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Abstract We present a stabilized finite element model for wave propagation, break-
ing and run-up. Propagation is modelled by a form of the enhanced Boussinesq equa-
tions, while energy transformation in breaking regions is captured by reverting to
the shallow water equations and allowing waves to locally converge into disconti-
nuities. To discretize the system we propose a non-linear variant of the stabilized
finite element method of (Ricchiuto and Filippini, J.Comput.Phys. 2014). To guar-
antee monotone shock capturing, a non-linear mass-lumping procedure is proposed
which locally reverts the third order finite element scheme to the first order upwind
scheme. We present different definitions of the breaking criterion, including a local
implementation of the convective criterion of (Bjørkavåg and Kalisch, Phys.Letters
A 2011), and discuss in some detail the implementation of the shock capturing tech-
nique. The robustness of the scheme and the behaviour of different breaking criteria
is investigated on several cases with available experimental data.

1 Modelling Approach and Main Objectives

When arriving in the near shore region, waves are relatively long, with a ratio water-
depth over wavelength σ 2 � 1. When approaching the shoreline the wave steepens
and non-linear effects start to becomedominating up to themoment inwhich thewave
breaks (ε = A/d ∼ 1), with important production of vorticity, and with potential
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Fig. 1 Depth averaged equa-
tions: notation

energy transformation and dissipation. The first phase of the process can bemodelled
by the a properly chosen set of non-hydrostatic equations, such as for example, the
Boussinesq equations, or other type of dispersive models [2]. The treatment of wave
breaking is more delicate. Several approaches exist, see [10] for a recent review. The
extensive study of [4], indicate that the energy transformation in the breaking region
can be modelled by the dissipation across nonlinear discontinuities of hyperbolic
models such as the shallow water equations. This is confirmed by the numerical
results of [5, 10, 13, 18, 19]. For this reason, we use a hybrid model reverting from
the enhanced Boussinesq to the shallowwater equations in properly defined breaking
regions.

To discretize the equations, we start from the stabilized finite element approach of
[16], which has a very interesting potential in terms of providing lowdispersion errors
and very high accuracy on unstructured adaptive meshes. Here, we propose a new
nonlinear variant of themethod. In our approach, the third order finite element scheme
is reverted to the first upwind scheme across discontinuities via nonlinear mass-
lumping procedure. The objective of this paper is to present the hybrid modelling
approach, and in particular the definition of the breaking detection algorithm, and
the discussion of the discontinuity capturing methodology, and in particular of the
choice of the mass-lumping limiter. Concerning the first aspect, we consider the
hybrid criteria of [19], and [10], and a novel local implementation of the convective
criterion of [3]. Themass-lumping limiter is instead chosen based on the requirement
that smooth extrema should be preserved, and is based on a smoothness sensor. The
model obtained is extensively tested. The behaviour of different breaking models is
studied on several cases allowing comparisons with experimental data.

2 Hybrid Equations for Wave Breaking Treatment

To simulate wave propagation, we start from the following system, based on the
enhanced Boussinesq equations in the form proposed in [14] (cf. Fig. 1):
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with η = η(x, t) the wave height, q = hu the discharge, h = η + d the local height
of the water column, u = u(x, t) the depth-averaged velocity, and with d = d(x) the
depth w.r.t. an average still water level. The term D(η, q) represents the dispersive
effects, with B and β obtained by optimizing the linear dispersion relation. The flag
fbreak assumes the value 1 in the Boussinesq regions, and 0 in breaking fronts, and
allows to revert to the hyperbolic shallow water equations. We consider here three
breaking criteria.

The simplest, due to Tonelli and Petti [19], is based on a local measure of non-
linearity. Breaking regions are denoted as those for which ε = |η|/|d| ≥ εcr, with
εcr ≈ 0.8. Once a breaking front has been detected, its end (de-breaking) is located
as the point in the flow direction where ε is below ≈ 0.35 (see [10, 19] for more).

The second criterion, proposed in [10], uses a hybrid condition involving vertical
velocity and slope. A point is flagged as breaking if either |∂tη| > γ

√
gh or |∂xη| >

tan φcr. The values γ and φcr may depend on the case simulated (see [10] for more).
Lastly, we consider a local implementation of the convective criterion of [3]. The

idea is that breaking occurs when the free surface velocity is larger than the wave
celerity. In [3] only simple cases have been considered for which at least the celerity
is known a-priori. Here we proceed as follows:

1. Pre-flagging using the criterion of [10] with smaller γ and φcr;
2. For every front (set of neighbouring pre-flagged nodes) locate crest and trough;
3. For every front evaluate celerity Cb and crest velocity uS;
4. Final flagging: if uS ≥ Cb set fbreak = 0 for x ∈ [xmin, xmax]
Combining the relations ∂tη ≈ −Cb∂xη and ∂tη = −∂x q, we obtain Cb ≈ ∂x q/∂xη

which is implemented as Cb = (qcrest − qtrough)/(ηcrest − ηtrough). To obtain uS,
vertical asymptotic expansions can be used to show that (see e.g. [3, 7]) uS =
u − αh2∂xx u, with α = 1/3 the analytical value. Here this constant is kept free, to
account for the differentwave shoalingprovidedbyBoussinesqmodels, and to be able
to correct wave under-shoaling [7]. The results reported are obtained with α = 2/3.
A parametric study is under way to understand the influence of this parameter for
different Boussinesq equations. The definition of [xmin, xmax], giving local position
and width of the breaking region is the same used in [10, 18].

3 Discretization and Discontinuity Capturing

The numerical discretization follows the initial developments made in [16] where
upwind stabilized residual based and finite element discretizations of the Boussinesq
equations of [14] have been analyzed and tested on a large number of one and two-
dimensional wave propagation problems. Already for P1 interpolation, the results of
[16] show a high potential of the approach in terms of providing low dispersion error
and high accuracy with the flexibility of a natural unstructured mesh formulation.

Here we propose a discontinuity capturing method based on a nonlinear lumping
of the mass matrix allowing to locally recover first order upwind flux differencing.
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Set W = [η q]T , F(W) = [q (uq + g h2
2 )]T , S = [0 − gh∂x d]T , D = [0 D]T ,

F f = [0 − ghC f u]T , and A = ∂ F(W)
∂W the shallow water flux Jacobian. Let also

dWi/dt be the (continuous) time derivative of the value of W at node i , Δx the
1D mesh spatial spacing, I2 the 2 × 2 identity matrix, and denote with superscripts
i ± 1/2 arithmetic cell-average values. The spatial discretization we propose reads:

Δx
dWi

dt
+ δi−1/2{Δx

6
[dWi−1

dt
− dWi

dt
] + Δx

2
sign(Ai− 1

2 )
dWi− 1

2

dt
}

+ δi+1/2{Δx

6
[dWi+1

dt
− dWi

dt
] − Δx

2
sign(Ai+ 1

2 )
dWi+ 1

2

dt
}

+ I2 + sign(Ai− 1
2 )

2
(Fi − Fi−1 + Δx Si− 1

2 )

+ I2 − sign(Ai+ 1
2 )

2
(Fi+1 − Fi + Δx Si+ 1

2 ) = fbreaki Di + F f i (2)

One can distinguish the terms associated to the Galerkin approximation, and the
stabilization terms, multiplied by the sign of the Jacobian A. These terms have been
simplified using the properties of the P1 finite element approximation, as detailed in
[16]. The right hand side contains the contributions of friction and dispersive terms,
also involving centred and upwind biasing contributions, and requiring the evaluation
of auxiliary variables necessary for the high order derivatives. These terms are quite
complex and we refer to [16] for details. Note that if the right hand side is zero, for
δi±1/2 = 0 we obtain the standard first order upwind flux difference scheme. Our
implementation in this limit actually follows the well-balanced, positivity preserving
upwind approach of e.g. [6], and it includes an entropy fix [9] to avoid problems in
strongly accelerating regions with small water heights (cf. [1] for more). So, if δi = 0
and fbreaki = 0 the scheme is locallyfirst-order, it preserves thepositivity of thedepth,
and it is well-balanced. Whenever fbreaki = 1, we automatically set δi = 1. In this
case, the resulting scheme is third-order accurate in space, as amply demonstrated
in [16]. The main ingredient is the choice of the limiter δ(W). An extensive study
and comparison of different limiters available in literature is provided in [1]. Many
of these result in an over-dissipative method. An effective definition is based on the
smoothness sensor

σi = min(1, ri ) , ri =
|ηi − ηi−1|

Δx
+ |ηi − ηi+1|

Δx
|ηi+2 − 4ηi+1 + 6ηi − 4ηi−1 + ηi−2|

12Δx2

with ri the ratio between the magnitude of the first order derivative and the difference
between a fourth and second order approximation of the second order derivative. In
smooth regions, the denominator of ri is ofO(Δx2)while the numerator is bounded,
resulting in σ = 1. On a discontinuity, while the numerator is of an order O(1/Δx),
the denominator is of an order O(1/Δx2), giving σ = O(Δx). Finally, we have set
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δi = σi if σi ≤ 1/2, and δi = 1 otherwise. The typical result obtained for a standard
Riemann problem is reported on Fig. 2 where the sensor proposed is compared to the
Superbee and to the Monotonized Central limiter [12]. In the tests that follow, as in
[15] we pre-multiply δ by an exponential function smoothly switching off high order
terms in vicinity of dry fronts. For all the tests considered, time integration has been
performed with the non-dissipative second-order Crank-Nicholson scheme.

4 Numerical Validation

4.1 Periodic Wave over a Submerged Bar

We consider the experiment of plunging breaking periodic waves over a submerged
bar of Beji and Battjes. This test has been first done by Dingemans to verify the Delft
Hydraulics model HISWA, and then repeated by Beji and Battjes [7, 17]. To give an
overview of the qualitative behaviour of the solution, wave profiles at different break-
ing instants are reported onFig. 3 for the three tested breaking criteria. In the figurewe
report the wave profiles at the first breaking instance, at an intermediate time (same
for all criteria), and at the last seen breaking instance for a given wave. The vertical
lines delimit the breaking region in which the shallow water equations are used. The
criterion of [10] provides the strongest and most regular breaking behaviour, with
wave heights considerably decreasing along the plateau. The local implementation of
the convective criterion proposed gives weaker breaking, and slightly higher waves.
We have also observed numerically a more intermittent behaviour of the flag. Lastly,
the criterion of [19] gives the weakest breaking, with wave heights only slightly
decreasing.

These observations are confirmed by the temporal evolution of the wave height in
four experimental gauges (respectively at the beginning and the end of the upward
slope of the bar and in themiddle and endof the plateau), reported inFig. 4. The results
obtainedwith the criterion of [10] showvery good agreementwith experiments,while
the convective criterion is slightly worse in terms of wave heights. The non-linearity
sensor of [19] fails to detect some wave breaking areas, at least on this level of mesh
size. We mention that better results are obtained in [19] on much finer grids, and that
the results of the convective criterion could be improved by increasing the value of
the constant α in the definition of the free surface velocity (under investigation).

4.2 Run-up of a Periodic Wave

This test, known as the spilling breaking test of Hansen and Svendsen, involves the
shoaling and breaking over a shore of a set of regular waves, and corresponds to
the test 051041 described in [8]. A qualitative view of the wave profiles obtained is
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Fig. 3 Plunging breaking test.Wave profiles corresponding to: first (left), intermediate (center), and
last breaking instants. Breaking criterion: Kazolea, Delis and Synolakis (top), convective (middle),
Tonelli and Petti (bottom). The vertical lines delimit the breaking (shallow water) region

reported on Fig. 5, showing the effects of wave shoaling and wave breaking over a
constant slope bathymetry. On Fig. 6, instead, we report a quantitative comparison
of the time-average of the wave height and of the wave set-up along the shore with
experimental data. The numerical results are those obtained with the criterion of
[10], and with the convective criterion. We can see from the change in slope in the
computed results thatwave breaking is predicted too early by the criterion ofKazolea,
Delis and Synolakis, while the wave heights are under-predicted in both cases. This,
according to [20], might be due to the use of a weakly nonlinear Boussinesq model
for propagation. For this test, the convective criterion gives a better prediction of the
breaking position. The wave set-up is predicted very well by both models.

5 Conclusions and Perspectives

We have presented a one-dimensional finite element model for non-hydrostatic wave
propagation, breaking, and run-up. Themodel combines a weakly non-linear Boussi-
nesqmodelwith the hyperbolic shallowwater equations. The blending is obtained via
a wave breaking criterion based on physical arguments. We propose an enhancement
of the stabilized finite element method of [16] consisting in a discontinuity capturing
technique relying on a nonlinear lumping of the mass matrix. This allows the local
treatment of discontinuous shallow water flows, and wetting/drying fronts. When
combined with the hybrid dispersive-hyperbolic modeling approach, this method
allows to provide an accurate description of the wave transformation in the near
shore region.



786 P. Bacigaluppi et al.

F
ig

.4
G
au
ge

da
ta
fo
rt
he

su
bm

er
ge
d
ba
rt
es
t.

To
p
ga
ug
e
1
(l

ef
t)
an
d
2
(r

ig
ht
).

B
ot

to
m
ga
ug
e
3
(l

ef
t)
an
d

4
(r

ig
ht
).
B
re
ak
in
g
cr
ite

ri
a:
To

ne
lli

an
d
Pe
tti

(l
oc
al
in

th
e
le
ge
nd

),
K
az
ol
ea
,D

el
is
an
d
Sy

no
la
ki
s
(h
yb

ri
d

in
th
e
le
ge
nd
),
an
d
co
nv
ec
tiv

e
(p
hy
si
ca
li
n
th
e
le
ge
nd
).
Sy

m
bo
ls
:e
xp
er
im

en
ts



A 1D Stabilized Finite Element Model for Non-hydrostatic Wave 787

F
ig

.5
H
an
se
n
an
d
Sv

en
ds
en

te
st
05
10
41
.S

na
ps
ho
ts
of

th
e
w
av
e
pr
ofi

le
s
at
di
ff
er
en
ti
ns
ta
nt
s



788 P. Bacigaluppi et al.

F
ig

.6
H
an
se
n
an
d
Sv

en
ds
en

te
st
05
10
41
.W

av
e
he
ig
ht

(l
ef

t)
an
d
m
ea
n
w
at
er

le
ve
l
(s
et
-u
p)

(r
ig

ht
)
fo
r

K
az
ol
ea
,
D
el
is

an
d
Sy

no
la
ki
s
(t

op
ro

w
,
hy
br
id

in
th
e
le
ge
nd

),
an
d
co
nv
ec
tiv

e
cr
ite

ri
on

(b
ot

to
m

ro
w
,

ph
ys
ic
al
in

th
e
le
ge
nd
)



A 1D Stabilized Finite Element Model for Non-hydrostatic Wave 789

The numerical results, while confirming the stability and robustness of the numer-
ics proposed, also provide an initial validation for the different breaking criteria
tested. Our implementation of the convective breaking criterion of [3] shows some
promise, even though the criterion of Kazolea et al. gives similar, and sometimes
better, results, with a much simpler implementation. The very simple criterion of
[19] is not able to provide similar results.

The work planned for the future involves a more systematic study of the definition
of the free surface velocity used on the convective criterion, the implementation of
the model in two dimensions and on unstructured meshes, following [10, 16], and
the use of fully non-linear dispersive models, as in [5, 11].
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