v, φ) =
∫
�

S1(v)h S1

(
φ

h

)
+

∫
�

S2(v)h S2

(
φ

h

)
(6)

The interested reader can refer to [2] for details concerning the coercivity analysis. In the above expressions, α is a param-
eter which is used to improve the dispersion properties of the model in order to obtain a good match with respect to the 
linearized full Euler equations. The linear dispersion relation of this model can be recovered in the very classical way [47], 
by introducing in the linearized version of system (1) a solution W = [h, hu]T expressed in the form of a Fourier mode 
W = W0 expνt+ jkx , with ν = ξ + jω (ω denoting the phase of the mode, ξ representing the rate of amplification/damping 
and k representing the wavenumber of the Fourier mode). The following dispersion relation can be found in this way:

ω2 = gh0k2 1 + α−1
3 k2h2

0

1 + α
3 k2h2

0

. (7)

Following [42], the value of the parameter α which optimizes the above relation is α = 1.159, while the system (1)
recovers the classical GN equations when α = 1. According to [42] the above formulation does not require the computation 
of third order derivatives, while this is necessary in the standard formulation of the GN system. Moreover, the presence 
of the operator (I + αT ) makes the model very stable with respect to high frequency perturbations, which is of highest 
interest for numerical computations.

3. Discretization strategy: elliptic–hyperbolic decoupling

To discretize system (1) we first recast it in the following way:

ht + (hu)x = 0 (8)

(I + αT )
[
(hu)t + (hu2)x + ghηx

]
− T (ghηx) + hQ(u) = 0

This allows the operator (I + αT ) to be applied to the full shallow water residual. This form suggests a possible decou-
pling of the elliptic part of the problem from the hyperbolic one, which is obtained as follows:
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(I + αT )φ = W −R (9)

ht + (hu)x = 0 (10)

(hu)t + (hu2)x + ghηx = φ

having also defined W = gT (hηx) and R = hQ(u). Given an initial solution, the system above can now be solved in two 
independent steps:

1. An elliptic step solving for the non-hydrostatic term φ;
2. An hyperbolic step evolving the flow variables.

Note that our formulation differs from the ones previously proposed in literature (see e.g. [27]) as it allows the enhance-
ment of an existing shallow water code by the addition of a purely algebraic term to the discrete momentum balance. It 
has the additional advantage of being a priori able to embed wave breaking effects in the elliptic phase, thus remaining 
completely non-intrusive w.r.t. the hyperbolic code. To evaluate this simplified and flexible strategy, we will investigate the 
accuracy and robustness obtainable when the two steps above are each solved with a different numerical method. Our aim 
is to allow the choice of the method most appropriate and efficient for each step and to provide a simple technique to 
enhance shallow water codes including genuinely nonlinear dispersive effects.

Note also that we purposely use here the word decoupling and not splitting. Indeed, the elliptic phase does not involve any 
time derivative, so this is not a splitting method, at least not in the sense used in [12] or in [69]. In particular, our approach 
provides an unsplit spatial discretization of

ht + (hu)x = 0

(hu)t + (hu2)x + ghηx = (I + αT )−1 [T (ghηx) − hQ(u)]

This results in systems of Ordinary Differential Equations (ODEs), which can be evolved in time by any of the known high 
order time integration methods without any other source of error that the truncation of the spatial discretizations involved and of 
the ODE integrators.

Based on the authors’ previous work, we have chosen to implement a standard C0 Galerkin finite element method for the 
elliptic phase and to discretize the hyperbolic part by either a high order finite volume (FV), or by a stabilized continuous 
finite element (FE) method. Time integration is performed with three different methods, involving both multi-stage and 
multi-step approaches. The resulting hybrid algorithms are analyzed and compared. Of course, other hybrid methods can be 
obtained e.g. by choosing different approaches for the hyperbolic phase, as e.g. the discontinuous Galerkin method [83,82], 
the residual distribution method [58], or other time discretization techniques. These different formulations will be discussed 
in future works.

Here we will study the potential of a formulation which can be easily generalized on arbitrary unstructured meshes. In 
particular, we will consider the method obtained by only inverting in the elliptic phase the matrices generated when con-
sidering a P 1 finite element approximation. As we will show, provided that a third order method is used in the hyperbolic 
phase, this choice already gives dispersion properties equivalent to those of a fourth order method. As we will see later, 
the additional advantage of this approach is to allow a direct embedding of wave breaking either by simply neglecting the 
non-hydrostatic contribution in the hyperbolic phase, or even with a tighter coupling of the two phases using the breaking 
indicator to smoothly turn off φ in the elliptic phase.

The objective of the following sections is to discuss the methods used in this paper. The analysis of the dispersion error 
of the resulting scheme is then provided in section 5, while the treatment of wave breaking is discussed in section 6.

3.1. Spatial domain discretization and notation

Let [0, L] be the spatial domain, we consider a tessellation composed of elements [xi , xi+1]. We set in general 
x =
mini(xi+1 − xi). For simplicity we assume in the following that the points are equally spaced, so that xi+1 − xi = 
x ∀i, but 
non-uniform meshes can be used with the same methods discussed here with very little modifications. For a given node i, 
we will denote by Ci the cell [xi−1/2 xi+1/2], with xi+1/2 − xi−1/2 = 
x.

On this mesh, we will denote by ϕi the standard hat shaped C0 continuous Lagrange basis functions, and we will denote 
by U
x the piecewise continuous polynomial obtained as

U
x(x, t) =
∑

i

ϕi(x)Ui(t) .

In this paper we consider the case of P 1 piecewise linear polynomials.

3.2. Elliptic phase: continuous finite element formulation

The first step for solving system (10) is to compute separately the value of the auxiliary variable φ from (9). In this work 
we discretize equation (9) by means of a standard C0 Galerkin finite element approach. This discretization strategy passes 
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by the writing of the variational form of the equation. The actual discretization is obtained by evaluating all the integrals 
by a numerical quadrature over each element of the discretization, with the assumption of piecewise linear variation of all 
the quantities involved h
x , η
x , b
x , u
x , φ
x . Defining � = [φ1(t), φ2(t), . . . , φN (t)]T and U = [u1(t), u2(t), . . . , uN(t)]T , 
the final form of the Galerkin approximation of the problem can be written as:

(MG + αT)� = W − R (11)

W = Tδ (12)

R = Q[h, U ] (13)

with δ an approximation of gh ηx . The matrix MG is the Galerkin mass matrix, whose entries are

MG
i, j =

L∫
0

ϕiϕ j (14)

The matrix T(h
x, b
x) is deduced immediately from the variational form (6), by evaluating aT (ϕi, ϕ j). All computations 
done, we obtain (partial derivatives now denoted by ∂(·) for the sake of clarity)

Ti, j(h
x,b
x) = 1

3

L∫
0

∂xϕi h2

x ∂xϕ j − 1

3

L∫
0

∂xϕi h
x ∂xh
x ϕ j +

+ 1

2

L∫
0

ϕi ∂xb
x ∂xh
x ϕ j − 1

2

L∫
0

∂xϕi h
x ∂xb
x ϕ j +

− 1

2

L∫
0

ϕi h
x ∂xb
x ∂xϕ j +
L∫

0

ϕi (∂xb
x)
2 ϕ j (15)

having developed all the derivatives of 1/h
x terms in order to explicitly remove the singularity w.r.t. h.
Proceeding similarly, we obtain for the operator Q(h
x, u
x, b
x, δb
x)

Qi, j(h
x, u
x,b
x, δb
x) = − 2

3

L∫
0

∂xϕi h3

x (∂xu
x)

2 +
L∫

0

ϕi ∂xb
x h2

x (∂xu
x)

2 +

+
L∫

0

ϕi δb
x h2

x u
x ∂xu
x +

L∫
0

ϕi δb
x h
x ∂xh
x u
x +

+ 1

2

L∫
0

ϕi ∂xδb
x h2

x u
x +

L∫
0

ϕi ∂xb
x δb
x h
x u
x (16)

The arrays δ and δb contain nodal values of auxiliary variables introduced to handle the third order derivatives. In particular, 
we have

(MGδ)i =
L∫

0

ϕi g h
x ∂xη
x (17)

(MGδb)i = −
L∫

0

∂xϕi ∂xb
x (18)

The linear systems (17) and (18) can be solved very efficiently, being MG symmetric, positive defined and constant. On 
the contrary, the properties of the matrix (MG + αT) cannot be known a priori. However, the continuous finite element 
formulation used here inherits the coercivity property of the corresponding continuous operator T , for which the interested 
reader can refer to [2]. While ensuring the existence of an inverse for this matrix, its computation, required in the solution of 
the linear algebraic system (11), remains the most computationally demanding process of our approach. In particular, matrix 
inversions have been performed using the SPARSEKIT package [64]. For the MG matrix, we have stored the constant LU 
decomposition, which, on the contrary, has to be re-computed at each time step for (MG + αT).
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The kind of discretization performed allows many degrees of freedom in the management of the several Galerkin mass 
matrices MG which appear in it and that can be lumped (or not) always remaining second order accurate. The optimization 
of the linear dispersion properties of the resulting schemes (see section 5), together with the research of the simplest 
configuration possible, led us to the choice of performing the lumping only in equation (18). This does not affect the linear 
dispersion properties of the scheme, due to the fact that Q is nonlinear and that b is time-independent; so δb can be 
computed once at the beginning of the calculus and kept all along the simulation.

3.3. Hyperbolic phase: Finite Volume scheme

Setting U = [h, hu]T , we will use the FV scheme to write the equations for averages of U over the cells Ci , namely for

Ui(t) = 1


x

∫
Ci

U(x, t) .

Using (9)–(10), and following [9,17,32,53], the semi-discrete form of the equations can now be written as:

d

dt
Ui = − 1


x

[
Fi+1/2 − Fi−1/2

]+ 1


x

Sb i + � (19)

where Fi±1/2 and 
Sbi are the numerical fluxes at each cell interface and the numerical topography source respectively. The 
last term is where the link with the elliptic phase is made. In particular, it stands:

� = 1


x

∫
Ci

(
0

φ
x

)
= 1

8

(
0

φi−1 + 6φi + φi+1

)
having integrated exactly over Ci the piecewise linear polynomial φ
x obtained from the elliptic phase discussed in the 
previous subsection. The numerical fluxes Fi±1/2 at the cell interfaces can be evaluated by means of an exact or approximate 
Riemann solver. In this work we used the approximate Riemann solver of Roe [61] along with an upwind discretization of 
the topography source. The source terms are numerical treated as to satisfy the C-property and can be easily incorporated 
in this solver. The numerical fluxes in (19) are defined as:

Fi+1/2 = Fi+1/2(UL
i+1/2,UR

i+1/2) = 1

2

(
F(UR

i+1/2) + F(UL
i+1/2)

)
− 1

2
|A|i+1/2
i+1/2U (20)

where 
(·)i+1/2 = (·)R
i+1/2 − (·)L

i+1/2. Ai+1/2 is the Roe average Jacobian matrix and is equal to 
[
X|�|X−1

]
i+1/2, where Xi+1/2

and X−1
i+1/2 are the left and right eigenvector matrices respectively and � is the diagonal matrix with the eigenvalues in the 

diagonal.
The numerical integration with the upwind scheme presented up to now lead to approximations that are only first order 

accurate, if a constant distribution is assumed in each computational cell Ci . To achieve higher accuracy we evaluate the left 
and right states using a third order MUSCL extrapolation scheme [78,38]. The reconstruction is performed for the variables 
[h, u] as well as for the topography b. For the (i + 1/2) interface the reconstructed values of the total water depth can be 
written as

hL
i+1/2 =hi + ψ(ri)

4

[
(1 − κ)
hi−1/2 + (1 + κ)
hi+1/2

]
hR

i+1/2 =hi+1 − ψ(ri+1)

4

[
(1 − κ)
hi+3/2 + (1 + κ)
hi+1/2

]
(21)

where ψ is the limiter function with ri = 
hi−1/2

hi+1/2

, and where third order of accuracy in smooth regions is obtained for 
κ = 1/3. In this work the widely known MIN-MODE and MC limiters are used [43].

In the numerical solution, the correct discrete balance between the numerical fluxes and the numerical topography 
source is very important. A scheme that respects this balance is known in the literature as a well-balanced scheme. As it 
has been shown in [9], an upwind discretization approach should also be used for the bed topography term Sb to avoid 
non-physical oscillations in the solution by satisfying the C-property in hydrostatic flow conditions (flow at rest). To satisfy 
the exact C-property, the topography source term must be linearized in the same way and evaluated in the same state (Roe-
averaged state) as the flux terms. Of course, if an other Riemann solver is employed (e.g. HLL, HLLC) for the computation 
of the numerical fluxes, a different technique should be used, see for example [62,73]. In this work, following [9,32], the 
source term in (19) contains the following two terms


Sb, i = S−
b, i+1/2(UL

i+1/2,UR
i+1/2) + S+

b, i−1/2(UL
i−1/2,UR

i−1/2) (22)

where
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S+
b i+1/2(UL

i+1/2,UR
i+1/2) =1

2

[
X(I + �−1|�|)X−1

]
i+1/2̃

Sb i+1/2(UL
i+1/2,UR

i+1/2)

S−
b i+1/2(UL

i+1/2,UR
i+1/2) =1

2

[
X(I − �−1|�|)X−1

]
i+1/2̃

Sb i+1/2(UL
i+1/2,UR

i+1/2) (23)

and with

S̃b i+1/2(UL
i+1/2,UR

i+1/2) =
⎡⎣ 0

−g
hL + hR

2

(
bR − bL

) ⎤⎦
i+1/2

. (24)

For the first order scheme, using the relation above, the discretization of the numerical flux term balances with the one 
of the topography source terms for hydrostatic conditions. This gives in each mesh cell: u = 0 and bR − bL = − 

(
hR − hL

)
. 

While this holds for the first order scheme, this is not the case when using higher reconstructions as we do here. In this 
case, following [32,53], we include the additional correction term S�

b for maintaining the correct balance, i.e.


Sb i = S−
b i+1/2 + S+

b i−1/2 + S�
b

(
UL

i+1/2,UR
i−1/2

)
(25)

with

S�
b

(
UL

i+1/2,UR
i−1/2

)
=

⎡⎣ 0

−g
hR

i−1/2 + hL
i+1/2

2

(
bR

i−1/2 − bL
i+1/2

) ⎤⎦ .

3.4. Hyperbolic phase: finite element scheme

Two FE methods are considered here. The first is a classical C0 Galerkin approximation of the two equations (10). For an 
internal node i, the discrete continuous Galerkin equations are readily obtained by evaluating the integrals (set q = hu)

L∫
0

ϕi∂th
x −
L∫

0

∂xϕiq
x = 0

L∫
0

ϕi∂tq
x −
L∫

0

∂xϕi

[
q2

x

h
x
+ g

h2

x

2

]
−

L∫
0

ϕi S̃b =
L∫

0

ϕiφ
x (26)

with S̃b = −gh∂xb. With the notation of the previous section, the integrals can be approximated as [60]

MG d

dt
U = −1

2
[F(Ui+1) − F(Ui−1)] + 1

2
S̃b i+1/2 + 1

2
S̃b i−1/2 + �

G
(27)

where MG is the Galerkin mass matrix defined in (14).
By analogy with (19), we use the notation � for the contribution of the non-hydrostatic term, which in this case is given 

by

�
G = MG� . (28)

As shown in [77,60], scheme (27) is fourth order accurate in space on regular meshes, when the shallow water limit is 
considered.

To obtain a discretization with some shock capturing capabilities, we consider the upwind stabilized method used in 
[60,6,7] (see also [33]). In particular, introducing the local residual

R
x =
(

∂th
x + ∂xq
x

∂tq
x + ∂x(q2

x/h
x + gh2


x/2) − S̃b − φ
x

)
, (29)

obtained by replacing in the continuous equations the discrete approximation of the unknowns, we consider the streamline 
upwind scheme:

MG d

dt
U = −1

2
[F(Ui+1) − F(Ui−1)] + 1

2
S̃b i+1/2 + 1

2
S̃b i−1/2 + �

G −
1∑

j=0

xi+ j∫
x

A∂xϕi τ SU R
x .
i+ j−1
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In the last expression, the matrix τ SU is a scaling parameter in practice defined as in [33,60]

τ SU = 
x

2
|A|−1 .

With this definition, using (29) and the notation of section 3.2, one easily shows that the streamline upwind scheme can be 
written as

MSU d

dt
U = − [

Fi+1/2(Ui,Ui+1) − Fi+1/2(Ui−1,Ui)
]+ S−

b i+1/2(Ui,Ui+1) + S+
b i−1/2(Ui−1,Ui)�

SU
(30)

where the numerical fluxes and sources have exactly the same expression as in (20) and (23) respectively, and where the 
entries of the Streamline Upwind mass matrix now couple the h and q ODEs and depend on the sign of the shallow water 
flux Jacobian matrix A. In particular[

MSUV
]

i
= 
x

6
Vi−1 + 2
x

3
Vi + 
x

6
Vi+1 + 
x

4
sign(Ai−1/2)

(
Vi−1 + Vi

)
− 
x

4
sign(Ai+1/2)

(
Vi+1 + Vi

)
(31)

By analogy with (19), we have used the notation � for the contribution of the non-hydrostatic terms, which in this case is 
given by

�
SU = MSU�.

As shown in [60,6,7], to which we refer for all additional details, the stabilized FE method (30) is third order accurate in 
space when the shallow water limit is considered, and it preserves exactly steady state still flat free surface states.

Finally, in order to handle moving bores and dry areas, we introduce as in [6,7] the following nonlinear splitting of the 
mass matrix (sc stands for shock capturing):[

MSU-scV
]

i
= 
xVi + ψi+1/2


x

2

[
1

3

(
Vi+1 − Vi

)
− sign(Ai+1/2)

2

(
Vi+1 + Vi

)]
+ ψi−1/2


x

2

[
1

3

(
Vi−1 − Vi

)
+ sign(Ai−1/2)

2

(
Vi−1 + Vi

)]
(32)

The final form of the scheme reads

MSU-sc d

dt
U = − [

Fi+1/2(Ui,Ui+1) − Fi+1/2(Ui−1,Ui)
]+ S−

b i+1/2(Ui,Ui+1) + S+
b i−1/2(Ui−1,Ui)
x�

SU-sc
(33)

The quantity ψi±1/2 in (32) is a limiter function. For ψ = 0 the scheme reduces to the first order version of Roe’s scheme, 
which is basically the first order version of (19). For ψ = 1 the third order finite element method (30) is recovered. Any 
function can be used to detect smooth areas and dry or shocked regions.

Here, we use the smoothness sensor proposed in [6,7] and based on two different approximations of the curvature of 
the free surface elevation η:

ψi+1/2 = min(ψi,ψi+1) , ψi = min

(
1, α

| ∫ L
0 ϕi∂xη
x|

| ∫ L
0 ∂xϕi∂xη
x + V i|

)
where V i is obtained as the fourth order finite difference approximation of ∂xxηi , and with α = 1

9 as in [6,7].

3.5. Well-balancing, wet/dry front treatment, mass conservation

In order to identify the dry cells we use the technique described in [59,58]. In particular, we introduce two threshold 
parameters εwd

h and εwd
u , acting independently on the water height and the velocity respectively. So, if H in a node is less 

that εwd
h , that node is considered as dry. This parameter is very small, compared to the mesh size (typical values range are 

between 10−9 and 10−6). The second parameter is used to avoid division by zero and is set to

εwd
u = 
x2

L2

with L the length of the spatial domain. If in a node h ≤ εwd
u , the velocity in that node is set to zero. To avoid loosing mass, 

and guarantee absolute mass conservation, we follow the treatments proposed in [25,16,45] where the total mass in nodes 
with h ≤ εwd

u is redistributed uniformly to the rest of the domain.
Furthermore, the presence of dry areas should not affect the ability of the schemes to preserve steady states involving 

flat free surface still water. To ensure this property, we use a standard technique consisting in redefining the bed elevation 
at the emerging dry cell [17,16] as:
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b =
{

hL if hL > εwd
h and hR ≤ εwd

h and bR < (bR − bL)

(bL − bR) otherwise
(34)

when a wet/dry front exists between computational cells with (reconstructed) face values L and R. For both FV and FE 
schemes this modification is applied in the computation of the source term S̃b . A similar treatment holds if R is wet and 
L dry. Just for the FV scheme and for the flow in motion over adverse slopes, further modifications are made following 
[19,36]. Finally, and as to properly detect regions in proximity of dry areas, we use an exponential filter proposed in [59,58]. 
This exponential function is embedded in the limiters and activated whenever the limiter is on.

4. Time integration, boundary conditions, and friction

4.1. High order time integration methods

Similarly to the spatial domain, the temporal domain is discretized by a set of non-overlapping slabs [tn, tn+1]. We will 
denote by 
tn+1 = tn+1 − tn . For generality, three different time discretizations are compared in this work. One is a method 
quite classical in the context of Boussinesq type numerical models, while the other two have been chosen as representatives 
of boundedness or strong stability preserving methods. For all of these methods, the time step is computed by means of 
the CFL condition


tn+1 = CFL

x

max
i

(|un
i | +

√
ghn

i )
(35)

For the shallow water equations, the stability condition for the first order methods used here is CFLc = 1 when using the 
first order explicit Euler method. Following [30,57], we will speak of effective CFL as the ratio CFLc/p, with p the number 
of right hand side evaluations in one time step.

The first time integration scheme we consider is the Adams–Bashforth/Adams–Moulton (AM) predictor–corrector method, 
well known in the community of Boussinesq modelling [79,62]. For the ODE

U′ = L(U) (36)

this time integration scheme requires two stages:

1. Predictor stage (Adams–Bashforth method)

Up = Un + 
t

12

[
23L(Un) − 16L(Un−1) + 5L(Un−2)

]
(37)

2. Corrector stage (Adams–Moulton method)

Un+1 = Un + 
t

24

[
9L(Up) + 19L(Un) − 5L(Un−1) +L(Un−2)

]
(38)

The Adams predictor corrector has stability properties close to those of the explicit Euler scheme, with respect to which we 
thus have an affective CFL of 1/2 (2 stages for the same time step magnitude). The method is obtained by a combination of 
Lagrange polynomial extrapolation, and polynomial interpolation to evaluate the integral of L in the interval [tn, tn+1] (see 
e.g. [49], chapter 9). For the autonomous ODE (36), fourth order of accuracy can be easily shown by standard truncation 
error analysis. The technique used to derive the method can be generalized to include variable time step sizes, but this is 
way beyond the scope of this paper. A simple technique to account for variable time step sizes, while keeping constant the 
coefficients in the scheme, is to re-correct iteratively with the Adams–Moulton step, stopping when the relative magnitude 
of the correction is below a given threshold (cf. [79,28,62]). In practice, however, the improvement brought by this multi-
corrector procedure is very small, and a single correction is already enough to obtain accurate results also for variable step 
sizes (see [79]).

We also test the three stage third order SSP Runge–Kutta (RK3) scheme reading [30]

Up =Un + 
t L(Un)

U2p =3

4
Un + 1

4
Up + 
t

4
L(Up)

Un+1 =1

3
Un + 2

3
U2p + 2
t

3
L(U2p) (39)

The RK3 belongs to the family of strong stability preserving multi-stage methods with positive coefficients, inheriting the 
same stability properties of the explicit Euler scheme. In particular, compared to the latter, the RK3 has a CFL condition of 1, 
giving an effective CFL of 1/3.
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Lastly, we have tested the third order extrapolated backward differencing method (eBDF3) [39] reading

αn+1Un+1 + αnUn + αn−1Un−1 + αn−2Un−2 = βn L(Un) + βn−1 L(Un−1) + βn−2 L(Un−2) (40)

where the weights take the form

αn+1 = 1


tn+1
+ 1


tn+1 + 
tn
+ 1


tn+1 + 
tn + 
tn−1
, αn = − (
tn+1 + 
tn)(
tn+1 + 
tn + 
tn−1)


tn+1
tn(
tn + 
tn−1)

αn−1 = 
tn+1(
tn+1 + 
tn + 
tn−1)

(
tn+1 + 
tn)
tn
tn−1
,

αn−2 = − 
tn+1(
tn+1 + 
tn)

(
tn+1 + 
tn + 
tn−1)(
tn + 
tn−1)
tn−1

and

βn = (
tn+1 + 
tn)(
tn+1 + 
tn + 
tn−1)


tn(
tn + 
tn−1)
, βn−1 = −
tn+1(
tn+1 + 
tn + 
tn−1)


tn
tn−1
,

βn−2 = 
tn+1(
tn+1 + 
tn)

(
tn + 
tn−1)
tn−1

The eBDf3 is part of a family of high order explicit multi-step methods verifying, under a time step restriction, the same 
boundedness preserving property of the explicit Euler scheme. Compared to the latter, the eBDf3 has a stability condition 
of CFL = 1/3 [34], which gives the same effective CFL of the RK3 method.

4.2. Boundary conditions and internal source function

To define differential problems, boundary conditions must be introduced. In this work we use two types of boundary 
conditions, depending on the examined test case: solid (reflective) wall and absorbing boundary conditions. For the FV 
scheme with third-order MUSCL reconstruction, the reconstructed values on the first and last cell of the computational 
domain are computed using neighboring ghost cells. More informations can be found in [36]. For the FE schemes, ghost 
cells are in no need since it is a node centered scheme and the degrees of freedom are located directly on the physical 
boundary.

Absorbing boundaries are also applied in order to dissipate completely the energy of the incoming waves, trying at 
the same time to eliminate any non-physical reflection. This kind of boundaries requires the definition of a sponge layer 
in which the surface elevation and the momentum are damped by multiplying their values by a coefficient m(x) defined 
as [37]

m(x) =
√

1 −
(

x − d(x)

Ls

)2

. (41)

Ls is the sponge layer width and d(x) is the normal distance between the cell center with coordinates x and the absorbing 
boundary. Typical values for the sponge layer width are related to the wavelenght of the incoming wave: L ≤ Ls ≤ 1.5L. 
Thus, longer wavelengths require longer sponge layers.

Wave generation in the model is achieved by using the internal wave generator of Wei et al. [81]. In [81] the wave 
generator of free surface waves is introduced as a source function added to the mass equation. It is derived using the 
equations of Nwogu [54], but it can be used for many types of Boussinesq-type equations by changing the dispersion relation 
used in the generator. In this work, as to be compatible with the equations of GN, we use the dispersion relation (7).

4.3. Friction terms discretization

An explicit treatment of the friction can produce numerical oscillations [16,52,51] when the roughness coefficient is high. 
For this reason, we use the technique proposed in [16,51]. More precisely, for all schemes, at the end of each time step, we 
have:

(hu)n+1
i = (hu)�i − g(hS f )

n+1
i 
tn (42)

where all the values signed with � are the values computed without the friction. Using (S f )i = (uR f )i = ui
N2

m||ui ||
h4/3

i

and 

substituting in the above equation, we have:

(hu)n+1
i = (hu)�i − g(huR f )

n+1
i 
tn = (hu)�i − g(hu)n+1

i

[
(1 − θ)(R f )

n+1
i + θ(R f )

n
i

]

tn (43)
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with Nm being the Manning roughness coefficient. Now, by separating explicit and implicit part and by assuming that 
Rn+1

f = R�
f , we can write:

(hu)n+1
i = (hu)�i − θ g(hu)n

i (R f )
n
i 
tn

1 + (1 − θ)g(R f )
�
i 
tn

(44)

When the implicitness parameter θ is set to zero, the friction source term is computed in a completely implicit manner, 
while it is computed in a totally explicit point wise manner when θ = 1. In all the computations shown in this work the 
value θ = 0 has been used. This modification, albeit very robust, makes the scheme locally first order in time when friction 
is dominating. This is especially the case in wet–dry fronts. Techniques to construct high order variants for the eBFD and 
Runge–Kutta methods are discussed in [35,21], and will be exploited in the future.

5. Semi-discrete error analyses

5.1. Time continuous analysis

The analytical expression of the linear dispersion relation for the present model has been already given in section 2 and 
will be here rewritten:

ω2
GN = gh0k2 1 + α−1

3 k2h2
0

1 + α
3 k2h2

0

. (45)

As already explained, this relation can be recovered by means of a Fourier analysis on a horizontal bottom performed on 
the linearized system of equations:

(I + αTLIN)φ = TLIN(gh0ηx) (46)

ηt + h0ux = 0 (47)

h0ut + gh0ηx = φ

where h0 represents the constant water depth and TLIN(·) = − 1
3 h2

0(·)xx .
Having a low dispersion error w.r.t. the model is of paramount importance for any numerical scheme that wants to be 

applied to the study of near-shore wave propagation. In this section we will perform an analysis on the discrete dispersion 
relations of the several schemes here implemented: continuous finite element (with and without the upwind stabilization) 
and finite volume; comparing them and finding the best possible configuration of the discretization which minimizes the 
dispersion error.

We perform our analysis replacing the nodal values of η and u in each discretized scheme by a propagating Fourier mode 
W i = W0eν
xt+ jkxi ; where ν
x = ξ
x + jω
x and ξ
x and ω
x represent respectively the amplification rate and the phase 
speed, while k is the wave number of the Fourier mode. The algebraic expression obtained in such a way can be easily 
rewritten in terms of the nodal value W i , using relations of the type W i±1 = e± jk
x . The resulting system of equations 
constitutes a complex eigenvalue problem, whose solution is the dispersion factor ν
x .

The dispersion formulae obtained are hard to interpret, so we choose to present the results in the form of comparison 
plots, in which the dispersion error curves of the model are compared among them and w.r.t. the ones given by second 
(FD2) and fourth (FD4) order finite different discretization schemes. For the sake of brevity and clarity, in the following, we 
will just present the concluding remarks. Please refer to the appendix for more details.

5.1.1. Finite element
When also the hyperbolic part is discretized with the centered Galerkin FE scheme described in (27), the system obtained 

for the nodal values of a Fourier mode is(
M̃G − αh2

0

3
S̃G

)
φi = − gh3

0

3
T̃G

(
M̃G

)−1
ηi (48)

M̃Gν
xηi + h0F̃
G

ui = 0 (49)

M̃Gν
xui + gF̃Gηi = 1

h0
M̃Gφi

While different expressions are obtained for the second and third equations when other schemes are used in the hyperbolic 
phase, note that the first one remains the same in all the cases considered in the paper. The discrete phase ω
x is computed 
by imposing that the above linear system admits a non-trivial solution, and hence that the associated matrix has zero 
determinant.

The results obtained from (49) are summarized in Fig. 2 in terms of the relative dispersion error w.r.t. the exact phase (7). 
The curves are obtained for the two values kh0 = 0.5 and kh0 = 2.5, corresponding to a long and to a short(er) wave (or 
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Fig. 2. Dispersion error for the centered Galerkin FE scheme for kh0 = 0.5 (left) and kh0 = 2.5 (right): comparison w.r.t. the FD2 and FD4 schemes.

Fig. 3. Dispersion error of the Galerkin scheme for kh0 = 0.5 (left) and kh0 = 2.5 (right): impact of lumping strategy.

equivalently to shallow and deep waters) respectively, and plotted against the inverse of the number of nodes per wave-
length N . The relative errors of the FD2 and FD4 finite difference schemes are also reported as a reference (see appendix for 
detailed expressions). The pictures show that the centered Galerkin scheme provides a dispersion error which is comparable 
or better that the fourth order finite difference method.

In section 3.2 we mentioned some implementation choices associated to the finite element solution of the elliptic prob-
lem (9). These boil down to the type of quadrature used to evaluate some of the integrals, or, in other words, to the use 
of mass lumping for the mass matrices appearing in equations (11), (17) and (18). The first two, in particular, influence the 
form of the �̃LIN injected in the hyperbolic component. We have studied the impact of this choice with interesting results. 
Four possibilities exist, for which explicit calculations are provided in the appendix:

1. mass lumping is performed in both (11) and (17), in which case the elliptic solver is exactly the same obtained with 
the FD2 method;

2. mass lumping is only performed in the computation of the auxiliary variable (17), and not in (11). In this case, the 
elliptic system is not identical to the FD2 one, however the third order derivative formula obtained is exactly the same 
as the one used in FD2;

3. no mass lumping is performed for the auxiliary variable (17), while (11) is lumped. In this case, the elliptic system is 
the same as the FD2 one, however, its right hand side contains an approximation of the third order derivatives obtained 
starting from an L2 projection of the gradients of the free surface;

4. no mass lumping is performed, leading to the first in (48).

The differences between these four cases are visualized in Fig. 3 for the continuous Galerkin scheme, showing that in 
deep waters the first and second configurations provide a considerable increase in error. This clearly means that the most 
relevant parameter is the approximation of the third order derivative. It appears from the results that the use of an improved 
approximation of the free surface gradient in the third order derivatives is the key element to reduce the dispersion error. 
In particular, the configurations 1 and 2 provide errors of the same magnitudes as the FD2 scheme, despite the fact that the 
hyperbolic phase, and part of the elliptic phase, are not the same. These are precisely the cases in which the approximation 
of the third order operator is the same as in FD2.
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Fig. 4. Dispersion error of the SUPG scheme for kh0 = 0.5 (left) and the kh0 = 2.5 (right): impact of lumping strategy.

Fig. 5. Dispersion error for the FV scheme for kh0 = 0.5 (left) and the kh0 = 2.5 (right): impact of lumping strategy.

5.1.2. SUPG scheme
We repeat the analysis for the upwind stabilized finite element scheme (SUPG). We refer to the appendix for details and 

analytical expressions. Please, note that a system similar to (48)–(49) has to be analyzed and, in particular, that the first 
equation of this system is exactly equation (48) itself.

In Fig. 4, we visualize the impact of the mass lumping strategy on the dispersion error, as done for the un-stabilized 
method. Also in this case, for short waves/deep waters the largest errors are obtained whenever the third order derivatives 
are approximated with the simple FD2 formula (cases 1 and 2). In the other two cases, involving an improved treatment 
of this term, we obtain errors comparable or even smaller than those of the non-stabilized method, confirming the results 
already obtained in [60].

5.1.3. Finite volume
We repeat the exercise for the hybrid Galerkin-FV scheme of section 3.3, reporting the main findings in Fig. 5. Once 

more, the critical element to obtain low errors in deeper waters is the approximation of the third order derivative. The use 
of the FD2 approximation for this term (cases 1 and 2) provides error levels comparable to those of the FD2 scheme. The 
improvement in the approximation of the nodal gradient (17) leads to a reduction of the error of a factor three or four, 
providing errors close to those of the FD4 method. The best results are obtained in this case when no mass lumping is 
performed.

5.1.4. Time continuous analysis: summary
This analysis has allowed to highlight the following results. First, the behavior of the schemes is quite similar, despite 

the different treatment of the hyperbolic part. It appears that the treatment of the third order derivatives is very important, 
and in particular that the use of exact quadrature in the L2 projection defining the auxiliary variable (17) is fundamental 
to reduce the error for deeper water/shorter waves. When no lumping is performed, the errors are similar or smaller than 
those provided by fourth order finite differences.

Finally, these similarities allow to provide a general recipe for the elliptic solver, as, for all the methods involved, the 
choice of the approach 4 allows to reduce the dispersion errors to those of the FD4 scheme or below. A summary of the 
resulting error curves is reported in Fig. 6 confirming the above observations.
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Fig. 6. Dispersion error of FD2, FD4, Galerkin, SUPG, and FV schemes. Left: kh0 = 0.5. Right: kh0 = 2.5.

5.2. Space continuous error analysis

For completeness, we include the error analysis of the time schemes, w.r.t. dispersion and amplification rate in the 
linearized case. As before, we start by injecting the Fourier mode W = Ŵ (t)e jkx . Setting c2 = gh0, and μ = kh0, we can use 
now (46) to deduce

φ = jkc2 μ2/3

1 + αμ2/3
η

so that the Fourier symbol for the last in (47) is

c2ηx − φ = jkc2(1 − μ2/3

1 + αμ2/3
)η

The last expression, however, is also obtained as from the equivalent PDE

qt + a2ηx = 0 ,

having set ∂q = h∂u, and

a = a(μ) = c

√
1 − μ2/3

1 + αμ2/3
. (50)

Indeed, relation (7) of the Green–Naghdi system is also obtained from the “dispersion equivalent system”

ηt+qx = 0

qt+a2(μ) ηx = 0

providing the phase relation ω2 = k2a2, which reduces to (7) with definition (50). Here the stability condition α ≥ 1 is 
necessary for the well-posedness of the analogy. The analysis of the time discretization will thus be performed on the 
ordinary differential system obtained from these equivalent PDEs, namely

d

dt
U = L(U) = − jk

(
q

a2η

)
= − jkAU

having set U = (η, q)t . The rest is quite classical (cf. [35]): A admits the eigenvalue decomposition:

A =
(

0 1
a2 0

)
=

(
1 1
−a a

)
︸ ︷︷ ︸

R A

( −a 0
0 a

)
1

2

(
1 −1/a
1 1/a

)
︸ ︷︷ ︸

L A

so we can analyze the schemes for the scalar (characteristic) ODE

ẇ + λ(μ)w = 0

with λ(μ) = ± jka(μ). The analysis follows the same lines as in the time continuous case: a mode of the type w0e jνt is 
injected in the time discretized form of the last ODE; this leads to an algebraic equation for the complex amplification 
rate ν which is solved numerically. The qualitative behavior obtained are displayed in Fig. 7. The three methods provide a 
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Fig. 7. Dispersion error of the time discretizations: overview. Left: AM scheme. Middle: RK3 scheme. Right: eBDf3 scheme.

Fig. 8. Error analysis of the time discretizations: phase (left) ad amplification rate (right).

discrete mode approximating very well the linear phase relation of the Green–Naghdi equations, with a very small amount 
of dissipation. As expected, the multistep methods also provide two unphysical modes, which however present an extremely 
strong damping rate.

To provide more quantitative information we consider the convergence of the error in function of the number of points 
per wavelength obtained via the relations N = λ/
x, λk = 2π and the CFL condition 
t = CFL
x/c, which lead to

k
t = CFL

c

2π

N

with the maximum allowed CFL used for each scheme. The results obtained are summarized in Fig. 8. Note that for the 
multistep schemes, only the physical root is in the analysis. From the figure we can see that the errors of the third order 
RK3 and eBDf3 methods have a dominant component which is acting on the amplification rate, while the dispersion relation 
itself is of fourth order, making these schemes very accurate for propagation purposes. Concerning the AM method, we see 
that the error is dominated by the dispersion component, which again is of fourth order. The error on the amplification rate 
is found, instead, to be of order five. This shows that the third order methods considered provide comparable accuracy to 
the fourth order AM scheme. The choice between these methods may be done based on other considerations: boundedness 
preservation properties (known for the RK method, and for eBDF in the linear case), effective CFL (favoring the AM method), 
ease of generalization to higher orders, etc.
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6. Embedding wave breaking

Wave breaking is an important modelling issue in near-shore environments. It dissipates wave energy through the gen-
eration of turbulence, including substantial air entrainment. As wave shoal, wave fronts become steeper and steeper, until 
wave’s crest overturns. Depth averaged equations are unable to describe this phenomenon and an additional physical closure 
for wave breaking is necessary to simulate the breaking process numerically. The closure model is composed of two main 
elements: a trigger mechanism related to the initiation and possibly the termination of the breaking process; an energy dis-
sipation mechanism. In this work, as in [72,37,6], the breaking dissipation is included by reverting locally to the non-linear
shallow water (NLSW) equations and letting breaking fronts converge into moving bores or hydraulic jumps. The total en-
ergy dissipation through these features is used as a model for wave breaking dissipation. Such an approach leads to hybrid 
models and has gained attention by several researchers in the past few years, please refer to [13,73,74,36,67,63,56,72,76].

In the solution procedure proposed here, this can be embedded quite simply by setting φ to zero in (10). However, we 
will also test a tighter coupling of the hyperbolic and elliptic phases, by taking into account the presence of breaking regions 
also in the latter. More details concerning the detection and triggering of the breaking model and on the coupling between 
Green–Naghdi and NLSW equations are discussed hereafter.

6.1. Breaking front detection

As a trigger mechanism to determine the initiation and termination of a breaking process, we use the combination of 
physical criteria presented in [37]:

• the surface variation criterion: ∂tη ≥ γ
√

gh, with γ ∈ [0.3, 0.65] depending on the type of breaking;
• the local slope angle criterion: ‖∇η‖2 ≥ tan(φc), where φc is the critical front slope at breaking, and φc ∈ [14o, 33o]

depending on the type of breaking.

The first criterion flags for breaking when ∂tη is positive, as breaking starts on the front face of the wave and has the 
advantage that can be easily calculated during the running of the code. The second criterion acts complementary to the first 
one and is based on the critical front slope approach [65,68]. This allows to flag steady hydraulic jumps, while the first is 
more effective for moving fronts.

As discussed in [37,72], the different breaking waves are distinguished, and each one is processed individually. In par-
ticular, for each front one computes peak and trough depths (hpeak and htrough respectively). If the critical Froude number, 
defined by

Fr =
√

−1 + (1 + 2hpeak/htrough)2

8
,

is larger than a certain threshold, typically Frc ≈ 1.3, then a breaking region is defined, centered around the point of 
maximum slope and of width lNLSW ≈ 7.5(hpeak − htrough). All the nodes within this region are breaking nodes. For breaking 
nodes, the shallow water equations are solved. The modifications to the numerical model made to achieve this coupling are 
discussed in the next paragraph. More details on wave breaking detection can be found in [37,72] and references therein.

6.2. Numerical treatment of breaking regions

In the region flagged as breaking, the flow quantities are evolved using the shallow water equations. We will compare in 
our results two different approaches:

1. Simply neglect the terms related to φ in the spatial discretization. For a breaking node i, this means setting �i = 0 in 
(19), or (33). In this case, the two phases of the discretization (elliptic and hyperbolic) are completely independent of
one another. In particular, only the hyperbolic phase is aware of the breaking process;

2. To have a tighter coupling between the two phases, and hopefully a smoother transition, the breaking condition is 
embedded in the elliptic phase as a sort of Dirichlet boundary condition. In particular, for a breaking node i the line 
of the matrix issuing form the finite element discretization discussed in section 3.2 is replaced by δi j
x, δi j denoting 
Kroenecker’s δ, while the right hand side is set to zero. The elliptic problem being second order, the discrete solution 
for φ is now expected to go to zero in breaking nodes trying to keep also the continuity of its first derivative. As the 
source term � is kept into the discretization, and as it involves an average of neighboring values of φ, a smoother 
transition may be expected.

In both cases, the nonlinear limiters involved in the discretizations are turned on only if the nodes are breaking. In other 
words, in non-breaking regions we set ψ = 1 in both (21) and (32).
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Fig. 9. Convergence rates for the FV scheme (left) the SUPG scheme (center) and the Galerkin scheme (right).

7. Numerical tests and results

7.1. Space–time grid convergence

We perform a convergence analysis w.r.t. space and time step size. The physical case considered is the propagation of a 
solitary wave over a flat bed, with depth h0 = 10 m, and with ε = 0.2. The domain is of 2000 m, [0, 2000] and the initial 
wave was placed in x0 = 1000 m. For this case, an analytical solution is available. The test case is performed on a set of six 
meshes with dx = 5, 2.5, 1.25, 0.625, 0.3125, 0.1562 m, and with corresponding time step sizes refined according to (35), 
with CFL≈ 0.2. At T = 1 s the relative error E L2(h) = ‖hnum − hex‖2/‖hex‖2 on the total water depth is computed, where 
hnum is the numerical solution and hex is the analytical one.

The convergence of the L2 error is plotted in Fig. 9, where the slopes 2.5 and 3 are also plotted for reference. Similar 
behaviors are observed with other norms. The slopes obtained from the error reveal convergence rates in between 2.5 and 3 
for all the combinations, showing that the dominant component of the error is the one related to the spatial discretization.

7.2. Periodic wave propagation over a submerged bar

The next test case is the periodic wave propagation over a bar. The classical tests of Beji and Battjes [8] examine si-
nusoidal wave propagation over a submerged bar as to investigate the frequency dispersion characteristics and nonlinear 
interaction of complex wave propagation phenomena. The experiments were conducted in a 37.7 m long, 0.8 m wide, and 
0.75 m high wave flume. A hydraulically driven, piston-type random wave generator was located at the left side of the 
flume and a 1 : 25 plane beach with coarse material was placed at the right side to serve as a wave absorber. The sub-
merged trapezoidal bar was 0.3 m high with front slope of 1 : 20 and lee slope of 1 : 10 separated by a level plateau 2 m in 
length. For the numerical test case, the wave-making internal source function is placed at x = 0 m and the dimension of the 
computational domain is set to x ∈ [−10, 29 m]. Sponge layer widths are set to Ls = 5 m at both ends of the computational 
domain. For the computation dx = 0.04 m and the CFL number used is equal to 0.2.

Case (a): First we consider the test case with A = 0.01 m incident wave amplitude and T = 2.02 s wave period. The 
water depth parameter is kh0 ≈ 0.67 with depth to wavelength ratio h0/L = 0.11 m. The propagating waves shoal along the 
front slope of the bar causing the growth of the wave amplitude and the surface profile to become asymmetric. In the back 
slope the waves break up into independent waves which travel at their own speed. Fig. 10 presents the comparison between 
experimental data and numerical ones, produced using the FV scheme, recorded in wave gauges for all the time schemes 
used in this work. Figs. 11 and 12 present the same for the Galerkin and the SUPG schemes respectively. We must mention 
that the wave signals have been phase calibrated according to gauge 4. For brevity we only consider gauge 4 placed at the 
toe of the bar, gauge 7 placed before the plateau of the bar, gauge 8 placed on the top of the bar and gauge 10 placed after 
the bar.

We can observe that the three scheme produce same results for the gauges before and on the plateau of the bar while 
there is a slight modification for the gauge in the lee side of the bar. In this region the water depth parameter kh increases 
rapidly so it is expected form Fig. 6 that the FV scheme produces less accurate results since the dispersion error is higher 
as k grows.

Case (b): In this case wave breaking is expected to occur at the end of the first slope and after the shoaling of the 
waves. The waves height is of 0.054 m and the wave period is T = 2.5 s, that corresponds to the water depth parameter 
kh0 ≈ 0.52, with depth to wavelength ratio of h/L = 0.0835. The value of the surface breaking criterion γ , for the wave 
breaking mechanism, is set to 0.3. We muse denote that for the numerical treatment of the wave breaking (in all the test 
cases), we use the second approach described in section 6.2. A discussion on the topic will follow. The numerical results 
along with the experimental data are recorded in four wave gauges (1 to 4) which were placed at x = 6, 12, 13 and 14 m
respectively. They are all presented in Figs. 13 and 14 for the FV and the SUPG schemes respectively.
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Fig. 10. Time series of surface elevation, for the FV scheme, at wave gauges 4, 7 (up) 8, 10 (down) for periodic wave propagation over a bar.

Fig. 11. Time series of surface elevation, for the Galerkin scheme, at wave gauges 4, 7 (up) 8, 10 (down) for periodic wave propagation over a bar.

Fig. 12. Time series of surface elevation, for the SUPG scheme, at wave gauges 4, 7 (up) 8, 10 (down) for periodic wave propagation over a bar.
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Fig. 13. Time series of surface elevation, for FV scheme, at wave gauges for periodic wave propagation over a bar.

Fig. 14. Time series of surface elevation, for FE scheme, at wave gauges for periodic wave propagation over a bar.

The wave shape is well-reproduced for all wave gauges. As expected the waves shoal along the front slope, since non-
linear effects cause the waves propagating along this slope to steepen and broke at the beginning of the bar crest. Breaking 
is classified as plunging. Bound higher harmonics are developed along the front slope, which are then released from the 
carrier frequency on the lee side of the bar as the water depth parameter kh increases rapidly. Figs. 15 and 16 illustrate
the wave-by-wave treatment and the lNLSW area along the centerline for FV and SUPG schemes respectively, at different 
time instances (covering roughly one wave period). The time scheme used for both models was Adams Moulton but similar 
results can be obtained using the other time schemes. The onset of breaking is correctly predicted for both schemes, close 
to the beginning of the bar crest and continues along the flat of the bar leading to a wave height decay. We can observe 
that during the breaking process the SUPG scheme is more diffusive leading to a slightly earlier termination of the proce-
dure and after that a small amplification of the wave height compared to the FV scheme. Different particularization for the 
breaking model maybe needed for different numerical models but this study is beyond the purpose of this work.

7.3. Solitary wave run-up on a plane beach

As to verify and validate our implementations, we use one of the most intensively studied problems in long-wave mod-
eling, the solitary wave-run up on a plane beach. Synolakis [70] carried out laboratory experiments for incident solitary 
waves of multiple relative amplitudes, in order to study propagation, breaking and run-up over a planar beach with a slope 
1:19.85. Detailed description of the test case, along with the initial conditions, can be found for example in [70,11,74,63,24]
among many others. The incident wave height used in this work is A/h = 0.28 with h = 1 m. This wave breaks strongly 
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Fig. 15. Spatial snapshots, for FV scheme, along the centerline of regular waves breaking over a bar with the flow between two consecutive vertical lines 
governed by the NSW equations.

Fig. 16. Spatial snapshots, for SUPG scheme, along the centerline of regular waves breaking over a bar with the flow between two consecutive vertical lines 
governed by the NSW equations.

both in the run-up and the run-down phases of the motion. The computational domain used is x ∈ [−20, 100 m] with 
dx = 0.05 m. The CFL number is set equal to 0.2, a sponge layer is applied offshore with length Ls = 5 m and γ is set equal 
to 0.6. Finally, a Manning coefficient of nm = 0.01 is used to define the glass surface roughness used in the experiments.

We perform this test case using all the time schemes described up to now. Like the periodic wave propagation over a bar, 
we obtain the same results for the different time schemes. For brevity, only two snapshots of the comparison are presented 
in Fig. 18. Since we show that all the time schemes used up to now lead us to the same results, from now on, the presented 
results will use Adams Moulton time scheme unless otherwise said. Of course the choice of the above time schemes is not 
restricted and any time scheme of order greater than three can be used. Fig. 17 compares the measured surface profiles and 
the numerical model’s results on different non-dimensional times. Blue line denotes the numerical results produced by the 
FV scheme, green dotted line the results given by the SUPG scheme and red circles denote the experimental data.

Until time t
√

g/h = 10 the solitary propagates to the shore and the two models produce, as expected, identical results 
since wave breaking hasn’t started yet. The experimental wave, breaks around t

√
g/h = 20. The numerical solution is rep-

resented like a bore storing the water spilled from the breaking wave behind the front. A slight difference can be seen in 
the two solutions at time t

√
g/h = 20 which is due to the usage of two different limiters. SUPG scheme uses the smooth 

sensor limiter while FV scheme uses the min-mode limiter. Usage of different limiters produces different results in the 
wave breaking region but this study is beyond the scope of this work. At time t

√
g/h = 25 the bore collapses at the shore 
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Fig. 17. Free surface elevation of solitary wave run-up on a plane beach for A/h = 0.28.
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Fig. 18. Comparison of different time schemes on a solitary wave run-up on a plane beach, for the FV scheme (up) and the SUPG scheme (down).

and the results show really good agreement. After that the wave starts to run-up. The time of maximum run-up occurs 
at t

√
g/h = 45. During the backwash a breaking wave is created at t

√
g/h = 55 near the still water level. The numerical 

solution is approximated as a hydraulic jump for both models which can be fully resolved since the breaking criterion 
recognizes it and the NLSW equations are used in this region.

7.4. Influence of mesh regularity

In order to assess the influence of mesh regularity on the results, we present some examples of computations on per-
turbed point distributions, obtained from uniform ones by displacing all the points by a factor of ρi
x (with ρi a random 
number such that |ρi | ≤ 0.2, and with 
x the initial mesh size). For completeness we consider both a smooth case, and a 
non-smooth one.

The first test involves the interaction of two symmetric solitary waves in a flat frictionless channel. This head-on collision 
is characterized by the change of shape, along with a small phase-shift of the waves as a consequence of the nonlinearity 
and dispersion. We consider a channel 200 m long with h0 = 1 m, and two solitary waves with an equal initial hight of 
A/h0 = 0.3, initially centered at x = 60 m and x = 140 m. The computational parameters used are CFL value 0.2, number of 
nodes 4000 and domain x ∈ [0, 200 m].

Fig. 19 shows the surface profiles of the solitary waves in time t = 5, 11 and 17 s for the SUPG (up) and the FV model 
(down) respectively (virtually identical results are obtained with the Galerkin method). Each subfigure compares the nu-
merical solutions obtained from the uniform and the non-uniform meshes. The waves initially propagate undisturbed until 
they collide. After the collision, as expected, the waves are transformed and a dispersive tail appears. The influence of mesh 
irregularity is clearly negligible.

As a non-smooth example, we repeat on a perturbed mesh the computation of a solitary wave run-up on a plane beach. 
The results obtained are shown in Fig. 20 for both the hybrid FV and SUPG methods, using the Adams–Moulton time 
integration. Comparing to the results of the previous section, we can again see that the influence of mesh regularity is very 
small, and perhaps the main impact of the irregularity is on the efficiency of the limiters implemented in detecting the 
shocks, especially for the SUPG scheme. This is clearly a topic for future improvement.

7.5. Solitary wave on a composite beach

One of the benchmark methods for tsunami model validation and verification according to the NOOA center for tsunami 
research is the problem the propagation of a solitary wave over a composite beach which simulates the Revere beach in 
Massachusetts. A physical model was constructed at the Coastal Engineering Research Center in Vicksburg, Mississippi by 
the U.S. Army Corps of Engineers. The configuration of the problem can be found in [42,71]. The setup of the problem is 
shown in Fig. 21. The wave gauges, where the time series of the surface elevation is examined, are placed at x = 15.04, 
17.22, 19.04, 20.86, 22.33, 22.80 m. Two cases are implemented and tested in this work. The first one is the propagation 
and breaking of a solitary wave of ε = 0.3 and the second one involves a solitary wave of higher non-linearity of ε = 0.7. 
The computational domain used is of 27.23 m, x ∈ [−5, 23.23], with the initial solitary placed at x = 0 m and h0 = 0.218 m. 
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Fig. 19. Surface profiles of solitary waves at times t = 5,11,17 sec with A/h0 propagate in opposite directions for SUPG (up) and FV (down) schemes.

Fig. 20. Comparison on a solitary wave run-up on a plane beach, for the FV scheme and the SUPG scheme using a non-uniform mesh.

Fig. 21. Initial conditions of the solitary wave on a composite beach.

The CFL number is set to 0.2 and dx = 0.046 m. A sponge layer of 2 m is placed at the left boundary while a vertical wall 
is placed at the right boundary. For the surface variation criterion, γ is set equal to 0.6.

Fig. 22 shows the comparison between the experimental data (red circles) and the numerical results. Again, blue line 
denotes the numerical results produced by the FV scheme while green dotted line denotes the results given by the SUPG 
scheme. The solitary travels down the domain, shoals and break between the second and the third wave gauges. After 
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Fig. 22. Time series of the free surface elevation at the wave gauges for the solitary of non-linearity ε = 0.3. (For interpretation of the references to color 
in this figure, the reader is referred to the web version of this article.)

breaking it continues to travel onshore until it hits the wall, reflects and starts to propagate offshore. We observe a very 
good match between the experimental data and the numerical results for almost all the wave gauges.

In Fig. 23 the numerical results along with the experimental data for the second case (ε = 0.7) are presented. The solitary 
wave is highly non-linear and presents the same behavior. It breaks between the second and the third wave gauges, reflects 
on the wall and travels offshore. The numerical results are in agreement with the experimental data. We must notice that 
after the reflection of the solitary, the numerical results produced by the FV scheme are slightly ahead compared to the 
ones produced by the SUPG scheme and the experimental data.

7.6. Solitary wave propagation over a two-dimensional reef

The last experimental test case is on solitary wave transformations over an idealized fringing reef. It examines the 
model’s capability in handling non-linear dispersive waves along with wave breaking and bore propagation. It was initially 
presented in [62] and the laboratory experiments have been carried out at the O.H. Hinsdale Wave Research Laboratory of 
Oregon state University from 2007 to 2009. The test includes a steep slope along with a reef crest in order to represent 
fringing reefs. The topography includes a fore reef slope of 1/12 a 0.2 m reef crest and a water depth h0 = 2.5 m. The 
reef crest is then exposed by 6 cm and submerges the flat with h = 0.14 m. A solitary wave of 0.75 m high is used as an 
initial condition. The computational domain is x ∈ [0, 83.7 m] with dx = 0.1 m. A CFL number of 0.2 is used, and γ = 0.6. 
Wall boundary conditions are placed at each boundary of the computational domain and, as suggested in [63], a Manning 
coefficient nm = 0.012 s/m1/3 is used to define the roughness of the concrete surface of the reef. Experimental results for 
the free surface elevation were recorded at 14 wave gauges [62] along the centerline of the computational domain. Figs. 24
and 25 show the measured and computed wave profiles, for both schemes, as the numerical solitary wave propagates. For 
comparison purposes we also present the results obtained solving Nwogu’s equations [54] with a FV scheme [36]. As the 
initially symmetric solitary wave propagates along the inclined bottom, it starts to shoal across the toe of the slope, at 
x = 25.9 m, and it begins to skew to the front. As expected [29], during the shoaling (at t

√
g/h = 65), Nwogu’s equations 

slightly over predict the wave height. Higher amplitudes are also observed in the undular bore forming after the reflected 
waves overtop the reef again. This is clearly visible in the gauges in Fig. 26 and Fig. 27.
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Fig. 23. Time series of the free surface elevation at the wave gauges for the solitary of non-linearity ε = 0.7.

The wave begins to break as it approaches the reef, developing a plunging breaker on the top of the reef crest that 
collapses around t = 68.5 s. Both models (and all schemes) are mimicking the breaker as a collapsing bore that slightly 
underestimates the wave height, but conserved the total mass. The two models give identical results as the wave over 
tops the reef, deforming both a hydraulic jump and a downstream propagating bore. A difference can be observed in the 
approximation of the undular bore that forms after the reflection on the wall, over-top the reef and travels offshore. This 
indicates again that maybe different treatment of the breaking mechanism is needed for different numerical models, but 
this study is beyond the scope of this work.

7.7. Discussion on two different breaking formulations

As mentioned in section 5.2, in this work, we performed two different approaches concerning the implementation of 
wave breaking technique in both schemes. The first approach has the advantage that the elliptic and the hyperbolic parts
are completely independent of one another and only the hyperbolic phase is aware of the breaking process. This makes it 
particular easy to implement in any hyperbolic scheme by simply using �̄. In the second approach, we expect to achieve 
a smother transition between the two phases, but the breaking condition must be embedded in the elliptic part. In this 
section we use the two different wave breaking formulations in both schemes. We want to reveal the differences, if any, 
the limitations and advantages of each approach by performing test cases of different wave characteristics and breaking 
conditions.

The first test case performed is the solitary wave propagation over a plane beach. It was described in section 7.3. Fig. 28
shows the numerical results obtained from the two schemes and for both approaches and depicts the breaking procedure 
before the run-up of the wave. The left column corresponds to the FV scheme and the right column to the SUPG scheme. 
Each snapshot presents the free surface elevation and �̄. We must mention that while for the FV scheme �̄i contributes 
only to the momentum equation, this is not the case for the SUPG scheme in which �̄i is coupled (see eq. (14)). For 
this reason and in all the results from now on, we present only the term contributed to the momentum equation. The 
numerical results obtained for both schemes are quite similar. We can observe that the first approach of wave breaking, in 
both schemes, tends to be slightly more oscillatory but without affecting the overall solution.

Fig. 29 describes the same problem but with a refined mesh of 4800 nodes. Here the oscillatory behavior of the first 
approach is revealed in both schemes but is more pronounced in the FV scheme. Oscillations are produced during breaking 
and due to the abrupt switching between the two formulations. They travel offshore and they affect the back of the wave. 
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Fig. 24. Evolution of surface profiles and wave transformations over an exposed reef for A/h = 0.3 and 1/12 slope.

We must mention that the SUPG scheme is more diffusive during breaking due to the different nature of the limiters used, 
compared to the FV scheme. Further research on the effects of the limiters during breaking is necessary. We observe that 
the more we refine the mesh the more oscillations on �̄ are observed. These are introduced to the free surface elevation 
and eventually lead us to a non-acceptable solution.

Fig. 30 presents the numerical results for a solitary wave of ε = 0.5 propagating in the same inclined topography as 
before. As expected the wave breaks in earlier time and once again the figures depict the strong breaking close to the shore. 
The same behavior as before is revealed.

On the contrast and for the wave propagation over a bar test case (see Fig. 31), we observe a different trend. While for the 
mesh of dx = 0.04 there are no big differences observed for the two approaches, for a refined mesh of 4000 nodes a phase 



A.G. Filippini et al. / Journal of Computational Physics 310 (2016) 381–417 407
Fig. 25. Evolution of surface profiles and wave transformations over an exposed reef for A/h = 0.3 and 1/12 slope.

lag in the results between two formulations is revealed in the region after breaking, perhaps related to the perturbation 
disturbing the upstream signal. The results produced by the second formulation are closer to the experimental data.

In conclusion we can say that even though the first formulation has the advantage that the elliptic and hyperbolic parts 
are completely independent and easy to implement in any formulation, it seems more oscillatory than the second approach 
which switches-off the dispersion terms in a more smooth way. Of course further research on the topic is in need, which 
will involve the usage of different discretization schemes and irregular meshes.

8. Conclusions

In this paper, we propose and study a flexible and unsplit strategy to enhance a shallow water code to embed the 
fully-nonlinear weakly dispersive effects of the Green–Naghdi equations [41,42]. The main contributions of the paper may 
be summarized as follows:

• We have proposed a decoupled unsplit formulation which allows to enhance a (hyperbolic) shallow water code by a 
purely algebraic correction to the discrete momentum equation. This correction can be computed from the solution of 
a stationary elliptic problem to embed both the fully-nonlinear weakly dispersive effects, and wave breaking;
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Fig. 26. Time series of the normalized free surface at the wave gauges before the reef.
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Fig. 27. Time series of the normalized free surface at the wave gauges on top and after the reef.

• To evaluate the potential of this enhancement technique, we have investigated hybrid discretizations in which different 
methods are used in the two different phases (elliptic solver, hyperbolic evolution step). Several methods are thus tested 
both in space and in time, involving both finite element and finite volume methods in space, and both multi-stage and 
multi-step methods in time. In particular, we have focused on the use of a C0 Galerkin approximation of the variational 
form of the elliptic problem, and on the use of both upwind finite volumes [53,37], Galerkin and stabilized Galerkin 
finite elements [60,6,7];

• Time continuous dispersion analysis. This analysis has shown several important facts. First, the behavior obtained when 
coupling the continuous Galerkin elliptic solver with different hyperbolic methods is quite similar. This confirms the 
flexibility of our approach. Second, an essential role is played by the approximation of the third order derivatives in the 
right hand side of the elliptic solver. Exact integration to evaluate this term allows to recover, for all the combinations 
considered, dispersion errors of the same order, or smaller, than those provided by fourth order finite differencing. 
Lastly, we find that the use of a properly designed second order accurate discretization for the elliptic phase is enough 
to achieve such low levels of dispersion errors, provided that at least third order of accuracy is guaranteed for the 
hyperbolic component. This is true for all the different combinations of the elliptic–hyperbolic methods considered. 
This result generalizes previous findings and constructions in the finite difference context (see e.g. Wei et al. [79]). Our 
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Fig. 28. Surface elevation and �̄ for FV and SUPG scheme for a solitary wave of ε = 0.28.

analysis show that this approach allows enough flexibility to enhance many of the existing shallow water codes based 
on finite element and finite volume discretizations;

• Dispersion analysis of the time discretization. The analysis of the time discretization of the unsplit linearized operator 
has been performed. We have shown the equivalence of this operator with a modified form of the linearized shallow 
water system with a celerity dependent on the wavenumber. The analysis has allowed to compare the dispersion errors 
of three different discretizations: the standard SSP Runge–Kutta 3 method [30], the third order extrapolated backward 
difference method [34], and the predictor corrector Adams–Bashforth/Adams–Moulton predictor corrector method [79,
62]. All these approaches have been found to provide a fourth order approximation of the phase. However, the RK3 and 
eBDf3 methods have shown a slope three for the amplification rate, thus confirming third order of accuracy. For the 
AM method, we find a fifth order rate of convergence for the amplification rate, thus confirming the fourth order of 
accuracy of the scheme. The choice between the three methods can thus be made in terms of other considerations (e.g. 
SSP property for RK3, effective CFL for the AM method, easy generalization to higher orders, etc.).

• We have studied the effects of embedding the breaking mask in the elliptic phase, in the hope of reducing spurious 
oscillations arising form the coupling of Green–Naghdi and shallow water in breaking regions, as proposed by many 
in the past [75,72,36,37]. The approach is shown to reduce considerably spurious oscillations in the proximities of 
the breaking region. However, it does not resolve issues related to the intermittency of the breaking detection and, 
unfortunately, still leaves open the problem of obtaining fully mesh converged solutions for the coupled model;

• We have validated the approach proposed, using all the combinations of the schemes tested, on smooth and non-smooth 
flows, involving wave braking and overtopping. Our results compare very favorably with analytical solutions, showing 
an order of convergence in between 2.5 and 3, and with experimental data. Computations on perturbed meshes also 
show very little sensitivity, proving the potential of this approach for applications on fully unstructured meshes.
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Fig. 29. Surface elevation and �̄ for FV and SUPG scheme for a solitary wave of ε = 0.28 and a refined mesh.

We consider that our results show that the approach proposed has enormous potential as a non-intrusive enhancement 
technique for existing shallow water solvers.

The work done highlights several issues still open and provides many research avenues. Of course the first urgent issue 
is the generalization and exploitation of this approach in the multidimensional case on adaptive unstructured meshes. This 
is already ongoing work.

Another interesting issue is the comparison of the gains in dispersion accuracy when enhancing the elliptic solver from 
second to higher order, and w.r.t. the number of points per wavelength. This study should allow to estimate the trade-off 
between the cost of inverting a stiffer (and possibly larger) algebraic system and the reduction in number of points/wave-
length, potentially obtained with this enhancement.

Perhaps the most critical problem is the well-posedness of the coupling dispersive-hydrostatic in the breaking region. 
Despite all of our efforts with the current model, and with similar past implementations [36,37,6,7], we have never been 
able to obtain a fully mesh converged result with this modelling method. We think that the well-posedness of this procedure 
may be questionable and that this should be investigated in the future. We stress that this behavior may hinder the use 
of efficient local adaptation techniques to capture breaking fronts more accurately. Alternative approaches to model wave 
breaking, based on the use of turbulence models to improve dissipation, based on an eddy viscosity [55,26,14], are also 
being explored.

Other future directions involve the coupling of continuous finite elements for the elliptic phase with discontinuous 
Galerkin methods for the hyperbolic one, possibly with a lower order continuous approximation for the elliptic phase to 
further reduce the algebraic costs, and the use of dynamic unstructured mesh adaptation techniques as those proposed e.g. 
in [1] or in [18,4,5].
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Fig. 30. Surface elevation and �̄ for FV and SUPG scheme for a solitary wave of ε = 0.5.
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Appendix A

We report here the definitions of the several quantities called in section 5 and involved in the analysis of the dispersion 
properties of the schemes. Moreover, the paragraph contains the expressions of the dispersion relation formulae of the FD2 
and FD4 schemes used as comparison in figures from 2 to 5 and the description of the several configurations (from 1 to 4) 
taken into account for the elliptic problem discretization.

The quantities involved in the dispersion analysis, see for example system (49), are easily computed from the finite 
difference form of the scheme, and read:

• the Galerkin mass matrix: M̃G = 1

6

(
4 + 2 cos μ̄

)
;

• the solution of the elliptic problem: �̃LIN = − gh3
0 T̃G

(
M̃G

)−1(
M̃G − αh2

0 S̃G
)−1
3 3
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Fig. 31. Surface elevation and �̄ for FV and SUPG scheme for a solitary wave over a bar.
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and the Galerkin discretization of:

• the first order space derivatives ∂x(·): F̃G = j
k

2μ̄

(
2 sin μ̄

)
;

• the second order space derivatives ∂xx(·): S̃G = k2

μ̄2

(
2 cos μ̄ − 2

)
;

• the third order space derivatives ∂xxx(·): T̃G = j
k3

2μ̄3

(
2 sin 2μ̄ − 4 sin μ̄

)
;

where μ̄ = k
x and k represents the wavenumber associated to the Fourier mode.
For the Galerkin scheme, the phase resulting from the condition that the matrix of system (49) has zero determinant is

(
ωG


x

)2 =
gh0

(
F̃

G
)2 − F̃GM̃G�̃LIN(

M̃G
)2

(A.1)

The amplification rate is found to be identically equal to zero (no dumping or amplification).
The analysis is more complex for the SUPG scheme. Being c = gh0 the celerity of the wave, the sign of the Jacobian 

matrix of the linear shallow water fluxes, which pre-multiplies the upwind terms in (31), has the form:

sign(A) =
[

0 c/g
g/c 0

]
.

Discretizing system (46) by means of the SUPG scheme will now lead to:(
M̃G − αh2

0

3
S̃G

)
φi = − gh3

0

3
T̃G

(
M̃G

)−1
ηi (A.2)

M̃Gν
xηi + h0F̃
G

ui − c

2g

[
M̃UFEν
xui + gF̃UFEηi − 1

h0
M̃UFEφi

]
= 0 (A.3)

M̃Gν
xui + gF̃Gηi − g

2c

[
M̃UFEν
xηi + h0F̃UFEui

]
= 1

h0
M̃Gφi

the two quantities M̃UPE and F̃UPE
derive from the FE discretization of the upwind flux and have the following form:

• M̃UFE = j sin μ̄

• F̃UFE = k

μ̄

(
2 cos μ̄ − 2

)
The writing of the Jacobian matrix of the system (A.3) and of its characteristic polynomial lead to a complex algebraic 
equation, whose solution in the real part can be written in the form:

(
ωSU


x

)2 = ASU
S

ASU
ν2

−
(

ASU
ν

2ASU
ν2

)2

(A.4)

where ASU
ν2 , ASU

ν and ASU
S are functions of the just defined quantities M̃G, F̃G, M̃UPE, F̃UPE and �̃LIN .

Concerning the FV scheme, using the linearized equations (47) and the third order MUSCL reconstruction, described in 
section 3.3, we get for the following system of equations:(

M̃G − αh2
0

3
S̃G

)
φi = − gh3

0

3
T̃G

(
M̃G

)−1
ηi (A.5)

ν
xηi + h0F̃FVui − cF̃UFVηi = 0 (A.6)

ν
xui + gF̃FVηi − cF̃UFVui = 1

h0
M̃FVφi

which, by means of the procedure already described above for the SUPG scheme, lead to the final form of the dispersion 
relation:

(
ωFV


x

)2 = AFV
S

AFV
−

(
AFV

ν

2AFV

)2

(A.7)

ν2 ν2
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being AFV
ν2 , AFV

ν and AFV
S functions of the quantities M̃FV, F̃FV, F̃UFV and �̃LIN , whose expressions comes from the discretization 

of the:

• elliptic term �: M̃FV = 1

6

(
6 + 2 cos μ̄

)
• centered fluxes: F̃FV = j

k

2μ̄

(
8

3
sin μ̄ − 1

3
sin 2μ̄

)
• upwind fluxes: F̃UFV = k

2μ̄

(
4

3
cos μ̄ − 1

3
cos 2μ̄ − 1

)
Figures from 2 to 5 show the dispersion errors of the several schemes w.r.t. the analytical dispersion relation of the 

model given by (7). The comparison is made for low and high values of the parameter kh0 w.r.t. the errors provided by the 
FD2 and FD4 discretization schemes, whose dispersion relations are respectively:(

ωFD2

x

)2 = gh0

(
F̃

FD2
)2 − F̃FD2�̃

(F D2)
LIN (A.8)(

ωFD4

x

)2 = gh0

(
F̃FD4

)2 − F̃FD4�̃
(F D4)
LIN (A.9)

where the introduced tensors are defined in the following and come from the second order finite difference:

• discretization of the first order space derivatives ∂x(·): F̃FD2 = F̃G

• discretization of the second order space derivatives ∂xx(·): S̃FD2 = F̃
G

• discretization of the first order space derivatives ∂xxx(·): T̃FD2 = F̃
G

• solution of the elliptic problem: �̃(F D2)
LIN = − gh3

0

3
T̃FD2

(
1 − αh2

0

3
S̃FD2

)−1

and from the fourth order finite difference:

• discretization of the first order space derivatives ∂x(·): F̃FD4 = j
k

12μ̄

(
− 2 sin 2μ̄ + 16 sin μ̄

)
• discretization of the second order space derivatives ∂xx(·): S̃FD4 = k2

12μ̄2

(
− 2 cos 2μ̄ + 32 cos μ̄ − 30

)
• discretization of the first order space derivatives ∂xxx(·): T̃FD4 = j

k3

8μ̄3

(
− 2 sin 3μ̄ + 16 sin 2μ̄ − 26 sin μ̄

)
• solution of the elliptic problem: �̃(F D4)

LIN = − gh3
0

3
T̃FD4

(
1 − αh2

0

3
S̃FD4

)−1

Finally, we give in the following the descriptions of the four different configurations studied for the discretization of the 
elliptic equation (48), whose dispersion errors are compared each other in Figs. 3, 4 and 5.

1) it stands for the choice to lump both the mass matrices of the equations (11) and (17). Equation (48) thus becomes (
1 − αh2

0

3
S̃G

)
φi = − gh3

0

3
T̃Gηi and the related �̃LIN takes the form:

�̃
(1)
LIN = − gh3

0

3
T̃G

(
1 − αh2

0

3
S̃G

)−1

2) it stands for the choice to lump only the mass matrix of equation (17). Equation (48) thus becomes 
(

M̃G − αh2
0

3
S̃

G
)
φi

= − gh3
0

3
T̃Gηi and the related �̃LIN takes the form:

�̃
(2)
LIN = − gh3

0

3
T̃G

(
M̃G − αh2

0

3
S̃G

)−1

3) it stands for the choice to lump only the mass matrix of equation (11). Equation (48) thus becomes 
(

1 − αh2
0

3
S̃G

)
φi =

− gh3
0

3
T̃G

(
M̃G

)−1
ηi and the related �̃LIN takes the form:

�̃
(3)
LIN = − gh3

0 T̃G
(

M̃G
)−1(

1 − αh2
0 S̃G

)−1
3 3
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4) it stands for the choice not to lump any mass matrix. Equation (48) thus don’t change and the related �̃LIN is given by:

�̃
(4)
LIN = − gh3

0

3
T̃G

(
M̃G

)−1(
M̃G − αh2

0

3
S̃G

)−1
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