

School of Computing Scientific Computation Group

Space-Time Residual Distribution Schemes on Moving Meshes

Matthew Hubbard

and Mario Ricchiuto (INRIA, Bordeaux) Domokos Sármány (Leeds)

25th Biennial Numerical Analysis Conference University of Strathclyde, Glasgow, 25–28 June 2013

Consider the scalar conservation law

$$\partial_t u + \nabla \cdot \mathbf{f} = 0$$
 or $\partial_t u + \mathbf{a} \cdot \nabla u = 0$

on a domain Ω .

- $\mathbf{a} = \frac{\partial \mathbf{f}}{\partial u}$ is the advection velocity for the flow.
- $u(\mathbf{x}, 0)$ is specified.
- $u(\mathbf{x},t)$ is specified on inflow boundaries.

Integrating the conservation law gives

$$\partial_t u + \nabla \cdot \mathbf{f} = 0 \longrightarrow \int_{\Omega} \partial_t u + \nabla \cdot \mathbf{f} \, d\mathbf{x} \, dt = 0$$

- $\bullet \ u$ can be continuous or discontinuous.
- Attempt to integrate the equations exactly.
- Distribute the integrals between the unknowns.
- For conservation, apply Gauss' divergence theorem.

This is related to the finite element approach.

For a space-time mesh element (E_t), consider

$$\phi_{E_t} = \int_{E_t} \partial_t u + \nabla \cdot \mathbf{f} \, d\mathbf{x} \, dt$$

- For simplicity, assume that u is stored at mesh nodes and varies linearly in space and in time.
- In simple cases ϕ can be evaluated exactly using an appropriate conservative linearisation.
 - This leads to schemes with nice properties.
 - Conservation can be imposed in other cases.

Residual Distribution

- It is simplest to treat time and space slightly differently.
- Integrating over a space-time prism gives

$$= \int_{E} u^{n+1} - u^{n} d\mathbf{x} - \int_{t^{n}}^{t^{n+1}} \oint_{\partial E} \mathbf{f} \cdot d\mathbf{n} dt$$

The aim is to solve the equations given by

$$\partial_t u + \nabla \cdot \mathbf{f} = 0 \longrightarrow \sum_{E_t \mid i \in E_t} \beta_i^{E_t} \phi_{E_t} = 0 \quad \forall \text{ nodes } i$$

This is done iteratively, at each time level, by:

- distributing each residual ϕ_{E_t} to adjacent nodes;
- carefully choosing the distribution coefficients $\beta_i^{E_t}$;
- applying a simple pseudo-time-stepping algorithm,

$$(u_i)^{(m+1)} = (u_i)^{(m)} - \frac{\Delta \tau}{|S_i|} \sum_{E_t \mid i \in E_t} \beta_i^{E_t} \phi_{E_t}$$

Ideally, a residual distribution scheme would have the following properties.

- Conservative: for discontinuity capturing.
- Positive: to prohibit unphysical oscillations.
- Linearity Preserving: for accuracy.
- Continuous: for convergence of the iteration.
- Compact: for efficiency (and parallelism).
- Upwind: for physical realism.

For *d*-dimensional linear advection, assume that

- the spatial mesh is composed of simplices,
- the space-time mesh is prismatic,
- u varies linearly within each simplex and in time,

and write each element residual in the form

$$\phi_{E_t} = \sum_{i \in E_t} k_i u_i$$
 where $k_i = \frac{\Delta t}{2d} \tilde{\mathbf{a}} \cdot \mathbf{n}_i \pm \frac{|E|}{d+1}$

is an upwinding parameter.

Since the k_i sum to zero in an element

$$\phi_{E_t} = \sum_{i \in E_t} k_i (u_i - u_{in}), \qquad u_{in} = (\sum_{i \in E_t} k_i^+)^{-1} (\sum_{i \in E_t} k_i^+ u_i - \phi_{E_t})$$

The N scheme (linear, positive)

$$\phi_i^{E_t} = \beta_i^{E_t} \phi_{E_t} = k_i^+ (u_i - u_{in})$$

The LDA scheme (linear, linearity preserving)

$$\phi_i^{E_t} = \beta_i^{E_t} \phi_{E_t} = \left(\sum_{i \in E_t} k_i^+\right)^{-1} k_i^+ \phi_{E_t}$$

To achieve positivity *and* linearity preservation:

The PSI scheme limits the distribution coefficients of the N scheme:

$$\beta_i^{E_t} \quad \longleftarrow \quad \frac{(\beta_i^{E_t})^+}{\sum_{k \in E_t} (\beta_k^{E_t})^+} \qquad \Rightarrow \qquad \beta_i^{E_t} \in [0, 1]$$

Blended schemes use weighted averages:

$$\phi^{\text{Blend}} = \theta \phi^{\text{N}} + (1 - \theta) \phi^{\text{LDA}} \qquad \theta \in [0, 1]$$

• This is more robust and flexible but may not be positive for the most common choices of θ .

Forcing continuity at element faces can be restrictive.

- It is difficult to change the representation locally, within mesh elements, since it has a knock-on effect on neighbours. This interferes with:
 - conservation, particularly at boundaries;
 - h- and p-adaptivity;
 - the limiting of high order schemes for positivity;
 - the stability of time-dependent schemes.

Discontinuous flow cannot be represented exactly.

If u is allowed to be discontinuous then

It is possible to consider the face integrals separately.

$$\int_{\Omega} \partial_t u + \nabla \cdot \mathbf{f} \, d\mathbf{x} \, dt = \sum_{E_t} \phi_{E_t} + \sum_{F_t} \psi_{F_t} + \sum_{E} \psi_{E}$$

- The ψ are simply integrals over an interface of the flux difference across it.
- The ψ_{F_t} will be ignored here.

Integrating across temporal discontinuities gives $\psi_E = \int_E [u] \, d\mathbf{x}$

- Upwinding always distributes forward in time.
- This removes the necessity for the past shield condition on the space-time distribution.
- Schemes can now be positive for any time-step.

UNIVERSITY OF LEEDS

Discontinuities in Time

This is a degenerate two-layer scheme.

 The distribution is much simpler in the discontinuity.

 t^{n+1}

Discontinuous in time

A positive, linearity preserving, distribution is

$$\psi_{i,n^{-}}^{E} = 0$$
 $\psi_{i,n^{+}}^{E} = \beta_{i,n^{+}}^{E} \psi_{E} = \frac{|E|}{d+1} (u_{i}^{n^{+}} - u_{i}^{n^{-}})$

The aim is to solve the equations given by

$$\partial_t u + \nabla \cdot \mathbf{f} = 0 \qquad \longrightarrow \qquad \sum_{E_t \mid i \in E_t} \beta_i^{E_t} \phi_{E_t} + \sum_{E \mid i \in E} \beta_{i,n^+}^{E} \psi_E = 0$$

This is done iteratively, at each time level, by:

- distributing the ϕ_{E_t} and ψ_E to adjacent vertices;
- choosing the distribution coefficients, $\beta_i^{E_t}$ and β_{i,n^+}^{E} ;
- applying a simple pseudo-time-stepping algorithm,

$$(u_i)^{(m+1)} = (u_i)^{(m)} + \frac{\Delta \tau}{|S_i|} \left(\sum_{E_t \mid i \in E_t} \beta_i^{E_t} \phi_{E_t} + \sum_{E \mid i \in E} \beta_{i,n^+}^{E} \psi_E \right)$$

Mesh convergence for constant advection of a smooth profile: L^1 error for the ST LDA (left) and ST LDA-N (right) schemes.

Consider the system of conservation laws

 $\partial_t U + \nabla \cdot \mathbf{F} = 0$ or $\partial_t U + \mathbf{A} \cdot \nabla U = 0$ on a domain Ω , where **A** gives the flux Jacobians.

$$\Phi_{E_t} = \int_E U^{n+1^-} - U^{n^+} \, d\mathbf{x} - \int_{t^n}^{t^{n+1}} \oint_{\partial E} \mathbf{F} \cdot d\mathbf{n} \, dt$$
$$\Psi_{F_t} = \int_{t^n}^{t^{n+1}} \int_{F_t} [\mathbf{F}] \cdot d\mathbf{n} \, dt \qquad \Psi_E = \int_E U^{n^+} - U^{n^-} \, d\mathbf{x}$$

can all (with care) be evaluated exactly, decomposed and distributed to the element vertices.

The element-based residuals take the form

$$\Phi_{E_t} = \sum_{i \in E_t} \mathbf{K}_i U_i \quad \text{where} \quad \mathbf{K}_i = \frac{\Delta t}{2d} \,\widetilde{\mathbf{A}} \cdot \mathbf{n}_i \pm \frac{|E|}{d+1} \mathbf{I}$$

The face-based residuals can be written

$$\Psi_{F_t} = \sum_{i \in F_t} \mathbf{K}_i \left(U_i^{\ R} - U_i^{\ L} \right) \quad \text{where} \quad \mathbf{K}_i = \frac{\Delta t}{2d} \, \widehat{\mathbf{A}}_i \cdot \mathbf{n}$$
$$\Psi_E = \frac{|E|}{d+1} \sum_{i \in E} \left(U_i^{n^+} - U_i^{n^-} \right)$$

The \mathbf{K}_i can be diagonalised to get the \mathbf{K}_i^+ .

Source Terms

Include the source term in the element residual:

$$\Phi_{E_t} = \int_{E_t} \partial_t U + \nabla \cdot \mathbf{F} - S \, d\mathbf{x} \, dt$$

• With shallow water flows, care is needed to ensure that, when b + d is constant,

$$\int_{E} \nabla \left(\frac{gd^2}{2} \right) \, d\mathbf{x} \; = \; - \int_{E} gd \, \nabla b \, d\mathbf{x}$$

- The conservative schemes apply as before.
- Discontinuities in space are more challenging.

Results: Euler Equations

Supercritical backward facing step: ST LDA-N scheme; density contours with $M_{\infty} = 3.0$ and $CFL_{max} = 12.5$.

Results: Shallow Water Flow

Travelling vortex (exact solution), mesh convergence: ST LDA (left) and ST LDA-N (right) schemes.

Results: Shallow Water Flow

Circular dam break, discontinuous bed, unstructured mesh, free surface: stabilised LLF scheme.

Results: Shallow Water Flow

Circular dam break, discontinuous bed, locally refined mesh, free surface: stabilised LLF scheme, $CFL_{max} = 0.8$ (top); ST LDA-N scheme, $CFL_{max} = 9.0$ (bottom).

Moving Meshes

 ϕ

- The mesh at the new time may differ from that at the old time.
- Integrating over a distorted space-time prism gives

$$E_{t} = \int_{E^{n+1}}^{u} u \, d\mathbf{x} - \int_{E^{n}}^{u} u \, d\mathbf{x} - \int_{t^{n}}^{u} \oint_{\partial E}^{u} \mathbf{t} \cdot d\mathbf{n}_{t} \, dt$$
$$= \int_{E^{n+1}}^{u} u^{n+1} \, d\mathbf{x} - \int_{E^{n}}^{u} u^{n} \, d\mathbf{x} - \int_{t^{n}}^{t^{n+1}} \oint_{\partial E}^{u} (\mathbf{f} - u\mathbf{v}) \cdot d\mathbf{n} \, dt$$

For *d*-dimensional linear advection, the element residual can still be written in the form

$$\phi_{E_t} \approx \sum_{i \in E_t} k_i u_i$$
 where $k_i^* = \frac{\Delta t}{2d} \left(\tilde{\mathbf{a}}^* - \mathbf{v}_i^* \right) \cdot \mathbf{n}_i^* \pm \frac{|E^*|}{d+1}$

- The superscript \cdot^* indicates the time level.
- The mesh velocity should not be averaged because it may not satisfy $\nabla \cdot \mathbf{v} = 0$.
- The distribution schemes can be applied as before.

 The mesh nodes are moved during pseudo-timestepping, according to

$$\mathbf{x}_{i}^{(m+1)} = \mathbf{x}_{i}^{(m)} + \frac{\sum_{E|i\in E} M_E \mathbf{x}_E^{(m)}}{\sum_{E|i\in E} M_E}$$

- A surface area monitor, $M_E = |E| (1 + \alpha |\nabla u|_E^2)^{\frac{1}{2}}$ is interleaved with a Laplacian smoother.
- The pseudo-time-stepping is continued after the movement is stopped, with mesh velocities

$$\mathbf{v}_i = \frac{\mathbf{x}_i^{n+1} - \mathbf{x}_i^n}{\Delta t}$$

Results

Rotating <u>cosine-squared profile</u>, space-time PSI scheme: moving mesh (0, 1, 5 revolutions), fixed mesh (5 revolutions).

Results

Rotating <u>cylinder profile</u>, space-time PSI scheme: moving mesh (0, 1, 5 revolutions), fixed mesh (5 revolutions).

For linear advection on fixed meshes the scheme is:

- positive for any time-step;
- conservative, linearity preserving, compact, upwind and continuous;
- second order accurate for smooth profiles.

It also gives good approximations to the Euler and shallow water equations, although it is not yet:

- easy to converge the inner iteration;
- as robust as the best flux-based schemes.

On moving meshes, the scheme is designed to retain all of the fixed mesh properties, but:

- these are only the first results;
- it's not yet clear whether imposing positivity constrains the time-step;
- second order accuracy relies on using appropriate quadrature to evaluate the residual.

At the moment, the moving mesh scheme for nonlinear systems only exists on paper.