Global flux dG-SEM for systems of balance laws with a discretely well balanced entropy correction

Mario Ricchiuto
Team CARDAMOM, Inria research center at University of Bordeaux, France

Yogiraj Mantri,
RWTH Aachen University, Aachen (Germany)
Philipp Öffner
Johannes Gutenberg-University, Mainz (Germany)

Credit to them for the good stuff in the talk blame me for the rest

Ricchiuto

Setting: balance laws 1

We seek solutions of the (hyperbolic) system of balance laws

$$
\begin{equation*}
\partial_{t} U+\nabla \cdot F(U)=S(U ; \varphi(x)) \tag{1}
\end{equation*}
$$

Typical examples

- Shallow water equations with topography/friction/Coriolis/etc
- Euler equations with gravity
- Shallow Water/Euler in pseudo-1D form (section variation)
- etc.

We seek solutions of the (hyperbolic) system of balance laws

$$
\begin{equation*}
\partial_{t} U+\partial_{x} F(U)=S(U ; \varphi(x)) \tag{1}
\end{equation*}
$$

Typical examples

- Shallow water equations with topography/friction/Coriolis/etc
- Euler equations with gravity
- Shallow Water/Euler in pseudo-1D form (section variation)
- etc.

A multi-D generalization is possible, and there will be 2D examples.
But for simplicity the discussion is done for the 1D case

Setting: balance laws 2

We seek solutions of the (hyperbolic) system of balance laws

$$
\begin{equation*}
\partial_{t} U+\partial_{x} F(U)=S(U ; \varphi(x)) \tag{1}
\end{equation*}
$$

Property 1. Non-trivial steady states.

We seek solutions of the (hyperbolic) system of balance laws

$$
\partial_{t} U+\partial_{x} F(U)=0
$$

Property 1. Non-trivial steady states.
For the homogeneous case:

- $U=U_{0}$ constant in space and time is an exact solution
- Fundamental consequence: consistency condition at the discrete level which is the exactness wrt constant U
- Polynomial approximation explicitly embed this condition in their construction

Setting: balance laws 2

We seek solutions of the (hyperbolic) system of balance laws

$$
\begin{equation*}
\partial_{t} U+\partial_{x} F(U)=S(U ; \varphi(x)) \tag{1}
\end{equation*}
$$

Property 1. Non-trivial steady states.
Balance law case:

- $U=U_{0}$ constant is rarely an exact solution
- Fundamental consequence:
exactness wrt constant U is not an adequate consistency condition at the discrete level
- Using (only) this condition in the construction of discrete approximations may lead to large errors

We seek solutions of the (hyperbolic) system of balance laws

$$
\begin{equation*}
\partial_{t} U+\partial_{x} F(U)=S(U ; \varphi(x)) \tag{1}
\end{equation*}
$$

Consistency conditions 1: (steady) invariant states
In some cases, one can establish other "simple" invariants (cf. later shallow water):

$$
\partial_{t} u+\partial_{x}\left(u^{2} / 2\right)+u \partial_{x} \varphi(x)=0
$$

A constant (in space and time) value $V=: u+\varphi(x)=V_{0}$ is a relevant consistency condition. Indeed we can rewrite the PDE as

$$
\partial_{t} u+u \partial_{x} V=0 \quad \text { or } \quad \partial_{t} V+u \partial_{x} V=0
$$

We seek solutions of the (hyperbolic) system of balance laws

$$
\begin{equation*}
\partial_{t} U+\partial_{x} F(U)=S(U ; \varphi(x)) \tag{1}
\end{equation*}
$$

Consistency conditions 2: (steady) integral relations In other cases, invariants can emerge from exact integral relations:

$$
\partial_{t} u+\partial_{x}\left(u^{2} / 2\right)+\varphi(x) u=0 \quad \Rightarrow \text { steady ODE: } \partial_{x} u+\varphi(x)=0
$$

A constant value $V=: u-u_{0}+\int_{x_{0}}^{x} \varphi(s) d s$ is a relevant consistency condition. Indeed, we can rewrite the PDE as

$$
\partial_{t} u+u \partial_{x} V=0 \quad \text { or } \quad \partial_{t} V+u \partial_{x} V=0
$$

We seek solutions of the (hyperbolic) system of balance laws

$$
\begin{equation*}
\partial_{t} U+\partial_{x} F(U)=S(U ; \varphi(x)) \tag{1}
\end{equation*}
$$

Consistency conditions 3: global fluxes
More generally, we can consider the pseudo-conservative form of the balance law

$$
\begin{equation*}
\partial_{t} U+\partial_{x} F+\partial_{x} R=0 \tag{1}
\end{equation*}
$$

having introduced the source integral

$$
\begin{equation*}
R(U, x)-R_{0}:=-\int_{x_{0}}^{x} S(U, \varphi) d s \tag{2}
\end{equation*}
$$

A constant value in space of the global flux $G=: F+R$ is a relevant consistency condition.
The value of the global flux is only known a priori if the analytical form of a primitive of S is available.

We seek solutions of the (hyperbolic) system of balance laws

$$
\begin{equation*}
\partial_{t} U+\partial_{x} F(U)=S(U ; \varphi(x)) \tag{1}
\end{equation*}
$$

Property 2. Entropy balance.

We seek solutions of the (hyperbolic) system of balance laws

$$
\begin{equation*}
\partial_{t} U+\partial_{x} F(U)=S(U ; \varphi(x)), \tag{1}
\end{equation*}
$$

Property 2. Entropy balance.
System (1) is endowed with an auxiliary constraint

$$
\begin{equation*}
\partial_{t} \eta+\partial_{x} F_{\eta}(U) \leq S_{\eta}(U ; \varphi(x)) \tag{4}
\end{equation*}
$$

With:
$\eta=\eta(U)$ a mathematical entropy,
$F_{\eta}(U)$ the entropy flux,
$S_{\eta}(U ; \varphi(x))$ a dissipation/production term.

We seek solutions of the (hyperbolic) system of balance laws

$$
\begin{equation*}
\partial_{t} U+\partial_{x} F(U)=S(U ; \varphi(x)) \tag{1}
\end{equation*}
$$

Property 2. Entropy balance.
System (1) is endowed with an auxiliary constraint

$$
\begin{equation*}
\partial_{t} \eta+\partial_{x} F_{\eta}(U)=S_{\eta}(U ; \varphi(x)), \tag{4}
\end{equation*}
$$

With:
$\eta=\eta(U)$ a mathematical entropy,
$F_{\eta}(U)$ the entropy flux,
$S_{\eta}(U ; \varphi(x))$ a dissipation/production term.
For smooth solutions the inequality becomes an equality giving an auxiliary entropy balance law.

We seek solutions of the (hyperbolic) system of balance laws

$$
\begin{equation*}
\partial_{t} U+\partial_{x} F(U)=S(U ; \varphi(x)) \tag{1}
\end{equation*}
$$

- Possible genelization of the notion of consistency wrt constants (in space) :
(1) Steady invariants

2 Steady integral relations
3 Global fluxes
4 other declinations (continuous or dicrete level)..

- Well balanced scheme: discrete approximation embedding one (or more) of these notions

```
Remark: consistency and entropy conservation
All of the above relate to the main PDE
Fxact consistency with constant entrony flux, viz entropy conservation comes as an extra contraint.
A well balanced approach may or may not satisfy this constraint
```

We seek solutions of the (hyperbolic) system of balance laws

$$
\begin{equation*}
\partial_{t} U+\partial_{x} F(U)=S(U ; \varphi(x)) \tag{1}
\end{equation*}
$$

- Possible genelization of the notion of consistency wrt constants (in space) :

1 Steady invariants
2 Steady integral relations
(3) Global fluxes

4 other declinations (continuous or dicrete level)..

- Well balanced scheme: discrete approximation embedding one (or more) of these notions

Remark: consistency and entropy conservation
All of the above relate to the main PDE.
Exact consistency with constant entropy flux, viz entropy conservation comes as an extra contraint.
A well balanced approach may or may not satisfy this constraint.
Intro
G-WB
dGSEM

GFlux
WBRes 1

WB2d
WB2d
WBRes 2
EC-Gf-dG
E-EC-Gf-d
WBRes 3
End
Inria

M

0^{2}
(2) ene迬共

Example: shallow water equations 1

2D Cartesian shallow water equations.

$$
\partial_{t}\left(\begin{array}{c}
h \tag{5}\\
h u \\
h v
\end{array}\right)+\partial_{x}\left(\begin{array}{c}
h u \\
h u^{2}+p(h) \\
h u v
\end{array}\right)+\partial_{y}\left(\begin{array}{c}
h v \\
h u v \\
h v^{2}+p(h)
\end{array}\right)=-h\left(\begin{array}{c}
0 \\
\partial_{x} \varphi+c_{f} u+\omega v \\
\partial_{y} \varphi+c_{f} v-\omega u
\end{array}\right)
$$

Notation.
h water depth
$\overrightarrow{\mathrm{v}}=(u, v)$ horizontal velocity
$p=g h^{2} / 2$ hydrostatic pressure (g gravity acceleration)
$\varphi=g b$ gravitational potential ($b(x, y)$ bottom topography) $c_{f}=c_{f}(h, \vec{v})$ friction coefficient
ω Coriolis coefficient

Example: shallow water equations 2

1D rotating shallow water equations ${ }^{1}$.

$$
\partial_{t}\left(\begin{array}{c}
h \tag{6}\\
h u \\
h v
\end{array}\right)+\partial_{x}\left(\begin{array}{c}
h u \\
h u^{2}+p(h) \\
h u v
\end{array}\right)=-h\left(\begin{array}{c}
0 \\
\partial_{x} \varphi+c_{f} u+\omega v \\
c_{f} v-\omega u
\end{array}\right)
$$

Notation.

h water depth
$\overrightarrow{\mathrm{v}}=(u, v)$ horizontal velocity
$p=g h^{2} / 2$ hydrostatic pressure (g gravity acceleration)
$\varphi=g b$ gravitational potential ($b(x, y)$ bottom topography)
$c_{f}=c_{f}(h, \vec{v})$ friction coefficient
ω Coriolis coefficient

[^0]
Example: shallow water equations 3

1D rotating shallow water equations.

$$
\partial_{t}\left(\begin{array}{c}
h \tag{6}\\
h u \\
h v
\end{array}\right)+\partial_{x}\left(\begin{array}{c}
h u \\
h u^{2}+p(h) \\
h u v
\end{array}\right)=-h\left(\begin{array}{c}
0 \\
\partial_{x} \varphi+c_{f} u+\omega v \\
c_{f} v-\omega u
\end{array}\right)
$$

Non-trivial steady states.
Example 1: constant energy moving equilibrium (no friction, no Coriolis).

$$
h u=q_{0}, \quad v=0, \quad g(h+b)+k=E_{0}
$$

Example 2: lake at rest with Coriolis perturbation (no friction).

$$
u=0, \quad v=V(x), \quad g(h+b)+\omega \int_{x} V=Z_{0}
$$

Example 3: moving equilibrium with friction and slope variations ${ }^{2}$

$$
h u=q_{0}, \quad v=0, g(h+b)+k+\int_{x_{0}}^{x} c_{f} u d s=E_{0}
$$

Shallow water equations.

$$
\partial_{t}\left(\begin{array}{c}
h \tag{6}\\
h u \\
h v
\end{array}\right)+\partial_{x}\left(\begin{array}{c}
h u \\
h u^{2}+p(h) \\
h u v
\end{array}\right)=-h\left(\begin{array}{c}
0 \\
\partial_{x} \varphi+c_{f} u+\omega v \\
c_{f} v-\omega u
\end{array}\right)
$$

Entropy balance.

$$
\begin{equation*}
\partial_{t} \eta+\partial_{x} F_{\eta}=-\mathcal{D}_{f} \tag{7}
\end{equation*}
$$

with total entropy/energy η and entropy flux F_{η} :

$$
\begin{equation*}
\eta=p(h)+h k+h \varphi=p(h)+h k+g h b, \quad F_{\eta}=h u(g h+k+\varphi)=h u(g \zeta+k) \tag{8}
\end{equation*}
$$

In absence of friction, and for smooth solution total entropy/energy is conserved
dGSEM Ricchiuto

Focus of this work

- Discretely well balanced method agnostic of the equilibrium
- Use idea of global flux approximation within dGSEM formulation
- Characterize the notion of discrete equilibrium associated to this formulation
- Investigate the compatibility of global flux consistency with entropy/energy conservation
(1) Introduction

Balance laws, consistency, well balanced, conservation
Shallow water equations
Global flux related well balanced techniques: incomplete taxonomy
2 Global Flux Collocated Discontinuous Galerkin dGSEM basics
Global flux assembly
3 Numerical results: batch 1
(4) A simple extension to 2D systems

Global flux dGSEM in 2D
Numerical results: batch 2
5 Embedding entropy conservation Introduction: discrete entropy and DGSEM Issue with entropy correction with Gf-dG Numerical results: batch 3

6 Conclusion and perspectives

This talk
Intro
i-BLaws
swes
I-wb

Numerics: WB reconstruction, global fluxes, modified Riemann problem

年
\square \square ,

 \square
\square

\square | R

Numerics: WB reconstruction, global fluxes, modified Riemann problem

We focus on techniques which can be related to some "special quadrature" of the source.
Other points of view are possible:

- hydrostatic reconstructions and generalizations
(Audusse et al SISC 25 2004; Castro et al., Math.Mod.Meth.Appl.Sci. 5, 2007)
- Reference solutions
(Klingenbert et al SISC 41, 2019; Castro \& Pares J.Sci.Comp. 82, 2020)
There are of course relations among all these approaches...

Numerics: WB reconstruction, global fluxes, modified Riemann problem 1

Once upon a time ...
P.L. Roe. Upwind differencing schemes for hyperbolic conservation laws with source terms. In Claude Carasso, Denis Serre, and Pierre-Arnaud Raviart, editors, Nonlinear Hyperbolic Problems, pages 41-51, Berlin, Heidelberg, 1987. Springer Berlin Heidelberg.

Numerics: WB reconstruction, global fluxes, modified Riemann problem 1

Once upon a time ...

$$
\partial_{t} u+a \partial_{x} u=q, \quad a>0
$$

- Integrate in space and time

- upwind fluxes
- integrate the source term along characteristics

$$
\begin{gathered}
u_{i}^{n+1}=u_{i}^{n}-v\left(u_{i}^{n}-u_{i-1}^{n}\right)+\frac{1}{2} v(1-v) s_{i-1}-\frac{1}{2} v(1-v) s_{i} \\
+\left[\left(1-\frac{1}{2} v\right) q_{i}+\frac{1}{2} v q_{i-1}\right] \Delta t \\
\nu=a \Delta t / \Delta x
\end{gathered}
$$

Numerics: WB reconstruction, global fluxes, modified Riemann problem 1

Once upon a time ...

$$
\partial_{t} u+a \partial_{x} u=q, \quad a>0
$$

Choice of the slope...

problem (non-linear systems) several authors $[6,7,8]$ have felt the attraction of considering data which is in piecewise equilibrium. That is, the data is projected into a representation such that the steady flow equations are satisfied within each cell. In our simple model equation, that means choosing

$$
s_{i}=\frac{q_{i} \Delta x}{a}=\frac{q_{i} \Delta t}{v}
$$

Numerics: WB reconstruction, global fluxes, modified Riemann problem 1

Once upon a time ...

$$
\partial_{t} u+a \partial_{x} u=q, \quad a>0
$$

Upwind difference/source splitting:

$$
u_{i}^{n+1}=u_{i}^{n}-\frac{\Delta t}{\Delta x} \phi_{i-\frac{1}{2}}
$$

we can measure the extent to which they are out of equilibrium (with each other now, now internally) by the quantity

$$
\phi_{i-\frac{1}{2}}=a\left(u_{i}-u_{i-1}\right)-\frac{1}{2} \Delta x\left(q_{i-1}+q_{i}\right)
$$

Numerics: WB reconstruction, global fluxes, modified Riemann problem 1

We seek solutions of the (hyperbolic) system of balance laws

$$
\begin{equation*}
\partial_{t} U+\partial_{x} F(U)=S(U ; \varphi(x)) \tag{1}
\end{equation*}
$$

Well balanced upwind (difference splitting) schemes

$$
\begin{aligned}
\Delta x \frac{d U_{i}}{d t} & +\left(A^{-} A^{-1}\right)_{i+1 / 2}^{\mathrm{Roe}}\left(F_{i+1}-F_{i}-\Delta x S_{i+1 / 2}\right) \\
& +\left(A^{+} A^{-1}\right)_{i-1 / 2}^{\mathrm{Roe}}\left(F_{i}-F_{i-1}-\Delta x S_{i-1 / 2}\right)=0
\end{aligned}
$$

- Bermudez \& Vazquez, Computers \& Fluids 8, 1994; Vazquez-Cendon, J.Comput.Phys. 148, 1999
- Parés \& Castro, M² AN 38, 2004; Parés, SINUM 44, 2006
- Castro et al., Math.Mod.Meth.Appl.Sci. 5, 2007

Numerics: WB reconstruction, global fluxes, modified Riemann problem 2

General formalism: residual distribution and global fluxes

$$
\begin{aligned}
\Delta x \frac{d U_{i}}{d t} & +\left(A^{-} A^{-1}\right)_{i+1 / 2}^{\mathrm{Roe}}\left(F_{i+1}-F_{i}-\Delta x S_{i+1 / 2}\right) \\
& +\left(A^{+} A^{-1}\right)_{i-1 / 2}^{\mathrm{Roe}}\left(F_{i}-F_{i-1}-\Delta x S_{i-1 / 2}\right)=0
\end{aligned}
$$

General formalism: residual distribution and global fluxes

$$
\begin{aligned}
& \Delta x \frac{d U_{i}}{d t}+\left(A^{-} A^{-1}\right)_{i+1 / 2}^{\mathrm{Roe}} \overbrace{\left(F_{i+1}-F_{i}-\Delta x S_{i+1 / 2}\right)}^{\Phi^{i+1 / 2}} \\
&+\left(A^{+} A^{-1}\right)_{i-1 / 2}^{\mathrm{Roe}} \underbrace{\left(F_{i}-F_{i-1}-\Delta x S_{i-1 / 2}\right)}_{\Phi^{i-1 / 2}}=0
\end{aligned}
$$

Numerics: WB reconstruction, global fluxes, modified Riemann problem 2

Numerics: WB reconstruction, global fluxes, modified Riemann problem 2

General formalism: residual distribution and global fluxes

$$
\begin{aligned}
& \Delta x \frac{d U_{i}}{d t}+B_{i}^{i+1 / 2} \Phi^{i+1 / 2}+B_{i}^{i-1 / 2} \Phi^{i-1 / 2}=0 \\
& \Phi^{i-1 / 2}:=\int_{x_{i-1}}^{x_{i}}\left(\partial_{x} F-S\right) \\
& B_{i}^{i+1 / 2}+B_{i+1}^{i+1 / 2}=\mathrm{Id}
\end{aligned}
$$

- Abgrall \& Ricchiuto, arXiv:2109.08491, 2021; Abgrall \& Ricchiuto, ECM 2nd Edition, 2017
- Ricchiuto, J.Comput.Phys. 280, 2015
- Chou \& Shu, J.Comput.Phys. 214, 2006; J. Lin et al., J.Sci.Comp. 79, 2019

General formalism: residual distribution and global fluxes

$$
\begin{aligned}
& \Delta x \frac{d U_{i}}{d t}+B_{i}^{i+1 / 2} \Phi^{i+1 / 2}+B_{i}^{i-1 / 2} \Phi^{i-1 / 2}=0 \\
& \Phi^{i-1 / 2}:=\int_{x_{i-1}}^{x_{i}}\left(\partial_{x} F-S\right) \\
& B_{i}^{i+1 / 2}+B_{i+1}^{i+1 / 2}=\mathrm{Id}
\end{aligned}
$$

Steady state/well balanced conditions
(1) $B_{i}^{i \pm 1 / 2}$ uniformly bounded

2 for data at equilibrium $\Phi^{i \pm 1 / 2}=0$

Numerics: WB reconstruction, global fluxes, modified Riemann problem 2

General formalism: residual distribution and global fluxes
Trick. Set now

$$
G_{0}=F_{0}, \quad G_{i}=G_{i-1}+\int_{x_{i-1}}^{x_{i}}\left(\partial_{x} F-S\right)
$$

The flux splitting/RD prototype can equivalently be written in global flux form

$$
\begin{aligned}
\Delta x \frac{d U_{i}}{d t} & =-B_{i}^{i+1 / 2}\left(G_{i+1}-G_{i}\right)-B_{i}^{i-1 / 2}\left(G_{i}-G_{i-1}\right) \\
& =-\left(\hat{G}_{i+1 / 2}-\hat{G}_{i-1 / 2}\right)
\end{aligned}
$$

with

$$
\hat{G}_{i+1 / 2}=B_{i}^{i+1 / 2}\left(G_{i+1}-G_{i}\right)-G_{i}=G_{i+1}-B_{i+1}^{i+1 / 2}\left(G_{i+1}-G_{i}\right)
$$

Numerics: WB reconstruction, global fluxes, modified Riemann problem 2

General formalism: residual distribution and global fluxes
Trick. Set now

$$
G_{0}=F_{0}, \quad G_{i}=G_{i-1}+\int_{x_{i-1}}^{x_{i}}\left(\partial_{x} F-S\right)
$$

The flux splitting/RD prototype can equivalently be written in global flux form

$$
\begin{aligned}
\Delta x \frac{d U_{i}}{d t} & =-B_{i}^{i+1 / 2}\left(G_{i+1}-G_{i}\right)-B_{i}^{i-1 / 2}\left(G_{i}-G_{i-1}\right) \\
& =-\left(\hat{G}_{i+1 / 2}-\hat{G}_{i-1 / 2}\right)
\end{aligned}
$$

Consistency/well balanced conditions
(1) $G_{i}=G_{0}$ forall i, for data at equilibrium
$2 \hat{G}_{i+1 / 2}=G_{0}$ forall i, for data at equilibrium

Numerics: WB reconstruction, global fluxes, modified Riemann problem 2

Numerics: WB reconstruction, global fluxes, modified Riemann problem 3

Global flux consistency via full well balanced Riemann solver

Numerics: WB reconstruction, global fluxes, modified Riemann problem 3

Global flux consistency via full well balanced Riemann solver

For the shallow water equations, consider the Godunov method with numerical flux

$$
\hat{F}=\frac{F_{L}+F_{R}}{2}-\frac{1}{2} \sum_{k}\left|\lambda_{k}\right| \llbracket U \|_{k}
$$

with λ_{k} the waves of the approximate Riemann solver, 2 physical waves plus a 0 -wave :

$$
\lambda_{0}=u-\sqrt{g h}, \quad \lambda_{1}=0, \quad \lambda_{2}=u+\sqrt{g h}
$$

Two intermediate states RP

Numerics: WB reconstruction, global fluxes, modified Riemann problem 3

Global flux consistency via full well balanced Riemann solver

The space-time discrete FV prototype

$$
\begin{aligned}
U_{i}^{n+1} & =U_{i}^{n}-\frac{\Delta t}{\Delta x}\left(\hat{F}_{i+1 / 2}-\hat{F}_{i-1 / 2}\right)+\frac{\Delta t}{2}\left(\hat{S}_{i+1 / 2}+\hat{S}_{i+1 / 2}\right) \\
& =U_{i}^{n}-\frac{\Delta t}{\Delta x}\left(\Phi_{i}^{i+1 / 2}+\Phi_{i}^{i-1 / 2}\right)
\end{aligned}
$$

where simple manipulations show

$$
\Phi_{i}^{i-1 / 2}=\frac{1}{2}\left(F_{i}-F_{i-1}-\sum_{k}\left|\lambda_{k}\right|\|U\|_{k}-\Delta x \hat{S}_{i-1 / 2}\right)
$$

Two intermediate states RP

Numerics: WB reconstruction, global fluxes, modified Riemann problem 3

Global flux consistency via full well balanced Riemann solver

Two intermediate states RP

A steady 0 -wave introduces 2 intermediate states: to obtain them we can impose 4 conditions

- 2 conditions: $F_{i}-F_{i-1}-\Delta x \hat{S}=\sum_{k} \lambda_{k}\|U\|$ (space-time integration)
- 2 conditions: steady state relations across 0 -wave, e.g.

$$
\llbracket h u\left\|_{0}=0, \quad \llbracket g \zeta+k\right\|_{0}=0
$$

Numerics: WB reconstruction, global fluxes, modified Riemann problem 3

Global flux consistency via full well balanced Riemann solver

- Steady condition $U_{j}=U_{j}^{*} \Rightarrow$ algebraic eq. defining \hat{S}
- The intermediate states U_{j}^{*} depend on \hat{S}
- Automatically verify $\Phi_{i}^{i \pm 1 / 2}=0$ for steady initial data

For data at equilibrium the schemes verify

$$
\begin{aligned}
\Phi_{i}^{i-1 / 2} & =\frac{1}{2}\left(F_{i}-F_{i-1}-\Delta x \hat{S}_{i-1 / 2}\right) \\
& \approx \frac{1}{2} \int_{-\Delta x / 2}^{\Delta x / 2}\left(\partial_{x} F-S\right)=\frac{1}{2} \int_{-\Delta x / 2}^{\Delta x / 2} \partial_{x} G=0
\end{aligned}
$$

Two intermediate states RP

Numerics: WB reconstruction, global fluxes, modified Riemann problem 3

Global flux consistency via full well balanced Riemann solver

Two intermediate states RP

- Greenberg \& Leroux, SINUM 33, 1996
- Gosse, Comput.Math.Appli. 39, 2000
- Gallouet et al., Computers \& Fluids 32, 2003
- Berthon \& Chalons Math.Comp. 85, 2016; Michel-Dansac et al. J.Comput.Phys. 154, 2017
- etc

Numerics: WB reconstruction, global fluxes, modified Riemann problem 4

Direct global flux reconstruction and discrete equilibria

Numerics: WB reconstruction, global fluxes, modified Riemann problem 4

Direct global flux reconstruction and discrete equilibria
(1) Consider a consistent source quadrature which is not WB: $\Delta x \hat{S} \neq \Delta F$ along exact equilibria

2 Define local approximations of the global flux as:

$$
\begin{aligned}
R_{0}:=0, & G_{0}=F\left(U_{s 0}\right) \\
R_{i+1 / 2}:=R_{i-1 / 2}+\int_{x_{i-1}}^{x_{i}} S(U, \varphi), & G_{i}:=F\left(U_{i}\right)+\left(R_{i+1 / 2}+R_{i-1 / 2}\right) / 2
\end{aligned}
$$

3 Given $\left(G_{j}, R_{j}\right)$ assume you can invert the relation $F\left(U_{j}\right)=G_{j}-R_{j} \Rightarrow U_{j}$

Numerics: WB reconstruction, global fluxes, modified Riemann problem 4

Direct global flux reconstruction and discrete equilibria
Definition (Discrete steady state). The discrete steady state $U(x)$ of the global flux method is defined from

$$
\begin{equation*}
F(U(x))+R(U(x))=G_{0}=F\left(U_{s 0}\right) \tag{9}
\end{equation*}
$$

Equation (9) defines a nonlinear algebraic system which can be solved iteratively:
1 $F\left(U_{1}\right)+R\left(U_{1}, \varphi\right) / 2=G_{0}$
2 $F\left(U_{2}\right)+R\left(U_{2}, \varphi\right) / 2=G_{0}-R\left(U_{1}, \varphi\right) / 2$
(3) etc

Numerics: WB reconstruction, global fluxes, modified Riemann problem 4

Direct global flux reconstruction and discrete equilibria

Global flux FV scheme: At each interface $i \pm 1 / 2$
(1) Reconstruction:
cell global flux polynomials $G_{i}(x)$ are built from cell averages using std. methods

Numerics: WB reconstruction, global fluxes, modified Riemann problem 4

Direct global flux reconstruction and discrete equilibria

Global flux FV scheme: At each interface $i \pm 1 / 2$
2 Solution recovery: interface values $U_{i+1 / 2}^{ \pm}$are recovered from

$$
F\left(U_{i+1 / 2}^{-}\right)=G_{i}\left(x_{i+1 / 2}\right)-R_{i+1 / 2}, \quad F\left(U_{i+1 / 2}^{+}\right)=G_{i+1}\left(x_{i+1 / 2}\right)-R_{i+1 / 2}
$$

Note that

$$
G_{i}\left(x_{i+1 / 2}\right)=G_{i+1}\left(x_{i+1 / 2}\right) \Rightarrow F\left(U_{i+1 / 2}^{-}\right)=F\left(U_{i+1 / 2}^{+}\right)
$$

In this case, the algebraic solver inverting $F(U)=G-R$ gives no interface jumps.

Numerics: WB reconstruction, global fluxes, modified Riemann problem 4

Direct global flux reconstruction and discrete equilibria

Global flux FV scheme: At each interface $i \pm 1 / 2$
(3) Approximate Riemann problem :

$$
\hat{G}_{i+1 / 2}=\gamma G_{i}\left(x_{i+1 / 2}\right)+(1-\gamma) G_{i+1}\left(x_{i+1 / 2}\right)+D\left(U_{i+1 / 2}^{+}-U_{i+1 / 2}^{-}\right)
$$

with D some dissipation matrix.

Numerics: WB reconstruction, global fluxes, modified Riemann problem 4

Direct global flux reconstruction and discrete equilibria
Definition (Discrete steady state). The discrete steady state $U(x)$ of the global flux method is defined from

$$
\begin{equation*}
F(U(x))+R(U(x))=G_{0}=F\left(U_{s 0}\right) \tag{9}
\end{equation*}
$$

Global flux FV scheme:

$$
\Delta x \frac{d U_{i}}{d t}+\hat{G}_{i+1 / 2}-\hat{G}_{i-1 / 2}=0
$$

Proposition (Discrete well balanced). On a given mesh the global flux FV scheme preserves exactly constant global flux states, and the associated discrete steady state $U(x)$ computed from (9), with an expected error wrt the exact steady state $\left\|U(x)-U_{s}(x)\right\|$ with U_{s} the exact steady equilibrium.

Numerics: WB reconstruction, global fluxes, modified Riemann problem 4

Direct global flux reconstruction and discrete equilibria

- Chertock et al., J.Comput.Phys. 358, 2018
- Cheng et al., J.Sci.Comp. 80, 2019
- Chertock et al, J.Sci.Comp. 90, 2022

Coming up
1 Global flux formulation in the DGSEM context
2 Characterization of discrete equilibria
3 Compatibility between global flux and entropy conservation
4 Verification of well balanced for various sources in 1D and 2D

WB DG methods (not using global fluxes)
Y. Xing, Ohio State
M. Dumbser, U. Trento
E. Gaburro, (before U. Trento, now Inria)
M. Castro, (Edanya group in Malaga)
G. Gassner (Cologne U.), A. Winters (Linkoping U.) and co.
F. Giraldo (Navy),
B. Bonev, J. Hstehaven (EPFL),
many many others...

路
號
2

\square
\square
 \qquad
\square

EC－GF－
dGSEM
Ricchiuto
Intro
I－BLaws
SWEs
L－WVB
GF－dGSEM
dGSEM
GFlux
WBRes 1
WB2d
2D Gf－dG
WBRes 2
EC－Gf－dG
I－EC
EC－Gf－dG
WUBRes 3
End
EC－GF－
dGSEM
Ricchiuto
Intro
I－BLaws
SWEs
L－WVB
GF－dGSEM
dGSEM
GFlux
WBRes 1
WB2d
2D Gf－dG
WBRes 2
EC－Gf－dG
I－EC
EC－Gf－dG
WUBRes 3
End
EC－GF－
dGSEM
Ricchiuto
Intro
I－BLaws
SWEs
L－WVB
GF－dGSEM
dGSEM
GFlux
WBRes 1
WB2d
2D Gf－dG
WBRes 2
EC－Gf－dG
I－EC
EC－Gf－dG
WUBRes 3
End
EC－GF－
dGSEM
Ricchiuto
Intro
I－BLaws
SWEs
L－WVB
GF－dGSEM
dGSEM
GFlux
WBRes 1
WB2d
2D Gf－dG
WBRes 2
EC－Gf－dG
I－EC
EC－Gf－dG
WUBRes 3
End
EC－GF－
dGSEM
Ricchiuto
Intro
I－BLaws
SWEs
L－WVB
GF－dGSEM
dGSEM
GFlux
WBRes 1
WB2d
2D Gf－dG
WBRes 2
EC－Gf－dG
I－EC
EC－Gf－dG
WUBRes 3
End
EC－GF－
dGSEM
Ricchiuto
Intro
I－BLaws
SWEs
L－WVB
GF－dGSEM
dGSEM
GFlux
WBRes 1
WB2d
2D Gf－dG
WBRes 2
EC－Gf－dG
I－EC
EC－Gf－dG
WUBRes 3
End
EC－GF－
dGSEM
Ricchiuto
Intro
I－BLaws
SWEs
L－WVB
GF－dGSEM
dGSEM
GFlux
WBRes 1
WB2d
2D Gf－dG
WBRes 2
EC－Gf－dG
I－EC
EC－Gf－dG
WUBRes 3
End
EC－GF－
dGSEM
Ricchiuto
Intro
I－BLaws
SWEs
L－WVB
GF－dGSEM
dGSEM
GFlux
WBRes 1
WB2d
2D Gf－dG
WBRes 2
EC－Gf－dG
I－EC
EC－Gf－dG
WUBRes 3
End
EC－GF－
dGSEM
Ricchiuto
Intro
I－BLaws
SWEs
L－WVB
GF－dGSEM
dGSEM
GFlux
WBRes 1
WB2d
2D Gf－dG
WBRes 2
EC－Gf－dG
I－EC
EC－Gf－dG
WUBRes 3
End
EC－GF－
dGSEM
Ricchiuto
Intro
I－BLaws
SWEs
L－WVB
GF－dGSEM
dGSEM
GFlux
WBRes 1
WB2d
2D Gf－dG
WBRes 2
EC－Gf－dG
I－EC
EC－Gf－dG
WUBRes 3
End

Ricchiuto
Intro
I－BLaws
SWEs
L－WBB
GF－dGSEM
dGSEM
GFlux
WBRes 1
WB2d
2D Gf－dG
WBRes 2
EC－Gf－dG
I－EC
EC－Gf－dG
WBRes 3
End
Cnzía

Ricchiuto
Intro
I－BLaws
SWEs
L－WBB
GF－dGSEM
dGSEM
GFlux
WBRes 1
WB2d
2D Gf－dG
WBRes 2
EC－Gf－dG
I－EC
EC－Gf－dG
WBRes 3
End
Cnzía

Ricchiuto
Intro
L－BLaws
SWEs
L－WBB
GF－dGSEM
dGSEM
GFlux
WBRes 1
WB2d
2D Gf－dG
WBRes 2
EC－Gf－dG
I－EC
EC－Gf－dG
WBRes 3
End
Cnzía

Ricchiuto
Intro
L－BLaws
SWEs
L－WBB
GF－dGSEM
dGSEM
GFlux
WBRes 1
WB2d
2D Gf－dG
WBRes 2
EC－Gf－dG
I－EC
EC－Gf－dG
WBRes 3
End
Cnzía

Ricchiuto
Intro
L－BLaws
SWEs
L－WBB
GF－dGSEM
dGSEM
GFlux
WBRes 1
WB2d
2D Gf－dG
WBRes 2
EC－Gf－dG
I－EC
EC－Gf－dG
WBRes 3
End
Cnzía

Ricchiuto
Intro
L－BLaws
SWEs
L－WBB
GF－dGSEM
dGSEM
GFlux
WBRes 1
WB2d
2D Gf－dG
WBRes 2
EC－Gf－dG
I－EC
EC－Gf－dG
WBRes 3
End
Cnzía

Main notation

- Reference element $\xi \in[0,1]$
- $x(\xi)$ linear map $K \mapsto[0,1]$, here: $|K|=\mathrm{h}^{d}$
- $\left\{\phi_{i}(\xi)\right\}_{i=0, p}$ degree p Lagrange bases
- $\left\{\xi_{i}\right\}_{i=0, p} p+1$ Gauss-Lobatto (GL) points
- Set $U_{\mathrm{h}}=\sum_{i=0}^{p} \phi_{i}(x(\xi)) U_{i}$
- 2D extension by tensor products

dGSEM for conservation laws 2

DGSEM variational form: conservation laws
Consider for the moment the approximation of solutions of

$$
\partial_{t} U+\partial_{x} F(U)=0
$$

On an element K, start from the dG approximation arising from the variational form

$$
|K| \int_{0}^{1} \varphi_{i}(\xi) \partial_{t} U_{\mathrm{h}}-\int_{0}^{1} \partial_{\xi} \varphi_{i}(\xi) F_{\mathrm{h}}+\left(\varphi_{i} \hat{F}_{\mathrm{h}}\left(U_{\mathrm{h}}, U_{\mathrm{h}}^{+}\right)\right)_{\xi=1}-\left(\varphi_{i} \hat{F}_{\mathrm{h}}\left(U_{\mathrm{h}}, U_{\mathrm{h}}^{+}\right)\right)_{\xi=0}=0
$$

DGSEM variational form: conservation laws
Consider for the moment the approximation of solutions of

$$
\partial_{t} U+\partial_{x} F(U)=0
$$

dGSEM: quadrature based on the same GL nodes used for the polynomial expansion ${ }^{3}$

$$
\frac{\mathrm{d} \mathbf{U}}{\mathrm{~d} t}-\widetilde{D}_{x}^{T} \mathbf{F}+\mathcal{M}^{-1} \mathcal{B} \widehat{\mathbf{F}}=0
$$

- $\mathcal{M}=\operatorname{diag}\left(\left\{w_{i}\right\}_{i=0, p}\right)$ with $w_{i}=\mathrm{h} \phi_{i}\left(\xi_{i}\right)$ the quadrature weights
- $\widetilde{D}_{x}=\mathcal{M} D_{x} \mathcal{M}^{-1}$ with $\left(D_{x}\right)_{i j}=\partial_{\xi} \phi_{i}\left(\xi_{j}\right)$
- $\mathcal{B}=\operatorname{diag}(-1, \ldots, 1)$ the matrix sampling boundary values
- $\mathbf{U}, \mathbf{F}, \widehat{\mathbf{F}}$ arrays of solution/flux/num. flux values

[^1] Ricchiuto

dGSEM for conservation laws 3

SBP property and fluctuation form

$$
\frac{\mathrm{d} \mathbf{U}}{\mathrm{~d} t}-\widetilde{D}_{x}^{T} \mathbf{F}+\mathcal{M}^{-1} \mathcal{B} \widehat{\mathbf{F}}=0
$$

The semi-discrete dGSEM equations can be equivalently written as ${ }^{4}$

$$
\frac{\mathrm{d} \mathbf{U}}{\mathrm{~d} t}+\widetilde{D}_{x} \mathbf{F}+\mathcal{M}^{-1} \mathcal{B}(\widehat{\mathbf{F}}-\mathbf{F})
$$

[^2]SBP property and fluctuation/RD form
In other words, the dGSEM can be written in fluctuation/strong form as

$$
w_{i} \frac{d U_{i}}{d t}+\Phi_{i}+\Psi_{i}^{L}+\Psi_{i}^{R}=0
$$

with

$$
\begin{gathered}
\Phi_{i}:=\int_{K} \phi_{i} \partial_{x} F_{\mathrm{h}} \\
\Psi_{i}^{L}:=\left[\phi_{i}\left(\hat{F}_{\mathrm{h}}-F_{\mathrm{h}}\right)\right]_{\xi=0}, \quad \Psi_{i}^{R}:=\left[\phi_{i}\left(\hat{F}_{\mathrm{h}}-F_{\mathrm{h}}\right)\right]_{\xi=1}
\end{gathered}
$$

This form well suited to see that (trivially) $F_{\mathrm{h}}=F_{0}$ is an exact discrete steady state.

dGSEM for conservation laws 3

WB2d
WBRRes 2
EC-GF-dG
I-EC
EC-GF-dG
Weres 3
End
Cnzía
Intro
1-BLavys
Swes
Gf-dGSEN
GFlux
WBRes 1
WB2d
2D Gf-1
WBRes 2
EC-Gf-dG
I-EC
EC-GT-dG
End

-1

$$
\begin{aligned}
& \text { dGSEM } \\
& \text { Ricchiuto }
\end{aligned}
$$-

\square
2 (\square

(
.

-

We seek solutions of the (hyperbolic) system of balance laws

$$
\begin{equation*}
\partial_{t} U+\partial_{x} F(U)=S(U ; \varphi(x)) \tag{1}
\end{equation*}
$$

by locally recasting it in the pseudo-conservative form

$$
\partial_{t} U+\partial_{x} G(U ; \varphi(x))=0
$$

with

$$
\begin{aligned}
& G(U ; \varphi(x))=F(U)+R(U ; \varphi(x)) \\
& R(U ; \varphi(x))=R_{0}-\int_{x_{0}}^{x} S(U ; \varphi(s)) d s
\end{aligned}
$$

We seek solutions of the (hyperbolic) system of balance laws

$$
\begin{equation*}
\partial_{t} U+\partial_{x} F(U)=S(U ; \varphi(x)) \tag{1}
\end{equation*}
$$

by locally recasting it in the pseudo-conservative form

$$
\partial_{t} U+\partial_{x} G(U ; \varphi(x))=0
$$

1 from F to G : source integral assembly
2 discrete well balanced: definition and understanding

Gf-dGSEM: balance laws and global flux 2

Gf-dGSEM: global flux assembly in 1d

General definition

$$
R(x)=R_{0}-\int_{x_{0}}^{x} S(U ; \varphi(s)) d s
$$

Gf-dGSEM: global flux assembly in 1d
Evaluation of $\left\{R_{i}\right\}_{i=0, p}$, space-marching method: $\forall j \geq 0$
(1) Set $R_{0}=R^{-}$

2 $R_{i}=R_{i-1}+\int_{x_{i-1}}^{x_{i}} S(U ; \varphi(s)) d s$

Gf-dGSEM: balance laws and global flux 2

In all $\left\{K_{j}\right\}_{j \geq 0}$ we set

$$
R_{\mathrm{h}}=\sum_{i=0, p} \varphi_{i}(x(\xi)) R_{i}
$$

Gf-dGSEM: global flux assembly in 1d
Evaluation of $\left\{R_{i}\right\}_{i=0, p}$, space-marching method: $\forall j \geq 0$
${ }_{1}$ Set $R_{0}=R^{-}$
$2 R_{i}=R_{i-1}-h \sum_{l=0, p} \int_{\xi_{i-1}}^{\xi_{i}} \varphi_{l}(\xi) S_{l} d s$

Gf-dGSEM: balance laws and global flux 2

In all $\left\{K_{j}\right\}_{j \geq 0}$ we set

$$
R_{\mathrm{h}}=\sum_{i=0, p} \varphi_{i}(x(\xi)) R_{i}
$$

Gf-dGSEM: balance laws and global flux 2

Gf-dGSEM: global flux assembly in 1d
Evaluation of $\left\{R_{i}\right\}_{i=0, p}$, space-marching method: $\forall j \geq 0$
(1) Set $R_{0}^{K_{j}}=R^{-}$

2 $R_{i}=R_{i-1}-h \sum_{l=0, p} \int_{\xi_{i-1}}^{\xi_{i}} \varphi_{l}(\xi) S_{l} d s$
Over an element we have

In all $\left\{K_{j}\right\}_{j \geq 0}$ we set $R_{\mathrm{h}}=\sum_{i=0, p} \varphi_{i}(x(\xi)) R_{i}$

$$
\mathbf{R}=\mathbf{R}^{-}-\mathcal{I} \mathbf{S}
$$

Remark. The matrix \mathcal{I} is the integration tableau of the $p+1$ stages RK-LobattolIIA ODE solver ${ }^{5}$

[^3]Gf-dGSEM: discrete well balanced
Intro
l-BLaw
swes
t-wB
GfitestM
GFlux
WBRes 1
WB2d
2D Gf-
WBRes 2
EC Gfadd
I-EC
WBRes 3
End

 . (

Gf-dGSEM: discrete well balanced
Definition (Discrete steady state). The discrete steady state U^{*} is the polynomial approximation arising from the solution of the elemental systems of nonlinear algebraic equations obtained as

$$
F\left(U_{i}^{*}\right)-\sum_{j=0, p} \mathcal{I}_{i j} S\left(U_{j}^{*}, \varphi\left(x_{0}+c_{j} \mathrm{~h}\right)\right)=G_{0}-R_{0}
$$

with G_{0} a global (over the mesh) constant flux state, $R_{0}=R^{-}$the elemental initial value of R, and with $\mathcal{I}_{i j}$ and c_{j} the entries of the integration tableau of the $p+1$ stages implicit RK LobattolllA ODE integrator.

dGSEM Ricchiuto

Gf-dGSEM: balance laws and global flux 3

Gf-dGSEM: discrete well balanced
Proposition (Discrete steady state). Let $R_{0}^{K_{0}}=0$, and $\forall K_{j}$ let $R^{-}=R_{p}^{K_{j-1}}$. For smooth enough data, U^{*} is an approximation of order $\mathrm{h}^{2 p}$ to a continuous exact steady state U.

Gf-dGSEM: balance laws and global flux 3

Gf-dGSEM: discrete well balanced
Proposition (Discrete steady state). Let $R_{0}^{K_{0}}=0$, and $\forall K_{j}$ let $R^{-}=R_{p}^{K_{j-1}}$. For smooth enough data, U^{*} is an approximation of order $\mathrm{h}^{2 p}$ to a continuous exact steady state U..

Proof. The integration strategy reduces to the ODE integration with the A-stable implicit LobattoIIIA RK scheme of order $2 p^{6}$ applied to $\partial_{x} F-S=0$

[^4]
Gf-dGSEM: balance laws and global flux 3

Gf-dGSEM: discrete well balanced

$$
\begin{aligned}
\mathbf{F}(\mathbf{U})-\mathcal{I} \mathbf{S}(\mathbf{U} ; \varphi) & =\mathbf{G}_{0}-\mathbf{R}_{0} \\
\mathbf{R}_{0}^{K_{j}} & =\mathbf{R}_{p}^{K_{j-1}}
\end{aligned}
$$

In all $\left\{K_{j}\right\}_{j \geq 0}$ we set

$$
R_{\mathrm{h}}=\sum_{i=0, p} \varphi_{i}(x(\xi)) R_{i}
$$

- The nonlinear equation is solved element by element via Newton iterations for $\left\{U_{i}\right\}_{i=0, p}$
- Nonlinear solver only needed for the exact/IC as data at quadrature points is directly evolved
- At equilibrium at interfaces $\left\{F\left(U_{p}\right)+R_{p}\right\}_{K_{j-1}}=\left\{F\left(U_{0}\right)+R_{0}\right\}_{K_{j}} \Longrightarrow$ no jumps of U
- For smooth solutions $U^{*}-U^{\mathrm{ex}}=\mathcal{O}\left(\mathrm{h}^{2 p}\right) \Rightarrow$ potential for superconvergence for $p \geq 2$

Gf-dGSEM: balance laws and global flux 4號號
EC-GF-

Gf-dGSEM: variational form and numerical fluxes
dGSEM
Ricchiuto

Gf-dGSEM: variational form and numerical fluxes

Abstract

Gf-dGSEM: full discretization, well balanced, and numerical fluxes The Gf-dGSEM can be written in fluctuation form

$$
w_{i} \frac{d U_{i}}{d t}+\Phi_{i}+\Psi_{i}^{L}+\Psi_{i}^{R}=0
$$

with, setting $G_{\mathrm{h}}=\sum_{l=0, p} \phi_{l}(x(\xi)) G_{l}$, with $G_{l}=F\left(U_{l}\right)+R_{l}$

$$
\Phi_{i}:=\int_{K} \phi_{i} \partial_{x} G_{\mathrm{h}}, \quad\left\{\begin{array}{l}
\Psi_{i}^{L}:=\left[\phi_{i}\left(\hat{G}_{\mathrm{h}}-G_{\mathrm{h}}\right)\right]_{\xi=0} \\
\Psi_{i}^{R}:=\left[\phi_{i}\left(\hat{G}_{\mathrm{h}}-G_{\mathrm{h}}\right)\right]_{\xi=1}
\end{array}\right.
$$

or equivalently in semi-discrete matrix form

$$
\frac{\mathrm{d} \mathbf{U}}{\mathrm{~d} t}+\widetilde{D}_{x} \mathbf{G}+\mathcal{M}^{-1} \mathcal{B}(\widehat{\mathbf{G}}-\mathbf{G})=0
$$

with $\mathbf{G}=\mathbf{F}+\mathbf{R}$
equivalently in semi-discrete matrix form

Gf-dGSEM: balance laws and global flux 4

Gf-dGSEM: full discretization, well balanced, and numerical fluxes
The Gf-dGSEM can be written in fluctuation form

$$
w_{i} \frac{d U_{i}}{d t}+\Phi_{i}+\Psi_{i}^{L}+\Psi_{i}^{R}=0
$$

with, setting $G_{\mathrm{h}}=\sum_{l=0, p} \phi_{l}(x(\xi)) G_{l}$, with $G_{l}=F\left(U_{l}\right)+R_{l}$

$$
\Phi_{i}:=\int_{K} \phi_{i} \partial_{x} G_{\mathrm{h}}, \quad\left\{\begin{array}{l}
\Psi_{i}^{L}:=\left[\phi_{i}\left(\hat{G}_{\mathrm{h}}-G_{\mathrm{h}}\right)\right]_{\xi=0} \\
\Psi_{i}^{R}:=\left[\phi_{i}\left(\hat{G}_{\mathrm{h}}-G_{\mathrm{h}}\right)\right]_{\xi=1}
\end{array}\right.
$$

Definition. (Consistent numerical global flux). A numerical global flux $\hat{G}=\hat{G}\left(U^{+}, \varphi^{+} ; U^{-}, \varphi^{-}\right)$is said to be consistent if

$$
G\left(U^{+}, \varphi^{+}\right)=G\left(U^{-}, \varphi^{-}\right)=G_{0} \quad \Rightarrow \quad \hat{G}\left(U^{+}, \varphi^{+} ; U^{-}, \varphi^{-}\right)=G_{0}
$$

Gf-dGSEM: full discretization, well balanced, and numerical fluxes
The Gf-dGSEM can be written in fluctuation form

$$
w_{i} \frac{d U_{i}}{d t}+\Phi_{i}+\Psi_{i}^{L}+\Psi_{i}^{R}=0
$$

with, setting $G_{\mathrm{h}}=\sum_{l=0, p} \phi_{l}(x(\xi)) G_{l}$, with $G_{l}=F\left(U_{l}\right)+R_{l}$

$$
\Phi_{i}:=\int_{K} \phi_{i} \partial_{x} G_{\mathrm{h}}, \quad\left\{\begin{array}{l}
\Psi_{i}^{L}:=\left[\phi_{i}\left(\hat{G}_{\mathrm{h}}-G_{\mathrm{h}}\right)\right]_{\xi=0} \\
\Psi_{i}^{R}:=\left[\phi_{i}\left(\hat{G}_{\mathrm{h}}-G_{\mathrm{h}}\right)\right]_{\xi=1}
\end{array}\right.
$$

Example:

$$
\hat{G}\left(U^{+}, \varphi^{+} ; U^{-}, \varphi^{-}\right)=\alpha G\left(U^{+}, \varphi^{+}\right)+(\operatorname{Id}-\alpha) G\left(U^{-}, \varphi^{-}\right)-\mathcal{D}\left(U^{+}-U^{-}\right)
$$

Gf-dGSEM: balance laws and global flux 4

Gf-dGSEM: balance laws and global flux 4

Gf-dGSEM: full discretization, well balanced, and numerical fluxes
The Gf-dGSEM can be written in fluctuation form

$$
w_{i} \frac{d U_{i}}{d t}+\Phi_{i}+\Psi_{i}^{L}+\Psi_{i}^{R}=0
$$

with, setting $G_{\mathrm{h}}=\sum_{l=0, p} \phi_{l}(x(\xi)) G_{l}$, with $G_{l}=F\left(U_{l}\right)+R_{l}$

$$
\Phi_{i}:=\int_{K} \phi_{i} \partial_{x} G_{\mathrm{h}}, \quad\left\{\begin{array}{l}
\Psi_{i}^{L}:=\left[\phi_{i}\left(\hat{G}_{\mathrm{h}}-G_{\mathrm{h}}\right)\right]_{\xi=0} \\
\Psi_{i}^{R}:=\left[\phi_{i}\left(\hat{G}_{\mathrm{h}}-G_{\mathrm{h}}\right)\right]_{\xi=1}
\end{array}\right.
$$

Proposition. (Gf-dGSEM and discrete well balanced). The Gf-dGSEM scheme with a consistent numerical global flux is discretely well balanced, in the sense that (equivalently)
(1) it preserves exactly the discrete equilibrium U^{*} associated to the quadrature defining G

2 It has a super-convergent behaviour of order $\mathrm{h}^{2 p}$ wrt exact smooth steady states

Gf-dGSEM recap

On and element K_{j} we have

1) $w_{i} \frac{d U_{i}}{d t}+\int_{K} \phi_{i} \partial_{x} G_{\mathrm{h}}+\left[\phi_{i}\left(\hat{G}_{\mathrm{h}}-G_{\mathrm{h}}\right)\right]_{\xi=0}+\left[\phi_{i}\left(\hat{G}_{\mathrm{h}}-G_{\mathrm{h}}\right)\right]_{\xi=1}=0$
${ }_{2} G_{\mathrm{h}}=\sum_{i=0, p} \varphi_{i}(x(\xi))\left(F\left(U_{i}\right)+R_{i}\right)$
3 $R_{0}=R_{p}^{K_{j-1}}$ and $R_{i}=R_{0}-\sum_{l=0, p} \mathcal{I}_{i l} S_{l}$

Remains to define the nodal values S_{l}

Gf-dGSEM: well balanced fluxes and exact lake at rest

Proposition (Exact lake at rest preservation ${ }^{7}$.) For the shallow water equations the choice

$$
S_{l}=g \zeta_{l} \partial_{x} b_{\mathrm{h}}\left(x\left(\xi_{l}\right)\right)-\partial_{x} p_{\mathrm{h}}(b)\left(x\left(\xi_{l}\right)\right)+\omega h_{l} v_{l}+c_{f} h_{l} u_{l}
$$

allows exact preservation of the analytical lake at rest $h_{j}+b_{j}=\zeta_{0}, h u=h v=0$.

[^5]
Gf-dGSEM: balance laws and global flux 6

Gf-dGSEM: well balanced fluxes and exact lake at rest

Proposition (Exact lake at rest preservation ${ }^{7}$.) For the shallow water equations the choice

$$
S_{l}=g \zeta_{l} \partial_{x} b_{\mathrm{h}}\left(x\left(\xi_{l}\right)\right)-\partial_{x} p_{\mathrm{h}}(b)\left(x\left(\xi_{l}\right)\right)+\omega h_{l} v_{l}+c_{f} h_{l} u_{l}
$$

allows exact preservation of the analytical lake at rest $h_{j}+b_{j}=\zeta_{0}, h u=h v=0$.

Proof. consequence of approximation properties:

$$
g \zeta_{0} \int_{0}^{\xi_{j}} \phi_{l}(\xi)\left(\mathrm{h}^{-1} \sum_{i=0, p} \partial_{\xi} \phi_{i}\left(\xi_{l}\right) b_{i}\right)=g \zeta_{0} \int_{0}^{\xi_{j}} \overbrace{\mathrm{~h}^{-1} \partial_{\xi} \phi_{i}\left(\xi_{l}\right) b_{i}}^{\partial_{x} b_{\mathrm{h}}}=g \zeta_{0}\left(b_{j}-b_{0}\right)
$$

[^6]
Gf-dGSEM: balance laws and global flux 6

Gf-dGSEM: well balanced fluxes and exact lake at rest

Proposition (Exact lake at rest preservation ${ }^{7}$.) For the shallow water equations the choice

$$
S_{l}=g \zeta_{l} \partial_{x} b_{\mathrm{h}}\left(x\left(\xi_{l}\right)\right)-\partial_{x} p_{\mathrm{h}}(b)\left(x\left(\xi_{l}\right)\right)+\omega h_{l} v_{l}+c_{f} h_{l} u_{l}
$$

allows exact preservation of the analytical lake at rest $h_{j}+b_{j}=\zeta_{0}, h u=h v=0$.

Proof. consequence of approximation properties:

$$
R_{j}-R_{0}=g \zeta_{0}\left(b_{j}-b_{0}\right)-\left(p\left(b_{j}\right)-p\left(b_{0}\right)\right) \overbrace{=}^{h_{j}=\zeta_{0}-b_{j}}-\left(p\left(h_{j}\right)-p\left(h_{0}\right)\right)=-\left(F_{j}-F_{0}\right)
$$

so $G_{j}-G_{0}=0$ for the lake at rest state.

[^7](1) Verification of super-convergence property

2 Perturbation of steady states
3 moving and non-moving equilibria (no ad hoc scheme modification)
(1) Verification of super-convergence property

2 Perturbation of steady states
3 moving and non-moving equilibria (no ad hoc scheme modification)

- Time integration: SSP-RK (p).
- (Non WB) dGSEM:

$$
w_{i} \frac{d U_{i}}{d t}+\int_{K} \phi_{i} \partial_{x} F_{\mathrm{h}}+\int_{K} \phi_{i} S\left(U_{\mathrm{h}} ; \varphi\right)+\left[\phi_{i}\left(\hat{F}_{\mathrm{h}}-F_{\mathrm{h}}\right)\right]_{\xi=0}+\left[\phi_{i}\left(\hat{F}_{\mathrm{h}}-F_{\mathrm{h}}\right)\right]_{\xi=1}=0
$$

1D rotating shallow water equations ${ }^{8}$.

$$
\begin{align*}
& \quad \partial_{t} h+\partial_{x}(h u)=0 \\
& \partial_{t}(h u)+\partial_{x}\left(h u^{2}+p(h)\right)+g h \partial_{x} b-\omega h v=0 \tag{10}\\
& \partial_{t}(h v)+\partial_{x}(h u v)+\omega h u=0
\end{align*}
$$

With as usual $p(h)=g h^{2} / 2$

[^8]WBRes 1
WB2d

Inria

Numerical examples in 1d

Lake at rest

$$
\begin{aligned}
& q=h u=q_{0}=0 \\
& q_{y}=h v=0
\end{aligned}
$$

and

$$
\begin{aligned}
& E=g(h+b)+k=E_{0}=g h_{0} \\
& \quad \text { or }
\end{aligned}
$$

$K=h u^{2}+p+\int_{x} g h \partial_{x} b=F_{0}=p_{0}$

$$
b(x)=\left(0.2-0.05(x-10)^{2}\right)^{+}
$$

unperturbed IC evolved up to $T=5$

Numerical examples in 1d

Moving equilibria: sub-critical flow

$$
\begin{aligned}
& q=h u=q_{0}=4.42 \\
& q_{y}=h v=0
\end{aligned}
$$

and

$$
\begin{aligned}
& E=g(h+b)+k=E_{0}=22.06 \\
& \text { or } \\
& K=h u^{2}+p+\int_{x} g h \partial_{x} b=F_{0}=29.41
\end{aligned}
$$

$$
b(x)=\left(0.2-0.05(x-10)^{2}\right)^{+}
$$

Exact preservation of global flux/ U^{*}

unperturbed IC evolved up to $T=5$

Numerical examples in 1d

Moving equilibria: sub-critical flow

$$
\begin{aligned}
& q=h u=q_{0}=4.42 \\
& q_{y}=h v=0
\end{aligned}
$$

and

$$
\begin{aligned}
& E=g(h+b)+k=E_{0}=22.06 \\
& \quad \text { or } \\
& K=h u^{2}+p+\int_{x} g h \partial_{x} b=F_{0}=29.41 \\
& V_{25} \\
& \\
& b(x)=\left(0.2-0.05(x-10)^{2}\right)^{+}
\end{aligned}
$$

(Super-)Convergence : $h^{*}-h^{\text {ex }}$

unperturbed IC evolved up to $T=5$

Moving equilibria: sub-critical flow

$$
\begin{aligned}
& q=h u=q_{0}=4.42 \\
& q_{y}=h v=0
\end{aligned}
$$

(Super-)Convergence : $h^{*}-h^{\text {ex }}$
and

$$
E=g(h+b)+k=E_{0}=22.06
$$

or

$$
b(x)=\left(0.2-0.05(x-10)^{2}\right)^{+}
$$

unperturbed IC evolved up to $T=5$

Moving equilibria: sub-critical flow

$$
\begin{aligned}
& q=h u=q_{0}=4.42 \\
& q_{y}=h v=0
\end{aligned}
$$

and

$$
E=g(h+b)+k=E_{0}=22.06
$$

or

$$
b(x)=\left(0.2-0.05(x-10)^{2}\right)^{+}
$$

(Super-)Convergence : $h u^{*}-h u^{\mathrm{ex}}$

unperturbed IC evolved up to $T=5$

Numerical examples in 1d

Moving equilibria: sub-critical flow

$$
\begin{aligned}
& q=h u=q_{0}=4.42 \\
& q_{y}=h v=0
\end{aligned}
$$

and

$$
E=g(h+b)+k=E_{0}=22.06
$$

or

$$
b(x)=\left(0.2-0.05(x-10)^{2}\right)^{+}
$$

Small perturbation: global flux vs nonWB

$h=h_{0}+10^{-3} e^{-100(x-10)^{2}}$ evolved up to $T=1.5$

Numerical examples in 1d

Moving equilibria: super-critical flow

$$
\begin{aligned}
& q=h u=q_{0}=4.42 \\
& q_{y}=h v=0
\end{aligned}
$$

and

$$
\begin{aligned}
E & =g(h+b)+k=E_{0}=28.9 \\
& \text { or } \\
K= & h u^{2}+p+\int_{x} g h \partial_{x} b=F_{0}=31.74 \\
& b(x)=\left(0.2-0.05(x-10)^{2}\right)^{+}
\end{aligned}
$$

Exact preservation of global flux/ U^{*}

unperturbed IC evolved up to $T=5$

Numerical examples in $\mathbf{1 d}$

Moving equilibria: super-critical flow

$$
\begin{aligned}
& q=h u=q_{0}=4.42 \\
& q_{y}=h v=0
\end{aligned}
$$

and

$$
\begin{aligned}
E & =g(h+b)+k=E_{0}=28.9 \\
& \text { or } \\
K & =h u^{2}+p+\int_{x} g h \partial_{x} b=F_{0}=31.74 \\
b(x)= & \left(0.2-0.05(x-10)^{2}\right)^{+}
\end{aligned}
$$

unperturbed IC evolved up to $T=5$

Numerical examples in 1d

Moving equilibria: super-critical flow

$$
\begin{aligned}
& q=h u=q_{0}=4.42 \\
& q_{y}=h v=0
\end{aligned}
$$

and

$$
\begin{aligned}
& E=g(h+b)+k=E_{0}=28.9 \\
& \quad \text { or } \\
& K=h u^{2}+p+\int_{x} g h \partial_{x} b=F_{0}=31.74 \\
& b(x)=\left(0.2-0.05(x-10)^{2}\right)^{+}
\end{aligned}
$$

Small perturbation: global flux vs nonWB

$h=h_{0}+10^{-5} e^{-100(x-10)^{2}}$ evolved up to $T=1.5$

Numerical examples in $1 \mathbf{d}$

Algebraic source: pressure/Coriolis force equilibrium

$$
\begin{aligned}
q & =h u
\end{aligned}=q_{0}=0 .
$$

and

WBRes 1

$$
K=p-\int_{x} \omega q_{y}(x)=p_{0}
$$

Exact preservation of global flux/ U^{*}

unperturbed IC evolved up to $T=5$

Algebraic source: pressure/Coriolis force equilibrium

$$
\begin{aligned}
q & =h u
\end{aligned}=q_{0}=0 .
$$

and

$$
E=g h+k=E_{0}=g h_{0}
$$

or

$$
K=p-\int_{x} \omega q_{y}(x)=p_{0}
$$

unperturbed IC evolved up to $T=5$

Algebraic source: pressure/Coriolis force equilibrium

$$
\begin{aligned}
q & =h u
\end{aligned}=q_{0}=0 .
$$

and

$$
E=g h+k=E_{0}=g h_{0}
$$

or

$$
K=p-\int_{x} \omega q_{y}(x)=p_{0}
$$

(Super-)Convergence : $h^{*}-h^{\mathrm{ex}}$

unperturbed IC evolved up to $T=5$

Numerical examples in 1d

Algebraic source: pressure/Coriolis force equilibrium
Small perturbation: global flux vs nonWB

$$
\begin{aligned}
q & =h u
\end{aligned}=q_{0}=0
$$

and

$$
\begin{aligned}
& E= g h+k=E_{0}=g h_{0} \\
& \text { or } \\
& K=p-\int_{x} \omega q_{y}(x)=p_{0}
\end{aligned}
$$

$$
\partial_{t} h+\partial_{x}(h u)=0
$$

$$
\begin{equation*}
\partial_{t}(h u)+\partial_{x}\left(h u^{2}+p(h)\right)+g h \partial_{x} b-\omega h v=0 \tag{11}
\end{equation*}
$$

$$
\partial_{t}(h v)+\partial_{x}(h u v)+\omega h u=0
$$

Rotating shallow water: geostrophic adjustment ${ }^{9}$

Numerical examples in 1d

Numerical examples in 1d

Rotating shallow water: geostrophic adjustment ${ }^{9}$
Free surface evolution (Gf-dGSEM: $P 1$ in red - $P 2$ in blue - right pic from Castro et al.)

[^9]A 2D extension

\square
\square
\qquad

Ricchiuto

Intro
Gf-dGSEM
dGSEM
wBRes 1
EC-Gf-dG
I-EC
WBRes 3
End
WB2d
2D Gf-dG

2d
2D Gf-dGntro

I-BLays
SWEsGf-dGSEN
-
\square
\square-
\square

Main notation

- Reference element $\xi \in[0,1]$
- $x(\xi)$ linear map $K \mapsto[0,1]$, here: $|K|=\mathrm{h}^{d}$
- $\left\{\phi_{i}(\xi)\right\}_{i=0, p}$ degree p Lagrange bases
- $\left\{\xi_{i}\right\}_{i=0, p}$ the $p+1$ Gauss-Lobatto (GL) points
- Set $U_{\mathrm{h}}=\sum_{i=0}^{p} \phi_{i}(x(\xi)) U_{i}$
- 2D extension by tensor products

2D Cartesian shallow water equations.

$$
\partial_{t}\left(\begin{array}{c}
h \tag{5}\\
h u \\
h v
\end{array}\right)+\partial_{x}\left(\begin{array}{c}
h u \\
h u^{2}+p(h) \\
h u v
\end{array}\right)+\partial_{y}\left(\begin{array}{c}
h v \\
h u v \\
h v^{2}+p(h)
\end{array}\right)=-h\left(\begin{array}{c}
0 \\
\partial_{x} \varphi+c_{f} u+\omega v \\
\partial_{y} \varphi+c_{f} v-\omega u
\end{array}\right)
$$

Notation.
h water depth
$\overrightarrow{\mathrm{v}}=(u, v)$ horizontal velocity
$p=g h^{2} / 2$ hydrostatic pressure (g gravity acceleration)
$\varphi=g b$ gravitational potential ($b(x, y)$ bottom topography)
$c_{f}=c_{f}(h, \vec{v})$ friction coefficient
ω Coriolis coefficient

2D Cartesian shallow water equations.

$$
\partial_{t}\left(\begin{array}{c}
h \tag{11}\\
h u \\
h v
\end{array}\right)+\partial_{x}\left(\begin{array}{c}
h u \\
h u^{2}+p(h)+r x \\
h u v
\end{array}\right)+\partial_{y}\left(\begin{array}{c}
h v \\
h u v \\
h v^{2}+p(h)+r y
\end{array}\right)=0
$$

Global flux/pressure formulation.

2D Cartesian shallow water equations.

$$
\partial_{t}\left(\begin{array}{c}
h \tag{12}\\
h u \\
h v
\end{array}\right)+\partial_{x}\left(\begin{array}{c}
h u \\
h u^{2}+p(h)+r x \\
h u v
\end{array}\right)+\partial_{y}\left(\begin{array}{c}
h v \\
h u v \\
h v^{2}+p(h)+r y
\end{array}\right)=0
$$

Global flux/pressure formulation.
Line based evaluation of $(r x, r y): \forall K_{l m}$ we set

$$
\mathbf{r} \mathbf{x}_{j}=\mathbf{r} \mathbf{x}_{j}^{-}-\mathcal{I} \mathbf{S} \mathbf{x}_{j}
$$

where

- $\mathbf{r x} \mathbf{x}_{j}$ and $\mathbf{S x}_{j}$ contain the $\left\{r x_{i j}\right\}_{i=0, p}$ and $\left\{S x_{i j}\right\}_{i=0, p}$ values
- $S x:=g h \partial_{x} b-\omega h v+c_{f} h u$ is the x -momentum source
- \mathcal{I} is the implicit RK-LobattollIA tableau
- The IC is taken as $r x_{i j}^{-}=\left(r x_{p j}\right)_{K_{l-1 m}}$

2D Cartesian shallow water equations.

$$
\partial_{t}\left(\begin{array}{c}
h \tag{13}\\
h u \\
h v
\end{array}\right)+\partial_{x}\left(\begin{array}{c}
h u \\
h u^{2}+p(h)+r x \\
h u v
\end{array}\right)+\partial_{y}\left(\begin{array}{c}
h v \\
h u v \\
h v^{2}+p(h)+r y
\end{array}\right)=0
$$

Global flux/pressure formulation.
Line based evaluation of $(r x, r y): \forall K_{l m}$ we set

$$
\mathrm{ry}_{i}=\mathrm{ry}_{i}^{-}-\mathcal{I} \mathbf{S y}_{i}
$$

where

- $\mathbf{r y}_{i}$ and $\mathbf{S y}_{i}$ contain the $\left\{r y_{i j}\right\}_{i=0, p}$ and $\left\{S y_{i j}\right\}_{i=0, p}$ values
- $S y:=g h \partial_{y} b+\omega h u+c_{f} h v$ is the x -momentum source
- \mathcal{I} is the implicit RK-LobattollIA tableau
- The IC is taken as $r y_{i j}^{-}=\left(r y_{i p}\right)_{K_{l m-1}}$

$$
\begin{aligned}
\frac{d U_{i j}}{d t} & +\widetilde{D}_{x} \mathbf{G} \mathbf{x}+\mathcal{M}^{-1} \mathcal{B}(\widehat{\mathbf{G x}}-\mathbf{G} \mathbf{x}) \\
& +\widetilde{D}_{y} \mathbf{G} \mathbf{y}+\mathcal{M}^{-1} \mathcal{B}(\widehat{\mathbf{G y}}-\mathbf{G y})=0
\end{aligned}
$$

Well balanced direction-wise ${ }^{10}$
Proposition. (Discrete well balanced along x - and y-) The line Gf-dGSEM with consistent numerical global flux is discretely well balanced along the x - and y-directions, in the sense that (equivalently)

- it preserves exactly 1d discrete equilibrium U^{*} associated to the quadrature defining $G x$ (or Gy)
- It has a super-convergent $\mathrm{h}^{2 p}$ behaviour wrt exact smooth 1d steady states in the x or y direction

[^10]Moving equilibria: sub-critical flow

$$
\begin{aligned}
& q x=h u=q_{0} \\
& q y=h v=0
\end{aligned}
$$

and

$$
\text { WBRes } 2
$$

Numerical examples in 2d

$$
\begin{aligned}
& E=g(h+b)+k=E_{0} \\
& \text { or } \\
& K=h u^{2}+p+\int_{x} g h \partial_{x} b=F_{0}
\end{aligned}
$$

$$
\begin{aligned}
& \text { or }
\end{aligned}
$$

Numerical examples in 2d

Moving equilibria: sub-critical flow

$$
\begin{aligned}
q x & =h u=q_{0} \\
q y & =h v=0
\end{aligned}
$$

and

$$
E=g(h+b)+k=E_{0}
$$

or

Moving equilibria: sub-critical flow

$$
\begin{aligned}
q x & =h u=q_{0} \\
q y & =h v=0
\end{aligned}
$$

$$
E=g(h+b)+k=E_{0}
$$

or

$$
K=h u^{2}+p+\int_{x} g h \partial_{x} b=F_{0}
$$

Small perturbation: global flux vs nonWB

$h=h^{*}+0.05 e^{-100\left(r-r^{*}\right)^{2}}$ evolved up to $T=2$

Numerical examples in 2d

Steady vortex with bathymetry and Coriolis forces
Modification of the vortex used e.g. in ${ }^{11}$

[^11]Numerical examples in 2d

Ricchiuto

Steady vortex with bathymetry and Coriolis forces
Modification of the vortex used e.g. in ${ }^{11}$

[^12]Steady vortex with bathymetry and Coriolis forces
Modification of the vortex used e.g. in ${ }^{11}$

Inría

[^13]2D geostropyc adjustiment ${ }^{12}$
Shallow water + Coriolis, non-symmetric initial free surface

Initial
${ }^{12}$ Kuo \& Polvani Phys.FI. 12, 2000 - Castro et al SISC 31, 2008
Inría

Numerical examples in 2d

2D geostropyc adjustiment ${ }^{12}$
Shallow water + Coriolis, non-symmetric initial free surface
Numerical examples in 2d

Gf-dGSEM(P2), T=4

[^14]

[^15]2D geostropyc adjustiment ${ }^{12}$
Shallow water + Coriolis, non-symmetric initial free surface

Gf-dGSEM(P2), T=8

2D geostropyc adjustiment ${ }^{12}$
Shallow water + Coriolis, non-symmetric initial free surface

Numerical examples in 2d

$t=8$

[^16]2D geostropyc adjustiment ${ }^{12}$
Shallow water + Coriolis, non-symmetric initial free surface

Numerical examples in 2d

$t=8$

[^17]EC-GF-
Intro
${ }^{\text {(-BLavs }}$
Gf-dGSEM
dGSEM
wBRes 1
WB2d
2D Gf
WBRes 2
I-EC
inría
\square

 -

 \square

號

2
? \square \square

[^18]\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square \square \square

1

Entropy conservation and global fluxes

We seek solutions of the (hyperbolic) system of balance laws

$$
\begin{equation*}
\partial_{t} U+\partial_{x} F(U)=S(U ; \varphi(x)) \tag{1}
\end{equation*}
$$

- Possible genelization of the notion of consistency wrt constants (in space) :

1 Steady invariants
2 Steady integral relations
3 Global fluxes
4 other declinations (continuous or dicrete level)..

- Well balanced scheme: discrete approximation embedding one (or more) of these notions

Remark: consistency and entropy conservation
All of the above relate to the main PDE.
Exact consistency with constant entropy flux, viz entropy conservation comes as an extra contraint.
A well balanced approach may or may not satisfy this constraint.

Entropy conservation and global fluxes

Shallow water equations (no friction).

$$
\partial_{t}\left(\begin{array}{c}
h \tag{6}\\
h u \\
h v
\end{array}\right)+\partial_{x}\left(\begin{array}{c}
h u \\
h u^{2}+p(h) \\
h u v
\end{array}\right)=-h\left(\begin{array}{c}
0 \\
\partial_{x} \varphi+\omega v \\
-\omega u
\end{array}\right)
$$

Entropy conservation.

$$
\partial_{t} \eta+\partial_{x} F_{\eta}=0
$$

where

$$
\begin{equation*}
\eta=p(h)+h k+h \varphi, \quad F_{\eta}=h u(g \zeta+k)=h u E \tag{14}
\end{equation*}
$$

Shallow water equations (no friction).

$$
\partial_{t}\left(\begin{array}{c}
h \\
h u \\
h v
\end{array}\right)+\partial_{x}\left(\begin{array}{c}
h u \\
h u^{2}+p(h)+r \\
h u v+r_{\omega}
\end{array}\right)=0
$$

Conservation and consistency/steady states.
Analytical steady state
Global flux consistent steady state :

$$
\begin{array}{rlrl}
h u & =q_{0} & h u & =q_{0} \\
F_{\eta} & =q_{0} E_{0} \Rightarrow E=E_{0} & K & =h u^{2}+p+r=K_{0} \\
V_{\omega} & =h u v+r_{\omega}=V_{0}
\end{array}
$$

Mismatch between entropy consistent fluxes and global-flux consistency

Entropy conservation and global fluxes

Conservation and consistency/steady states.
Initial data corresponding to $U^{*} /$ global flux consistency

Mismatch between entropy consistent fluxes and global-flux consistency

$$
\partial_{t} \eta+\partial_{x} F_{\eta}=0
$$

Conservation and consistency/steady states.
(1) How to write a scheme with some control on $\partial_{t} \eta$ for Gf-dGSEM

2 How to concile exactness with constant G and $\partial_{t} \eta=0$ (in some sense)

Entropy conservative dGSEM

- Gassner SISC 35, 2013
- Gassner et al Appl.Math.Comp. 272, 2016
- Chen J.Comput.Phys 362, 2017
- Wen et al J.Sci.Comp. 83, 2020
- Chen \& Shu CSIAM Trans. Appl. Math. 1, 2020
- Renac J.Comput.Phys 382, 2019
- and many others

Numerics: entropy conservation 1

Numerics: entropy conservation 2

Entropy conservative dGSEM

$$
\begin{aligned}
& \int_{K} \phi_{i} \partial_{t} h+\int_{K} \phi_{i} \partial_{x} q_{\mathrm{h}}+\left[\phi_{i}\left(\hat{q}_{\mathrm{h}}^{*}-q_{\mathrm{h}}\right)\right]_{\xi=0}+\left[\phi_{i}\left(\hat{q}_{\mathrm{h}}^{*}-q_{\mathrm{h}}\right)\right]_{\xi=1}=0 \\
& \int_{K} \frac{\phi_{i}}{2}\left(\partial_{t} q_{\mathrm{h}}+h_{\mathrm{h}} \partial_{t} u_{\mathrm{h}}\right)+\int_{K} \frac{\phi_{i}}{2}\left(\partial_{x}\left(h u^{2}\right)_{\mathrm{h}}+q_{\mathrm{h}} \partial_{x} u_{\mathrm{h}}\right) \\
& +\int_{K} \phi_{i} g h_{\mathrm{h}} \partial_{x} \zeta_{\mathrm{h}}+\left[\phi_{i}\left(\hat{f}_{\mathrm{h}}^{*}-f_{\mathrm{h}}\right)\right]_{\xi=0}+\left[\phi_{i}\left(\hat{f}_{\mathrm{h}}^{*}-f_{\mathrm{h}}\right)\right]_{\xi=1}=0
\end{aligned}
$$

Main ingredients
(1) SBP property to work (indifferently) with the strong/weak form of the prob.

2 Skew-symmetric split form to enforce kinetic energy conservation
3. Entropy conservative fluxes $\hat{F}^{*}=\left(q^{*}, f^{*}\right)$ to guarantee global entropy conservation: $\llbracket W \rrbracket^{T} \hat{F}^{*}=\llbracket \psi \rrbracket=\llbracket u p(h) \rrbracket$

Entropy conservative dGSEM

$$
\begin{aligned}
& \left.\int_{K} \phi_{i} \partial_{t} h+\int_{K} \phi_{i} \underline{\partial_{x} q_{\mathrm{h}}}+\left[\phi_{i} \underline{\left(\hat{q}_{\mathrm{h}}^{*}-q_{\mathrm{h}}\right.}\right)\right]_{\xi=0}+\left[\phi_{i} \underline{\left(\hat{q}_{\mathrm{h}}^{*}-q_{\mathrm{h}}\right)}\right]_{\xi=1}=0 \\
& \int_{K} \frac{\phi_{i}}{2}\left(\partial_{t} q_{\mathrm{h}}+h_{\mathrm{h}} \partial_{t} u_{\mathrm{h}}\right)+\int_{K} \frac{\phi_{i}}{2}\left(\partial_{x}\left(h u^{2}\right)_{\mathrm{h}}+q_{\mathrm{h}} \partial_{x} u_{\mathrm{h}}\right) \\
& +\int_{K} \phi_{i} g h_{\mathrm{h}} \partial_{x} \zeta_{\mathrm{h}}+\left[\phi_{i}\left(\hat{f}_{\mathrm{h}}^{*}-f_{\mathrm{h}}\right)\right]_{\xi=0}+\left[\phi_{i}\left(\hat{f}_{\mathrm{h}}^{*}-f_{\mathrm{h}}\right)\right]_{\xi=1}=0
\end{aligned}
$$

Main ingredients
(1) SBP property to work (indifferently) with the strong/weak form of the prob.

2 Skew-symmetric split form to enforce kinetic energy conservation
3 Entropy conservative fluxes $\hat{F}^{*}=\left(q^{*}, f^{*}\right)$ to guarantee global entropy conservation: $\|W\|^{T} \hat{F}^{*}=\|\psi\|=\llbracket u p(h) \rrbracket$

Entropy conservative dGSEM

$$
\begin{aligned}
\int_{K} \phi_{i} \partial_{t} h+\int_{K} \phi_{i} \partial_{x} q_{\mathrm{h}}+\left[\phi_{i}\left(\hat{q}_{\mathrm{h}}^{*}-q_{\mathrm{h}}\right)\right]_{\xi=0}+\left[\phi_{i}\left(\hat{q}_{\mathrm{h}}^{*}-q_{\mathrm{h}}\right)\right]_{\xi=1}=0 \\
\int_{K} \frac{\phi_{i}}{2}\left(\partial_{t} q_{\mathrm{h}}+h_{\mathrm{h}} \partial_{t} u_{\mathrm{h}}\right)+\int_{K} \frac{\frac{\phi_{i}}{2}\left(\partial_{x}\left(h u^{2}\right)_{\mathrm{h}}+q_{\mathrm{h}} \partial_{x} u_{\mathrm{h}}\right)}{} \\
+\int_{K} \phi_{i} g h_{\mathrm{h}} \partial_{x} \zeta_{\mathrm{h}}+\left[\phi_{i}\left(\hat{f}_{\mathrm{h}}^{*}-f_{\mathrm{h}}\right)\right]_{\xi=0}+\left[\phi_{i}\left(\hat{f}_{\mathrm{h}}^{*}-f_{\mathrm{h}}\right)\right]_{\xi=1}=0
\end{aligned}
$$

Main ingredients
(1) SBP property to work (indifferently) with the strong/weak form of the prob.

2 Skew-symmetric split form to enforce kinetic energy conservation
3 Entropy conservative fluxes $\vec{F}^{*}=\left(q^{*}, f^{*}\right)$ to guarantee global entropy conservation: $\llbracket W \rrbracket^{T} \hat{F}^{*}=\llbracket \psi \rrbracket=\llbracket u p(h) \rrbracket$

Entropy conservative dGSEM

$$
\begin{aligned}
& \int_{K} \phi_{i} \partial_{t} h+\int_{K} \phi_{i} \partial_{x} q_{\mathrm{h}}+\left[\phi_{i}\left(\underline{\hat{q}_{\mathrm{h}}^{*}}-q_{\mathrm{h}}\right)\right]_{\xi=0}+\left[\phi_{i}\left(\underline{\hat{q}_{\mathrm{h}}^{*}}-q_{\mathrm{h}}\right)\right]_{\xi=1}=0 \\
& \int_{K} \frac{\phi_{i}}{2}\left(\partial_{t} q_{\mathrm{h}}+h_{\mathrm{h}} \partial_{t} u_{\mathrm{h}}\right)+\int_{K} \frac{\phi_{i}}{2}\left(\partial_{x}\left(h u^{2}\right)_{\mathrm{h}}+q_{\mathrm{h}} \partial_{x} u_{\mathrm{h}}\right) \\
& +\int_{K} \phi_{i} g h_{\mathrm{h}} \partial_{x} \zeta_{\mathrm{h}}+\left[\phi_{i}\left(\underline{\hat{f}_{\mathrm{h}}^{*}}-f_{\mathrm{h}}\right)\right]_{\xi=0}+\left[\phi_{i}\left(\underline{\hat{f}_{\mathrm{h}}^{*}}-f_{\mathrm{h}}\right)\right]_{\xi=1}=0
\end{aligned}
$$

Main ingredients
(1) SBP property to work (indifferently) with the strong/weak form of the prob.

2 Skew-symmetric split form to enforce kinetic energy conservation
3 Entropy conservative fluxes $\hat{F}^{*}=\left(q^{*}, f^{*}\right)$ to guarantee global entropy conservation:

$$
\llbracket W \rrbracket^{T} \hat{F}^{*}=\llbracket \psi \rrbracket=\llbracket u p(h) \rrbracket
$$

Entropy conservative dGSEM

- The PDE plays an important role in the process
- Not clear how to ensure properties 2. and 3. in the global flux formulation

$$
\begin{aligned}
& \partial_{t} h+\partial_{x} q=0 \\
& \partial_{t} q+\partial_{x}\left(h u^{2}+p+r\right)=0
\end{aligned}
$$

Main ingredients
(1) SBP property to work (indifferently) with the strong/weak form of the prob.

2 Skew-symmetric split form to enforce kinetic energy conservation
3 Entropy conservative fluxes $\hat{F}^{*}=\left(q^{*}, f^{*}\right)$ to guarantee global entropy conservation:

$$
\llbracket W \rrbracket^{T} \hat{F}^{*}=\llbracket \psi \rrbracket=\llbracket u p(h) \rrbracket
$$

Numerics: entropy conservation 3

Entropy correction technique ${ }^{13}$

[^19]Numerics: entropy conservation 3

Entropy correction technique ${ }^{13}$

$$
w_{i} \frac{d U_{i}}{d t}+\Phi_{i}+\Psi_{i}^{L}+\Psi_{i}^{R}=0
$$

[^20] Ricchiuto

Numerics: entropy conservation 3

Entropy correction technique ${ }^{13}$

$$
w_{i} \frac{d U_{i}}{d t}+\Phi_{i}+\Psi_{i}^{L}+\Psi_{i}^{R}+\alpha_{K} \int_{K} \partial_{x} \phi_{i} A_{0} \partial_{x} W_{\mathrm{h}}=0
$$

- W are the entropy variables such that $W^{T} \partial U=\partial \eta$
- $A_{0}=\partial U / \partial W$ is the SPD entropy Hessian inverse

[^21]Entropy correction technique ${ }^{13}$

$$
w_{i} \frac{d U_{i}}{d t}+\Phi_{i}+\Psi_{i}^{L}+\Psi_{i}^{R}+\alpha_{K} \int_{K} \partial_{x} \phi_{i} A_{0} \partial_{x} W_{\mathrm{h}}=0
$$

Multiply by W_{i}^{T}, and add up over $i \in K$ and over all K s:

$$
\sum_{K} \sum_{i \in K} w_{i} W_{i}^{T} \frac{d U_{i}}{d t}+\sum_{K} \sum_{i \in K} W_{i}^{T}\left(\Phi_{i}+\Psi_{i}^{L}+\Psi_{i}^{R}\right)+\sum_{K} \mathcal{D}_{K}=0
$$

[^22]Entropy correction technique ${ }^{13}$

$$
w_{i} \frac{d U_{i}}{d t}+\Phi_{i}+\Psi_{i}^{L}+\Psi_{i}^{R}+\alpha_{K} \int_{K} \partial_{x} \phi_{i} A_{0} \partial_{x} W_{\mathrm{h}}=0
$$

Multiply by W_{i}^{T}, and add up over $i \in K$ and over all $K \mathrm{~s}$:

$$
\sum_{K} \underbrace{\sum_{i \in K} w_{i} W_{i}^{T} \frac{d U_{i}}{d t}}_{=\int_{K} \partial_{t} \eta_{\mathrm{h}}}+\sum_{K} \underbrace{\sum_{i \in K} W_{i}^{T}\left(\Phi_{i}+\Psi_{i}^{L}+\Psi_{i}^{R}\right)}_{:=\Phi_{\eta}^{K}}+\sum_{K} \mathcal{D}_{K}=0
$$

[^23]Entropy correction technique ${ }^{13}$

$$
w_{i} \frac{d U_{i}}{d t}+\Phi_{i}+\Psi_{i}^{L}+\Psi_{i}^{R}+\alpha_{K} \int_{K} \partial_{x} \phi_{i} A_{0} \partial_{x} W_{\mathrm{h}}=0
$$

Multiply by W_{i}^{T}, and add up over $i \in K$ and over all K s:

$$
\begin{gathered}
\int_{\Omega} \partial_{t} \eta_{\mathrm{h}}+\sum_{K}\left(\Phi_{\eta}^{K}+\mathcal{D}_{K}\right)=0 \\
\mathcal{D}_{K}=\alpha_{K}\left\|\partial_{x} W\right\|_{L_{A_{0}}^{2}(K)}^{2}
\end{gathered}
$$

[^24]Entropy correction technique ${ }^{13}$

$$
w_{i} \frac{d U_{i}}{d t}+\Phi_{i}+\Psi_{i}^{L}+\Psi_{i}^{R}+\alpha_{K} \int_{K} \partial_{x} \phi_{i} A_{0} \partial_{x} W_{\mathrm{h}}=0
$$

Multiply by W_{i}^{T}, and add up over $i \in K$ and over all $K \mathrm{~s}$:

$$
\int_{\Omega} \partial_{t} \eta_{\mathrm{h}}+\sum_{K}\left(\Phi_{\eta}^{K}+\mathcal{D}_{K}\right)=0
$$

We now set

$$
\Phi_{\eta}^{K}+\mathcal{D}_{K}=\Psi_{\eta}^{K}=\oint_{\partial_{K}} \hat{F}_{\eta}\left(U_{\mathrm{h}}\right) \cdot \hat{n} \quad \Rightarrow \quad \alpha_{K}=\frac{\Psi_{\eta}^{K}-\Phi_{\eta}^{K}}{\left\|\partial_{x} W\right\|_{L_{A_{0}}^{2}(K)}^{2}}
$$

[^25]Entropy correction technique ${ }^{13}$

$$
w_{i} \frac{d U_{i}}{d t}+\Phi_{i}+\Psi_{i}^{L}+\Psi_{i}^{R}+\alpha_{K} \int_{K} \partial_{x} \phi_{i} A_{0} \partial_{x} W_{\mathrm{h}}=0
$$

Multiply by W_{i}^{T}, and add up over $i \in K$ and over all $K \mathrm{~s}$:

$$
\int_{\Omega} \partial_{t} \eta_{\mathrm{h}}+\sum_{K}\left(\Phi_{\eta}^{K}+\mathcal{D}_{K}\right)=0
$$

In 1D

$$
\Phi_{\eta}^{K}+\mathcal{D}_{K}=\Psi_{\eta}^{K}=\left.\hat{F}_{\eta}\right|_{\xi=1}-\left.\hat{F}_{\eta}\right|_{\xi=0} \quad \Rightarrow \quad \alpha_{K}=\frac{\Psi_{\eta}^{K}-\Phi_{\eta}^{K}}{\left\|\partial_{x} W\right\|_{L_{A_{0}}^{2}(K)}^{2}}
$$

[^26]Entropy correction technique ${ }^{13}$

$$
w_{i} \frac{d U_{i}}{d t}+\Phi_{i}+\Psi_{i}^{L}+\Psi_{i}^{R}+\alpha_{K} \int_{K} \partial_{x} \phi_{i} A_{0} \partial_{x} W_{\mathrm{h}}=0
$$

Proposition (Entropy conservative correction). Let \hat{F}_{η} be a consistent entropy flux, and

$$
\begin{equation*}
\alpha_{K}:=\frac{\Psi_{\eta}^{K}-\Phi_{\eta}^{K}}{\left\|\partial_{x} W\right\|_{L_{A_{0}}^{2}(K)}^{2}} \tag{14}
\end{equation*}
$$

The resulting Gf-dGSEM semi-discretization
1 verifies cell (and global) entropy conservation (time continuous)
2 verifies a $\mathcal{E}=\mathcal{O}\left(h^{p+1}\right)$ consistency estimate

[^27]Entropy correction technique ${ }^{13}$

$$
w_{i} \frac{d U_{i}}{d t}+\Phi_{i}+\Psi_{i}^{L}+\Psi_{i}^{R}+\alpha_{K} \int_{K} \partial_{x} \phi_{i} A_{0} \partial_{x} W_{\mathrm{h}}=0
$$

Proposition (Entropy conservative correction). Let \hat{F}_{η} be a consistent entropy flux, and

$$
\begin{equation*}
\alpha_{K}:=\frac{\Psi_{\eta}^{K}-\Phi_{\eta}^{K}}{\left\|\partial_{x} W\right\|_{L_{A_{0}}(K)}^{2}} \tag{14}
\end{equation*}
$$

The resulting Gf-dGSEM semi-discretization
(1) verifies cell (and global) entropy conservation (time continuous)

2 verifies a $\mathcal{E}=\mathcal{O}\left(h^{p+1}\right)$ consistency estimate

[^28]
Entropy conservation and global fluxes

Shallow water equations (no friction).

$$
\partial_{t}\left(\begin{array}{c}
h \\
h u \\
h v
\end{array}\right)+\partial_{x}\left(\begin{array}{c}
h u \\
h u^{2}+p(h)+r \\
h u v+r_{\omega}
\end{array}\right)=0
$$

Conservation and consistency/steady states.
Analytical steady state
Global flux consistent steady state :

$$
\begin{aligned}
& h u=q_{0} \\
& F_{\eta}=q_{0} E_{0} \Rightarrow E=E_{0}
\end{aligned}
$$

$$
h u=q_{0}
$$

$$
K=h u^{2}+p+r=K_{0}
$$

$$
V_{\omega}=h u v+r_{\omega}=V_{0}
$$

Mismatch between entropy consistent fluxes and global-flux consistency

Alternative definitions of a numerical entropy flux
Solution 1: approximation consistent with analytical entropy flux, e.g.

$$
\hat{F}_{\eta}=\lambda F_{\eta}\left(U^{-} ; \varphi^{-}\right)+(1-\lambda) F_{\eta}\left(U^{+} ; \varphi^{+}\right)
$$

- globally entropy conservative (time continuous)
- exact for analytical steady data but not for constant global fluxes
- the correction term spoils the underlying consistency condtion

Entropy conservation and global fluxes

Conservation and consistency/steady states.
Initial data corresponding to $U^{*} /$ global flux consistency

Mismatch between entropy consistent fluxes and global-flux consistency

Entropy correction with global fluxes 2

Alternative definitions of a numerical entropy flux Solution 2: a global flux-consistent approximation.

First set $F_{\eta, 0}^{*}=F_{\eta}\left(U_{0}\right)$ (left hand of the domain). Then $\forall\left\{K_{j}\right\}_{j \geq 1}$ do
1 Set $\left(F_{\eta}^{*}\right)_{0}=F_{\eta}^{*}\left(U^{-}\right)+\llbracket F_{\eta}\left(U_{\mathrm{h}} ; \varphi\right) \rrbracket=F_{\eta}^{*}\left(x_{p}\right)_{K_{j-1}}+\llbracket F_{\eta}\left(U_{\mathrm{h}} ; \varphi\right) \rrbracket$
2 Compute: $F_{\eta}^{*}(x)=\left(F_{\eta}^{*}\right)_{0}+\int_{x_{0}}^{x} W_{\mathrm{h}}^{T} \partial_{x} G_{h}$

Entropy correction with global fluxes 2

Alternative definitions of a numerical entropy flux
Solution 2: a global flux-consistent approximation.

First set $F_{\eta, 0}^{*}=F_{\eta}\left(U_{0}\right)$ (left hand of the domain). Then $\forall\left\{K_{j}\right\}_{j \geq 1}$ do
1 Set $\left(F_{\eta}^{*}\right)_{0}=F_{\eta}^{*}\left(U^{-}\right)+\llbracket F_{\eta}\left(U_{\mathrm{h}} ; \varphi\right) \rrbracket=F_{\eta}^{*}\left(x_{p}\right)_{K_{j-1}}+\llbracket F_{\eta}\left(U_{\mathrm{h}} ; \varphi\right) \rrbracket$
2 Compute: $F_{\eta}^{*}(x)=\left(F_{\eta}^{*}\right)_{0}+\int_{x_{0}}^{x} W_{\mathrm{h}}^{T} \partial_{x} G_{h}$

If we set $\hat{F}_{\eta}=\lambda\left(F_{\eta}^{*}\right)^{-}+(1-\lambda)\left(F_{\eta}^{*}\right)^{+}$, the Gf-dGSEM obtained is

- globally entropy conservative (time continuous)
- compatible with constant global flux as long as φ is continuously approximated

Well balanced and entropy conservative results 1

Conservation and consistency/steady states.
Initial data corresponding to $U^{*} /$ global flux consistency

Mismatch between entropy consistent fluxes and global-flux consistency

Well balanced and entropy conservative results 1

Conservation and consistency/steady states.
Initial data corresponding to $U^{*} /$ global flux consistency

We can choose the EC correction depending on the initial data

Well balanced and entropy conservative results 2

Moving steady state: sub-critical

Ricchiuto

Well balanced and entropy conservative results 3

Moving steady state: super-critical

Ricchiuto

- Family of schemes discretely well balanced/super-convergent
- Agnostic of the particular equilibrium in 1D
- Relation between super-convergent behaviour and underlying ODE integrator
- Measurable net improvements for some 2D tests
- Correction allowing global (time continuous) entropy preservation compatible with both analytical or global flux initialization dGSEM

Extensions future work

Nonlinear formulations

Troubled cell indicator/P0 switch:

Gf-WENO (with M. Ciallella \& D. Torlo):

Transcritical flow: characteristic variables computed by GF-WENO5 (red) and WENO5 (black)

Euler Equations with gravity Isothermal eq. solution ${ }^{14}$

(b) Non-well-balanced scheme

[^29]Ongoing/future work

- Well balanced cGSEM (with R. Abgrall, L. Micalizzi, S. Michel, \& D. Torlo)
- Fully discrete entropy conservative ADER + relaxation (with E. Gaburro, P. Öffner \& D. Torlo)
- Entropy controlled with a-posteriori limiter (with E. Gaburro, P. Öffner \& D. Torlo)
- Sources depending on time derivatives: dispersive PDEs (with W. Barsukow and D. Torlo)
- Genuinely 2D : $G=$ const $\neq \nabla \cdot G=0 \ldots$

Intro
I-BLaws
SWEs
t-WB
Gf-dGSEM
dGSEM
WBRes 1
WB2d
2D Gf-cG
w
f

[^0]: ${ }^{1}$ Castro et al, SISC 31, 2008

[^1]: ${ }^{3}$ Kopriva \& Gassner J.Sci.Comp. 44, 2010 ; Hesthaven \& Warburton, Springer 2008

[^2]: ${ }^{4}$ Kopriva \& Gassner J.Sci.Comp. 44, 2010; Gassner et al. J.Comput.Phys. 327, 2016

[^3]: ${ }^{5}$ A. Prothero \& A. Robinson, Math.Comp. 28, 1974

[^4]: ${ }^{6}$ A. Prothero \& A. Robinson, Math.Comp. 28, 1974

[^5]: ${ }^{7}$ Generalization of approach by Xing \& Shu, J.Comput.Phys. 208, 2005

[^6]: ${ }^{7}$ Generalization of approach by Xing \& Shu, J.Comput.Phys. 208, 2005

[^7]: ${ }^{7}$ Generalization of approach by Xing \& Shu, J.Comput.Phys. 208, 2005

[^8]: ${ }^{8}$ Castro et al, SISC 31, 2008

[^9]: ${ }^{9}$ Bouchut et al. J.Fluid Mech. 514, 2004 ; Castro et al. SISC 31, 2008

[^10]: ${ }^{10}$ cf. e.g. (Michel-Dansac et al. Computers \& Fluids 230, 2021) for similar result

[^11]: ${ }^{11}$ Audusse et al. J.Comput.Phys. 228, 2009 - Chertock et al, Numerische Mathematik 128, 2018

[^12]: ${ }^{11}$ Audusse et al. J.Comput.Phys. 228, 2009 - Chertock et al, Numerische Mathematik 128, 2018

[^13]: ${ }^{11}$ Audusse et al. J.Comput.Phys. 228, 2009 - Chertock et al, Numerische Mathematik 128, 2018

[^14]: ${ }^{12}$ Kuo \& Polvani Phys.FI. 12, 2000 - Castro et al SISC 31, 2008

[^15]: ${ }^{12}$ Kuo \& Polvani Phys.FI. 12, 2000 - Castro et al SISC 31, 2008

[^16]: ${ }^{12}$ Kuo \& Polvani Phys.FI. 12, 2000 - Castro et al SISC 31, 2008

[^17]: ${ }^{12}$ Kuo \& Polvani Phys.FI. 12, 2000 - Castro et al SISC 31, 2008

[^18]:

[^19]: ${ }^{13}$ Abgrall J.Comput.Phys. 372, 2018 - Abgrall et al, J.Comput.Phys. 4532022

[^20]: ${ }^{13}$ Abgrall J.Comput.Phys. 372, 2018 - Abgrall et al, J.Comput.Phys. 4532022

[^21]: ${ }^{13}$ Abgrall J.Comput.Phys. 372, 2018 - Abgrall et al, J.Comput.Phys. 4532022

[^22]: ${ }^{13}$ Abgrall J.Comput.Phys. 372, 2018 - Abgrall et al, J.Comput.Phys. 4532022

[^23]: ${ }^{13}$ Abgrall J.Comput.Phys. 372, 2018 - Abgrall et al, J.Comput.Phys. 4532022

[^24]: ${ }^{13}$ Abgrall J.Comput.Phys. 372, 2018 - Abgrall et al, J.Comput.Phys. 4532022

[^25]: ${ }^{13}$ Abgrall J.Comput.Phys. 372, 2018 - Abgrall et al, J.Comput.Phys. 4532022

[^26]: ${ }^{13}$ Abgrall J.Comput.Phys. 372, 2018 - Abgrall et al, J.Comput.Phys. 4532022

[^27]: ${ }^{13}$ Abgrall J.Comput.Phys. 372, 2018 - Abgrall et al, J.Comput.Phys. 4532022

[^28]: ${ }^{13}$ Abgrall J.Comput.Phys. 372, 2018 - Abgrall et al, J.Comput.Phys. 4532022

[^29]: ${ }^{14}$ See e.g. Chertock et a J.Comput.Phys. 358, 2018

