The Shifted Boundary Method:

A Framework for Embedded Computational Mechanics

Guglielmo Scovazzi, Alex Main, Nabil Atallah,
Ting Song, Kangan Li, Oriol Colomés-Gené,
Léo Nouveau, Mehdi Khalloufi (Duke University)

M. Ricchiuto (INRIA Bordeaux)
C. Canuto (Politecnico di Torino)

G. Rozza, G. Stabile, E. Karatzas (SISSA, Trieste)

ICIAM Conference, 2019, Valencia (Spain),
Thursday July 18, 2019




Motivation |

Complex geometry is still a key challenge in engineering simulations

" Engineering simulations are dominated by geometric ~ NERe Rl yIVER NIl

complexity

= The merging of topology optimization and advanced
manufacturing (e.g., additive manufacturing)
exacerbates geometric complexity

Structural joint (welded) Structural joint (3D-printed)




Motivation I

Imaging-to-computing, an emerging field:

An efficient transition from geometries reconstructed from images to
computation may impact and transform many fields of application:

= Biomedical engineering: CT-scans are given as pixilated data or STL
format (collections of triangular facets and their nodal coordinates).
Body-fitted meshing can be quite hard to perform.

= Subsurface imaging and computing (meshing requires considerable
effort in reservoir engineering applications)

= Additive manufacturing simulations (e.g., 3D-printing). The typical
file format for 3D-printers is again STL

In these examples the geometric information is not very precise and/
or consistent (surfaces with gaps and overlaps, typical of computer
graphics, STL = set of disconnected triangular faces)



Overview

Two commonly used computational strategies:

1. Body-fitted grids. The grid conforms to the boundary geometry of
the shape to be simulated.

= Advantages: Easier treatment of the boundary conditions (and
boundary layers)

= [imitations: Requires more advanced meshing for complex geometry,
or re-meshing in problems with large deformations

2. Embedded/immersed grids. The shape to be simulated is fully or
partially embedded (or immersed) into a regular background grid.

= Advantages: Generality of the method, especially if coupling
heterogeneous computational frameworks, rapid prototyping

= [imitations: More complex enforcement of boundary conditions



Existing Embedded Boundary Methods

Unfitted/Embedded Finite Element Methods

* Embedded methods of finite element type (a.k.a. cutFEMs, unfitted FEMs,
Finite Cell Method, Embedded Splines, IGA-Immersogeometric etc.) often
rely on XFEM methodologies to integrate on cut cells, Inverse Lax-
Wendroff procedure (DG) [Burman, Hansbo, Larson, Massing, Cirak,

Kamenski, Schillinger, Parvizian, Duster, Rank, Wall, Annavarapu, Dolbow,
Harari, Moés, Badia, Rossi, C-W. Shu etc.]

» Unfitted/embedded FEMs typically utilize Lagrange multipliers or Nitsche
variational formulations

= CutFEMSs/unfitted FEMs require data structures and special quadratures
to integrate on geometrically complex cut cells

= The small cut-cell problem: Integration over cut cells introduces additional
interface degrees of freedom that may vield stability problems, very small
time-steps or poor matrix conditioning. [Burman & Hansbo Appl. Num.
Math. (2012)]. Solution: ghost penalty, and related methods



Overview of the Shifted Boundary Method

Key ideas:
= Use a purely embedded approach
= Use the Nitsche framework to impose boundary conditions weakly

= Apply boundary conditions on a surrogate boundary, near the true boundary

= Appropriately modify the boundary condition to account for the discrepancy
between surrogate and true boundary
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The Shifted Boundary Method: Key Ideas

I The extension map M & a distance vector function d

N\ M:T>T
T

XX
dy(x) = x-x = [M-T]X)

Extension of functions defined on boundaries: ¥(%) = y(M(X))

/,/"closest point
projection:
d=|d|n Surrogate domain geometric representation: via Physbam
- library (Fedkiw, Stanford U.), and the improved version

developed in the Farhat research group (Stanford U.)

Important assumption (resolution): -1 >0



The (Base) Nitsche Method

A prototypical example: The Poisson problem

Strong form of the equation o

Au—+ f= 0 on {2
u= g on I' = 0N}

Weak form of the equation with weak boundary conditions (Nitsche method):

/w,iu,i =/wf
Q Q



The Shifted Nitsche Method

A prototypical example: The Poisson problem

Weak form of the equation with weak boundary conditions (Nitsche method):




The Shifted Nitsche Method

A prototypical example: The Poisson problem

Weak form of the equation with weak boundary conditions (Nitsche method):

/~w,z'u,z' — /N’wuznz — /N
Q I T
/~’w,iu,z‘ - /~

Q T




Numerical Results: Poisson Problem

Numerical convergence test with an exact solution
Al — 0 ()

2
ulr =0 A‘ Convergence of thg L% norm of the error

Without Taylor expansion

Exact solution:

1
e Z(R2 2

-
—_—
—
-—
-
-
—

—
L -
—
—
- —
-
—

——With Extrapolation
—e—Without Extrapolation
—e=Second Order

—o=First Order E

107
0.0031 0.0063 0.0125 0.025 0.0
Mesh Size



Numerical Results: Poisson Problem

Condition number trends 100000 |
For the previous problem, the Shifted boundary method
algebraic condition number 10000 ¢
has the following properties: | Body-fitted FEM
1000 |

= About 3 times larger than

for the body-fitted method - h2 slope .
100

= Same scaling with h? has

for the body-fitted method 0k

Conformal Method
Shifted_Boqnqar_y I‘VI‘etlhlod
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Numerical Analysis: Poisson Problem

Coercivity of the SBM variational form

a', why = I'(wh)
al@", wh = (VW' Vg — (W' + VW' - d, Vi - iy, — (VW' i + VU dyg + (YW d VU - iy
+{a/h" W'+ VW' - d),u" + V" dyg + Bl W ul e
nwh = W, Hg — (VW' - R iip)g, + (/- W' + VW - d),ip)p, + BlldI W', ip, )5, -

h h
...and replace w"” = u'":

az(uh, Uy = ||Vuh||3,g~2 42" + Vi - d,Vu" - e |+ (Vu' - d, V" - mi,

+al|V1/ht @+ Vi A+ BIVEE Ul

Use the following decomposition
Vit - = ((Vu" - mn+ (V- T)r) - i

Vi -d = Vi - n|d| .



Numerical Analysis: Poisson Problem

... sketch of coercivity proof continued

(V' - d, V" - iy |2 || (- )| Vil - ml . = (@ ) - d, B 7)) - )|
> |- w)ld Vi - nl) . =11Vl 8, llo ., 1l Vildl] Il
- € 1
> ||\/(n- @) ||d|| Vi - n||§fD — (Elll Viid|| vu" - nllé,fD + 2—€1|I Vlidl| uf’fllﬁ,ry))

and

1
2l + V' - d, Vi - iy < —IV1/h* W+ Vi - D)} + el VRV Rl

In conclusion:

15, = IV12 o + IV - DNV - mIR e + TR @+ V- )2+ | il o

1 1
o= minft- (e ) o Lp- L),
2 €

2
0fp



Numerical Analysis: Poisson Problem

Sketch of the proof of convergence

Estimate the consistency error:
al(u,w") = By = @, wh) = ') —(VRE VW' -, [1/RE (u+ Vu - d - ap))y,

=0 0(h2)
+ (@ \1/ht W'+ VW - d), \1/ht (u+ Vu-d - ap), + BldIW', Vidl (w7, - p ),
o(h?) o(r3?)

1A

Iw"lllss, 0 (7).

Apply second Strang’s lemma:

h h
lle — u”lllsB, < [lu—u ”V(hi/ Continuity/boundedness .
h i
”au”V(h)xVh(Q) ) h |lh(Vh) - aZ(U, Vh)|
< |1+ inf  |lu—w'llviy + =— -
(;SBM whevh((Y) SBy yheyh(@) Iv*llisB,
- o) -
Coercivity O(k*")

IA

Ch,



Numerical Analysis: Poisson Problem

Sketch of (duality) L2-estimates [a new/harder version of Nitsche-Aubin trick]

h h h h
a,(u, w) = dg (u,w) +ag,(u,w) +a,,(u,w),

a (u,w) = (Vw,Vu)g —(w,Vu - iiyg, — (Vw- it, wy, + (a/h*w, u)ffD ,

ai’;d(u, w= —(Vw-d,Vu-ftyg, —(Vw- i, Vu - d)p +{(a/h" Vw-d,u); +{a/h*w,Vu-d);
+ Blidllw,z,uz)r, + (/b Vw-d,Vu-d)

al u,w)|= (Vw-d,Vu - i)y, .

SBM terms

—Al,b:u—uh, in Q,
Y =0, inl =0Q.

ag;c(w, ¥) = aZ(W’ ¥) — a?;d(w’ W) - aZ;d(W’ )= (w, u- uh)Q ’

Taking w = u — uh, we obtain:

e — w5 = (e — u", o — 1) + ay(u = u®,yr) + Re(u— ", )



Numerical Analysis: Poisson Problem

Sketch of (duality) L>-estimates [a new/harder version of Nitsche-Aubin trick]
e — "} o = an(u—u", o —yp) + apu—u",yp) + Re(u— ")
Every term can be bounded:

h h h h
a,u—u,y—y) < Cp, |llu—ullss, Il — ¥illlss, < Cop, Cine lle — v,y R W20

al(u—u ) = a'(u,yr) - (yr)

= (a/h* V- d— V- it, u+Vu-d—ip)p, + Bz ldll(uz —ip )i,

002 o)

IA

Cz{nt |¢|2;Q o (hz) ’

R, u—u"y = (lldll/(n- )V - 2, (n - 7) |dl| V(- u") - g,
~(Na/ht V- d, \Ja /bt u—u" + Vu-u") - d)p,
+ (BN =, VBl — u*) 2,
< Crllle — u|llsg, h'/* Wy -
Finally:

h 3/2 (Possibly, this estimate is not sharp, since,
= u'lloy < Cuah . |
; numerically, we observe second order!)



Numerical Analysis: Stokes Flow Problem

[ Collaboration with Claudio Canuto, Mathematics Dept., Politecnico di Torino ]

Stability (LBB)
B(w", p"1; w", ¢") = ass iU, "1z IW", ¢"1 1|2

An LBB inf-sup condition can be derived in the case of the Stokes’ operator

Convergence (in natural norm)
I [, p] = (", p" 1 lweam < C b (”V(Vu)HO,Q + ||VP||0,Q)

The proof is analogous to the one for the Poisson problem, using the inf-sup LBB condition
and Strang’s second lemma.

Duality estimates (L?-estimates for the velocity field)
le — u"llp. < Co ) (IV(Va)ll g + IV pllg )

Analogous but more complicated proof than in the Poisson case. We observe quadratic
convergence for the velocity, in practical calculations



Advection-Diffusion Problem

Strong form of the equations

[V-(au—KVu): f] on Q) ,
u= g, onl, '~

—(au — k -n= h, onl’,,
kM -n=h, onl} ,
[, ={xel;la-n<0}
a is a soler@dal vector field (V - a = 0) [, =ixelila-n <0
[t =T, \T;
IF =T, \T;

[a-Vu—KAuz f]




Numerical Analysis: Advection-Diffusion

Variational formulation (shifted Nitsche-type + SUPG)
Find u" € VA(Q) such that, Yw" € V*(Q),

a"wh, wh = I"why,
a" ", W) = (VW au")g + (VW' k Vi) + (Ta - VW', a - Vu" — k Aut)g,

+(w " a- n)r+—(w kVu" - R)p, — (kW - —(KVw i, u")
+ @/ Wy + (/b W+ T -

Pwh = W' Na+@a- W Ny

h ~
+ (W, tn)p, — (kYW - R, up)p, — (W upa - )

+(ax/h wh ups. + (ak/h (W + th

Conservation statement (selecting a constant test function)

(Dirichlet outflow)
[(1,uDa =k Vi -+ ak/ht W - up) >1=5]+[< Lu'a-i—xVu" -7t + ax/h* " - up))r- |

(Dirichlet inflow) (Neumann inflow) +[(1, ua- - tN)f";,]= (L, Na

(Neumann outflow)




Numerical Analysis: Advection-Diffusion
Stability

he h _h hi2
a (u » U ) 2 CSB”lu l”SB ’

1/2

_ /2 h ) B2
la - &% u* lloz + &IV} ot a- Vil o

+ k| /R ut g + /<||\/1/hL " + V" d)||0r+ + VR 2

. 1 (S)
Csg = ——=Cy|2 — - —,B-—
SB rmn(2 1( 61+2) 104 ,B )

hy12
e lllsg

Convergence

Analogous to the one for the Poisson problem, using again Strang’s second lemma.



Incompressible Navier-Stokes Equations

Strong form
pu;+u-Vu)+Vp-V-(2uem))—-pb= 0, VxeQ, T,={xel,|g-n<0},
Vu=20, Vx e Q,

I = {xel,|lu-n<0},
u= g, Vxonl,, h !

ITr=r,\IbandI} =T, \T;
—(pu®uxr; +pl -2pew))n= h, VxonI,. & s\l n =g\ I

Shifted boundary method (+ SUPG/PSPG/VMS stabilization)
Findu € V(Q) and p € Q"(Q) such that, VYu € V*(Q) and Vg € Q"(Q),
0 = NS[ul(u, p;w,q)
= (w,p@;+uVu—>b))g—(w, pu-n@ - g)r. —w,h)r, —w, @-n)pu)r- - (V-w,p)g —(q,V-u)g
+ (ew), 2u €))g — (w ® i, 2 €u) — pD, — (2 W), (u + xr, (Vud - g)J® i)y,
+(w + x5 (VW) , p/h (@il + ez Re[pl n® m) (u + i (Vu)d — @)y,
FB(Vew, 2uh (Vou - Vi2))z .
Euler-Lagrange and conservation statements analogous to the advection-
diffusion case




The Shifted Boundary Method

Convergence test (Navier-Stokes): Decelerating cylinder test

Exact solution:

T

7/ S Uy (r,t) = EN J1 ’%r o)
7 ]1( TpR)
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Turbulent Flows

Formulations based on turbulent viscosities:
Findu € VH(Q) and p € Q"(Q) such that, Yu € V*(Q) and Vg € QM (Q),
0= NS[/J + #T](ua pPsW, Q) + STAB[” + .UT](u, pPsW, Q)

= Spalart-Allmaras (SA) model with the Shifted Boundary Method are very
similar to the Navier-Stokes equations

» |mplicit LES is performed through the VMS stabilization/modeling approach

Wall model for the velocity boundary conditions: " = Tw
T — ’
u=g—Vu-d = U =g — Uyau(d,Vu,...) P
| yt = &
ut = Zlogyt +CT v
R u
ut = —



Flow Over a Circular Cylinder

A classical test to validate algorithms for laminar/turbulent flow

Re St (vs. reference) Cp (vs. reference) | Reference source
20 - 2.09 (1.99) [7]

100 | 0.167 (0.164,0.157) | 1.35(1.34) [7, 39]

300 | 0.211(0.203, 0.215) | 1.38 (1.37) [39]

3900 | 0.203 (0.203) 1.04 (1.00) [7]

[7] Beaudan & Moin (1995)

1.5

Cp =143
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Flow Over a Circular Cylinder at Re=3,900

A classical test to validate algorithms for turbulent flow simulation

Q-criterion isosurfaces (used to visualize vortex structures)



Flow Over a Circular Cylinder at Re=3,900

A classical test to validate algorithms for turbulent flow simulation

Q-criterion isosurfaces (used to visualize vortical structures)



A More Complicated Shape at Re=3,900

A differential geometry monster (the Monkey Trefoil)




A More Complicated Shape at Re=3,900

A differential geometry monster (the Monkey Trefoil)

About 25 million elements
Setup (in parallel) ~ 1 minute!

Q-criterion isosurfaces (used to visualize vortical structures)



Porous Media Flow (Mixed Formulation)

Original geometry setup time < 1 minute

Surrogate geometry
Solution (flux)

A B+Vp=0 inQ
V.- B=¢ inQ
p=pp onlp
p-n=hy only




Shifted Interface Method (Mixed Form)

A general (mixed) framework (Darcy-like):

V-B=1, [ull = J,,
p=—-«xVu, 1Bl -n= —-J,,

Taylor prolongation operators:

Jy=lu+Vu-dl+0(|ldX)|?) ,
J,=—=[B+VBd]-n+O(|ld)|°) .

~*-Bod!

Primal var. (2" order) Flux (order 1.5)
‘ itted Interface K */K'=10® ‘ L ;Body-fitted Interface K */K:=10'6 ‘




Shifted Interface Method (Mixed Form)

Three-dimensional numerical examples: Complex geometry

= Diffusivity ratio = 1000

= Manufactured solution

= Finest mesh: 23 million el.

= Setup time < 1 minute

= primary variable 2" — order
accurate

= Flux variable accuracy of
order 3/2

——Shifted Interface Errors on u
00406 0.1 0.15 02 025 03 0.388 ----Shifted Interface Errors on 8

Primal variable
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Static Linear Elasticity

Shifted boundary formulation for static linear elasticity (work with N. Atallah)

Base Nitsche method:

Shifted Nitsche method:
/ 05 Wi,j —/azgwmg —/ 23n3[uz+uz kdi — j+/~n%( ®n)tui+ui,kdk)_gi)(wi+wi,kdk)
Q I T r

+ AN%((I - (n X n)){uz + Ui,kdk) — gz)ng + wz‘,kdk) = /ﬁbi’wi




Static Linear Elasticity

Problem Statement
()
* Domain (.Q): Unit square
e Zero Dirichlet boundary =
condition on I

Convergence Plot

107
Exact Solution: :
Csin(mz)sin(my) B *
Csin(mx)sin(mwy) o, s
4 1
g 107k
ﬁ e it ——Shifted Boundary Method
s r —o-Second Order 1
[5 105k —o~First Order
l0-7 L I I
0.0031 0.0063 0.0125 0.025 0.05

Mesh Size



The Shifted Boundary Method in Action

Example: A linearly elastic compressible solid

Original geometry



The Shifted Boundary Method in Action

Example: A linearly elastic compressible solid

The background domain



The Shifted Boundary Method in Action

Example: A linearly elastic compressible solid

The background domain and the immersed original geometry



The Shifted Boundary Method in Action

Example: A linearly elastic compressible solid

The initial set of active elements (with boundary conditions sidesets)



The Shifted Boundary Method in Action

Displ_Z
-2.027e-01 -0.15 -0.1 -0.049 2.688e-03
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Deformed configuration of the set of active elements



The Shifted Boundary Method in Action

The intersection of the immersed geometry with the grid



The Shifted Boundary Method in Action

Deformation of the intersected immersed geometry



Static Linear Elasticity: 3D cylinder

Problem Statement:

* Domain (.Q.): Stent (r= 1.8, L =14.4).
» Zero forcing term u; = 0
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