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Abstract10

We present an adaptive moving mesh method for unstructured meshes which is a three-11

dimensional extension of the previous works of Ceniceros et al. [9], Tang et al. [38]12

and Chen et al. [10]. The iterative solution of a variable diffusion Laplacian model on13

the reference domain is used to adapt the mesh to moving sharp solution fronts while14

imposing slip conditions for the displacements on curved boundary surfaces. To this15

aim, we present an approach to project the nodes on a given curved geometry, as well as16

an a-posteriori limiter for the nodal displacements developed to guarantee the validity17

of the adapted mesh also over non-convex curved boundaries with singularities.18

We validate the method on analytical test cases, and we show its application to
two and three-dimensional unsteady compressible flows by coupling it to a second order
conservative Arbitrary Lagrangian-Eulerian flow solver.

Keywords: Constant-connectiity mesh adaptation, Unstructured meshes, Unsteady19

compressible flows, Conservative formulations20

1. Introduction21

Mesh adaptation is a powerful tool to improve the representation of complex fields for22

a given computational expense. In computational fluid dynamics in particular, adapta-23

tion has become nowadays a customary tool [35]. Adapting the mesh also has a relative24

computational overhead, which motivates the quest for efficient and robust methods.25

Techniques improving the discrete representation of the fields of interest by inserting26

and removing mesh entities (so called h-adaptation) have proven to be quite mature [35].27

However, solution transfer between meshes with different topologies may be non-trivial28

and may have a non-negligible computational cost, especially if conservation constraints29

need to be satisfied [19, 2, 24, 31, 36].30

By constrast, mesh nodes relocation with constant element connectivity (so called31

r-adaptation), offers the possibility of a minimally intrusive coupling with existing com-32

putational mechanics solvers, as no modification of the data structures is required. As33
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h-adaptation methods, they also provide considerable improvement in the quality of34

the solutions obtained, especially in unsteady simulations of traveling waves, like shock35

waves and water waves, where uniform refinement would be way too costly. More-36

over, with r-adaptation methods devising conservative projections is much simpler. In37

fact, the preservation of the one–to–one mapping from the old to the new mesh entities38

allows the easy construction of a conservative remapping [32], or the use of Arbitrary-39

Lagrangian-Eulerian (ALE) formulations compliant with the Geometric Conservation40

Law (GCL) [46, 41].41

Unfortunately, the preservation of the initial mesh topology undeniably imposes se-42

vere restrictions on nodal displacements in order to avoid mesh folding with tangled (i.e.43

inverted) elements, especially when the boundary exhibits singular points. Moreover,44

the accuracy attainable for complex solutions is limited by the initial density of mesh45

nodes, and less finely-tunable than in metric-based h-adaptation [1].46

Anyway, the advantages brought by the effortless coupling with external flow solvers47

and the conservative solution remapping can counterbalance the mesh quality limitation48

as long as the r-adaptation technique is computationally efficient. Simply put, the error49

reduction brought by adapting the mesh must offset the computational overhead. A50

measure of this efficiency can be evaluated by comparing with the cost of a simulation51

run on a uniformly refined mesh, providing the same resolution of the flow field. Hybrid52

adaptive approaches combining well timed re-meshing and adaptive deformation at every53

time step, which are perhaps the ones computationally most appealing, still require the54

r-adaptation step to perform well.55

Extensive reviews of r-adaptation can be found in [30, 8]. We focus here on methods56

based on the numerical solution of an elliptic partial differential equation for the posi-57

tion of the mesh nodes, often referred to as the mesh PDE. This equation is typically58

formulated to find a mapping ξ : Ωx → Ωξ from the physical domain to a reference (com-59

putational) one. This mapping needs to be injective and surjective in order to guarantee60

that the produced mesh neither folds nor breaks the domain. Historically the Winslow61

or homogeneous Thompson-Thames-Mastin generator [43, 44] ∆xξ = 0 has been the62

basis for structured boundary-fitted grid generation (see for example the review in [42])63

and it has been extended to also adapt the mesh in the domain either by adding source64

terms to the equation, or through a variable-diffusion approach [51]. A more general65

formulation of the last method has been given in [15] by means of harmonic maps and66

extended in [6].67

These equations describe the mapping ξ = ξ(x) and need to be inverted for the68

physical coordinates x = x(ξ), leading to a nonlinear system of PDEs which is iteratively69

solved. In order to ease the cost of the iterative solution of the inverted equations, an70

alternative mesh generator was proposed in [9] based on a variable-diffusion Laplace71

equations directly formulated in the physical domain for the mapping x : Ωξ → Ωx.72

This generator is not based on a theoretical derivation, but on the observation that the73

variable-diffusion Laplacian in the reference domain is sufficient to adapt the mesh in74

the desired regions while the equations, which are still nonlinear, can easily be solved75

through a relaxation procedure. The efficiency of the method was shown in application76

to two-dimensional Boussinesq convection on structured grids, and the method was later77
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applied in [38] to hyperbolic conservation laws and extended in [10] to multicomponent78

flows on two-dimensional unstructured grids. More recently, the same method was79

applied to the two-dimensional shallow water equations both in Cartesian and spherical80

coordinates [3, 4, 5].81

Robustness to mesh folding in r-adaptation is a delicate matter, similarly critical in82

the context of mesh deformation related to moving boundaries, curved mesh generation83

and smoothing (see for example [29, 16, 45, 20, 47]). Obtaining non-singular meshes84

requires two main conditions to be met. The first is that the continuous map, appro-85

priately modified to account for all boundary conditions, should verify the appropriate86

conditions as e.g. the non-negativity of the determinant of the deformation Jacobian.87

Until quite recently, sufficient conditions were known only in the framework of harmonic88

maps [15, 34]. Recent work by [26], has allowed to prove similar properties for other89

types of mesh PDEs, as e.g. some of those proposed by Huang [25] or Huang and Rus-90

sel [27], by resorting to energy arguments borrowed from the theory of gradient flows.91

The second important aspect is that the discretization used to approximate the mesh92

PDE should have the appropriate “property preserving” character, so that the fully93

discrete moving mesh method is also guaranteed to provide non-singular meshes. This94

is in itself a subject of investigation. It is in general well known that discrete moving95

mesh methods can lead to mesh tangling even with properly chosen mesh PDEs [15],96

and the impact of the truncation error is stressed for example in [30]. In the setting of97

gradient flow maps, geometrical discretizations have been shown in [26] to answer the98

discrete positive Jacobian requirement. However, even in the last reference, the issue of99

accounting for complex curved boundaries is overlooked, even though mesh movement100

along a given surface does not appear to be necessarily a natural boundary condition of101

the PDEs considered.102

103

In this work we proceed differently. We want to be able to handle domains with104

boundaries as general as possible in three space dimensions. and propose a relaxation105

technique embedding a geometrical limiter allowing to achieve this objective. We focus106

on the simple reference-domain variable-diffusion Laplacian approach originally pro-107

posed in [9], however the ideas proposed in this paper can be extended to other mesh108

PDEs. To the best of the authors’ knowledge, very few applications of r-adaptation to109

three–dimensional meshes are available to date, see for example [33] as well as some110

simple applications in [26]. The original approach in [9] does not offer theoretical guar-111

antees against folding, although it has been successfully used in many applications with112

non-convex boundaries. R-adaptation in three dimensions exhibits even stronger limi-113

tations than in two dimensions, as sufficiency results for unfolded continuum maps are114

typically based on requirement of smoothness and convexity of the boundary. These are115

easily violated especially in application to external flows, where the boundary is not con-116

vex and several singularities (like corners and ridges) are present. We have experienced117

that tangling is a major concern in the three-dimensional extension of these techniques.118

Smoothing or untangling methods for unstructured meshes already developed in the119

literature require nontrivial procedures [23, 45].120

Our contribution is thus related to a mesh displacement method allowing to guar-121
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antee that nodes move and always remain on a given parametrizaion of curved domain122

boundaries, and for an a-posteriori limiter for the nodal displacement which, when em-123

bedded in the mesh relaxation iterations, allows to prevent the occurrence of tangled124

elements, thus enforcing the validity of the discrete mapping while avoiding smoothing125

procedures. The resulting moving mesh library Fmg has been developed on top of the126

open source platform Mmg [11, 12] to exploit, among other things, its built-in cubic Bézier127

patch representation of complex manifolds.128

The paper is organized as follows. We recall the continuous mesh partial differential129

equations in section §2, while a thorough discussion of their numerical solution is given130

in section §3, including a-posteriori limiting and projections to obtain a valid mesh131

satisfying all the boundary conditions, and the application to unsteady simulations.132

We discuss the validation of the method proposed considering the adaptation w.r.t.133

analytical functions in two and three space dimensions in section §4, and application134

to two and three dimensional unsteady compressible flows are discussed in section §5135

Finally, conclusions are presented in section 6.136

2. Variable-diffusion Laplacian r-adaptation in the reference domain137

We focus here on Laplacian-based r-adaptation, which is the mesh PDE currently138

implemented in the Fmg library. However, the ideas proposed in this paper can be139

immediately extended to other mesh PDEs. We recall here the continuous mesh problem,140

and in particular we discuss the boundary conditions, as well as the definition of the141

monitor functions used for adaptation.142

Following [10], we look for a mapping x : Ωξ → Ωx from the reference domain Ωξ143

(the original mesh) to the computational domain Ωx (the adapted mesh). Within the144

reference domain, the computational coordinates satisfy the variable-diffusion Laplace145

equation146

∇ξ · (ω(x)∇ξx) = 0 in Ωξ (1)

The above problem is in general a system of coupled non-linear PDEs, which needs to be147

complemented by appropriate boundary conditions. Nonlinearity is introduced by the148

monitor function ω(x) which depends on an external field evaluated in the computational149

domain. In this work, we have used a classical scalar definition for this quantity, which150

allows to decouple the equations for the three spatial coordinates.151

In particular, given a quantity of interest f(x), the scalar monitor function used in152

the examples discussed later is evaluated as153

ω(x) =
√

1 + α||∇ξf(x)||2γα + β||Hξ(f)(x)||2γβ + τ ||f ||2γτ (2)

where ∇ξ and Hξ denote the gradient and Hessian computed on the reference domain154

Ωξ. Norm ||f ||γ is defined as155

||f ||γ = min

(
1,

||f ||
γmax(||f ||)

)
. (3)
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This normalization, already used in [10], allows to introduce some saturation near the156

norm maximum according to the value of γ. The idea behind this normalization is to157

spread a little bit the peak values of the function f around the peak locations, in order158

to filter out small inhomogeinities in the numerical approximation of the sharp fronts of159

f . The above definition gives the user some control on the behaviour of the spatial map-160

ping via the parameter pairs (α, γα), (β, γβ), (τ, γτ ). As in the original works [9, 10],161

these parameter pairs are not related to an error estimate, thus they are determined162

empirically and they are intrinsically dependent on the application. However, in our163

experience a short test on a few time steps is sufficient to assess the behaviour of these164

parameters on the whole simulation time range.165

166

2.1. Boundary conditions167

Despite the decoupling of equation (1) into separate scalar equations, even for a168

scalar monitor function a strong coupling of the coordinate equations may arise through169

the boundary conditions, especially in domains including general shapes. In particular,170

we will split the boundary on two parts as ∂Ωξ = ΓDξ ∪ ΓSξ . A full set of Dirichlet171

conditions are imposed on ΓDξ172

x = ξ on ΓDξ (4)

as this is the portion of the boundary that is not allowed to move. Since fixed boundary173

nodes are not convenient whenever adaptation is performed on flow waves approach-174

ing the boundary, we want to limit as much as possible usage of Dirichlet conditions,175

preferring slip boundary conditions wherever we can formulate them while preserving176

sharp geometrical features of the boundary. Along the slip boundary ΓSξ the coordinate177

positions are constrained to move along a given parameterized domain. For manifold sur-178

faces, we assume to have a known parameterization, for example in the form γS(x) = 0.179

This provides one position constraint relating the d spatial coordinates. Thus, d−1 addi-180

tional conditions are required, which are here taken as the null normal stress conditions181

parallel to the local tangent space spanned by {τ̂Sj }j=1,d−1. This gives the boundary182

conditions:183

γS(x) = 0

n̂S · (ω(x)∇x) · τ̂Sj = 0 ∀j = 1, d− 1
on ΓSξ (5)

In three dimensions, the slip boundary ΓSξ can be further generalized as the union184

of multiple manifolds with one-dimensional boundaries joining them. This leads to185

intersection curves where two sets of equations 5 should formally be satisfied at the186

same time, constraining the displacement to happen along the curve tangent direction.187

Points where multiple intersection curves meet are corner points and no displacement188

is possible, thus Dirichlet conditions are imposed on (and only on) these points. The189

approach used here for the numerical enforcement of boundary conditions is discussed190

in the following section.191
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3. Discrete equations, a-posteriori limiting, slip on curved boundaries192

We discuss here the implementation choices made in the Fmg library, namely the dis-193

cretization of the mesh PDEs, as well as their iterative solution. Both the a-posteriori194

limiting of the displacement and the implementation of the slip boundary conditions are195

strongly tied to the relaxation iterations, and for this reason all the steps are discussed196

in this section. More specifically, to relieve the complexity of satisfying the bound-197

ary conditions (5), we formulate the discrete approximation by means of an iterative198

multiple-corrections procedure embedding the following three elements:199

1. A finite element approximation of the variational form of (1) with natural (Neu-200

mann) boundary conditions;201

2. An a-posteriori limiter for the nodal displacement enforcing local mesh valididy;202

3. A boundary correction in the local normal direction to enforce the first of (5) by203

projecting on the manifold parametrization at hand.204

The intertwining of the a-posteriori limiter of the displacement, of the update of the lo-205

cal boundary normals, and of the projection on the parameterized manifold is essential206

for the proposed approach to provide valid adapted meshes both in the volume and on207

the boundaries.208

209

Concerning the representation of these, the Fmg library we developed makes use of210

the point-normal curved triangles parameterization proposed in [49], which is based211

on cubic Bézier patches with quadratically varying normals. For this we leverage the212

implementation provided by the open source platform Mmg [11, 12]. However note that213

the form of the manifold parametrization is not a necessary ingredient of our method.214

Other high order approximations can be used.215

3.1. Finite element approximation: Dirichlet and natural boundary conditions216

The discrete equations are built starting from a linear finite element approximation217

of the problem embedding natural (Neumann) boundary conditions, which corresponds218

to the simple variational form219 ∫
Ωξ

ω(x)∇ξv ·∇ξx dΩξ = 0, ∀v ∈ H1(Ωξ) . (6)

Note that this statement satisfies the null normal stress conditions in (5) but neither the220

remaining one in the system (the belonging to the surface), nor any Dirichlet conditions221

eventually assigned. Dirichlet conditions are strongly imposed on the solution space,222

while the enforcement of the belonging to a slip surface will be detailed in the follow-223

ing 3.4) Note also that ω being a scalar quantity, the above equations provide uncoupled224

nonlinear variational statements for each component of x.225

The projection of (6) on the linear finite element space leads to the nonlinear alge-226

braic system227

K(x)xν = 0, ν = 1, . . . , d (7)
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having introduced the array of unknown node positions xν = [xνi ] for each space com-228

ponent ν, with d the number of space dimensions, and where the stiffness matrix has229

the standard entries230

Kij(x) =

∫
Ωξ

ω(x)∇ξφi ·∇ξφj dΩξ (8)

with {φi}i≥1 the linear base functions spanning the solution space. Please note that (7)231

is a set of decoupled systems, one for each spatial direction, as shown by the fact that232

Kij are scalar entries. Note also due to the consistency of the finite element space with233

Dirichlet conditions, Dirichlet nodes are not included in the above sum.234

In practice, by defining the displacement δ = x− ξ, the system is not written as in235

(7), but as236

K(x)δν = −K(x)ξν (9)

which is better suited for the iterative corrections described in the following sections.237

3.2. Scalar correction iterations238

We introduce an iterative procedure which, while avoiding mesh tangling in 2D239

and 3D, and accounting for the directional coupling inherent to (5), retains the scalar240

structure of the decoupled variational form. Note however that the corrections proposed241

can be easily adapted to other iterative solution methods (as well as mesh PDEs).242

The basic iteration used in our method starts from a standard diagonal Jacobi re-243

laxation to handle the nonlinearity of (9)244

K
[k]
ii δ

[k+1]
i = −

∑
j∈Bi
j 6=i

K
[k]
ij δ

[k]
j −

∑
j∈Bi

K
[k]
ij ξj (10)

where Bi denotes the ball1 of node i and vector δ
[k]
i = [δνi ]

[k]
ν=1,...,d is now the vector made245

of the space components of the displacement of node i at iteration k (the same notation246

will be used for vectors xi and ξi). Again, we stress that the above iteration is in fact247

a set of d relations for the components of the displacement. The matrix entries K
[k]
ij248

depend on monitor function ω at iteration k (cf. equation (8)), which in turn depends249

on the scalar field f evaluated at the actual positions x
[k]
i , according to equation (2). In250

our current implementation, the re-evaluation is performed by linearly interpolating the251

scalar field f at the current nodal positions x
[k]
i through a standard search algorithm252

based on barycentric coordinates.253

In our implementation we added and removed the term K
[k]
ii δ

[k]
i , to obtain the fol-254

lowing iterations255

δ
[k+1]
i = δ

[k]
i −

1

K
[k]
ii

∑
j∈Bi

K
[k]
ij x

[k]
j (11)

1In the common lexicon of the mesh generation community, the ball Bi of a mesh node i is defined
here as the set of elements sharing vertex i [? ]. To ease the notation, with a slight abuse of terminology
we say that a node j belongs to the ball of node i if it is a vertex of an element belonging to the ball,
and we denote this statement as j ∈ Bi.
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which are initialized with δ
[0]
i = 0.256

The last step is the computation of the new nodal positions as follows257

x
[k+1]
i = x

[k]
i + ∆̃x

[k+1]

i

(
δ

[k+1]
i , {x[k+1]

i }j<i, {x[k]
i }j≥i

)
(12)

where ∆̃xi
[k+1]

are limited increments obtained by a-posteriori correcting δ
[k+1]
i to ac-258

count for both mesh validity and boundary conditions (both Dirichlet and slip wall).259

In both cases, these corrections are local, albeit not only dependent on node i, and260

non-linear w.r.t. x. The nonlinearity is readily handled in the iterations by using the261

last nodal positions available.262

3.3. A-posteriori corrections for mesh validity enforcement263

The Laplacian model in the reference domain does not guarantee that the Jacobian264

of the mapping is strictly positive everywhere, thus leading to the occurrence of tangled265

(invalid) mesh elements. In two space dimensions, our experience has shown that in266

most cases carefully tuning the monitor function ω(x) allows to solve this issue. This is267

not the case in three dimensions, where tangling occurs much more often.268

To cope with this, we have devised an a-posteriori limiter to the nodal displacements269

which is activated whenever the displacement of a node causes the occurrence of an270

element whose volume is below a given threshold. This condition is of course implicit,271

in the sense that it couples the positions of all the mesh nodes. However, it can be272

easily embedded in an iterative setting. In particular, in our implementation we relax273

and update each nodal position x
[k+1]
i , one after the other. As illustrated on figure 1274

(for simplicity in 2D), each displacement δ
[k+1]
i is limited according to the validity of275

the configuration in the current ball B[k,k+1]
i obtained using new values {x[k+1]}j<i, for276

nodes updated before i, and old positions {x[k]
j }j>i for nodes not updated yet. This277

relax-update step has a Gauss-Seidel flavour, as the position of each node is updated278

based on the values of the previously-treated coordinates. In practice, the displacement279

of node i is iteratively limited by a factor µsmax
i as follows280

d0
i = δ

[k+1]
i + ξi − x

[k]
i

ds+1
i =

{
µid

s
i if min

K∈B[k,k+1]
i

|ΩK | < ε

dsi otherwise
∀s ∈ [0, . . . , smax − 1]

∆̃x
[k+1]

i = dsmax
i

(13)

The limiter is thus the result of local sub-iterations, which are stopped when a281

volume greater than ε is guaranteed for every element in the ball. This check allows282

to enforce the validity of every intermediate mesh configuration, effectively preventing283

the occurrence of invalid elements at a reasonable computational cost with respect to284

smoothing or untangling procedures for unstructured meshes [23, 45].285

It must be remarked that for interior nodes in general one iteration of the above286

procedure is enough, while more iterations are required when applying the limiter within287
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the projection step enforcing the boundary conditions (cf. next section). For simplicity288

here the same value µi = 0.5 has been adopted for all the nodes. In this work, this value289

has proven to be effective in locally preventing tangling while allowing the position of290

blocked nodes to be naturally relaxed by the successive application of r-adaptation at291

the next time steps, as the monitor function moves with the flow.292

x
[k]
i

x
[k]
i + d0

i

(a) Invalid displacement.

x
[k]
i

x
[k]
i + d1

i

(b) Relaxed displacement.

x
[k+1]
i

(c) Updated configuration.

Figure 1: Two-dimensional illustration of the nodal displacement limiting. 1a: Proposed displacement for
node i right after the Jacobi iteration k+ 1, that would produce inverted elements (in red). 1b: Relaxed
displacement producing valid elements (in green). 1c: Updated configuration.

3.4. A-posteriori corrections on Dirichlet and slip boundaries293

The decoupling of the spatial coordinates obtained by initially accounting for natural294

boundary conditions only is particularly convenient in terms of computational cost and295

simplicity of implementation. It allows to store and assembly only a single smaller296

stiffness matrix to be used for every space coordinate, instead of a matrix of 3 × 3297

blocks. However, the resulting nodal displacements need to be corrected to account298

for conditions on Dirichlet and slip boundaries. This is achieved by the projection299

step discussed in this section, which is easily embedded in the scalar iterations. The300

description is given for slip wall boundaries, of which Dirichlet nodes are a particular301

case.302

In the Fmg library boundary geometries are handled by means of curved point-normal303

triangles [50], i.e. piecewise cubic Bézier patches for the boundary position and quadratic304

for the boundary normal vector, relying on the implementation provided in Mmg [11, 12].305

In this setting an implicit surface representation of the slip boundary reading in the306

continuous case307

γS(x) = 0 on ΓSξ (14)

is approximated by the explicit piecewise parametric representation308

χτ [xj , n̂j ] : Σ→ ΓSξ , Σ = [0, 1]× [0, 1], ΓSξ ⊂ R3

x = χτ [xj , n̂j ](w), w ∈ Σ
(15)

which is defined for each triangle τ in the triangulation of the slip boundary, from the309

positions and unit normals {xi, n̂i}i∈τ of the nodes of the triangle. Similarly, the Bézier310

patches also allow to evaluate surface normals as311

ητ [xj , n̂j ] : Σ→ ΓSξ , Σ = [0, 1]× [0, 1], ΓSξ ⊂ R3

n̂ = ητ [xj , n̂j ](w), w ∈ Σ
(16)
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For some applications, as for example external aerodynamics, handling curved ge-312

ometries is a necessity. As a consequence, the geometric approximation becomes an313

integral part of the numerical method. In particular, in three dimensions even the sim-314

plest combination of boundary surfaces easily leads to intersection curves. Since sharp315

edges (ridges) in the initial geometry need to be preserved as well as corners (intersec-316

tions of multiple ridges), nodes cannot cross a ridge, but they are only allowed to move317

tangentially to it, and displacement of a corner node cannot happen. As outlined in sec-318

tion 2.1, slip boundary conditions bring a position constraint expressing the belonging319

of the node to the surface, and a null normal stress condition on the local tangent plane.320

The latter being already fulfilled by the Neumann conditions naturally imposed on the321

weak formulation, only the former is of our interest here. Although node belonging to an322

intersection curve can be formally expressed as the belonging to the two surfaces sharing323

the curve, this is not practical from an implementation point of view. Slip boundary324

conditions need thus to be specialized to the chosen geometry approximation and to325

distinguish among regular curved surfaces, ridges, and corners.326

In the following, the boundary treatment is detailed for the supported geometri-327

cal features: manifold surfaces, ridges (i.e. intersections of two manifold surfaces) and328

corners (intersections of two or more ridges). Note that different geometrical representa-329

tions involving other local or global manifold parametrizations can be easily embedded330

in the algorithm.331

(a) Ball B[k,k+1]
i : trace on in-

cremented manifold χ[k,k+1]
τ .

(b) Ball B[k,k+1]
i : projection on

the local tangent plane

(c) Ball B[k,k+1]
i and displace-

ment projected on the tangent
(d) Updated Ball B[k,k+1]

i pro-
jected on the tangent plane

(e) Updated Ball B[k,k+1]
i :

trace on manifold χ[k,k+1]
τ

Figure 2: Illustration of the slip boundary projection procedure.

Manifold surfaces. The procedure adopted here to handle slip conditions along manifolds332

for a node i consists in iteratively projecting the point position on the surface, updating333

the Bézier patches, and limiting at the same time the displacement to ensure mesh334

validity. Tangling can tipically occur on surface triangles if too large displacements are335

allowed, but also the adjacent volume elements can tangle when a point is projected on336
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a concave boundary. For this reason the mesh validity check is always performed on337

volume elements.338

In the first step, we work based on the partially updated ball B[k,k+1]
i , which allows339

to build a local updated geometrical model. As before, this model is evaluated using the340

new updates for nodes already processed, and value from the previous iteration for the341

remaining ones. This provides the incrementally updated geometry model χ
[k,k+1]
τ =342

χτ [{x[k+1]
j , n̂

[k+1]
j }j<i, {x[k]

j , n̂
[k]
j }j≥i] (cf. (15)). In particular, as shown on figures 2-(a)343

and 2-(e), this allows to identify the trace of B[k,k+1]
i on the updated manifold, and its344

projection on the local tangent plane.345

The second step consists of four coupled ingredients:346

1. projection of the displacement provided by the Jacobi iteration onto the local347

tangent plane, leading to an approximate tangent displacement (δδδk+1
i )τ ; and pre-348

liminary nodal position (xxxk+1
i )τ , as shown on figure 2-(c);349

2. identification of the element containing the new node position, based on baricentric350

coordinates interpolation, as shown on figures 2-(c) and 2-(d);351

3. Bézier interpolation χ
[k,k+1]
τ (w) on the geometrical model, as shown on figure 2-(e);352

4. limiting of the displacement based on the minimum element volume, as discussed353

in section 3.3.354

The iterations providing the final displacement, and hence position, are similar to (13):355

d0
i = χ[k,k+1]

τ

(
w(x

[k+1]
i )τ

)
− x

[k]
i

ds+1
i =

χ
[k,k+1]
τ

(
w(x

[k]
i + µid

s
i )
)
− x

[k]
i if min

K∈B[k,k+1]
i

|ΩK | < ε

dsi otherwise
,

∀s ∈ [0, . . . , smax − 1]

∆̃x
[k+1]

i = dsmax
i

(17)

We stress again that since the piecewise patches depend on both node positions and356

unit normals, the position update is always accompanied by the re-evaluation of the357

unit normal vectors through the analogously defined model η
[k,k+1]
τ (cf. (16)). This is358

omitted from (17) to keep a lighter notation.359

Ridges. The displacement check and projection on boundary ridges is handled exactly360

in the same way as for manifold surfaces. The main difference is that now the parametric361

space is replaced with a curve parametrisation which is one-dimensional Σ ⊂ R. Thus362

all operations previously performed on the tangent plane are performed by projection363

on the tangent line, and normal vectors of both the manifold surfaces joining at the364

ridge are stored and updated in the geometrical model.365

Corners. These are the only allowed Dirichlet nodes, thus corners verify exactly the366

boundary condition, and are not included in the discrete variational form 3.1. In this367
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specific case, displacement is not allowed as they are already on the exact geometry, and368

the condition imposed is369

x
[k+1]
i = ξi (18)

3.5. Unsteady mesh adaptation through restarted iterations370

Following [39, 10], dynamic mesh adaptation during the time evolution of a fluid371

flow simulation is performed by repeating the steady adaptation procedure described in372

the previous section at each time step, without the explicit formulation of a differential373

equation in time for mesh motion. This simplifies the coupling with existing flow solvers.374

In this case of fixed boundary domains, the reference mesh ξ is constant in time,375

while the computational mesh x(t(n+1)) is the r–adaptation of the (fixed) reference mesh.376

Thus, the displacement at each time step n+ 1 is initialized with the value achieved at377

the last Jacobi iteration K achieved in the previous time step n378

δ
[0](n+1)
i = δ

[K](n)
i (19)

so that successive Jacobi iterations during time evolution are effectively accumulated on379

the nodes positions.380

4. Validation via adaptation on analytical functions381

We consider here a series of analytical tests allowing to measure the effectiveness382

of the method. As shown in section 2, we recall here that the mesh adaptation model383

can be governed by the number of iterations nit plus the three parameter pairs (α, γα),384

(β, γβ), (τ, γτ ), representing the intensity and the normalization constant of the solution385

gradient, the solution Hessian, and the solution itself in the definition of the monitor386

function. In this work, we have not seen specific benefits in mixing all three param-387

eter pairs, so we will explicitly report only the values for the used pairs, while values388

not shown are assumed to be zero. As elucidated in [10], since the reference domain389

Laplacian model in multiple dimensions is not derived from an error equidistribution390

principle, its numerical solution until convergence is not strictly required to reach satis-391

factory mesh adaptation and, in practice, a number of Jacobi iterations in the order of392

O(10) are generally sufficient to reach the desired adaptation. The number of iterations393

nit will be reported for each case.394

In section 4.1 adaptation is performed on a a steady Gaussian-like function, in order395

to test the convergence order on the interpolation error. In section 4.2 adaptation is396

performed on an unsteady analytical moving front passing over a sphere, in order to397

assess the capability of the model to preserve the validity of the mesh over intersecting398

curved boundaries throughout the time simulation.399

4.1. Steady adaptation in a square and a cube400

We consider the approximation of the function401

ρ = eθψ
2
, ψ = ‖xxx‖2 −R2 (20)
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with θ = 40, R = 0.75. We consider both a two and three dimensional variant of the402

problem, the first defined on a square domain [−2, 2] × [−2, 2], the second on the cube403

[−2, 2]× [−2, 2]× [−2, 2]. This solution is plotted in figures 4a and 4b. In both cases we404

consider a series of simplicial meshes with a uniform mesh size distribution, and different405

average edge size h, whose details are shown in tables 1 and 2. The above function is406

chosen in order to test capability of the models to adapt on a circle represented by407

a smooth solution field, before their application to solutions with sharp/discontinuous408

features. The mesh PDE parameters are set to (τ, γτ ) = (5000, 1.0) in 2D, and to409

(α, γα) = (500, 0.1) in 3D. Also note that the a-posteriori limiter for the displacement is410

only applied in 3D, which is the case in which tangling is more often occurring.411

On these meshes, we measure the L2−error convergence of the P1 interpolation Πρ412

||e||L2 =

(∫
Ω
|ρ−Πρ|2 dΩ

) 1
2

(21)

We plot the observed trends in figures 3a and 3b. It can be seen that in two dimensions413

it is easier to preserve, quite independently from the number of iterations nit performed,414

the second order convergence rate of the P1 interpolation, with an error reduction for415

a given number of nodes shown in table 3, but a high number of iterations on a coarse416

mesh can actually increase the error.417

In three dimensions, while the error on the adapted meshes is considerably lower418

(table 4), the number of Jacobi iterations has to be increased to preserve the second419

order rate. Some adapted meshes obtained from the h = 0.1 and h = 0.05 initial420

meshes are visualized in figures 4 to help understand these two phenomena. Taking421

as example the three-dimensional case, as the initial mesh is refined from h = 0.1 to422

h = 0.05 in figure 4, it can be appreciated that the displacement produced by the423

same number of iterations and the same adaptation parameters is smaller. This has424

two consequences. The first consequence is that a high number of iterations on coarse425

meshes can excessively stretch the mesh elements (as shown in figure 4g) in an orthogonal426

pattern, due to the uncoupling of the Laplacian model in the coordinate directions,427

possibly increasing the approximation error on the adapted mesh (as seen in table 3 for428

the 2D case for the coarsest meshes). The second consequence is that more iterations429

are needed on fine meshes to preserve the second order rate, as shown in figure 3b. In430

three dimensions, the a-posteriori limiter also contributes to this effect by constraining431

the allowed displacement of each node inside its ball at each iteration.432

These effects can be appreciated by observing the trend for the tetrahedron quality433

Q =

(∑6
j=1 l

2
j

)3/2

α|ΩK |
(22)

where lj is the length of each edge of the element, |ΩK | its volume, and α the normal-434

ization factor to get Q = 1 on a regular tetrahedron with unit edges. Since r-adaptation435

inevitably introduces some anisotropy which is not taken into account in our quality436

measure, we expect the quality to be somewhat degraded in the adapted regions. Any-437

way, a too high percentage of bad quality elements, when sharp solution fronts are quite438
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h 0.0125 0.025 0.05 0.075 0.1 0.15

Nb. of nodes 135550 34310 8560 3993 2213 1015
Nb. of elements 271098 68618 17118 7984 4424 2028

Table 1: Mesh data for the 2D square convergence analysis.

h 0.0375 0.05 0.075 0.1 0.15

Nb. of nodes 319830 140264 44521 20604 6727
Nb. of elements 1844811 802080 237458 106130 32308

Table 2: Mesh data for the 3D cube convergence analysis.

h E [0] E [10] r[10] E [150] r[150]

0.15 1.525974e-01 5.693340e-02 62.6905 % 1.194055e-01 21.751 %
0.1 7.379553e-02 3.313339e-02 55.1011 % 4.372964e-02 40.742 %

0.075 4.288518e-02 2.097308e-02 51.0948 % 1.991813e-02 53.555 %
0.05 1.958636e-02 1.243068e-02 36.5340 % 1.090836e-02 44.306 %
0.025 4.974168e-03 3.788809e-03 23.8303 % 3.614722e-03 27.330 %
0.0125 1.258864e-03 1.142442e-03 9.2482 % 9.152757e-04 27.294 %

Table 3: Interpolation errors E [k] = ||e[k]||L2 for the 2D square convergence analysis, for 10 and 150
iterations, and reduction r[k] = (1− E [k]/E [0]) with respect to the nonadapted case.

h E [0] E [10] r[10] E [150] r[150]

0.15 3.023667e-01 1.693936e-01 43.9774 % 1.450969e-01 52.013 %
0.1 1.533983e-01 9.494413e-02 38.1061 % 5.919961e-02 61.408 %

0.075 1.036390e-01 7.284977e-02 29.7082 % 2.832881e-02 72.666 %
0.05 4.687948e-02 4.084946e-02 12.8628 % 1.424675e-02 69.610 %

0.0375 2.671484e-02 2.499870e-02 6.4239 % 9.579343e-03 64.142 %

Table 4: Interpolation errors E [k] = ||e[k]||L2 for the 3D cube convergence analysis, for 10 and 150
iterations, and reduction r[k] = (1− E [k]/E [0]) with respect to the nonadapted case.

localized in the domain, can be a sign that the mesh is stretched also in smooth solution439

regions, possibly worsening the error reduction performances. In figure 5 we plot the440

evolution of the histograms of the elements quality with the number of iterations for the441

h = 0.1 and h = 0.05 meshes. The excessive stretch observed in figure 4g corresponds to442

a significantly degradation of the elements quality for the h = 0.1 mesh, expecially when443

increasing the number of iterations, with more than 24% of elements having Q < 0.2 for444

150 iterations, much higher than for the h = 0.05 (less than 10%).445
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(a) Interpolation error trend for the 2D square test case.

0.0375 0.05 0.075 0.1 0.15

0.01

0.1

h

||e
|| L

2

∼ h trend

∼ h2 trend
Nonadapted

Adapted nit = 10
Adapted nit = 20
Adapted nit = 30
Adapted nit = 40
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(b) Interpolation error trend for the 3D cube test case.

Figure 3: Interpolation error convergence with mesh adaptation for the square and cube analytical test
cases.
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(a) Monitor function, h = 0.1 mesh. (b) Monitor function, h = 0.02 mesh.

(c) Adapted mesh h = 0.1, nit = 10. (d) Adapted mesh h = 0.05, nit = 10.

(e) Adapted mesh h = 0.1, nit = 30. (f) Adapted mesh h = 0.05, nit = 30.

(g) Adapted mesh h = 0.1, nit = 100. (h) Adapted mesh h = 0.05, nit = 100.

Figure 4: Monitor function (top row) and volumic cuts in the adapted meshes (second to last row) for
the cube test case, for different number of iterations, on the h = 0.1 and h = 0.05 initial meshes.
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Figure 5: Evolution of mesh elements quality Q with the number of iterations nit for the 3D cube test,
for the h = 0.1 and h = 0.05 meshes.

4.2. Moving front passing over a spherical boundary446

The algorithm was tested by adapting over a moving front defined as447

ρ (X(x, t)) =


1 if X(x, t) < 0

0.5 cos (sπX(x, t) + 1) if X(x, t) ∈ [0, δ]

0 if X(x, t) > δ

(23)

with448

X(x, t) = s(x− x0 + vt) (24)

and scaling s = 20, initial position x0 = 0.7, speed v = 0.2, front thickness δ = 0.005.449

Unsteady mesh adaptation is performed on this analytical solution every ∆t = 0.25.450

The setup is shown in figures 6a and 6b. The domain is a quarter cylinder of radius451

1.5 along the x-axis with x ∈ [−1.5, 1.5], surrounding a quarter sphere centered at the452

origin with radius 0.5. This case is designed to test as many geometrical sources of mesh453

tangling as possible before the application to fluid flow simulations, as it contains at the454

same time curved surfaces, ridges (the intersection of the sphere with each symmetry455

planes) and corners (the intersections of the sphere with both the symmetry planes),456

and a sharp solution moving over the geometry. Adaptation is performed with (α, γα) =457

(40, 0.1), with 30 Jacobi iterations, on an uniform mesh with edge size h = 0.05. The458

number of nodes and elements is reported in table 5, as this is the same base mesh that459

will be used for the shock-sphere interaction simulations in the next section.460

The obtained meshes are shown in figure 6 showing in particularly that the method461

is able to preserve a valid mesh both when the front is passing over the surface of462

the sphere (figures 6e, 6f) and most importantly when it hits and leaves the sphere463

17



(figures 6c, 6d and 6g, 6h respectively). Without the a-posteriori limiter, that effectively464

blocks excessive deformation near the corners and in the first layer of elements above465

the curved surface, it was impossible to complete the simulation without the occurrence466

of tangled elements.467

Remarks on mesh folding and the purpose of the a-posteriori limiter. As discussed in468

section 1, there is no analytical proof for the validity of the meshes produced by our469

model neither in the continuum nor in the discrete setting. Examples of folded meshes470

have indeed already been reported in the literature for several other methods [15, 30].471

Mesh folding has not been reported for the variable-diffusion Laplacian in the reference472

domain in two dimensions [9, 38, 10], but in [9] the authors themselves remark that there473

is no theoretical reason against its occurrence. In three dimensions, we have found that it474

is quite frequent to produce folded elements for too strong adaptation parameters or on475

concave boundaries when the limiter presented in the previous section is not applied. An476

example of the first situation is given in figure 7a, where an inverted element is produced477

just outside of the most refined region. An example of tangling on a concave boundary is478

given in figure 7b, where two points on the surface are blocked and cannot move without479

folding the adjacent elements (the volume limiter is not applied, but displacement on the480

surface is limited on the surface ball in order to allow the projection on Bézier patches),481

and one element near the lower circle is folded.482

In the numerical simulations presented in the next section, all of which have con-483

cave boundaries, tangling was observed whenever a shock wave hit or developed on the484

front of the object, without limiter. Since this happened in the first instants of the485

simulations, we have found that the straightforward three-dimensional extension of the486

original variable-diffusion Laplacian method in the reference domain [9] would simply487

be unpractical on those cases without an additional limiting or correction step to avoid488

mesh folding.489

5. Adaptation for unsteady compressible flows490

We consider the simulation of unsteady inviscid compressible flows in a time depen-491

dent frame of reference. In particular, we couple the Fmg library we developed to the492

Flowmesh solver [21, 28, 36], based on a node-centered second order, total variation-493

diminishing finite volume scheme for the Euler equations, written in an Arbitrary-494

Lagrangian-Eulerian (ALE) form [13]495

d

dt

∫
Ω(t)

u dΩ +

∮
∂Ω(t)

n̂ · (F(u)− vu) dΓ = 0 (25)

where u is the array of the conservative solution, F(u) its flux, ρ denotes the mass496

density, ρU the momentum, and ρet the total energy density. The moving domain497

velocity is represented by the vector field v498

u =

 ρ
ρU
ρet

T

, F(u) =

 ρU
ρU⊗U + P I
ρetU + PU

T

(26)
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(a) Solution on input mesh boundary. (b) Solution on input mesh volumic cut.

(c) Output mesh boundary at t = 1.0. (d) Output mesh volumic cut at t = 1.0.

(e) Output mesh boundary at t = 3.5. (f) Output mesh volumic cut at t = 3.5.

(g) Output mesh boundary at t = 6.0. (h) Output mesh volumic cut at t = 6.0.

Figure 6: Moving front test case, meshes from t = 0.0 to t = 6.0.
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(a) Cube h = 0.1 fifth iteration without limi-
teri with (τ, γτ ) = (10000, 0.1). One inverted
element (cyan).

(b) Moving front test case without limiter at t =
6.5. Two blocked points (distorted balls on the
surface of the sphere) and one inverted element
near the lower circle (cyan).

Figure 7: Examples of folded meshes with no limiter applied.

The pressure P is computed using the ideal gas equation of state for ideal gases

P = (γ − 1)

(
ρet − 1

2
ρ|U|2

)
Within the code, a local conservative solution transfer procedure at each time step is499

guaranteed by the ALE formulation.500

Unsteady mesh adaptation is performed according to the scheme shown in section 3.5.501

At each time step, the flow solution is predicted on the previous computational mesh,502

then the computational mesh is adapted, and finally the flow solution is recomputed503

on the adapted mesh. To this end, Flowmesh makes use of a conservative ALE-remap504

exactly matching the volumes swept by cell faces during mesh displacements and nodal505

volumes, and automatically fulfilling a Discrete Geometric Conservation Law (DGCL)506

[22, 18, 53]. The code also includes the support of topological mesh modifications like507

edge split, edge collapse, barycentric node insertion, and Delauney node insertion, not508

used in this work.509

To apply mesh adaptation at each time step, a low order computation of the solution510

at the next time step on the current mesh is used to provide a monitor function to the511

mesh PDEs.512

5.1. Case 1: two-dimensional forward facing step513

As a preliminary validation, we reproduce the results shown for the same method514

without a posteriori relaxation in [10] for the two-dimensional forward facing step [17,515

48, 52]. Our initial mesh is a Delauney triangulation made of 10946 elements, 5474516

nodes, with an average edge length h = 0.0025. Note that this unstructured mesh has517
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Base mesh Refined mesh
# nodes # elements # nodes # elements

Step 2D 5474 10946 21639 43276
Step 3D 47445 277655 555026 3217351

Shock-sphere 35379 209142 488963 2872845

Table 5: Number of nodes and elements for the simplicial meshes employed for the unsteady compressible
flow cases.

Base (nonadapted) Base (adapted) Refined (nonadapted)

Step 2D 31m 32s 44m 43s 2h 52m 21s
Step 3D 1h 39m 55s 2h 21m 28s 45h 37m 18s

Shock-sphere 40m 12s 1h 32m 48s 12h 5m 12s

Table 6: Computational times comparison. The overhead due to solution prediction and adaptation is
important, but negligible if compared with an uniform refinement strategy.

a higher edge size with respect to the one proposed in [52], which had an edge size518

h = 0.00125. The initial condition is a uniform Mach 3 flow towards the right of the519

domain.520

All simulations are run on 4 cores of a Intel Xeon E5-2690 (2.6 GHz), mesh adaptation521

is serial. We perform mesh adaptation on the base h = 0.0025 mesh, and compare results522

with those obtained without adaptation on the refined h = 0.00125 mesh. Adaptation523

is performed on mass density, with (α, γα) = (40, 0.1) and (β, γβ) = (10, 0.5). Mesh524

data are shown in table 5, while contour lines for mass density are compared in figures 8525

and 10. Contour lines range and spacing for each time instant is the same as in [52].526

The adapted meshes are shown in figures 9 and 11. Shock waves are resolved better527

on the coarse adapted mesh than on the refined nonadapted mesh, while resolution on528

rarefaction fans and contact discontinuities is comparable. Computational times are529

shown in table 6. While mesh adaptation produces a significant overhead if compared530

to the base nonadapted case, this overhead is negligible if compared to the refined531

nonadapted calculation.532

5.2. Case 2: three-dimensional forward facing step533

We propose a three-dimensional extension of the classical supersonic forward facing534

step. The impulsive start of a Mach 3 flow in a 3 length units long and 1 length unit535

wide/high wind tunnel, with a 0.2 length unit wide/high step located at 0.6 length units536

from the inlet (see figure 12a). Adaptation is performed on the mass density (figures ??537

and ??), with (α, γα) = (40, 0.02) on a base mesh with an overall edge size h = 0.04538

(slightly refined on the step front plane, h = 0.02). Results are compared with those539

obtained without adaptation on a refined mesh with uniform edge size h = 0.015. The540

number of elements and nodes in the meshes are shown in table 5. Contour lines for541

mass density on the same diagonal cut plane are shown in figures 13 and 15, for 50542

equispaced lines between the values 0.715867 and 6.03154. To obtain a comparable543

resolution on shocks between the coarse adapted and the refined nonadapted meshes,544
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(a) Nonadapted h = 0.0025 mesh at t = 0.5. (b) Nonadapted h = 0.0025 mesh at t = 1.0.

(c) Adapted h = 0.0025 mesh at t = 0.5. (d) Adapted h = 0.0025 mesh at t = 1.0.

(e) Fine (nonadapted) h = 0.00125 mesh at t = 0.5. (f) Fine (nondapted) h = 0.00125 mesh at t = 1.0.

Figure 8: Two-dimensional forward facing step mass density contour lines at t = 0.5 and t = 1.0.

(a) Adapted h = 0.0025 mesh at t = 0.5. (b) Adapted h = 0.0025 mesh at t = 1.0.

Figure 9: Two-dimensional forward facing step adapted meshes at t = 0.5 and t = 1.0.
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(a) Nonadapted h = 0.0025 mesh at t = 1.5. (b) Nonadapted h = 0.0025 mesh at t = 2.0.

(c) Adapted h = 0.0025 mesh at t = 1.5. (d) Adapted h = 0.0025 mesh at t = 2.0.

(e) Fine (nonadapted) h = 0.00125 mesh at t = 1.5. (f) Fine (nonadapted) h = 0.00125 mesh at t = 2.0.

Figure 10: Two-dimensional forward facing step mass density contour lines at t = 1.5 and t = 2.0.

(a) Adapted h = 0.0025 mesh at t = 1.5. (b) Adapted h = 0.0025 mesh at t = 2.0.

Figure 11: Two-dimensional forward facing step adapted meshes at t = 1.5 and t = 2.0.
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(a) Forward facing step test case. (b) Shock-sphere test case.

(c) Step, volumic cut and mass density at t = 0.7. (d) Sphere, volumic cut and mass density at t = 90.

(e) Step, volumic cut at t = 70. (f) Sphere, volumic cut at t = 90.

Figure 12: Initial meshes, adapted meshes and solution for the three-dimensional forward facing step
and shock-sphere interaction cases.

24



we had to produce a refined mesh that is more than ten times bigger (in terms of nodes545

and elements) than the coarse one. Note that the diagonal cut is possibly the most546

demanding plane on which results can be compared, as the Laplacian model is uncoupled547

in multiple space directions, thus it tends to provide better results on cartesian planes, as548

shown in section 4.1. Adapted meshes are shown in figures 14 and 16. Computational549

times are shown in table 6. The benefits in terms of computational times in three550

dimensions are greater than in two dimensions. Anyway, while in two dimension we551

observed that mesh tangling was a rare occurrence with our Laplacian model, in three552

dimensions it was impossible to continue the time simulation without the a-posteriori553

limiter after the first few time steps, due to the strong deformation that quickly led to554

tangled elements at the step front and around its corners, but also at the shock reflection555

lines.556

5.3. Case 3: shock–sphere interaction557

In order to test the capabilities of the method to handle simultaneously shock waves558

and curved boundary, we choose to simulate the interaction of a traveling shock wave559

on a sphere. Some configurations for the diffraction of shock waves over cylindrical560

and spherical obstacles have been studied experimentally for example in [7, 40]. An561

early application of unstructured mesh adaptation to two-dimensional shock-cylinder562

simulations can be found in [14], while structured grid adaptation on axisymmetric563

shock-sphere simulations can be found in [37].564

The simulation is limited to a quarter of a cylindrical domain (as for the analyti-565

cally moving shock of the previous section, see figure 12b). We choose a planar shock566

moving at Ms = 1.5. Adaptation is performed on the mass density (figures ?? and ??),567

with (α, γα) = (40, 0.1). Again, the aim is to compare the results obtained with mesh568

adaptation on a base mesh with edge size h = 0.05 with those obtained on a uniformly569

refined mesh with edge size h = 0.02. Mesh data are shown in table 5. Contour lines570

for the mass density solution on a radial plane are shown in figures 17 and 19, for 50571

equispaced lines between the values 1.36081 and 4.00883. Resolution on shock waves572

with mesh adaptation is comparable with those obtained on a uniform mesh about ten573

times bigger in terms on number of nodes and elements. Adapted meshes are shown in574

figures 18 and 20. Computational times are shown in table 6.575

In this case too it was impossible to complete the simulation over valid meshes576

without the action of the a-posteriori limiter near the corners and the curved surface.577

6. Conclusions578

The proposed algorithm for dynamic r-adaptation extends to three dimensions the579

method first proposed in [9, 10, 5] for two-dimensional flows. An iterative solver based580

on diagonal Jacobi iterations for the discretized mesh PDEs with natural boundary con-581

ditions allows a cheap, uncoupled solution in each space direction. A novel a-posteriori582

relaxation scheme allows to prevent mesh tangling through the construction of a se-583

quence of valid meshes also over curved boundary surfaces and corners, which is the584

main concern of r-adaptation methods in multiple dimensions, and it is interleaved with585
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(a) Nonadapted h = 0.04 mesh at t = 0.5. (b) Nonadapted h = 0.04 mesh at t = 1.0.

(c) Adapted h = 0.04 mesh at t = 0.5. (d) Adapted h = 0.04 mesh at t = 1.0.

(e) Fine (nonadapted) h = 0.015 mesh at t = 0.5. (f) Fine (nonadapted) h = 0.015 mesh at t = 1.0.

Figure 13: Three-dimensional forward facing step mass density contour lines at t = 0.5 and t = 1.0.

(a) Adapted h = 0.04 mesh at t = 0.5. (b) Adapted h = 0.04 mesh at t = 1.0.

Figure 14: Three-dimensional forward facing step adapted meshes at t = 0.5 and t = 1.0.
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(a) Nonadapted h = 0.04 mesh at t = 1.5. (b) Nonadapted h = 0.04 mesh at t = 2.0.

(c) Adapted h = 0.04 mesh at t = 1.5. (d) Adapted h = 0.04 mesh at t = 2.0.

(e) Fine (nonadapted) h = 0.015 mesh at t = 1.5. (f) Fine (nonadapted) h = 0.015 mesh at t = 2.0.

Figure 15: Three-dimensional forward facing step mass density contour lines at t = 1.5 and t = 2.0.

(a) Adapted h = 0.04 mesh at t = 1.5. (b) Adapted h = 0.04 mesh at t = 2.0.

Figure 16: Three-dimensional forward facing step adapted meshes at t = 1.5 and t = 2.0.
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(a) Nonadapted h = 0.05 mesh at t = 0.5. (b) Nonadapted h = 0.05 mesh at t = 1.0.

(c) Adapted h = 0.05 mesh at t = 0.5. (d) Adapted h = 0.05 mesh at t = 1.0.

(e) Fine(nonadapted) h = 0.02 mesh at t = 0.5. (f) Fine (nonadapted) h = 0.02 mesh at t = 1.0.

Figure 17: Shock-sphere interaction mass density contour lines at t = 0.5 and t = 1.0.

(a) Adapted h = 0.05 mesh at t = 0.5. (b) Adapted h = 0.05 mesh at t = 1.0.

Figure 18: Shock-sphere interaction adapted meshes at t = 0.5 and t = 1.0.
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(a) Nonadapted h = 0.05 mesh at t = 1.5. (b) Nonadapted h = 0.05 mesh at t = 2.0.

(c) Adapted h = 0.05 mesh at t = 1.5. (d) Adapted h = 0.05 mesh at t = 2.0.

(e) Fine (nonadapted) h = 0.02 mesh at t = 1.5. (f) Fine (nonadapted) h = 0.02 mesh at t = 2.0.

Figure 19: Shock-sphere interaction mass density contour lines at t = 1.5 and t = 2.0.

(a) Adapted h = 0.05 mesh at t = 1.5. (b) Adapted h = 0.05 mesh at t = 2.0.

Figure 20: Shock-sphere interaction adapted meshes at t = 1.5 and t = 2.0.
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a projection step on the curved boundary parametric model. The iterative correction586

scheme allows to obtain valid meshes both in the volume and on the curved bound-587

aries, and does not depend either on the specific choice of the mesh PDE model or the588

boundary geometry representation.589

The reference domain formulation for mesh movement produces sufficiently adapted590

meshes in as few as ten Jacobi iterations per time step during an unsteady flow sim-591

ulation. While the a-posteriori relaxation algorithm is akin to a forward substitution592

algorithm, and thus formally dependent from the node ordering, this doesn’t appear593

to spoil the adaptation pattern in any of our tests. We show the successful genera-594

tion of valid adapted mesh on three-dimensional cases with moving shock waves. While595

the computational time overhead with respect to the original unadapted mesh is non-596

negligeable, it is more than acceptable when compared to the simulation times needed597

to achieve the same accuracy on discontinuous flow features on uniformely refined mesh.598

The attractiveness of the method rests in fact in its applicability on moving shocks,599

where an off-line mesh refinement approach would require to refine the mesh in most of600

the computational domain, and its easy coupling with ALE solvers, enabling solution601

conservation on the adapted meshes.602

Limitations of this r-adaptation method are the same of the original two-dimensional603

formulation, namely the Laplacian models excessively pulls nodes towards non-convex604

boundaries and the displacement uncoupling in the multiple space directions can create605

sensible adaptation patterns for excessively strong adaptation parameters. Also, the606

choice of the parameters of the monitor function appear to be application dependent.607

possibly leading to excessive mesh stretching for same values of the parameters. In608

these extreme situations, the effect of the novel a-posteriori relaxation scheme allows609

nonetheless to recover a valid mesh by blocking mesh displacement in critical zones,610

allowing to continue the mesh movement at successive time steps as the flow features611

evolve away from the blocked mesh elements. We would like to remark that our limiting612

procedure is targeted at preserving mesh validity throughout the adaptation procedure.613

This means that a nodal displacement can be blocked if the volume of an adjacent614

element falls below an user-defined threshold, but the mesh remains valid. Thus, the615

vertex positions of the blocked elements can be relaxed either by a subsequent application616

of r-adaptation at the next time step as the monitor function moves (as it is often the case617

in the simulation of traveling waves), either by the application of standard smoothing618

algorithms, which are fundamentally simpler than untangling methods.619

While a linear finite element approximation is sufficient to model the nodal degrees620

of freedom of straight-sided meshes, generalizations of the a-posteriori limiting method621

to curved meshes can be envisaged by increasing the degree of the finite element ba-622

sis. This would require the formulation of a volume positivity predicate for the curved623

tetrahedron, which is outside the scope of this work.624

Future research lines include the parallelization of the current method, for which no625

specific problems are envisaged, and the study of r-adaptation as a tool to complement626

h-adaptation in time-dependent simulations to somewhat reduce the overhead of the627

adaptation strategy.628
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[22] Hervé Guillard and Charbel Farhat, On the significance of the geometric conservation law for flow681

computations on moving meshes, Computer Methods in Applied Mechanics and Engineering 190682

(2000), no. 11, 1467 – 1482.683

[23] Glen Hansen, Andrew Zardecki, Doran Greening, and Randy Bos, A finite element method for684

unstructured grid smoothing, Journal of Computational Physics 194 (2004), no. 2, 611 – 631.685

[24] D. Hermes and P.-O. Persson, High-order solution transfer between curved triangular meshes, 2018.686

[25] Weizhang Huang, Variational mesh adaptation: Isotropy and equidistribution, Journal of Compu-687

tational Physics 174 (2001), no. 2, 903 – 924.688

[26] Weizhang Huang and Lennard Kamenski, On the mesh nonsingularity of the moving mesh pde689

method, no. 87, 1887–1911.690

[27] Weizhang Huang and Robert D. Russell, Adaptive moving mesh methods, Applied Mathematical691

Sciences 174 (2011), no. 174, Applied Mathematical Sciences.692

[28] D. Isola, A. Guardone, and G. Quaranta, Finite-volume solution of two-dimensional compressible693

flows over dynamic adaptive grids, Journal of Computational Physics 285 (2015), 1 – 23.694

[29] A.A. Johnson and T.E. Tezduyar, Mesh update strategies in parallel finite element computations695

of flow problems with moving boundaries and interfaces, Computer Methods in Applied Mechanics696

and Engineering 119 (1994), no. 1, 73 – 94.697

[30] P. Knupp and S. Steinberg, Fundamentals of grid generation, The Fundamentals of Grid Generation,698

Taylor & Francis, 1993.699

[31] M. Kucharik and M. Shashkov, Extension of efficient, swept-integration-based conservative remap-700

ping method for meshes with changing connectivity, International Journal for Numerical Methods701

in Fluids 56 (2008), no. 8, 1359–1365.702

[32] Milan Kucharik, Mikhail Shashkov, and Burton Wendroff, An efficient linearity-and-bound-703

preserving remapping method, Journal of Computational Physics 188 (2003), no. 2, 462–471.704

32



[33] Ruo Li, Tao Tang, and Pingwen Zhang, A moving mesh finite element algorithm for singular705

problems in two and three space dimensions, Journal of Computational Physics 177 (2002), no. 2,706

365 – 393.707

[34] G. Liao, Variational approach to grid generation, Numerical Methods for Partial Differential Equa-708

tions 8 (1992), no. 2, 143–147.709

[35] Michael A. Park, Adrien Loseille, Joshua Krakos, Todd R. Michal, and Juan J. Alonso, Unstructured710

grid adaptation: Status, potential impacts, and recommended investments towards cfd 2030, AIAA711

AVIATION Forum, American Institute of Aeronautics and Astronautics, June 2016, pp. –.712

[36] B. Re, C. Dobrzynski, and A. Guardone, An interpolation-free ale scheme for unsteady inviscid flows713

computations with large boundary displacements over three-dimensional adaptive grids, Journal of714

Computational Physics 340 (2017), 26 – 54.715

[37] M Sun, T Saito, K Takayama, and H Tanno, Unsteady drag on a sphere by shock wave loading,716

Shock waves 14 (2005), no. 1-2, 3–9.717

[38] Huazhong Tang and Tao Tang, Adaptive mesh methods for one- and two-dimensional hyperbolic718

conservation laws, SIAM Journal on Numerical Analysis 41 (2003), no. 2, 487–515.719

[39] Tao Tang, Moving mesh methods for computational fluid dynamics, Contemporary mathematics720

383 (2005), 141–174.721

[40] H Tanno, K Itoh, T Saito, A Abe, and K Takayama, Interaction of a shock with a sphere suspended722

in a vertical shock tube, Shock Waves 13 (2003), no. 3, 191–200.723

[41] PD Thomas and CK Lombard, Geometric conservation law and its application to flow computations724

on moving grids, AIAA journal 17 (1979), no. 10, 1030–1037.725

[42] J.F. Thompson, Z.U.A. Warsi, and C.W. Mastin, Numerical grid generation: foundations and726

applications, North-Holland, 1985.727

[43] Joe F Thompson, Frank C Thames, and C Wayne Mastin, Tomcat — a code for numerical genera-728

tion of boundary-fitted curvilinear coordinate systems on fields containing any number of arbitrary729

two-dimensional bodies, Journal of Computational Physics 24 (1977), no. 3, 274 – 302.730

[44] Joe F Thompson, Frank C Thames, and Charles Wayne Mastin, Boundary-fitted curvilinear co-731

ordinate systems for solution of partial differential equations on fields containing any number of732

arbitrary two-dimensional bodies, Tech. Report NASA-CR-2729, NASA, 1977.733

[45] Thomas Toulorge, Christophe Geuzaine, Jean-François Remacle, and Jonathan Lambrechts, Robust734

untangling of curvilinear meshes, Journal of Computational Physics 254 (2013), 8 – 26.735

[46] John G Trulio and Kenneth R Trigger, Numerical solution of the one-dimensional lagrangian hy-736

drodynamic equations, Tech. report, California. Univ., Livermore, CA (United States). Lawrence737

Radiation Lab., 1961.738
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