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Context 1/5

Aim: efficient simulation of nonlinear, dispersive water waves in the near-shore.

I Understanding local wave direction, height, strength

I Influence of local bathymetry and climate

I Erosion process, sediment transport, management of local activities
(tourism, oyster cultures, surf competitions ...)



Context 2/5

Aim: efficient simulation of nonlinear, dispersive water waves in the near-shore.

I Understanding local wave direction, height, strength

I Propagation and impact of tsunami (left : Sumatra 2004)

I Propagation and inundation due to tidal bores (right : Garonne river)



Context 3/5

Aim: efficient simulation of nonlinear, dispersive water waves in the near-shore.

I Understanding local wave direction, height, strength

I Propagation and impact of tsunami (left : Tohoku, Naka river 2011)

I Propagation and inundation due to tidal bores (right : Garonne river)



Context 4/5

Aim: efficient simulation of nonlinear, dispersive water waves in the near-shore.

I the best description: 3D incompressible Euler or NS equations

I large scales : depth-averaged approximation and 2D restriction



Context 5/5

Near shore hydrodynamics
Bonneton,Chazel,Lannes,Marche,Tissier - Delis,Kazolea,Synolakis - Kirby,Grilli,et al (FUNWAVE-TVD) -

Smit,Zijlema et al (SWASH) - Ricchiuto et al - etc.

(Ribbed channel clip)

Propagation: nonlinear
dispersive model

Breaking: local
coupling with

”dissipative” model

.

Runup/flooding :
hydrostatic model
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Context in short

What are the main ingredients ?

1. Time dependent

2. Wave propagation : small dissipation and dispersiondispersiondispersion error

3. Steep fronts (bores) and dry states : non-oscillatory/positivity preserving

4. Hyperbolic component of the PDEs : need “upwinding”

5. Complex topographies, moving fronts: unstructured adaptive meshes

6. BCs issue: sponge layers and wave generation layers .. possibly combined
with local mesh coarsening/refinement

Same as compressible flow or aeroacoustics ??
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Physics and models 1/13

An example : solitary wave propagation over a shelf



Physics and models 2/13

An example : solitary wave propagation over a shelf



Physics and models 3/13

Dispersive wave propagation

I Initial propagation : undisturbed

I Shoaling (transformation) : wave getting higher and steeper

I Dispersion (transformation) : new frequencies are separated→ wave groups

I Propagation : each “group” propagates at its own speed



Physics and models 4/13

∇ · ~v = 0

ut + uux + wuz + px = 0

wt + uwx + wwz + pz = −g
p = 0 in z = η

ηt + uηx = w in z = η

udx = w in z = −d

Dispersive models : Airy theory
Incompressible Euler eq.s in terms of velocity ~v = (u,w) (ρ = 1)



Physics and models 5/13

∆Φ = 0

Φtx + ΦxΦxx + ΦzΦxz + px = 0

Φtz + ΦxΦxz + ΦzΦzz + pz = −g
p = 0 in z = η

ηt + Φxηx = Φz in z = η

Φxdx = Φz in z = −d

Dispersive models : Airy theory
Incompressible Euler eq.s with assumption of irrotational flow in terms of
velocity potential ~v = ∇Φ (ρ = 1)



Physics and models 5/12

∆Φ = 0

∇
(

Φt +
1

2
Φ2
x +

1

2
Φ2
z + p+ g z

)
= 0

p = 0 in z = η

ηt + Φxηx = Φz in z = η

Φxdx = Φz in z = −d

Dispersive models : Airy theory
Bernoulli’s theorem



Physics and models 6/12

∆Φ = 0

Φt +
1

2
Φ2
x +

1

2
Φ2
z + p+ g z = f(t) = 0

p = 0 in z = η

ηt + Φxηx = Φz in z = η

Φxdx = Φz in z = −d

Dispersive models : Airy theory
Bernoulli’s theorem



Physics and models 7/12

∆Φ = 0

Φt +
1

2
Φ2
x +

1

2
Φ2
z + gη = 0 in z = η

ηt + Φxηx = Φz in z = η

Φxdx = Φz in z = −d

Dispersive models : Airy theory
Nonlinear wave equations : 1st order PDEs plus an elliptic equation



Physics and models 8/12

∆Φ = 0

Φt + gη = 0 in z = η

ηt = Φz in z = η

0 = Φz in z = −d

Dispersive models : Airy theory
Linearized wave equations : |Φx|, |Φz| � 1, |η|, |ηx|, |ηz| � 1



Physics and models 9/12

∆Φ = 0

Φt + gη = 0 in z = η

ηt = Φz in z = η

0 = Φz in z = −d

Dispersive models : Airy theory
Propagating solutions of linearized equations on flat bathymetries :

η = a sin(k(x− Ct)) Φ = B(z) cos(k(x− Ct))

where

kC = ω phase



Physics and models 10/12

∆Φ = 0

Φt + gη = 0 in z = η

ηt = Φz in z = η

0 = Φz in z = −d

Dispersive models : Airy theory
Propagating solutions of linearized equations on flat bathymetries (C2

0 = gd0) :

η = a sin(k(x− Ct)) Φ = B(z) cos(k(x− Ct))

C2 = C2
0︸︷︷︸

Linearized Shallow-Water

tanh(kd0)

kd0
= function of k !!!!!



Physics and models 11/13

Dispersive models

1. Wave dispersion : even for linear equations

2. Wave dispersion : even for flat bathymetry

3. Wave dispersion : mainly a 3D effect (coupling vertical flow/surface
deformation)

4. Surface wave propagation : wave heights and positions...

the BC in the wave equations !



Physics and models 12/13

The “lazy” man’s approach

Dispersive models : depth averaging (Boussinesq 1872)

1. Depth averaging : reduce problem from 3D to 2D (just the BCs!)

2. Depth averaging : unknowns

η(t, x) and u(t, x) =
1

d+ η

η∫
−d

u(t, x, z)dz

3. Depth averaging : allow propagation over large domains

4. Wave dispersion : explicit presence of dispersive terms in equations !!!



Physics and models 13/13

Dispersive models : depth averaging + asymptotic analysis

1. Double asymptotic expansion

2. Small parameters (nonlinearity and dispersion)

ε =
A

d0
, µ =

d0

λ

3. Several family of models, different properties



Peregrine equations

System variables:

I η: free surface water level

I d: depth at still water

I h: water column height

I q: volume flux (q = hu)



∂tη + ∂xq = 0

∂tw + ∂x(uq) + gh∂xη = 0

q−
d2

3
∂xxq −

1

3
d∂xd∂xq = w

I Hyperbolic NonLinear Shallow Water (NLSW) equations

I Peregrine Boussinesq term

1
Peregrine J.Fluid.Mech. 1967, Abbott et al. Coast. Eng. 1978



Green-Naghdi equations

System variables:

I η: free surface water level

I d: depth at still water

I h: water column height

I q: volume flux (q = hu)


∂tη + ∂xq = 0

∂tq + ∂x(uq) + gh∂xη = φ

φ− αT (φ) = T (ghηx)− hQ(u)

I Hyperbolic NonLinear Shallow Water (NLSW) equations

I GN non-hydrostatic source

2
Green and Naghdi J.Fluid.Mech. 1976, Lannes and Bonneton Phys. Fluids 2009, Filippini et al J.Comput.Phys. 2015



Green-Naghdi equations: non-linear operators

System variables:

I η: free surface water level

I d: depth at still water

I h: water column height

I q: volume flux (q = hu)



T (·) = S∗1

(
hS1

( (·)
h

))
+ S∗2

(
hS2

( (·)
h

))
S1(·) =

h
√

3
(·)x −

√
3

2
dx (·)

S2(·) =
1

2
dx (·)

Elliptic sub-system : coercive operator (the ∗ denotes adjoint operators)

2
Alvarez-Samaniego and Lannes Indiana U. Math. J. 2008, Filippini et al J.Comput.Phys. 2016



Green-Naghdi equations: non-linear operators

System variables:

I η: free surface water level

I d: depth at still water

I h: water column height

I q: volume flux (q = hu)

T (·) = ∂x(h3∂x
(·)
h

) + (dxhx +
1

2
hdxx − (dx)2)(·)

Elliptic sub-system : coercive operator

2
Alvarez-Samaniego and Lannes Indiana U. Math. J. 2008, Filippini et al J.Comput.Phys. 2016



Green-Naghdi equations: non-linear operators

System variables:

I η: free surface water level

I d: depth at still water

I h: water column height

I q: volume flux (q = hu)

Q(·) = 2hhx(·)2
x +

4

3
h2(·)x(·)xx − dxh(·)2

x − dxxh(·)(·)x

−
[
dxxhx +

1

2
hdxxx − dxdxx

]
(·)2

Elliptic sub-system : nonlinear forcing

3
Lannes and Bonneton Phys. Fluids 2009, Filippini et al J.Comput.Phys. 2016



Not so lazy after all

Complex systems of nonlinear dispersive PDEs

Asymptotic accuracy

Peregrine Weakly non-linear and weakly dispersive. We assume ε ≈ µ2

and terms of order ε2, εµ2, and µ4 are neglected ;

Green-Naghdi Fully nonlinear, weakly dispersive. We assume ε ≈ 1 and
terms of order µ4 are neglected.



Not so lazy after all

Complex systems of nonlinear dispersive PDEs

State of the art “operational” models

FUNWAVE Fully nonlinear dispersive model
+ hybrid approach (FUNWAVE TVD)1

MIKE21 Weakly nonlinear dispersive model
+ eddy viscosity for wave breaking2

1University of Delaware, J.T. Kirby and co-workers
2Distributed by DHI Group, models by Tech. University of Denmark, P.A. Madsen-H. Schaffer

and co-workers



Linear dispersion analysis 1/11

How good are these models ?

1. Asymptotic approximations, error of order O(ε2, εµ2, µ4), or O(µ4) for GN

2. Irrotational potential flow: no breaking waves (rotational)

3. Asymptotic error in µ means waves may have the wrong phase relation
(w.r.t. Euler eq.s)

4. Dispersion coeff.s α determined to minimize phase error (w.r.t. Euler eq.s)



Linear dispersion analysis 2/11

Nonlinear Peregrine equations :
∂tη + ∂xq = 0

∂tq −
1

3
d2

0∂xxtq + ∂x(uq) + gh∂xη = 0

z

x

ηz=  (t,x)

0d

A << 1

u << 1

Dispersion analysis : continuous case
Linearized Peregrine equations (neglect quadratic/HO terms : ηu, η2, u2, etc)

∂tη + d0∂xu = 0

∂tu−
1

3
d2

0∂xxtu+ g∂xη = 0



Linear dispersion analysis 3/11

Linearized Peregrine equations :
∂tη + d0∂xu = 0

∂tu−
1

3
d2

0∂xxtu+ g∂xη = 0

z

x

ηz=  (t,x)

0d

A << 1

u << 1

Dispersion analysis : continuous case



Linear dispersion analysis 4/11

Linearized Peregrine equations :
∂tη + d0∂xu = 0

∂tu−
1

3
d2

0∂xxtu+ g∂xη = 0

z

x

ηz=  (t,x)

0d

A << 1

u << 1

Dispersion analysis : continuous case
Look for solutions of the form

η = η0e
νt+i kx , u = u0e

νt+i kx

with ν = ξ + iω (ξ dissipation rate, ω = kC the phase shift)



Linear dispersion analysis 5/11

Linearized Peregrine equations :
∂tη + d0∂xu = 0

∂tu−
1

3
d2

0∂xxtu+ g∂xη = 0

z

x

ηz=  (t,x)

0d

A << 1

u << 1

Dispersion analysis : continuous case
Linear dispersion relations

νη0+i kd0u0 = 0

ν(1 +B(kd0)2)u0+i kgη0 = 0



Linear dispersion analysis 6/11

Linearized Peregrine equations :
∂tη + d0∂xu = 0

∂tu−
1

3
d2

0∂xxtu+ g∂xη = 0

z

x

ηz=  (t,x)

0d

A << 1

u << 1

Dispersion analysis : continuous case
Complex eigenvalue problem for ν = ξ + iω (ξ dissipation, ω = kC phase)(

ν i kd0

i kg ν(1 +B(kd0)2)

)(
η0

u0

)
= 0

⇐⇒

ν2(1 +B(kd0)2)− (i kgd0)2 = 0



Linear dispersion analysis 7/11

Linearized Peregrine equations :
∂tη + d0∂xu = 0

∂tu−
1

3
d2

0∂xxtu+ g∂xη = 0

z

x

ηz=  (t,x)

0d

A << 1

u << 1

Dispersion analysis : continuous case
Result (set C2

0 = gd2
0)

ξ =0

ω2 = (kC0)2︸ ︷︷ ︸
Linearized Shallow Water

1

1 +
(kd0)2

3



Linear dispersion analysis 8/11

Linearized GN equations :
∂tη + d0∂xu = 0

∂tu−
α

3
d2

0∂xxtu

−
α− 1

3
gd2

0∂xxxη + g∂xη = 0

z

x

ηz=  (t,x)

0d

A << 1

u << 1

Dispersion analysis : continuous case
Result (set C2

0 = gd2
0)

ξ =0

ω2 = (kC0)2︸ ︷︷ ︸
Linearized Shallow Water

1 +
α− 1

3
(kd0)2

1 +
α

3
(kd0)2

Coeff. α chosen by minimizing error w.r.t. Airy theory (α = 1→ Peregrine !).



Linear dispersion analysis 9/11

Dispersion relations : models overview

3For GN αopt ≈ 1.159



Linear dispersion analysis 10/11

Next step : continuous to discrete

I Influence of the scheme

I dissipation for given mesh size

I dispersion error for given mesh size



Linear dispersion analysis 11/11

Next step : continuous to discrete

Model problem : AD equation

∂tu− α∂txxu+ a∂xu = 0

Admits solutions of the form u = u0eνt+i kx with ν = ξ + iω and

ξ = 0 no dumping

ω = − ka︸︷︷︸
pure advection

1

1 + αk2
dispersion



Residual based continuous FEM

Motivation

I High ratio accuracy/stencil

I High ratio 1/(cost × error)

I Potential for unstructured grids and adaptation

I Potential for higher order



Residual based and continuous FEM

Additional remarks

For time dependent problems always need to invert a “mass matrix”

I For hyperbolics often seen as a flaw (can’t simply do RK ODE integration)

I Here matrix inversion cannot be avoided1

I The PDEs are very complex. How to simplify and possibly reduce costs ?
(e.g. matrix sizes)

1presence of uxxt terms, elliptic component hidden..



P 1 FEM and ∂tu− α∂txxu+ a∂xu = 0

I Consider a tessellation of the domain composed of non-overlapping
elements (segments)

I Unknowns at nodes: {ui(t)}i≥1

I P 1 piecewise linear continuous approximation

uh(t, x) =
∑
i≥1

ui(t)ϕi(x) =
∑
K

∑
j∈K

uj(t)ϕj(x)

I ϕi are standard continuous piecewise linear finite element basis functions;

u

u

u

u



Continuous Galerkin (cG) for ∂tu− α∂txxu+ a∂xu = 0

∫
Ωh

ϕi∂twh −
∫

Ωh

auh ∂xϕi = 0

∫
Ωh

∂xu∂xϕi+

∫
Ωh

ϕiuh =

∫
Ωh

ϕiwh

1. A first order PDE : ∂tw + aux = 0

2. plus an elliptic equation : −αuxx + u = w



Continuous Galerkin (cG) for ∂tu− α∂txxu+ a∂xu = 0

cG SCHEME in FD form (uniform ∆x)

∆x

6

(dui−1

dt
+ 4

dui
dt

+
dui+1

dt

)
− α

∆x

(dui−1

dt
− 2

dui
dt

+
dui+1

dt

)
+
a

2
(ui+1 − ui−1) = 0



Continuous Galerkin (cG) for ∂tu− α∂txxu+ a∂xu = 0

cG SCHEME in FD form (uniform ∆x)

∆x

6

(dui−1

dt
+ 4

dui
dt

+
dui+1

dt

)
− α

∆x

(dui−1

dt
− 2

dui
dt

+
dui+1

dt

)
+
a

2
(ui+1 − ui−1) = 0

FD2 scheme (same cost) :

∆x
dui
dt
− α

∆x

(dui−1

dt
− 2

dui
dt

+
dui+1

dt

)
+
a

2
(ui+1 − ui−1) = 0



Continuous Galerkin (cG) for ∂tu− α∂txxu+ a∂xu = 0

cG SCHEME in FD form (uniform ∆x)

∆x

6

(dui−1

dt
+ 4

dui
dt

+
dui+1

dt

)
− α

∆x

(dui−1

dt
− 2

dui
dt

+
dui+1

dt

)
+
a

2
(ui+1 − ui−1) = 0

FD4 scheme (more expensive) :

∆x
dui
dt
− α

12∆x

(
− dui−2

dt
+ 16

dui−1

dt
− 30

dui
dt

+ 16
dui+1

dt
− dui+2

dt

)
+
a

12
(ui−2 − 8ui−1 + 8ui+1 − ui+2) = 0



An upwind scheme

WHY !???!
To handle with one code the dispersive AND the hyperbolic limits ...



An upwind schemes : SUPG

Streamline Upwind Petrov-Galerkin8 :

Galerkin +
∑

K∈Ωh

∫
K

a∂xϕ
K
i τKr

K = 0

with τK a stabilization parameter, and with rK the local residual

rK = (∂twh + a∂xuh)K

8see e.g. (Hughes, Scovazzi and Tezduyar, J.Sci.Comp. 43 2010) and references therein



An upwind scheme

A magic trick
Taking

τK =
1∑

j∈K
|a∂xϕKj |

We obtain for a > 0 (in FD form)

∆x

6

(5

2

dwi−1

dt
+ 4

dwi
dt
− 1

2

dwi+1

dt

)
+ a(ui − ui−1) = 0

∆xui −
α

∆x
(ui−1 − 2ui + ui+1) =∆xwi

The blue part is the first order upwind scheme !



In summary

I FD2 and cG schemes: same cost and same underlying elliptic discretization

I FD4 scheme: more accurate and more expensive

I SUPG: cost of FD4 with same underlying elliptic equation of FD2 and cG



Time continuous error analysis

We want to

1. Characterize the truncation errors (uniform ∆x) for the different schemes
(TE analysis)

2. Characterize the dispersion error (uniform ∆x) for the different schemes
(DE analysis)

3. Get some recipe to generalize to the systems we have seen



Time continuous TE analysis

Brute force ...



Time continuous TE analysis

Our problem

∂tu− α∂txxu+ a∂xu = 0

Truncation errors

TEFD2 =
∆x2

6
∂xx(ut −

α

2
∂txxu) +O(∆x4)

TEcG =α
∆x2

12
∂xxxxtu+O(∆x4)

TEFD4 =
∆x4

30
∂xxxx(ut +

2

3
α∂xxtu) +O(∆x6)

TESUPG =α
∆x2

12
∂xxxxtu+O(∆x3)



Time continuous TE analysis

I For α = 0 (pure advection) both cG and SUPG are more than second
order accurate (resp. fourth order and third order)

I For α 6= 0 their dispersive leading term contains the same derivative of
FD4 : spurious numerical dispersion on same high frequencies as FD4

I FD2: dispersive leading error of the same type as the physical one.
Numerical dispersion on the same wave numbers as the physical one



Time continuous DE analysis

As in the continuous case :

1. Set ui = u0e
νt+i kx

2. Replace in the FD form of the scheme (∂tui = νui, ∂xui = i ku,
ui+1 = ei k∆xuietc.)

3. Solve complex algebraic equation for ν = ξ + iω

4. ω = ω(k,∆x)



Time continuous DE analysis



Lucky shot ?

Test 1. Repeat the exercise for Peregrine’s model



Test 1. Repeat the exercise for Peregrine’s model

Model equations (reminder)

System variables:

I η: free surface water level

I d: depth at still water

I h: water column height

I q: volume flux (q = hu)



∂tη + ∂xq = 0

∂tw + ∂x(uq) + gh∂xη = 0

q−
d2

3
∂xxq −

1

3
d∂xd∂xq = w



Test 1. Repeat the exercise for Peregrine’s model

cG formulation

∫
Ωh

ϕi∂tηh−
∫

Ωh

qh∂xϕi = 0

∫
Ωh

ϕi∂twh−
∫

Ωh

(
uhqh +

1

2
g(hh)2

)
∂xϕi −

∫
Ωh

ϕighh∂xdh = 0

∫
Ωh

ϕiqh +
1

3

∫
Ωh

∂xϕi(dh)2∂xqh +
1

3

∫
Ωh

ϕidh∂xdh∂xqh =

∫
Ωh

ϕiwh



Test 1. Repeat the exercise for Peregrine’s model

SUPG formulation
Set

RcG
i =


∫

Ωh

ϕi∂tηh −
∫

Ωh

qh∂xϕi

∫
Ωh

ϕi∂twh −
∫

Ωh

(
uhqh +

1

2
g(hh)2

)
∂xϕi −

∫
Ωh

ϕighh∂xdh





Test 1. Repeat the exercise for Peregrine’s model

SUPG formulation

RcG
i +

∑
K∈Ωh

∫
K

A∂xϕ
K
i τK r

K = 0

∫
Ωh

ϕiqh +
1

3

∫
Ωh

∂xϕi(dh)2∂xqh +
1

3

∫
Ωh

ϕidh∂xdh∂xqh =

∫
Ωh

ϕiwh

I With A the Shallow-Water Jacobian matrix
I With rK the residual

rK =

 ∂tηh + ∂xqh

∂twh + ∂x(uhqh) + ghh∂xηh





Test 1. Repeat the exercise for Peregrine’s model

SUPG and Roe’s method

As in the scalar case, setting

τK = (
∑
j∈K

|A∂xϕKj |)−1

we recover

I Roe’s flux difference splitting for the flux part

I Well known well balanced (upwind) approximation of the bathymetry

I plus a non-symmetric mass matrix coupling ∂tηh and ∂twh



TE analysis for (linearized) Peregrine
FD2 scheme.

TEηFD2 =
d0∆x2

6
∂xxxu+O(∆x4)

TEuFD2 =
∆x2

6
∂xxx

(
−
d2

0

6
∂xtu+ g η

)
+O(∆x4)

cG scheme.
TEηcG =

∆x4

24
∂xxxx

(
1

3
∂tη +

d0

5
∂xu

)
+O(∆x6)

TEucG =
∆x2

36
d2

0∂xxxxt∂tu+O(∆x4)

FD4 scheme.
TEηFD4 =

d0∆x4

30
∂xxxxxu+O(∆x6)

TEuFD4 =
∆x4

15
∂xxxx

(
−

2

27
d2

0∂tu+
1

2
g∂xη

)
+O(∆x6)

SUPG scheme.

TEηSUPG =
C0∆x3

6g
∂xxx

(
∂tu−

d2
0

2
∂xxtu+

1

2
g∂xη

)
+O(∆x4)

TEuSUPG =
∆x2

36
d2

0∂xxxxtu+O(∆x3)



Time continuous TE analysis for Peregrine

I Without dispersion (Shallow Water) both cG and SUPG are more than
second order accurate (resp. fourth order and third order)

I In the dispersive case, the dispersive leading term has the same derivative
of FD4 : spurious numerical dispersion on same high frequencies as FD4

I FD2: dispersive leading error providing spurious numerical dispersion on
the same wave numbers as the physical one



DE analysis : Boussinesq model - cG and SUPG

Solid line : kd0 = 0.5 - Circles kd0 = 2.6

N : points per wavelength



Our recipe

1. Hyperbolic component: suitable higher order (at least third) scheme

2. Elliptic sub-problem: suitable scheme, second order is enough to preserve
the dispersion relation



Our recipe

Let’s apply the recipe to the GN equations !



Let’s apply the recipe to the GN equations

GN (reminder)

System variables:

I η: free surface water level

I d: depth at still water

I h: water column height

I q: volume flux (q = hu)


∂tη + ∂xq = 0

∂tq + ∂x(uq) + gh∂xη = φ

φ− αT (φ) = T (ghηx)− hQ(u)



Let’s apply the recipe to the GN equations

GN non-linear operators (reminder)



T (·) = S∗1

(
hS1

( (·)
h

))
+ S∗2

(
hS2

( (·)
h

))

Q(·) = 2hhx(·)2
x +

4

3
h2(·)x(·)xx − dxh(·)2

x − dxxh(·)(·)x

−
[
dxxhx +

1

2
hdxxx − dxdxx

]
(·)2



Let’s apply the recipe to the GN equations

Equation for non-hydrostatic source φ

P 1 continuous Galerkin formulation :

∫
Ωh

ϕiφh +

∫
Ωh

S1(ϕi)hhS1

(φh

hh

)
+

∫
Ωh

S2(ϕi)hhS2

(φh

hh

)
= Rh

i (hh, uh, dh)

where recall that

S1(·) =
h√
3

(·)x −
√

3

2
dx (·) , S2(·) =

1

2
dx (·)

and with Rh
i (hh, uh, dh) obtained by recasting the forcing terms hQ(·) and

T (ghηx) in variational form (omitted for brevity)



Let’s apply the recipe to the GN equations

Equation for non-hydrostatic source φ

P 1 continuous Galerkin formulation :

T(hh, uh, dh)Φ = Rh(hh, uh, dh)

Linear system for Φ: the vector of nodal values of φ



Let’s apply the recipe to the GN equations

Evolution of physical quantities: finite volume

I parabolic (third order) reconstruction

I Roe’s flux

I and well balanced treatment of topography10

∆xi
d

dt

(
ηi
qi

)
+ F̂i+1/2 − F̂i−1/2 + Sd =

∫
∆xi

φh

10(Bermudez-Vazquez, Computers&Fluids 1994)



Time continuous dispersion error analysis

Left : kd0 = 0.5 - Right kd0 = 2.6



Solution error convergence

Hyperbolic phase :
Left: FV - Middle: SUPG - Right: cG



Numerical examples

Weakly and fully nonlienar in 1D



Numerical examples : submerged bar
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Enhanced Boussinesq model



Numerical examples : submerged bar
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Numerical examples : submerged bar

gauge 7

Hybrid FV-cG scheme
Enhanced GN model



Numerical examples : submerged bar
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Numerical examples : submerged bar

gauge 10

Hybrid FV-cG scheme
Enhanced GN model



Numerical examples : reef overtopping



Numerical examples : reef overtopping



Numerical examples : reef overtopping



Numerical examples : reef overtopping



Numerical examples : reef overtopping

Remark: wave breaking

1. Detect breaking fronts

2. Set φ = 0 to approximate breaking waves with bores

3. Purely algebraic modification !

∆xi
d

dt

(
ηi
qi

)
+ F̂i+1/2 − F̂i−1/2 + Sd =

∫
∆xi

φh



Numerical examples in 2D

Schemes in 2D : similar stabilized approach with different upwinding
strategies (cf. Ricchiuto-Filippini 2014)



Numerical examples : circular shoal (hexagons) - ∆x = 0.1m



Numerical examples : circular shoal (hexagons) - ∆x = 0.1m



Numerical examples : elliptic shoal (unstructured)



Numerical examples : elliptic shoal (unstructured)

(Ribbed channel clip)


el_movie_topview_col.avi
Media File (video/avi)



Numerical examples : elliptic shoal (unstructured)



The short of it ...

I Interaction between advective (hyperbolic) and higher order terms in
depth averaged wave models

I High order on hyperbolic : at least third order required for good dispersion

I Elliptic component: can be treated with a second order method !

I Coupling with SW: your favorite scheme for SW + FEM for elliptic part

I Natural extension to 2D on unstructured meshes

I Wave breaking: evert to SW (cf. below)



PERSPECTIVES

A few ongoing extensions

I 2D Green-Naghdi :
couple FEM for the elliptic part with FV(SW), DG(SW), and RD(SW)

I Implicit or explicit time integration ... ?

I Evaluate PDE-based “wave breaking viscosity” (as in turbulence models)

I Time dependent : ALE based adaptation (cf. below)



... THX ...
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