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Abstract

In this paper we consider the solution of the enhanced Boussinesq equations of Madsen
and Sørensen (Coast.Eng. 18, 1992) by means of residual based discretizations. In particu-
lar, we investigate the applicability of upwind and stabilized variants of continuous Galerkin
finite element and Residual Distribution schemes for the simulation of wave propagation and
transformation over complex bathymetries. These techniques have been successfully applied
to the solution of the nonlinear Shallow Water equations (see e.g. Hauke CMAME 163, 1998
and Ricchiuto and Bollerman J.Comput.Phys 228, 2009). In a first step toward the construc-
tion of a hybrid model coupling the enhanced Boussinesq equations with the Shallow Water
equations in breaking regions, this paper shows that equal order and even low order (second)
upwind/stabilized techniques can be used to model non-hydrostatic wave propagation over
complex bathymetries. This result is supported by theoretical (truncation and dispersion)
error analyses, and by thorough numerical validation.
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1 Introduction

The accurate simulation of nonlinear and non-hydrostatic wave propagation and transforma-
tion on complex bathymetries in the near shore region, up to the shoreline, plays a major
role in coastal engineering. Numerical models for the applications involved benefit on one
hand from the development of mathematical models with improved dispersion and shoaling
characteristics, and, on the other, from the availability of accurate and stable discretizations
of these equations.
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Significant effort has been put in the last 20 years in development of systems of depth av-
eraged equations which correctly reproduce the dispersion characteristics of wave propagation
in the near shore region. Starting from the Boussinesq equations of Peregrine [56], several
improved and enhanced Boussinesq models have been proposed over the years, including,
among those having the largest impact in literature and the most recent ones, the enhanced
equations of Madsen and Sørensen [55], the extended formulation of Nwogu [53], genuinely
nonlinear Serre-Green-Naghdi equations [49], and nonlinear and non-hydrostatic higher order
Shallow-Water type models [37]. These models have been obtained by retaining asymptotic
behavior of the order of O(µ2), µ being the ratio of water depth to wavelength. If h0 is the
value of a reference average depth, they give a correct description of the physics for values of
the wave parameter kh0 ≈ 3 − 5. More accurate models, including effects up to the O(µ4)
order have been proposed e.g. in [35].

Concerning the numerics used to solve these equations, the literature is full of promising
schemes involving finite differences, finite volumes, or finite elements approaches. The ma-
jor challenges that need to be dealt with are the approximation of the complex higher order
derivative terms present in all non-hydrostatic depth-averaged models, and the accuracy re-
quirements on the schemes in terms of low dispersion error. In addition, Boussinesq models
can be coupled with the nonlinear Shallow-Water (NLSW) equations to model wave breaking
[15, 68, 69, 67, 47]. While the mathematical character of the Boussinesq equations is (roughly)
parabolic, the NLSW system is hyperbolic. As such it requires some degree of stabilization,
e.g. in the form of some type of upwinding. A model coupling the Boussinesq system and the
NLSW equations requires the underlying numerics used to robustly handle both the parabolic
and purely hyperbolic limits.

The presence of higher order (third) partial derivatives has made the use of finite difference
approximations appealing and quite popular (see e.g. [12, 33, 53, 34] to cite a few). The main
drawback of the finite difference approach is the need of structured spatial meshes, even for
irregular domains, and poor local mesh adaptivity potential (even tough hierarchical block
structured multi-level approaches do exist, see e.g. [13]).

Fully unstructured solvers allowing for adaptive mesh refinement have been proposed,
based either on the finite volume, or on the finite element approach. To the author’s knowledge,
genuinely multidimensional unstructured finite volume discretizations of enhanced Boussinesq
equations have been actually proposed only in [46, 10], other works proposing some form of
hybridization of finite volume/finite difference schemes on structured meshes or even in one
space dimension (see e.g. [25, 16, 68] and references therein). The results presented in [46] are
particularly encouraging, and the extension of the authors’ model to wave breaking applica-
tions , presented at the Modeling the Earth system conference in Boulder [45], has shown the
high potential of their approach. One criticism that can be made to the finite volume frame-
work is that going beyond third order of accuracy might be quite hard, due to the necessity
of introducing higher order multidimensional reconstructions for both the unknowns, and for
the velocity divergence, to allow the discretization of the dispersive terms [46]. The advantage
of the finite volume framework is of course an easy application of upwinding principles to
properly handle the hyperbolic limit of the NLSW equations, and the use of well-established
limiting techniques to avoid oscillations near bores and hydraulic jumps.

On the other hand, the finite element approximation gives a framework to naturally intro-
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duce higher order polynomial representation of the unknowns and of their derivatives, simply
by handling these as auxiliary variables. The work of [30, 27] on discontinuous Galerkin
approximations of enhanced Boussinesq models shows the potential in terms of accuracy of
the finite element approach. Continuous Galerkin discretizations of Bossinesq models have
been proposed by several authors. For example, in [21] a Taylor-Galerkin formulation for
the Peregrine equations is discussed. More recently, a model based on Taylor-Galerkin time
integration and the enhanced Madsen and Sørensen equations has been proposed in [54], using
mixed approximation space. Standard Galerkin approximations are also discussed in [50, 72]
(see also the PhD [71]). These contributions show results at least as good as those obtained
by means of finite difference schemes, with the additional flexibility of a natural unstructured
mesh formulation.

In this paper we want to add to this panorama an additional element, by analyzing and
testing continuous finite element and residual based schemes which include some form of
upwind stabilization, and which have already been shown to accurately and robustly han-
dle the Shallow Water equations. In particular, we consider the Residual Distribution (RD)
schemes, developed e.g. in [61, 60, 22, 17], and the upwind stabilized Galerkin scheme known
as Streamline Upwind Petrov Galerkin scheme (SUPG) of [39, 40, 43]. These schemes have
shown very high potential in handling the NLSW, both in terms of preservation of physically
relevant steady equilibria (well-balancedness), and in terms of a stable approximation of mov-
ing shorelines [61, 58, 39, 17]. For purely hyperbolic problems, it is known that, compared to
finite differences, finite element schemes, and generally for residual based discretizations, have
improved dispersion characteristics, due to the presence of a mass matrix.

While in the hyperbolic case this might seem like a drawback, in presence of mixed space
and time derivatives, as in Boussinesq models, this gives an advantage, allowing to build
discretizations that, on a reduced stencil, and even for low order interpolation (piecewise lin-
ear), yield dispersion properties similar to those of higher order finite difference schemes. Our
aim is to analyze both theoretically and numerically second order upwind RD and SUPG
discretizations for the enhanced Boussinesq equations of [55], and to asses their applicability
to wave propagation. In the one-dimensional case, and for the linearized system, the pa-
per presents a time-continuous error analysis based on a standard truncation error study of
the finite difference form of the schemes, and a dispersion error analysis. The schemes are
then thoroughly tested and compared to one another on one dimensional benchmarks taken
from the literature. Both the analytical and numerical results lead to the conclusion that
the Petrov-Galerkin approach might be the best suited for this application. We thus consider
a two dimensional extension based on Petrov-Galerkin forms which, when considering the
NLSW equations, give back the standard SUPG scheme, and the successful Multidimensional
Upwind Residual Distribution scheme known as LDA scheme [22]. The results on well known
two-dimensional benchmarks show that : on one hand the use of these schemes for wave prop-
agation, on meshes with typical size comparable to that used by finite difference practitioners,
is indeed feasible ; on the other hand, that, compared to the standard SUPG stabilization,
Multidimensional Upwinding leads to slightly less pronounced shoaling, and a lower content
in higher harmonics. This work has to be understood as a first step toward the construction
of a model including coupling with the NLSW equations to handle wave breaking and moving
shorelines.

The structure of the paper is the following. In section §2 we recall the basic form of the

4



enhanced Boussinesq model of [55], and in section §3 we present the schemes analyzed in one
space dimension, including their implementation. Section §4 is devoted to a time continuous
error analysis and comparison with second and higher order finite difference discretizations of
the linearized equations. Sections §5 discusses the issue of the initial and boundary conditions.
The one dimensional benchmarking is presented in sections §6 and §7, which discuss in detail
the CPU cost of the schemes considered and their comparison on several well established
numerical tests. In section §8, we discuss the extension of the schemes to two space dimension
using a Petrov-Galerkin approach, and introducing two different generalizations of the upwind
stabilization studied in 1d. Section §9 is devoted to the benchmarking of the Petrov-Gelerkin
schemes in two space dimensions. The paper is ended by a summary of the results and an
outlook on ongoing work.

2 Enhanced Boussinesq equations in one dimension

With reference to the notation of figure 1, the enhanced Boussinesq equations of Madsen and
Sørensen [55] can be written as






∂tη + ∂xq = 0

∂tq −Bh2∂x2tq −
1

3
h∂xh∂xtq + ∂x(uq) + gH∂xη +

− βgh3∂x3η − 2βgh2∂xh∂x2η = 0

(1)

where η(x, t) and h(x) denote the surface elevation and the depth at still water (cf. figure 1),
while H(x, t) = η(x, t) + h(x) and q(x, t) are the total depth, and the discharge q = Hu, u
denoting the depth averaged speed, as in the NSWE system. In addition, the brief notation
∂xn will be used within this work in order to indicate the recursive application of the partial
derivative with respect to x for n times. These equations provide a description of O(ε, µ2) of
the wave propagation physics, recalling that the nonlinearity ε parameter represents the ratio
of wave amplitude to depth, and the dispersion µ is the ratio of water depth to wavelength.

Figure 1: Sketch of the free surface flow problem, main parameters description.

This model is weakly nonlinear, preserving the same shallow water terms ∂x(uq) and gH∂xη
which are the only nonlinear in the system, being, thus, different from the fully nonlinear
models, like the one proposed in [49]. It also contains additional dispersive terms in the
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momentum equation, which are linear with respect to the unknowns η and q of the system.
These are pre-multiplied by two numerical parameters B and β, whose values are obtained
by optimizing the dispersion properties of the linearized model with respect to the Airy wave
theory. In such a way, the two parameters assume the values β = 1/15 and B = β + 1/3 [55].
Note that the linearized Boussinesq equations of Peregrine are obtained by setting β = 0,
while the NLSW equations are recovered by neglecting all the high order derivative terms.

For later use, we recall that, assuming that both η and u are very small perturbation of a
still steady state, and flat bathymetry, the linearized version of system (1) reads

{
∂tη + h0∂xu = 0

∂tu−Bh20∂x2tu+ g∂xη − βgh20∂x3η = 0
(2)

The dispersion characteristics of this linearized system are obtained by replacing η and u
by a propagating Fourier mode

W =

(
η
u

)
= W0e

νt+ikx

with i the imaginary unit, and with the wavenumber k related to the wavelength as k =
2π/λ, and with a complex amplification parameter ν = ξ + iω, ξ representing the dissipation
parameter, and ω the phase. The so-called Airy theory for water wave propagation (see e.g.
[53] and references therein) gives for these parameters the analytical values






ξAiry = 0

ω2
Airy = C2

0k
2 tanh(kh0)

kh0

(3)

with C2
0 = gh0, the linearized Shallow Water celerity. Substitution of the Fourier mode in (2)

quickly provides the approximated value given by the Madsen and Sørensen model






ξMS = 0

ω2
MS = C2

0k
2 1 + β(kh0)2

1 +B(kh0)2

(4)

Relation (4) is known to be a significantly improved approximation of (3) w.r.t. the relations
obtained with the linearized Shallow Water equations or the Peregrine Boussinesq equations
[55, 65].

3 Space discretization

3.1 Generalities and notation

Let Ω denote the spatial domain. We consider a tesselation Ωh composed by a set of non-
overlapping elements, the subscript h denoting the reference mesh size. The generic element K
is defined by a set of nodes, e.g. in one space dimension K ≡ [xj , xj+1], with hK = xj+1 − xj .
Unknowns are stored at nodes as time dependent values {ηi(t)}i≥1 and {qi(t)}i≥1. For a
generic node i we will also denote by Ki the set of elements containing i as a node. As in
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the standard P 1 finite element method, nodal values are interpolated by means of piecewise
linear continuous shape functions ϕi(x), the interpolated values being denoted by ηh, and qh
with (cf. figure 2)

ηh(t, x) =
∑

i≥1

ηi(t)ϕi(x) =
∑

K

∑

j∈K
ηj(t)ϕj(x)

qh(t, x) =
∑

i≥1

qi(t)ϕi(x) =
∑

K

∑

j∈K
qj(t)ϕj(x)

(5)

with the ϕi(x) the standard continuous piecewise linear finite element basis functions assum-
ing value 1 in node i and zero in all the other nodes. As discussed in the introduction, in this
paper we focus on piecewise linear interpolation in order to show the feasibility of the use of
compact low order discretizations for wave propagation. However all the developments pre-
sented, including the general form of the schemes, extend naturally to higher order polynomial
approximation.

 h

 i

η
 i+1

η
 i−1

η

i−1 i+1i i−1 i+1i

ϕ
i

1

η

Figure 2: P 1 finite element interpolation

In the following subsections we present the schemes studied in the paper in the hypothesis
that periodic boundary conditions are used. More details concerning boundary conditions and
wave generation are given in sections §5 and §6.

3.2 Continuous Galerkin approximation

Following [72], we write the continuous Galerkin approximation of system (1) as, seek ∀, i ∈ Ωh,
the solution of

∫

Ωh

ϕi∂tηh−
∫

Ωh

qh ∂xϕi = 0

∫

Ωh

ϕi∂tqh+

∫

Ωh

B∂xtqh∂x(h
2ϕi)−

∫

Ωh

1

3
ϕih∂xh∂xtqh −

∫

Ωh

(uq)h∂xϕi −
∫

Ωh

g
H2

h

2
∂xϕi

−
∫

Ωh

ϕigHh∂xh

∫

Ωh

ϕiβgh
3∂xw

η
h −

∫

Ωh

ϕi2βgh
2∂xhw

η
h = 0

∫

Ωh

ϕiw
η
h+

∫

Ωh

∂xηh∂xϕi = 0

(6)
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where the auxiliary variable wη is an approximation to the second order spatial derivative of
the free surface level η. Note that in (6) we have separated and integrated by parts the terms
corresponding to the NLSW flux terms ∂x(uq) and g∂xH2/2. However, due to the piecewise
continuous nature of the approximation, and to the assumed periodic boundary conditions,
the terms corresponding to these fluxes can be re-integrated by parts giving

−
∫

Ωh

(uq)h∂xϕi =
∑

K∈Ωh

∫

K

ϕi∂x(uq)h −
∑

K∈Ωh

[ϕi(uq)h]K =
∑

K∈Ωh

∫

K

ϕi∂x(uq)h =

∫

Ωh

ϕi∂x(uq)h

the sum of jump terms on element boundaries [ϕi(uq)h]K being zero due to the continuity of
ϕi and (uq)h, and to the compact support of the basis functions. Proceeding similarly for the
g∂xH2/2 term, we can recast (6) as

∫

Ωh

ϕi∂tηh−
∫

Ωh

qh ∂xϕi = 0

∫

Ωh

ϕi∂tqh+

∫

Ωh

B∂xtqh∂x(h
2ϕi)

+

∫

Ωh

ϕi

[
−1

3
h∂xh∂xtqh + ∂x(uq)h + gHh∂xηh − βgh3∂xw

η
h − 2βgh2∂xhw

η
h

]
= 0

∫

Ωh

ϕiw
η
h+

∫

Ωh

∂xηh∂xϕi = 0

(7)

The actual discretization is obtained by evaluating all the integrals by numerical quadrature
over each element K ∈ Ki, with the assumption of piecewise linear variation of all the quantities
involved. Note that the introduction of the auxiliary variable wη is made necessary by the
presence of the higher (third) order derivatives of the free surface level.

3.3 Centered Residual Distribution

Even though sharing a similar cell-vertex philosophy, the Residual Distribution (RD) dis-
cretization is obtained with a different strategy. Discrete equations are obtained by first com-
puting integrated values of the elemental residuals, denoted by ΦK , and then by distributing
fractions of these elemental residuals to the nodes forming the element (cf. figure 3 and refer
to [22, 61, 60] for details).

i+1

K

ΦK
1

i

ΦK
1

i−1

K1

i
2ΦK

Φ

K

i

i−1

i+1
2ΦK

K2

Figure 3: One dimensional Residual Distribution
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In particular, with the same underlying continuous spatial approximation used for the Galerkin

scheme, we define the element residual ΦK =
[
ΦK
η ΦK

q

]T
as

ΦK
η =

∫

K
(∂tηh + ∂xqh)

ΦK
q =

∫

K

(
∂tqh −Bh2∂x2tqh −

1

3
h∂xh∂xtqh + ∂x(uq)h

+ gHh∂xηh − βgh3∂x3ηh − 2βgh2∂xh∂x2ηh
)

(8)

Discrete equations for the nodal values are obtained by numerically integrating the relations
defining the elemental residual (8), and then by distributing the resulting quantity to the
nodes of element K by means of a distribution matrix βK

i , so that nodal discrete equations
are obtained as ∑

K∈Ki

βK
i Φ

K = 0 (9)

The centered RD scheme (cRD) is obtained (in one space dimension) with the simple choice
βK
i = I2/2 ∀ i and ∀K, with I2 denoting the 2 × 2 identity matrix.

As in the case of the Galerkin scheme, the presence of high order derivative terms re-
quires the definition of nodal values of the derivatives of the variables, which are otherwise
only defined at the elemental level. As in finite element schemes, this is achieved in the RD
community by treating these nodal derivatives as a set of auxiliary variables, for which re-
construction strategies or ad-hoc discrete equations are developed (see e.g. [2, 5, 57, 52] and
references therein). Following the work done in [2, 5, 57], and using the auxiliary variable
already introduced for the Galerkin scheme (cf. equation (7)), we have in practice computed
the second in (8) as

ΦK
q =

∫

K

(
∂tqh −Bh2∂xtw

q
h −

1

3
h∂xh∂xtqh + ∂x(uq)h

+ gHh∂xηh − βgh3∂xw
η
h − 2βgh2∂xhw

η
h

) (10)

with auxiliary variables given by
∫

Ωh

ϕiw
q
h +

∫

Ωh

qh∂xϕi = 0

∫

Ωh

ϕiw
η
h +

∫

Ωh

∂xηh∂xϕi = 0

(11)

where now the auxiliary variable wq is an approximation of the nodal derivative of q. More
details on the treatment of these variables will be given in section §3.5.

3.4 Upwind discretizations

Schemes (7) and (8)-(10) are centered approximations of the equations and are not well suited
for the discretization of the Shallow Water limit for which some form of upwinding is neces-
sary to stabilize the system, or to provide positivity corrections in correspondence of moving

9



shorelines and discontinuities [60, 61]. In view of the coupling of the Boussinesq equations
with the NLSW system to handle wave breaking, we will analyze here two upwind schemes
obtained by adding to schemes (7) and(8)-(10) an upwind bias based on the characteristic
decomposition of the NLSW equations.

We start by rewriting scheme (7) with the short-notation

RcG
i (ηh, qh) = 0 (12)

with RcG
i (η, q) the array whose components are the left hand sides of the first two equations

in (7). In order to construct an upwinding operator, we consider now the quasi-linear form of
the NLSW equations which can be recast as

∂t

(
η
q

)
+A∂x

(
η
q

)
= 0 , A =

(
0 1

c2 − u2 2u

)

where c2 = gH is the Shallow Water celerity. We recall that matrix A admits a full set of
real linearly independent eigenvectors, associated to the two eigenvalues u± c. Following the
SUPG stabilization technique [40, 43, 61, 1], we define the stabilized variant of the continuous
Galerkin (7) as

RcG
i (ηh, qh) +

∑

K∈Ωh

∫

K

A∂xϕi τK rMS
h = 0 (13)

where the matrix τK is the so-called SUPG stabilization parameter, and having denoted by
rMS
h the local residual value of the Madsen and Sørensen equations :

rMS
h =




∂tηh + ∂xqh

∂tqh−Bh2∂x2tqh−
1

3
h∂xh∂xtqh+ ∂x(uq)h + gHh∂xηh − βgh3∂x3ηh − 2βgh2∂xh∂x2ηh





As done previously, to evaluate the integral of the SUPG stabilization, we introduce the
auxiliary variables wη ≈ ∂x2η and wq ≈ ∂xq, and rewrite rMS

h as

rMS
h =





∂tηh + ∂xqh

∂tqh−Bh2∂xtw
q
h−

1

3
h∂xh∂xtqh + ∂x(uq)h + gHh∂xηh

− βgh3∂xw
η
h − 2βgh2∂xhw

η
h



 (14)

where now all the quantities involved have a piecewise linear variation. In addition, for a P 1

approximation, the basis functions derivative ∂xϕi are constant within each element, thus if a
one point linearization of the NLSW Jacobian is used in evaluating the stabilization integral,
we are left with

RcG
i (ηh, qh) +

∑

K∈Ωh

AK∂xϕ
K
i τK

∫

K

rMS
h = 0 (15)

with AK denoting hte local linearization of the NLSW flux Jacobian. Comparing (15) with
(14) and (10), we see that, in the P 1 case, scheme (15) can be recast as

RcG
i (ηh, qh) +

∑

K∈Ωh

AK∂xϕ
K
i τKΦ

K = 0 (16)
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At last, we employ here the definition of the SUPG stabilization parameter allowing to recover
the upwind discretization of a first order hyperbolic operator (see e.g. [11, 23] and references
therein), namely

τK =
1∑

j∈K
|∂xϕK

j |
|AK|−1 (17)

with the absolute value |AK| computed by means of standard eigenvalue decomposition. In
one space dimension this leads to the SUPG scheme

RcG
i (ηh, qh) +

∑

K∈Ωh

sign(∂xϕ
K
i )

sign(AK)

2
ΦK = 0 (18)

where again the sign matrix sign(AK) is computed by means of standard eigenvalue decom-
position. In one space dimension, the stabilization operator for node i only acts in the cells
Ki−1/2 ≡ [xi−1, xi] and Ki+1/2 ≡ [xi, xi+1] providing the additional terms±sign(AK)ΦKi∓1/2

/2.

In the RD case, a more intuitive procedure is used to project the elemental residual ΦK

onto the NLSW characteristics, and split each term according to the sign of the corresponding
eigenvalue. For a node i this boils down to the following discrete equations :

I2 + sign(AKi−1/2
)

2
ΦKi−1/2

+
I2 − sign(AKi+1/2

)

2
ΦKi+1/2

= 0 (19)

which can be readily recast as

RcRD
i (ηh, qh) +

∑

K∈Ωh

sign(∂xϕ
K
i )

sign(AK)

2
ΦK = 0 (20)

having denoted by RcRD
i the algebraic component associated to the centered RD scheme

(βK
i = I2/2 in equation (9) plus (8) and (10)).

3.5 Auxiliary variables, conservation and well balancedness

As defined by equations (7) and (11), the L2 projections defining the nodal values of the
auxiliary variables wq

h and wη
h require the solution of a linear system whose matrix is the

Galerkin mass matrix

mcG
ij =

∫

Ωh

ϕiϕj

This matrix being symmetric, positive definite, and constant, this system can be solved very
efficiently, and its LU decomposition can be actually stored, reducing the reconstruction of
the nodal values {wq

i }i≥1 and {wη
i }i≥1 to a matrix-vector product.

However, as remarked in [71], for P 1 elements, in practice it makes no difference whether
the left hand side of the projection operator is evaluated exactly, or if a mass lumping procedure
is employed, yielding, in one space dimension

(xi+1 − xi−1)w
q
i = qi+1 − qi−1 (21)
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and
xi+1 − xi−1

2
wη
i =

ηi+1 − ηi
xi+1 − xi

− ηi − ηi−1

xi − xi−1
(22)

Both formulas reduce to standard second order central differencing on an equally spaced mesh.
Note that, while giving a simpler and more efficient formulation, and allowing for a straight-
forward inclusion of these terms in the evaluation of a numerical Jacobian if using implicit
time integration with Newton iterations, this approach limits the type of finite elements that
can be used to those for which mass lumping works properly. This rules out a certain number
of elements, including standard P 2 Lagrange elements (in 2D), or low-order spectral elements
(see e.g. [29]). It however allows the use of other type of elements, such as e.g. those based on
Bezier polynomials [63, 6]. In all the other cases, the full Galerkin matrix must be retained
in the L2 projection.

In all the following analysis, and in all the numerical results, we have made explicit use of
the simpler finite difference reconstruction formulae (21) and (22).

Additional precisions are in order concerning the form of the equations in (7), (8)-(9), and
(13)-(14). Firs of all, we remark that for exact integration w.r.t. the assumed polynomial
variation of Hh and hh, and due to the use of the same polynomial expansion for Hh and
hh, the direct use of the free surface level in the hydrostatic terms in the q equations, or
the separate use of the conservative form of the flux ∂x(gH2

h/2) plus the bathymetry term
−gHh∂xhh is absolutely equivalent, as already shown in section §3.2 (cf. also [61] for the RD
case). This actually means that our discretization of the Shallow Water part of the model is
perfectly conservative. As a direct consequence of being able to write the hydrostatic term
in function of the gradient of the free surface level, we obtain that in correspondence of the
so-called lake at rest state η = 0 and q = 0, the schemes proposed reduce to a system of EDOs
of the type

M
dWh

dt
= 0

with Wh is the array containing all the nodal values of ηh and qh (cf. next section). In other
words, our approach preserves indefinitely the lake at rest state (cf. [61] and reference therein
for more).

3.6 Time integration and implementation in 1d

Time integration has been performed with the Crank-Nicholson (CN) scheme for all the bench-
marks shown in the paper. In particular, the discretization steps described in the previous
sections have been applied to the semi-discrete version of (1) that reads






∆n+1η +∆t∂xqn+1/2 = 0

∆n+1q −Bh2∂x2(∆n+1q)− 1

3
h∂xh∂x(∆

n+1q) +∆t∂x(uq)
n+1/2

+∆tgHn+1/2∂xη
n+1/2 −∆tβgh3∂x3ηn+1/2−2∆tβgh2∂xh∂x2ηn+1/2 = 0

(23)

where ∆n+1(·) = (·)n+1− (·)n, and (·)n+1/2 =
(
(·)n+1+(·)n

)
/2. The choice of the CN integra-

tor is related to its simplicity, and stability. Its non-dissipative nature allows to freely set the
time step, the (neutral) linear stability of the schemes in being guaranteed by the results of
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the dispersion analysis of section §4.3. Clearly, the CN scheme introduces a degree of artificial
dispersion which indeed will influence the results. As a consequence, whenever a quantitative
measure of the accuracy was needed we have properly scaled the time step to make sure that
the time integration error should be below the spatial truncation error. Note however, that
the choice of a second order time integration should not, a priori, provide worse results than
schemes based on a splitting approach, already proposed in published literature [16]. The
interaction of spatial and temporal discretization will have to be studied, but it has been left
out of the present paper, which focuses on the influence of residual based upwind dissipation
in the discretization of enhanced Boussinesq equations.

When applied to (23), all the schemes studied in this paper reduce to a nonlinear algebraic
system for the unknowns ηn+1

h and qn+1
h which can be generally written as

F (Wh|ηnh , qnh ) = 0 (24)

where Wh is the array containing all the nodal values of ηn+1
h and qn+1

h , and with the depen-
dence of the system on the variables at the known time step kept explicitly. System (24) has
to be solved by some iterative method. In one space dimension, all the schemes have been
coded with Matlab R©, and share the same computational skeleton. In particular, the algebraic
equations are solved with a Newton loop which can be summarized as follows

1. Set W0 = (ηn+1
0 , qn+1

0 )T = (ηn qn)T

2. Evaluate the frozen Jacobian matrix

M =
∂F

∂Wh
(Wh = W0|ηnh , qnh )

3. for k = 1, kmax do

(a) Evaluate F (Wk−1|ηnh , qnh )
(b) If ‖F‖ ≤ ε set k = kmax and exit, else evaluate Wk = Wk−1 −M−1F (Wk−1|ηnh , qnh )

4. Set Wh = Wkmax

In all the benchmarks presented in the following sections, step 2. is the only one in which the
Jacobian M of the nonlinear equations is assembled. The matrix M is stored using Matlab R©’s
built-in sparse format, and the solve at steb 3.(b) is performed using Gaussian elimination
(Matlab R©’s built-in “mldivide” operator). Note that the structure of M is quite different for
the schemes analyzed so far, as it an be easily deduced from the finite difference equations
reported in appendix A. The SUPG and URD schemes are those with the most important
fill-in, the Jacobian having a full penta-diagonal block structure with full blocks coupling all
the equations for η and q. The other schemes also have a penta-diagonal structure, but they
have a much sparser fill-in pattern. In particular, the FD4 scheme has no off diagonal entries
of the type η − η coupling nodal values of the free surface, while the FD2 and cG scheme fill
in is almost tri-diagonal, with the only exception of the penta-diagonal q − η coupling terms
in the q equations. The cG scheme also has η− η terms in the first equation, arising from the
mass matrix, absent in the FD schemes.

These differences influence the CPU cost of the schemes. A quantitative analysis is dis-
cussed later in the paper.
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4 Time continuous error analysis

In this paragraph we present a truncation and dispersion error analysis of the schemes intro-
duced in section §3. While it is natural to consider the linearized system (2) for the dispersion
analysis, for simplicity we will consider equations (2) for the truncation error as well. The
analysis is time-continuous, meaning that we do not take into account time integration, thus
allowing to better underline differences between the space discretizations considered. In par-
ticular, we will study six different schemes : the four described in section §3, plus the second
order centered finite difference scheme, denoted by FD2, and the centered finite difference
schemes designed by Wei and Kirby [34] for Nwogu’s extended Boussinesq equations, denoted
by FDWK. This last scheme is obtained simply using centered finite difference approximation
of the fourth order accuracy in first order terms of (2), while higher order dispersive terms
are discretized by means of centered finite difference approximation of the second order. This
approach is very common among the scientific community and is used as a reference. Note
that the standard centered fourth order finite difference schemes, initially included in the
comparison, yields dispersion errors almost identical to those of the FDWK scheme, and for
this reason it is not shown in the results of the analysis.

Following the work done in [71, 72, 29], we consider the equivalent finite difference form of
all the schemes, and analyze it w.r.t. its truncation and dispersion error. Clearly, this approach
is not the standard one for finite element and Residual Distribution (cf. [18, 38, 4, 22]),
and it is only suited in one space dimension, and its results cannot be generalized to the
multidimensional case, especially on irregular meshes. It does however provide a very good
indication of the potential of the schemes, especially when regular, or even structured, grids
can be used in two dimensions.

Note that the truncation error of the C0 continuous Galerkin scheme was already consid-
ered in [71, 72, 29]. However, in the references the authors limit themselves to use the form of
the truncation error to argue what the dispersion properties of the scheme will be. Here, we
explicitly compute the dispersion coefficient of the schemes, and compare the dispersion error
of different schemes as a function of the number of points per wavelength.

4.1 Equivalent finite difference equations

The expressions obtained when discretizing (2) are quite long and reporting them in the
body of the paper might lead to useless excessive length. The full discrete equations are thus
reported in appendix A (equations (50), (51), (52), (53), (54), and (55) for the FD2, FDWK,
cG, cRD, SUPG, and URD schemes respectively). We limit ourselves to a few preliminary
observations. The first is that, by comparing (50) and (52), we see that the only difference
between the FD2 and cG schemes is the treatment of the first order time derivatives ∂tη and
∂tu. The FD2 scheme provides a pointwise approximations

dηi
dt

,
dui
dt

while the cG scheme yielding a coupling of neighboring nodes via the mass matrix :

1

6

dηi−1

dt
+

2

3

dηi
dt

+
1

6

dηi+1

dt
,

1

6

dui−1

dt
+

2

3

dui
dt

+
1

6

dui+1

dt
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The two schemes are otherwise identical.
The cRD scheme (53) differs from both FD2 and cG not only due to its mass matrix, but

also for the approximation of the second order derivative in the mixed term ∂x2tu which, due
to the introduction of the auxiliary variable wu, is based on a larger stencil :

∂xx(·) ≈
(·)i+2 − 2(·)i + (·)i−2

2∆x2

Otherwise the three schemes provide the same approximation of the third order term, and
have the same overall stencil.

Lastly, looking at finite difference form of the SUPG and URD schemes, equations (54)
and (55) respectively, we can easily identify the terms associated to the streamline upwind
integral :

ηi equation : − C0

2g

{
∆x

2

(dui+1

dt
− dui−1

dt

)
− Bh20
∆x

(dui+2

dt
− 2

dui+1

dt
+ 2

dui−1

dt
− dui−2

dt

)

−g(ηi+1 − 2ηi + ηi−1)−
βgh20
∆x2

(ηi+2 − 4ηi+1 + 6ηi − 4ηi−1 + ηi−2)

}

ui equation : − g

2C0

{
∆x

2

(dηi+1

dt
− dηi−1

dt

)
+ h0(ui+1 − 2ui + ui−1)

}

Dissipative terms can be clearly identified. For example, the underlined expressions clearly
represent approximations of second order derivatives in space, while the doubly underlined
terms are nothing else than a fourth order dissipation. The remaining difference expressions,
which do not have any apparent property, arise from the coupling of all the terms of the
equation (and of the two equations) introduced by the residual based upwinding.

4.2 Truncation error

After lengthy calculations, the leading order terms of the truncation errors of the finite dif-
ference form of the schemes reported in appendix A (cf. equations (50), (51), (52), (53), (54),
and (55)) can be shown to be the following :
FD2 scheme.

TEη
FD2 =

h0∆x2

6
∂x3ui + O(∆x4)

TEu
FD2 =

∆x2

6
∂x2

(
−Bh20

2
∂x2tui + g∂xηi −

3

2
βgh20∂x3ηi

)
+ O(∆x4)

(25)

FDWK scheme.

TEη
FDWK =

h0∆x4

30
∂x5ui + O(∆x6)

TEu
FDWK =

∆x2

4
∂x4

(
1

3
Bh20∂tui + βgh20∂xηi

)
+ O(∆x4)

(26)

cG scheme.

TEη
cG =

∆x4

24
∂x4

(
1

3
∂tηi +

h0
5
∂xui

)
+ O(∆x6)

TEu
cG =

∆x2

12
∂x4

(
Bh20∂tui − βgh20∂xηi

)
+ O(∆x4)

(27)
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cRD scheme.

TEη
cRD =

∆x2

2
∂x2

(
1

2
∂tηi +

h0
3
∂xui

)
+ O(∆x4)

TEu
cRD = ∆x2∂x2

(
1

4
∂tui −

1

3
Bh20∂x2tui +

1

6
g∂xηi −

1

4
βgh20∂x3ηi

)
+ O(∆x4)

(28)

SUPG scheme.

TEη
SUPG =

C0∆x3

2g
∂x3

(
1

3
∂tui −

1

2
Bh20∂x2tui +

1

6
g∂xηi −

1

3
βgh20∂x3ηi

)
+ O(∆x4)

TEu
SUPG =

∆x2

12
∂x4

(
Bh20∂tui − βgh20∂xηi

)
+ O(∆x3)

(29)

URD scheme.

TEη
URD =

∆x2

2
∂x2

(
1

2
∂tηi +

h0
3
∂xui

)
+ O(∆x3)

TEu
URD = ∆x2∂x2

(
1

4
∂tui −

1

3
Bh20∂x2tui +

1

6
g∂xηi −

1

4
βgh20∂x3ηi

)
+ O(∆x3)

(30)

Comparing the above expression we can make the following remarks. The FDWK, cG, and
SUPG schemes provide higher consistency w.r.t. the η equation. In particular, both FDWK
and cG are consistent up to O(∆x4), while SUPG provides an O(∆x3) approximation of the
first equation. This is well known for the FDWK and cG scheme, albeit for different equations,
and it is an interesting result for the SUPG. In particular, looking at the form of the truncation
error, we can immediately guess what the dispersion error of the schemes might be. The FD2,
cRD and URD schemes all contain in the leading O(∆x2) truncation error terms third order
derivatives of the same form of those contained in the equations. These terms will affect the
dispersion relation significantly. As a side remark, note that the leading term of the URD
scheme is exactly equal to the one of the cRD one, the effects of the streamline dissipation
being of order O(∆x3), as evident by the error of the SUPG scheme. On the contrary, also for
the enhanced equations of [55] the FDWK and cG schemes show a truncation error containing
only fifth order derivatives, which allows to guess a very good discrete dispersion relation.
Similarly, the TE of the SUPG scheme does not contain any third order derivative similar to
those present in the equations, but only fifth and fourth order terms related to higher order
dispersion and dissipation. Once more this allows to anticipate a surprisingly good dispersion
relation. These qualitative observations will be quantitatively verified by means of the explicit
study of the dispersion error of the schemes, which is the subject of the following section.

4.3 Dispersion error

To obtain the discrete dispersion relations of the schemes, we proceed as follows. First, we
replace the nodal values of η and u in each of the finite difference equations reported in the
appendix (cf. equations (50), (51), (52), (53), (54), and (55) for the FD2, FDWK, cG, cRD,
SUPG, and URD schemes respectively) by a propagating Fourier mode :

Wj = (ηj(t), uj(t))
T = W0e

νht+ikxj
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with i the imaginary unit and k the wavenumber, and where νh = ξh + iωh is the dispersion
coefficient, with real part ξh representing the amplification rate, and imaginary part ωh being
the phase speed. The algebraic expressions obtained can be easily recast in terms of the
nodal value Wj using relations of the type Wj+1 = eik∆x, and dWj/dt = νWj . The resulting
equation constitutes a complex eigenvalue problem whose solution is the dispersion factor νh
of the scheme. The formulas obtained , reported in appendix A, are quite complex, and involve
combinations of functions of the parameters µ = kh0 and µ∆x = k∆x.
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Figure 4: Dispersion error of the schemes as a function of the number of nodes per wavelength N,
for kh0 = 0.5 (solid lines) and kh0 = 2.6 (circles). Top : cRD (left) and URD (right). Bottom : cG
(left) and SUPG (right)

Some remarks can be however made. The first is that, as it might have been expected, we
obtain ξh = 0 for all the centered schemes. What might appear as a surprising result is that
we also have ξURD = 0 for the URD scheme. This result is however consistent with what can
be obtained quite easily for the scalar advection equation

∂tu+ a∂xu = 0, a > 0
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For this simple problem indeed one easily checks that the URD scheme has no amplification
or dumping. A heuristic explanation of this fact is that in this case the URD scheme gives
the nodal semi-discrete equation

∆x

2
(
dui−1

dt
+

dui
dt

) + a(ui − ui−1) = 0

which actually is a centered approximation w.r.t. the i− 1/2 average cell value (ui + ui−1)/2.
For the enhanced Boussinesq equations analyzed here things are of course more complicated,
however the behavior observed is the same.

Lastly, the SUPG provides the expected result of having a non-zero damping factor. In
particular, we obtain ξSUPG ≤ 0, as it should be expected from the truncation error of the
scheme, and from the form of the fourth order dissipation terms in the finite difference equa-
tion (cf. sections §4.1 and §4.2).

Concerning the dispersion errors, the formulas are harder to interpret, so we have chosen
to present the results in the form of comparison plots. The results are summarized in figure
4. In the plots, on the x axis we have the inverse of the number of nodes per wavelength, and
on the y axis the relative error |ωh−ωMS |/ωMS (cf. equation (4)) obtained for kh0 = 0.5 and
kh0 = 2.6. In all the figures we have reported for comparison the ratios |ωFD2 − ωMS |/ωMS

and |ωFDWK − ωMS |/ωMS . We can see from the plots that the RD schemes, while providing
better dispersion relations than the FD2 schemes provide dispersion errors significantly above
those of the FDWK scheme. On the other hand, both the cG and SUPG provide dispersion
errors comparable if not lower than those of the FDWK method. In particular, both schemes
provide dispersion errors lower than those of the FDWK scheme for longer waves ( kh0 = 0.5).
For shorter waves (kh0 = 2.6) the FDWK has better dispersion propertied than the Galerkin
scheme, however, the SUPG scheme gives better accuracy if more than 7 points per wavelength
are employed. This is a positively surprising result showing very good potential for the SUPG
scheme.

5 Boundary conditions and wave generation

Before presenting the numerical validation of the schemes, we discuss some important issues
related to the solution of (1), namely the techniques used to impose the boundary conditions
and, more importantly, the way in which proper initial conditions, including solitary and
periodic waves, have been generated.

5.1 Boundary conditions

Two types of Boundary Conditions (BC) have been considered here : periodic and outflow
conditions. Periodic BCs have been applied quite naturally by adding both the right hand
sides and linear system matrix lines (cf. paragraph on Newton solver in section §6) of two
coupled periodic nodes.

Outflow BCs represent a bigger challenge since wave reflection at the boundaries might
pollute the inner domain solution. As in many other works (see e.g. [71, 72, 26] and references
therein), this condition is mimicked here with a viscous sponge layer added to the spatial
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domain whose sole function is to dump completely all the waves passing through. In these
layers, (1) is replaced by






∂tη + ∂xq = ν∂x2η

∂tq −Bh2∂x2tq −
1

3
h∂xh∂xtq + ∂x(uq) + gH∂xη +

− βgh3∂x3η − 2βgh2∂xh∂x2η = ν∂x2q

with the additional terms discretized with a Galerkin scheme, independently on the choice of
the method used to approximate the rest of the system. Following [71], the viscosity ν is set
to zero everywhere except in the layer x ∈ [Xs1, Xs2] where it is defined as:

ν = n1
e
n2

(
x−Xs1

Xs2 −Xs1

)

− 1

e− 1
(31)

Here n1 and n2 are constants used to fine tune the amount of viscosity. The values of these
coefficients, as well as the length of the layer, are problem dependent. For the problems
considered here, we found that for the problems considered here a layer length of approximately
5−10 meters, and values of the coefficients of n1 ≈ 10−3 and n2 ≈ 10 are a good start, but fine
tuning is always preferable to make sure that the amount of reflected information is negligible.

5.2 Solitary wave generation

Several test problems involve the propagation of solitary waves over complex bathymetries.
An analytical exact soliton for (1) is not available, however, a numerical approximation of
exact solitary waves for (1) can be obtained. In particular, following [44], we seek a solution
of (1), on a flat bathymetry with reference depth h0, having the self similar behavior

W = (η, q)T = W (ξ) = W (x− Ct)

with a certain celerity C. We also require this solution and all its derivatives with respect
to ξ to go to zero at infinity. Plugging the expression W = W (ξ) in (1) with d = ct = h0,
integrating once between −∞ and ξ, we obtain the relations






− Cη + q = 0

− Cq + CBh20q
′′ +

q2

h0 + η
+ gh0η +

g

2
η2 − βgh30η

′′ = 0
(32)

The first relation can be used to derive a second order ODE for q, namely :

Ch20

(
B − β

C2
0

C2

)
q′′ + C

(
C2
0

C2
− 1

)
q +

g

2C2
q2 + C

q

q + Ch0
= 0 (33)

with C2
0 = gh0. Note that this equation can be pre-multiplied by q′ and integrated once more

between −∞ and ζ to give

Ch20
2

(
B − β

C2
0

C2

)
(q′)2+

C

2

(
C2
0

C2
− 1

)
q2+

g

6C2
q3+Cq(

q

2
−Ch0)+C3h20 ln

q + Ch0
Ch0

= 0 (34)
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Under the hypothesis that a solitary wave solution does exist, and that in correspondence of
its maximum we have q′ = 0, and q = qmax = CA, with A the amplitude of the wave, we
obtain a relation between the wave celerity and the wave amplitude :

(
C

C0

)2

=
1

2

(
A

h0

)2 1 +
1

3

A

h0
A

h0
− ln

(
1 +

A

h0

) (35)

Once we set the value of the ratio A/h0, we can compute the celerity from (35). With these
data, we have integrated (33) as a first order system of ODEs from ξ = 0 to ξ = ∞ with
initial conditions q0 = CA, and q′0 = 0. This has been done with the standard third order
Runge-Kutta SSP scheme [36]. As an example, the η profile obtained for h0 = 1 [m] and
A/h0 = 0.2 is given in figure 5.

Figure 5: Soliton profile for h0 = 1 [m] and A/h0 = 0.2 obtained by numerically integrating (34)

To confirm the validity of the solution, preliminary calculations have been performed with
the Galerkin scheme on a very fine mesh. The results for A/h0 = 0.2 are reported in figure
6 showing the perfect math between the fine mesh solution of the Galerkin scheme and the
approximate exact solution computed integrating (34).
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Figure 6: Left : computed evolution of the exact A/h0 = 0.2 soliton. Right : comparison between
the exact and the numerically computed solitary wave at the final time of the simulation.

5.3 Internal wave generation

A large number of tests involve the interaction of monochromatic periodic waves of small
amplitude with a given bathymetry. In absence of an exact solution, the generation of such
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periodic waves is a bit tricky. For very small amplitude waves, some authors suggest the use
of Dirichlet type conditions with imposition at the inlet boundary of the condition (see e.g.
[68] and references therein)

(ηb(t), qb(t))
T = (A sin(ωt), C0A sin(ωt))T

with C2
0 = gh0. We have found numerically the use of this approach relatively inefficient, first

due to the fact that the signal obtained presents a transient phase after which it stabilizes to
a periodic wave of amplitude generally larger than A, and more importantly due to a poor
iterative convergence in the newton loop, requiring from two to three more iterations w.r.t.
the convergence usually observed.

We have thus chosen a different approach, which is quite successfully used for the Boussi-
nesq model of Nwogu [53]. This approach consists in adding to the η equation an internal
source term of periodic variation in time. Following [73, 71], the first equation of (1) is
modified as follows :

∂t(η + hiwg) + ∂xq = 0 (36)

where the form of the internal wave generation term is taken to be:

hiwg(x, t) = fiwg(x)Aiwg sin(ωt) (37)

with ω = 2π/T , with T the period of the required signal. The spatial dumping function
fiwg(x) is set to

fiwg(x) = Γiwge
−(x−xiwg)2/d2iwg (38)

These expressions simulate an undulating Gaussian hill centered at the position x = xiwg. The
constant Aiwg is always set equal to the amplitude of the signal we want to obtain, so the main
trick is the choice of diwg and Γiwg. The choice of these parameters depends on the type of
Boussinesq model considered and should be performed using Green’s function method to the
linearized equations including the source, as in [73]. Such a study, which is beyond the scope
of this paper and a subject of investigation in itself, has never been performed for the model
considered here. We can only mention the work of [48], which however does not consider a
Gaussian source as in (38), but a localized delta function (cf. also the study presented in [66]).

To obtain some guidelines to fix the constants involved, at least in the range of amplitudes
and wave periods considered in the benchmarks presented later, we have proceeded as follows.
As in [73], we assume that the width the generation region [xiwg − a, xiwg + a] should be
proportional to the wavelength λ of the signal to be generated :

2a = αiwgλ

Of course we must make sure that on the boundaries of the generation zone fiwg(±a) is very
small. So we set fiwg(±a) = 10−9 and we obtain

ln 10−9 = −
α2
iwgλ

2

4d2iwg

from which we deduce

diwg =
1

2

αiwgλ√
− ln 10−9

≈ 1

2

αiwgλ√
20

21



which is consistent with the estimate for the β constant in the source function of [73] (equation
(47) on page 279 in the reference). Next we assume the scaling constant Γiwg to depend on
the dispersion parameter λ/h0. In particular, we numerically found this parameter to be more
important for longer waves. So we have set Γiwg = βiwgλ/h0 leading to

fiwg(x) = βiwg
λ

h0
e−(x−xiwg)2/d2iwg , diwg =

1

2

αiwgλ√
20

In practice, one might either use the value of the wavelength of the signal to be generated, or
simplify further by using the assumption λ ≈ C0T =

√
gh0T , with T the period of the signal

sought, leading to

fiwg(x) = βiwg

√
gh0T

h0
e−(x−xiwg)2/d2iwg , diwg =

1

2

αiwg
√
gh0T√
20

(39)

In our tests we have found this choice of the source to work quite well for αiwg ∈ [1, 4] (the
higher the longer the wave), and for βiwg ∈ [0.15, 0.21]. Fine tuning, always allowing to obtain
the desired amplitude within few percent of error.

Concerning the numerical treatment of (36), the term hiwg(x, t) is carried along in all
the discretization steps together with η. Thus all the time increments ∆n+1η (cf. (23)) are
replaced everywhere by ∆n+1(η + hiwg) = ηn+1 + hn+1

iwg − ηn − hniwg. Typically, the use of
this wave generation technique produces a transient signal of a few periods which must be
discarded in the simulation.
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Figure 7: Left : waves obtained for the values (T, A) = (1 [s], 0.025 [m]) (top), (T, A) =
(1 [s], 0.01 [m]) (middle), and (T, A) = (3 [s], 0.005 [m]) (bottom), both the x and η axes are
normalized. Right : ratio between amplitude of signals obtained and Aiwg as function of Aiwg.
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To give an example of the behavior obtained, we consider the generation of waves of
periods T = {1 [s], 2 [s], 3 [s]}, with different amplitudes. To generate the signals we have
set, independently on the amplitude sought, (αiwg, βiwg) = (1, 0.185), for the case T = 1, [s],
(αiwg, βiwg) = (1, 0.15), for the case T = 2, [s], and (αiwg, βiwg) = (4, 0.21), for the case
T = 3, [s]. On the right on figure 7 we show the ration between the value of the amplitude
obtained over the input amplitude Aiwg, as a function of Aiwg itself, for the values of Aiwg close
to those used in the benchmarks discussed later in the paper. The picture shows that, even
without fine tuning of the parameters for each different amplitude, the amplitude of the signal
obtained is within 5% of Aiwg. The left pictures on the same figure show the scaled values of
η(x) obtained for the cases (T, A) = (1 [s], 0.025 [m]) (top), (T, A) = (1 [s], 0.01 [m]) (middle),
and (T, A) = (3 [s], 0.005 [m]) (bottom). The red vertical lines enclose the generation region,
while the left and right boundaries are sponge layers.

6 CPU cost estimation in one dimension

To have an indication of the computational cost of the schemes and of the savings obtained by
freezing the Newton Jacobian, we have compared the schemes’ unit cost, defined as the CPU
time per time step, node, and Newton iteration, and the cost per node, and time step. These
two quantities, denoted by CPU and CPU∆t, are obtained by computing approximations of
the solitary wave solution of section §6.2 on different meshes, and computing the average times
and Newton iterations needed to converge at each time step and for each scheme.

The results are summarized in table 1, in which we report: the unit CPU time per time
step, node, and Newton iteration in the frozen Jacobian (column 2) and variable Jacobian
(column 3) cases, and the ratio of these two (column 4), giving an indication of the relative
cost of the Jacobian assembly for each scheme; the average (per time step) number of Newton
iterations needed to converge at each time step (column 5) ; the unit CPU time per time step
and per node in the frozen Jacobian (column 6) and variable Jacobian (column 7) cases, and
the ratio of the two (last column), giving an indication of the relative cost of the Jacobian
assembly per time step. The Newton convergence threshold for all the cases is 10−14, and all
the computations have been run on a portable 2.66 Ghz Intel Dual Core PC with 4 GB of
RAM memory

CPU0 CPU CPU0/CPU kmax CPU0
∆t CPU∆t CPU0

∆t/ CPU∆t

FD2 1.9965 2.5532 0.78196 4 7.89725 10.2737 0.7687
FDWK 2.3129 2.93118 0.78907 3.5 8.0469 10.2529 0.7848
cG 3.4338 3.83428 0.89556 2.5 8.513 9.7083 0.87688
cRD 3.19209 3.16557 1.0084 2 6.3842 6.33113 1.008
SUPG 5.56998 6.12684 0.90911 2.5 13.84496 16.49361 0.8394
URD 4.56813 4.79167 0.95335 2.5 11.17793 11.83333 0.9446

Table 1: Performance comparison of the 1d implementation of the schemes. CPU time units :
10−5 [s] (see text for a complete description).

The table shows that the FD2 scheme is the least costly in terms of operations per node
and time step and Newton iteration, while the SUPG is the most expensive one. The relative
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cost of the Jacobian assembly is measured by the fourth column which shows that for the finite
difference schemes freezing the Jacobian leads to average savings per Newton step of over 20%.
This is also a consequence of the relatively large number of Newton steps to converge, which
is of about 4. On the other hand the cRD scheme, which only requires 2 Newton iterations
to converge, shows absolutely no gains in Freezing the Jacobian M. For the cG, SUPG, and
URD schemes the gain the third column shows that the Jacobian assembly in average takes
between 5 and 15% of the CPU time.

The results reported in the last three column are more significant from the point of view
of obtaining the final result, giving the average CPU times to advance of one time step. These
figures bring the Jacobian assembly costs at around 30-35% for the FD schemes, and confirm
the rough 5-15% estimate for the cG, SUPG, and URD schemes. On the other hand, we see a
slight reduction of the advantage of the FD schemes over the others. In particular, the FD2,
FDWK and cG schemes have now comparable CPU times per time step, while the SUPG
remains the most expensive scheme, requiring roughly 60% more CPU than the cG scheme,
and 70% more when compared with the FDWK in the frozen Jacobian case. The URD figures
are slightly better than the SUPG ones (roughly 40% times more expensive than the FDWK
scheme), while the cRD scheme, due to its rapid Newton convergence, is the fastest of all.

Given our unoptimized implementation of the schemes one must take these figures very
carefully. However, to be fair to the centered schemes, one must recognize that using an upwind
stabilization brings a considerable additional computational cost, here perhaps overestimated
at roughly 60%-70% times the CPU time of an ”unstabilized” scheme. These figures can be
compared to those, perhaps more reliable, obtained with our 2d implementation and discussed
later in section §8.4. From the results of table 1 we also see that just by freezing the system
Jacobian on obtains gains of about 10-15% for the residual based schemes, and of 20%-25%
for the FD schemes. In section §8.4 we will see how this can be considerably improved.
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Figure 8: Grid convergence for the cG, cRD, SUPG, URD, FD2, and FDWK schemes.
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7 Numerical tests in one dimension

7.1 Solitary wave propagation : grid convergence

We have verified the accuracy of the schemes by performing a grid convergence study on
the solitary wave solutions of section §6.2. The solution used is a soliton propagating on a
depth of h0 = 1m, and with a ratio A/h0 = 0.2, giving a celerity C ≈ 3.44m/s (a value of
g = 9.8066m/s2 has been used everywhere). The error is computed after the solitary wave has
moved of 100m from its initial position, on meshes containing 1000, 2000, 4000, and 8000 cells.

The results are reported on figure 8 in terms of L2 norm of the error in η, and confirm,
in part, the theoretical expectations. For the FD2 scheme we get the expected second order
rate (the slope obtained is actually 1.76), with very small errors on the lower resolutions. For
both the RD schemes we obtain slopes well above 2 (close to 2.6), with errors below the FD2
scheme only on the finest resolution used. Finally, the FDWK, cG, and SUPG schemes provide
a slope very close to 3 (close 2.98 for cG and SUPG, and closer to 2.85 for FDWK). These
results confirm numerically our previous observation concerning the accuracy of the SUPG
scheme. We did not observe the fourth order of convergence neither for the FDWK nor for
the cG, which really show errors of the same magnitude of the SUPG. Quite surprisingly, the
presence of the upwind term affects the error to the order of the second or third decimal (in
log10). Note that, in order to isolate the effects of the spatial discretization, to obtain these
results the time step has been set to

∆t = 100
∆x3

C

The number of time steps thus grows significantly on the finer meshes, leading to a number
of time iterations and CPU times which are not representative of the cost of the spatial dis-
cretization. Clearly, high order time stepping would have been preferable for a full comparison
including computational times.

In conclusion, to be completely fair, if on one hand we stress once more that the SUPG
scheme provides error magnitudes and convergence rates very close to the cG and FDWK
schemes, the performance comparison of section §6 leads to the final result that retaining this
level of accuracy with an upwind scheme requires a considerably higher CPU time.

7.2 Head-on collision of two solitary waves

A common test for the Boussinesq-type and non-hydrostatic models is the simulation of the
interaction of two identical solitary waves propagating in opposite directions. After the inter-
actions, one should ideally recover the initial profiles. The collision of the two waves presents
additional challenges to the model by a sudden change of the nonlinear and frequency dis-
persion characteristics. The numerical model must handle the equilibrium between amplitude
and frequency dispersion to propagate the wave profile at constant shape and speed.

We present here the interaction of two solitons propagating on a depth of h0 = 1m with
amplitude A/h0 = 0.2. The spatial domain is [0 200] m, and the the initial solution is
represented in figure 9. The computation uses a grid size ∆x = 0.08 m, and a time step
∆t = 0.015 s.
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Figure 9: Head on collision of two solitary waves : initial solution.

The results obtained are summarized on figures 10 and 11. In particular, the pictures on
figure 10 show the superposition of the solutions obtained with the four schemes studied in the
paper at the time during the interaction when maximum amplitude is reached (left picture)
and after the interaction (right picture). No differences can be observed at this scale. On the
left on figure 11 the soliton profiles recovered at the final state with the SUPG scheme are
plotted against the exact profiles, showing an excellent agreement, while on the right a zoom
the the soliton peak on the left is presented. This close up view shows once more the higher
resolution of the cG and SUPG schemes w.r.t. the RD schemes, and also the very similar
accuracy of the cG and SUPG.
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Figure 10: Head on collision of two solitary waves. Left : solution corresponding to maximum
amplitude. Right : final state after the interaction. The solutions of all the schemes are superposed.
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Figure 11: Head on collision of two solitary waves. Left : final state after the interaction, comparison
of the SUPG solution with the exact soliton profiles. Right : final state after the interaction, close
up view of the schemes resolution of the soliton peak.
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7.3 Wave propagation over a shelf

This test is proposed in [44] : a solitary wave of amplitude A = 0.2 m propagates over a still
water level of depth h0 = 1 m. At t = 0 the soliton is placed at x = 80 m and it propagates
on a shelf of slope 1 : 20 (figure 12), over which the water depth is reduced to h = 0.5. The
computational domain for this test is [0 280]m. As in [44] we have set the grid spacing to
∆x = 0.1m, while the time step has been set to ∆t = 0.029 s.

Figure 12: Sketch of the submerged shelf test.

Due to the interaction with the shelf, the solitary splits into several waves. The smallest
in amplitude is a reflected wave characterized by a very long wavelength, while three forward
waves with considerably higher amplitude are observed. A visualization of the wave trans-
formation in time computed by the SUPG scheme is reported on figure 13, showing the nice
capturing of the wave shoaling and splitting due to the interaction with shelf. The result
compares very well with that reported in [44].

Figure 13: Splitting of a solitary wave propagating over a submerged shelf : numerical computation
using SUPG scheme.

On figure 14 we compare the the results computed by the different schemes, having added
the FDWK result for comparison. Note that the cRD and URD curves are right on top of
each other, thus the curve relative to the cRD result (green) is not visible. The interaction
is relatively fast, so it is hard to see any relevant differences between the prediction of the
different schemes on the overall shape of the solution, as it is clear from the top picture on
figure 14. The close ups of the three forward moving waves (bottom pictures in the same
figure), only show a small phase difference, particularly visible on the highest wave produced
for which the RD and FDWK scheme provided a larger celerity. In the bottom-right figure,
we report a reference solution obtained with the cG scheme on a refined mesh (dashed line).
With respect to this reference solution, the SUPG is the one providing the smallest phase
error.
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Figure 14: Solitary wave interaction with a shelf. Superposition of the solutions obtained with
the cRD, URD, cG, SUPG, and FWDK schemes. Top: overall view. Bottom left: close-up of the
shorter peaks. Bottom right: close-up of the highest peak.

7.4 Periodic wave propagation over a submerged bar

In [64] a series of laboratory experiments investigating wave propagation and dispersion over
a submerged bar are described. The experimental data collected are often used to validate
non-hydrostatic models for wave propagation. In particular, we consider here the experiment
with the configuration shown in figure 15. The test consists in a periodic wave of period
T = 2.02 s and amplitude A = 0.01 m which propagates into an initially undisturbed region
of depth h0 = 0.4m before reaching a bar of the shape and proportions given in the figure.

The numerical set for this test case needs the use of the periodic internal wave generator
centered at the coordinate x = 10 m of the domain x ∈ [0 35] m. Two sponge layers are then
used at the two boundaries of the domain, extended on the regions x ∈ [0 3] m on the left and
x ∈ [32 35] m on the right, in order to absorb any wave reaching the boundaries.
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Figure 15: Sketch of the computational configuration of the numerical test of the propagation over
a submerged bar.

The values of grid size and time step have been set to ∆x = 0.04m and ∆t = 0.0323,
similar to those used by other authors (see e.g. [20] and references therein). For this choice of
parameters, the cRD scheme has shown a strongly unstable behavior, so no results are shown
with this scheme. For the cG, URD, SUPG, and FDWK schemes, the numerical results are
compared with experimental data in gauges placed at x4 = 20.5m, x5 = 22.5 m, x6 = 23.5 m,
x7 = 24.5 m, x8 = 25.7 m, x9 = 27.3m, and x10 = 29m, denoted as gauge g4, g5, g6, g7, g8,
g9, g10. Numerical simulations have been run for a over 40s, and the computed signals in the
gauges have been compared to the experimental ones after a steady periodic flow has been
obtained. Due to the periodic character of the solution, as in [20, 71], a phase calibration has
been necessary to be able to compare computed and measured signals. This calibration has
been performed here by introducing a small time shift in the computed results, such that the
phase error w.r.t. the data in g4 is minimized, as shown on figure 16. Once this time shift is
obtained, the same value is applied to all the other gauges.
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Figure 16: Data in gauge g4 for the submerged bar experiment of [64] (amplitude A = 0.01 m and
period T = 2.02 s): phase calibration. Experimental data (◦◦◦), FDWK scheme (———), cG scheme
(———), SUPG scheme (———), and URD scheme (———).

This problem provides a severe test of the model, as nonlinearity initially steepens the
waves on the up-slope, and then the increasing depth behind the bar decomposes the waves
into short wave components. This results in a rapidly varying profile behind the bar with
the exact form depending crucially on the dispersive characteristics of the numerical model.
Due to the theoretical limitations of the model used, some discrepancies may appear show
up as higher harmonics are released behind the bar. The comparison between computed and
experimental signals is reported on figure 17. All the schemes perform very well up to the
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position of gauge g7 at the end of the plateau. Starting from g8, we can see major differences
appearing. In particular, already in g8 the URD scheme shows a significant phase shift w.r.t.
all the other schemes, while in g9 and g10 we can clearly see the appearance of spurious higher
harmonics.

The cG, SUPG, and FDWK provide a satisfactory prediction of the experimental data, the
FDWK giving a slight underestimation of the amplitudes in both g9 and g10. Nevertheless
the agreement is still very reasonable, and the discretization schemes proposed represent quite
accurately the nonlinear and dispersive properties of the original continuous model. More-
over the similar resolution properties of the SUPG, cG, and FDWK schemes are once more
confirmed.
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Figure 17: Data in gauges g5 to g10 for the submerged bar experiment of [64] (amplitude A = 0.01
m and period T = 2.02 s). Experimental data (◦◦◦), FDWK scheme (———), cG scheme (———), SUPG
scheme (———), and URD scheme (———).

8 Extension to two space dimensions

The objective of this section is to show that also in two space dimensions, as in 1d, the upwind
Petrov-Galerkin schemes studied in this paper provide results comparable to those used in
published literature, on meshes comparable to those used to obtain these results.

In particular we consider the discretization of a two-dimensional version of (1) on un-
structured triangulations by means of two upwind stabilized Petrov-Galerkin schemes, both
of which reduce in 1d reduce to the SUPG scheme studied in the first half of the paper. These
schemes can both be written as the C0 Galerkin scheme plus a local Petrov-Galerkin stabiliza-
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tion depending on an upwind biased perturbation of the test function. In the Shallow Water
limit the schemes reduce to the standard SUPG scheme [43], and to the P 1 LDA Residual
Distribution scheme with Petrov-Galerkin mass matrix [22, 61, 59].

8.1 Enhanced Boussinesq equations in two space dimensions

We consider the Boussinesq equations in the improved form proposed in [65, 54]. Denoting
by .q the mass flux vector, .q ≡ (qx, qy), with .u ≡ (ux, uy) the velocity vector, and with the
same notation used in one dimension for the other variables, the model equations read :






∂tη +∇ · .q = 0

∂tq +∇ · (.u⊗ .q) + gH∇η + .ψ = 0
(40)

where .ψ ≡ (ψx, ψy) are the dispersive terms of the model which can be written as [65, 54]






ψx = −Bh2∂tx∇ · .q − 1

6
h∂xh∂t (∇ · .q + ∂xqx)−

1

6
h∂yh∂txqy − βgh2∂xw

η

ψy = −Bh2∂ty∇ · .q − 1

6
h∂yh∂t (∇ · .q + ∂yqy)−

1

6
h∂xh∂tyqx − βgh2∂yw

η

wη = ∇ · (h∇η)

(41)

This form of the enhanced model reduces exactly to (1) for constant bathymetry in the one
dimensional case. For variable bathymetry (40)-(41) correspond to a variant of the model with
improved shoaling coefficient proposed in [65]. The main advantage of using this form of the
equations, as compared to e.g. the ones used in [68], is that all the higher order derivatives
of η, including the mixed ones, appear through the sole auxiliary variable wη.This allows
to reduce the number of auxiliary variables whose reconstruction is needed in the numerical
implementation of the model (cf. next section). The values of the dispersion coefficients β
and B are set, as in one dimension and as in [65, 54], to β = 1/15 and B = β + 1/3.

8.2 C0 continuous Petrov-Galerkin discretization

Let Ωh denote an unstructured triangulation of the spatial domain Ω, with h the reference
element size, and with K denoting the generic element. For a node i ∈ Ωh, let Ki denote the
set of elements containing i. On Ωh we consider piecewise linear continuous approximations
ηh and .qh of the variables of type (5), with standard piecewise linear continuous Lagrange
bases (cf. figure 18).

The discrete version of (40) for a node i ∈ Ωh reads

RcG
i (ηh, .qh) +

∑

K∈Ωh

∫

K

ΓKi rMS
h = 0 (42)

where, as in one dimension, RcG
i represents the nodal equation obtained with the Galerkin

scheme, while ΓKi is a local stabilization matrix introducing some upwind bias in the scheme.
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Figure 18: P 1 finite element interpolation

As done in one space dimension, in the P 1 case we can safely assume ΓKi to be constant within
each element. This leads to the simpler form of our prototype scheme

RcG
i (ηh, .qh) +

∑

K∈Ωh

ΓKi Φ
K = 0 (43)

where, as in one space dimension, ΦK =
[
ΦK
η ΦK

#q

]T
is the element residual defined as (cf.

section §3.2, equation (8) and (10))

ΦK
η =

∫

K

(∂tηh +∇ · .qh)

ΦK
#q =

∫

K

(∂t.qh +∇ · (.u⊗ .q)h + gHh∇ηh) + ΦK
#ψ

ΦK
#ψ
=
(
ΦK
ψx
, ΦK

ψy

)T
=

∫

K

.ψ

(44)

In practice, the cG term RcG
i has been implemented as

RcG
i = RcG-NLSW

i +RcG-ψ
i (45)

where, as in the one dimensional case, the first term can be written after re-integrating by-parts
the Galerkin statement as

RcG-NLSW
i =





∫

Ωh

ϕi (∂tηh +∇ · .qh)
∫

Ωh

ϕi (∂t.qh +∇ · (.u⊗ .q)h + gHh∇ηh)



 (46)

Fully discrete terms are obtained by evaluating the last expressions exactly w.r.t. a linear
variation of ηh, .qh, Hh, and of the non-linear component of the NLSW advective flux (.u⊗.q)h.

For the dispersive component we have RcG-ψ
i = (0, RcG-ψx

i , RcG-ψy

i )T , where the momentum
terms have been implemented as

RcG-ψx
i =

∫

Ωh

Bh2
(
∂txqxh∂xϕi +

1

2
(∂xqyh∂yϕi + ∂yqyh∂xϕi)

)

−1

6

∫

Ωh

ϕih (∂xh∂t(∇ · .qh + ∂xqxh) + ∂yh∂txqyh)−
∫

Ωh

βgh2∂xw
η
h

(47)
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Fully discrete expressions are obtained after evaluation of (47) with approximate quadrature
over each mesh element, with the hypothesis of piecewise linear variation of all the quantities
involved. Note that, for symmetry reasons, the mixed derivative term in the first line of (47)
has been expressed as an average of two terms for which the partial derivative in each space

direction is passed onto the basis function. The form of the RcG-ψy

i term is very similar.
For the element residual (44) fully discrete quantities are obtained by evaluating the inte-

grals with numerical quadrature with the hypothesis of linear variation of all the quantities
involved. In particular, the flux-divergence terms are evaluated directly as contour integrals,
the hydrostatic term is evaluated exactly w.r.t a linear variation of H and η, while the dis-
persive terms are computed by evaluating exactly

ΦK
ψx

= −B

∫

K

h2
(
∂txw

qx
xh +

1

2
(∂txw

qy
yh + ∂tyw

qy
xh)
)

− 1

6

∫

K

h
(
∂xh (2 ∂txqxh + ∂tyqyh) + ∂yh ∂txqyh

)
− βg

∫

K

h2∂xw
η
h

(48)

where, as in the Galerkin term (47), the second order mixed derivatives of qy have been
implemented, for symmetry , as an average of the x and y derivatives of the components of
.wqy . A similar expression is used for ΦK

ψy
. The auxiliary variables .wqx ≡ (wqx

x , wqx
y ) and

.wqy ≡ (w
qy
x , w

qy
y ) are defined as

.wqx = ∇qx , .wqy = ∇qy

Nodal values of these quantities are obtained following [2, 5, 57] as

wη
i =− 1∑

K∈Ki

|K|
∑

K∈Ki

∫

K

h∇ηh ·∇ϕi

.wqx
i =

1∑
K∈Ki

|K|
∑

K∈Ki

|K|∇qKx

.w
qy
i =

1∑
K∈Ki

|K|
∑

K∈Ki

|K|∇qKy

(49)

where |K| is the area of the element. Note that, while all of the above expressions can be
obtained by an L2 projection with mass lumping on the left hand side, the last two boil down
to a Green-Gauss reconstruction of the nodal gradients of .q [5, 57].

8.3 Upwind stabilization

The one-dimensional analysis and the numerical tests have shown us that the Petrov-Galerkin
SUPG scheme provides an accurate approximation of the enhanced Boussinesq system consid-
ered in this paper. Element based multidimensional upwinding, however, is a more complex
procedure. In the following sections we present a one-to-one comparison of two different ap-
proaches, both reducing in the 1d case to the SUPG scheme presented in section §2.
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The first approach reduces, when considering the NLSW limit, to the standard multidi-
mensional P 1 SUPG finite element scheme [43]. In this case, we set in (43)

ΓKi = (AK ·∇ϕi)τK

where ∇ϕi is the local value of the gradient of the shape function of node i in element K,
which is constant and given by

∇ϕi =
.ni

2|K|
with .ni the inward pointing scaled normal to the edge facing node i. The matrix τK is a
scaling matrix parameter, and AK ≡ (Ax, Ay)K is a local mean value of the Jacobian of the x

and y components of the NLSW conservative fluxes. We recall that ∀ .ξ ∈ R2 the matrix AK · .ξ
admits a full set of linearly independent eigenvectors associated to the thee eigenvalues .u · .ξ
and .u · .ξ ± C‖.ξ‖ with C2 = gH (see e.g. [61] for detailed expressions). This decomposition
can be used to define the scaling parameter τK, which has been set to [11, 23, 1, 61] (see also
equation (17) section §3.4),

τK =
2

3




∑

j∈K
|AK ·∇ϕj |




−1

with the absolute value of a matrix computed using standard eigenvalues decomposition.

A different route to construct upwind biased discretizations relies on the Multidimensional
Upwinding procedure introduced by P.L. Roe and H. Deconinck in the context of Residual
Distribution. The interested reader can refer to [62, 70, 19, 22] and references therein for an
overview and an historical perspective on this approach. Here, we will compare the SUPG
to the Petrov-Galerkin form of the Multidimensional-Upwind Residual Distribution scheme
known as LDA [22]. The earliest Petrov-Galerkin finite element formulation of multidimen-
sional upwind RD schemes for time dependent problems is due to J. Maerz and G. Degrez for
scalar advection [51], later generalized to the Euler equations by Ferrante and Deconinck [32].
Since then, several versions of this finite element analogy have been presented in literature
[24, 3, 22, 59]. The simplest form of this analogy allows to rewrite RD schemes as in (43),
with a Multidimensional Upwind stabilization obtained by setting

ΓKi = βK
i − I3

3

with βK
i the RD distribution matrix. In particular, in the case of the Multidimensional Upwind

LDA scheme [22, 59] we have

βK
i =

(
AK ·∇ϕi

)+



∑

j∈K

(
AK ·∇ϕj

)+



−1

where the positive part of a matrix is computed by standard eigenvalues decomposition. For
further details concerning upwind RD schemes in the multidimensional case the interested
reader can consult the references given above.
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8.4 Implementation details

As in one dimension, the numerical simulations presented in the next sections make use of
Crank-Nicholson integration in time, obtained by simply replacing the time derivatives ∂t(·) by
divided differences ∆n+1(·)/∆t = ((·)n+1 − (·)n)/∆t, and evaluating the remaining quantities
at the n+1/2 level (cf. section §5). The model and the Newton algorithm discussed in section
§5 has been implemented in the Shallow Water C code developed in [61], and modified in two
dimensions as follows

1. Set W0 = (ηn+1
0 , qn+1

0 )T = (ηn qn)T

2. Evaluate the frozen Jacobian matrix

M =
∂F

∂Wh
(Wh = W0|ηnh , qnh )

3. Compute a LU factorization of M
4. for k = 1, kmax do

(a) Evaluate F (Wk−1|ηnh , qnh )
(b) If ‖F‖ ≤ ε set k = kmax and exit, else evaluate Wk = Wk−1 −M−1F (Wk−1|ηnh , qnh )

5. Set Wh = Wkmax

In two dimensions, besides freezing the Jacobian, we also pre-compute and store its LU fac-
torization. Thus, not only step 2. is the only one in which the sparse matrix M is assembled,
but step 3. is the only step in which the actual “inversion” of M is performed. Thus, the
underlined operation in step 4.(b) is reduced to a double matrix vector product.

All these steps are implemented making use of standard functionalities of the MUMPS
algebraic library [8, 9]. In particular, the cost of step 4(b) is further reduced due to the use
of optimized BLAS libraries made in “solve” function of MUMPS, while the computation and
storage of the decomposition of M is completely transparent to the user. The convergence
threshold ε is in practice replaced by the min(ε, εrel‖F (F (W0|ηnh , qnh ))‖, with εrel a relative
tolerance. The typical convergence behavior over a few time steps for the tests considered in
the paper is reported on figure 19 for values of the relative convergence of 10−4 and 10−6, and
for an absolute convergence threshold of 10−12. Three sub iterations are in general enough to
achieve a relative tolerance of four orders of magnitude, while four or five sub iterations are
enough to go in between 6 orders of magnitude w.r.t. the initial residual value and machine
accuracy.
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Figure 19: Typical Newton convergence of the 2d implemetnation
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To measure the savings obtained with our 2d implementation of the Newton loop, we
perform a test similar to the one of section §6. In particular, on the rectangle [0, 400]× [0, 0.4]
we consider the generation of a planar periodic signal, using the generator of section §5.3 with
T = 2.525 s and A = 0.027m. We compute 5 periods in time on several meshes, and then
measure the average unit CPU time per node, time step and Newton iteration, and the average
CPU time per time step and node. These are denoted by CPU and CPU∆t in table 2. The
superscript 0 is added for the values obtained with the implementation discussed above, while
the values without superscript refer to computations in which the Jacobian is re-computed and
inverted at each Newton step. In table 2 we summarize the results obtained for the cG, SUPG
and LDA schemes. The tolerance used in the Newton loop is 10−13, and all the computations
have been run on a portable 2.66 Ghz Intel Dual Core PC with 4 GB of RAM memory

CPU0 CPU CPU0/CPU kmax CPU0
∆t CPU∆t CPU0

∆t/ CPU∆t

cG 3.0536 8.7984 0.3470 3.883 11.8838 34.3165 0.346
SUPG 3.6156 9.8664 0.3664 3.958 14.2446 39.0502 0.365
LDA 3.6376 9.8952 0.3676 3.962 14.4028 39.1848 0.367

Table 2: Performance evaluation of the 2d implementation of the schemes. CPU time units :
10−5 [s] (see text for a complete description).

The figures reported in table 2 allow to slightly correct the CPU over-head estimated in 1d,
when comparing the performance of the Petrov-Galerkin schemes with Galerkin. In particu-
lar, the fifth and sixth columns allow to estimate this overhead to roughly 20% in the froze
Jacobian case, which we believe being a more realistic estimate than the 60% obtained in
1d. The other interesting aspect is the gain obtained with our implementation of the Newton
algorithm. We can see from the third column that at each Newton iteration we are able (in
average) to save 75% of the CPU time by freezing the Jacobian matrix and storing its LU
decomposition. Note that, since we are anyways using a direct solver, these gains in CPU
time do not come at any additional memory requirements, since the memory used is that
normally already required by the linear solver. Note also, that these requirements might be
more demanding in the P 2 and P 3 cases, however will remain much more moderate for a C0

interpolation than for a discontinuous one, and might anyways be mitigated by the need of a
lower number of elements, thanks to the increase of accuracy.

Concerning the implementation of the solver, the most tricky part of the implementation
is the inclusion in the Jacobian of the nonlocal terms. These are evaluated in to steps, first
by computing nodal Jacobians of the auxiliary variables, which are then used in the Jacobian
assembly en each element. In addition, the reflective boundary conditions

.qh · .n = 0 , ∇ηh · .n = 0

have has been implemented in a strong form by modifying the two components of the right
hand side of the .qh equations, the auxiliary variable equations, and the related Jacobian entries
such that

R#q
i · .n = 0

at each Newton iteration.
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9 Two-dimensional results

9.1 Wave diffraction over a semi-circular shoal

We consider here the reproduction of the tests carried out in [74] involving the study of
the focusing effect induced by a semicircular shoal on wave trains of different periods. The
experiments were carried out in a wave tank 6.096m wide and 25.6m long, its middle portion
consisted in a semi-circular shoal leading the water depth to decrease from h0 = 0.4572m (at
the wave maker) to 0.1524m at the end of the tank. The bottom topography is described by
the equation

z =






0 if 0 ≤ x < 10.67−G(y)

(10.67−G(y)− x)/25 if 10.67−G(y) ≤ x < 18.29−G(y)

0.30480 if 10.29−G(y) ≤ x

with G(y) =
√

y(6.096− y).The depth h is obtained as h = h0 − z. A contour plot of the
bathymetry is reported on the left on figure 20. This test is a standard benchmark for 2D
dispersive models (see e.g. [55, 12, 72, 54, 31, 68, 46] and references therein).

Three cases are considered here, with wave trains characterized by [74]

(a) T=1 s, A = 0.0195 m, h0/λ = 0.306 ;

(b) T=2 s, A = 0.0075 m, h0/λ = 0.117 ;

(c) T=3 s, A = 0.0068 m, h0/λ = 0.074 ;

having denoted by T the period and by λ the wavelength. For all the cases, the harmonic anal-
ysis of free surface elevation measurements taken along the tank centerline are available, and
are used to verify the capabilities of a model to reproduce nonlinear refraction and diffraction.

Figure 20: Wave diffraction over a semi-circular shoal. Left : bathymetry contours. Right: close
up view of the structured grid

The computational domain is the rectangle [−10, 36]m × [0, 6.096]m. Periodic waves are
generated by means of the internal generator described in section §6.3, centered at x = −2m.
Sponge layers (cf. section §6.1) of a length of 5m are set at the left and right ends of the do-
main, while reflective boundary conditions are imposed along the top and bottom boundaries.
Following [72, 46], we run the tests on a regular triangulation (cf. right picture on figure 20)
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of size approximately h ≈ 0.1, in the x direction. The mesh size in the y direction is instead
approximately 0.2m. The mesh contains 64470 triangles. The time step is set to ∆t = T/100.

For all the cases, we compare the solution obtained with the SUPG and LDA schemes with
the experimental data. In particular, we report in figures 21, 22, and 23 a three dimensional
visualization of the wave patterns obtained (top pictures), a comparison of the centerline data
obtained with the SUPG and LDA schemes (bottom left picture), and between comparison
of the harmonic components of the η(t) along the channel centerline obtained with our model
with the experiments. In particular, in order to make sure that a steady periodic state is
obtained, we start sampling the solution after 15 periods of oscillations. and then perform a
DFT of the centerline data collected over 15 periods.

Figure 21: Wave diffraction over a semi-circular, case (a). Top : exaggerated 3D view of the
free surface. Bottom-left : centerline data comparison between the LDA and SUPG solutions at
t ≈ 79.3 [s]. Bottom-right : comparison of DFT of computed centerline data with experiments.

Looking at the results we can draw the following conclusions. Quite consistently, the
SUPG gives a stronger shoaling than the LDA scheme. This is particularly visible in the
first harmonics in the cases (a) and (b), especially in the first one. The SUPG also show a
richer content in higher harmonics in case (b). This is probably a sign of a higher numerical
dissipation introduced by the multidimensional upwind stabilization of the LDA scheme. In
case (c) the 2 schemes give otherwise nearly identical results, the SUPG still giving a stronger
shoaling which is however barely visible in the harmonic comparison.

38



Figure 22: Wave diffraction over a semi-circular, case (b). Top : exaggerated 3D view of the
free surface. Bottom-left : centerline data comparison between the LDA and SUPG solutions at
t ≈ 75.55 [s]. Bottom-right : comparison of DFT of computed centerline data with experiments.

Concerning the comparison with the experiments, the results reported are similar to those
presented by others (cf. [55, 12, 72, 54, 31, 68, 46] for example). In particular, case (c), which
we consider as being resolved concerning both the spatial and temporal scales, we have an
overestimation of the first harmonic which is common to many computational results presented
in literature, while both the second and third harmonics are underestimated, as also is quite
common in literature. In case (b), which we also consider well resolved, we have a good match
between the harmonic content of the computed signal and the experiments. Finally, in case (a),
we have a good estimation of the first harmonic, while we have a considerable underestimation
of the second. This might be related to an under-resolution problem, as observed e.g. in [31]
where a denser mesh was used for this case with a second order DG method, but also related
to the ”low” order of the time integration scheme.

Overall we judge these results very encouraging. In particular we believe that they confirm
our observation in one space dimension.

For completeness, we also report a comparison of the SUPG results obtained on the regular
triangulation with those obtained on an unstructured grid. This second mesh is an unstruc-
tured triangulation with hx ≈ 0.2m at the left and right boundaries. As shown on the right in
figure 24, hx is progressively reduced when approaching the shoal from the left end boundary
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Figure 23: Wave diffraction over a semi-circular, case (c). Top : exaggerated 3D view of the
free surface. Bottom-left : centerline data comparison between the LDA and SUPG solutions at
t ≈ 120 [s]. Bottom-right : comparison of DFT of computed centerline data with experiments.

to reach the value o hx ≈ 0.1m before the end of the shoal. As for the regular mesh, also this
one has a characteristic size in the y direction twice as large as that in the x direction. The
adapted mesh contains 30705 (less than half the number of elements of the regular mesh).

The results are summarized on figure 25 in terms of centerline distribution of the free
surface, and harmonic content of the computed signal. It is clear that the unstructured mesh
result matches quite well the regular grid one. There are noticeable differences in the harmonic
content. In particular, toward the end of the shoal the unstructured grid computation shows
a higher content in the second harmonic, which we are still unable to explain. Both solutions,
however, match quite well the experimental data.

9.2 Wave diffraction over an elliptic shoal

This test reproduces the experiment of [14] studying the refraction and diffraction of monochro-
matic waves over a complex bathymetry. This is a standard test to verify models based on the
mild-slope equations but it is often also used as a test for extended Boussinesq models (see
e.g. and [68, 72, 71, 34] references therein). A sketch of the experiment is reported on the
left picture on figure 26. The actual wave tank is 20m wide and 22m long. The bathymetry
consists of an elliptic shoal mounted on a ramp of constant slope, forming a 20◦ angle with the
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Figure 24: Wave diffraction over a semi-circular : close-up of the unstructured grid.

Figure 25: Wave diffraction over a semi-circular, comparison of SUPG results on structured and
unstructured triangulation. Left : centerline data at t ≈ 75.55 [s]. Right : DFT of the time
dependent data along the centerline.

x axis. The maximum water depth is h0 = 0.45m at the wave maker, while the bathymetry is
given by the formula z = z0 + zs, where

z0 =






(5.82 + yr)/50 if yr ≤ −5.82

0 otherwise

zs =





−0.3 +

1

2

√

1−
(xr
5

)2
−
(
4yr
15

)2

if
(xr
4

)2
+
(yr
3

)2
≤ 1

0 otherwise

where the transformed coordinates (xr, yr) are defined as

xr = x cos(20◦)− y sin(20◦) , yr = x sin(20◦) + y cos(20◦)

The water depth is computed as h = h0 − z. The incoming periodic wave has period T = 1s,
and amplitude A = 0.0232m. In [14], the wave elevation was measured in 8 different sections
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along which the normalized time average wave height distribution has been computed. A
sketch of the problem with the indicative position of the measurement sections is reported in
the left picture on figure 26 (cf. [14] for details).

Figure 26: Wave diffraction over an elliptic shoal. Left : sketch of the problem with bathymetry
contours and position of the experimental sections. Right : close up view of the mesh.

The computational domain is the square [−10, 10]m× [−17, 15]m. The incoming periodic
wave is obtained by means of the internal wave generator described in section §6.3, centered
at y = −13m, while sponge layers of 4m thickness are placed at the bottom and top ends
of the domain. As in [68], reflective boundary conditions are imposed on the left and right
boundaries. Concerning the mesh size, we have run this case on an unstructured grid. The
grid has been refined around the region of the interaction. In particular, the grid size in the
y direction varies from hy ≈ 0.1 on the bottom and top boundaries to hy ≈ 0.05 in the region
around the shoal where the interaction takes place (a grid size of 0.1 m is used in [72], while a
mesh size of 0.03m in the main propagation direction is used in [68]). In the x direction, the
grid size is hx = 2hy. A close up view of the mesh refinement in the bottom left region of the
computational domain is reported in the right picture on figure 26. Computations have been
run until time t = 50s with ∆t ≈ 0.02s.

Three dimensional visualizations of the water elevation computed at time t = 50s are
reported on figure 27. The left picture shows the region of the interaction with the mesh
superimposed. Both pictures provide a visualization of the complex pattern obtained from
the diffraction of the incoming periodic wave on the elliptic shoal. To compare our results
with the experiments of [14] time dependent data have been extracted from t = 25s to t = 50s
from the sections (cf. leftmost picture on figure 26 and [14]) : section 1≡ {y = 1m| − 5m ≤
x ≤ 5m} section 2≡ {y = 3m| − 5m ≤ x ≤ 5m}, section 3≡ {y = 5m| − 5m ≤ x ≤ 5m},
section 4≡ {y = 7m| − 5m ≤ x ≤ 5m},, section 5≡ {y = 9m| − 5m ≤ x ≤ 5m}, section
6≡ {x = −2m|0m ≤ y ≤ 10m}, section 7≡ {x = 0m|0m ≤ y ≤ 10m}, and section 8≡
{x = 2m|0m ≤ y ≤ 10m}. The data obtained has been analyzed using the zero up-crossing
principle to isolate single waves and compute the average wave height distributions, the wave
height of a single wave being defined as ηmax − ηmin. The results, normalized by the incoming
wave amplitude A = 0.0232m, are reported on figure 28.
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Figure 27: Wave diffraction over an elliptic shoal, results at t = 50s. Left : top view of the free
surface with mesh. Right : exaggerated 3D view of the free surface with bathymetry.

The agreement of our computational results with the experiments is very satisfactory, and
compares very favorably with what can be found in published literature (see e.g. [68, 72] and
references therein). Once more the SUPG scheme gives a slightly stronger shoaling, as it is
visible clearly in sections 2, 5, and 7. Again we assume this behavior to be related to a less
dissipative character of the streamline upwind stabilization term w.r.t. the multidimensional
upwind one.

10 Conclusions and future work

In this paper we have presented an investigation of the applicability of low order upwind
stabilized continuous finite elements and residual distribution schemes for the discretization
of the enhanced Boussinesq equations of [55, 65] to simulate wave propagation on complex
bathymetries. In the first half of the paper, we have thoroughly studied the properties of
the standard continuous Galerkin scheme, of its upwind stabilized variant, the SUPG scheme,
and of the centered and Upwind Residual Distribution schemes. In both the finite element
and residual distribution frameworks upwinding is performed along the characteristics of the
nonlinear shallow water equations. The theoretical analysis of the truncation and dispersion
error of the schemes, has shown that both the Galerkin and SUPG schemes provide an accuracy
comparable or even better than those of the standard finite difference scheme of Wei and Kirby
[34]. These observation have been largely confirmed by the extensive numerical validation
presented in one space dimension.

Extensions to the two-dimensional case of the SUPG analyzed in 1d have then been stud-
ied. In particular, we have considered two forms of the upwind Petrov-Gelerkin stabilization.
The first is that of the standard SUPG scheme [43], while the second is the one leading to the
Multidimensional Upwind LDA residual distribution scheme, formulated in a Petrov-Galerkin
context, as suggested e.g. in [32, 3, 59]. These schemes have been tested and compared on
standard two-dimensional benchmarks. The results show that, on meshes similar to those
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Figure 28: Wave diffraction over an elliptic shoal. Comparison of the computed average wave height
with the experimental data of [14] in sections 1 to 8.

used in the reference literature, these schemes provide results comparable to those presented
by other authors.

Concerning the computational cost, we have reported a detailed discussion of the unit costs
(per node, time step, and Newton iteration, and per node and time step) of all the schemes
considered. We have shown that, while in our (perhaps inefficient) one dimensional Matlab R©

44



implementation the upwind stabilized Galerkin SUPG scheme requires 70% more CPU time
than the scheme of Wei and Kirby, and 60% more than the “unstabilized” Galerkin scheme,
in our improved two-dimensional implementation the overhead of the stabilized schemes w.r.t.
the Galerkin scheme is only of 20%, which we claim being a much more realistic figure. More-
over, we have also shown that the frozen Newton approach we propose allows gains up to
75% of the CPU time, if the LU decomposition of the Jacobian is also stored and frozen. In
particular, since we are anyways using a direct solver, these gains in CPU time do not come
at any additional memory requirements, since the memory used is that normally already re-
quired by the linear solver. Note also, that these requirements might be more demanding in
the P 2 and P 3 cases, however will remain much more moderate for a C0 interpolation than
for a discontinuous one, and might anyways be mitigated by the need of a lower number of
elements, thanks to the increase of accuracy.

In conclusion, we believe we have given very strong evidence that low order upwind stabi-
lized continuous Galerkin schemes can be applied to the discretization of enhanced Boussinesq
equations with results comparable to those presented in the published literature, and definitely
comparable to those obtained with the basic “unstabilized” Galerkin scheme. This justifies
the continuation of our work in several future directions :

• the use of a hybrid approach to handle wave breaking by reverting to the nonlinear Shal-
low Water equations in breaking regions. This development, which constitutes the moti-
vation behind the present paper, has already been successfully tested in [68, 69, 16, 47].
Aside from the upwind stabilization allowing to stably handle the hyperbolic Shallow
Water equations, additional care will have to be taken in resolving monotonically the
bores obtained in the NLSW region. Our preliminary one dimensional implementa-
tion shows that mass lumping alone allows to locally recover a monotonicity preserving
scheme in 1d. In the multidimensional case, this will not be enough, and will have to
be coupled with other shock capturing techniques, such as those proposed in [61], or on
more standard finite element discontinuity capturing operators [39, 42].

• we are currently extending the study presented here to other models, including the en-
hanced Boussinesq equations of Nwogu [53, 72, 31], and genuinely nonlinear dispersive
model such as the Green-Naghdi equations proposed in [49, 16]. Our preliminary results
show that for the equations of Nwogu we obtain a very similar behavior to that demon-
strated here for the model of Madsen and Sørensen. In particular, the SUPG scheme
has remarkably low dispersion errors. These results will be reported elsewhere ;

• even though the numerical results shown here are very satisfactory, we believe that a
higher order implicit time stepping scheme should be employed, to guarantee a better
resolution of high frequency content in the solution, while allowing to choose the time step
without being constrained by e.g. geometrical stiffness related to local mesh adaptation.
The form f the Boussinesq equations used in conjunction with such techniques will have
to be properly studied, as suggested in [28] ;

• even though this paper has discussed results concerning the P 1 case, in practice the use
of higher order approximations might provide an additional gain in efficiency, in terms
of CPU time per node and per time step, for a given level of resolution (error). This
is also the topic of our current work, which, in particular, focuses on the study of both
hierarchical approaches [75, 7, 30], and of Bezier-type approximations [41, 6]
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• concerning the efficiency, a comparison between the MUMPS based implementation dis-
cussed here and a Newton algorithm using an iterative linear solver will be performed,
and, of course, the optimal parallel implementation of the schemes on heterogeneous
architectures will have to be considered.
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A FD equations and dispersion parameters

We report here the finite difference expressions of all the schemes analyzed in section §4 when
applied to the linearized equations (2), including their discrete dispersion parameters. All the
derivation is done by assuming an equally spaced mesh of size h = ∆x, C2

0 = gh0 denotes the
square of the linearized Shallow Water celerity, while the notation µ∆x = k∆x has been used
in the expressions of the dispersion parameters.

A.1 Second order central finite differences

The second order centered finite difference scheme applied to system (2) yields

dηi
dt

+
h0
2∆x

(ui+1 − ui−1) = 0

dui
dt

− Bh20
∆x2

(
dui−1

dt
− 2

dui
dt

+
dui+1

dt

)

+
g

2∆x
(ηi+1 − ηi−1)− β

gh20
2∆x3

(−ηi−2 + 2ηi−1 − 2ηi+1 + ηi+2) = 0

(50)

Replacing in the scheme the time dependent nodal values by a Fourier mode in space, we
obtain for the discrete dispersion parameters the following expressions :

ξFD2 = 0

ω2
FD2 =

NFD2

DFD2

where

NFD2 = C2
0k

2 sin
2 µ∆x

µ2
∆x

+ 2βgh30k
4 sin

2 µ∆x

µ4
∆x

(1− cosµ∆x)

DFD2 = 1 + 2B
h20k

2

µ2
∆x

(1− cosµ∆x)
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A.2 Central finite difference scheme by Wei and Kirby

Applying the spatial discretization described in [34] to the linearized system of Madsen and
Sørensen enhanced Boussinesq equations (2) yields

dηi
dt

+
h0

12∆x
(ui−2 − 8ui−1 + 8ui+1 − ui+2) = 0

dui
dt

− Bh20
∆x2

(
dui−1

dt
− 2

dui
dt

+
dui+1

dt

)

+
g

12∆x
(ηi−2 − 8ηi−1 + 8ηi+1 − ηi+2)

− β
gh20
2∆x3

(−ηi−2 + 2ηi−1 − 2ηi+1 + ηi+2) = 0

(51)

Replacing in the scheme the time dependent nodal values by a Fourier mode in space, we
obtain for the discrete dispersion parameters the following expressions :

ξFDWK = 0

ω2
FDWK =

NFDWK

DFDWK

where

NFDWK = C2
0k

2 sinµ∆x
2

µ2
∆x

(4− cosµ∆x)

(
1

9
(4− cosµ∆x) +

2

3

βh20k
2

µ2
∆x

(1− cosµ∆x)

)

DFDWK = 1 + 2B
h20k

2

µ2
∆x

(1− cosµ∆x)

A.3 Continuous Galerkin scheme

When applied to system (2) on a uniform mesh with definition (22) of the auxiliary variable
wη
i yielding

wη
i =

ηi+1 − 2ηi + ηi−1

∆x2

the continuous Galerkin scheme (7) reduces to

∆x

6

dηi−1

dt
+

2∆x

3

dηi
dt

+
∆x

6

dηi+1

dt
+

h0
2

(ui+1 − ui−1) = 0

∆x

6

dui−1

dt
+

2∆x

3

dui
dt

+
∆x

6

dui+1

dt
+

g

2
(ηi+1 − ηi−1)−

Bh20
∆x

(
dui−1

dt
− 2

dui
dt

+
dui+1

dt

)

− β
gh20
2∆x2

(−ηi−2 + 2ηi−1 − 2ηi+1 + ηi+2) = 0

(52)

Note that the only difference w.r.t the second order finite difference scheme is the presence
of a non-diagonal mass matrix multiplying the ∂tη and ∂tu terms, otherwise the two schemes
are identical.
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Replacing in the scheme the time dependent nodal values by a Fourier mode in space, we
obtain for the discrete dispersion parameters the following expressions :

ξcG = 0

ω2
cG = C2

0k
2 sin

2(µ∆x)

µ2

1 + 2βµ2 1− cos(µ∆x)

µ2
∆x

2 + cos(µ∆x)

3

(
2 + cos(µ∆x)

3
+ 2Bµ2 1− cos(µ∆x)

µ2
∆x

)

A.4 Centered residual distribution

When applied to system (2), definitions (22) of wη yields

wη
i =

ηi+1 − 2ηi + ηi−1

∆x2
and

while wq is replaced by a wu ≈ ∂xu similarly defined, which under the present hypotheses is
computed as

wu
i =

ui+1 − ui−1

2∆x

the centered residual distribution scheme reduces to

∆x

4

dηi−1

dt
+
∆x

2

dηi
dt

+
∆x

4

dηi+1

dt
+

h0
2

(ui+1 − ui−1) = 0

∆x

4

dui−1

dt
+
∆x

2

dui
dt

+
∆x

4

dui+1

dt
+

g

2
(ηi+1 − ηi−1)−

Bh20
2∆x

(
dui−2

dt
− 2

dui
dt

+
dui+2

dt

)

− β
gh20
2∆x2

(−ηi−2 + 2ηi−1 − 2ηi+1 + ηi+2) = 0

(53)

Note that the difference w.r.t the second order finite difference scheme is the presence of a
non-diagonal mass matrix multiplying the ∂tη and ∂tu terms, and the fact that the second
order derivative of u in space is approximated with a larger stencil.

Replacing the time dependent nodal values by a Fourier mode in space, we obtain for the
discrete dispersion parameters the following expressions :

ξcRD = 0

ω2
cRD = C2

0k
2 sin

2(µ∆x)

µ2

1 + 2βµ2 1− cos(µ∆x)

µ2
∆x

1 + cos(µ∆x)

2

(
1 + cos(µ∆x)

2
+

Bµ2

2

1− cos(2µ∆x)

µ2
∆x

)

A.5 SUPG scheme

In the linearized case, the matrix associated to the Shallow Water quasi-linear form is

A0 =

[
0 h0

g 0

]
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Straightforward eigenvalue decomposition show that the sign of this matrix can be written as

sign(A0) =

[
0 C0/g

g/C0 0

]

Using this expression, and the pointwise expressions of the auxiliary variables recalled above,
we can deduce the form of the SUPG scheme (18) applied to system (2) :

∆x

6

dηi−1

dt
+

2∆x

3

dηi
dt

+
∆x

6

dηi+1

dt
+

h0
2

(ui+1 − ui−1)−
C0

2g

{
∆x

2

(dui+1

dt
− dui−1

dt

)

− Bh20
∆x

(dui+2

dt
− 2

dui+1

dt
+ 2

dui−1

dt
− dui−2

dt

)
− g(ηi+1 − 2ηi + ηi−1)

−βgh20
∆x2

(ηi+2 − 4ηi+1 + 6ηi − 4ηi−1 + ηi−2)

}
= 0

∆x

6

dui−1

dt
+

2∆x

3

dui
dt

+
∆x

6

dui+1

dt
+

g

2
(ηi+1 − ηi−1)−

Bh20
∆x

(
dui−1

dt
− 2

dui
dt

+
dui+1

dt

)

− β
gh20
2∆x2

(−ηi−2 + 2ηi−1 − 2ηi+1 + ηi+2)

− g

2C0

{
∆x

2

(dηi+1

dt
− dηi−1

dt

)
+ h0(ui+1 − 2ui + ui−1)

}
= 0

(54)

Replacing the time dependent nodal values by a Fourier mode in space, we obtain for the
discrete dispersion parameters the following expressions :

ξSUPG = − Aν

2Aν2

ω2
SUPG =

As

Aν2
− ξ2

where

Aν2 =
(2 + cosµ∆x)

3

(
(2 + cosµ∆x)

3
+ 2Bµ2 (1− cos (µ∆x))

µ2
∆x

)
+

+
sin2 µ∆x

4

(
1 + 2Bµ2 (1− cosµ∆x)

µ2
∆x

)
> 0;

Aν = C0k
(1− cosµ∆x)2

µ∆x

(
1

6
+

(
1 + 2βµ2 1− cosµ∆x

µ2
∆x

)(
1

6
+Bµ2 1− cosµ∆x

µ2
∆x

))
≥ 0;

As = C2
0k

2 (1− cosµ∆x)
2

µ2
∆x

(
1 + 2βµ2 (1− cosµ∆x)

µ∆x2

)
+ C2

0k
2 sin

2 µ∆x

µ2
∆x

(
1 + 2Bµ2 (1− cosµ∆x)

µ2
∆x

)

Note that from the inequalities Aν2 > 0 and Aν ≥ 0 we immediately deduce ξSUPG ≤ 0
which shows the dissipative character of the method.
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A.6 Upwind residual distribution

Using the expressions of the sign of the Shallow Water Jacobian in the linearized case, and
the expressions of the auxiliary variables recalled above, the upwind RD scheme applied to
the linearized system (2) becomes

∆x

4

dηi−1

dt
+
∆x

2

dηi
dt

+
∆x

4

dηi+1

dt
+

h0
2

(ui+1 − ui−1)−
C0

2g

{
∆x

2

(dui+1

dt
− dui−1

dt

)

− Bh20
∆x

(dui+2

dt
− 2

dui+1

dt
+ 2

dui−1

dt
− dui−2

dt

)
− g(ηi+1 − 2ηi + ηi−1)

−βgh20
∆x2

(ηi+2 − 4ηi+1 + 6ηi − 4ηi−1 + ηi−2)

}
= 0

∆x

4

dui−1

dt
+
∆x

2

dui
dt

+
∆x

4

dui+1

dt
+

g

2
(ηi+1 − ηi−1)−

Bh20
2∆x

(
dui−2

dt
− 2

dui
dt

+
dui+2

dt

)

− β
gh20
2∆x2

(−ηi−2 + 2ηi−1 − 2ηi+1 + ηi+2)

− g

2C0

{
∆x

2

(dηi+1

dt
− dηi−1

dt

)
+ h0(ui+1 − 2ui + ui−1)

}
= 0

(55)

Replacing the time dependent nodal values by a Fourier mode in space, we obtain after long
calculations :

ξURD = 0

ω2
URD =

As

Aν2

where

Aν2 =
(1 + cosµ∆x)

2

(
(1 + cosµ∆x)

2
+Bµ2 (1− cos (2µ∆x))

2µ2
∆x

)
+

+
sin2 µ∆x

4

(
1 + 2Bµ2 (1− cosµ∆x)

µ2
∆x

)
;

As = C2
0k

2 (1− cosµ∆x)
2

µ2
∆x

(
1 + 2βµ2 (1− cosµ∆x)

µ∆x2

)
+

+C2
0k

2 sin
2 µ∆x

µ2
∆x

(
1 + 2Bµ2 (1− cosµ∆x)

µ2
∆x

)
.
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