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Context 1/2

Near shore hydrodynamics
Bonneton,Chazel,Lannes,Marche,Tissier - Delis,Kazolea,Synolakis - Kirby,Grilli,et al (FUNWAVE-TVD) - Smit,Zijlema et al (SWASH) -

Ricchiuto et al - etc.

(Ribbed channel clip)

Propagation :
enhanced Boussinesq

(or other dispersive model) Breaking :
coupling with SW

(or similar hydrostatic)

.

Runup/flooding :
full SW

(or similar hydrostatic)
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Context 2/2

Numerics: keywords

1. time dependent

2. smooth waves : high accuracy

3. wave grouping : low dispersion error

4. steep fronts (bores, h-jumps) : non-oscillatory

5. wet/dry : positivity preservation

6. geometrical flexibility : mesh adaptation (w.r.t. bathymetry and solution)

7. unstructured meshes

Need a high accuracy (low dispersion) discontinuity capturing method



A bit of first hand HISTORICAL PERSPECTIVE ...

High order schemes for fluid dynamics ..

Bram van Leer

the Arthur B. Modine Professor of aerospace engineering at the University of Michigan, in Ann Arbor.

He specialises in Computational fluid dynamics (CFD), fluid dynamics, and numerical analysis

where he has made substantial contributions. (wikipedia)

1. - Upwind high resolution methods for compressible flow: from donor cell to residual distribution,
Commun.Comput.Phys. 1(2), 2006

2. - History of CFD - PART II, AIAA Fluid Dynamics award, 2010



Historical perspective : schemes for CFD 1/4

Godunov’s theorem (S.K. Godunov, Math.Sb 47, 1959)
If an advection scheme preserves the monotonicity of the solution,

it is at most first order accurate

The 70s’ run for high order shock capturing schemes gives
its first ripe fruits by the end of the decade

1. V.P. Kolgan’s reports with limited linear recontrution : 1972

2. Boris, Book and Zalesak’s work on FCT is out : 1973-79

3. van Leer’s Toward the Ultimate Conservative Difference Scheme I-V papers
appeared : 1979

The way out of Godunov’s theorem is found : nonlinear schemes



Historical perspective : schemes for CFD 2/4

The challenge of multidimensional nonlinear limiters

1. A. Harten, J.Comput.Phys 49, 1983 and SINUM 21, 1984 : TVD conditions

2. Goodman and LeVeque, Math.Comp. 45, 1985 : TVD in 2D = first order

From mid-80s to end-90s

Non-oscillatory FV approaches

ENO/WENO schemes (Harten, Osher, Engquist and Chakravarthy),
TVB schemes (Shu Math.Comp. 1987),

positive coefficient schemes (Spekreijse, Math.Comp 1987, Barth VKI LS 1994)

Multidimensional discretization frameworks

Central/LW/SUPG approaches (Jameson, Morton, Ni, Lerat, Hughes),
Rotated and transverse Riemann solvers (Davis JCP 1984, LeVeque JCP 1988),

Roe’s Fluctuation Splitting 1987 (in 2D)

Cockburn and Shu’s papers on Discontinuous Galerkin (starting 1988)



Historical perspective : schemes for CFD 3/4

Discontinuous Galerkin
Smart and elegant combination of existing tools (local approximation, Galerkin
projection, Riemann solvers, limiters) to automatically generate arbitrary order
schemes for conservation laws.

Instant hit : many followers in appl.math. (hyperbolic guys) and engnrg. communities

Multidimensional upwind differencing
A more fundamental and robust approach [...] due to Roe (1986), is that of the
“genuinely multidimensional” upwind schemes. These may be regarded as the
true multi-D generalization of 1-D fluctuation splitting [...] These methods are
best formulated on simplex-type (finite-element) grids and include newly
developed, compact limiters for avoiding oscillations

Excerpt from Upwind high resolution methods for compressible flow:

from donor cell to residual distribution, Commun.Comput.Phys. 1(2), 2006



Historical perspective : schemes for CFD 4/4

Roe’s fluctuation splitting in the scientific community
An entirely new approach is proposed, with its own set of “physically relevant”
discretization rules and numerical constraints, with a completely new meaning and
use of nonlinear limiters.

Despite the large interest1, approach that never really conquered the CFD community :

1. new vocabulary and formalism take time to root

2. good results for interesting problems with this approach have taken time to
surface

It is however considered today a possible alternative to higher order WENO Finite
Volumes and DG...

1The list is quite long : Univrsity of Michigan (Roe-van Leer), VKI (Deconinck), Universiy of Reading
(Baines-Hubbard), Politecnico di Bari (Napolitano and co.), ICASE (van Leer-Roe-Sidilkover), NASA
(Barth-Wood-Kleb), Brown University (Shu), UTIAS Toronto (Groth), University of Lisbon (Gato),
INRIA-Université Bordeaux (Abgrall) and several others ...



The talk 1/2

What have I brought for you ..

I high order schemes : some general principle

I unstructured grids : some general principles that are more general

I dispersive equations : my perspective



The talk 2/2

Part I

I Fluctuation form of FV schemes
I Design properties for fluctuation splitting/residual distribution : steady case

1. Conservation
2. Stability and upwinding
3. Consistency (accuracy) conditions
4. Discontinuity capturing

Part II

I Residual based schemes and time dependent problems : accuracy issues

I High order accurate schemes via consistent mass matrices

I Shallow Water issues : steady states, wetting/drying

I Dispersive equations and residual based

I Discrete dispersion analysis

BCs are neglected throughout the talk. A zero on the RHS most often means
=b.c. terms



Finite Volume schemes and Fluctuations in 1D



Finite Volume schemes and Fluctuations in 1D

Starting point : conservation law

∂tu+ ∂xF(u) = 0

Conservative FV :

∆xi
∆ui

∆t
+ F̂(u
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i+1/2, u
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∆ui
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=
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Finite Volume schemes and Fluctuations in 1D

Starting point : conservation law

∂tu+ ∂xF(u) = 0

Conservative FV :

∆xi
∆ui

∆t
+ F̂(u

L
i+1/2, u

R
i+1/2)− F̂(u

L
i−1/2, u

R
i−1/2) = 0

(consistent) F̂(u, u) = F(u)

(continuous) ‖F̂(v, w)−F(u)‖ ≤ LF min(‖v−u‖, ‖z−u‖)

(E-stable. Monotone, etc.)



Finite Volume schemes and Fluctuations in 1D

Starting point : conservation law

∂tu+ ∂xF(u) = 0

Conservative FV :
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Finite Volume schemes and Fluctuations in 1D

Starting point : conservation law

∂tu+ ∂xF(u) = 0

Conservative FV :

∆xi
∆ui

∆t
+ F̂i+1/2 − F̂i−1/2 = 0

∆xi+1
∆ui+1

∆t
+ F̂i+3/2 − F̂i+1/2 = 0

∆xi−1
∆ui−1

∆t
+ F̂i−1/2 − F̂i−3/2 = 0

Discrete conservation : flux cancellation at interfaces



Finite Volume schemes and Fluctuations in 1D

Starting point : conservation law

∂tu+ ∂xF(u) = 0

Conservative FV :

∆xi
∆ui

∆t
+ (F̂i+1/2 − Fi) + (Fi − F̂i−1/2) = 0



Finite Volume schemes and Fluctuations in 1D

Starting point : conservation law

∂tu+ ∂xF(u) = 0

Conservative FV :

∆xi
∆ui

∆t
+ (F̂i+1/2 − Fi)︸ ︷︷ ︸

φ
i+1/2
i

+ (Fi − F̂i−1/2)︸ ︷︷ ︸
φ
i−1/2
i

= 0



Finite Volume schemes and Fluctuations in 1D

Starting point : conservation law

∂tu+ ∂xF(u) = 0

Conservative FV :

∆xi
∆ui

∆t
+ φ

i+1/2
i + φ

i−1/2
i = 0

At i+ 1/2 conservation is

φ
i+1/2
i + φ

i+1/2
i+1 = (F̂i+1/2 − Fi) + (Fi+1 − F̂i+1/2)



Finite Volume schemes and Fluctuations in 1D

Starting point : conservation law

∂tu+ ∂xF(u) = 0

Conservative FV :

∆xi
∆ui

∆t
+ φ

i+1/2
i + φ

i−1/2
i = 0

At i+ 1/2 conservation is

φ
i+1/2
i + φ

i+1/2
i+1 = Fi+1 − Fi := φ

i+1/2

At i− 1/2 conservation is

φ
i−1/2
i + φ

i−1/2
i−1 = Fi − Fi−1 := φ

i−1/2
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Finite Volume schemes and Fluctuations in 1D

Conservative FV :

∆xi
∆ui

∆t
+ φ

i+1/2
i + φ

i−1/2
i = 0

φi−1/2 :=
i∫

i−1

∂xF , φi+1/2 :=
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i
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φ
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i = Fi − F̂i−1/2 (splitting)

φ
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i = F̂i+1/2 − Fi (splitting)

Example 1 : Roe (upwind) scheme for advection (F(u) = au)



Finite Volume schemes and Fluctuations in 1D

Conservative FV :

∆xi
∆ui

∆t
+ φ

i+1/2
i + φ

i−1/2
i = 0

φi−1/2 :=
i∫

i−1

∂xF , φi+1/2 :=
i+1∫
i

∂xF

φ
i−1/2
i = Fi − F̂i−1/2 (splitting)

φ
i+1/2
i = F̂i+1/2 − Fi (splitting)

Example 1 : Roe (upwind) scheme for advection (F(u) = au)

F̂i+1/2 =
Fi + Fi+1

2
−
|a|
2

(ui+1 − ui) , F̂i−1/2 =
Fi + Fi−1

2
−
|a|
2

(ui − ui−1)

φ
i+1/2
i =

1− sign(a)

2
(Fi+1 − Fi) =

1− sign(a)

2
φ
i+1/2

φ
i−1/2
i =

1 + sign(a)

2
(Fi − Fi−1) =

1 + sign(a)

2
φ
i−1/2



Finite Volume schemes and Fluctuations in 1D

Conservative FV :

∆xi
∆ui

∆t
+ φ

i+1/2
i + φ

i−1/2
i = 0

φi−1/2 :=
i∫

i−1

∂xF , φi+1/2 :=
i+1∫
i

∂xF

φ
i−1/2
i = Fi − F̂i−1/2 (splitting)

φ
i+1/2
i = F̂i+1/2 − Fi (splitting)

Example 2 : Lax-Wendroff scheme

F̂i+1/2 =
Fi + Fi+1

2
−
a∆t

2∆x
(aui+1−aui) , F̂i−1/2 =

Fi + Fi−1

2
−
a∆t

2∆x
(aui−aui−1)

φ
i+1/2
i =

1− CFL

2
(Fi+1 − Fi) =

1− CFL

2
φ
i+1/2

φ
i−1/2
i =

1 + CFL

2
(Fi − Fi−1) =

1 + CFL

2
φ
i−1/2



Finite Volume schemes and Fluctuations in 1D

Conservative FV :

∆xi
∆ui

∆t
+ φ

i+1/2
i + φ

i−1/2
i = 0

φi−1/2 :=
i∫

i−1

∂xF , φi+1/2 :=
i+1∫
i

∂xF

φ
i−1/2
i = Fi − F̂i−1/2 (splitting)

φ
i+1/2
i = F̂i+1/2 − Fi (splitting)

Example 3 : Lax-Friedrich’s scheme

F̂i+1/2 =
Fi + Fi+1

2
− αLF(ui+1 − ui) , F̂i−1/2 =

Fi + Fi−1

2
− αLF(ui − ui−1)

φ
i+1/2
i =

1

2
(Fi+1 − Fi) + αLF(ui − ui+1) =

1

2
φ
i+1/2

+ αLF(ui − ui+1)

φ
i−1/2
i =

1

2
(Fi − Fi−1) + αLF(ui − ui−1) =

1

2
φ
i−1/2

+ αLF(ui − ui−1)



Finite Volume schemes and Fluctuations in 1D

Nothing new so far !!!



Finite Volume schemes and Fluctuations in 2D

The multi-D case. Starting point : conservation law

∂tu+∇ · F(u) = 0



Finite Volume schemes and Fluctuations in 2D

The FV scheme reads

|Ci|
dui

dt
+
∑
j

∫
fij

F̂ · n̂ dl = 0



Finite Volume schemes and Fluctuations in 2D

The FV scheme reads

|Ci|
dui

dt
+

∑
K|i∈K

∑
j∈K
F̂ij · ~nKij = 0

Discrete conservation
F̂ij · ~nKij + F̂ji · ~nKji = 0



Finite Volume schemes and Fluctuations in 2D

Using the identity
∑
K

∑
j ~n

K
ij = 0

|Ci|
dui

dt
+

∑
K|i∈K

∑
j∈K

(F̂ij −Fi) · ~nKij︸ ︷︷ ︸
φKi

= 0

|Ci|
dui

dt
+

∑
K|i∈K

φKi = 0



Finite Volume schemes and Fluctuations

The FV scheme reads

|Ci|
dui

dt
+

∑
K|i∈K

φKi = 0 , φKi =
∑
j∈K

(F̂ij −Fi) · ~nKij

Discrete conservation

F̂ij · ~nKij + F̂ji · ~nKji = 0 =⇒
∑
j∈K

φKj =
1

2

∑
j∈K
Fi · ~nj := φK



Finite Volume schemes and Fluctuations

The FV scheme reads

|Ci|
dui

dt
+

∑
K|i∈K

φKi = 0 , φKi =
∑
j∈K

(F̂ij −Fi) · ~nKij

Discrete conservation (Fh continuous P 1 finite element approx.)∑
j∈K

φKj = φK =

∫
K

∇ · Fh



Finite Volume schemes and Fluctuations

The FV scheme reads (Fh continuous P 1 finite element approx.)

φK =

∫
K

∇ · Fh ,

Discrete conservation︷ ︸︸ ︷∑
j∈K

φKi = φK

|Ci|
dui

dt
+

∑
K|i∈K

φKi = 0 , φKi =
∑
j∈K

(F̂ij −Fi) · ~nKij

... but it’s still the same guy .. !!



Residual Distribution framework (steady)



Residual Distribution framework (steady)

∇ · F(u) = 0 in Ω

u = g on Γ−

~a(u) = ∂uF(u)

(1)

Some notations...

I Consider Ωh tesselation of Ω

I Unknowns (Degrees of Freedom, DoF) : ui ≈ u(Mi)

I Mi ∈ Ωh a given set of nodes (vertices +other dofs)

I uh : continuous polynomial interpolation (FE) uh =
∑
i
ψi ui



Residual Distribution framework (steady)

For n ≥ 0, until steady state do :

For all K ∈ mesh do

1. compute cell residual φK =
∮
∂K

Fh(unh) · n̂ dl

2. distribute cell residual φK =
∑
i∈K

φKi

For all i ∈ mesh do

3. evolve |Ci|
un+1
i − uni

∆t
= −

∑
K|i∈K

φKi (unh)

=⇒
∑

K|i∈K

φ
K
i (u

n
h) = 0



Structural conditions

Stability. which form of stability (energy/entropy, equivalent algebraic
condition, convergence ?), choice of φKi

Accuracy. characterization of the error, choice of φKi

Oscillations. monotonicity preserving schemes, choice of φKi



What can we say about the stability of this method ?

First : what is stability ?



What can we say about the stability of this method ?

First : what is stability ?
Recall that we are solving steady state equations with by means of iterations

un+1
i = uni − ωi

∑
K|i∈K

φKi (unh) , ωi =
∆t

|Ci|

For h fixed (mesh), what can be said about the convergence to the steady solution we
seek ?



What can we say about the stability of this method ?

First : what is stability ?
Abstractly, for h fixed we look at the convergence of (with ω a scalar,e.g. mini ωi)

un+1 = un − ω(Ah un − f)



What can we say about the stability of this method ?

First : what is stability ?
Abstractly, for h fixed we look at the convergence of (with ω a scalar,e.g. mini ωi)

un+1 = un − ω(Ah un − f)

A condition for convergence with n→∞ but h fixed

‖(I− ωAh)u‖2 ≤ r‖u‖2 , ∀u and with r < 1

which is equivalent to

utAhu ≥
1− r
2ω
‖u‖2 +

ω

2
‖Ah u‖2≥ Ch‖u‖2≥ 0 ∀ u

Coercivity ...

Weaker stability...?



Stability and energy

Consider the steady limit of
∂tu+ ~a · ∇u = 0

Semi-discrete counterpart

|Ci|
dui

dt
+

∑
K|i∈K

φKi = 0

Energy budget
The equivalent of the quantity utAhu seen in the previous slides is

utAhu ≡
∑
i∈Ωh

ui
∑

K|i∈K
φKi

=
∑
K∈Ωh

∑
i∈K

uiφ
K
i =

∑
K∈Ωh

φEK



Stability and energy

Starting from

|Ci|
dui

dt
+

∑
K|i∈K

φKi = 0

Energy budget ∑
i∈Ωh

|Ci|ui
dui

dt
+
∑
K∈Ωh

φEK = 0



Stability and energy

Starting from

|Ci|
dui

dt
+

∑
K|i∈K

φKi = 0

Energy budget ∫
Ωh

dEh
dt

+
∑
K∈Ωh

φEK = 0

with the energy density

E =
u2

2

and with Eh =
∑
i∈Ωh

Eiψi (piecewise linear)



Stability and energy

Saying that

0 < utAhu ≡
∑
K∈Ωh

φEK

is equivalent to

Energy stability ∫
Ωh

dEh
dt

= −
∑
K∈Ωh

φEK ≤ 0

with the energy density

E =
u2

2

and with Eh =
∑
i∈Ωh

Eiψi (piecewise linear)



Stability and energy

Saying that

0 < utAhu ≡
∑
K∈Ωh

φEK

is equivalent to

Energy stability (modulo boundary conditions)∫
Ωh

dEh
dt

= −
∫
∂Ωh

Eh ~a · n̂ dl − δE , δE ≥ 0

what one would like is to find that

φEK =

∫
∂K

Eh ~a · n̂ dl + δEK , δEK ≥ 0



Stability and upwinding

Consider again the steady limit of

∂tu+ ~a · ∇u = 0

A geometrical view of advection...



Stability and upwinding

Consider again the steady limit of

∂tu+ ~a · ∇u = 0

A geometrical view of advection...

1-target triangle
The inlet region is an edge

1 node downstream : 1 target

kj =
~a · ~nj

2
> 0
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Consider again the steady limit of

∂tu+ ~a · ∇u = 0

A geometrical view of advection...

2-target triangle
The outlet region is an edge

2 nodes downstream : 2 targets

kj =
~a · ~nj

2
> 0



Stability and upwinding

Consider again the steady limit of

∂tu+ ~a · ∇u = 0

A geometrical view of advection...

2-target triangle
The outlet region is an edge

2 nodes downstream : 2 targets

kj =
~a · ~nj

2
> 0



Stability and upwinding

Consider now the semi-discrete RD advection equation :

|Ci|
dui

dt
+

∑
K|i∈K

φKi = 0

A geometrical view of advection...

Multidimensional Upwinding (MU)
Multidimensional Upwind (MU) schemes

only split φK to downstream nodes,
i.e. those for which kj > 0.

1. All MU schemes reduce to the same in the 1-target case

2. All MU scheme reduce to the upwind scheme in 1D



Stability and upwinding

Consider now the semi-discrete RD advection equation :

|Ci|
dui

dt
+

∑
K|i∈K

φKi = 0

A geometrical view of advection...

Multidimensional Upwinding (MU)
Multidimensional Upwind (MU) schemes

In 1-target elements, (assume node 1 is downstream)

φK1 = φK

φK2 = 0

φK3 = 0



Stability and upwinding

Consider now the semi-discrete RD advection equation :

|Ci|
dui

dt
+

∑
K|i∈K

φKi = 0

A geometrical view of advection...

Multidimensional Upwinding (MU)
Multidimensional Upwind (MU) schemes

In 2-targets elements (assume node 1 is upstream)

φK1 = 0

φK2 + φK3 = φK



Stability and MU schemes

Example 1 : Roe’s optimal N scheme1

1(Roe Cranfield U.Tech.Rep., 1987 ; Roe, Sidilkover SINUM, 1992)



Stability and MU schemes

Example 2 : the LDA scheme

φLDA
i (uh) = βLDA

i φK(uh)

βLDA
i = k+

i

( ∑
j∈K

k+
j

)−1



Stability and MU

The following properties can be easily shown :

1. MU schemes, 1-target (Deconinck, Ricchiuto Enc.Comput.Mech., 2007)

φEK =

∫
∂K

Eh ~a · n̂ dl + δEK , δEK ≥ 0

2. N scheme energy stable (Barth, NASA 1996 ; Abgrall, Barth SISC, 2002)

3. LDA scheme, 2-targets (Deconinck, Ricchiuto Enc.Comput.Mech., 2007)

φELDA =
( ∑
j∈K

k+
j

)(u2
out

2
−
u2
in

2

)
︸ ︷︷ ︸

NRG balance
along streamline

+ δELDA , δELDA ≥ 0

Multidimensional upwinding does the job ...



Stability, upwinding, and dissipation

1. FV scheme (1st order upwind) NRG stable (Barth, NASA 1996 ; Abgrall, Barth SISC, 2002), also
E-flux schemes by (Osher SINUM, 1984)

2. Streamline upwind finite element scheme SUPG (Hughes, Brooks CMAME, 1982) :∫
Ωh

ψi∇ ·Fh(uh) +
∑
K∈Ωh

∫
K

~a(uh) · ∇ψi τ ~a(uh) · ∇uh = 0

can be written as the RD scheme with2

φ
K
i = β

SUPG
i φ

K with β
SUPG
i =

1

3
+

ki

|K|
τ

2simplest case of P 1 approx



Stability, upwinding, and dissipation

1. FV scheme (1st order upwind) NRG stable (Barth, NASA 1996 ; Abgrall, Barth SISC, 2002), also
E-flux schemes by (Osher SINUM, 1984)

2. Streamline upwind finite element scheme SUPG (Hughes, Brooks CMAME, 1982) :

φESUPG =

∮
∂K

u2
h

2
~a · n̂ dl +

∫
K

~a · ∇uh τ ~a · ∇uh

︸ ︷︷ ︸
Streamline

dissipation ≥0



Stability, upwinding, and dissipation

1. FV scheme (1st order upwind) NRG stable (Barth, NASA 1996 ; Abgrall, Barth SISC, 2002), also
E-flux schemes by (Osher SINUM, 1984)

2. Streamline upwind finite element scheme SUPG (Hughes, Brooks CMAME, 1982) :

φESUPG =

∮
∂K

u2
h

2
~a · n̂ dl +

∫
K

~a · ∇uh τ ~a · ∇uh

︸ ︷︷ ︸
Streamline

dissipation ≥0

3. Lax-Friedrich’s/Rusanov scheme

φLF
i =

∫
K

ψi~a · ∇uh + αLF

∑
j∈K

(ui − uj)



Stability, upwinding, and dissipation

1. FV scheme (1st order upwind) NRG stable (Barth, NASA 1996 ; Abgrall, Barth SISC, 2002), also
E-flux schemes by (Osher SINUM, 1984)

2. Streamline upwind finite element scheme SUPG (Hughes, Brooks CMAME, 1982) :

φESUPG =

∮
∂K

u2
h

2
~a · n̂ dl +

∫
K

~a · ∇uh τ ~a · ∇uh

︸ ︷︷ ︸
Streamline

dissipation ≥0

3. Lax-Friedrich’s/Rusanov scheme (P 1 case)

φELF =

∮
∂K

u2
h

2
~a · n̂ dl +

αLF

3

∑
i,j∈K

(ui − uj)2



Stability, upwinding, and dissipation

Upwinding has beneficial effect in terms of energy stability



Design criteria : accuracy, what is the truncation error ?

I By Taylor expansion : only on structured meshes

I Error analysis based on variational form :

1. variational form unclear for RD (only for FV and stabilized FEM)

2. NRG stability not enough (too weak, for FV and stabilized FEM stronger stability can
be shown)



Design criteria : what is the truncation error ?

Idea : use the same principles of the TE analysis in a ’weak’ formalism ...∫
Ω
∇ϕ ·F(u)dx+ BCs = 0←→

∫
Ω
∇ϕ ·Fh(uh)dx+ BCs = εh

with u a smooth exact (classical) solution

This gives a consistency estimate..

What is εh ?



Design criteria, consistency analysis

What do we have ... ?
Consider

1. w ∈ Hk+1 smooth solution : ∇ ·F(w) = ∂uF(w) · ∇w = 0

2. w − wh = O(hk+1), F(w)−Fh(wh) = O(hk+1) in L2 from approximation
theory, see e.g. (Ern, Guermond Springer, 2004)

3. ∇(w − wh) = O(hk), ∇ · (F(w)−Fh(wh)) = O(hk) in L2 from approximation
theory, see e.g. (Ern, Guermond Springer, 2004)

with wh a continuous polynomial approximation of degree k (e.g standard Lagrange
elements)



Design criteria, consistency analysis

Continuous Lagrange elements

P PP
1 2 3

Q
1

Q
2

Q
3



Design criteria, consistency analysis

What do we do ... ?
Consider

1. w ∈ Hk+1 smooth solution : ∇ ·F(w) = ∂uF(w) · ∇w = 0

2. w − wh = O(hk+1), F(w)−Fh(wh) = O(hk+1) in L2 from approximation
theory, see e.g. (Ern, Guermond Springer, 2004)

3. ∇(w − wh) = O(hk), ∇ · (F(w)−Fh(wh)) = O(hk) in L2 from approximation
theory, see e.g. (Ern, Guermond Springer, 2004)

Take the steady RD scheme ∑
K|i∈K

φKi (uh) = 0

approximating ∇ ·F in node i



Design criteria, consistency analysis

What do we do ... ?
Consider

1. w ∈ Hk+1 smooth solution : ∇ ·F(w) = ∂uF(w) · ∇w = 0

2. w − wh = O(hk+1), F(w)−Fh(wh) = O(hk+1) in L2 from approximation
theory, see e.g. (Ern, Guermond Springer, 2004)

3. ∇(w − wh) = O(hk), ∇ · (F(w)−Fh(wh)) = O(hk) in L2 from approximation
theory, see e.g. (Ern, Guermond Springer, 2004)

Formally replace the nodal values of uh, computed by the scheme, with those of the
exact solution w,

exaclty as done in finite difference TE analysis



Design criteria, consistency analysis

What do we do ... ?
Consider

1. w ∈ Hk+1 smooth solution : ∇ ·F(w) = ∂uF(w) · ∇w = 0

2. w − wh = O(hk+1), F(w)−Fh(wh) = O(hk+1) in L2 from approximation
theory, see e.g. (Ern, Guermond Springer, 2004)

3. ∇(w − wh) = O(hk), ∇ · (F(w)−Fh(wh)) = O(hk) in L2 from approximation
theory, see e.g. (Ern, Guermond Springer, 2004)

We obtain ∑
K|i∈K

φKi (wh) 6= 0

since of course the nodal values of the exact solution w do not verify the discrete
equations



Design criteria, consistency analysis

What do we do ... ?
Consider

1. w ∈ Hk+1 smooth solution : ∇ ·F(w) = ∂uF(w) · ∇w = 0

2. w − wh = O(hk+1), F(w)−Fh(wh) = O(hk+1) in L2 from approximation
theory, see e.g. (Ern, Guermond Springer, 2004)

3. ∇(w − wh) = O(hk), ∇ · (F(w)−Fh(wh)) = O(hk) in L2 from approximation
theory, see e.g. (Ern, Guermond Springer, 2004)

Given ϕ a Cr0 (Ω) class function, r large enough, define

εh :=
∑
i∈Ωh

ϕi
∑

K|i∈K
φKi (wh)

A global measure of how much the discrete equations differ from the continuous one



Design criteria, consistency analysis

What do we do ... ?
Estimate εh (Abgrall, Roe J.Sci.Comp., 2003 ; Ricchiuto, Abgrall, Deconinck J.Comput.Phys, 2007)

εh =
∑

K∈Ωh

∑
i∈K

ϕiφ
K
i (wh) = εa + εd

εa = −
∫

Ωh

∇ϕh · (Fh(wh)−F(w))

︸ ︷︷ ︸
approximation error

→ ‖εa‖ ≤ C′a hk+1

εd =
∑
K∈Ωh

∑
i,j∈K

ϕi − ϕj
nKDoF

(φKi (wh)− φG
i (wh))

︸ ︷︷ ︸
distribution error

→ ‖εd‖ ≤ C′ h−1supK supi∈K ‖φKi (wh)‖+ C′′′a hk+1



Design criteria, consistency analysis

What do we do ... ?
Estimate εh (Abgrall, Roe J.Sci.Comp., 2003 ; Ricchiuto, Abgrall, Deconinck J.Comput.Phys, 2007)

‖εh‖ ≤ Ca hk+1 + C′ h−1supK sup
i∈K
‖φKi (wh)‖

For a polynomial approximation of degree k,
a sufficient condition to have a ‖εh‖ ≤ C hk+1 is (in 2d)

φKi (wh) = O(hk+2) , ∀K ∈ Ωh , ∀ i ∈ K

A local TE condition ..



Design criteria, high order schemes

For a polynomial approximation of degree k,
a sufficient condition to have a ‖εh‖ ≤ C hk+1 is (in 2d)

φKi (wh) = O(hk+2) , ∀K ∈ Ωh , ∀ i ∈ K

High order prototype 1 (FEM-like)

φKi (uh) =

∫
K

ωKi ∇ ·Fh(uh) , ‖ωKi ‖ < C <∞

High order prototype 2 (std RD)

φKi (uh) = βKi

∮
∂K

Fh(uh) · n̂ dl = βKi φ
K(uh) , ‖βKi ‖ < C <∞



High order schemes, examples

LDA scheme (P 1) elements
Distribution coeff. :

βLDA
i = k+

i

( ∑
j∈K

k+
j

)−1

SUPG
Test fcn :

ωKi = ψi + ~a(uh) · ∇ψi τ , ~a(uh) = ∂uF(uh)



Nonlinear high order schemes

So far we have

1. A “stability” criterion requiring an upwind bias (other stabilization strategies
mentioned later if time ..)

2. An accuracy (consistency) criterion requiring bounded weights in the residual
splitting

In other words ..



Nonlinear high order schemes

In other words
The scheme should read (let’s stick to RD-like schemes, or P 1 approximation)

|Ci|
un+1
i − uni

∆t
+

∑
K|i∈K

β
K
i φ

K
= 0

1. with βKi larger for downstream nodes (upwinding, stability) ;

2. with uniformly bounded βKi (consistency).

How about discontinuity capturing ?



Discontinuity capturing : positivity

|Ci|
dui

dt
= −

∑
K|i∈K

φ
K
i

Positive coefficient scheme (Spekreijse, Math.Comp. 49, 1987)

A scheme for which
φ
K
i =

∑
j∈K
j 6=i

c
K
ij(ui − uj) with c

K
ik ≥ 0

s said to be LED (Local Extremum Diminishing1)

1... look at the sign of the time derivative !!!!!



Discontinuity capturing : positivity

|Ci|
un+1
i − uni

∆t
= −

∑
K|i∈K

∑
j∈K
j 6=i

c
K
ij(u

n
i − u

n
j )

Positive coefficient scheme (Spekreijse, Math.Comp. 49, 1987)

When combined with Explicit Euler time integration1 the LED property leads to

u
n+1
i =

∑
j

ciju
n
j

where ∑
j

cij = 1 and cij ≥ 0
(

provided
∆t

|Ci|
∑
j

c
K
ij ≤ 1

)
In this case the scheme is said (by abuse of language) to be positive

A positive scheme verifies the discrete max principle

min
j
u
n
j ≤ u

n+1
i ≤ max

j
u
n
j

Generalization of TVD and monotonicity analysis of Harten (A. Harten J.Cumput.Phys 1983)

1and in general with a boundedness preserving time integration scheme, see (Gottlieb,Shu,Tadmor SIAM Review 2001 -

Hundsdorfer,Ruuth Math.Comp. 2005)



Positive schemes : examples

Example 1 : Roe’s optimal N scheme1

1(Roe Cranfield U.Tech.Rep., 1987 ; Roe, Sidilkover SINUM, 1992)



Nonlinear high order schemes

Example 2 : Lax-Friedrich’s distribution

φLF
i =

∫
K

ψi∇ ·Fh + αLF

∑
j∈K

(ui − uj)

for positivity (scalar case)

αLF ≥ hK sup
x∈K

‖∂uF(uh(x))‖



Nonlinear high order schemes

Bad news ... (Godunov)
All linear positive (LED) schemes are first order accurate ...



Nonlinear high order schemes

Good news ... limiters
We know the answer to this limitation since more than 40 years now : we need
nonlinear schemes.

Let us introduce a limiter.. somewhere



Nonlinear high order schemes

Where does the limiter `(·) come in
Recall that one prototype of a high order scheme is obtained as the steady state of

|Ci|
un+1
i − uni

∆t
+

∑
K|i∈K

βKi φ
K(uh) , ‖βKi ‖ ≤ C <∞



Nonlinear high order schemes

Where does the limiter `(·) come in
Recall that one prototype of a high order scheme is obtained as the steady state of

|Ci|
un+1
i − uni

∆t
+

∑
K|i∈K

βKi φ
K(uh) , ‖βKi ‖ ≤ C <∞

For linear positive coefficient schemes

φP
i (uh) =

∑
j∈K

cKij (ui − uj) , cKij ≥ 0

Formally we have

βP
i (uh) =

∑
j∈K

cKij (ui − uj)

φK(uh)
in general unbounded !



Nonlinear high order schemes

Where does the limiter `(·) come in
Recall that one prototype of a high order scheme is obtained as the steady state of

|Ci|
un+1
i − uni

∆t
+

∑
K|i∈K

βKi φ
K(uh) , ‖βKi ‖ ≤ C <∞

For linear positive coefficient schemes

φP
i (uh) =

∑
j∈K

cKij (ui − uj) , cKij ≥ 0

Formally we have

βP
i (uh) =

∑
j∈K

cKij (ui − uj)

φK(uh)
in general unbounded !

Why not applying a limiter to get a bounded coefficient ? .. !!!



Nonlinear high order schemes

Where does the limiter `(·) come in
Linear positive coefficient schemes

φP
i (uh) =

∑
j∈K

cKij (ui − uj) , cKij ≥ 0 ; βP
i (uh) =

φP
i (uh)

φK(uh)
unbounded

βLP
i (uh) =

`
(
βP
i (uh)

)∑
j∈K

`
(
βP
j (uh)

) limited distribution coefficient



Nonlinear high order schemes

Where does the limiter come in
Linear positive coefficient schemes

φP
i (uh) =

∑
j∈K

cKij (ui − uj) , cKij ≥ 0 ; βP
i (uh) =

φP
i (uh)

φK(uh)
unbounded

βLP
i (uh) =

`
(
βP
i (uh)

)∑
j∈K

`
(
βP
j (uh)

) limited distribution coefficient

Provided `(r) ≥ 0 and
`(r)

r
≥ 0 we have

φLP
i (uh) = βLP

i φK =
βLP
i

βP
i︸︷︷︸

γP
i≥0

φP
i =

∑
j∈K

cLP
ij (ui − uj) , cLP

ij = γP
i c
K
ij ≥ 0!



High order RD scheme

For n ≥ 0, until steady state do :

For all K ∈ mesh do

1. compute cell residual φK =
∮
∂K

Fh(uh) · n̂ dl

2. compute linear positive distribution φP
i =

∑
j c
K
ij(ui − uj)

3. limit βP
i = φP

i/φ
K → βLP

i = `(βP
i )/
(∑

j `(β
P
j )
)

4. distribute cell residual φKi = βLP
i φ

K

For all i ∈ mesh do

5. evolve |Ci|
un+1
i − uni

∆t
= −

∑
K|i∈K

φKi (unh)

Limiter
The simplest possible choice is

`(r) = max(0, r)



Examples

Rotational advection
Scalar example : ~a · ∇u = 0 with ~a = (y, 1− x) and bcs

uin =

{
cos(2π(x+ 0.5))2 if x ∈ [−0.75,−0.25]
0 otherwise



Examples (cont’d)

Rotational advection
N and Limited N (LN) schemes



Examples (cont’d)

Rotational advection
LF and Limited LF (LLF) schemes



Higher order nonlinear Lax Friedrich’s scheme



Higher order nonlinear Lax Friedrich’s scheme



Examples (cont’d)

Burger’s equation
Scalar example : ∇ ·F(u) = 0 with F(u) = (u, u

2

2
) and bcs

u(x, y = 0) = 1.5− 2x



Examples (cont’d)

Burger’s equation

N and Limited N (LN) schemes



Examples (cont’d)

Burger’s equation

LF and Limited LF (LLF) schemes



Remarks on extension to systems

Historical perspective
Two approaches (Roe J.Comput.Phys, 1986 ; Nishikawa, Rad, Roe AIAA Conf. 2001) and (van der Weide, Deconinck

Comput.Fluid Dyn., Wiley 1996)

1. Local projection (wave decomposition) of the continuous PDE to obtain (possibly
decoupled) scalar equations discretized independently

2. Formal matrix generalization in which the scalar flux vector is replaced by a
tensor and the ki = ~a · ~ni/2 coefficients become matrix flux Jacobians

Practical implementation
Hybrid of the two (Abgrall, Mezine J.Comput.Phys, 2004 ; Ricchiuto, Csik, Deconinck J.Comput.Phys, 2005) :

I Matrix formulation for linear first order schemes

I Projection onto characteristic directions to obtain scalar residuals to work with
for the limiting procedure (similar to FV limiting on characteristic var.s)



Example 1 : Mach 3.6 scramjet inlet (Euler, perfect gas)

Mesh

N scheme

Nonlinear scheme



Example 1 : Mach 3.6 scramjet inlet (Euler, perfect gas)

Mesh

LLFs scheme : P 1 on conformally refined mesh

LLFs scheme : P 2



Scramjet inlet



Euler equations : subsonic cylinder



Euler equations : subsonic cylinder

Conformally refined P 1 −Q1 (left) vs P 2 −Q2 (right)



Example 2 : Mach 10 bow shock (Euler, perfect gas)



PART II

Time dependent problems and
a peek at dispersive equations



Time dependent advection

What is the problem with the time dependent case ..?

∂tu+ ~a · ∇u = 0 on Ω× [0, Tf ] ⊂ R2 × R+



Time dependent advection

What is the problem with the time dependent case ..?

|Ci|
dui

dt
+

∑
K|i∈K

β
K
i φ

K
(uh) = 0 (3)



Time dependent advection

What is the problem with the time dependent case ..?

|Ci|
dui

dt
+

∑
K|i∈K

β
K
i φ

K
(uh) = 0

EXAMPLE : transport of a smooth profile (LN scheme + RK2)

=⇒



Time dependent advection

|Ci|
dui

dt
+

∑
K|i∈K

β
K
i φ

K
(uh) = 0

I This guy is in general only first order accurate in space, whatever the finite
element approximation (P 1, P 2, etc) ;

I Obviously, using higher order time integration does not help, since it is the spatial
discretization that is wrong



Time dependent advection

Consistency analysis ...

|Ci|
dui

dt
+

∑
K|i∈K

β
K
i φ

K
= 0

Time continuous consistency analysis3 (P 1 triangles to fix ideas)

3Deconinck-Ricchiuto Enc.Comput.Mech. 2007



Time dependent advection

Consistency analysis ...

|Ci|
dui

dt
+

∑
K|i∈K

β
K
i φ

K
= 0

Time continuous consistency analysis3 (P 1 triangles to fix ideas)

(i) Let w(t, x, y) be a regular exact solution : ∂tw + ~a · ∇w = 0, wi(t) = w(t, xi, yi)

(ii) Let φK(wh) the quantity obtained when formally replacing the nodal values of
the numerical solution by the wis

(iii) For ϕ ∈ C1
0 be a compactly supported smooth function with ϕi = ϕ(xi, yi)

(iv) define the integral truncation error for a LP scheme

ε :=
∣∣ ∑
i∈Ωh

ϕi|Ci|
dwi

dt
+

∑
K|i∈K

ϕiβ
K
i φ

K
(wh)

∣∣
=
∣∣∣ ∑
K∈Ωh

∑
j∈K

ϕj
( |K|

3

dwj

dt
+ β

K
j φ

K
(wh)

)∣∣∣

3Deconinck-Ricchiuto Enc.Comput.Mech. 2007



Time dependent advection

Consistency analysis ...

ε =
∣∣∣ ∫

Ω

(
ϕh∂t(wh − w)− (wh − w)~a · ∇ϕh

)
+
∑
K∈Ωh

∑
i,j∈K

(ϕj − ϕi)
(
|Cj |

dwj

dt
+ β

K
j φ

K
(wh)

)
−
∑
K∈Ωh

∑
i,j∈K

(ϕj − ϕi)
∫
K

ψj
(
∂t(wh − w) + ~a · ∇(wh − w)

)∣∣∣

≤ C1h
2

+ C2h
−1

sup
K∈Ωh
j∈K

∣∣∣ |K|
3

dwj

dt
+ β

K
j φ

K
(wh)

∣∣∣

To have ε < h2 we need the satisfaction of a local truncation error condition :

sup
K∈Ωh
j∈K

∣∣∣ |K|
3

dwj

dt
+ β

K
j φ

K
(wh)

∣∣∣ ≤ Ch3



Time dependent advection

Consistency analysis ...

Pushing it a bit more :∣∣∣ |K|
3

dwj

dt
+ β

K
j φ

K
(wh)

∣∣∣ =
∣∣∣ |K|

3

dwj

dt
+ β

K
j

∫
K

~a · ∇wh
∣∣∣

=
∣∣∣ |K|

3

dwj

dt
− βKj

∫
K

∂twh + β
K
j

∫
K

(
∂t(wh − w) + ~a · ∇(wh − w)

)∣∣∣
≤
∣∣∣ |K|

3

dwj

dt
− βKj

∫
K

∂twh

∣∣∣+ Ch
3

The h2 consistency condition is

∣∣∣ |K|
3

dwj

dt
− βKj

∫
K

∂twh

∣∣∣ ≤ Ch3

This is in general not true...



How do we get around this problem ?



High order schemes for time dependent problems

∆x
dui

dt
+ a(ui − ui−1) = 0

How do we make it second order in space ?



High order schemes for time dependent problems

∆x
dui

dt
+ a(ui − ui−1) = 0

How do we make it second order in space ?
Finite Volume/Difference guy answers : enlarge the stencil

∆x
dui

dt
+

3

2
a(ui − ui−1)−

1

2
a(ui−1 − ui−2) = 0



High order schemes for time dependent problems

∆x
dui

dt
+ a(ui − ui−1) = 0

How do we make it second order in space ?
Finite Element guy answers : do not forget the mass matrix !

mii−1
dui−1

dt
+mii

dui

dt
+mii+1

dui+1

dt
+ a(ui − ui−1) = 0



High order schemes for time dependent problems

Step 1

∂tu+ a∂xu = 0

The Galerkin FEM discretization reads :

∫
Ωh

ψi∂tuh +
a

2
(ui+1 − ui−1) = 0

or equivalently (set φi+1/2 = a(ui+1 − ui), φi−1/2 = a(ui − ui−1))

∫
Ωh

ψi∂tuh +
1

2
φ
i−1/2

+
1

2
φ
i+1/2

= 0



High order schemes for time dependent problems

Step 1
The (P 1) Galerkin mass matrix is obtained as

∫
Ωh

ψi∂tuh =
∆x

6

dui−1

dt
+

2∆x

3

dui

dt
+

∆x

6

dui+1

dt

As a result, we get the fourth order scheme (w.r.t. ∆x)

∆x

6

dui−1

dt
+

2∆x

3

dui

dt
+

∆x

6

dui+1

dt
+
a

2
(ui+1 − ui−1) = 0



High order schemes for time dependent problems

Step 2

∂tu+ a∂xu = 0

Can we find a Petrov-Galerkin test function ωi which yields :

∫
Ωh

ωi∂tuh + a(ui − ui−1) = 0 ???

The answer is yes, but the solution is not unique !



High order schemes for time dependent problems

Step 3(a)

∂tu+ a∂xu = 0

SUPG scheme of Hughes and co-workers :

Galerkin︷ ︸︸ ︷∫
Ωh

ψi(∂tuh + a∂xuh) +

Streamline dissipation terms︷ ︸︸ ︷∫
Ωh

a∂xψi τ (∂tuh + a∂xuh) = 0

For τ = ∆x/(2|a|) one easily shows that (a > 0)

∫
Ωh

(ψi + a∂xψi τ )a∂xuh =

∫
Ωh

(ψi + ∆x
sign(a)

2
∂xψi)a∂xuh = a(ui − ui−1)



High order schemes for time dependent problems

Step 3(a)

∂tu+ a∂xu = 0

SUPG scheme of Hughes and co-workers. For the choice of the test function

ωi = ϕi + ∆x
sign(a)

2
∂xϕi

we obtain the third order accurate scheme (w.r.t. ∆x)

5∆x

12

dui−1

dt
+

2∆x

3

dui

dt
−

∆x

12

dui+1

dt
+ a(ui − ui−1) = 0



High order schemes for time dependent problems

Step 3(b)

∂tu+ a∂xu = 0

Another example : pure residual based approach

max(0, a)

a

i∫
i−1

(∂tuh + a∂xuh) +
min(0, a)

a

i+1∫
i

(∂tuh + a∂xuh) = 0

corresponding to the test fcn

ωi =


1 + sign(a)

2
if x ∈ (xi−1, xi)

1− sign(a)

2
if x ∈ (xi, xi+1)

0 otherwise

(piecewise constant)

All calculations done, this leads to the second order scheme (a > 0)

∆x

2

dui−1

dt
+

∆x

2

dui

dt
+ a(ui − ui−1) = 0



High accuracy via consistent mass matrices

Reverse engineering a scheme ...
For the steady limit of

∂tu+ ~a · ∇u = 0

high order fluctuation splitting/residual distribution give the steady state algebraic
system ∑

K|i∈K

β
K
i φ

K
= 0

People started to look for test functions ωi such that

∫
K

ωi
∣∣
K
~a · ∇uh = β

K
i φ

K
= β

K
i

∫
K

~a · ∇uh



High accuracy via consistent mass matrices

Reverse engineering a scheme ...
Time dependent solutions of

∂tu+ ~a · ∇u = 0

would be now sought by integrating in time∑
K|i∈K

∫
K

ωi
∣∣
K
∂tuh +

∑
K|i∈K

β
K
i φ

K
= 0

With a “consistent mass matrix” stemming from the first integral, consistency being
intended as

∫
K

ωi
∣∣
K
~a · ∇uh = β

K
i φ

K
= β

K
i

∫
K

~a · ∇uh



Where the real trouble is ...

Reverse engineering a scheme ...
The reverse engineering papers : finite element analogies, space-time formulations,
geometrical constructions, and some imagination ....

I Maerz & Degrez, VKI PR 9617, 1996

I Ferrante & Deconinck VKI PR 9708, 1997

I Hubbard & Roe IJNMF 33, 2000

I Caraeni & Fuchs Computers&Fluids 4-5, 2005 (from a PhD defended in 2000)

I Csik & Deconinck IJNMF 2002

I Abgrall & Mezine J.Comput.Phys. 188, 2003

I Ricchiuto & Csik & Deconinck J.Comput.Phys. 209, 2005

I De Palma et al. J.Comput.Phys. 208, 2005

I Ricchiuto & Bollermann J.Comput.Phys. 228, 2009

I Ricchiuto & Abgrall J.Comput.Phys. 16, 2010

I Hubbard and Ricchiuto Computers&Fluids 46, 2011

I Bonfiglioli and Paciorri IJCFD 27, 2013

I and more ...



Time dependent problems

Remarks

I Independently on the time discretization almost all the techniques proposed
involve a non diagonal mass matrix coupling all nodal values :

∑
K∈Ωh

∑
j∈K

m
K
ij

duj

dt
+

∑
K|i∈K

β
K
i φ

K
= 0

I As for stabilized FEM, after time discretization, independently on the explicit or
implicit (or space-time) nature of the time integration chosen, one needs to solve
a (non-symmetric and possibly nonlinear) algebraic system :

M(un+1
)un+1

+ ∆tF (un+1
) = ∆tG(un, un−1

, . . .)

I The construction seen for steady problems based on limiting of a monotonicity
preserving scheme allows to ensure that M(un+1) is an inverse monotone matrix3,
(M(un+1))−1

ij ≥ 0, so that the properties of the spatial discretization (discrete
maximum principle) are preserved (not shown) ;

I Almost all of these schemes do not allow simple explicit updates with the only
one exception: the predictor-corrector approach proposed in (Ricchiuto-Abgrall,

J.Comput.Phys. 2010)

3mii > 0, mij ≤ 0 and irreducibly diagonally dominant



Time dependent problems : shallow water

Briggs’ experiment
Reproducing one of the tests of4

4Briggs et al Pure and Appl. Geophysics 1995



Time dependent problems : shallow water

Briggs’ experiment
Reproducing one of the tests of5

5Briggs et al Pure and Appl. Geophysics 1995



Time dependent problems : shallow water

Briggs’ experiment



Specific issues related to shallow water

∂t

[
h
q

]
︸ ︷︷ ︸
W

+∂x

 q

uq +
gh2

2


︸ ︷︷ ︸

F (W )

−gh∂x
[

0
d

]
︸ ︷︷ ︸

S(W,x)

= 0 ,

{
h = η + d
q = hu



Specific issues related to shallow water

1. Nonlinear hyperbolic system of conservation laws : hydraulic jumps (steady
shocks) and propagating bores (moving shocks), standard Riemann problems not
involving dry states. Ok if discontinuity capturing scheme is used.

2. Dry states (flat bathymetry). Ok if positivity preserving scheme is used.

3. Variable bathymetry. Question : what do we do with the ∂xd term ?



Finite Volume schemes and Fluctuations in 1D

∂tu+ a∂xu+ g
′
(x) = 0

Conservative FV :

∆xi
∆ui

∆t
+ F̂i+1/2 − F̂i−1/2 + Si = 0

Roe scheme for advection with source

F̂i+1/2 =
Fi + Fi+1

2
−
|a|
2

(ui+1 − ui) , Si =?????



Finite Volume schemes and Fluctuations in 1D

∂tu+ a∂xu+ g
′
(x) = 0

Conservative FV :

∆xi
∆ui

∆t
+ F̂i+1/2 − F̂i−1/2 + Si = 0

Roe scheme for advection with source
Brutal answer : if there is an invariant, discretize the equation for the invariant.

∂tη + a∂xη = 0 , with η = u+
g

a

∆xi
∆ηi

∆t
+ F̂η

i+1/2
− F̂η

i−1/2
= 0

F̂η
i+1/2

=
Fηi + Fηi+1

2
−
|a|
2

(ηi+1 − ηi)

WELL BALANCED of C-Property :
If ηi(t = 0) = η0 ∀i, nothing happens, the invariant is preserved, and ui = η0 − gi/a



Finite Volume schemes and Fluctuations in 1D

∂tu+ a∂xu+ g
′
(x) = 0

Conservative FV :

∆xi
∆ui

∆t
+ F̂i+1/2 − F̂i−1/2 + ∆xSi = 0

Roe scheme for advection with source
How to use the Brutal answer :

∂tη + a∂xη = 0 , with η = u+
g

a

∆xi
∆ηi

∆t
= ∆xi

∆ui

∆t
and F̂η

i+1/2
= F̂i+1/2 +

gi + gi+1

2
−

sign(a)

2
(gi+1 − gi)

Si =
gi+1 − gi−1

2∆x
+

sign(a)

2∆x
(gi − gi−1)−

sign(a)

2∆x
(gi+1 − gi)



Finite Volume schemes and Fluctuations in 1D

∂tu+ a∂xu+ g
′
(x) = 0

Conservative FV/RD :

∆xi
∆ui

∆t
+ φ

i−1/2
i + φ

i+1/2
i = 0

Roe scheme for advection with source
Residual based answer : use fluctuations. For Roe scheme we have seen that

φ
i±1/2
i =

1∓ sign(a)

2
φ
i±1/2

In the homogeneous case φ =
∫
∂xF = −

∫
∂tu. Similarly, we can take now1

φ
i+1/2

= −
∫ i+1

i

∂tu =

∫ i+1

i

(a∂xu+ g
′
(x)) = a(ui+1 − ui) + (gi+1 − gi)

Along the discrete invariant state ui = η0 − gi/a we have φi±1/2 = 0 identically !!

1CAVEAT : we have assumed the same representation for u and g over the cell !!!!



Finite Volume schemes and Fluctuations in 1D

∂tu+ a∂xu+ g
′
(x) = 0

Conservative FV/RD :

∆xi
∆ui

∆t
+ φ

i−1/2
i + φ

i+1/2
i = 0

Roe scheme for advection with source
Residual based answer : equivalent to

∆xi
∆ui

∆t
+ F̂i+1/2 − F̂i−1/2 + ∆xSi = 0

Si =
gi+1 − gi−1

2∆x
+

sign(a)

2∆x
(gi − gi−1)−

sign(a)

2∆x
(gi+1 − gi)

Same as before ..



First order Roe scheme for shallow water1

∂tW + ∂xF (W ) + S(W,x) = 0 =⇒ ∆x
Wn+1
i −Wn

i

∆t
+ F̂i+1/2 − F̂i−1/2 + ∆xSi = 0

F̂i+1/2 =
Fi+1 + Fi

2
−
|Ai+1/2|

2
(Wi+1 −Wi)

Si = −ghi−1/2

I2 + sign(Ai−1/2)

2

[
0

di − di−1

∆x

]
−ghi+1/2

I2 − sign(Ai+1/2)

2

[
0

di+1 − di
∆x

]

Exact discrete invariant
The physical lake at rest state : ηi = qi = ui = 0 ∀ i and hi = di ∀ i.

1Bermudez-Vazquez Computers&Fluids 1994



First order Roe scheme for shallow water1

∂tW + ∂xF (W ) + S(W,x) = 0 =⇒ ∆x
Wn+1
i −Wn

i

∆t
+ F̂i+1/2 − F̂i−1/2 + ∆xSi = 0

F̂i+1/2 =
Fi+1 + Fi

2
−
|Ai+1/2|

2
(Wi+1 −Wi)

Si = −ghi−1/2

I2 + sign(Ai−1/2)

2

[
0

di − di−1

∆x

]
−ghi+1/2

I2 − sign(Ai+1/2)

2

[
0

di+1 − di
∆x

]

Exact discrete invariant
The physical lake at rest state. To check this use the equivalence

F̂i+1/2 − F̂i−1/2 + ∆xSi =
I2 + sign(Ai−1/2)

2
φ
i−1/2

+
I2 − sign(Ai+1/2)

2
φ
i+1/2

and note that along this state

φ
i+1/2

=

∫ i+1

i

(∂xF +S) =

 qi+1 − qi

ui+1qi+1 − uiqi + g
h2
i+1 − h

2
i

2

−ghi+1/2

[
0

di+1 − di

]
= 0

1Bermudez-Vazquez Computers&Fluids 1994



Lake at rest and dry states1

Exact discrete invariant
The physical lake at rest state. In presence of dry areas

φ
i+1/2

=

 0

−
gh2
i

2

− ghi

2

[
0

di+1 − di

]
= −

ghi

2

[
0

di+1

]
6= 0!

To cure the problem, set in these cells2

φ
i+1/2

= −
ghi

2

[
0

hi + ∆i+1/2

]
with ∆i+1/2 = max(di+1 − di, −hi)

This allows to recover the φ = 0 condition.

η=0

i i+1 i i+1

1Castro et al Math. and Computer Modeling 42 2005
2note that above the η = 0 line d(x) becomes negative



Multidimensional case

∂tW +∇ · F (W ) + S(W,x, y) = 0

Finite Volume
Need to add artificial contribution of the source term to the flux integrals on finite
volume faces ...

RD/FEM
Source term naturally included in the residual, along invariants φ = 0 works also in
multi-D



Let’s have a look at dispersive equations



Enhanced Boussinesq equations

z

x

ηz=  (t,x)

0d

A << 1

u << 1

Linearized MS equations1


∂tη + d0∂xu = 0

∂tu− (β +
1

3
)d2

0∂xxtu+ g∂xη − βgd2
0∂xxxη = 0

Dispersion relation
Let C2

0 = gd2
0

ω
2

= (kC0)
2︸ ︷︷ ︸

Linearized Shallow Water

1 + β(kd0)2

1 + B(kd0)2

Dispersion coeff. β chosen by minimizing error w.r.t. Airy theory.

1Madsen and Sørensen Coastal Engineering 1992, Scḧaffer and Madsen Coastal Engineering 1995



Enhanced Boussinesq equations

z

x

ηz=  (t,x)

0d

A << 1

u << 1

Linearized Nw equations1

{
∂tη + d0∂xu+ A2d

3
0∂xxxu = 0

∂tu+ A1d
2
0∂xxtu+ g∂xη = 0

with A1 = α+ α2/2, A2 = A1 + 1/3

Dispersion relation
Let C2

0 = gd2
0

ω
2

= (kC0)
2︸ ︷︷ ︸

Linearized Shallow Water

1− A2(kd0)2

1− A1(kd0)2

Dispersion coeff. α chosen by minimizing error w.r.t. Airy theory.

1Nwogu Coastal Engineering 1994



Enhanced Boussinesq equations

Dispersion relations : models overview

   /λk (=       )d0 0d   /2π

Prescribed values of model coefficients



Dispersion properties

Next step : continuous to discrete

I Influence of the scheme

I dissipation for given mesh size

I dispersion error for given mesh size

I Objective: do not pollute the dispersion of the model



Dispersion properties

Next step : continuous to discrete
Scalar model problem :

∂tu− α∂txxu+ a∂xu− β∂xxxu = 0

Dispersion relation :

ω = − ka︸︷︷︸
pure advection

1 + βk2

1 + αk2
dispersion



P 1 FEM

I We consider a tasselation of the domain composed of non-overlapping elements;

I Unknowns at nodes: {ηi(t)}i≥1 and {qi(t)}i≥1 ({ui(t)}i≥1 for model prob.);

I P 1 piecewise linear continuous approximation

ηh(t, x) =
∑
i≥1

ηi(t)ψi(x) =
∑
K

∑
j∈K

ηj(t)ψj(x)

qh(t, x) =
∑
i≥1

qi(t)ψi(x) =
∑
K

∑
j∈K

qj(t)ψj(x)

uh(t, x) =
∑
i≥1

ui(t)ψi(x) =
∑
K

∑
j∈K

uj(t)ψj(x)

(2)

I ψi are standard continuous piecewise linear finite element basis functions;



Continuous Galerkin (cG) for ∂tu− α∂txxu+ a∂xu− β∂xxxu = 0

∫
Ωh

ψi∂tuh+

∫
Ωh

α∂xtuh ∂xψi −
∫

Ωh

auh ∂xψi +

∫
Ωh

βwuh ∂xψi = 0

∫
Ωh

ψiw
u
h+

∫
Ωh

∂xu∂xψi = 0



Continuous Galerkin (cG) for ∂tu− α∂txxu+ a∂xu− β∂xxxu = 0

∆x

6

(dui−1

dt
+ 4

dui

dt
+
dui−1

dt

)
−
α

∆x

(dui−1

dt
− 2

dui

dt
+
dui−1

dt

)
+
a

2
(ui+1 − ui−1)−

β

∆x2
(ui+2 − 2ui+1 + 2ui−1 − ui−2) = 0



Continuous Galerkin (cG) for ∂tu− α∂txxu+ a∂xu− β∂xxxu = 0

∆x

6

(dui−1

dt
+ 4

dui

dt
+
dui−1

dt

)
−
α

∆x

(dui−1

dt
− 2

dui

dt
+
dui−1

dt

)
+
a

2
(ui+1 − ui−1)−

β

∆x2
(ui+2 − 2ui+1 + 2ui−1 − ui−2) = 0

FD2 scheme (same cost) :

∆x
dui

dt
−
α

∆x

(dui−1

dt
− 2

dui

dt
+
dui−1

dt

)
+
a

2
(ui+1 − ui−1)−

β

∆x2
(ui+2 − 2ui+1 + 2ui−1 − ui−2) = 0



Central Residual Distribution for ∂tu− α∂txxu+ a∂xu− β∂xxxu = 0

I Nodal equations :

1

2
Φ
K

+
1

2
Φ
K+1

= 0

I With cell residuals

Φ
K

=

∫
K

(
∂tuh|K − α∂tw

u
h|K

+ a∂xuh|K − β∂xw
u
h|K

)
dx

I Same extra equations for wu ≈ ∂xxu



Central Residual Distribution for ∂tu− α∂txxu+ a∂xu− β∂xxxu = 0

∆x

4

(dui−1

dt
+ 2

dui

dt
+
dui−1

dt

)
−

α

4∆x

(dui−2

dt
− 2

dui

dt
+
dui−2

dt

)
+
a

2
(ui+1 − ui−1)−

β

∆x2
(ui+2 − 2ui+1 + 2ui−1 − ui−2) = 0

FD2 scheme (cRD penta-diagonal system) :

∆x
dui

dt
−
α

∆x

(dui−1

dt
− 2

dui

dt
+
dui−1

dt

)
+
a

2
(ui+1 − ui−1)−

β

∆x2
(ui+2 − 2ui+1 + 2ui−1 − ui−2) = 0



Stabilized Upwind Schemes (SUPG and uRD)

Schemes cG and cRD are centered approximations not well suited for the
discretization of the hyperbolic (advection or shallow water) limit for which some form
of upwinding is necessary to stabilize the system

We want to look at the properties of upwind stabilized variants of the centered
schemes presented



Stabilized Upwind Schemes (SUPG and uRD)

Streamline Upwind Petrov-Galerkin stabilization8 :

Ri(uh) +
∑

K∈Ωh

∫
K

a∂xψ
K
i τKr

K
= 0 (3)

τK is the SUPG stabilization parameter:

τK =
1∑

j∈K

|a∂xψKj |

and rK the local residual vector

r
K

= ∂tuh|K − α∂tw
u
h|K

+ a∂xuh|K − β∂xw
u
h|K

8T.J.R Hughes, G. Scovazzi and T. Tezduyar, J.Sci.Comp. 43 2010



Stabilized Upwind Schemes (SUPG and uRD)

The final form (P1 case with ΦK =
∫
K rK for the above choice of τK):

Ri(uh) +
sign(a)

2
Φ

Ki−1/2 −
sign(a)

2
Φ

Ki+1/2 = 0 (4)

Ri is the centred part of the scheme: if RcG
i −→ SUPG scheme;

if RcRD
i −→ uRD scheme.

Upwinding on the advection direction (hyperbolic limit)



Stabilized Upwind Schemes (SUPG and uRD)

Difference w.r.t. std. Roe upwind scheme (in 1d ... )

I Same advection operator (a > 0 −→ a(ui − ui−1)) !!

I Both are residual based generalizations of first order Roe scheme

I All terms upwinded at once (including high order differential terms)

I Non-diagonal mass matrices for the first order time derivative

I Linear algebraic system to invert, as for all other schemes (due to the presence of
xt derivative)



Time continuous error analysis

The objective is to characterize

1. The differences in error (TE analysis)

2. The dispersion error (DE analysis)

3. Same for Boussinesq



Time continuous TE analysis

Brute force ...



Time continuous TE analysis

TEcG =
∆x2

12
∂xxxx(α∂tu+ 2β∂xu) +O(∆x

4
)

TEcRD =
∆x2

2
∂xx(

1

2
∂tu+

1

3
a∂tu−

2

3
α∂xxtu−

4

3
β∂xxtu) +O(∆x

3
)

TESUPG =
∆x2

12
∂xxxx(α∂tu+ 2β∂xu) +O(∆x

3
)

TEuRD =
∆x2

2
∂xx(

1

2
∂tu+

1

3
a∂tu−

2

3
α∂xxtu−

4

3
β∂xxtu) +O(∆x

3
)



Time continuous DE analysis

As in the continuous case :

1. Set ui(t) = u0eνt+jkxi

2. Replace in the FD form of the scheme :
dui(t)

dt
= ν ui(t), ui±1(t) = e±j∆xui(t)

3. Solve for ν = ξ + j ω

4. ω = ω(k,∆x)



Time continuous DE analysis



Lucky shot ?

Extension to Boussinesq models



Lucky shot ?

Extension to Boussinesq models
Schemes easily extended, main differences are

I Auxiliary variables for MS : ∂xxη (and ∂xq for cRD and both upwind schemes)

I Auxiliary variables for Nw : ∂xxu (and ∂xu for cRD and both upwind schemes)

I Upwinding : scalar a replaced by AK elemental average of shallow water flux
Jacobian

I DE analysis : same main steps but leads to eigenvalue problem (ν from
characteristic equation)

I ω = ω(kd0, k∆x)



Error analysis : linearized MS model


∂tη + d0∂xu = 0

∂tu− (β +
1

3
)d2

0∂xxtu+ g∂xη − βgd2
0∂xxxη = 0



TE analysis : MS model - centered schemes

FD2 scheme.

TE
η
FD2 =

d0∆x2

6
∂xxxui +O(∆x

4
)

TE
u
FD2 =

∆x2

6
∂xx

(
−
Bd2

0

2
∂x2tui + g∂xηi −

3

2
βgd

2
0∂xxxηi

)
+O(∆x

4
)

cG scheme.

TE
η
cG =

∆x4

24
∂xxxx

(
1

3
∂tηi +

d0

5
∂xui

)
+O(∆x

6
)

TE
u
cG =

∆x2

12
∂xxxx

(
Bd

2
0∂tui − βgd

2
0∂xηi

)
+O(∆x

4
)

cRD scheme.

TE
η
cRD =

∆x2

2
∂xx

(
1

2
∂tηi +

d0

3
∂xui

)
+O(∆x

4
)

TE
u
cRD = ∆x

2
∂xx

(
1

4
∂tui −

1

3
Bd

2
0∂xxtui +

1

6
g∂xηi −

1

4
βgd

2
0∂xxxηi

)
+O(∆x

4
)



TE analysis : MS model - centered schemes

FDWK scheme (FD2 on ∂xxx and ∂xx - FD4 on ∂x)1

TE
η
FDWK =

d0∆x4

30
∂xxxxxui +O(∆x

6
)

TE
u
FDWK =

∆x2

4
∂xxxx

(
1

3
Bd

2
0∂tui + βgd

2
0∂xηi

)
+O(∆x

4
)

cG scheme.

TE
η
cG =

∆x4

24
∂xxxx

(
1

3
∂tηi +

d0

5
∂xui

)
+O(∆x

6
)

TE
u
cG =

∆x2

12
∂xxxx

(
Bd

2
0∂tui − βgd

2
0∂xηi

)
+O(∆x

4
)

cRD scheme.

TE
η
cRD =

∆x2

2
∂xx

(
1

2
∂tηi +

d0

3
∂xui

)
+O(∆x

4
)

TE
u
cRD = ∆x

2
∂xx

(
1

4
∂tui −

1

3
Bd

2
0∂xxtui +

1

6
g∂xηi −

1

4
βgd

2
0∂xxxηi

)
+O(∆x

4
)

1(G. Wei, J.T. Kirby, J. Waterway, Port, Coastal, and Ocean Engineering, 1995)



TE analysis : MS model - upwind schemes

FDWK scheme (FD2 on ∂xxx and ∂xx - FD4 on ∂x)1

TE
η
FDWK =

d0∆x4

30
∂xxxxxui +O(∆x

6
)

TE
u
FDWK =

∆x2

4
∂xxxx

(
1

3
Bd

2
0∂tui + βgd

2
0∂xηi

)
+O(∆x

4
)

SUPG scheme.

TE
η
SUPG =

C0∆x3

2g
∂xxx

(
1

3
∂tui −

1

2
Bd

2
0∂xxtui +

1

6
g∂xηi −

1

3
βgd

2
0∂xxxηi

)
+O(∆x

4
)

TE
u
SUPG =

∆x2

12
∂xxxx

(
Bd

2
0∂tui − βgd

2
0∂xηi

)
+O(∆x

3
)

URD scheme.

TE
η
URD =

∆x2

2
∂x2

(
1

2
∂tηi +

d0

3
∂xui

)
+O(∆x

3
)

TE
u
URD = ∆x

2
∂x2

(
1

4
∂tui −

1

3
Bd

2
0∂xxtui +

1

6
g∂xηi −

1

4
βgd

2
0∂xxxηi

)
+O(∆x

3
)

1(G. Wei, J.T. Kirby, J. Waterway, Port, Coastal, and Ocean Engineering, 1995)



DE analysis : MS model - cRD and URD
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DE analysis : MS model - cG and SUPG
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Error analysis : linearized Nw model

{
∂tη + d0∂xu+A2d3

0∂xxxu = 0

∂tu+A1d2
0∂xxtu+ g∂xη = 0



TE analysis : Nw model - FDWK, cG, SUPG

FDWK scheme (FD2 on ∂xxx and ∂xx - FD4 on ∂x)1

TE
η
FDWK =

∆x2

4
A2d

3
0∂xxxxxui +O(∆x

4
)

TE
u
FDWK =

∆x2

12
A1D

2
0∂xxxxtui +O(∆x

4
)

cG scheme.

TE
η
cG =

∆x2

12
A2d

3
0∂xxxxxui +O(∆x

4
)

TE
u
cG =

∆x2

12
A1D

2
0∂xxxxtui +O(∆x

4
)

SUPG scheme.

TE
η
SUPG =

∆x2

12
A2d

3
0∂xxxxxui +O(∆x

3
)

TE
u
SUPG =

∆x2

12
A1D

2
0∂xxxxtui +O(∆x

3
)

1(G. Wei, J.T. Kirby, J. Waterway, Port, Coastal, and Ocean Engineering, 1995)



DE analysis : Nw model
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Time continuous error analysis

1. Stabilized FEM formulation best results in terms of accuracy

2. P 1 cG and SUPG similar (or better) accuracy than FDWK (FD4) in 1D

3. In 2D : excellent approximation of planar waves on regular grids

4. 2D unstructured : is P 1 enough ?



Numerical examples

MS equations ...



Numerical examples : shelf
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Numerical examples : submerged bar
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Numerical examples : submerged bar
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Numerical examples : submerged bar
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Numerical examples : circular shoal (hexagons) - ∆x = 0.1m



Numerical examples : circular shoal (hexagons) - ∆x = 0.1m



Numerical examples : elliptic shoal (unstructured)



Numerical examples : elliptic shoal (unstructured)

(Ribbed channel clip)


el_movie_topview_col.avi
Media File (video/avi)



Numerical examples : elliptic shoal (unstructured)



SUMMARY

Parti I

I Fluctuation form of FV schemes
I General design properties for fluctuation splitting/residual distribution :

1. Conservation
2. Stability and upwinding
3. Consistency (accuracy) conditions
4. Discontinuity capturing

Parti II

I Residual based schemes and time dependent problems : accuracy issues

I High order accurate schemes via consistent mass matrices

I Shallow Water issues : steady states, wetting/drying

I Dispersive equations and residual based

I Discrete dispersion analysis



PERSPECTIVES

What’s the plan ...

I Analysis of continuous stabilized higher oder FEM approximation for dispersive
eq.s (k = 2, 3, Lagrange and Bezier)

I Schemes : dispersion optimized schemes ? Structured grid residual based
schemes, and seek generalization to unstructured

I Discontinuities. FEM-RD formalism (already done for Euler and SW) : use
monotone spatial operators (RD) in variational context (mass matrices, high
order derivatives etc)

I Grid adaptation : time dependent (moving fronts) based on ALE and ALE
mapping if remeshing is necesary

I Time integration : Explicit (eBDF), Implicit (BDf) or space-time ?

I Green Naghdi equations on unstructured adaptive (moving) grids

I Uncertainty quantification + analysis of variance : assess models robustness

I etc. etc.



Thanks to ..
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I S. Bellec (PhD, Inria) - exact solutions to Boussinesq eq.s, discrete asymptotics

I M. Colin (IPB and Inria) - depth averaged modeling in general

I R. Abgrall (Zurich University) - residual schemes

I P. Bonneton (EPOC Bordeaux) - Boussinesq++

I A.I. Delis (Tech. Univ. Crete) - Boussinesq,NLSW++

I P. Congedo (Inria) - UQ applied to depth average models

I A. Guardone (Politecnico di Milano) - ALE adaptation

I etc. ....
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