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Hyperbolic Conservation Laws

Consider the scalar conservation law

∂tu+∇ · f = 0 or ∂tu+ a · ∇u = 0

on a domain Ω.

a = ∂f

∂u
is the advection velocity for the flow.

u(x, 0) is specified.

u(x, t) is specified on inflow boundaries.
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Residual Distribution

Integrating the conservation law gives

∂tu+∇ · f = 0 −→

∫

Ω

∂tu+∇ · f dx dt = 0

u can be continuous or discontinuous.

Attempt to integrate the equations exactly.

Distribute the integrals between the unknowns.

For conservation, apply Gauss’ divergence theorem.

This is related to the finite element approach.
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Residual Distribution

For a space-time mesh element (Et), consider

φEt
=

∫

Et

∂tu+∇ · f dx dt

For simplicity, assume that u is stored at mesh
nodes and varies linearly in space and in time.

In simple cases φ can be evaluated exactly using
an appropriate conservative linearisation.

This leads to schemes with nice properties.

Conservation can be imposed in other cases.
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Residual Distribution

It is simplest to
treat time and space
slightly differently.

Integrating over a
space-time prism
gives

φEt
=

∫

E

un+1 − un dx +

∫ tn+1

tn

∫

E

∇ · f dx dt

=

∫

E

un+1 − un dx −

∫ tn+1

tn

∮

∂E

f · dn dt

Space cell

Space−time cell

∆t

tn+1

tn

(E)

(Et)
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Residual Distribution

The aim is to solve the equations given by

∂tu+∇ · f = 0 −→
∑

Et|i∈Et

βEt

i φEt
= 0 ∀ nodes i

This is done iteratively, at each time level, by:

distributing each residual φEt
to adjacent nodes;

carefully choosing the distribution coefficients βEt

i ;

applying a simple pseudo-time-stepping algorithm,

(ui)
(m+1) = (ui)

(m) −
∆τ

|Si|

∑

Et|i∈Et

βEt

i φEt
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Scheme Design

Ideally, a residual distribution scheme would have the
following properties.

Conservative: for discontinuity capturing.

Positive: to prohibit unphysical oscillations.

Linearity Preserving: for accuracy.

Continuous: for convergence of the iteration.

Compact: for efficiency (and parallelism).

Upwind: for physical realism.
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Some Scalar Schemes

For d-dimensional linear advection, assume that

the spatial mesh is composed of simplices,

the space-time mesh is prismatic,

u varies linearly within each simplex and in time,

and write each element residual in the form

φEt
=

∑

i∈Et

kiui where ki =
∆t

2d
ã · ni ±

|E|

d+ 1

is an upwinding parameter.
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Some Scalar Schemes

Since the ki sum to zero in an element

φEt
=

∑

i∈Et

ki(ui − uin) , uin = (
∑

i∈Et

ki
+)−1(

∑

i∈Et

ki
+ui − φEt

)

The N scheme (linear, positive)

φEt

i = βEt

i φEt
= ki

+(ui − uin)

The LDA scheme (linear, linearity preserving)

φEt

i = βEt

i φEt
= (

∑

i∈Et

ki
+)−1ki

+ φEt
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Some Scalar Schemes

To achieve positivity and linearity preservation:

The PSI scheme limits the distribution coefficients
of the N scheme:

βEt

i ←−
(βEt

i )+

∑
k∈Et

(βEt

k )+
⇒ βEt

i ∈ [0, 1]

Blended schemes use weighted averages:

φBlend = θ φN + (1− θ)φLDA θ ∈ [0, 1]

This is more robust and flexible but may not be
positive for the most common choices of θ.
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Issues with Continuity

Forcing continuity at element faces can be restrictive.

It is difficult to change the representation locally,
within mesh elements, since it has a knock-on effect
on neighbours. This interferes with:

conservation, particularly at boundaries;

h- and p-adaptivity;

the limiting of high order schemes for positivity;

• the stability of time-dependent schemes.

Discontinuous flow cannot be represented exactly.
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Discontinuous Representation

If u is allowed to be discontinuous then
∫

Ω

∂tu+∇ · f dx dt

=
∑

Et

∫

E

un+1− − un+

dx −
∑

Et

∫ tn+1

tn

∮

∂E

f · dn dt

+
∑

Ft

∫ tn+1

tn

∫

Ft

[f ] · dn dt +
∑

E

∫

E

un+

− un−

dx
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Discontinuous Representation

It is possible to consider the face integrals separately.

∫

Ω

∂tu+∇ · f dx dt =
∑

Et

φEt
+

∑

Ft

ψFt
+

∑

E

ψE

The ψ are simply
integrals over an
interface of the flux
difference across it.

The ψFt
will be

ignored here.

t
n
−

t
n
+

t
n+1−Ft
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Discontinuities in Time

Integrating across temporal discontinuities gives

ψE =

∫

E

[u] dx

Upwinding always distributes forward in time.

This removes the necessity for the past shield
condition on the space-time distribution.

Schemes can now be positive for any time-step.
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Discontinuities in Time

This is a degenerate
two-layer scheme.

The distribution is
much simpler in
the discontinuity.

tn+1

tn

tn+2

tn+1
−

tn
+

tn
−

Continuous Double Layer in time
Discontinuous

A positive, linearity preserving, distribution is

ψE
i,n− = 0 ψE

i,n+ = βE
i,n+ ψE =

|E|

d+ 1
(un+

i − u
n−

i )
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The Distribution

The aim is to solve the equations given by

∂tu+∇ · f = 0 −→
∑

Et|i∈Et

βEt

i φEt
+

∑

E|i∈E

βE
i,n+ ψE = 0

This is done iteratively, at each time level, by:

distributing the φEt
and ψE to adjacent vertices;

choosing the distribution coefficients, βEt

i and βE
i,n+;

applying a simple pseudo-time-stepping algorithm,

(ui)
(m+1) = (ui)

(m) +
∆τ

|Si|
(

∑

Et|i∈Et

βEt

i φEt
+

∑

E|i∈E

βE
i,n+ ψE)

– p. 16/31



Results: Linear Advection (2D)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2
-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

lo
g
1
0
(E

L
1
)

log10 h

CFL = 2.5
CFL = 5
CFL = 10
CFL = 20
CFL = 50
slope 2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2
-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

lo
g
1
0
(E

L
1
)

log10 h

CFL = 2.5
CFL = 5
CFL = 10
CFL = 20
CFL = 50
slope 1.7

Mesh convergence for constant advection of a smooth profile:
L1 error for the ST LDA (left) and ST LDA-N (right) schemes.
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Nonlinear Systems

Consider the system of conservation laws

∂tU +∇ · F = 0 or ∂tU + A · ∇U = 0

on a domain Ω, where A gives the flux Jacobians.

ΦEt
=

∫

E

Un+1− − Un+

dx −

∫ tn+1

tn

∮

∂E

F · dn dt

ΨFt
=

∫ tn+1

tn

∫

Ft

[F] · dn dt ΨE =

∫

E

Un+

− Un−

dx

can all (with care) be evaluated exactly, decomposed
and distributed to the element vertices.
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Nonlinear Systems

The element-based residuals take the form

ΦEt
=

∑

i∈Et

Ki Ui where Ki =
∆t

2d
Ã · ni ±

|E|

d+ 1
I

The face-based residuals can be written

ΨFt
=

∑

i∈Ft

Ki (Ui
R − Ui

L) where Ki =
∆t

2d
Âi · n

ΨE =
|E|

d+ 1

∑

i∈E

(Un+

i − Un−

i )

The Ki can be diagonalised to get the Ki
+.
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Source Terms

Include the source term in the element residual:

ΦEt
=

∫

Et

∂tU +∇ · F− S dx dt

With shallow water flows, care is needed to ensure
that, when b+ d is constant,

∫

E

∇

(
gd2

2

)
dx = −

∫

E

gd∇b dx

The conservative schemes apply as before.

Discontinuities in space are more challenging.
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Results: Euler Equations
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density contours with M∞ = 3.0 and CFLmax = 12.5.
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Results: Shallow Water Flow
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Travelling vortex (exact solution), mesh convergence:
ST LDA (left) and ST LDA-N (right) schemes.
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Results: Shallow Water Flow

Circular dam break, discontinuous bed, unstructured mesh,
free surface: stabilised LLF scheme.
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Results: Shallow Water Flow
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Circular dam break, discontinuous bed, locally refined mesh,
free surface: stabilised LLF scheme, CFLmax = 0.8 (top);

ST LDA-N scheme, CFLmax = 9.0 (bottom).
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Moving Meshes

The mesh at the new
time may differ from
that at the old time.

Integrating over a
distorted space-time
prism gives

φEt
=

∫

En+1

un+1 dx −

∫

En

un dx −

∫ tn+1

tn

∮

∂E

ft · dnt dt

=

∫

En+1

un+1 dx −

∫

En

un dx −

∫ tn+1

tn

∮

∂E

(f − uv) · dn dt

Space cell (En+1)

Space cell (En)
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Moving Meshes

For d-dimensional linear advection, the element
residual can still be written in the form

φEt
≈

∑

i∈Et

kiui where k∗i =
∆t

2d
(ã∗ − v

∗
i ) · n

∗
i ±

|E∗|

d+ 1

The superscript ·∗ indicates the time level.

The mesh velocity should not be averaged because
it may not satisfy ∇ · v = 0.

The distribution schemes can be applied as before.
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Implementation

The mesh nodes are moved during pseudo-time-
stepping, according to

x
(m+1)
i = x

(m)
i +

∑
E|i∈E ME x

(m)
E∑

E|i∈E ME

A surface area monitor, ME = |E| (1 + α|∇u|2E)
1

2 is
interleaved with a Laplacian smoother.

The pseudo-time-stepping is continued after the
movement is stopped, with mesh velocities

vi =
x

n+1
i − x

n
i

∆t
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Results

Rotating cosine-squared profile, space-time PSI scheme:
moving mesh (0, 1, 5 revolutions), fixed mesh (5 revolutions).
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Results

Rotating cylinder profile, space-time PSI scheme:
moving mesh (0, 1, 5 revolutions), fixed mesh (5 revolutions).

– p. 29/31

http://www.comp.leeds.ac.uk/scsmeh/Pictures/Animations.html


Current Issues

For linear advection on fixed meshes the scheme is:

positive for any time-step;

conservative, linearity preserving, compact, upwind
and continuous;

second order accurate for smooth profiles.

It also gives good approximations to the Euler and
shallow water equations, although it is not yet:

easy to converge the inner iteration;

as robust as the best flux-based schemes.
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Current Issues

On moving meshes, the scheme is designed to retain
all of the fixed mesh properties, but:

these are only the first results;

it’s not yet clear whether imposing positivity
constrains the time-step;

second order accuracy relies on using appropriate
quadrature to evaluate the residual.

At the moment, the moving mesh scheme for nonlinear
systems only exists on paper.
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