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HyperbOIiC Conservation Laws UNIVERSITY OF LEEbS

Consider the scalar conservation law
ou+V-f =0 or ou+a-Vu = 0
on a domain ().

» a =2 is the advection velocity for the flow.

» u(x,0) is specified.

» u(x,t) is specified on inflow boundaries.



Residual Distribution UNIVERSITY OF LEE[js

Integrating the conservation law gives

ou+V-f =20 — /Otu+v-fdxdt20
Q

» 1 can be continuous or discontinuous.
» Attempt to integrate the equations exactly.
» Distribute the integrals between the unknowns.

» For conservation, apply Gauss’ divergence theorem.

This is related to the finite element approach.



Residual Distribution UNIVERSITY OF LEE[js

For a space-time mesh element (E}), consider

bp, = | Ou+V-f dxdt

Ey
» For simplicity, assume that u Is stored at mesh
nodes and varies linearly in space and in time.
» In simple cases ¢ can be evaluated exactly using
an appropriate conservative linearisation.
. This leads to schemes with nice properties.

. Conservation can be imposed in other cases.



Residual Distribution UNIVERSITY OF LEE[js

Space celkE)

s |t is simplest to
treat time and space A et
slightly differently. Ay

» Integrating over a
space-time prism
gives

Space—time cellE))

tn—l—l

Op, = / Ly dX+/ £ dx dt
t’n,
—/ —udx—/}[fdndt
OF



Residual Distribution UNIVERSITY OF LEE[js

The aim Is to solve the equations given by
Ou+V-f =0 s Z 3P ¢p = 0  Vnodes i

This Is done iteratively, at each time level, by:
o distributing each residual ¢g, to adjacent nodes;
» carefully choosing the distribution coefficients @.Et;

» applying a simple pseudo-time-stepping algorithm,
()"0 = (@)™ S A

Et|ZEEt




Scheme Design UNIVERSITY OF LEEDS

|deally, a residual distribution scheme would have the
following properties.

» Conservative: for discontinuity capturing.

» Positive: to prohibit unphysical oscillations.

» Linearity Preserving: for accuracy.
» Continuous: for convergence of the iteration.
» Compact: for efficiency (and parallelism).

» Upwind: for physical realism.



Some Scalar Schemes UNIVERSITY OF LEE[js

For d-dimensional linear advection, assume that

» the spatial mesh is composed of simplices,

» the space-time mesh Is prismatic,

» wu Vvaries linearly within each simplex and in time,

and write each element residual in the form
At E

_ ar h = —a-n; +
O, Zkzuz where &, 2da n 11

IS an upwinding parameter.



Some Scalar Schemes UNIVERSITY OF LEE[js

Since the k; sum to zero in an element

bp, = Y kilwi—wn),  wm = O kT kiTui — ¢g,)

1€ By 1€ Fy 1€ By

» The N scheme (linear, positive)
be?t — @Et Op, = ki+(uz’ - Um)

» The LDA scheme (linear, linearity preserving)
o7 = 00 om = Q_ k1) on,

1€ By



Some Scalar Schemes UNIVERSITY OF LEE[js

To achieve positivity and linearity preservation:

o The PSI scheme limits the distribution coefficients
of the N scheme:

(57)* B
51'Et - ﬁz ' < Oa 1
NI .
» Blended schemes use weighted averages:
¢Blend _ 9¢N + (1 o 9) ¢LDA H [O, 1]

. This is more robust and flexible but may not be
positive for the most common choices of 6.



Issues with Continuity UNIVERSITY OF LEE[js

Forcing continuity at element faces can be restrictive.

» It is difficult to change the representation locally,
within mesh elements, since it has a knock-on effect
on neighbours. This interferes with:

. conservation, particularly at boundaries;

. h- and p-adaptivity;

. the limiting of high order schemes for positivity;
e the stability of time-dependent schemes.

» Discontinuous flow cannot be represented exactly.



Discontinuous Representation UNIVERSITY OF LEE[js

If u 1S allowed to be discontinuous then

/0tu+v-f dx dt
Q

_ Z/E“M T dx — Z/t éEf dn dt
+;/t Lt[f]-dndt+ZE:/Eu+—



Discontinuous Representation UNIVERSITY OF LEE[js

It is possible to consider the face integrals separately.

s The vy are simply

. Fy n+1"
integrals over an t
Interface of the flux

difference across it. | ot

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

ignored here.



Discontinuities in Time UNIVERSITY OF LEEDS

Integrating across temporal discontinuities gives

Vg = [E[u]dx

» Upwinding always distributes forward in time.

» This removes the necessity for the past shield
condition on the space-time distribution.

» Schemes can now be positive for any time-step.



Discontinuities in Time

This is a degenerate N

two-layer scheme.

N
s The distribution is N T N

much simpler In N RN
the discontinuity.

SN AL

Discontinuous
Continuous Double Layer in time

A positive, linearity preserving, distribution Is

£

Vin- = 0 Vine = Ol ¥ = 5 (W =)




The Distribution UNIVERSITY OF LEEDS

The aim Is to solve the equations given by
Ou+V-f =10 — Z@Et¢Et+ Zﬁfme:O

This is done iteratively, at each time level, by:
o distributing the ¢g, and vy to adjacent vertices;

» choosing the distribution coefficients, ﬁz.Et and 3F

/I:’n+1

» applying a simple pseudo-time-stepping algorithm,




Results: Linear Advection (2D) UNIVERSITY OF LEE[;S

Mesh convergence for constant advection of a smooth profile:
L error for the ST LDA (left) and ST LDA-N (right) schemes.



Nonlinear Systems UNIVERSITY OF LEEDS

Consider the system of conservation laws
on a domain (2, where A gives the flux Jacobians.

tn
Oy = /U“+1 — U™ dx —/ 7{ F.dndl
oF
tnt . B
/ /  dn di Uy, = /U“ U™ dx
F} E

can all (with care) be evaluated exactly, decomposed
and distributed to the element vertices.



Nonlinear Systems UNIVERSITY OF LEEDS

The element-based residuals take the form

At ~ E
bp, = ZK@U@ where K, = — A -n; £+ L

I
2d d+1

1€EF}

The face-based residuals can be written

Uy, = Y K (U"-U") where K; = o7 Airn
1€ FY
E| —
Uy = _E wor =ur

The K; can be diagonalised to get the K, ™.



Source Terms UNIVERSITY OF LEEDS

Include the source term in the element residual:

By

o With shallow water flows, care Is needed to ensure
that, when b 4+ d IS constant,

2
/v(%) dx — —/ngbdx
E E

» The conservative schemes apply as before.
» Discontinuities in space are more challenging.



Results: Euler Equations UNIVERSITY OF LEED
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Supercritical backward facing step: ST LDA-N scheme;
density contours with M, = 3.0 and CFL,,.x = 12.5.



Results: Shallow Water Flow

10k

log I H = H_ Il

N
o
&

10

Space-time LDA

=
o
s

- = - slopeZ_E
N

107 10

log | H - H__ Il

107 F

=
OI
N

._\
OI
b

10k

Space-time blended

—e—CFL=1 |

—+—CFL=2 ||

—>—CFL=4 ||

—v— CFL=8

— — — Slope 1.8?
I

107 107
log h

Travelling vortex (exact solution), mesh convergence:
ST LDA (left) and ST LDA-N (right) schemes.



Results: Shallow Water Flow UNIVERSITY OF LEED

Circular dam break, discontinuous bed, unstructured mesh,
free surface: stabilised LLF scheme.



Results: Shallow Water Flow UNIVERSITY OF LEEDS
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free surface: stabilised LLF scheme, CFL,,.. = 0.8 (top);

ST LDA-N scheme, CFL,,.x = 9.0 (bottom).



Moving Meshes UNIVERSITY OF LEEDS

Space cell (E™T1h
s The mesh at the new
time may differ from
that at the old time.

» Integrating over a
distorted space-time
prism gives Space cell (E")

o [ [ [
En+1
= / "t dx—/ / 7{ —uv) - dndt
En+1 OF

o«




Moving Meshes UNIVERSITY OF LEEDS

For d-dimensional linear advection, the element
residual can still be written in the form

. At ) ) E*
¢Et ~ Zkzuz where kz — Q_d(a _Vi)'nz' + ’ ‘

1€ by
» The superscript -* indicates the time level.

» The mesh velocity should not be averaged because
It may not satisfy V- v = 0.

» The distribution schemes can be applied as before.



Implementation

UNIVERSITY OF LEEDS

» The mesh nodes are moved during pseudo-time-
stepping, according to

(m+1)

7

E:EMGEAJEXgﬁ)

(m)
ZE|Z'EE M

s A surface area monitor, My = |E| (14 «|Vul2)z iS

Interleaved with a La

» The pseudo-time-ste

nlacian smoother.

Dping is continued after the

movement is stopped, with mesh velocities

V;

n—l—l

X’L

n

At
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Current Issues UNIVERSITY OF LEEDS

For linear advection on fixed meshes the scheme is:
» positive for any time-step;

s conservative, linearity preserving, compact, upwind
and continuous;

» second order accurate for smooth profiles.

It also gives good approximations to the Euler and
shallow water equations, although it is not yet:

» easy to converge the inner iteration,
s as robust as the best flux-based schemes.



Current Issues UNIVERSITY OF LEEDS

On moving meshes, the scheme is designed to retain
all of the fixed mesh properties, but:

» these are only the first results;

» It's not yet clear whether imposing positivity
constrains the time-step;

» Second order accuracy relies on using appropriate
guadrature to evaluate the residual.

At the moment, the moving mesh scheme for nonlinear
systems only exists on paper.
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