From Roe's scheme to
 Fluctuation splitting, Residual distribution AND STABILIZED FINITE ELEMENTS

Hyperbolic problems and
A PEEK AT DISPERSIVE WAVE PROPAGATION.

Mario Ricchiuto
Inria Bordeaux - Sud-Ouest

Winter school Nonlinear dispersive waves:
theory, numerics and applications
February 16-21, 2014

Context $1 / 2$

NEAR SHORE HYDRODYNAMICS

Bonneton,Chazel,Lannes,Marche,Tissier - Delis,Kazolea,Synolakis - Kirby,Grilli,et al (FUNWAVE-TVD) - Smit,Zijlema et al (SWASH) Ricchiuto et al - etc.

Propagation: enhanced Boussinesq (or other dispersive model)

Breaking : coupling with SW (or similar hydrostatic)

Runup/flooding : full SW
(or similar hydrostatic)

Numerics: KEYWORDS

1. time dependent
2. smooth waves: high accuracy
3. wave grouping : low dispersion error
4. steep fronts (bores, h-jumps) : non-oscillatory
5. wet/dry : positivity preservation
6. geometrical flexibility : mesh adaptation (w.r.t. bathymetry and solution)
7. unstructured meshes

Need a high accuracy (Iow dispersion) discontinuity capturing method

A bit of first hand HISTORICAL PERSPECTIVE ...

High order schemes for fluid dynamics ..

Bram van Leer

the Arthur B. Modine Professor of aerospace engineering at the University of Michigan, in Ann Arbor. He specialises in Computational fluid dynamics (CFD), fluid dynamics, and numerical analysis where he has made substantial contributions. (wikipedia)

1. - Upwind high resolution methods for compressible flow: from donor cell to residual distribution, Commun. Comput.Phys. 1(2), 2006
2. - History of CFD - PART II, AIAA Fluid Dynamics award, 2010

Historical perspective : SChemes for CFD $1 / 4$

Godunov's theorem (S.K. Godunov, Math.Sb 47, 1959)
If an advection scheme preserves the monotonicity of the solution, it is at most first order accurate

The 70s' Run for high order shock capturing schemes gives its first ripe fruits by the end of the decade

1. V.P. Kolgan's reports with limited linear recontrution : 1972
2. Boris, Book and Zalesak's work on FCT is out : 1973-79
3. van Leer's Toward the Ultimate Conservative Difference Scheme I-V papers appeared : 1979

The way out of Godunov's theorem is found: nonlinear schemes

Historical perspective : schemes for CFD $2 / 4$

The challenge of multidimensional nonlinear limiters

1. A. Harten, J.Comput.Phys 49, 1983 and SINUM 21, 1984 : TVD conditions
2. Goodman and LeVeque, Math.Comp. 45, 1985 : TVD in 2D $=$ first order

From mid-80s to end-90s
Non-oscillatory FV approaches
ENO/WENO schemes (Harten, Osher, Engquist and Chakravarthy),
TVB schemes (Shu Math.Comp. 1987), positive coefficient schemes (Spekreijse, Math.Comp 1987, Barth VKI LS 1994)

Multidimensional discretization frameworks
Central/LW/SUPG approaches (Jameson, Morton, Ni, Lerat, Hughes), Rotated and transverse Riemann solvers (Davis JCP 1984, LeVeque JCP 1988),

Roe's Fluctuation Splitting 1987 (in 2D)
Cockburn and Shu's papers on Discontinuous Galerkin (starting 1988)

Historical perspective : schemes for CFD 3/4

Discontinuous Galerkin
 Smart and elegant combination of existing tools (local approximation, Galerkin projection, Riemann solvers, limiters) to automatically generate arbitrary order schemes for conservation laws.

Instant hit : many followers in appl.math. (hyperbolic guys) and engnrg. communities

Multidimensional upWind differencing

A more fundamental and robust approach [...] due to Roe (1986), is that of the "genuinely multidimensional" upwind schemes. These may be regarded as the true multi-D generalization of 1-D fluctuation splitting [...] These methods are best formulated on simplex-type (finite-element) grids and include newly developed, compact limiters for avoiding oscillations

Excerpt from Upwind high resolution methods for compressible flow:
from donor cell to residual distribution, Commun.Comput.Phys. 1(2), 2006

Historical perspective : schemes for CFD $4 / 4$

RoE's FLUCTUATION SPLITTING IN THE SCIENTIFIC COMMUNITY

An entirely new approach is proposed, with its own set of "physically relevant" discretization rules and numerical constraints, with a completely new meaning and use of nonlinear limiters.

Despite the large interest ${ }^{1}$, approach that never really conquered the CFD community :

1. new vocabulary and formalism take time to root
2. good results for interesting problems with this approach have taken time to surface

It is however considered today a possible alternative to higher order WENO Finite Volumes and DG...

[^0]
The talk $1 / 2$

What have I brought for you ..

- high order schemes : some general principle
- unstructured grids: some general principles that are more general
- dispersive equations: my perspective

The talk $2 / 2$

Part I

- Fluctuation form of FV schemes
- Design properties for fluctuation splitting/residual distribution : steady case

1. Conservation
2. Stability and upwinding
3. Consistency (accuracy) conditions
4. Discontinuity capturing

Part II

- Residual based schemes and time dependent problems: accuracy issues
- High order accurate schemes via consistent mass matrices
- Shallow Water issues : steady states, wetting/drying
- Dispersive equations and residual based
- Discrete dispersion analysis

BCs are neglected throughout the talk. A zero on the RHS most often means $=$ b.c. terms

Finite Volume schemes and Fluctuations in 1D

Finite Volume schemes and Fluctuations in 1D

Starting point: conservation law

$$
\partial_{t} u+\partial_{x} \mathcal{F}(u)=0
$$

Conservative FV :

$$
\Delta x_{i} \frac{\Delta u_{i}}{\Delta t}+\widehat{\mathcal{F}}\left(u_{i+1 / 2}^{L}, u_{i+1 / 2}^{R}\right)-\widehat{\mathcal{F}}\left(u_{i-1 / 2}^{L}, u_{i-1 / 2}^{R}\right)=0
$$

$$
\frac{\Delta u_{i}}{\Delta t}=\frac{u_{i}^{n+1}-u_{i}^{n}}{t^{n+1} t^{n}}
$$

Finite Volume schemes and Fluctuations in 1D

Starting point: conservation law

$$
\partial_{t} u+\partial_{x} \mathcal{F}(u)=0
$$

Conservative FV :

$$
\Delta x_{i} \frac{\Delta u_{i}}{\Delta t}+\widehat{\mathcal{F}}\left(u_{i+1 / 2}^{L}, u_{i+1 / 2}^{R}\right)-\widehat{\mathcal{F}}\left(u_{i-1 / 2}^{L}, u_{i-1 / 2}^{R}\right)=0
$$

Finite Volume schemes and Fluctuations in 1D

Starting point: conservation law

$$
\partial_{t} u+\partial_{x} \mathcal{F}(u)=0
$$

Conservative FV :

$$
\Delta x_{i} \frac{\Delta u_{i}}{\Delta t}+\widehat{\mathcal{F}}_{i+1 / 2}-\widehat{\mathcal{F}}_{i-1 / 2}=0
$$

$$
\begin{aligned}
& \Delta x_{i+1} \frac{\Delta u_{i+1}}{\Delta t}+\widehat{\mathcal{F}}_{i+3 / 2}-\widehat{\mathcal{F}}_{i+1 / 2}=0 \\
& \Delta x_{i-1} \frac{\Delta u_{i-1}}{\Delta t}+\widehat{\mathcal{F}}_{i-1 / 2}-\widehat{\mathcal{F}}_{i-3 / 2}=0
\end{aligned}
$$

Finite Volume schemes and Fluctuations in 1D

Starting point: conservation law

$$
\partial_{t} u+\partial_{x} \mathcal{F}(u)=0
$$

Conservative FV :

$$
\Delta x_{i} \frac{\Delta u_{i}}{\Delta t}+\widehat{\mathcal{F}}_{i+1 / 2}-\widehat{\mathcal{F}}_{i-1 / 2}=0
$$

$$
\begin{aligned}
& \Delta x_{i+1} \frac{\Delta u_{i+1}}{\Delta t}+\widehat{\mathcal{F}}_{i+3 / 2}-\widehat{\mathcal{F}}_{i+1 / 2}=0 \\
& \Delta x_{i-1} \frac{\Delta u_{i-1}}{\Delta t}+\widehat{\mathcal{F}}_{i-1 / 2}-\widehat{\mathcal{F}}_{i-3 / 2}=0
\end{aligned}
$$

Discrete conservation: flux cancellation at interfaces

Finite Volume schemes and Fluctuations in 1D

Starting point : conservation law

$$
\partial_{t} u+\partial_{x} \mathcal{F}(u)=0
$$

Conservative FV :

$$
\Delta x_{i} \frac{\Delta u_{i}}{\Delta t}+\left(\widehat{\mathcal{F}}_{i+1 / 2}-\mathcal{F}_{i}\right)+\left(\mathcal{F}_{i}-\widehat{\mathcal{F}}_{i-1 / 2}\right)=0
$$

Finite Volume schemes and Fluctuations in 1D

Starting point : conservation law

$$
\partial_{t} u+\partial_{x} \mathcal{F}(u)=0
$$

Conservative FV :

$$
\Delta x_{i} \frac{\Delta u_{i}}{\Delta t}+\underbrace{\left(\widehat{\mathcal{F}}_{i+1 / 2}-\mathcal{F}_{i}\right)}_{\phi_{i}^{i+1 / 2}}+\underbrace{\left(\mathcal{F}_{i}-\widehat{\mathcal{F}}_{i-1 / 2}\right)}_{\phi_{i}^{i-1 / 2}}=0
$$

Finite Volume schemes and Fluctuations in 1D

Starting point: conservation law

$$
\partial_{t} u+\partial_{x} \mathcal{F}(u)=0
$$

Conservative FV :

$$
\Delta x_{i} \frac{\Delta u_{i}}{\Delta t}+\phi_{i}^{i+1 / 2}+\phi_{i}^{i-1 / 2}=0
$$

At $i+1 / 2$ conservation is

$$
\phi_{i}^{i+1 / 2}+\phi_{i+1}^{i+1 / 2}=\left(\widehat{\mathcal{F}}_{i+1 / 2}-\mathcal{F}_{i}\right)+\left(\mathcal{F}_{i+1}-\widehat{\mathcal{F}}_{i+1 / 2}\right)
$$

Finite Volume schemes and Fluctuations in 1D

Starting point: conservation law

$$
\partial_{t} u+\partial_{x} \mathcal{F}(u)=0
$$

Conservative FV :

$$
\Delta x_{i} \frac{\Delta u_{i}}{\Delta t}+\phi_{i}^{i+1 / 2}+\phi_{i}^{i-1 / 2}=0
$$

Finite Volume schemes and Fluctuations in 1D

Starting point: conservation law

$$
\partial_{t} u+\partial_{x} \mathcal{F}(u)=0
$$

Conservative FV :

$$
\Delta x_{i} \frac{\Delta u_{i}}{\Delta t}+\phi_{i}^{i+1 / 2}+\phi_{i}^{i-1 / 2}=0
$$

Finite Volume schemes and Fluctuations in 1D

Starting point: conservation law

$$
\partial_{t} u+\partial_{x} \mathcal{F}(u)=0
$$

Conservative FV :

$$
\Delta x_{i} \frac{\Delta u_{i}}{\Delta t}+\phi_{i}^{i+1 / 2}+\phi_{i}^{i-1 / 2}=0
$$

$$
\phi^{i-1 / 2}:=\int_{i-1}^{i} \partial_{x} \mathcal{F} \quad \text { (fluctuation) }
$$

Finite Volume schemes and Fluctuations in 1D

Starting point: conservation law

$$
\partial_{t} u+\partial_{x} \mathcal{F}(u)=0
$$

Conservative FV :

$$
\Delta x_{i} \frac{\Delta u_{i}}{\Delta t}+\phi_{i}^{i+1 / 2}+\phi_{i}^{i-1 / 2}=0
$$

$$
\begin{array}{ll}
\phi^{i-1 / 2} & :=\int_{i-1}^{i} \partial_{x} \mathcal{F} \quad \text { (fluctuation) } \\
\phi_{i}^{i-1 / 2} & =\mathcal{F}_{i}-\widehat{\mathcal{F}}_{i-1 / 2} \quad \text { (splitting) } \\
\phi_{i-1}^{i-1 / 2} & =\widehat{\mathcal{F}}_{i-1 / 2}-\mathcal{F}_{i-1} \text { (splitting) }
\end{array}
$$

Finite Volume schemes and Fluctuations in 1D

Starting point: conservation law

$$
\partial_{t} u+\partial_{x} \mathcal{F}(u)=0
$$

Conservative FV :

$$
\Delta x_{i} \frac{\Delta u_{i}}{\Delta t}+\phi_{i}^{i+1 / 2}+\phi_{i}^{i-1 / 2}=0
$$

Finite Volume schemes and Fluctuations in 1D

Conservative FV :

$$
\Delta x_{i} \frac{\Delta u_{i}}{\Delta t}+\phi_{i}^{i+1 / 2}+\phi_{i}^{i-1 / 2}=0
$$

$$
\begin{aligned}
& \phi^{i-1 / 2}:=\int_{i-1}^{i} \partial_{x} \mathcal{F}, \quad \phi^{i+1 / 2}:=\int_{i}^{i+1} \partial_{x} \mathcal{F} \\
& \phi_{i}^{i-1 / 2}=\mathcal{F}_{i}-\widehat{\mathcal{F}}_{i-1 / 2} \quad \text { (splitting) } \\
& \phi_{i}^{i+1 / 2}=\widehat{\mathcal{F}}_{i+1 / 2}-\mathcal{F}_{i} \quad \text { (splitting) }
\end{aligned}
$$

Example 1 : Roe (Upwind) scheme for advection $(\mathcal{F}(u)=a u)$

Finite Volume schemes and Fluctuations in 1D

Conservative FV :

$$
\Delta x_{i} \frac{\Delta u_{i}}{\Delta t}+\phi_{i}^{i+1 / 2}+\phi_{i}^{i-1 / 2}=0
$$

$$
\begin{aligned}
& \phi^{i-1 / 2}:=\int_{i-1}^{i} \partial_{x} \mathcal{F}, \quad \phi^{i+1 / 2}:=\int_{i}^{i+1} \partial_{x} \mathcal{F} \\
& \phi_{i}^{i-1 / 2}=\mathcal{F}_{i}-\widehat{\mathcal{F}}_{i-1 / 2} \quad \text { (splitting) } \\
& \phi_{i}^{i+1 / 2}=\widehat{\mathcal{F}}_{i+1 / 2}-\mathcal{F}_{i} \quad \text { (splitting) }
\end{aligned}
$$

Example 1 : Roe (Upwind) Scheme for advection $(\mathcal{F}(u)=a u)$

$$
\begin{gathered}
\widehat{\mathcal{F}}_{i+1 / 2}=\frac{\mathcal{F}_{i}+\mathcal{F}_{i+1}}{2}-\frac{|a|}{2}\left(u_{i+1}-u_{i}\right), \quad \widehat{\mathcal{F}}_{i-1 / 2}=\frac{\mathcal{F}_{i}+\mathcal{F}_{i-1}}{2}-\frac{|a|}{2}\left(u_{i}-u_{i-1}\right) \\
\phi_{i}^{i+1 / 2}=\frac{1-\operatorname{sign}(a)}{2}\left(\mathcal{F}_{i+1}-\mathcal{F}_{i}\right)=\frac{1-\operatorname{sign}(a)}{2} \phi^{i+1 / 2} \\
\phi_{i}^{i-1 / 2}=\frac{1+\operatorname{sign}(a)}{2}\left(\mathcal{F}_{i}-\mathcal{F}_{i-1}\right)=\frac{1+\operatorname{sign}(a)}{2} \phi^{i-1 / 2}
\end{gathered}
$$

Finite Volume schemes and Fluctuations in 1D

Conservative FV :

$$
\Delta x_{i} \frac{\Delta u_{i}}{\Delta t}+\phi_{i}^{i+1 / 2}+\phi_{i}^{i-1 / 2}=0
$$

$$
\begin{aligned}
& \phi^{i-1 / 2}:=\int_{i-1}^{i} \partial_{x} \mathcal{F}, \quad \phi^{i+1 / 2}:=\int_{i}^{i+1} \partial_{x} \mathcal{F} \\
& \phi_{i}^{i-1 / 2}=\mathcal{F}_{i}-\widehat{\mathcal{F}}_{i-1 / 2} \quad \text { (splitting) } \\
& \phi_{i}^{i+1 / 2}=\widehat{\mathcal{F}}_{i+1 / 2}-\mathcal{F}_{i} \quad \text { (splitting) }
\end{aligned}
$$

Example 2: Lax-Wendroff scheme

$$
\widehat{\mathcal{F}}_{i+1 / 2}=\frac{\mathcal{F}_{i}+\mathcal{F}_{i+1}}{2}-\frac{a \Delta t}{2 \Delta x}\left(a u_{i+1}-a u_{i}\right), \quad \widehat{\mathcal{F}}_{i-1 / 2}=\frac{\mathcal{F}_{i}+\mathcal{F}_{i-1}}{2}-\frac{a \Delta t}{2 \Delta x}\left(a u_{i}-a u_{i-1}\right)
$$

$$
\begin{aligned}
& \phi_{i}^{i+1 / 2}=\frac{1-\mathrm{CFL}}{2}\left(\mathcal{F}_{i+1}-\mathcal{F}_{i}\right)=\frac{1-\mathrm{CFL}}{2} \phi^{i+1 / 2} \\
& \phi_{i}^{i-1 / 2}=\frac{1+\mathrm{CFL}}{2}\left(\mathcal{F}_{i}-\mathcal{F}_{i-1}\right)=\frac{1+\mathrm{CFL}}{2} \phi^{i-1 / 2}
\end{aligned}
$$

Finite Volume schemes and Fluctuations in 1D

Conservative FV :

$$
\Delta x_{i} \frac{\Delta u_{i}}{\Delta t}+\phi_{i}^{i+1 / 2}+\phi_{i}^{i-1 / 2}=0
$$

$$
\begin{aligned}
& \phi^{i-1 / 2}:=\int_{i-1}^{i} \partial_{x} \mathcal{F}, \quad \phi^{i+1 / 2}:=\int_{i}^{i+1} \partial_{x} \mathcal{F} \\
& \phi_{i}^{i-1 / 2}=\mathcal{F}_{i}-\widehat{\mathcal{F}}_{i-1 / 2} \quad \text { (splitting) } \\
& \phi_{i}^{i+1 / 2}=\widehat{\mathcal{F}}_{i+1 / 2}-\mathcal{F}_{i} \quad \text { (splitting) }
\end{aligned}
$$

Example 3 : Lax-Friedrich's scheme

$$
\begin{gathered}
\widehat{\mathcal{F}}_{i+1 / 2}=\frac{\mathcal{F}_{i}+\mathcal{F}_{i+1}}{2}-\alpha_{\mathrm{LF}}\left(u_{i+1}-u_{i}\right), \quad \widehat{\mathcal{F}}_{i-1 / 2}=\frac{\mathcal{F}_{i}+\mathcal{F}_{i-1}}{2}-\alpha_{\mathrm{LF}}\left(u_{i}-u_{i-1}\right) \\
\phi_{i}^{i+1 / 2}=\frac{1}{2}\left(\mathcal{F}_{i+1}-\mathcal{F}_{i}\right)+\alpha_{\mathrm{LF}}\left(u_{i}-u_{i+1}\right)=\frac{1}{2} \phi^{i+1 / 2}+\alpha_{\mathrm{LF}}\left(u_{i}-u_{i+1}\right) \\
\phi_{i}^{i-1 / 2}=\frac{1}{2}\left(\mathcal{F}_{i}-\mathcal{F}_{i-1}\right)+\alpha_{\mathrm{LF}}\left(u_{i}-u_{i-1}\right)=\frac{1}{2} \phi^{i-1 / 2}+\alpha_{\mathrm{LF}}\left(u_{i}-u_{i-1}\right)
\end{gathered}
$$

Finite Volume schemes and Fluctuations in 1D

Nothing new so far !!!

Finite Volume schemes and Fluctuations in 2D

The multi-D case. Starting point : conservation law

$$
\partial_{t} u+\nabla \cdot \mathcal{F}(u)=0
$$

Finite Volume schemes and Fluctuations in 2D

The FV scheme reads

$$
\left|C_{i}\right| \frac{d u_{i}}{d t}+\sum_{j} \int_{f_{i j}} \widehat{\mathcal{F}} \cdot \hat{n} d l=0
$$

Finite Volume schemes and Fluctuations in 2D

The FV scheme reads

$$
\left|C_{i}\right| \frac{d u_{i}}{d t}+\sum_{K \mid i \in K} \sum_{j \in K} \widehat{\mathcal{F}}_{i j} \cdot \vec{n}_{i j}^{K}=0
$$

Discrete conservation

$$
\widehat{\mathcal{F}}_{i j} \cdot \vec{n}_{i j}^{K}+\widehat{\mathcal{F}}_{j i} \cdot \vec{n}_{j i}^{K}=0
$$

Finite Volume schemes and Fluctuations in 2D

Using the identity $\sum_{K} \sum_{j} \vec{n}_{i j}^{K}=0$

$$
\begin{gathered}
\left|C_{i}\right| \frac{d u_{i}}{d t}+\sum_{K \mid i \in K} \underbrace{\sum_{j \in K}\left(\widehat{\mathcal{F}}_{i j}-\mathcal{F}_{i}\right) \cdot \vec{n}_{i j}^{K}}_{\phi_{i}^{K}}=0 \\
\left|C_{i}\right| \frac{d u_{i}}{d t}+\sum_{K \mid i \in K} \phi_{i}^{K}=0
\end{gathered}
$$

Finite Volume schemes and Fluctuations

The FV scheme reads

$$
\left|C_{i}\right| \frac{d u_{i}}{d t}+\sum_{K \mid i \in K} \phi_{i}^{K}=0, \quad \phi_{i}^{K}=\sum_{j \in K}\left(\widehat{\mathcal{F}}_{i j}-\mathcal{F}_{i}\right) \cdot \vec{n}_{i j}^{K}
$$

Discrete conservation

$$
\widehat{\mathcal{F}}_{i j} \cdot \vec{n}_{i j}^{K}+\widehat{\mathcal{F}}_{j i} \cdot \vec{n}_{j i}^{K}=0 \Longrightarrow \sum_{j \in K} \phi_{j}^{K}=\frac{1}{2} \sum_{j \in K} \mathcal{F}_{i} \cdot \vec{n}_{j}:=\phi^{K}
$$

Finite Volume schemes and Fluctuations

The FV scheme reads

$$
\left|C_{i}\right| \frac{d u_{i}}{d t}+\sum_{K \mid i \in K} \phi_{i}^{K}=0, \quad \phi_{i}^{K}=\sum_{j \in K}\left(\widehat{\mathcal{F}}_{i j}-\mathcal{F}_{i}\right) \cdot \vec{n}_{i j}^{K}
$$

Discrete conservation (\mathcal{F}_{h} continuous P^{1} finite element approx.)

$$
\sum_{j \in K} \phi_{j}^{K}=\phi^{K}=\int_{K} \nabla \cdot \mathcal{F}_{h}
$$

Finite Volume schemes and Fluctuations

The FV scheme reads (\mathcal{F}_{h} continuous P^{1} finite element approx.)

$$
\begin{gathered}
\phi^{K}=\int_{K} \nabla \cdot \mathcal{F}_{h}, \quad \overbrace{\sum_{j \in K} \phi_{i}^{K}=\phi^{K}}^{\text {Discrete conservation }} \\
\left|C_{i}\right| \frac{d u_{i}}{d t}+\sum_{K \mid i \in K} \phi_{i}^{K}=0, \quad \phi_{i}^{K}=\sum_{j \in K}\left(\widehat{\mathcal{F}}_{i j}-\mathcal{F}_{i}\right) \cdot \vec{n}_{i j}^{K}
\end{gathered}
$$

Residual Distribution framework (steady)

Residual Distribution framework (steady)

$$
\begin{array}{rlrl}
\nabla \cdot \mathcal{F}(u) & =0 \quad \text { in } \quad \Omega \\
u & =g \quad \text { on } \quad \Gamma^{-} \tag{1}\\
\vec{a}(u) & =\partial_{u} \mathcal{F}(u) &
\end{array}
$$

Some notations...

- Consider Ω_{h} tesselation of Ω
- Unknowns (Degrees of Freedom, DoF) : $u_{i} \approx u\left(M_{i}\right)$
- $M_{i} \in \Omega_{h}$ a given set of nodes (vertices +other dofs)
- u_{h} : continuous polynomial interpolation (FE) $u_{h}=\sum_{i} \psi_{i} u_{i}$

Residual Distribution framework (steady)

For $n \geq 0$, until steady state do :

For all $K \in$ mesh do

1. compute cell residual $\phi^{K}=\oint_{\partial K} \mathcal{F}_{h}\left(u_{h}^{n}\right) \cdot \hat{n} d l$
2. distribute cell residual $\phi^{K}=\sum_{i \in K} \phi_{i}^{K}$

For all $i \in$ mesh do
3. evolve $\left|C_{i}\right| \frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}=-\sum_{K \mid i \in K} \phi_{i}^{K}\left(u_{h}^{n}\right)$

$$
\Longrightarrow \sum_{K \mid i \in K} \phi_{i}^{K}\left(u_{h}^{n}\right)=0
$$

Structural conditions

Stability. which form of stability (energy/entropy, equivalent algebraic condition, convergence ?), choice of ϕ_{i}^{K}

ACCURACY. characterization of the error, choice of ϕ_{i}^{K}

Oscillations. monotonicity preserving schemes, choice of ϕ_{i}^{K}

What can we say about the stability of this method ?
First : what is stability ?

What can we say about the stability of this method?

First : What is stability ?
Recall that we are solving steady state equations with by means of iterations

$$
u_{i}^{n+1}=u_{i}^{n}-\omega_{i} \sum_{K \mid i \in K} \phi_{i}^{K}\left(u_{h}^{n}\right), \quad \omega_{i}=\frac{\Delta t}{\left|C_{i}\right|}
$$

For h fixed (mesh), what can be said about the convergence to the steady solution we seek ?

What can we say about the stability of this method ?

First : What is stability ?
Abstractly, for h fixed we look at the convergence of (with ω a scalar,e.g. $\min _{i} \omega_{i}$)

$$
\mathbf{u}^{n+1}=\mathbf{u}^{n}-\omega\left(A_{h} \mathbf{u}^{n}-f\right)
$$

What can we say about the stability of this method?

First : What is stability ?
Abstractly, for h fixed we look at the convergence of (with ω a scalar,e.g. $\min _{i} \omega_{i}$)

$$
\mathbf{u}^{n+1}=\mathbf{u}^{n}-\omega\left(A_{h} \mathbf{u}^{n}-f\right)
$$

A condition for convergence with $n \rightarrow \infty$ but h fixed

$$
\left\|\left(\mathbf{I}-\omega A_{h}\right) \mathbf{u}\right\|^{2} \leq r\|\mathbf{u}\|^{2}, \quad \forall \mathbf{u} \text { and with } r<1
$$

which is equivalent to

$$
\mathbf{u}^{t} A_{h} \mathbf{u} \geq \frac{1-r}{2 \omega}\|\mathbf{u}\|^{2}+\frac{\omega}{2}\left\|A_{h} \mathbf{u}\right\|^{2} \geq C_{h}\|\mathbf{u}\|^{2} \geq 0 \quad \forall \mathbf{u}
$$

Coercivity ...

Weaker stability...?

Stability and energy

Consider the steady limit of

$$
\partial_{t} u+\vec{a} \cdot \nabla u=0
$$

Semi-discrete counterpart

$$
\left|C_{i}\right| \frac{d u_{i}}{d t}+\sum_{K \mid i \in K} \phi_{i}^{K}=0
$$

EnERGY BUDGET
The equivalent of the quantity $\mathrm{u}^{t} A_{h} \mathbf{u}$ seen in the previous slides is

$$
\begin{aligned}
\mathbf{u}^{t} A_{h} \mathbf{u} & \equiv \sum_{i \in \Omega_{h}} u_{i} \sum_{K \mid i \in K} \phi_{i}^{K} \\
& =\sum_{K \in \Omega_{h}} \sum_{i \in K} u_{i} \phi_{i}^{K}=\sum_{K \in \Omega_{h}} \phi_{K}^{\mathcal{E}}
\end{aligned}
$$

Stability and energy

Starting from

$$
\left|C_{i}\right| \frac{d u_{i}}{d t}+\sum_{K \mid i \in K} \phi_{i}^{K}=0
$$

Energy budget

$$
\sum_{i \in \Omega_{h}}\left|C_{i}\right| u_{i} \frac{d u_{i}}{d t}+\sum_{K \in \Omega_{h}} \phi_{K}^{\mathcal{E}}=0
$$

Stability and energy

Starting from

$$
\left|C_{i}\right| \frac{d u_{i}}{d t}+\sum_{K \mid i \in K} \phi_{i}^{K}=0
$$

Energy budget

$$
\int_{\Omega_{h}} \frac{d \mathcal{E}_{h}}{d t}+\sum_{K \in \Omega_{h}} \phi_{K}^{\mathcal{E}}=0
$$

with the energy density

$$
\mathcal{E}=\frac{u^{2}}{2}
$$

and with $\mathcal{E}_{h}=\sum_{i \in \Omega_{h}} \mathcal{E}_{i} \psi_{i}$ (piecewise linear)

Stability and energy

Saying that

$$
0<\mathbf{u}^{t} A_{h} \mathbf{u} \equiv \sum_{K \in \Omega_{h}} \phi_{K}^{\mathcal{E}}
$$

is equivalent to
Energy stability

$$
\int_{\Omega_{h}} \frac{d \mathcal{E}_{h}}{d t}=-\sum_{K \in \Omega_{h}} \phi_{K}^{\mathcal{E}} \leq 0
$$

with the energy density

$$
\mathcal{E}=\frac{u^{2}}{2}
$$

and with $\mathcal{E}_{h}=\sum_{i \in \Omega_{h}} \mathcal{E}_{i} \psi_{i}$ (piecewise linear)

STABILITY AND ENERGY

Saying that

$$
0<\mathbf{u}^{t} A_{h} \mathbf{u} \equiv \sum_{K \in \Omega_{h}} \phi_{K}^{\mathcal{E}}
$$

is equivalent to
Energy stability (modulo boundary Conditions)

$$
\int_{\Omega_{h}} \frac{d \mathcal{E}_{h}}{d t}=-\int_{\partial \Omega_{h}} \mathcal{E}_{h} \vec{a} \cdot \hat{n} d l-\delta^{\mathcal{E}}, \quad \delta^{\mathcal{E}} \geq 0
$$

what one would like is to find that

$$
\phi_{K}^{\mathcal{E}}=\int_{\partial K} \mathcal{E}_{h} \vec{a} \cdot \hat{n} d l+\delta_{K}^{\mathcal{E}}, \quad \delta_{K}^{\mathcal{E}} \geq 0
$$

Stability and upwinding

Consider again the steady limit of

$$
\partial_{t} u+\vec{a} \cdot \nabla u=0
$$

A GEOMETRICAL VIEW OF ADVECTION...

Stability and upwinding

Consider again the steady limit of

$$
\partial_{t} u+\vec{a} \cdot \nabla u=0
$$

A geometrical view of advection...

1-target triangle

The inlet region is an edge 1 node downstream : 1 target

$$
k_{j}=\frac{\vec{a} \cdot \vec{n}_{j}}{2}>0
$$

Stability and upWinding

Consider again the steady limit of

$$
\partial_{t} u+\vec{a} \cdot \nabla u=0
$$

A GEOMETRICAL VIEW OF ADVECTION...

2-target triangle
The outlet region is an edge 2 nodes downstream : 2 targets

$$
k_{j}=\frac{\vec{a} \cdot \vec{n}_{j}}{2}>0
$$

Stability and upwinding

Consider again the steady limit of

$$
\partial_{t} u+\vec{a} \cdot \nabla u=0
$$

A GEOMETRICAL VIEW OF ADVECTION...

2-target triangle
The outlet region is an edge 2 nodes downstream : 2 targets

$$
k_{j}=\frac{\vec{a} \cdot \vec{n}_{j}}{2}>0
$$

Stability and upwinding

Consider now the semi-discrete RD advection equation :

$$
\left|C_{i}\right| \frac{d u_{i}}{d t}+\sum_{K \mid i \in K} \phi_{i}^{K}=0
$$

A geometrical view of advection...

Multidimensional Upwinding (MU)
Multidimensional Upwind (MU) schemes only split ϕ^{K} to downstream nodes, i.e. those for which $k_{j}>0$.

1. All MU schemes reduce to the same in the 1-target case
2. All MU scheme reduce to the upwind scheme in 1D

Stability and upwinding

Consider now the semi-discrete RD advection equation :

$$
\left|C_{i}\right| \frac{d u_{i}}{d t}+\sum_{K \mid i \in K} \phi_{i}^{K}=0
$$

A geometrical view of advection...

Multidimensional Upwinding (MU)
Multidimensional Upwind (MU) schemes
In 1-target elements, (assume node 1 is downstream)

$$
\begin{array}{r}
\phi_{1}^{K}=\phi^{K} \\
\phi_{2}^{K}=0 \\
\phi_{3}^{K}=0
\end{array}
$$

Stability and upwinding

Consider now the semi-discrete RD advection equation :

$$
\left|C_{i}\right| \frac{d u_{i}}{d t}+\sum_{K \mid i \in K} \phi_{i}^{K}=0
$$

A GEOMETRICAL VIEW OF ADVECTION...

Multidimensional Upwinding (MU)
Multidimensional Upwind (MU) schemes
In 2-targets elements (assume node 1 is upstream)

$$
\begin{array}{r}
\phi_{1}^{K}=0 \\
\phi_{2}^{K}+\phi_{3}^{K}=\phi^{K}
\end{array}
$$

Stability and MU schemes

Example 1: Roe's optimal N scheme ${ }^{1}$

[^1]
Stability and MU schemes

Example 2: the LDA scheme

Stability and MU

The following properties can be easily shown :

1. MU schemes, 1-target (Deconinck, Ricchiuto Enc.Comput.Mech., 2007)

$$
\phi_{K}^{\mathcal{E}}=\int_{\partial K} \mathcal{E}_{h} \vec{a} \cdot \hat{n} d l+\delta_{K}^{\mathcal{E}}, \quad \delta_{K}^{\mathcal{E}} \geq 0
$$

2. N scheme energy stable (Barth, NASA 1996 ; Abgrall, Barth SISC, 2002)
3. LDA scheme, 2-targets (Deconinck, Ricchiuto Enc.Comput.Mech., 2007)

$$
\phi_{\mathrm{LDA}}^{\mathcal{E}}=\underbrace{\left(\sum_{j \in K} k_{j}^{+}\right)\left(\frac{u_{o u t}^{2}}{2}-\frac{u_{i n}^{2}}{2}\right)}_{\begin{array}{c}
\text { NRG balance } \\
\text { along streamline }
\end{array}}+\delta_{\mathrm{LDA}}^{\mathcal{E}}, \quad \delta_{\mathrm{LDA}}^{\mathcal{E}} \geq 0
$$

Multidimensional upwinding does the job ...

Stability, upWinding, and dissipation

1. FV scheme (1st order upwind) NRG stable (Barth, NASA 1996 ; Abgrall, Barth SISC, 2002), also E-flux schemes by (Osher SINUM, 1984)
2. Streamline upwind finite element scheme SUPG (Hughes, Brooks CMAME, 1982) :

$$
\int_{\Omega_{h}} \psi_{i} \nabla \cdot \mathcal{F}_{h}\left(u_{h}\right)+\sum_{K \in \Omega_{h}} \int_{K} \vec{a}\left(u_{h}\right) \cdot \nabla \psi_{i} \tau \vec{a}\left(u_{h}\right) \cdot \nabla u_{h}=0
$$

can be written as the RD scheme with ${ }^{2}$

$$
\phi_{i}^{K}=\beta_{i}^{\text {SUPG }} \phi^{K} \quad \text { with } \quad \beta_{i}^{\text {SUPG }}=\frac{1}{3}+\frac{k_{i}}{|K|} \tau
$$

Stability, upWinding, and dissipation

1. FV scheme (1st order upwind) NRG stable (Barth, NASA 1996 ; Abgrall, Barth SISC, 2002), also E-flux schemes by (Osher SINUM, 1984)
2. Streamline upwind finite element scheme SUPG (Hughes, Brooks CMAME, 1982) :

$$
\phi_{\mathrm{SUPG}}^{\mathcal{E}}=\oint_{\partial K} \frac{u_{h}^{2}}{2} \vec{a} \cdot \hat{n} d l+\underbrace{\int_{K}^{K} \vec{a} \cdot \nabla u_{h} \tau \vec{a} \cdot \nabla u_{h}}_{\begin{array}{c}
\text { Streamline } \\
\text { dissipation } \geq 0
\end{array}}
$$

Stability, upWinding, and dissipation

1. FV scheme (1st order upwind) NRG stable (Barth, NASA 1996 ; Abgrall, Barth SISC, 2002), also E-flux schemes by (Osher SINUM, 1984)
2. Streamline upwind finite element scheme SUPG (Hughes, Brooks CMAME, 1982) :

$$
\phi_{\mathrm{SUPG}}^{\mathcal{E}}=\oint_{\partial K} \frac{u_{h}^{2}}{2} \vec{a} \cdot \hat{n} d l+\underbrace{\int_{K}^{K} \vec{a} \cdot \nabla u_{h} \tau \vec{a} \cdot \nabla u_{h}}_{\begin{array}{c}
\text { Streamline } \\
\text { dissipation } \geq 0
\end{array}}
$$

3. Lax-Friedrich's/Rusanov scheme

$$
\phi_{i}^{\mathrm{LF}}=\int_{K} \psi_{i} \vec{a} \cdot \nabla u_{h}+\alpha_{\mathrm{LF}} \sum_{j \in K}\left(u_{i}-u_{j}\right)
$$

Stability, upWinding, and dissipation

1. FV scheme (1st order upwind) NRG stable (Barth, NASA 1996 ; Abgrall, Barth SISC, 2002), also E-flux schemes by (Osher SINUM, 1984)
2. Streamline upwind finite element scheme SUPG (Hughes, Brooks CMAME, 1982) :

$$
\phi_{\text {SUPG }}^{\mathcal{E}}=\oint_{\partial K} \frac{u_{h}^{2}}{2} \vec{a} \cdot \hat{n} d l+\underbrace{\int_{K} \vec{a} \cdot \nabla u_{h} \tau \vec{a} \cdot \nabla u_{h}}_{\begin{array}{c}
\text { Streamline } \\
\text { dissipation } \geq 0
\end{array}}
$$

3. Lax-Friedrich's/Rusanov scheme (P^{1} case)

$$
\phi_{\mathrm{LF}}^{\mathcal{E}}=\oint_{\partial K} \frac{u_{h}^{2}}{2} \vec{a} \cdot \hat{n} d l+\frac{\alpha_{\mathrm{LF}}}{3} \sum_{i, j \in K}\left(u_{i}-u_{j}\right)^{2}
$$

Stability, upwinding, and dissipation

Upwinding has beneficial effect in terms of energy stability

Design criteria : Accuracy, what is the truncation error ?

- By Taylor expansion : only on structured meshes
- Error analysis based on variational form :

1. variational form unclear for RD (only for FV and stabilized FEM)
2. NRG stability not enough (too weak, for FV and stabilized FEM stronger stability can be shown)

Design criteria : what is the truncation error ?

Idea: use the same principles of the TE analysis in a 'weak' formalism ...

$$
\int_{\Omega} \nabla \varphi \cdot \mathcal{F}(u) d x+\mathrm{BC} \mathbf{s}=0 \longleftrightarrow \int_{\Omega} \nabla \varphi \cdot \mathcal{F}_{h}\left(u_{h}\right) d x+\mathrm{BC} s=\varepsilon_{h}
$$

with u a smooth exact (classical) solution
This gives a consistency estimate..

Design criteria, consistency analysis

What do We have ... ?

Consider

1. $w \in H^{k+1}$ smooth solution: $\nabla \cdot \mathcal{F}(w)=\partial_{u} \mathcal{F}(w) \cdot \nabla w=0$
2. $w-w_{h}=O\left(h^{k+1}\right), \mathcal{F}(w)-\mathcal{F}_{h}\left(w_{h}\right)=O\left(h^{k+1}\right)$ in L^{2} from approximation theory, see e.g. (Ern, Guermond Springer, 2004)
3. $\nabla\left(w-w_{h}\right)=O\left(h^{k}\right), \nabla \cdot\left(\mathcal{F}(w)-\mathcal{F}_{h}\left(w_{h}\right)\right)=O\left(h^{k}\right)$ in L^{2} from approximation theory, see e.g. (Ern, Guermond Springer, 2004)
with w_{h} a continuous polynomial approximation of degree k (e.g standard Lagrange elements)

Design criteria, consistency analysis

Continuous Lagrange elements

Design criteria, consistency analysis

What do we do ... ?
Consider

1. $w \in H^{k+1}$ smooth solution : $\nabla \cdot \mathcal{F}(w)=\partial_{u} \mathcal{F}(w) \cdot \nabla w=0$
2. $w-w_{h}=O\left(h^{k+1}\right), \mathcal{F}(w)-\mathcal{F}_{h}\left(w_{h}\right)=O\left(h^{k+1}\right)$ in L^{2} from approximation theory, see e.g. (Ern, Guermond Springer, 2004)
3. $\nabla\left(w-w_{h}\right)=O\left(h^{k}\right), \nabla \cdot\left(\mathcal{F}(w)-\mathcal{F}_{h}\left(w_{h}\right)\right)=O\left(h^{k}\right)$ in L^{2} from approximation theory, see e.g. (Ern, Guermond Springer, 2004)

Take the steady RD scheme

$$
\sum_{K \mid i \in K} \phi_{i}^{K}\left(u_{h}\right)=0
$$

approximating $\nabla \cdot \mathcal{F}$ in node i

Design criteria, consistency analysis

What do We do ... ?
Consider

1. $w \in H^{k+1}$ smooth solution: $\nabla \cdot \mathcal{F}(w)=\partial_{u} \mathcal{F}(w) \cdot \nabla w=0$
2. $w-w_{h}=O\left(h^{k+1}\right), \mathcal{F}(w)-\mathcal{F}_{h}\left(w_{h}\right)=O\left(h^{k+1}\right)$ in L^{2} from approximation theory, see e.g. (Ern, Guermond Springer, 2004)
3. $\nabla\left(w-w_{h}\right)=O\left(h^{k}\right), \nabla \cdot\left(\mathcal{F}(w)-\mathcal{F}_{h}\left(w_{h}\right)\right)=O\left(h^{k}\right)$ in L^{2} from approximation theory, see e.g. (Ern, Guermond Springer, 2004)

Formally replace the nodal values of u_{h}, computed by the scheme, with those of the exact solution w, exaclty as done in finite difference TE analysis

Design criteria, consistency analysis

What do we do ... ?
Consider

1. $w \in H^{k+1}$ smooth solution : $\nabla \cdot \mathcal{F}(w)=\partial_{u} \mathcal{F}(w) \cdot \nabla w=0$
2. $w-w_{h}=O\left(h^{k+1}\right), \mathcal{F}(w)-\mathcal{F}_{h}\left(w_{h}\right)=O\left(h^{k+1}\right)$ in L^{2} from approximation theory, see e.g. (Ern, Guermond Springer, 2004)
3. $\nabla\left(w-w_{h}\right)=O\left(h^{k}\right), \nabla \cdot\left(\mathcal{F}(w)-\mathcal{F}_{h}\left(w_{h}\right)\right)=O\left(h^{k}\right)$ in L^{2} from approximation theory, see e.g. (Ern, Guermond Springer, 2004)

We obtain

$$
\sum_{K \mid i \in K} \phi_{i}^{K}\left(w_{h}\right) \neq 0
$$

since of course the nodal values of the exact solution w do not verify the discrete equations

Design criteria, consistency analysis

What do We do ... ?
Consider

1. $w \in H^{k+1}$ smooth solution : $\nabla \cdot \mathcal{F}(w)=\partial_{u} \mathcal{F}(w) \cdot \nabla w=0$
2. $w-w_{h}=O\left(h^{k+1}\right), \mathcal{F}(w)-\mathcal{F}_{h}\left(w_{h}\right)=O\left(h^{k+1}\right)$ in L^{2} from approximation theory, see e.g. (Ern, Guermond Springer, 2004)
3. $\nabla\left(w-w_{h}\right)=O\left(h^{k}\right), \nabla \cdot\left(\mathcal{F}(w)-\mathcal{F}_{h}\left(w_{h}\right)\right)=O\left(h^{k}\right)$ in L^{2} from approximation theory, see e.g. (Ern, Guermond Springer, 2004)

Given φ a $C_{0}^{r}(\Omega)$ class function, r large enough, define

$$
\epsilon_{h}:=\sum_{i \in \Omega_{h}} \varphi_{i} \sum_{K \mid i \in K} \phi_{i}^{K}\left(w_{h}\right)
$$

A global measure of how much the discrete equations differ from the continuous one

Design criteria, consistency analysis

What do we do ... ?
Estimate ϵ_{h} (Abgrall, Roe J.Sci.Comp., 2003 ; Ricchiuto, Abgrall, Deconinck J.Comput.Phys, 2007)

$$
\begin{aligned}
\epsilon_{h} & =\sum_{K \in \Omega_{h}} \sum_{i \in K} \varphi_{i} \phi_{i}^{K}\left(w_{h}\right)=\epsilon_{a}+\epsilon_{d} \\
\epsilon_{a} & =-\underbrace{\int_{\Omega_{h}} \nabla \varphi_{h} \cdot\left(\mathcal{F}_{h}\left(w_{h}\right)-\mathcal{F}(w)\right)}_{\text {approximation error }} \rightarrow\left\|\epsilon_{a}\right\| \leq C_{a}^{\prime} h^{k+1}
\end{aligned}
$$

$$
\epsilon_{d}=\underbrace{\sum_{K \in \Omega_{h}} \sum_{i, j \in K} \frac{\varphi_{i}-\varphi_{j}}{n_{\mathrm{DoF}}^{K}}\left(\phi_{i}^{K}\left(w_{h}\right)-\phi_{i}^{\mathrm{G}}\left(w_{h}\right)\right)}_{\text {distribution error }}
$$

$$
\rightarrow\left\|\epsilon_{d}\right\| \leq C^{\prime} h^{-1} \sup _{K} \sup _{i \in K}\left\|\phi_{i}^{K}\left(w_{h}\right)\right\|+C_{a}^{\prime \prime \prime} h^{k+1}
$$

Design criteria, consistency analysis

What do we do ... ?
Estimate ϵ_{h} (Abgrall, Roe J.Sci.Comp., 2003 ; Ricchiuto, Abgrall, Deconinck J.Comput.Phys, 2007)

$$
\left\|\epsilon_{h}\right\| \leq C_{a} h^{k+1}+C^{\prime} h^{-1} \sup _{K} \sup _{i \in K}\left\|\phi_{i}^{K}\left(w_{h}\right)\right\|
$$

For a polynomial approximation of degree k,
a sufficient condition to have a $\left\|\epsilon_{h}\right\| \leq C h^{k+1}$ is (in 2d)

$$
\phi_{i}^{K}\left(w_{h}\right)=\mathcal{O}\left(h^{k+2}\right), \quad \forall K \in \Omega_{h}, \forall i \in K
$$

Design criteria, high order schemes

For a polynomial approximation of degree k, a sufficient condition to have a $\left\|\epsilon_{h}\right\| \leq C h^{k+1}$ is (in 2d)

$$
\phi_{i}^{K}\left(w_{h}\right)=\mathcal{O}\left(h^{k+2}\right), \quad \forall K \in \Omega_{h}, \forall i \in K
$$

High order prototype 1 (FEM-LIke)

$$
\phi_{i}^{K}\left(u_{h}\right)=\int_{K} \omega_{i}^{K} \nabla \cdot \mathcal{F}_{h}\left(u_{h}\right),\left\|\omega_{i}^{K}\right\|<C<\infty
$$

High order prototype 2 (std RD)

$$
\phi_{i}^{K}\left(u_{h}\right)=\beta_{i}^{K} \oint_{\partial K} \mathcal{F}_{h}\left(u_{h}\right) \cdot \hat{n} d l=\beta_{i}^{K} \phi^{K}\left(u_{h}\right),\left\|\beta_{i}^{K}\right\|<C<\infty
$$

High order schemes, examples

LDA scheme (P^{1}) Elements

Distribution coeff. :

$$
\beta_{i}^{\mathrm{LDA}}=k_{i}^{+}\left(\sum_{j \in K} k_{j}^{+}\right)^{-1}
$$

SUPG
Test fcn :

$$
\omega_{i}^{K}=\psi_{i}+\vec{a}\left(u_{h}\right) \cdot \nabla \psi_{i} \tau, \quad \vec{a}\left(u_{h}\right)=\partial_{u} \mathcal{F}\left(u_{h}\right)
$$

Nonlinear high order schemes

So FAR WE HAVE

1. A "stability" criterion requiring an upwind bias (other stabilization strategies mentioned later if time ..)
2. An accuracy (consistency) criterion requiring bounded weights in the residual splitting

In other words ..

Nonlinear high order schemes

In OTHER WORDS

The scheme should read (let's stick to RD-like schemes, or P^{1} approximation)

$$
\left|C_{i}\right| \frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}+\sum_{K \mid i \in K} \beta_{i}^{K} \phi^{K}=0
$$

1. with β_{i}^{K} larger for downstream nodes (upwinding, stability) ;
2. with uniformly bounded β_{i}^{K} (consistency).

How about discontinuity capturing ?

Discontinuity capturing : positivity

$$
\left|C_{i}\right| \frac{d u_{i}}{d t}=-\sum_{K \mid i \in K} \phi_{i}^{K}
$$

Positive coefficient scheme (Spekreisse, Math. Comp. 49, 1987)
A scheme for which

$$
\phi_{i}^{K}=\sum_{\substack{j \in K \\ j \neq i}} c_{i j}^{K}\left(u_{i}-u_{j}\right) \quad \text { with } \quad c_{i k}^{K} \geq 0
$$

s said to be LED (Local Extremum Diminishing ${ }^{1}$)

Discontinuity capturing : Positivity

$$
\left|C_{i}\right| \frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}=-\sum_{K \backslash i \in K} \sum_{\substack{j \in K \\ j \neq i}} c_{i j}^{K}\left(u_{i}^{n}-u_{j}^{n}\right)
$$

Positive coefficient scheme (Spekreise, Math. Comp. 49, 1987)

When combined with Explicit Euler time integration ${ }^{1}$ the LED property leads to

$$
u_{i}^{n+1}=\sum_{j} \bar{c}_{i j} u_{j}^{n}
$$

where

$$
\sum_{j} \bar{c}_{i j}=1 \quad \text { and } \quad \bar{c}_{i j} \geq 0\left(\text { provided } \quad \frac{\Delta t}{\left|C_{i}\right|} \sum_{j} c_{i j}^{K} \leq 1\right)
$$

In this case the scheme is said (by abuse of language) to be positive
A positive scheme verifies the discrete max principle

$$
\min _{j} u_{j}^{n} \leq u_{i}^{n+1} \leq \max _{j} u_{j}^{n}
$$

Generalization of TVD and monotonicity analysis of Harten (A. Harten J.Cumput.Phys 1983)

[^2]
Positive schemes : examples

Example 1: Roe's optimal N scheme ${ }^{1}$

[^3]
Nonlinear high order schemes

Example 2: Lax-Friedrich's distribution

$$
\phi_{i}^{\mathrm{LF}}=\int_{K} \psi_{i} \nabla \cdot \mathcal{F}_{h}+\alpha_{\mathrm{LF}} \sum_{j \in K}\left(u_{i}-u_{j}\right)
$$

for positivity (scalar case)

$$
\alpha_{\mathrm{LF}} \geq h_{K} \sup _{x \in K}\left\|\partial_{u} \mathcal{F}\left(u_{h}(x)\right)\right\|
$$

Nonlinear high order schemes

Bad news ... (Godunov)
All linear positive (LED) schemes are first order accurate ...

Nonlinear high order schemes

Good news ... Limiters
We know the answer to this limitation since more than 40 years now : we need nonlinear schemes.

Let us introduce a limiter.. somewhere

Nonlinear high order schemes

Where does the limiter $\ell(\cdot)$ come in
Recall that one prototype of a high order scheme is obtained as the steady state of

$$
\left|C_{i}\right| \frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}+\sum_{K \mid i \in K} \beta_{i}^{K} \phi^{K}\left(u_{h}\right),\left\|\beta_{i}^{K}\right\| \leq C<\infty
$$

Nonlinear high order schemes

Where does the limiter $\ell(\cdot)$ come in

Recall that one prototype of a high order scheme is obtained as the steady state of

$$
\left|C_{i}\right| \frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}+\sum_{K \mid i \in K} \beta_{i}^{K} \phi^{K}\left(u_{h}\right), \quad\left\|\beta_{i}^{K}\right\| \leq C<\infty
$$

For linear positive coefficient schemes

$$
\phi_{i}^{\mathrm{P}}\left(u_{h}\right)=\sum_{j \in K} c_{i j}^{K}\left(u_{i}-u_{j}\right), \quad c_{i j}^{K} \geq 0
$$

Formally we have

$$
\beta_{i}^{\mathrm{P}}\left(u_{h}\right)=\frac{\sum_{j \in K} c_{i j}^{K}\left(u_{i}-u_{j}\right)}{\phi^{K}\left(u_{h}\right)} \quad \text { in general unbounded! }
$$

Nonlinear high order schemes

Where does the limiter $\ell(\cdot)$ come in

Recall that one prototype of a high order scheme is obtained as the steady state of

$$
\left|C_{i}\right| \frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}+\sum_{K \mid i \in K} \beta_{i}^{K} \phi^{K}\left(u_{h}\right), \quad\left\|\beta_{i}^{K}\right\| \leq C<\infty
$$

For linear positive coefficient schemes

$$
\phi_{i}^{\mathrm{P}}\left(u_{h}\right)=\sum_{j \in K} c_{i j}^{K}\left(u_{i}-u_{j}\right), \quad c_{i j}^{K} \geq 0
$$

Formally we have

$$
\beta_{i}^{\mathrm{P}}\left(u_{h}\right)=\frac{\sum_{j \in K} c_{i j}^{K}\left(u_{i}-u_{j}\right)}{\phi^{K}\left(u_{h}\right)} \quad \text { in general unbounded! }
$$

Why not applying a limiter to get a bounded coefficient ? .. !!!

Nonlinear high order schemes

Where does the limiter $\ell(\cdot)$ come in
Linear positive coefficient schemes

$$
\begin{gathered}
\phi_{i}^{\mathrm{P}}\left(u_{h}\right)=\sum_{j \in K} c_{i j}^{K}\left(u_{i}-u_{j}\right), c_{i j}^{K} \geq 0 ; \quad \beta_{i}^{\mathrm{P}}\left(u_{h}\right)=\frac{\phi_{i}^{\mathrm{P}}\left(u_{h}\right)}{\phi^{K}\left(u_{h}\right)} \text { unbounded } \\
\beta_{i}^{\mathrm{L}}\left(u_{h}\right)=\frac{\ell\left(\beta_{i}^{\mathrm{P}}\left(u_{h}\right)\right)}{\sum_{j \in K} \ell\left(\beta_{j}^{\mathrm{P}}\left(u_{h}\right)\right)} \text { limited distribution coefficient }
\end{gathered}
$$

Nonlinear high order schemes

Where does the limiter come in
Linear positive coefficient schemes

$$
\begin{gathered}
\phi_{i}^{\mathrm{P}}\left(u_{h}\right)=\sum_{j \in K} c_{i j}^{K}\left(u_{i}-u_{j}\right), c_{i j}^{K} \geq 0 ; \quad \beta_{i}^{\mathrm{P}}\left(u_{h}\right)=\frac{\phi_{i}^{\mathrm{P}}\left(u_{h}\right)}{\phi^{K}\left(u_{h}\right)} \text { unbounded } \\
\beta_{i}^{\mathrm{LP}}\left(u_{h}\right)=\frac{\ell\left(\beta_{i}^{\mathrm{P}}\left(u_{h}\right)\right)}{\sum_{j \in K} \ell\left(\beta_{j}^{\mathrm{P}}\left(u_{h}\right)\right)} \text { limited distribution coefficient } \\
\text { Provided } \ell(r) \geq 0 \text { and } \frac{\ell(r)}{r} \geq 0 \text { we have } \\
\phi_{i}^{\mathrm{LP}}\left(u_{h}\right)=\beta_{i}^{\mathrm{LP}} \phi^{K}=\underbrace{\frac{\beta_{i}^{\mathrm{LP}}}{\beta_{i}^{\mathrm{P}}} \phi_{i}^{\mathrm{P}}}_{\gamma_{i}^{\mathrm{P}} \geq 0}=\sum_{j \in K} c_{i j}^{\mathrm{LP}}\left(u_{i}-u_{j}\right), \quad c_{i j}^{\mathrm{LP}}=\gamma_{i}^{\mathrm{P}} c_{i j}^{K} \geq 0!
\end{gathered}
$$

High order RD scheme

For $n \geq 0$, until steady state do :
For all $K \in$ mesh do

1. compute cell residual $\phi^{K}=\oint_{\partial K} \mathcal{F}_{h}\left(u_{h}\right) \cdot \hat{n} d l$
2. compute linear positive distribution $\phi_{i}^{\mathrm{P}}=\sum_{j} c_{i j}^{K}\left(u_{i}-u_{j}\right)$
3. limit $\beta_{i}^{\mathrm{P}}=\phi_{i}^{\mathrm{P}} / \phi^{K} \rightarrow \beta_{i}^{\mathrm{LP}}=\ell\left(\beta_{i}^{\mathrm{P}}\right) /\left(\sum_{j} \ell\left(\beta_{j}^{\mathrm{P}}\right)\right)$
4. distribute cell residual $\phi_{i}^{K}=\beta_{i}^{\mathrm{LP}} \phi^{K}$

For all $i \in$ mesh do
5. evolve $\left|C_{i}\right| \frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}=-\sum_{K \mid i \in K} \phi_{i}^{K}\left(u_{h}^{n}\right)$

LIMITER
The simplest possible choice is

$$
\ell(r)=\max (0, r)
$$

ExAMPLES

Rotational advection
Scalar example : $\vec{a} \cdot \nabla u=0$ with $\vec{a}=(y, 1-x)$ and bcs

$$
u_{\text {in }}= \begin{cases}\cos (2 \pi(x+0.5))^{2} & \text { if } x \in[-0.75,-0.25] \\ 0 & \text { otherwise }\end{cases}
$$

Examples (CONT'D)

Rotational advection
N and Limited $\mathrm{N}(\mathrm{LN})$ schemes

Examples (CONT'D)

Rotational advection
LF and Limited LF (LLF) schemes

Higher order nonlinear Lax Friedrich's scheme

Higher order nonlinear Lax Friedrich's scheme

		$\epsilon_{L^{2}}\left(P^{1}\right)$	$\epsilon_{L^{2}}\left(P^{2}\right)$
h	$\epsilon_{L^{2}}\left(P^{3}\right)$		
$1 / 25$	$0.50493 \mathrm{E}-02$	$0.32612 \mathrm{E}-04$	$0.12071 \mathrm{E}-05$
$1 / 50$	$0.14684 \mathrm{E}-02$	$0.48741 \mathrm{E}-05$	$0.90642 \mathrm{E}-07$
$1 / 75$	$0.74684 \mathrm{E}-03$	$0.13334 \mathrm{E}-05$	$0.16245 \mathrm{E}-07$
$1 / 100$	$0.41019 \mathrm{E}-03$	$0.66019 \mathrm{E}-06$	$0.53860 \mathrm{E}-08$
	$\mathcal{O}_{L^{2}}^{\mathrm{Is}}=\mathbf{1 . 7 9 0}$	$\mathcal{O}_{L^{2}}^{\mathrm{Is}}=\mathbf{2 . 8 4 8}$	$\mathcal{O}_{L^{2}}^{\mathrm{Is}}=\mathbf{3 . 9 2 0}$

Examples (CONT'D)

Burger's equation

Scalar example : $\nabla \cdot \mathcal{F}(u)=0$ with $\mathcal{F}(u)=\left(u, \frac{u^{2}}{2}\right)$ and bcs

$$
u(x, y=0)=1.5-2 x
$$

Examples (CONT'D)

Burger's equation

Examples (CONT'D)

Burger's equation

LF and Limited LF (LLF) schemes

Remarks on extension to systems

Historical Perspective

Two approaches (Roe J.Comput.Phys, 1986 ; Nishikawa, Rad, Roe AIAA Conf. 2001) and (van der Weide, Deconinck
Comput.Fluid Dyn., Wiley 1996)

1. Local projection (wave decomposition) of the continuous PDE to obtain (possibly decoupled) scalar equations discretized independently
2. Formal matrix generalization in which the scalar flux vector is replaced by a tensor and the $k_{i}=\vec{a} \cdot \vec{n}_{i} / 2$ coefficients become matrix flux Jacobians

Practical implementation

Hybrid of the two (Abgrall, Mezine J.Comput.Phys, 2004 ; Ricchiuto, Csik, Deconinck J.Comput.Phys, 2005) :

- Matrix formulation for linear first order schemes
- Projection onto characteristic directions to obtain scalar residuals to work with for the limiting procedure (similar to FV limiting on characteristic var.s)

Example 1 : Mach 3.6 scramjet inlet (Euler, perfect gas)

Mesh

Nonlinear scheme

Example 1 : Mach 3.6 scramjet inlet (Euler, perfect gas)

Mesh

LLFs scheme : P^{1} on conformally refined mesh

Scramjet inlet

EULER EQUATIONS : SUBSONIC CYLINDER

Euler equations : subsonic cylinder

Conformally refined $P^{1}-Q^{1}$ (left) vs $P^{2}-Q^{2}$ (right)

Example 2 : Mach 10 bow shock (Euler, perfect gas)

PART II

Time dependent problems and
a peek at dispersive equations

Time dependent advection

What is the problem with the time dependent case ..?

$$
\partial_{t} u+\vec{a} \cdot \nabla u=0 \quad \text { on } \quad \Omega \times\left[0, T_{f}\right] \subset \mathbb{R}^{2} \times \mathbb{R}^{+}
$$

Time dependent advection

What is the problem with the time dependent case ..?

$$
\begin{equation*}
\left|C_{i}\right| \frac{d u_{i}}{d t}+\sum_{K \mid i \in K} \beta_{i}^{K} \phi^{K}\left(u_{h}\right)=0 \tag{3}
\end{equation*}
$$

1-Compute fluctuation

2-Split

3 - Gather signals

Time dependent advection

What is the problem with the time dependent case ..?

$$
\left|C_{i}\right| \frac{d u_{i}}{d t}+\sum_{K \mid i \in K} \beta_{i}^{K} \phi^{K}\left(u_{h}\right)=0
$$

EXAMPLE : transport of a smooth profile (LN scheme + RK2)

Time dependent advection

$$
\left|C_{i}\right| \frac{d u_{i}}{d t}+\sum_{K \mid i \in K} \beta_{i}^{K} \phi^{K}\left(u_{h}\right)=0
$$

- This guy is in general only first order accurate in space, whatever the finite element approximation (P^{1}, P^{2}, etc) ;
- Obviously, using higher order time integration does not help, since it is the spatial discretization that is wrong

Time dependent advection

CONSISTENCY ANALYSIS ...

$$
\left|C_{i}\right| \frac{d u_{i}}{d t}+\sum_{K \mid i \in K} \beta_{i}^{K} \phi^{K}=0
$$

Time continuous consistency analysis ${ }^{3}$ (P^{1} triangles to fix ideas)

[^4]
Time dependent advection

Consistency analysis ...

$$
\left|C_{i}\right| \frac{d u_{i}}{d t}+\sum_{K \mid i \in K} \beta_{i}^{K} \phi^{K}=0
$$

Time continuous consistency analysis ${ }^{3}$ (P^{1} triangles to fix ideas)
(i) Let $w(t, x, y)$ be a regular exact solution: $\partial_{t} w+\vec{a} \cdot \nabla w=0, w_{i}(t)=w\left(t, x_{i}, y_{i}\right)$
(ii) Let $\phi^{K}\left(w_{h}\right)$ the quantity obtained when formally replacing the nodal values of the numerical solution by the $w_{i} \mathrm{~S}$
(iii) For $\varphi \in C_{0}^{1}$ be a compactly supported smooth function with $\varphi_{i}=\varphi\left(x_{i}, y_{i}\right)$
(iv) define the integral truncation error for a $\mathcal{L P}$ scheme

$$
\begin{aligned}
\epsilon & :=\left|\sum_{i \in \Omega_{h}} \varphi_{i}\right| C_{i}\left|\frac{d w_{i}}{d t}+\sum_{K \mid i \in K} \varphi_{i} \beta_{i}^{K} \phi^{K}\left(w_{h}\right)\right| \\
& =\left|\sum_{K \in \Omega_{h}} \sum_{j \in K} \varphi_{j}\left(\frac{|K|}{3} \frac{d w_{j}}{d t}+\beta_{j}^{K} \phi^{K}\left(w_{h}\right)\right)\right|
\end{aligned}
$$

[^5]
Time dependent advection

Consistency analysis ...

$$
\begin{aligned}
\epsilon & =\mid \int_{\Omega}\left(\varphi_{h} \partial_{t}\left(w_{h}-w\right)-\left(w_{h}-w\right) \vec{a} \cdot \nabla \varphi_{h}\right) \\
& +\sum_{K \in \Omega_{h}} \sum_{i, j \in K}\left(\varphi_{j}-\varphi_{i}\right)\left(\left|C_{j}\right| \frac{d w_{j}}{d t}+\beta_{j}^{K} \phi^{K}\left(w_{h}\right)\right) \\
- & \sum_{K \in \Omega_{h}} \sum_{i, j \in K}\left(\varphi_{j}-\varphi_{i}\right) \int_{K} \psi_{j}\left(\partial_{t}\left(w_{h}-w\right)+\vec{a} \cdot \nabla\left(w_{h}-w\right)\right) \mid \\
& \leq C_{1} h^{2}+C_{2} h^{-1} \sup _{\substack{K \in \Omega_{h} \\
j \in K}}\left|\frac{|K|}{3} \frac{d w_{j}}{d t}+\beta_{j}^{K} \phi^{K}\left(w_{h}\right)\right|
\end{aligned}
$$

To have $\epsilon<h^{2}$ we need the satisfaction of a local truncation error condition :

$$
\sup _{\substack{K \in \Omega_{h} \\ j \in K}}\left|\frac{|K|}{3} \frac{d w_{j}}{d t}+\beta_{j}^{K} \phi^{K}\left(w_{h}\right)\right| \leq C h^{3}
$$

Time dependent advection

CONSISTENCY ANALYSIS ...

Pushing it a bit more :

$$
\begin{aligned}
\left|\frac{|K|}{3} \frac{d w_{j}}{d t}+\beta_{j}^{K} \phi^{K}\left(w_{h}\right)\right| & =\left|\frac{|K|}{3} \frac{d w_{j}}{d t}+\beta_{j}^{K} \int_{K} \vec{a} \cdot \nabla w_{h}\right| \\
& =\left|\frac{|K|}{3} \frac{d w_{j}}{d t}-\beta_{j}^{K} \int_{K} \partial_{t} w_{h}+\beta_{j}^{K} \int_{K}\left(\partial_{t}\left(w_{h}-w\right)+\vec{a} \cdot \nabla\left(w_{h}-w\right)\right)\right| \\
& \leq\left|\frac{|K|}{3} \frac{d w_{j}}{d t}-\beta_{j}^{K} \int_{K} \partial_{t} w_{h}\right|+C h^{3}
\end{aligned}
$$

The h^{2} consistency condition is

$$
\left|\frac{|K|}{3} \frac{d w_{j}}{d t}-\beta_{j}^{K} \int_{K} \partial_{t} w_{h}\right| \leq C h^{3}
$$

This is in general not true...

How do we Get around this problem?

High order schemes for time dependent problems

$$
\Delta x \frac{d u_{i}}{d t}+a\left(u_{i}-u_{i-1}\right)=0
$$

How do we make it second order in space ?

High order schemes for time dependent problems

$$
\Delta x \frac{d u_{i}}{d t}+a\left(u_{i}-u_{i-1}\right)=0
$$

How do we make it second order in space ?
Finite Volume/Difference guy answers : enlarge the stencil

$$
\Delta x \frac{d u_{i}}{d t}+\frac{3}{2} a\left(u_{i}-u_{i-1}\right)-\frac{1}{2} a\left(u_{i-1}-u_{i-2}\right)=0
$$

High order schemes for time dependent problems

$$
\Delta x \frac{d u_{i}}{d t}+a\left(u_{i}-u_{i-1}\right)=0
$$

How do we make it second order in space ?
Finite Element guy answers : do not forget the mass matrix !

$$
m_{i i-1} \frac{d u_{i-1}}{d t}+m_{i i} \frac{d u_{i}}{d t}+m_{i i+1} \frac{d u_{i+1}}{d t}+a\left(u_{i}-u_{i-1}\right)=0
$$

High order schemes for time dependent problems

Step 1

$$
\partial_{t} u+a \partial_{x} u=0
$$

The Galerkin FEM discretization reads :

$$
\int_{\Omega_{h}} \psi_{i} \partial_{t} u_{h}+\frac{a}{2}\left(u_{i+1}-u_{i-1}\right)=0
$$

or equivalently (set $\left.\phi^{i+1 / 2}=a\left(u_{i+1}-u_{i}\right), \phi^{i-1 / 2}=a\left(u_{i}-u_{i-1}\right)\right)$

$$
\int_{\Omega_{h}} \psi_{i} \partial_{t} u_{h}+\frac{1}{2} \phi^{i-1 / 2}+\frac{1}{2} \phi^{i+1 / 2}=0
$$

High order schemes for time dependent problems

Step 1
The (P^{1}) Galerkin mass matrix is obtained as

$$
\int_{\Omega_{h}} \psi_{i} \partial_{t} u_{h}=\frac{\Delta x}{6} \frac{d u_{i-1}}{d t}+\frac{2 \Delta x}{3} \frac{d u_{i}}{d t}+\frac{\Delta x}{6} \frac{d u_{i+1}}{d t}
$$

As a result, we get the fourth order scheme (w.r.t. Δx)

$$
\frac{\Delta x}{6} \frac{d u_{i-1}}{d t}+\frac{2 \Delta x}{3} \frac{d u_{i}}{d t}+\frac{\Delta x}{6} \frac{d u_{i+1}}{d t}+\frac{a}{2}\left(u_{i+1}-u_{i-1}\right)=0
$$

High order schemes for time dependent problems

Step 2

$$
\partial_{t} u+a \partial_{x} u=0
$$

Can we find a Petrov-Galerkin test function ω_{i} which yields :

$$
\int_{\Omega_{h}} \omega_{i} \partial_{t} u_{h}+a\left(u_{i}-u_{i-1}\right)=0 \quad \text { ??? }
$$

The answer is yes, but the solution is not unique!

High order schemes for time dependent problems

Step 3(A)

$$
\partial_{t} u+a \partial_{x} u=0
$$

SUPG scheme of Hughes and co-workers :

$$
\overbrace{\int_{\Omega_{h}} \psi_{i}\left(\partial_{t} u_{h}+a \partial_{x} u_{h}\right)}^{\text {Galerkin }}+\overbrace{\int_{\Omega_{h}} a \partial_{x} \psi_{i} \tau\left(\partial_{t} u_{h}+a \partial_{x} u_{h}\right)}^{\text {Streamline dissipation terms }}=0
$$

For $\tau=\Delta x /(2|a|)$ one easily shows that $(a>0)$

$$
\int_{\Omega_{h}}\left(\psi_{i}+a \partial_{x} \psi_{i} \tau\right) a \partial_{x} u_{h}=\int_{\Omega_{h}}\left(\psi_{i}+\Delta x \frac{\operatorname{sign}(a)}{2} \partial_{x} \psi_{i}\right) a \partial_{x} u_{h}=a\left(u_{i}-u_{i-1}\right)
$$

High order schemes for time dependent problems

Step 3(A)

$$
\partial_{t} u+a \partial_{x} u=0
$$

SUPG scheme of Hughes and co-workers. For the choice of the test function

$$
\omega_{i}=\varphi_{i}+\Delta x \frac{\operatorname{sign}(a)}{2} \partial_{x} \varphi_{i}
$$

we obtain the third order accurate scheme (w.r.t. Δx)

$$
\frac{5 \Delta x}{12} \frac{d u_{i-1}}{d t}+\frac{2 \Delta x}{3} \frac{d u_{i}}{d t}-\frac{\Delta x}{12} \frac{d u_{i+1}}{d t}+a\left(u_{i}-u_{i-1}\right)=0
$$

High order schemes for time dependent problems

Step 3(B)

$$
\partial_{t} u+a \partial_{x} u=0
$$

Another example : pure residual based approach

$$
\frac{\max (0, a)}{a} \int_{i=1}^{i}\left(\partial_{t} u_{h}+a \partial_{x} u_{h}\right)+\frac{\min (0, a)}{a} \int_{i}^{i+1}\left(\partial_{t} u_{h}+a \partial_{x} u_{h}\right)=0
$$

corresponding to the test fon

$$
\omega_{i}=\left\{\begin{array}{ll}
\frac{1+\operatorname{sign}(a)}{2} & \text { if } x \in\left(x_{i-1}, x_{i}\right) \\
\frac{1-\operatorname{sign}(a)}{2} & \text { if } x \in\left(x_{i}, x_{i+1}\right) \\
0 & \text { otherwise }
\end{array} \quad\right. \text { (piecewise constant) }
$$

All calculations done, this leads to the second order scheme ($a>0$)

$$
\frac{\Delta x}{2} \frac{d u_{i-1}}{d t}+\frac{\Delta x}{2} \frac{d u_{i}}{d t}+a\left(u_{i}-u_{i-1}\right)=0
$$

High accuracy via consistent mass matrices

Reverse engineering a scheme ...

For the steady limit of

$$
\partial_{t} u+\vec{a} \cdot \nabla u=0
$$

high order fluctuation splitting/residual distribution give the steady state algebraic system

$$
\sum_{K \mid i \in K} \beta_{i}^{K} \phi^{K}=0
$$

People started to look for test functions ω_{i} such that

$$
\left.\int_{K} \omega_{i}\right|_{K} \vec{a} \cdot \nabla u_{h}=\beta_{i}^{K} \phi^{K}=\beta_{i}^{K} \int_{K} \vec{a} \cdot \nabla u_{h}
$$

High accuracy via consistent mass matrices

Reverse Engineering A Scheme ...
Time dependent solutions of

$$
\partial_{t} u+\vec{a} \cdot \nabla u=0
$$

would be now sought by integrating in time

$$
\left.\sum_{K \mid i \in K} \int_{K} \omega_{i}\right|_{K} \partial_{t} u_{h}+\sum_{K \mid i \in K} \beta_{i}^{K} \phi^{K}=0
$$

With a "consistent mass matrix" stemming from the first integral, consistency being intended as

$$
\left.\int_{K} \omega_{i}\right|_{K} \vec{a} \cdot \nabla u_{h}=\beta_{i}^{K} \phi^{K}=\beta_{i}^{K} \int_{K} \vec{a} \cdot \nabla u_{h}
$$

Where the real trouble is ...

REVERSE ENGINEERING A SCHEME ...

The reverse engineering papers : finite element analogies, space-time formulations, geometrical constructions, and some imagination

- Maerz \& Degrez, VKI PR 9617, 1996
- Ferrante \& Deconinck VKI PR 9708, 1997
- Hubbard \& Roe IJNMF 33, 2000
- Caraeni \& Fuchs Computers\&Fluids 4-5, 2005 (from a PhD defended in 2000)
- Csik \& Deconinck IJNMF 2002
- Abgrall \& Mezine J.Comput.Phys. 188, 2003
- Ricchiuto \& Csik \& Deconinck J.Comput.Phys. 209, 2005
- De Palma et al. J.Comput.Phys. 208, 2005
- Ricchiuto \& Bollermann J.Comput.Phys. 228, 2009
- Ricchiuto \& Abgrall J.Comput.Phys. 16, 2010
- Hubbard and Ricchiuto Computers\&Fluids 46, 2011
- Bonfiglioli and Paciorri IJCFD 27, 2013
- and more ...

Time dependent problems

Remarks

- Independently on the time discretization almost all the techniques proposed involve a non diagonal mass matrix coupling all nodal values :

$$
\sum_{K \in \Omega_{h}} \sum_{j \in K} m_{i j}^{K} \frac{d u_{j}}{d t}+\sum_{K \mid i \in K} \beta_{i}^{K} \phi^{K}=0
$$

- As for stabilized FEM, after time discretization, independently on the explicit or implicit (or space-time) nature of the time integration chosen, one needs to solve a (non-symmetric and possibly nonlinear) algebraic system :

$$
M\left(\mathrm{u}^{n+1}\right) \mathrm{u}^{n+1}+\Delta t F\left(\mathrm{u}^{n+1}\right)=\Delta t G\left(\mathrm{u}^{n}, \mathrm{u}^{n-1}, \ldots\right)
$$

- The construction seen for steady problems based on limiting of a monotonicity preserving scheme allows to ensure that $M\left(\mathrm{u}^{n+1}\right)$ is an inverse monotone matrix ${ }^{3}$, $\left(M\left(\mathbf{u}^{n+1}\right)\right)_{i j}^{-1} \geq 0$, so that the properties of the spatial discretization (discrete maximum principle) are preserved (not shown) ;
- Almost all of these schemes do not allow simple explicit updates with the only one exception: the predictor-corrector approach proposed in (Ricchiuto-Abgrall,
J. Comput.Phys. 2010)

[^6]
Time dependent problems : Shallow water

BRIGGS' EXPERIMENT
 Reproducing one of the tests of ${ }^{4}$

[^7]
Time dependent problems : Shallow water

BRIGGS' EXPERIMENT

Reproducing one of the tests of ${ }^{5}$

Num ($\Delta x \sim 7.8 \mathrm{~cm}$, Manning $=\mathbf{0 . 0 1 4}$)

- Exp (Briggs at al.)

[^8]
Time dependent problems : Shallow water

BRIGGS' EXPERIMENT

Specific issues Related to shallow water

$$
\partial_{t} \underbrace{\left[\begin{array}{c}
h \\
q
\end{array}\right]}_{W}+\partial_{x} \underbrace{\left[\begin{array}{c}
q \\
u q+\frac{g h^{2}}{2}
\end{array}\right]}_{F(W)} \underbrace{-g h \partial_{x}\left[\begin{array}{l}
0 \\
d
\end{array}\right]}_{S(W, x)}=0, \quad \begin{cases}h= & \eta+d \\
q= & h u\end{cases}
$$

Specific issues Related to shallow water

1. Nonlinear hyperbolic system of conservation laws: hydraulic jumps (steady shocks) and propagating bores (moving shocks), standard Riemann problems not involving dry states. Ok if discontinuity capturing scheme is used.
2. Dry states (flat bathymetry). Ok if positivity preserving scheme is used.
3. Variable bathymetry. Question : what do we do with the $\partial_{x} d$ term ?

Finite Volume schemes and Fluctuations in 1D

$$
\partial_{t} u+a \partial_{x} u+g^{\prime}(x)=0
$$

Conservative FV :

$$
\Delta x_{i} \frac{\Delta u_{i}}{\Delta t}+\widehat{\mathcal{F}}_{i+1 / 2}-\widehat{\mathcal{F}}_{i-1 / 2}+S_{i}=0
$$

Roe scheme for advection with source

$$
\widehat{\mathcal{F}}_{i+1 / 2}=\frac{\mathcal{F}_{i}+\mathcal{F}_{i+1}}{2}-\frac{|a|}{2}\left(u_{i+1}-u_{i}\right), \quad S_{i}=? ? ? ? ?
$$

Finite Volume schemes and Fluctuations in 1D

$$
\partial_{t} u+a \partial_{x} u+g^{\prime}(x)=0
$$

Conservative FV :

$$
\Delta x_{i} \frac{\Delta u_{i}}{\Delta t}+\widehat{\mathcal{F}}_{i+1 / 2}-\widehat{\mathcal{F}}_{i-1 / 2}+S_{i}=0
$$

Roe scheme for advection with source
Brutal answer : if there is an invariant, discretize the equation for the invariant.

$$
\begin{gathered}
\partial_{t} \eta+a \partial_{x} \eta=0, \quad \text { with } \quad \eta=u+\frac{g}{a} \\
\Delta x_{i} \frac{\Delta \eta_{i}}{\Delta t}+\widehat{\mathcal{F}}_{i+1 / 2}^{\eta}-\widehat{\mathcal{F}}_{i-1 / 2}^{\eta}=0 \\
\widehat{\mathcal{F}}_{i+1 / 2}^{\eta}=\frac{\mathcal{F}_{i}^{\eta}+\mathcal{F}_{i+1}^{\eta}}{2}-\frac{|a|}{2}\left(\eta_{i+1}-\eta_{i}\right)
\end{gathered}
$$

WELL BALANCED of C-Property :
If $\eta_{i}(t=0)=\eta_{0} \forall i$, nothing happens, the invariant is preserved, and $u_{i}=\eta_{0}-g_{i} / a$

Finite Volume schemes and Fluctuations in 1D

$$
\partial_{t} u+a \partial_{x} u+g^{\prime}(x)=0
$$

Conservative FV :

$$
\Delta x_{i} \frac{\Delta u_{i}}{\Delta t}+\widehat{\mathcal{F}}_{i+1 / 2}-\widehat{\mathcal{F}}_{i-1 / 2}+\Delta x S_{i}=0
$$

Roe scheme for advection with source How to use the Brutal answer :

$$
\begin{gathered}
\partial_{t} \eta+a \partial_{x} \eta=0, \quad \text { with } \quad \eta=u+\frac{g}{a} \\
\Delta x_{i} \frac{\Delta \eta_{i}}{\Delta t}=\Delta x_{i} \frac{\Delta u_{i}}{\Delta t} \quad \text { and } \quad \widehat{\mathcal{F}}_{i+1 / 2}^{\eta}=\widehat{\mathcal{F}}_{i+1 / 2}+\frac{g_{i}+g_{i+1}}{2}-\frac{\operatorname{sign}(a)}{2}\left(g_{i+1}-g_{i}\right) \\
S_{i}=\frac{g_{i+1}-g_{i-1}}{2 \Delta x}+\frac{\operatorname{sign}(a)}{2 \Delta x}\left(g_{i}-g_{i-1}\right)-\frac{\operatorname{sign}(a)}{2 \Delta x}\left(g_{i+1}-g_{i}\right)
\end{gathered}
$$

Finite Volume schemes and Fluctuations in 1D

$$
\partial_{t} u+a \partial_{x} u+g^{\prime}(x)=0
$$

Conservative FV/RD :

$$
\Delta x_{i} \frac{\Delta u_{i}}{\Delta t}+\phi_{i}^{i-1 / 2}+\phi_{i}^{i+1 / 2}=0
$$

Roe scheme for advection with source

Residual based answer : use fluctuations. For Roe scheme we have seen that

$$
\phi_{i}^{i \pm 1 / 2}=\frac{1 \mp \operatorname{sign}(a)}{2} \phi^{i \pm 1 / 2}
$$

In the homogeneous case $\phi=\int \partial_{x} \mathcal{F}=-\int \partial_{t} u$. Similarly, we can take now ${ }^{1}$

$$
\phi^{i+1 / 2}=-\int_{i}^{i+1} \partial_{t} u=\int_{i}^{i+1}\left(a \partial_{x} u+g^{\prime}(x)\right)=a\left(u_{i+1}-u_{i}\right)+\left(g_{i+1}-g_{i}\right)
$$

Along the discrete invariant state $u_{i}=\eta_{0}-g_{i} / a$ we have $\phi^{i \pm 1 / 2}=0$ identically !!

[^9]
Finite Volume schemes and Fluctuations in 1D

$$
\partial_{t} u+a \partial_{x} u+g^{\prime}(x)=0
$$

Conservative FV/RD :

$$
\Delta x_{i} \frac{\Delta u_{i}}{\Delta t}+\phi_{i}^{i-1 / 2}+\phi_{i}^{i+1 / 2}=0
$$

Roe scheme for advection with source Residual based answer : equivalent to

$$
\begin{gathered}
\Delta x_{i} \frac{\Delta u_{i}}{\Delta t}+\widehat{\mathcal{F}}_{i+1 / 2}-\widehat{\mathcal{F}}_{i-1 / 2}+\Delta x S_{i}=0 \\
S_{i}=\frac{g_{i+1}-g_{i-1}}{2 \Delta x}+\frac{\operatorname{sign}(a)}{2 \Delta x}\left(g_{i}-g_{i-1}\right)-\frac{\operatorname{sign}(a)}{2 \Delta x}\left(g_{i+1}-g_{i}\right)
\end{gathered}
$$

Same as before ..

First order Roe scheme for shallow water ${ }^{1}$

$$
\begin{gathered}
\partial_{t} W+\partial_{x} F(W)+S(W, x)=0 \Longrightarrow \Delta x \frac{W_{i}^{n+1}-W_{i}^{n}}{\Delta t}+\hat{F}_{i+1 / 2}-\hat{F}_{i-1 / 2}+\Delta x S_{i}=0 \\
\hat{F}_{i+1 / 2}=\frac{F_{i+1}+F_{i}}{2}-\frac{\left|A_{i+1 / 2}\right|}{2}\left(W_{i+1}-W_{i}\right) \\
S_{i}=-g h_{i-1 / 2} \frac{\mathbb{I}_{2}+\operatorname{sign}\left(A_{i-1 / 2}\right)}{2}\left[\begin{array}{c}
0 \\
\frac{d_{i}-d_{i-1}}{\Delta x}
\end{array}\right]-g h_{i+1 / 2} \frac{\mathbb{I}_{2}-\operatorname{sign}\left(A_{i+1 / 2}\right)}{2}\left[\frac{d_{i+1}-d_{i}}{\Delta x}\right]
\end{gathered}
$$

EXACT DISCRETE INVARIANT

The physical lake at rest state : $\eta_{i}=q_{i}=u_{i}=0 \forall i$ and $h_{i}=d_{i} \forall i$.

[^10]
First order Roe scheme for shallow water ${ }^{1}$

$$
\begin{gathered}
\partial_{t} W+\partial_{x} F(W)+S(W, x)=0 \Longrightarrow \Delta x \frac{W_{i}^{n+1}-W_{i}^{n}}{\Delta t}+\hat{F}_{i+1 / 2}-\hat{F}_{i-1 / 2}+\Delta x S_{i}=0 \\
\hat{F}_{i+1 / 2}=\frac{F_{i+1}+F_{i}}{2}-\frac{\left|A_{i+1 / 2}\right|}{2}\left(W_{i+1}-W_{i}\right) \\
S_{i}=-g h_{i-1 / 2} \frac{\mathbb{I}_{2}+\operatorname{sign}\left(A_{i-1 / 2}\right)}{2}\left[\frac{0}{\frac{d_{i}-d_{i-1}}{\Delta x}}\right]-g h_{i+1 / 2} \frac{\mathbb{I}_{2}-\operatorname{sign}\left(A_{i+1 / 2}\right)}{2}\left[\frac{0}{\frac{d_{i+1}-d_{i}}{\Delta x}}\right]
\end{gathered}
$$

Exact Discrete invariant

The physical lake at rest state. To check this use the equivalence

$$
\hat{F}_{i+1 / 2}-\hat{F}_{i-1 / 2}+\Delta x S_{i}=\frac{\mathbb{I}_{2}+\operatorname{sign}\left(A_{i-1 / 2}\right)}{2} \phi^{i-1 / 2}+\frac{\mathbb{I}_{2}-\operatorname{sign}\left(A_{i+1 / 2}\right)}{2} \phi^{i+1 / 2}
$$

and note that along this state

$$
\phi^{i+1 / 2}=\int_{i}^{i+1}\left(\partial_{x} F+S\right)=\left[\begin{array}{c}
q_{i+1}-q_{i} \\
u_{i+1} q_{i+1}-u_{i} q_{i}+g \frac{h_{i+1}^{2}-h_{i}^{2}}{2}
\end{array}\right]-g h_{i+1 / 2}\left[\begin{array}{c}
0 \\
d_{i+1}-d_{i}
\end{array}\right]=0
$$

[^11]
Lake at rest and dry states ${ }^{1}$

EXACT DISCRETE INVARIANT

The physical lake at rest state. In presence of dry areas

$$
\phi^{i+1 / 2}=\left[\begin{array}{c}
0 \\
-\frac{g h_{i}^{2}}{2}
\end{array}\right]-\frac{g h_{i}}{2}\left[\begin{array}{c}
0 \\
d_{i+1}-d_{i}
\end{array}\right]=-\frac{g h_{i}}{2}\left[\begin{array}{c}
0 \\
d_{i+1}
\end{array}\right] \neq 0!
$$

To cure the problem, set in these cells ${ }^{2}$

$$
\phi^{i+1 / 2}=-\frac{g h_{i}}{2}\left[\begin{array}{c}
0 \\
h_{i}+\Delta_{i+1 / 2}
\end{array}\right] \quad \text { with } \quad \Delta_{i+1 / 2}=\max \left(d_{i+1}-d_{i},-h_{i}\right)
$$

This allows to recover the $\phi=0$ condition.

[^12]
Multidimensional case

$$
\partial_{t} W+\nabla \cdot F(W)+S(W, x, y)=0
$$

Finite Volume

Need to add artificial contribution of the source term to the flux integrals on finite volume faces ...

RD/FEM

Source term naturally included in the residual, along invariants $\phi=0$ works also in multi-D

Let's have a look at dispersive equations

Enhanced Boussinesq equations

Linearized MS Equations ${ }^{1}$

$$
\left\{\begin{array}{l}
\partial_{t} \eta+d_{0} \partial_{x} u=0 \\
\partial_{t} u-\left(\beta+\frac{1}{3}\right) d_{0}^{2} \partial_{x x t} u+g \partial_{x} \eta-\beta g d_{0}^{2} \partial_{x x x} \eta=0
\end{array}\right.
$$

DISPERSION RELATION

Let $C_{0}^{2}=g d_{0}^{2}$

$$
\omega^{2}=\underbrace{\left(k C_{0}\right)^{2}}_{\text {Linearized Shallow Water }} \frac{1+\beta\left(\mathrm{k} d_{0}\right)^{2}}{1+B\left(\mathrm{k} d_{0}\right)^{2}}
$$

Dispersion coeff. β chosen by minimizing error w.r.t. Airy theory.

[^13]
Enhanced Boussinesq equations

Linearized Nw equations ${ }^{1}$

$$
\left\{\begin{array}{l}
\partial_{t} \eta+d_{0} \partial_{x} u+A_{2} d_{0}^{3} \partial_{x x x} u=0 \\
\partial_{t} u+A_{1} d_{0}^{2} \partial_{x x t} u+g \partial_{x} \eta=0
\end{array}\right.
$$

with $A_{1}=\alpha+\alpha^{2} / 2, A_{2}=A_{1}+1 / 3$
DISPERSION RELATION
Let $C_{0}^{2}=g d_{0}^{2}$

$$
\omega^{2}=\underbrace{\left(k C_{0}\right)^{2}}_{\text {Linearized Shallow Water }} \frac{1-A_{2}\left(\mathrm{k} d_{0}\right)^{2}}{1-A_{1}\left(\mathrm{k} d_{0}\right)^{2}}
$$

Dispersion coeff. α chosen by minimizing error w.r.t. Airy theory.

Enhanced Boussinesq equations

DISPERSION RELATIONS : MODELS OVERVIEW

Prescribed values of model coefficients

Dispersion properties

Next step : CONTINUOUS TO DISCRETE

- Influence of the scheme
- dissipation for given mesh size
- dispersion error for given mesh size
- Objective: do not pollute the dispersion of the model

Dispersion properties

Next step : CONTINUOUS TO DISCRETE
Scalar model problem :

$$
\partial_{t} u-\alpha \partial_{t x x} u+a \partial_{x} u-\beta \partial_{x x x} u=0
$$

Dispersion relation :

$$
\omega=-\underbrace{\mathrm{k} a}_{\text {pure advection }} \frac{1+\beta \mathrm{k}^{2}}{1+\alpha \mathrm{k}^{2}} \quad \text { dispersion }
$$

$P^{1} \mathrm{FEM}$

- We consider a tasselation of the domain composed of non-overlapping elements;
- Unknowns at nodes: $\left\{\eta_{i}(t)\right\}_{i \geq 1}$ and $\left\{q_{i}(t)\right\}_{i \geq 1}\left(\left\{u_{i}(t)\right\}_{i \geq 1}\right.$ for model prob.);
- P^{1} piecewise linear continuous approximation

$$
\begin{align*}
& \eta_{h}(t, x)=\sum_{i \geq 1} \eta_{i}(t) \psi_{i}(x)=\sum_{K} \sum_{j \in K} \eta_{j}(t) \psi_{j}(x) \\
& q_{h}(t, x)=\sum_{i \geq 1} q_{i}(t) \psi_{i}(x)=\sum_{K} \sum_{j \in K} q_{j}(t) \psi_{j}(x) \tag{2}\\
& u_{h}(t, x)=\sum_{i \geq 1} u_{i}(t) \psi_{i}(x)=\sum_{K} \sum_{j \in K} u_{j}(t) \psi_{j}(x)
\end{align*}
$$

- ψ_{i} are standard continuous piecewise linear finite element basis functions;

Continuous Galerkin (CG) FOR $\partial_{t} u-\alpha \partial_{t x x} u+a \partial_{x} u-\beta \partial_{x x x} u=0$

$$
\begin{aligned}
& \int_{\Omega_{h}} \psi_{i} \partial_{t} u_{h}+\int_{\Omega_{h}} \alpha \partial_{x t} u_{h} \partial_{x} \psi_{i}-\int_{\Omega_{h}} a u_{h} \partial_{x} \psi_{i}+\int_{\Omega_{h}} \beta w_{h}^{u} \partial_{x} \psi_{i}=0 \\
& \quad \int_{\Omega_{h}} \psi_{i} w_{h}^{u}+\int_{\Omega_{h}} \partial_{x} u \partial_{x} \psi_{i}=0
\end{aligned}
$$

Continuous Galerkin (CG) FOR $\partial_{t} u-\alpha \partial_{t x x} u+a \partial_{x} u-\beta \partial_{x x x} u=0$

$$
\begin{aligned}
\frac{\Delta x}{6}\left(\frac{d u_{i-1}}{d t}\right. & \left.+4 \frac{d u_{i}}{d t}+\frac{d u_{i-1}}{d t}\right)-\frac{\alpha}{\Delta x}\left(\frac{d u_{i-1}}{d t}-2 \frac{d u_{i}}{d t}+\frac{d u_{i-1}}{d t}\right) \\
& +\frac{a}{2}\left(u_{i+1}-u_{i-1}\right)-\frac{\beta}{\Delta x^{2}}\left(u_{i+2}-2 u_{i+1}+2 u_{i-1}-u_{i-2}\right)=0
\end{aligned}
$$

Continuous Galerkin (CG) FOR $\partial_{t} u-\alpha \partial_{t x x} u+a \partial_{x} u-\beta \partial_{x x x} u=0$

$$
\begin{aligned}
\frac{\Delta x}{6}\left(\frac{d u_{i-1}}{d t}\right. & \left.+4 \frac{d u_{i}}{d t}+\frac{d u_{i-1}}{d t}\right)-\frac{\alpha}{\Delta x}\left(\frac{d u_{i-1}}{d t}-2 \frac{d u_{i}}{d t}+\frac{d u_{i-1}}{d t}\right) \\
& +\frac{a}{2}\left(u_{i+1}-u_{i-1}\right)-\frac{\beta}{\Delta x^{2}}\left(u_{i+2}-2 u_{i+1}+2 u_{i-1}-u_{i-2}\right)=0
\end{aligned}
$$

FD2 scheme (same cost) :

$$
\begin{gathered}
\Delta x \frac{d u_{i}}{d t}-\frac{\alpha}{\Delta x}\left(\frac{d u_{i-1}}{d t}-2 \frac{d u_{i}}{d t}+\frac{d u_{i-1}}{d t}\right) \\
+\frac{a}{2}\left(u_{i+1}-u_{i-1}\right)-\frac{\beta}{\Delta x^{2}}\left(u_{i+2}-2 u_{i+1}+2 u_{i-1}-u_{i-2}\right)=0
\end{gathered}
$$

Central Residual Distribution for $\partial_{t} u-\alpha \partial_{t x x} u+a \partial_{x} u-\beta \partial_{x x x} u=0$

- Nodal equations :

- With cell residuals
$\Phi^{K}=\int_{K}\left(\partial_{t} u_{\left.h\right|_{K}}-\alpha \partial_{t} w_{\left.h\right|_{K}}^{u}+a \partial_{x} u_{\left.h\right|_{K}}-\beta \partial_{x} w_{\left.h\right|_{K}}^{u}\right) d x$

- Same extra equations for $w^{u} \approx \partial_{x x} u$

Central Residual Distribution for $\partial_{t} u-\alpha \partial_{t x x} u+a \partial_{x} u-\beta \partial_{x x x} u=0$

$$
\begin{aligned}
\frac{\Delta x}{4}\left(\frac{d u_{i-1}}{d t}\right. & \left.+2 \frac{d u_{i}}{d t}+\frac{d u_{i-1}}{d t}\right)-\frac{\alpha}{4 \Delta x}\left(\frac{d u_{i-2}}{d t}-2 \frac{d u_{i}}{d t}+\frac{d u_{i-2}}{d t}\right) \\
& +\frac{a}{2}\left(u_{i+1}-u_{i-1}\right)-\frac{\beta}{\Delta x^{2}}\left(u_{i+2}-2 u_{i+1}+2 u_{i-1}-u_{i-2}\right)=0
\end{aligned}
$$

FD2 scheme (cRD penta-diagonal system) :

$$
\begin{gathered}
\Delta x \frac{d u_{i}}{d t}-\frac{\alpha}{\Delta x}\left(\frac{d u_{i-1}}{d t}-2 \frac{d u_{i}}{d t}+\frac{d u_{i-1}}{d t}\right) \\
+\frac{a}{2}\left(u_{i+1}-u_{i-1}\right)-\frac{\beta}{\Delta x^{2}}\left(u_{i+2}-2 u_{i+1}+2 u_{i-1}-u_{i-2}\right)=0
\end{gathered}
$$

Stabilized Upwind Schemes (SUPG and uRD)

Schemes cG and cRD are centered approximations not well suited for the discretization of the hyperbolic (advection or shallow water) limit for which some form of upwinding is necessary to stabilize the system

We want to look at the properties of upwind stabilized variants of the centered schemes presented

Stabilized Upwind Schemes (SUPG and uRD)

Streamline Upwind Petrov-Galerkin stabilization ${ }^{8}$:

$$
\begin{equation*}
\mathcal{R}_{i}\left(u_{h}\right)+\sum_{\mathrm{K} \in \Omega_{h}} \int_{K} a \partial_{x} \psi_{i}^{\mathrm{K}} \tau_{\mathrm{K}} r^{K}=0 \tag{3}
\end{equation*}
$$

τ_{K} is the SUPG stabilization parameter:

$$
\tau_{\mathrm{K}}=\frac{1}{\sum_{j \in \mathrm{~K}}\left|a \partial_{x} \psi_{j}^{K}\right|}
$$

and r^{K} the local residual vector

$$
r^{K}=\partial_{t} u_{\left.h\right|_{K}}-\alpha \partial_{t} w_{\left.h\right|_{K}}^{u}+a \partial_{x} u_{\left.h\right|_{K}}-\beta \partial_{x} w_{\left.h\right|_{K}}^{u}
$$

Stabilized Upwind Schemes (SUPG and uRD)

The final form (P1 case with $\Phi^{K}=\int_{K} r^{K}$ for the above choice of τ_{K}):

$$
\begin{equation*}
\mathcal{R}_{i}\left(u_{h}\right)+\frac{\operatorname{sign}(a)}{2} \Phi^{\mathrm{K}_{i-1 / 2}}-\frac{\operatorname{sign}(a)}{2} \Phi^{\mathrm{K}_{i+1 / 2}}=0 \tag{4}
\end{equation*}
$$

\mathcal{R}_{i} is the centred part of the scheme: if $\mathcal{R}_{i}^{\mathrm{cG}} \longrightarrow$ SUPG scheme;

$$
\text { if } \mathcal{R}_{i}^{c R D} \longrightarrow \mathbf{u R D} \text { scheme. }
$$

Upwinding on the advection direction (hyperbolic limit)

Stabilized Upwind Schemes (SUPG and uRD)

Difference w.r.t. std. Roe upwind scheme (in 1d ...)

- Same advection operator $\left(a>0 \longrightarrow a\left(u_{i}-u_{i-1}\right)\right)$!!
- Both are residual based generalizations of first order Roe scheme
- All terms upwinded at once (including high order differential terms)
- Non-diagonal mass matrices for the first order time derivative
- Linear algebraic system to invert, as for all other schemes (due to the presence of $x t$ derivative)

Time continuous error analysis

The objective is to characterize

1. The differences in error (TE analysis)
2. The dispersion error (DE analysis)
3. Same for Boussinesq

Time continuous TE analysis

Brute force ...

Time continuous TE analysis

$$
\begin{aligned}
\mathrm{TE}_{c \mathrm{G}} & =\frac{\Delta x^{2}}{12} \partial_{x x x x}\left(\alpha \partial_{t} u+2 \beta \partial_{x} u\right)+\mathcal{O}\left(\Delta x^{4}\right) \\
\mathrm{TE}_{c R D} & =\frac{\Delta x^{2}}{2} \partial_{x x}\left(\frac{1}{2} \partial_{t} u+\frac{1}{3} a \partial_{t} u-\frac{2}{3} \alpha \partial_{x x t} u-\frac{4}{3} \beta \partial_{x x t} u\right)+\mathcal{O}\left(\Delta x^{3}\right) \\
\mathrm{TE}_{\text {SUPG }} & =\frac{\Delta x^{2}}{12} \partial_{x x x x}\left(\alpha \partial_{t} u+2 \beta \partial_{x} u\right)+\mathcal{O}\left(\Delta x^{3}\right) \\
\mathrm{TE}_{\mathrm{uRD}} & =\frac{\Delta x^{2}}{2} \partial_{x x}\left(\frac{1}{2} \partial_{t} u+\frac{1}{3} a \partial_{t} u-\frac{2}{3} \alpha \partial_{x x t} u-\frac{4}{3} \beta \partial_{x x t} u\right)+\mathcal{O}\left(\Delta x^{3}\right)
\end{aligned}
$$

Time continuous DE analysis

As in the continuous case :

1. Set $u_{i}(t)=u_{0} e^{\nu t+\mathrm{jk} x_{i}}$
2. Replace in the FD form of the scheme : $\frac{d u_{i}(t)}{d t}=\nu u_{i}(t), u_{i \pm 1}(t)=e^{ \pm \mathrm{j} \Delta x} u_{i}(t)$
3. Solve for $\nu=\xi+\mathrm{j} \omega$
4. $\omega=\omega(\mathrm{k}, \Delta x)$

Time continuous DE analysis

Number of grid points in the wavelength: $\mathrm{N}=5$

Lucky shot?

Extension to BoussinesQ models

Lucky shot?

Extension to BoussinesQ models

Schemes easily extended, main differences are

- Auxiliary variables for MS: $\partial_{x x} \eta$ (and $\partial_{x} q$ for cRD and both upwind schemes)
- Auxiliary variables for $\mathrm{Nw}: \partial_{x x} u$ (and $\partial_{x} u$ for cRD and both upwind schemes)
- Upwinding : scalar a replaced by A^{K} elemental average of shallow water flux Jacobian
- DE analysis : same main steps but leads to eigenvalue problem (ν from characteristic equation)
- $\omega=\omega\left(\mathrm{k} d_{0}, \mathrm{k} \Delta x\right)$

Error analysis : Linearized MS model

$$
\left\{\begin{array}{l}
\partial_{t} \eta+d_{0} \partial_{x} u=0 \\
\partial_{t} u-\left(\beta+\frac{1}{3}\right) d_{0}^{2} \partial_{x x t} u+g \partial_{x} \eta-\beta g d_{0}^{2} \partial_{x x x} \eta=0
\end{array}\right.
$$

TE analysis : MS model - Centered schemes

FD2 scheme.

$$
\begin{aligned}
\mathrm{TE}_{\mathrm{FD} 2}^{\eta} & =\frac{d_{0} \Delta x^{2}}{6} \partial_{x x x} u_{i}+\mathcal{O}\left(\Delta x^{4}\right) \\
\mathrm{TE}_{\mathrm{FD} 2}^{u} & =\frac{\Delta x^{2}}{6} \partial_{x x}\left(-\frac{B d_{0}^{2}}{2} \partial_{x^{2} t} u_{i}+g \partial_{x} \eta_{i}-\frac{3}{2} \beta g d_{0}^{2} \partial_{x x x} \eta_{i}\right)+\mathcal{O}\left(\Delta x^{4}\right)
\end{aligned}
$$

cG scheme.

$$
\begin{aligned}
\mathrm{TE}_{\mathrm{cG}}^{\eta} & =\frac{\Delta x^{4}}{24} \partial_{x x x x}\left(\frac{1}{3} \partial_{t} \eta_{i}+\frac{d_{0}}{5} \partial_{x} u_{i}\right)+\mathcal{O}\left(\Delta x^{6}\right) \\
\mathrm{TE}_{\mathrm{cG}}^{u} & =\frac{\Delta x^{2}}{12} \partial_{x x x x}\left(B d_{0}^{2} \partial_{t} u_{i}-\beta g d_{0}^{2} \partial_{x} \eta_{i}\right)+\mathcal{O}\left(\Delta x^{4}\right)
\end{aligned}
$$

$c R D$ scheme.

$$
\begin{aligned}
\mathrm{TE}_{\mathrm{cRD}}^{\eta} & =\frac{\Delta x^{2}}{2} \partial_{x x}\left(\frac{1}{2} \partial_{t} \eta_{i}+\frac{d_{0}}{3} \partial_{x} u_{i}\right)+\mathcal{O}\left(\Delta x^{4}\right) \\
\mathrm{TE}_{\mathrm{cRD}}^{u} & =\Delta x^{2} \partial_{x x}\left(\frac{1}{4} \partial_{t} u_{i}-\frac{1}{3} B d_{0}^{2} \partial_{x^{x} t} u_{i}+\frac{1}{6} g \partial_{x} \eta_{i}-\frac{1}{4} \beta g d_{0}^{2} \partial_{x x x} \eta_{i}\right)+\mathcal{O}\left(\Delta x^{4}\right)
\end{aligned}
$$

TE analysis : MS model - Centered schemes

FDWK scheme $\left(F D 2 \text { on } \partial_{x x x} \text { and } \partial_{x x}-F D 4 \text { on } \partial_{x}\right)^{1}$

$$
\begin{aligned}
\mathrm{TE}_{\mathrm{FDWK}}^{\eta} & =\frac{d_{0} \Delta x^{4}}{30} \partial_{x x x x x} u_{i}+\mathcal{O}\left(\Delta x^{6}\right) \\
\mathrm{TE}_{\mathrm{FDWK}}^{u} & =\frac{\Delta x^{2}}{4} \partial_{x x x x}\left(\frac{1}{3} B d_{0}^{2} \partial_{t} u_{i}+\beta g d_{0}^{2} \partial_{x} \eta_{i}\right)+\mathcal{O}\left(\Delta x^{4}\right)
\end{aligned}
$$

cG scheme.

$$
\begin{aligned}
\mathrm{TE}_{\mathrm{cG}}^{\eta} & =\frac{\Delta x^{4}}{24} \partial_{x x x x}\left(\frac{1}{3} \partial_{t} \eta_{i}+\frac{d_{0}}{5} \partial_{x} u_{i}\right)+\mathcal{O}\left(\Delta x^{6}\right) \\
\mathrm{TE}_{\mathrm{cG}}^{u} & =\frac{\Delta x^{2}}{12} \partial_{x x x x}\left(B d_{0}^{2} \partial_{t} u_{i}-\beta g d_{0}^{2} \partial_{x} \eta_{i}\right)+\mathcal{O}\left(\Delta x^{4}\right)
\end{aligned}
$$

cRD scheme.

$$
\begin{aligned}
\mathrm{TE}_{\mathrm{cRD}}^{\eta} & =\frac{\Delta x^{2}}{2} \partial_{x x}\left(\frac{1}{2} \partial_{t} \eta_{i}+\frac{d_{0}}{3} \partial_{x} u_{i}\right)+\mathcal{O}\left(\Delta x^{4}\right) \\
\mathrm{TE}_{\mathrm{cRD}}^{u} & =\Delta x^{2} \partial_{x x}\left(\frac{1}{4} \partial_{t} u_{i}-\frac{1}{3} B d_{0}^{2} \partial_{x x t} u_{i}+\frac{1}{6} g \partial_{x} \eta_{i}-\frac{1}{4} \beta g d_{0}^{2} \partial_{x x x} \eta_{i}\right)+\mathcal{O}\left(\Delta x^{4}\right)
\end{aligned}
$$

[^14]
TE ANALYSIS : MS MODEL - UPWIND SCHEMES

FDWK scheme (FD2 on $\partial_{x x x}$ and $\partial_{x x}-F D 4$ on $\left.\partial_{x}\right)^{1}$

$$
\begin{aligned}
\mathrm{TE}_{\mathrm{FDWK}}^{\eta} & =\frac{d_{0} \Delta x^{4}}{30} \partial_{x x x x x x} u_{i}+\mathcal{O}\left(\Delta x^{6}\right) \\
\mathrm{TE}_{\mathrm{FDWK}}^{u} & =\frac{\Delta x^{2}}{4} \partial_{x x x x}\left(\frac{1}{3} B d_{0}^{2} \partial_{t} u_{i}+\beta g d_{0}^{2} \partial_{x} \eta_{i}\right)+\mathcal{O}\left(\Delta x^{4}\right)
\end{aligned}
$$

SUPG scheme.

$$
\begin{aligned}
\mathrm{TE}_{\text {SUPG }}^{\eta} & =\frac{C_{0} \Delta x^{3}}{2 g} \partial_{x x x}\left(\frac{1}{3} \partial_{t} u_{i}-\frac{1}{2} B d_{0}^{2} \partial_{x x t} u_{i}+\frac{1}{6} g \partial_{x} \eta_{i}-\frac{1}{3} \beta g d_{0}^{2} \partial_{x x x} \eta_{i}\right)+\mathcal{O}\left(\Delta x^{4}\right) \\
\mathrm{TE}_{\text {SUPG }}^{u} & =\frac{\Delta x^{2}}{12} \partial_{x x x x}\left(B d_{0}^{2} \partial_{t} u_{i}-\beta g d_{0}^{2} \partial_{x} \eta_{i}\right)+\mathcal{O}\left(\Delta x^{3}\right)
\end{aligned}
$$

URD scheme.

$$
\begin{aligned}
\mathrm{TE}_{\mathrm{URD}}^{\eta} & =\frac{\Delta x^{2}}{2} \partial_{x^{2}}\left(\frac{1}{2} \partial_{t} \eta_{i}+\frac{d_{0}}{3} \partial_{x} u_{i}\right)+\mathcal{O}\left(\Delta x^{3}\right) \\
\mathrm{TE}_{\mathrm{URD}}^{u} & =\Delta x^{2} \partial_{x^{2}}\left(\frac{1}{4} \partial_{t} u_{i}-\frac{1}{3} B d_{0}^{2} \partial_{x x t} u_{i}+\frac{1}{6} g \partial_{x} \eta_{i}-\frac{1}{4} \beta g d_{0}^{2} \partial_{x x x} \eta_{i}\right)+\mathcal{O}\left(\Delta x^{3}\right)
\end{aligned}
$$

[^15]
DE analysis : MS model - cRD and URD

Solid line : $\mathrm{k} d_{0}=0.5$ - Circles $\mathrm{k} d_{0}=2.6$
N : points per wavelength

DE ANALYSIS: MS mOdEL - CG and SUPG

Solid line : $\mathrm{k} d_{0}=0.5$ - Circles $\mathrm{k} d_{0}=2.6$
N : points per wavelength

Error analysis : Linearized Nw model

$$
\left\{\begin{array}{l}
\partial_{t} \eta+d_{0} \partial_{x} u+A_{2} d_{0}^{3} \partial_{x x x} u=0 \\
\partial_{t} u+A_{1} d_{0}^{2} \partial_{x x t} u+g \partial_{x} \eta=0
\end{array}\right.
$$

TE analysis : Nw model - FDWK, cG, SUPG

FDWK scheme $\left(F D 2 \text { on } \partial_{x x x} \text { and } \partial_{x x}-F D 4 \text { on } \partial_{x}\right)^{1}$

$$
\begin{aligned}
\mathrm{TE}_{\mathrm{FDWK}}^{\eta} & =\frac{\Delta x^{2}}{4} A_{2} d_{0}^{3} \partial_{x x x x x} u_{i}+\mathcal{O}\left(\Delta x^{4}\right) \\
\mathrm{TE}_{\mathrm{FDWK}}^{u} & =\frac{\Delta x^{2}}{12} A_{1} D_{0}^{2} \partial_{x x x x t} u_{i}+\mathcal{O}\left(\Delta x^{4}\right)
\end{aligned}
$$

cG scheme.

$$
\begin{aligned}
\mathrm{TE}_{\mathrm{cG}}^{\eta} & =\frac{\Delta x^{2}}{12} A_{2} d_{0}^{3} \partial_{x x x x x} u_{i}+\mathcal{O}\left(\Delta x^{4}\right) \\
\mathrm{TE}_{\mathrm{cG}}^{u} & =\frac{\Delta x^{2}}{12} A_{1} D_{0}^{2} \partial_{x x x x t} u_{i}+\mathcal{O}\left(\Delta x^{4}\right)
\end{aligned}
$$

SUPG scheme.

$$
\begin{aligned}
\mathrm{TE}_{\mathrm{SUPG}}^{\eta} & =\frac{\Delta x^{2}}{12} A_{2} d_{0}^{3} \partial_{x x x x x} u_{i}+\mathcal{O}\left(\Delta x^{3}\right) \\
\mathrm{TE}_{\mathrm{SUPG}}^{u} & =\frac{\Delta x^{2}}{12} A_{1} D_{0}^{2} \partial_{x x x x t} u_{i}+\mathcal{O}\left(\Delta x^{3}\right)
\end{aligned}
$$

[^16]
DE analysis : Nw model

Solid line : $\mathrm{k} d_{0}=0.5$ - Circles $\mathrm{k} d_{0}=2.6$
N : points per wavelength

Time continuous error analysis

1. Stabilized FEM formulation best results in terms of accuracy
2. $P^{1} \mathrm{cG}$ and SUPG similar (or better) accuracy than FDWK (FD4) in 1D
3. In 2D : excellent approximation of planar waves on regular grids
4. 2D unstructured: is P^{1} enough ?

Numerical examples

MS equations ...

$$
\left\{\begin{array}{l}
\partial_{t} \eta+\nabla \cdot \vec{q}=0 \\
\partial_{t} q+\nabla \cdot(\vec{u} \otimes \vec{q})+g H \nabla \eta+\vec{\psi}=0
\end{array}\right.
$$

where $\vec{\psi} \equiv\left(\psi_{x}, \psi_{y}\right)$ are the dispersive terms of the model which can be written as

$$
\left\{\begin{array}{l}
\psi_{x}=-B h^{2} \partial_{t x} \nabla \cdot \vec{q}-\frac{1}{6} h \partial_{x} h \partial_{t}\left(\nabla \cdot \vec{q}+\partial_{x} q_{x}\right)-\frac{1}{6} h \partial_{y} h \partial_{t x} q_{y}-\beta g h^{2} \partial_{x} w^{\eta} \\
\psi_{y}=-B h^{2} \partial_{t y} \nabla \cdot \vec{q}-\frac{1}{6} h \partial_{y} h \partial_{t}\left(\nabla \cdot \vec{q}+\partial_{y} q_{y}\right)-\frac{1}{6} h \partial_{x} h \partial_{t y} q_{x}-\beta g h^{2} \partial_{y} w^{\eta} \\
w^{\eta}=\nabla \cdot(h \nabla \eta)
\end{array}\right.
$$

Numerical examples: Shelf

Fig. 12. Sketch of the submerged shelf test.

Tallest
wave
comparison

Numerical examples : SubMERged bar

Experimental data (o), FDWK scheme (-), cG scheme (-), SUPG scheme (—), and URD scheme (一)

Numerical examples : Submerged bar

Experimental data (o), FDWK scheme (-), cG scheme (-), SUPG scheme (—), and URD scheme (一)

Numerical examples : Submerged bar

Experimental data (o), FDWK scheme (-), cG scheme (-), SUPG scheme (—), and URD scheme (一)

Numerical examples : Circular shoal (Hexagons) - $\Delta x=0.1 m$

Numerical examples : Circular shoal (Hexagons) - $\Delta x=0.1 m$

Numerical examples : ELLiptic shoal (unstructured)

Numerical examples ：elliptic shoal（unstructured）

Numerical examples : Elliptic shoal (unstructured)

SUMMARY

Parti I

- Fluctuation form of FV schemes
- General design properties for fluctuation splitting/residual distribution:

1. Conservation
2. Stability and upwinding
3. Consistency (accuracy) conditions
4. Discontinuity capturing

Parti II

- Residual based schemes and time dependent problems : accuracy issues
- High order accurate schemes via consistent mass matrices
- Shallow Water issues : steady states, wetting/drying
- Dispersive equations and residual based
- Discrete dispersion analysis

PERSPECTIVES

What's The PLAN ...

- Analysis of continuous stabilized higher oder FEM approximation for dispersive eq.s ($k=2,3$, Lagrange and Bezier)
- Schemes : dispersion optimized schemes ? Structured grid residual based schemes, and seek generalization to unstructured
- Discontinuities. FEM-RD formalism (already done for Euler and SW) : use monotone spatial operators (RD) in variational context (mass matrices, high order derivatives etc)
- Grid adaptation : time dependent (moving fronts) based on ALE and ALE mapping if remeshing is necesary
- Time integration : Explicit (eBDF), Implicit (BDf) or space-time ?
- Green Naghdi equations on unstructured adaptive (moving) grids
- Uncertainty quantification + analysis of variance : assess models robustness
- etc. etc.

Collaborators

- A. Filippini (PhD, Inria), L. Arpaia (PhD, Inria) - stabilized FEM for Bouss/GN and SW (moving adaptive grids)
- S. Bellec (PhD, Inria) - exact solutions to Boussinesq eq.s, discrete asymptotics
- M. Colin (IPB and Inria) - depth averaged modeling in general
- R. Abgrall (Zurich University) - residual schemes
- P. Bonneton (EPOC Bordeaux) - Boussinesq++
- A.I. Delis (Tech. Univ. Crete) - Boussinesq,NLSW++
- P. Congedo (Inria) - UQ applied to depth average models
- A. Guardone (Politecnico di Milano) - ALE adaptation
- etc.

[^0]: ${ }^{1}$ The list is quite long: Univrsity of Michigan (Roe-van Leer), VKI (Deconinck), Universiy of Reading (Baines-Hubbard), Politecnico di Bari (Napolitano and co.), ICASE (van Leer-Roe-Sidilkover), NASA (Barth-Wood-Kleb), Brown University (Shu), UTIAS Toronto (Groth), University of Lisbon (Gato), INRIA-Université Bordeaux (Abgrall) and several others ...

[^1]: ${ }^{1}$ (Roe Cranfield U.Tech.Rep., 1987 ; Roe, Sidilkover SINUM, 1992)

[^2]: ${ }^{1}$ and in general with a boundedness preserving time integration scheme, see (Gottlieb,Shu,Tadmor SIAM Review 2001 Hundsdorfer, Ruuth Math.Comp. 2005)

[^3]: ${ }^{1}$ (Roe Cranfield U.Tech.Rep., 1987 ; Roe, Sidilkover SINUM, 1992)

[^4]: ${ }^{3}$ Deconinck-Ricchiuto Enc.Comput.Mech. 2007

[^5]: ${ }^{3}$ Deconinck-Ricchiuto Enc.Comput.Mech. 2007

[^6]: ${ }^{3} m_{i i}>0, m_{i j} \leq 0$ and irreducibly diagonally dominant

[^7]: ${ }^{4}$ Briggs et al Pure and Appl. Geophysics 1995

[^8]: ${ }^{5}$ Briggs et al Pure and Appl. Geophysics 1995

[^9]: ${ }^{1}$ CAVEAT : we have assumed the same representation for u and g over the cell !!!! ${ }^{\text {p }} \bar{\equiv}$

[^10]: ${ }^{1}$ Bermudez-Vazquez Computers\&Fluids 1994

[^11]: ${ }^{1}$ Bermudez-Vazquez Computers\&Fluids 1994

[^12]: ${ }^{1}$ Castro et al Math. and Computer Modeling 422005
 ${ }^{2}$ note that above the $\eta=0$ line $d(x)$ becomes negative

[^13]: ${ }^{1}$ Madsen and Sørensen Coastal Engineering 1992, Schäffer and Madsen Coastal Engineering 1995 甸

[^14]: ${ }^{1}$ (G. Wei, J.T. Kirby, J. Waterway, Port, Coastal, and Ocean Engineering, 1995)

[^15]: ${ }^{1}$ (G. Wei, J.T. Kirby, J. Waterway, Port, Coastal, and Ocean Engineering, 1995)

[^16]: ${ }^{1}$ (G. Wei, J.T. Kirby, J. Waterway, Port, Coastal, and Ocean Engineering, 1995)

