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Abstract

Despite the recognized impact of tidal bores on estuarine ecosystems, the

large scale mechanism of bore formation in convergent alluvial estuaries is still

under investigation. So far, field data exist only for a small number of estuaries,

while numerical simulations employ the shallow water equations mainly focus-

ing on the small-scale and local processes. In this work, firstly we apply the

fully nonlinear weakly dispersive Serre-Green-Naghdi equations to simulate the

tide propagation in a convergent estuary of idealized form, verifying that the

local dispersion effects, responsible for the appearance of the secondary waves,

do not influence the tidal bore onset, which only results from the large scale

processes of amplification/damping and distortion of the incoming wave. In
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a second part, we numerically investigate (225 runs) the estuarine parameter

space in order to identify the physical conditions that lead to tidal bore gen-

eration. In this parameter space, we determine a critical curve which divides

estuaries according to tidal bore occurrence. As a result of this investigation

we have shown that bore formation is controlled by the competition between

two physical processes: a) the knee-shaped distortion of the tidal wave, with

flood dominance and eventually bore inception; b) the dissipation of the tidal

wave, which is unfavorable to bore formation. We also provide evidence that

amplification due to topographic convergence is not a necessary condition for

tidal bore generation and that there exist estuaries which display both wave

damping and bore development. Finally, the validity of the results has been

also assessed in the presence of freshwater river discharge, showing that for low

river discharge, its effect on estuarine dynamics can be neglected.

Keywords: Estuarine hydrodynamics; long wave; tidal bore formation;

dispersion; undular tidal bore; Serre-Green-Naghdi equations.

1. Introduction1

Tidal wave transformation in convergent alluvial estuaries plays a crucial2

role in the development of a sustainable management of water resources. For3

this reason, and to better understand the human impact on the estuarine ecosys-4

tem, it has been the subject of intensive scientific research. Parametric studies5

conducted in [1, 2, 3, 4, 5] have shown that, when neglecting river discharge6

effects, the estuarine hydrodynamics is controlled by only three dimensionless7

parameters. These parameters represent a combination of the properties of the8

tidal forcing at the estuary mouth (wave amplitude and period), the large-scale9

geometrical characteristics of the channel and the friction coefficient. For par-10

ticular conditions of the above dimensional variables, of freshwater flow and of11

river channel bathymetry, the tidal wave may result strongly distorted when the12

flow turn to rise, and a bore can be observed at the beginning of the flood tide.13

In the lower part of the estuary, tidal wave propagation can be well described by14
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the so called Saint Venant or Nonlinear Shallow Water (NLSW) equations with15

friction (cf. [6]). However the onset of a tidal bore and its evolution upstream16

is controlled by non-hydrostatic dispersive mechanisms (cf. [7]). Even if Mad-17

sen et al. [8] and Pan and Liu [9] have shown that the non-dispersive NLSW18

equations with shock capturing methods can still be used to simulate breaking19

bore propagation with relatively good results, undular bores requires the use20

of other long wave modeling approaches. If weakly dispersive weakly nonlinear21

Boussinesq-type equations can be adopted to describe the onset of the tidal bore22

(cf. [7]), the nonlinear evolution of high-intensity bores requests fully nonlinear23

equations to be employed, as for example the Serre-Green-Naghdi (SGN) ones24

(cf. [10, 11, 12]). The first part of this work is thus devoted to reproduce the25

progressive formation of an undular tidal bore inside an idealized estuary using26

the SGN equations.27

The results obtained in this first part will then justify the use of the NLSW28

model to investigate at large scales how the three dimensionless parameters,29

which control the estuarine long scale dynamics, influence the physical pro-30

cesses of amplification/damping and distortion which may lead to the bore on-31

set. These processes take place at large spatial and temporal scales, where32

the non-hydrostatic effects associated with tidal bores can be neglected. Some33

numerical studies already used the NLSW system to simulate the propagation34

of tidal waves in rivers up to bore formation, but they are limited to a single35

[8, 9] or to a small number [4] of estuaries. A similar limitation concerns also36

field data: since every estuary in nature represents a unique combination of the37

three dimensionless variables, we dispose only of a limited number of points in38

the parameter space coming from in situ measurements. Based on the set of39

data available, it is very difficult to understand how such parameters influence40

the bore development process. In this paper, we bypass this major constraint41

through a numerical investigation of the whole space of dimensionless variables.42

This allows us both to characterize the global conditions for tidal bore occur-43

rence and to analyze for each estuarine regime the nonlinear processes associated44

with tidal wave transformation. Our approach is based on a scaling analysis in-45

3



troduced in [13], where the reader can also find a collection of estuary data,46

which are used here to validate our numerical investigation.47

The paper is structured as follows: section 2 introduces the idealized ge-48

ometry used to accomplish our study and defines the dimensionless parameters49

emerging from the scaling analysis of the governing equations; section 3 gives50

some details about the solution strategy adopted to solve the SGN system, the51

implemented numerical scheme and motivates the choice of the type of bound-52

ary conditions used; section 4 introduces a criterion for bore detection based53

on experimental observation in situ; the numerical simulation of the onset of an54

undular tidal bore inside an idealized estuary is presented in section 5; section 655

discusses the numerical investigation on the favorable conditions for tidal bore56

occurrence, introducing a criterion for bore detection based on experimental57

observation in situ and showing the main findings of the study; finally, section58

7 treats the effects of water river discharge on tidal bore formation.59

2. Problem setting60

The study of tidal wave propagation in funnel shaped estuaries is often per-61

formed under several simplifying assumptions. The geometry of real alluvial62

estuaries in coastal plains can be well-approximated by an exponentially de-63

creasing width variation and flat bathymetry [14, 15, 6]. This morphology is64

the natural result of a morphodynamic equilibrium of the erosion/sedimentation65

process. For this reason, we will perform our study on the simplified case (figure66

1) of a tide propagating in an idealized convergent channel of constant depth67

D0 and an exponentially decreasing width B(x), varying in the longitudinal68

direction x with the law:69

B(x) = B0e
−x/Lb (1)

where Lb represents the convergence length of the channel. We assume a rect-70

angular cross-section suitable, as a first approximation, to describe the behavior71

of a real section with the same area.72

73
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Figure 1: Sketch of the idealized geometry of the channel and basic notations.

It is a common practice in the literature to use quasi-one-dimensional sys-74

tems of equations to investigate the large scale dynamics of long waves propa-75

gating in convergent channels [1, 2, 16, 5, 4]. In the case of open channels with76

exponentially decreasing cross section areas, the equations assume the following77

form:78

∂ζ

∂t
+ u

∂ζ

∂x
+D

∂u

∂x
− uD

Lb
= 0 (2)

∂u

∂t
+ u

∂u

∂x
+ g

∂ζ

∂x
+ Cf0

u|u|
D

= 0

where D = ζ+D0 denotes the total water depth, with ζ the free surface elevation79

and D0 the still water depth and u stands for the cross-sectionally averaged flow80

velocity. The friction term is modeled by a quadratic law, with Cf0 the friction81

coefficient.82

As already remarked by others in the literature [1, 2, 4, 13] three external83

dimensionless parameters appears to fully control the system (2). Following the84

scaling of the equations proposed by Bonneton et al. [13], these parameters are:85

86

ε0 =
A0

D0
, δ0 =

Lw0

Lb
, φ0 =

Cf0(gD0)1/2

ω0D0
; (3)

where D0, A0 and ω0 form a set of reference external parameters, respectively87

the water depth, the amplitude and the angular frequency of the tidal wave.88

Here ε0 represents the standard nonlinearity parameter, δ0 is the convergence89

ratio, φ0 is a friction parameter and Lw0 = (gD0)1/2ω−10 is the frictionless tidal-90
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wave length scale.91

Field observations reported in [3] show that in tidal bore estuaries the tidal92

wave nonlinearity is mainly characterized by the dimensionless parameter93

D∗i = ε0φ0/δ0 , (4)

being always one order of magnitude greater than ε0.94

Both theoretical studies [1] and experimental observations [3] agree that large95

values of the dissipation parameter D∗i produce great distortion and peaking of96

the free surface and velocity profiles of the tidal wave, leading to flood domi-97

nance; characteristics which correspond to necessary conditions for tidal bore98

formation (D∗i ≥ 1.7 in [3]). However, large values of D∗i correspond also to99

high energy dissipation, leading to tidal damping; unfavorable to tidal bore for-100

mation. For this reason some natural estuaries, despite having high values of101

D∗i , don’t display a bore. In order to evaluate the relative importance of friction102

in the momentum balance, several definitions of the friction parameter φ0 have103

been introduced in the literature [1, 2, 17, 4]. Although all of these definitions104

are analogous from a physical point of view, only the one introduced by the105

present authors in [13] allows to investigate separately the opposite effects of106

peaking and dissipation taking place for high values of D∗i . In this paper we107

describe the details of the numerical investigation behind the scaling proposed108

in [13]. We will thus explore numerically the space of the external parameters109

ε0, δ0 and φ0, quantifying which range of values is in favour of tidal bore for-110

mation.111

Considering that, for most alluvial estuaries, the convergence ratio δ0 is close to112

2 (as showed in figure 2 of [13]), we have chosen to perform our analysis using113

a constant value δ0 = 2. Due to such a simplification, the expression of the114

dissipation parameter (4) reduces to: D∗i = αε0φ0 (with α constant). Thus, it115

is possible to investigate the separate effects of peaking and dissipation, both116

contained in D∗i , by numerically exploring only the plane of the dimensionless117

parameters (φ0, ε0). The effects of nonlinear dispersion and of the discharge are118

also investigated, while we leave out for the moment the influence of bathymetric119
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variations.120

3. Numerical model121

3.1. Governing equations122

For nonlinear long waves, a reasonably general description is provided by123

the fully nonlinear weakly dispersive Serre-Green-Naghdi equations. As already124

mentioned, this model allows to simulate the phenomenon in its entirety, includ-125

ing the nonlinear dispersive effects active on the smaller scales. To the authors’126

knowledge, it does not exist so far any mathematical model allowing to account127

for such effects in quasi-1D setting. The closest work is the very recent paper128

of Winckler and Liu [18], who developed a set of weakly nonlinear Boussinesq129

equations. This justifies the use of a full two-dimensional model. In particular,130

the SGN equations can be recast as [19, 20]:131

∂ζ

∂t
+∇ ·

(
Du

)
= 0 , (5a)

∂u

∂t
+
(
u · ∇

)
u+ g∇ζ + Cf0

u|u|
D

= ψ , (5b)(
I + T

)
ψ = T

(
g∇ζ − Cf0

u|u|
D

)
−Q(u) ; (5c)

where u is the depth averaged velocity vector of horizontal component u and132

transversal one v, ψ characterizes the non-hydrostatic and dispersive effects,133

and the linear operators T(·) and Q(·) are the same defined in [20] and their134

expressions are given in appendix A.135

It is worth noting that, when applying the scaling proposed in [13] and recalled136

in section 2 to system (5) (details are reported in appendix A), an additional137

dimensionless parameter µ2 = (D0/L0)2 appears into the equations, multiply-138

ing all the dispersive terms (cf. equation (17b)). This parameter is responsible139

for the fact that the non-hydrostatic effects become negligible when the charac-140

teristic scale of the phenomenon is large, transforming the original SGN system141

of equations into the non-conservative form of the Non-Linear Shallow Water142

(NLSW) system. For this reason, dispersion does not influence significantly143
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the large scales of tidal wave propagation, which can be well described by the144

NLSW equations. A direct verification of this is given and discussed in section 5.145

146

3.2. Numerical strategy147

To solve system (5) we adopt the strategy illustrated in [20]. Given an ini-148

tial solution, the Serre-Green-Naghdi system is solved in two independent steps.149

First, the elliptic equation (5c) is solved for the non-hydrostatic term ψ. Then,150

an hyperbolic step is performed for equations (5a)-(5b), evolving the flow vari-151

ables in time. This strategy solution has been shown to be very flexible and152

robust, producing accurate results with different combinations of discretization153

schemes in space and time. For this study, in the hyperbolic phase a third order154

MUSCL finite volume scheme has been used, together with a third order SSP155

Runge-Kutta method for the evolution in time. The elliptic phase is solved,156

instead, with a classical second order finite element approach. The overall hy-157

brid FV-FE scheme obtained is thus characterized by a dispersion error of the158

same order, or smaller, than those produced by fourth order finite differencing,159

providing that at least third order of accuracy is guaranteed for the hyperbolic160

component. The interested reader can refer to [20] for more details.161

162

3.3. Boundary conditions163

The choice of the boundary conditions affects the flow field significantly [21].164

While exact boundary conditions can be generally imposed in the case of homo-165

geneous hyperbolic problems, this remains an active research topic when source166

terms are included inside the equations. The task becomes even harder working167

with dispersive models. Therefore, while the fully reflective wall boundary con-168

dition can be obtained by imposing some symmetric conditions stemming from169

the satisfaction of : u · n = 0 on the wall line (being n the normal direction to170

the wall), inflow and outflow boundaries require more complex treatments (cf.171

[22, 23, 24, 25]).172
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In this work, the interest in long scale dynamics justifies the use of the NLSW173

invariants also when the SGN equations are solved inside the computational174

domain [26]. The illustrative results contained in section 5 show that the effects175

of this approximation on the large scale is completely negligible on both coarse176

and fine computational meshes.177

178

In practice, the seaward boundary condition is applied by imposing in the179

incoming NLSW Riemann invariant the free surface given by the sea level tidal180

oscillation:181

ζ(t) = A0 sin

(
2πt

T0

)
(6)

We consider here the case of semi-diurnal tides with period T0 = 12.41 [h].182

On the landward boundary, the outflow condition is set imposing the informa-183

tion of still water (we recall that the river discharge is neglected at this level)184

coming from far on the right. However, the imposition of the homogeneous185

invariant cannot take into account the rise of the mean (tidally averaged) wa-186

ter level landward caused by the friction (cf. [5]), introducing a non-physical187

behavior of the solution in the outlet proximity. For this reason, the outflow188

boundary conditions has been coupled with an extension of the computational189

domain, to reduce the spurious influences on the solution in the region of study.190

In practice it has been enlarged up to x = 6Lb, to further limit non-physical191

effects due to the boundary condition.192

In order to guarantee the reliability of the results, a sensitivity study has been193

performed in comparison with the technique of boundary imposition applied by194

[21] and a reference solution computed using a very long computational domain.195

For the interested reader the results of such study are reported in appendix B.196

4. Computations setting197

Tide propagation up to an estuary is, in nature, partly limited by an in-198

creasing bottom slope and by discharge. Considering that the effects of both199

the bathymetric variations and the river discharge have been, at first, neglected200
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in our simulations, even the weakest and linear tidal wave would be able to201

propagate landward and, being dissipated by only friction, it would reaches202

non-physical distances with also possible generation of unnatural bores. For203

this reason, and for later use, a characteristic physical length Lc has been intro-204

duced to limit the region in which the tidal signal is assumed to be physically205

relevant. In particular, examining real estuaries data, we observed that tidal206

bores occur, before reaching a distance of 3Lb from the estuary mouth, see table207

1. Thus, we have chosen to limit the region of interest for our simulations to208

Lc = 3Lb.

Estuaries Lb [km] xc [km] xc/Lb

Gironde/Garonne 43 90 2.09

Hooghly 25 60 2.4

Humber 25 75 3.0

Pungue 17 50 2.94

Qiantang 40 90 2.25

Severn 41 55 1.34

Table 1: Ratio between the location of tidal bore inception xc and convergence length Lb for

some alluvial estuaries. Data taken from [3].

209

Moreover, tidal bore inception is a continuous process which takes place as210

a gradual increase of the free surface slope at the beginning of the flood phase.211

The same continuous increase of steepness is observed in our simulations. A212

criterion is thus needed to detect the bore onset, within the domain [0, Lc]213

just defined. During the two measurement campaigns on the Garonne river,214

Bonneton et al.[3] observed that bore passage was associated to an increase in215

the value of the free surface spatial gradient, at the start of the flood, with at216

least one order of magnitude (from O(10−4) in the smooth case without tidal217

bore). For each numerical simulation we compute, in a post-processing phase,218

the spatial slope of the free surface all along the domain, up to Lc, retaining for219

each position x the maximum value in the tidal period. The quantity Amax has220
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been defined as:221

Amax = max
x∈Lc

[
max
t∈T0

(
∂ζ(x, t)

∂x

)]
(7)

and the following criterion to determine tidal bore onset is used: Amax ≥ 10−3 .222

5. Undular tidal bore formation223

Preliminary simulations concerning the development of an undular tidal bore224

into the idealized channel of figure 1 are reported in this section. We consider a225

strongly nonlinear and weakly dissipative channel of ε0 = 0.7 and φ0 = 10. To226

visualize the results we consider pointwise plots and distributions of the relevant227

quantities along the channel axis. In developed flow conditions, deviations in228

the transversal direction have been quantified to be less than 1.5%.229

230

Figure 2 shows the time series over one tidal cycle of the computed free sur-231

face elevation, measured at 11 gauges positions along the channel. It appears232

evident that the results provided by the SGN model do not differ respect to233

those obtained by using the NLSW model. Differences appear, instead, focus-234

ing on the region of the shock formation. The results obtained are then reported235

in figure 3 and show the formation process of a undular tidal bore. Also in this236

case, the two models give identical results in the whole domain except when the237

shock is formed (cf. top of figure 3). On the discontinuity, in fact, the SGN238

model provides an undular bore with local formation of a train of secondary239

waves. These waves are characterized by a wavelength of 50 [m] and a period of240

6 [s] (cf. bottom of figure 3). However, it can be remarked that the position of241

the bore inception, the mean bore jump and its celerity are well-described by242

the NLSW model. This justifies its application for investigations on the large243

scale estuary dynamics. Studies concerning the local effects on tidal bores or244

flooding problems cannot, instead, avoid the use of a dispersive model to cor-245

rectly reproduce the peaks of water height due to the secondary waves.246

Field observations lead Bonneton et al. [3] to consider that the location of the247

tidal bore onset is associated with the appearance of an inflexion point on the248
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Figure 2: Illustrative result of a tidal propagation into an idealized channel with the shape

described in section 2, ε0 = 0.7, φ0 = 10. Computed free surface profile, measured at 11

stations along the channel corresponding to x = αLB with α = 0 : 1/3 : 3. The simulation

have been realized using both the NLSW and the SGN models.

tidal wave profile. However, these authors stress the difficulty to characterize249

the tidal bore onset on the river, since this would require a high density of water250

elevation measurements over a long distance. By contrast, with our numerical251

simulations we are able to provide a full set of subsequent snapshots (cf. figure252

4), describing the progressive transition from a tidal wave regime without bore253

(cf. figures 4a and 4b) to a well-developed undular tidal bore regime (cf. fig-254

ures 4g and 4h). The gradual evolution of the surface profile towards the bore255

inception passes by the appearance of an inflexion point at the beginning of the256

rising tide.257

In the middle and upper part of the estuary, the value of Amax, used in our258

tidal bore onset criterion, is registered at the beginning of the rising tide. As259

a consequence, the pictures of figure 4 allow to observe the temporal evolution260

of such quantity as the tide propagates landward. The values of max
x∈Lc

(∂ζ
∂x

)
for261

the eight pictures of figure 4 are, thus, showed in table 2 for the two NLSW and262

SGN model. It is worth to note that the dispersive terms becomes relevant after263

the threshold of Amax has been reached, i.e. when tidal bore occurrence has264
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Figure 3: Illustrative result of tidal propagation into an idealized channel with the shape

described in section 2, ε0 = 0.7, φ0 = 10. Top: computed free surface profile at different

increasing times of the simulation. Bottom-left: free surface signal in space. Bottom-right:

free surface signal in time.

already been flagged by our criterion. We can, thus, conclude that tidal bore265

appearance is completely determined by the values of the external parameters266

ε0, δ0 and φ0 and is not influenced by the choice of the model used for the267

numerical simulations.268

6. Study of tidal bore occurrence269

The results of the previous section show that dispersive effects are not neces-270

sary to study the large scales of the propagation and transformation of the tide.271

At these scales the NLSW system is a sufficiently accurate and more efficient272
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Figure 4: Computed free surface profile at different increasing times of the simulation, showing

the undular bore inception from the formation of an inflexion point of the wave profile: from

top left to bottom right.
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NLSW SGN

a) 7.25× 10−5 7.25× 10−5

b) 1.05× 10−4 1.05× 10−4

c) 1, 74× 10−4 1, 74× 10−4

d) 4.11× 10−4 4.11× 10−4

e) 1.9× 10−3 1.9× 10−3

f) 2.87× 10−3 1.61× 10−3

g) 5.04× 10−3 3.77× 10−3

h) 9.47× 10−3 7.38× 10−3

Table 2: Values assumed by the quantity max
x∈Lc

( ∂ζ
∂x

)
in the several pictures of figure 4 and

for the two NLSW and SGN models. Bold numbers represent values which satisfy the tidal

bore onset criterion: Amax ≥ 10−3

model. This is why we will employ it here to perform the numerical investiga-273

tion of the space (φ0, ε0) of dimensionless parameters, trying to quantify the274

favorable conditions for bore inception. However, dispersion simulations will275

still be used in some cases to provide some quantification of the local order of276

magnitude of the non hydrostatic terms. This quantitative comparison will al-277

low to comfort our hypothesis and provide further insight into the mechanisms278

of bore formation.279

280

6.1. Investigation of the plane (φ0, ε0)281

We have performed 225 simulations of the idealized case of study defined282

in section 2, corresponding to an equivalent number of estuaries. We recall283

that the value of convergence ratio is constant, δ0 = 2, and thus each simula-284

tion represents a unique combination of the parameters ε0, φ0, corresponding to285

precise conditions of the tidal forcing at the mouth and to specific geometrical286

and physical properties of the channel. In such a way we have systematically287

investigated the plane (φ0, ε0), applying the criterion described in section 4 in288
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order to detect bore formation. Figure 5(left) shows the contour lines of the289

quantity Amax in the plane of the parameters (φ0, ε0), performed by collecting290

and linearly interpolating the simulations’ results. The red color denotes the re-291

gion where the bore detection criterion is satisfied, while the blue one represents292

cases characterized by a smooth solution. Figure 5(right) will be discussed later293

on. The results show that there exists a critical curve εc(φ0) that can be traced294

in this plane, dividing tidal-bore and no-tidal-bore estuaries. This curve is the295

white dashed line traced in figure 5(left). Observing the shape of the isolines
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Figure 5: (Left): Isocurves of the quantity Amax in the plane of the parameters (φ0, ε0),

the white dashed line represents the εc(φ0) curve, namely the limit for tidal bore appearance

following the criterion Amax ≥ 10−3. (Right) : Projection of real alluvial estuaries data on

the plane (φ0, ε0); with a grey dashed line (- -) we have represented by hand the transition

between the two regimes, inspired by the similar trend in the left picture. The database used

to generate the picture can be found in table 2 of [13], for brevity and completeness we list here

the name and number of the estuaries included in the picture: 1. Chao Phya; 2. Columbia; 3.

Conwy; 4. Corantijin; 5. Daly; 6. Delaware; 7. Elbe; 8. Gironde; 9. Hooghly; 10. Humber;

11. Limpopo; 12. Loire; 13. Mae Klong; 14. Maputo; 15. Ord; 16. Pungue; 17. Qiantang;

18. Scheldt; 19. Severn; 20. Tha Chin; 21. Thames. Sources: [6] for estuaries 1, 4, 11, 13,

14, 18, 20; [1] for 2, 3, 6, 7, 15, 19, 21; [3] for 8, 9, 10, 16, 17; [27] for 5; [28] for 12.

296

in figure 5(left), two different behaviors can be distinguished, depending on the297

values assumed by the friction parameter φ0.298

The first region is characterized by values of the friction parameter in the299
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range 1<φ0 ≤ ∼20. Here the mechanism of bore inception appears to be fully300

controlled by the nonlinear parameter ε0. Figure 6 shows a comparison between301

two numerical results computed using two different values of ε0, one just above302

the critical curve and one just below it (ε0 = 0.3 and ε0 = 0.225 respectively),303

at a constant value of φ0 equal to 13.33. The comparison is made in terms of304

the free surface and velocity time series, respectively in figure 6(a) and 6(b),305

measured at the location x = Lc. In both figures, the signals associated to the306

case at higher ε0 are characterized by a greater distortion at the beginning of307

the flood phase, leading to bore formation according to our threshold. The two308

zooms, displayed in figures 6(c) and (d), allow to better appreciate the different309

time gradients exhibited by the water wave on the time scale of the tidal bore310

(around 20 minutes). It is also interesting to note that the free surface profile311

of figure 6(a) does not display a Burger’s like shock, but rather a knee shape312

is observed. This is mainly due to the fact that the nonlinear effect of friction313

prevails on the advective one, remaining the dominant nonlinearity for the major314

part of the wave transformation. Figure 7 displays the relative importance of315

the various terms in the momentum equation during a tidal cycle in the previous316

case of bore development (ε0 = 0.3 and φ0 = 13.33). In the figures, the time317

evolution of these quantities is represented at three equispaced locations along318

the channel, in particular at x = 1
3Lc, x = 2

3Lc and x = Lc. It emerges that319

the advective term remains negligible in the momentum equation and the bore320

formation results from a balance between acceleration, friction and hydrostatic321

terms. Only in the presence of incipient bore, the relative importance of the322

advective term rises up overcoming the frictional nonlinearity. This behaviour323

can be also recovered when a dispersive bore development is simulated. For324

the previous case of undular bore formation of section 5, the time variations325

of the relative magnitude for the momentum equation’s terms are compared326

in figure 8. For sake of clarity, data are shown for the small time of the bore327

passage at two space locations: just before (left) and after (center and right)328

the appearence of the secondary waves. It can be seen that, as in the previous329

case of figure 7, the advective term becomes the relevant nonlinear term on the330
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Figure 6: Time variation of the free surface elevation (a) and the velocity (b) signals measured

at x = Lc for a fixed value of φ0 = 13.33 and the two different values of ε0 = 0.225 (–) and

ε0 = 0.3 (–). (c) and (d) are two zooms on the water wave profile at the beginning of the

flood phase, on the time scale of the tidal bore (around 20 minutes).

bore location. However, in this case, its increase is partially limited by the rise331

of the dispersive term in a general context dominated by the balance between332

the inertial and the hydrostatic contributions.333

334

For higher values of φ0 (φ0 ≥ ∼ 20), the isolines of Amax spread out form-335

ing a wider transition region but, more important, display an almost vertical336

slope. This implies an increasing role of the friction parameter in the physical337

mechanism of bore formation. In figure 9, we show the solutions computed for338
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Figure 7: The order of magnitude of the several dimensionless terms in the momentum equa-

tion of system (17) without dispersion; three test sections are presented: at x = 1
3
Lc (left),

x = 2
3
Lc (center) and x = Lc (right): (a) ∂u

∂t
, (b) K

L ε0(u · ∇)u, (c) 1
KL δ

2
0∇ζ and (d)

K ε0φ0
δ0

u|u|
D

. Upper and lower peaks on the figure (right) reach values respectively of 30.65

and −28.61.
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Figure 8: The order of magnitude of the several dimensionless terms in the momentum equa-

tion of system (17), including the dispersion; two test sections are presented: at x = 1.02
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two cases across the transition zone (φ0 = 20 and φ0 = 40 respectively), keep-339

ing constant ε0 = 0.4 . Once again, we look to the free surface and velocity340

time signals to compare the two results, figures 9(a) and 9(b) respectively. It341

clearly appears that an increase of the value of the friction parameter φ0 is342

directly associated to both potential and kinetic energy dissipation, leading to343

more damped profiles. This process decreases the local nonlinearity of the wave344

which, in turn, is smeared out, as one can see from the free surface zooms on the345

time scale of the bore (figures 9(c) and 9(d)). Moreover, figures 9(b) displays346

the particular tendency of the tidal current to become constant during the ebb347

tide for large values of the friction parameter (strongly dissipative estuaries), in348
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agreement with previous studies (e.g. [1] and [3]).349
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Figure 9: Time variation of the free surface elevation (a) and the velocity (b) signals measured

at x = Lc for a fixed value of ε0 = 0.4 and the two different values of φ0 = 20 (–) and φ0 = 40

(–). (c) and (d) are two zooms on the water wave profile at the beginning of the flood phase,

on the time scale of the tidal bore (around 20 minutes).

We can schematically summarize that the nonlinear parameter ε0 mainly350

relates to the distortion mechanism which leads to bore formation, while the351

friction parameter φ0 mainly relates the dissipation of the tidal wave, unfavor-352

able to bore generation.353

The separation between estuaries displaying or not a tidal bore, which emerges354

from our numerical results, is in qualitative agreement with real-estuary obser-355

vations analyzed in [13]. A list of tidal and geometrical properties for 21 conver-356
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gent alluvial estuaries (8 of them displaying a bore and 13 not) has been used in357

[13] to produce figure 5(right), reported here for sake of clarity. In the picture, a358

grey dashed line dividing tidal-bore and no-tidal-bore estuaries has been traced359

by hand, inspired by the trend of the critical curve emerged in figure 5(left).360

We can notice that the numerical critical curve εc(φ0) and the data-based one361

only slightly differ considering the several simplifying modeling assumptions.362

In particular, in real alluvial estuaries the general decrease of depth landward363

is favorable to bore inception and this can cause the critical data-based curve364

(figure 2b of [13]) to be located slightly below with respect to the modeling one365

on figure 5(left).366

From the observations made in the previous paragraph, a close relation be-367

tween bore formation and tidal damping emerges. A standard parameter used368

in the literature [29, 30] to measure the amplification/damping of the tidal wave369

during its propagation along the estuary is the rate of change of the tidal range370

Tr, defined in accordance to reference [30] as:371

δTr =
1

Tr

dTr

dx
. (8)

In the present work we integrate equation (8), from the estuary mouth to x = Lc372

(end of our region of study), and we compute, for each simulation performed,373

the quantity:374

∆Tr =
Tr(Lc)− Tr(0)

Tr(0)
(9)

using the tidal range at the estuary mouth Tr(0) as a scaling factor.375

Figure 10(left) shows, on the same plane (φ0, ε0) of figure 5, the contour lines376

of the computed quantity ∆Tr, obtained by linearly interpolating the values of377

each simulation. The black dashed line is the contour line for ∆Tr = 0, namely378

the marginal curve for tidal range amplification, where all the estuaries with379

unamplified and undamped wave lie. It represents an ideal situation for which380

the amplification effect associated to funneling is exactly balanced by friction.381

The marginal curve divides the plane into two regions; estuaries located below382

are characterized by a tidal range amplification while estuaries located above383

are affected by damping. A simple analytical model, derived by Savenije et al.384
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[29] in the linearized case, allows to explicitly compute the damping factor of385

an estuary as a function of the three external independent parameters of the386

estuarine dynamics. According to this model, Toffolon et al. [2] found that387

synchronous estuaries (δTr = 0) lie on a curve, which can be recast in terms of388

our parameters as:389

ε0 =
δ0(δ20 + 1)

φ0
. (10)

Using the value of δ0 = 2 in (10), we get the red curve plotted in figure 10(left).390

A good agreement is observed between the marginal curve obtained through391

numerical simulations (black dashed line) and the one of the analytical model392

of Savenije (red line), especially for low values of ε0, namely the linear regime.393

From figure 10(left) it is interesting to note that ε0 plays a fundamental role394

also in the damping/amplification process. If we fix the physical and geometrical395

properties Lb, Cf0, D0, this corresponds to a specific estuary configuration396

with φ0 constant in addition to δ0 = 2. In this context, the variations of397

ε0 can be considered as associated with neap-spring tide cycles. We can, thus,398

conclude that strong tides lead to weaker tidal wave amplification values and, for399

particularly strong tides, the wave most likely will be damped. This result is in400

qualitative agreement with the physical observation made in [3] for the Garonne401

river. Their measurements showed that, for such estuary always characterized402

by tidal wave amplification, minor amplifications were related to higher values403

of ε0, observed during spring tides.404

The superimposition of the computed marginal curve on the contour lines of405

the quantity Amax, in figure 10(right), shows that a large part of the red region406

in the figure, lies in the part of the plane (φ0, ε0) characterized by damping of407

the tidal range. This means that, despite a reduction of the local nonlinearity of408

the wave, this remains high enough to develop distorted profiles and to produce409

bores. We can conclude that, contrary to what is generally accepted, tidal410

range amplification along the estuary is not a necessary condition for tidal bore411

formation.412
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Figure 10: (Left): contour lines of the quantity ∆Tr on the plane (φ0, ε0); the black dashed

line (- -) represents the marginal curve resulting from the computations, while the continuous

red one (–) is the analytical marginal curve of the Savenije model [30]. Hot colors cover the

region of amplification of the tidal wave during propagation; cold colors represent damping.

(Right): the computed marginal curve (- -) is superimposed on the Amax contour lines.

7. Influence of river discharge413

In the previous sections, we have analyzed tidal wave transformation and414

tidal bore occurrence in a simplified context in which freshwater river discharge415

was neglected. However, it is well known that tide in estuaries may be signif-416

icantly affected by the rate of discharge [16, 5]. The effects of river discharge417

become much more important moving landward from the mouth of the estuary418

and can influence for bore formation. The present section will provide a qual-419

itative estimation on the effects of discharge, leaving a full quantitative study420

for future works.421

In the experimental campaigns on the Garonne river, Bonneton et al. [3]422

observed that small river discharges Q were favorable to tidal range amplifi-423

cation and bore occurrence, while significant freshwater discharges offsets the424

amplification mechanism related to estuary convergence. Horrevoets et al. [16]425

described, with an analytical model, that the influence of river discharge on tidal426

damping takes place mainly through friction. Generally speaking, the tidally427

averaged free surface elevation along the estuary does not coincide with the428

mean sea level, due to the nonlinear frictional effect on the averaged water level429
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D̄(x). In practice there is a monotone increase of D̄(x) landward, proportional430

to the river discharge Q, see [31, 5]. Moreover, a damping of the local tidal431

range Tr(x) has been pointed out by Bonneton et al. [3], hence the local non-432

linear parameter ε(x) = Tr(x)/(2D̄(x)) is a decreasing function of Q. Due to433

this damping effect, tidal bores are rarely observed for strong freshwater river434

discharges.435

For a fixed estuary (fixed δ0 and φ0), the dimensionless parameters governing436

the flow dynamics are the amplitude of tidal forcing ε0 and the dimensionless437

intensity of river discharge Q0. The goal of the present section is to explore the438

space of parameters (ε0, Q0) in order to find, for an estuary characterized by439

δ0 = 2 and φ0 = 18 (values closed to the ones of the Garonne river), a critical440

curve εc(Q0) for tidal bore development, following the criterion Amax ≥ 10−3.441

In order to perform our investigation, we have to express Q0 as a function of the442

external variables of the problem. The scaling analysis proposed in [13] leads443

to the definition of a parameter K = U0D0

A0ω0Lb
(see also appendix A for details),444

that has been measured to be K ∼ 1 in convergent alluvial estuaries [3]. A445

characteristic velocity scale U0 = ε0ω0Lb can, thus, be derived. Being B0 the446

width at the estuary mouth (figure 1), we finally define:447

Q0 =
Q

A0B0Lbω0
. (11)

The river discharge is introduced by the boundary condition already described in448

section 3, through the incoming Riemann invariant from far on the right. Figures449

11 shows, for the particular estuary considered, the effect of an increasing river450

flow in terms of normalized free surface elevation and velocity signals at the451

position x = Lc along the channel. The simulations were performed using452

ε0 = 0.32 and a range of values Q0 ∈ [0, 4.16 × 10−3], obtained by scaling453

the typical values of the Garonne river through relation (11). In particular,454

the values Q0 = 4.16 × 10−4 and Q0 = 4.16 × 10−3 correspond to the low and455

high characteristic fresh water discharges measured in the Garonne (respectively456

Q = 150 [m3/s] and Q = 1500 [m3/s]). In figure 11 (a), we observe that the457

dimensionless mean water depth D̄(Lc)/D0 increases with Q0, from 1.033 with458
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Q0 = 0 to 1.219 with Q0 = 4.16 × 10−3. We can also measure the damping459

effect of freshwater river discharge on the tidal range; the dimensionless value460

∆Tr(Lc) (as defined in (8)) goes from 0.156 with Q0 = 0 (amplified case) to461

-0.041 with Q0 = 4.16 × 10−3 (damped case). An important vertical shift of462

the velocity curve, in agreement with field observations [16], can be observed in463

figure 11 (b), moving towards the condition of unidirectional flow. Moreover,464

it can be noticed that this result confirms the theoretical predictions set by465

Horrevoets et al. [16] concerning the evolution of the phase lag between high466

water and high water slack (and at the same time between low water and low467

water slack). Note that all the effects described are small below the value of468

Q0 = 4.16 × 10−4 and the discharge does not affect the topology of the tidal469

wave for the river flow values typically observed in the Garonne river at the end470

of the summer season. Thus, the parametric analysis performed in section 2, by471

neglecting Q0, can be considered valid in this range of small Q0.472

In figure 11 (c), the zoom on the time scale of the bore displays the ten-473

dency of the free surface profile to become much smoother as the value of river474

discharge increases. In order to explore better this point, we have performed 47475

simulations for different combinations of tidal amplitude and river discharge (ε0,476

Q0). The values of Amax, obtained for all the simulations, have been plotted in477

figure 12. Note that we chose to represent in the y-axis of the figure the product478

Q0ε0, rather than simply Q0, in order to remove the dependence of Q0 from A0479

(11). The figure shows that, in the presence of weak river discharges, estuarine480

dynamics is not influenced by Q0 and, consequently, the effects of discharge can481

be considered negligible in the bore formation process. A qualitative critical482

curve εc(Q0) has been traced by hand (grey dashed line in figure 12) according483

to the few computations performed and following the criterion Amax ≥ 10−3.484

This trend is in qualitative agreement with experimental data for the Garonne485

river, presented in [13].486
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Figure 11: Time variation of the water depth (a) and velocity (b) signals measured at x = 3Lb

for an ideal estuary characterized by ε0 = 0.32, φ0 = 18 and increasing values of freshwater

discharge from Q0 = 0 to Q0 = 4.16×10−3 (in particular the values have been chosen consid-

ering the typical range of values displayed by the Garonne river and measured by Bonneton

et al. [3]). Figure (c) represents a zoom on (a) in the time scale of the bore (around 20 min).

8. Conclusions487

The two-dimensional Serre-Green-Naghdi system of equations has been used488

in order to simulate the inception of tidal bores in convergent alluvial estuaries489

of idealized geometry. Exploiting the dispersive properties of the model, we490

were, thus, the first to reproduce the formation of an undular tidal bore inside a491

channel, to the authors’ knowledge. The results obtained have illustrated that492

dispersion does not impact the large scale of propagation of the tide, as it comes493
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Figure 12: Circles represent computations performed for a fixed estuary (δ0 = 2 and φ0 = 18)

varying the values of the tidal forcing amplitude A0 and river discharge Q0; colors represent

the intensity of Amax for each computation; with a grey dashed line we have represented

by hand the εc(Q0) curve, namely the limit for tidal bore appearance following the criterion

Amax ≥ 10−3

also from the scaling analysis of the equations proposed in appendix A, and af-494

fects the solution only in the proximity of bore formation. For these reasons,495

an accurate description of the free surface profile at large scale can be obtained496

via the simpler NLSW system. Under the hypotheses of constant bathymetry497

and negligible river discharge, we have thus employed the NLSW equations to498

numerically investigate the bore occurrence in convergent alluvial estuaries of499

idealized geometry.500

The scaling of the equations shows that estuarine dynamics is fully controlled501

by three dimensionless parameters entirely dependent on the estuary geometri-502

cal properties and tidal forcing: the nonlinearity ε0, the convergence parameter503

δ0 and the friction parameter φ0, defined by (3). Taking a constant value of504

δ0 = 2, we have numerically explored the space (φ0, ε0). By means of a bore505

detection criterion, we have traced the critical line εc(φ0) dividing estuaries into506

displaying or not a tidal bore. This curve is in good agreement with real es-507

tuaries data, despite the several assumptions made, and provides the necessary508
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conditions for tidal bore formation. These conditions are a result of a complex509

equilibrium between nonlinear distortion and tidal range damping/amplification510

processes both driven by the dissipation parameter D∗i ∝ ε0φ0 multiplying the511

friction, the dominant nonlinear term for this class of estuaries. The particular512

shape of εc(φ0) shows that, for low values of φ0 (indicatively 1< φ0 ≤ ∼20),513

bore formation depends almost exclusively on the nonlinear parameter ε0, while514

being, instead, mainly disciplined by the dissipation, related to the value of φ0,515

for φ0 ≥ ∼ 20.516

The critical curve intersects the computed marginal curve of amplification, di-
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Figure 13: The computed critical line for bore formation (white dashed line) and the computed

marginal curve of amplification (black dashed line) divide the (φ0, ε0) plane into four main

areas. In the picture, TB stands for tidal-bore estuaries, while NTB stands for no tidal-bore

estuaries; A indicates amplification of the tidal wave along the estuary, D damping.

517

viding the plane into four main areas. Estuaries will thus experience tidal range518

amplification or damping, tidal bore formation or not, depending on which re-519

gion in the plane they belong to (see figure 13). The existence of a sector520

characterized by tidal bore generation and tidal range damping shows that tidal521

range amplification along the estuary is not a necessary condition for tidal bore522

occurrence, as it is instead commonly assumed in the literature [32]. This result523

is also in agreement with field observations analyzed in [13].524
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Finally, we have studied the effect of river discharge for estuaries character-525

ized by δ0 = 2 and φ0 = 18 (which are close to the values displayed by526

the Gironde/Garonne estuary). We have shown that for low Q0 (i.e. Q0 <527

4.16 × 10−3), corresponding to the dry season, the effect of river discharge on528

tidal wave dynamics and bore formation can be neglected.529

530

The above findings are based on several simplifying assumptions, that have531

allowed a clear understanding of the bore inception mechanism. Other effects532

influencing the spatial location of bore development have been so far ignored533

and may arise due to the variable bathymetry, river banks and meanders. The534

consideration of such effects will require significant attention, but will provide535

a more thorough comprehension when approaching the analysis of real natural536

estuaries.537

Appendix A: Scaling of the SGN equations538

In this section we report some details concerning the application of the scal-539

ing proposed in [13] to the SGN system of equations (5). The following scaling540

of the physical variables is thus applied:541

x = L0x
′ ; y = L0y

′ ; t =
t′

ω0
; D = D0D

′ ; (12)

ζ = A0ζ
′ ; u = U0u

′.

The governing equations (5a) and (5b), written in dimensionless form, will thus542

read (dropping the primes for sake of clarity):543

∂ζ

∂t
+
K

L
(
ε0 u∇ζ +D∇ · u

)
= 0 , (13a)

∂u

∂t
+
K

L ε0
(
u · ∇

)
u+

1

KLδ
2
0 ∇ζ +K

ε0φ0
δ0

u|u|
D

= ψ . (13b)

where L = L0

Lb
and K = U0D0

A0ω0Lb
are functions of the length and velocity scales544

of the phenomenon [13] and the scale factor 2πU0

T0
has been used for the non-545

hydrostatic term ψ .546
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Considering a flat bathymetry, the linear operators T(w) and Q(w), applied to547

a generic vector w, are:548

T(w) = − 1

3D
∇
(
D3∇ ·w

)
, (14a)

Q(w) =
2

3D
∇
[
D3
(
∇w1 · ∇⊥w2 +

(
∇ ·w

)2)]
; (14b)

in which w1 and w2 indicates respectively the first ans second component of the549

vector w and ∇⊥ stays for the normal gradient operator. Applying the scaling550

(12) to the two expressions above and introducing the dimensionless dispersion551

parameter µ = D0

L0
, we can state that T(w) = µ2 T′(w) and Q(w) = µ2

L0
Q′(w).552

Equation (5c), written in terms of dimensionless variables, then becomes (still553

primes are dropped for clarity):554

(
I + µ2T

)
ψ = µ2T

( 1

KLδ
2
0 ∇ζ −K

ε0φ0
δ0

u|u|
D

)
− µ2Q

(K
L ε0 u

)
. (15)

Equation (15) can be rearranged as follows:555

ψ = µ2
(

I + µ2T
)−1[

T
( 1

KLδ
2
0 ∇ζ −K

ε0φ0
δ0

u|u|
D

)
−Q

(K
L ε0 u

)]
, (16)

showing that ψ = µ2Ψ.556

The final form of scaled SGN system will thus read:557

∂ζ

∂t
+
K

L
(
ε0 u∇ζ +D∇ · u

)
= 0 , (17a)

∂u

∂t
+
K

L ε0
(
u · ∇

)
u+

1

KLδ
2
0 ∇ζ +K

ε0φ0
δ0

u|u|
D

= µ2Ψ , (17b)

Ψ =
(

I + µ2T
)−1[

T
( 1

KLδ
2
0 ∇ζ −K

ε0φ0
δ0

u|u|
D

)
−Q

(K
L ε0 u

)]
. (17c)

Appendix B: Landward boundary conditions558

Imposing correctly the landward boundary condition (b.c.) is not a trivial559

operation. Up to the authors knowledge, there is not an efficient and systematic560

method to impose an outflow conditions in the presence of friction and conver-561

gence. In this appendix a sensitivity analysis has been performed in order to562

quantify the influence of the inexact b.c. that has been implemented for this563
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study (cf. section 3.3). Two tests have been conducted: one for a low and564

the other for a high value of the nonlinear parameter ε0, respectively ε0 = 0.1565

and ε0 = 0.7. We compare two solutions: one computed by setting the outflow566

b.c. at the location x = 5Lb, the other, considered as a reference, derived by567

imposing a wall b.c. at the further distance x = 8Lb, where the tidal wave is as-568

sumed to be completely dissipated. Figure 14 shows the time evolution profiles569

of the non-dimensional free surface and velocity at different positions along the570

channel. In order to measure the deviation from the reference solution we use571

the L2-norm
||ζ−ζref ||L2

||ζref ||L2
. At the station x = 3Lb, the percentage values of the572

deviation are 3.3% for ζ and 3.98% for u in the case with ε0 = 0.1, while being573

respectively 5.27% and 7.67% in the case with ε0 = 0.7.574

Toffolon [21] revealed the difficulties of imposing such conditions. He con-575

sidered two limit cases: the reflecting barrier and the transparent condition.576

On the former, a wall boundary condition was imposed at the end of the chan-577

nel, which determined a complete reflection of the wave. The latter condition,578

instead, referred to a situation where the tidal wave exited from the compu-579

tational domain without being deformed or reflected (transparent b.c.). This580

condition was implemented by replacing, on the last cells of the domain, mass581

and momentum conservation laws with a scalar advection equation for each con-582

servative variable, characterized by an advection speed equal to the outgoing583

eigenvalue. Even though, the need of considering a longer estuary in order to584

vanish the influence of the boundary on the solution, remained.585

Figure 15 shows the comparison with the solution performed by implementing586

the transparent boundary condition used in [21]. The percentage deviations587

from the reference are of the same order of magnitude as those recovered us-588

ing our approach and, most importantly, the two approaches provide identical589

topologies for both the water depth and the velocity. The results of our study590

are thus independent from the choice of the method used.591
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Figure 14: Time evolution profiles of the non-dimensional free surface (left) and velocity

(right) measured at x = 2Lb (–), x = 2.5Lb (–) and x = 3Lb (–) for the two test cases

performed with ε0 = 0.1 (top) and ε0 = 0.7 (bottom). In the two computations φ0 has been

set constant and equals to φ0 = 35. Continuous lines represent the results obtained by using

absorbing landward b.c. by means of the homogeneous NLSW invariants at x = 5Lb; while

dashed lines were obtained by imposing wall b.c. at x = 8Lb.
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Figure 15: Time evolution profiles of the non-dimensional free surface (left) and velocity

(right) measured at x = 3Lb, obtained by setting the absorbing homogeneous b.c. (–) and

the transparent b.c. of [21] (–). The red curve (–) represents the reference solution computed

by imposing wall b.c. on a longer domain of L = 8Lb (ε0 = 0.7 and φ0 = 35).
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