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Abstract5

We consider the issue of wave breaking closure for Boussinesq type models, and attempt at providing some more6

understanding of the sensitivity of some closure approaches to the numerical set-up, and in particular to mesh size. For7

relatively classical choices of weakly dispersive propagation models, we compare two closure strategies. The first is8

the hybrid method consisting in suppressing the dispersive terms in breaking regions, as initially suggested by Tonelli9

and Petti in 2009. The second is an eddy viscosity approach based on the solution of a a turbulent kinetic energy.10

The formulation follows early work by O. Nwogu in the 90’s, and some more recent developments by Zhang and11

co-workers (Ocean Mod. 2014), adapting it to be consistent with the wave breaking detection used here. We perform12

a study of the behavior of the two closures for different mesh sizes, with attention to the possibility of obtaining grid13

independent results. Based on a classical shallow water theory, we also suggest some monitors to quantify the different14

contributions to the dissipation mechanism, differentiating those associated to the scheme from those of the partial15

differential equation. These quantities are used to analyze the dynamics of dissipation in some classical benchmarks,16

and its dependence on the mesh size. Our main results show that numerical dissipation contributes very little to the17

the results obtained when using eddy viscosity method. This closure shows little sensitivity to the grid, and may lend18

itself to the development and use of non-dissipative/energy conserving numerical methods. The opposite is observed19

for the hybrid approach, for which numerical dissipation plays a key role, and unfortunately is sensitive to the size20

of the mesh. In particular, when working, the two approaches investigated provide results which are in the same ball21

range and which agree with what is usually reported in literature. With the hybrid method, however, the inception22

of instabilities is observed at mesh sizes which vary from case to case, and depend on the propagation model. These23

results are comforted by numerical computations on a large number of classical benchmarks.24

1 Introduction25

The last decades have seen the development of several numerical models allowing the simulation of wave26

propagation from intermediate depths to shallow water by means of some set of depth averaged Boussinesq-27

type (BT) equations. Many implementations of these are quite well known in the coastal engineering com-28

munity, to which they and often freely available. We can for example mention the codes BOUSS-2D [1–4],29

Funwave [5, 6], Coulwave [7, 8] BOSZ [9], MIKE21 [10], TUCWave [11, 12], and many others. These30

models allow to accurately simulate the dispersive propagation and shoaling of free surface waves, within31

some asymptotic error w.r.t. nonlinearity and dispersion parameters depending on wave amplitude, wave-32

length and depth. The reader may refer to the reviews [13, 14] for a broad discussion, and the book [15] for33

the fundamental aspects concerning the derivation of the underlying partial differential equations. These34

equations are obtained under the hypotheses of ideal, and most often irrotational flow, and cannot account35

for the transformation processes taking place in breaking regions. To cope with this limitation, some closure36

model needs to be introduced.37
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At large scales, the main consequence of wave breaking is a strong energy dissipation. So the first at-38

tempt to simulate wave breaking was proposed by Zelt [16] introducing a dissipation term in the momentum39

equation. This term controls the dissipation of energy produced by the wave breaking and it is governed40

by the value of an eddy viscosity coefficient which must be calibrated with experimental data. Of course,41

different calibration is needed for different sets of equations. Moreover, to initiate and/or terminate the42

breaking process some breaking detection criterion needs to be used to activate this eddy viscosity term.43

The same approach has been followed by many researchers, see for example [17–22]. One of the criticisms44

to this approach is that, while simple, no direct physical meaning can be attributed to the scaling coeffi-45

cients involved in the definition of the viscosity [23]. A more relevant physical definition of the effects46

of breaking on the large scale flow has been attempted using the so-called roller models (see e.g. [23–26].47

While based on a better physical background, these models still require some ad-hoc definition of a mo-48

mentum dissipation, and require some calibration. A more advanced version of these roller models has been49

proposed in [27], and more recently extended in [28]. These models attempt at accounting for variations50

along the depth of some of the physical quantities (eddy viscosity, horizontal velocity), thus going beyond51

the irrotational hypothesis when computing the vorticity and/or dissipation generated in breaking regions.52

While promising in principle, these models are more complex to implement, require an additional vertical53

discretization, and have so far been applied only to simple configurations. We also mention the related work54

presented in [29, 30] in which BT models with vorticity effects are discussed. Beside the requirement of a55

proper calibration of the model, one of the questions we think is not clearly answered in literature is how56

much the numerical method interacts with the above modelling approaches, and in particular what is the57

balance between the numerical and model dissipation. This is also related to the fact that almost system-58

atically wave breaking benchmarks are presented without any grid convergence analysis. Another issue is59

the ability of these approaches to describe properly some special cases as, e.g. stationary hydraulic jumps.60

To the authors’ knowledge there is very little evidence in literature that this type of breaker can be easily61

modelled with the eddy viscosity approach. Results embedding this type of features, such as e.g. the 2D62

reef computations presented in [18], again computed on a single mesh. This makes unclear whether the63

major effect observed is that of the model or that of the limiter/numerical dissipation.64

Nevertheless, the eddy viscosity method is a very successful one, which is why we consider its use in65

this paper. Previous work from one of the authors [12, 31] has shown that the classical definition of the66

eddy viscosity by [17] has trouble detecting stationary hydraulic jumps, and that even modifying the incep-67

tion mechanisms, the amount of viscosity obtained is not enough for this type of breakers. For this reason68

we have looked at a more involved approach involving partial differential equations for the main physi-69

cal quantities: turbulent kinetic energy, energy dissipation, eddy viscosity, and so on. To our knowledge70

so far only [1,3,4,32–35] have adopted this path, with only [1–4,32,33] actually focusing on complex cases.71

72

As an alternative to the use of eddy viscosity the last ten years have seen the development of a hybrid73

approach based on a local coupling of the dispersive propagation model with the shallow water equations.74

It is a simple method in which one first detects breaking regions, and in these the dispersive terms are sup-75

pressed. In these breaking regions thus one solves the non-linear shallow water (NSW) equations which76

allow to model a breaker as a shock. Through this discontinuity mass and momentum are conserved, while77

total energy is dissipated, thus modelling the energy dissipation due to breaking. Due to its relative simplic-78

ity and effectiveness, this approach has gained substantial attention in the coastal engineering community,79

see for example [6, 9, 12, 36–38]. The idea was first introduced in [36] in order to exploit the Finite Vol-80

ume (FV) technique as to simulate discontinuous phenomena such as wave breaking and run-up. In the81

same work, an indicator criterion for breaking has been extracted based on the similarity between spilling82

breakers and bores. This criterion has been proven inadequate in some cases [12, 39] since its use leads83
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to less energy dissipation than needed. Several more sophisticated criteria have been developed based on84

physical or numerical arguments [12, 40–42]. As pointed out in [37], this approach has a major limitation85

in the stability of the coupling which introduces spurious oscillations at the interface between the breaking86

and no-breaking region. This phenomenon has been observed by many [43–45], but is unfortunately poorly87

documented in literature. One of the issues not fully addressed is the role of numerical dissipation in curing88

this flaw. The use of more robust limiting procedures, is advocated by some as e.g. [43, 46] as a means89

of stabilizing the numerical solution. For example, for of a fully non-linear weakly dispersive propagation90

model in [43] it is suggested that degrading the accuracy of the numerical discretization in correspondence91

of the shallow water-Boussinesq interface, thus somehow increasing numerical dissipation, allows to re-92

move numerical perturbations on relatively coarse meshes. Unfortunately, the sensitivity to the grid size93

for this closure remains unclear. To demonstrate this point we consider the following motivational example94

involving the shoaling and breaking of a solitary wave on a slope. This example is part of a set of very95

classical benchmarks by C. Synolakis [47] which we will study in more detail in section §
test_synolakis
7.2. Here, we96

present results for a breaking case (wave nonlinearity equal to 0.28), in which we set manually the transi-97

tion region according to its known position from the experiments. Compared to actual simulations with the98

hybrid method, note that this eliminates one of the causes of instability: the intermittency of the detection.99

We then perform simulations degrading the numerical scheme at the interface between the Boussinesq and100

shallow water regions, and in all the shallow water region. In these areas we use the most non-oscillatory101

and robust possible choice: the first order upwind finit volume method. We consider in figure
refined_osc1
1 results in102

two very close time instants, on three meshes. The red line shows the detection flag separating the Boussi-103

nesq and shallow water regions (one indicates the breaking region, and zero the Boussinesq region). The104

figures show that: no instabilities whatsoever are observed in the largest gradient region (which will become105

the bore). An oscillation is instead triggered at the interface, and its blow up is almost instantaneous on the106

finest mesh, despite the fact that the most dissipative approach available has been used.107

refined_osc1

Figure 1: Solitary wave breaking on a slope: hybrid treatment with order reduction at the coupling interface.
Wave height at times t = 4.5258s, 4.5267s (top and bottom rows), on mesh sizes (from left to right)
∆x = 0.01m, 0.005m, 0.001m.

Grid convergence analysis for breaking cases are quite rare in literature. The only exception we are108

aware of is the single computation shown in [6] in which the authors observe convergence in time aver-109
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aged quantities, but report the appearance of increasing oscillations in the pointwise values of the solution110

without further notice. Clarifying these aspects is of paramount importance. Indeed if one cannot be sure111

that the mesh size allows the numerical dissipation to be sufficiently large, the initiation of the numerical112

instabilities may be confused with physical/dispersive effects. A control of this flaw is of course also needed113

if one wishes for example to use mesh adaptation in breaking regions.114

115

The aim of this work is to investigate the above issues for choices of propagation models and wave116

breaking closures representative of classical and well known models such as BOUSS-2D [3, 4], Funwave117

[5,6], Coulwave [7,8], BOSZ [9], MIKE21 [10], TUCWave [11,12], and others. We thus use two enhanced118

weakly dispersive Boussinesq models: the weakly nonlinear model of Nwogu (used e.g. in BOUSS-2D,119

BOSZ, and TUCWave), and a frequency enhanced variant of the fully nonlinear Green-Naghdi equations120

(with similar properties to those used in Funwave and Coulwave). We compare the hybrid approach to an121

eddy viscosity model. Note that with the eddy viscosity closure the breaking wave fronts are smoother than122

those obtained with the hybrid method which relies on the approximation of these fronts as shocks. For123

this reason when using the hybrid approach one has to carefully choose the conservative form used to solve124

the model, which is essential to recover the right jump conditions, and some form of limiting to avoid the125

creation of additional spurious numerical oscillations in correspondance of the shock [11, 12, 48, 60].126

As mentioned before, the original definition of an eddy viscosity model [17] has been previously shown127

to have difficulties in handling steady hydraulic jumps [12, 31]. For this reason we have chose to use an128

approach based on the solution of a partial differential equation for the turbulent kinetic energy, similar129

to the one studied with BOUSS-2D (see [1, 3, 4, 33]). Note that other closures, such as roller models as130

proposed in [27, 28], or other definitions of the eddy viscosity are certainly as valid a choice as the one131

made here. A thorough comparison of differences in these approaches ins not in our scopes, and is left for132

future work. Our main objectives are the following:133

• to perform a systematic study of the behaviour of the two closures for different mesh sizes, with134

attention to the possibility of obtaining grid independent results ;135

• to gain an insight into the mechanism actually responsible for wave breaking by providing a quan-136

titative description of the different contributions to the dissipation mechanism, differentiating those137

associated to the numerical scheme from those introduced at the PDE level;138

• to provide some understanding of the sensitivity of the above mentioned dissipation to the mesh size;139

• to prove the equivalent capabilities of the approaches studied in reproducing simple as well as com-140

plex wave transformation, while showing the substantial difference in the underlying dissipation141

mechanisms.142

The paper is organised as follows. Section two presents the two Boussinesq approximations used in143

this work. Section 3 discusses the numerical approximation of the models, as well as of the wave breaking144

closure. The comparison of the two approaches on a wide selection of benchmarks is discussed in section145

4. The paper is ended by a summary and a sketch of the future and ongoing developments of this work.146

2 Wave propagation models147

2.1 The weakly nonlinear-weakly dispersive model of Nwogu148

With the notation sketched in figure
notation
2, we consider the Boussinesq equations proposed by Nwogu [49]149

based on a weakly-dispersive and weakly-nonlinear asymptotic approximation in terms of the velocity ua150

4



at an arbitrary distance from a still water level za. Denoting partial derivatives with respect to space and151

time with the subscripts x and t, Nwogu’s equations can be cast in a balance law form as follows152

Ut + F(U∗)x = Sb − Sd + Sf + Rwb, (1)

where U is the vector of the new variables, U∗ is the vector of the conserved variables, and F is the flux153

vector154

U =

[
H
P ∗

]
, F(U) =

[
Hua

H(ua)2 + 1
2gH

2

]
.

The P ∗ variable is a pseudo-mass flux accounting for the vertical (weakly-dispersive and weakly-nonlinear)155

expansion of the velocity profile:156

P ∗ = Hua +Hza
(
za

2
uaxx + (dua)xx

)
(2)

In the above equations d denotes the still water depth,H(x, t) = d(x)+η(x, t) the total water depth, η(x, t)157

the free surface elevation, b the bathymetry height, g is the gravitational acceleration. As done usually, the158

value of za is chosen to optimize the linear dispersion properties of the model, namely za = −0.531d.159

Figure 2: Sketch of the domain. notation

The three source terms on the right hand side of (
nwogu
1) can be expressed as Sb = [0 −gHbx]T , accounting160

for the effects of the shape of the topography, Sf = [0 − gHSfua] with Sf = n2
m||u||
H4/3 , accounting for the161

friction on the bottom, and Sd = [ψC uaψC − ψM ] introduces additional dispersive terms which do not162

contain time derivatives, and in paticular163

ψM = −((Hua)x + ψC)za
(
za

2
uaxx + (dua)xx

)
, ψC =

[(
(za)2

2
− d2

6

)
duaxx +

(
za +

d

2

)
d(dua)xx

]
x

. (3)

The last term on the right hand side is the turbulent wave breaking term, which is only present when this164

approach is activated. Following [1, 32, 33] this term has the form165

Rwb =

[
0
rwb

]
x

, rwb = νtHu
a
x

with the eddy viscosity νt computed from the discretization of the turbulence model, discussed in §
turb_model
4.2.166
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2.2 Fully nonlinear-weakly dispersive Green-Naghdi equations167

To account for fully nonlinear effects, we also consider the Green-Nagdhi (GN) partial differential equations168

[50]. In particular, we cast the system in the form suggested in [37] (see also [15, 51, 52] and references169

therein) :170

Ht + (Hu)x = 0 (4)

(Hu)t + (Hu2)x + gHηx = Hψ (5)

Hψ + αHT (ψ) = HT (w)−HQ+ gHSfu+ (rwb)x (6)

where now u denotes the depth averaged velocity, with w = gηx, and T a linear elliptic operator with the171

self-adjoint form [51]172

T (·) = S∗1 (HS1 (·)) + S∗2 (HS2 (·)) , (7) T1

where in one space dimension173

S1 =
H√

3
(·)x −

√
3

2
bx(·), S2 =

1

2
bx(·). (8) T2

The quantity ψ in (
gns2
5) and (

gns3
6) is essentially the gradient of the non-hydrostatic pressure. The right hand side174

last in (
gns3
6) also introduces the nonlinear forcing Q defined as175

Q = 2HHx(ux)2 +
4H2

3
uxuxx +Hbx(ux)2 +Hbxxuux +

[
bxxHx +

1

2
Hbxxx + bxbxx

]
u2 (9)

Following [38] the value α = 1.159 is chosen to optimise the linear dispersion relation of the system. In176

absence of friction and of turbulent dissipation, the above system can be solved in two independent steps:177

the first to invert the elliptic operator I+αT , the second to evolve physical quantities by solving the shallow178

water equations with the algebraic dispersive correction Hψ.179

3 Numerical discretization of the Boussinesq models180

The numerical treatment of both systems introduced above is done using an implicit treatment of the dis-181

sipative components (friction and/or turbulent dissipation). In particular, the kernel of both models is the182

hyperbolic component which rules the evolution of the water level and flux variables. Consider then non-183

overlapping temporal slabs [tn, tn+1], with ∆tn+1 = tn+1 − tn. The hyperbolic evolution is performed184

with the two-stages Adams Bashforth-Adams Moulton predictor-corrector method which, for the ODE185

U ′ = L(U) reads:186

1. Predictor stage (Adams-Basforth method)187

Up = Un + ∆tLp , Lp =
23

12
L(Un)− 16

12
L(Un−1) +

5

12
L(Un−2) (10)

2. Corrector stage (Adams-Moulton method)188

Un+1 = Un + ∆tLC LC =
9

24
L(Up) +

19

24
L(Un)− 5

24
L(Un−1) +

1

24
L(Un−2) (11)
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with the time step is computed by means of the standard condition ∆tn+1 = CFL∆x/max
i

(|uni |+
√
ghni ).189

Within both stages, the evolution operatorL accounts for all the effects except those of friction and turbulent190

dissipation (if present). In particular, the shallow water terms are approximated by means of a third order191

MUSCL finite volume approximation [53,54], with Roe-type numerical fluxes [55]. It is useful for some of192

the analysis that will follow to report the form of these fluxes reading :193

LSWi = − 1

∆x
(Fi+1/2 − Fi−1/2) + ∆S

i+1/2
bi + ∆S

i−1/2
bi

Fi+1/2 =FCi+1/2 −
1

2
|A|i+1/2∆i+1/2U

(12) roeflux

where FC is the centered flux, and ∆(·)i+1/2 = (·)Ri+1/2− (·)Li+1/2, and |A|i+1/2 is the usual absolute value194

of the shallow water flux Jacobian, computed via eigenvalue decomposition, and modified with an entropy195

fix [56, 57]. The source term contributions ∆S
i±1/2
bi are well balanced, and involve both a centered and an196

upwind approximation of the gradient of the bathymetry. We omit details concerning this (quite classical)197

aspect, for which the interested reader can consult [58–62] and references therein.198

Concerning the dispersive terms, the Sd contribution in (
nwogu
1) is discretized using finite differences. While199

for the hyperbolic component the minimization of the dispersion error requires at least a third order approx-200

imation, this is not the case for the higher derivatives in the dispersive terms (see [5,37] for more details on201

this issue). Here, following [60], the second and third order order derivatives in (
nwogu
1) are treated by means of202

second order central differencing. Similarly, the dispersive correction ψ in the GN system (
gns1
4)-(

gns3
6) is eval-203

uated by means of a second order P 1 continuous finite element approximation of the operator H + αHT204

and of the nonlinear forcing temr Q. In absence of friction and turbulent dissipation, equation (
gns3
6) can be205

simplified by dividing trough by H , and the self adjoint character of T (equations (
T1
7) and (

T2
8)) can be used206

to deduce a simple variational form reading207

∫
Ω

(vψ + S1(v)HS1(ψ) + S2(v)HS2(ψ)) =

∫
Ω

(S1(v)HS1(w) + S2(v)HS2(w)) + Q(v)

The last expression immediately allows to recover the three diagonal system for the unknown ψ which is208

symmetric and positive semi-definite. The term Q on the right hand side is the variational form of the forc-209

ing term (
Q
9) for which we refer to the full expressions given in [37, 63].210

211

The effects of friction and turbulent dissipation (if present) are now embedded in an implicit manner, by212

appropriately correcting the velocity values. In particular, for Nwogu’s equations, the stage iterations (
pred
10)213

and (
corr
11) are modified as follows:214

Unew −∆tSnewf −∆tRnew
wb = Un + ∆tL

Accounting for the definitions of the source terms, and of the pseudo mass-flux P ∗ in (
vel_n
2), we obtain the215

following operator defining the new velocity values (the superscript a is dropped for simplicity)216

Hnew(unew+za
(
za

2
unewxx + (d unew)xx

)
+ ∆tgSf (Hnew, u∗)unew)−∆t(ν∗tH

newunewx )x

= Hnun+Hnza
(
za

2
unxx + (d un)xx

)
+ ∆tLHu

(13) eq:vel_nwogu
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where LHu is the second component of L, u∗ and ν∗t are the last available values of the velocity and217

turbulent viscosity, and Hnew is independently computed from the first discretized equation. As before,218

the derivatives present in (
eq:vel_nwogu
13) are discretized using second order central finite differences, yielding a tri-219

diagonal system for the new value of the velocity at each stage.220

The implementation has been slightly modified for the GN equations. In this case we have added after221

each of the iterations (
pred
10) and (

corr
11) a split (in time) implicit discretization of Ut = Snewf +Rnew

wb . Denoting222

by u∗ the last known value of the velocity (after (
pred
10) and/or (

corr
11)), we thus obtain the expression223

Hnew u
new − u∗

∆t
+ gHnewSf (Hnew, u∗)unew = (ν∗tH

newunewx )x.

The derivatives in the above expression are then approximated by second order finite differences, leading224

to a tri-diagonal system again. As in this case the evaluation of the dispersive correction ψ already requires225

the inversion of a linear system, we have opted here for a simplified implementation involving a few explicit226

Jacobi relaxation iterations which read227

Jmi
(
(unew)m+1 − (unew)m

)
i

=−
(
Hnew u

new − u∗

∆t
+ gHnewSf (Hnew, u∗)unew − (ν∗tH

newunewx )x

)m
i

Jmi =
Hnew
i

∆t
+gHnew

i Sf (Hnew
i , u∗i ) +

(νtH
new)i+1/2 + (νtH

new)i−1/2

∆x2

with Hnew
i±1/2 arithmetic averaged values, and with (unew)0 = u∗. Unless otherwise stated, the number of228

relaxation iterations in the results discussed later has been set to 5.229

230

Other aspects of the discretizations are related to the modifications of the mass fluxes, velocities, and231

bathymetry source terms near wet/dry interfaces. Firstly, as in [64], two cut-off values forH are introduced,232

one to identify dry cells (or nodes), the other to mark as troubled cells (or nodes) in which the division by233

H may lead to unphysical values of the velocity. To preserve well balancedness in cells containing a dry234

node, adverse bathymetry gradients are limited as suggested in [59] (see also [64]). In troubled cells (or235

nodes) instead, the mass flux is set to zero, as well as the velocities, and the dispersive corrections Sd in (
nwogu
1),236

the second order terms in (
vel_n
2) and (

eq:vel_nwogu
13), and ψ in (

gns2
5). The van-Albada slope limiter is used only in breaking237

regions, and only if the hybrid approach is chosen.238

4 Wave breaking closure239

sec_break
Boussinesq equations are unable to describe both the overturning of waves, and the dissipation of kinetic240

energy originated during wave breaking. A physical closure is necessary. Generally, this closure consists241

of two main steps. The first one is a trigger mechanism allowing to localize in space and time the initiation242

and the termination of breaking. The second one is a mechanism introducing a dissipation of total energy in243

the model. This paper focuses on two techniques to define the second element, which are discussed in some244

detail in the following sections. In both cases, the triggering of wave breaking is done following the criteria245

proposed [12, 37] which have been found simple and robust. The idea is to introduce a flagging strategy246

based on the following conditions:247

• the surface variation criterion: a cell is flagged if |ηt| ≥ γ
√
gH , with γ ∈ [0.3, 0.65] depending on248

the type of breaker;249
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• the local slope angle criterion: a cell is flagged if ||∇η|| ≥ tanϕc, with critical angle ϕc ∈ [15◦, 30◦]250

depending on the flow configuration.251

The first criterion is usually active in correspondence of moving waves and has the advantage of being252

completely local. The second criterion acts in a complementary manner, and allows to detect stationary or253

slow-moving hydraulic jumps [12,18]. Flagged cells are grouped to form a breaking region . This region is254

either enlarged to account for the typical roller length, as suggested in [12,65], or deactivated, depending on255

the value of the Froude number Fr2 = Hmax(Hmax +Hmin)/(2H2
min), defined starting from the minimum256

and maximum wave height in the flagged zone. The interested reader can refer to [12,41,65] and references257

therein for mode details regarding the implementation of these detection criteria.258

4.1 Hybrid wave breaking model259

This closure attempts to exploit the properties of hyperbolic conservation laws embedded with an entropy260

inequality. For the shallow water equations, in particular, the mathematical entropy coincides with the261

total energy [66–71]. At the continuous level, while conserved in smooth regions, entropy/total energy262

is dissipated in discontinuous weak solutions. Provided that the numerical scheme introduces the correct263

amount of dissipation in shocks [69–72], this lends itself naturally for the wave breaking closure, This264

approach is in itself neat and simple. It has the limitation that the form of the dissipation is, at best, fixed by265

that determined by the shallow-water Rankine-Hugoniot jump conditions. This quantity can be analytically266

computed and it is given by (see e.g. [73] chapter 1.6, and [74])267

Dsw = g

√
g
Hmax +Hmin

2HmaxHmin

(Hmax −Hmin)3

4
(14) eq:sw-diss

This is however a parameter free definition of the dissipation which has been proved to reproduce quite268

well the large scale decay of the total energy in for several types of breaking waves, and with several269

different underlying propagation models and relative numerical discretizations [6, 12, 36–39, 41, 75]. The270

implementation of this closure is somewhat trivial once the wave detection algorithm discussed earlier has271

been properly set up. For the Nwogu’s equations, it boils down to locally turning off in the whole flagged272

region the dispersive source Sd and the second order derivative terms in (
eq:vel_nwogu
13) when evaluating the new nodal273

velocities. Similarly, for the GN system, the nodal values of ψ in (
gns2
5) are set to zero in the breaking region.274

The most limiting aspect of this approach is the switch between the non-hydrostatic and the hydrostatic275

equations. What has been reported by many authors in a more or less marked way, is the difficulty of276

performing this switch in a stable manner. Unless coarse grids are considered, with eventually the addition277

of local regularization numerical dissipation terms, several authors have reported the appearance of strong278

oscillations [6, 12, 37, 43]. These artefacts tend to become stronger and stronger as the mesh is refined. To279

our knowledge, there are no studies in literature reporting fully grid converged solutions with this approach280

due to this problem. An exception to this is perhaps one result reported in [6] showing some convergence281

(on only 3 grids) of the time averaged wave heights and setup, even though increasing oscillations in the282

local profiles are reported for the same test. This behaviour clearly poses a limitation in terms of potential283

for local automatic adaptation of the mesh, and its investigation is one of the objectives of this article.284

4.2 Eddy viscosity closure via a PDE based TKE model285

turb_model
The use of an eddy viscosity model to provide the dissipation required for the breaking closure is one of286

the earliest approaches [16]. The definition of this artificial viscosity is the key of this approach, as well as287

the way in which it enters the Boussinesq equations. On of the most common approaches, due to Kennedy288
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and collaborators [17] (see also [12, 18, 22, 31] and references therein), involves a definition of the eddy289

viscosity based essentially on the variation in time of the free surface elevation. This term is then embedded290

in a viscous flux, as e.g. in (
nwogu
1) and (

gns2
5). There exist improved variants of this idea, allowing to embed a291

richer physical description of the vertical kinematics and of the effects of turbulence (e.g. the so-called roller292

models). Some approaches explicitly embed the effects of the dynamics of vorticity (roller-models) [27,28],293

others include partial differential equations for an average turbulent kinetic energy [1, 33], and other intro-294

duce a multi-layer description embedding PDEs for a turbulent layer flowing on top and interacting with the295

bulk of the wave, well representative of spilling flows [34, 35, 76–78]. Simpler methods have attempted at296

improving the behaviour of the total energy dissipation by also including a water elevation viscosity [23].297

In this work, we have chosen to adopt a model of intermediate complexity based on the solution of an298

additional PDE, weakly coupled to the main Boussinesq system of equations. In particular consider the299

approach initially proposed by Nwogu [1] who used a standard TKE (turbulent kinetic energy) equation300

coupled to he fully non-linear equations of Wei et al. [79]. A highly non-linear Boussinesq model with301

the same turbulence wave breaking model of Nwogu has been used by Elnaggar and Watanabe [32]. More302

recent work on the same model is discussed in [33] where the TKE equation is manipulated to obtain a PDE303

for the eddy viscosity which is coupled to a fully nonlinear fully dispersive Green-Naghdi model. Here we304

propose a variant of the model proposed by Nwogu modified according to some of the definitions proposed305

in [33], as well as some definition which improve the consistency of the model with the wave breaking306

detection criteria we adopt.307

308

Following [33, 80], the eddy viscosity is determined from the amount of the turbulent kinetic energy k,309

produced by the wave breaking, and a turbulent length scale `t :310

vt = Cν
√
k`t (15) eq:nu_t

In k−L turbulence models [81,82] (see also [33]), the constant Cν is usually set to Cν = (0.09)1/4 ≈ 0.55311

which is the value used here. We now need a model for the computation of k and `t. Differently from the312

models discussed in [81,82], here we adopt a one equation approach in which only one PDE is solved for k,313

while the for `t, inspired by the definition used in [33], we use a vertical average mixing length defined as314

`t = κH

where κ is a constant controlling the width and intensity of the breaking. The length `t is expected to be of315

the order of the wave height [1], so κ is a case dependent constant. Concerning turbulent kinetic energy, it316

can be shown that in three space dimensions the following transport equations holds [80]317

kt + u · ∇k = D + P − E (16) kinturb0

with D, P , and E , diffusion, production and dissipation (or destruction) terms respectively. Definitions and318

possible expressions of these quantities in terms of mean flow quantities can be found e.g. in the book [80].319

When coupling (
kinturb0
16) with a depth averaged Boussinesq model, several approximations are possible. Here320

we will combine some of the elements suggested in [1] and in [33] in order to obtain a model simple to321

implement, to be compared to the hybrid approach. First of all, we will assume that both k (and hence322

νt) and its transport dynamics are constant along the depth, so that (
kinturb0
16) can be replaced by a zero-th order323

approximation involving only depth averaged quantities, namely324

(Hk)t + (Huk)x = HD +HP +HE . (17) kintur_con
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For the definition of the terms on the right hand side of (
kintur_con
17) we have followed [1]. In particular, we have325

for the diffusion and destruction terms326

HD = Hσνtkxx , HE = −HCD
k3/2

`t
(18) DE

where, following [1, 33], we have set CD = C3
ν . The constant σ allows to control the smoothness of the327

TKE, and hence of the brea?king viscosity, in the breaking region. Concerning the production term, the328

model used is again the one suggested in [1] assuming this quantity to depend on the vertical gradient of the329

velocity at the free surface. Following the notation of (
kinturb0
16), and denoting the velocity at the free surface by330

us = u(t, x, y, z = η), we have331

HP = HB(t, x)µP u
s
z · usz

As in [1], the turbulent viscosity µP appearing in the production term is defined based on a mixing length332

hypothesis assuming a balance between production and dissipation, namely333

µP =
`2t√
CD

√
usz · usz

so that we end with334

HP = HB(t, x)
`2t√
CD

(usz · usz)3/2. (19) prod

In [1] the parameter B is equal to 0 or 1 depending on a wave breaking criterion. In the reference the335

criterion used is based on the ratio between the free surface velocity and the wave celerity being larger336

than one. Here, for simplicity B is set to one in the breaking regions detected exactly as discussed in the337

beginning of section §
sec_break
4. This also allows to detect wave breaking in the same way for the TKE and hybrid338

approach. Having fixed the values of Cν and CD, the only “tunable” parameters are κ and σ.339

Lastly, we need to be able to evaluate the depth averaged and free surface velocities for both Boussinesq340

models, as well as the value of the vertical gradient of the velocity at the free surface. For this we use the341

vertical asymptotic development underlying the two models. In the weakly nonlinear case, this development342

can be used to write the following relations [15, 49]343

u(z) = ua −
(z2

2
− d2

6

)
uaxx − (z +

d

2
)(dua)xx

giving the free surface vertical gradient344

usz = −ηuaxx − (dua)xx. (20) graduz_nowg

and the depth averaged (within the asymptotic accuracy) velocity required for the transport term in (
kintur_con
17)345

u = ua +
((za)2

2
− d2

6

)
uaxx + (za +

d

2
)(dua)xx (21) ubar_ua

The GN equations directly provide a value of the depth averaged speed, while the fully nonlinear asymp-346

totic development allows to write347

u(z) = u−
[z2

2
−
(H2

6
− H(H − d)

2

)]
uxx −

[
z −

(H
2
− d
)]

(du)xx
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which yields a similar expression for the vertical gradient of the free surface velocity, this time in function348

of the depth averaged velocity u:349

usz = −ηuxx − (du)xx. (22) graduz_gn

The fully discrete distribution of the nodal values of the TKE is obtained by integrating equation (
kintur_con
17)350

with a semi implicit approach. Before the predictor step (
pred
10) is applied to the Boussinesq models, the351

nodal TKEs are evolved by first applying an explicit Euler update involving a third order MUSCL upwind352

discretisation of the transport operator (Huk)x, essentially the same presented in section §3 for the shallow353

water equations. To avoid spurious negative values in this phase, the min-mod limiter is applied [83]. The354

predicted values k∗i are then corrected by means of diagonally semi-implicit relaxation iterations similar to355

those used for the breaking dissipation and reading356 (
∆x

∆t
+

2σvnt,i
∆x

)
(km+1
i − kmi ) = ∆x

kmi − k∗i
∆t

+ σvnt,i
kmi+1 − 2kmi + kmi−1

∆x

+

(
B`2t,i√
CD

(usz)
3/2
i

)n
− CD

(
k

3/2
i

`t,i

)n
with an initial condition, k0 = k∗. For the benchmarks discussed in the paper, 4 or 5 relaxation iterations357

are used unless otherwise stated. Where necessary, depth average velocity (for the Nwogu model) and358

velocity gradient at the free surface (for both Boussinesq models) are obtained by a second order central359

finite difference approximation of (
ubar_ua
21), (

graduz_nowg
20), and (

graduz_gn
22).360

As a final note, we will keep in the following the notation TKE when referring to this closure, as this361

eddy viscosity method clearly relies on the solution of the PDE for the turbulent kinetic energy.362

5 A note on the dissipation mechanisms at work363

note_on_dis
One of the key aspects concerning the numerical modelling of wave breaking is the notion of dissipation.364

As discussed in the introduction, the mechanisms related to the transformation of potential energy into365

mechanical energy, and its subsequent dissipation, are not embedded in Boussinesq models that we study366

which stem from a potential description of the flow. The role of the closure model is thus to mimic these367

mechanisms. Clearly the main interest in the closure is to be able to predict correctly the dynamics of wave368

heights and (in the multidimensional case) currents. It is however interesting to understand what is the un-369

derlying dissipation mechanism active during the numerical breaking process. The main question we want370

to contribute to answer to in this paper is how much the numerical method is involved in this process, and371

if it is at all. We provide here a short discussion of this aspect, and suggest quantities which we will use in372

the numerical applications to quantify the contributions to the breaking process of the numerics, as well as373

of the PDE model itself.374

375

A proper formulation of this analysis requires a formal definition of what is the energy to be dissipated376

for the propagation models under consideration. This has to be done at the continuous level, but of course we377

must be able to provide an appropriate discrete translation of this energy conservation/dissipation statement.378

We recall that the PDE systems used in this paper have been chosen as representatives of models/codes well379

known the community such as BOSZ [9], MIKE21 [10], BOUSS-2D [3, 4], TUCWave [11, 12], Funwave380

[5, 6], Coulwave [7, 8]. Unfortunately, while the GN equations do have a total energy which one may381

choose to use for this purpose, this is not the case for Nowgu’s model. For the latter one can only derive382
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conservation statements valid within the limits of the asymptotic accuracy of the model [15, 84]. These383

approximate conservation laws, however, are not verified by the solutions of the PDE.384

When looking at the discrete models, even for the GN equations it is still a matter of research how to385

devise a numerical method with a clear associated discrete energy conservation statement. For complete-386

ness, we recall that such a construction requires generally an appropriate characterisation of the symplectic387

form of the PDE system and, more importantly, an appropriate semi linear form allowing to relate di-388

rectly the differential of the total energy to the differentials of the physical quantities which the numerical389

scheme solves for. For hyperbolic systems, including the shallow water equations, there is a clear and well390

established theory now allowing to construct methods which are exactly entropy-conservative or entropy391

stable [56, 67, 68, 85]. For the shallow water equations, in particular, the mathematical entropy coincides392

with the total energy. This link between the entropy/total energy, and the physical quantities solved for by393

the scheme is played in this case by a so-called entropy (or energy) potential, which is nothing else than the394

Legendre transform associated to the entropy, and conservative variables. The interested reader can refer395

e.g. to [68–72] for the construction of schemes which are either exactly energy conservative, or energy396

stable. Unfortunately, the construction of exactly energy preserving schemes for dispersive equations is still397

a subject of research, and the interested reader may refer to [86–89] for some recent results.398

399

A consequence of this discussion is that an exact evaluation of the dissipative mechanisms for the type
of models used here is not within our grasp. So, in order to be able to provide some quantitative information
on the sources of dissipation, we had to make some choices, and some hypotheses. We start by recasting
our PDE models as the shallow water system plus a dispersive source

∂tU + ∂xF(U)− Sb − Sf −Rwb = DDD

This is a form similar to (
nwogu
1), except that in the above equation the left hand side only contains the shallow

water terms and the eddy viscosity model, if present. All the dispersive terms are included in DDD. We
then look at the contributions to the balance of the shallow water total energy, whose time variation can be
expressed as (see e.g. [67–69])

∂tE = Vt∂tU = −Vt(∂xF(U)− Sb − Sf −Rwb −DDD)

with E = H(gH + u2)/2 + gHb, and having denoted by Vt the transpose of the array of the so-called
energy (or entropy, or symmetrizing) variables Vt = [gη − u2/2, u]. For both numerical models tested in
the paper, we can easily provide a nodal discrete analog of the last expression which, using the notation of
(
roeflux
12), reads

∂tEi = Vt
i∂tUi = −Vt

i

(
−LSWi − Sf i −Rwb i −DDDi

)
Neglecting the boundary conditions (or assuming periodic or null the boundary fluxes), the total variation
of the shallow water energy can be deduced using the explicit form LSWi and of the central and upwind
contributions in the bathymetry terms [58–62]. The final result can be recast as∑

i≥1

∆x ∂tEi =
∑
i≥1

∆xVt
i∂tUi =

∑
i≥1

∆FEi −Dupwind −Dfriction −Dvis + ∆EDDD .

We can now try to say more on the terms on the right hand side. It seems quite reasonable to assume that
wave breaking is not associated to the dispersive contributions. This means that we will leave out of the
analysis the contributions of the dispersive source ∆EDDD =

∑
iV

t
iDDDi. Another term which in principle
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one would expect not to contribute to the analysis, is the centered part of the flux which enters the above
expression via the terms

∆FEi = −Vt
i

(
FCi+1/2 − FCi+1/2 +

gHi+1/2

2
∆i+1/2[0, b]t +

gHi−1/2

2
∆i−1/2[0, b]t

)
.

This is where the analysis provided in e.g. [69, 70] is most useful. Without going into much detail, the400

references provide a very simple rule to define the centered flux for which one can show that ∆FEi =401

Hi+1/2−Hi−1/2, withHi±1/2 consistent numerical approximations of the total energy flux. This algebraic402

relation leads to the conclusion
∑

i≥1 ∆FEi = 0 exactly, whether the solution is continuous or not. This403

means that, even if slightly different implementations of the central flux are used, this quantity is in principle404

not relevant for our analysis.405

406

This leaves three quantities to be monitored, associated to the numerical (upwind) dissipation

Dupwind =
∑
i≥1

{
∆Vt

i+1/2

(
1

2
|A|i+1/2∆i+1/2U +

gHi+1/2

2
sign(A)i+1/2∆i+1/2[0, b]t

)}
,

and to the friction and wave breaking (eddy viscosity) model

Dfriction =
∑
i≥1

gHi Sfi u
2
i and Dvis =

∑
i≥1

νt,i+1/2Hi+1/2

(
∆i+1/2u

)2
.

Note that with the spatial discretization choices made both Dfriction and Dvis are clearly positive defi-407

nite. The same cannot be said a-priori about the upwind dissipation Dupwind. To be sure of the positivity408

of this term, indeed one should have implemented the dissipation in terms of variations of the entropy409

variables [69–71], instead of using in the numerical flux variations at cell interfaces of the conservative410

variables, as done in standard implementations of the upwind flux. Furthermore, this term involves both411

the reconstruction and the limiter, the latter only in the shallow water regions associated to wave breaking412

when using the hybrid approach of section §4.1. This makes it a perfect candidate to monitor the impact413

of the numerical choices and their contribution to the wave breaking process, and when possible compare414

these contributions to those of the eddy viscosity and friction terms. This analysis has been performed for415

three of the benchmarks proposed, involving both periodic and non periodic waves, dry areas, as well as416

pure propagating bores. Note that in practice the above expressions have to be evaluated in post-processing,417

by saving the different terms evaluated during the computations. The time stepping of course also plays418

a role in this analysis. The interested reader can refer to [72] for a discussion on this. To minimize these419

effects, while keeping as much as possible of the actual terms computed in the code and used to obtain the420

numerical solutions, in all the cases presented we have used tn+1/2 half time-step evaluations of these terms421

by averaging values at tn and tn+1.422

6 Boundary condition and the internal source function423

In this work we use two types of boundary conditions : solid (reflective) wall and absorbing boundary424

conditions. For the wall boundary conditions ghost cells are used with mirrored states for the velocities, as425

discussed in [60]. Absorbing boundaries are used for outgoing waves. In this case, an adsorbing layer is426

introduced within which surface elevation and the momentum are damped by multiplying their values by a427

coefficient m(x) defined as [12]428

m(x) =

√
1−

(
d(x)

Ls

)2

(23)
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where Ls is the sponge layer width, and d(x) is the distance from the end of the absorbing boundary. As429

prescribed in [12], the width Ls should depend on the wavelength of the outgoing wave. For a given wave-430

length L, the sponge layer width should be L ≤ Ls ≤ 1.5L.431

432

Concerning wave generation, we follow the approach of Wei et al. [90]. To obtain a desired oscillation433

signal in the wave generating area, a source function S(x, t) is added into the mass conservation equation434

at each time step, which is expressed as435

S(x, t) = D∗ exp
(
γ(x− xs)2

)
sin(−ωt) (24)

in which436

γ =
5

(δL/4)2
=

80

δ2L2
(25)

where L is the wave length, ω the wave frequency, θ the wave incident angle, xs is the location of the center437

of the wave-making area, δ is a parameter that influences the width W = δL/2 of the wave generator area438

and D∗ is the source function’s amplitude. For a monochromatic wave, D∗ is defined as439

D∗ =
2
√
γA0

(
ω2 − α1gk4h3

)
ωk
√
π exp(−l2/4γ) [1− α(kh)2]

(26)

where h is the still water level at the wave generation region, A0 the wave amplitude, l(= kx) the wave440

number in the x−direction, α = −0.390 and α1 = α+ 1/3.441

7 Numerical results442

7.1 Wave breaking over a bar443

This test case of Beji and Battjes [91] examines the sinusoidal wave propagation over a submerged bar. The444

scope of this test case is to investigate the frequency dispersion characteristic and non-linear interaction of445

complex wave propagation phenomena. A sketch of the problem is provided in figure
bar_sketch
3. The computational446

domain is x ∈ [0, 35m], with sponge layers placed at both ends. Periodic waves were generated at x =447

10m over a mean water depth of 0.4m. Wave height and period are set to a = 0.054m, and T = 2.5s,448

corresponding to a dispersion parameter kh ≈ 0.52. Waves propagate over submerged trapezoidal bar with449

a toe at x = 15m, a front slope of 1 : 20, a 2m long plateau of 0.3m height, and a lee slope of 1 : 10. More450

informations on the experiment can be found in [91] and in the references using this test case for model451

validation [12, 37, 65, 92].452

Figure 3: Wave breaking over a bar: problem sketch, and position of the gauges bar_sketch
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Concerning the model parameters, for this highly unsteady problem the surface variation detection453

parameter γ (cf. section §4) is the one more sensitive to the onset of breaking. For the computations454

performed here we have set γ = 0.3 . The parameters used for the TKE are not the same for the two455

Boussinesq propagation models. In particular, we have set κGN = 2.8 and σGN = 1.2 for the GN equations,456

while κN = 3.2 and σN = 1.2 for the Nwogu system.457

Experimental data are available in several wave gauges placed before, on top, and after the bar. Here458

we focus on three gauges (cf. figure
bar_sketch
3) placed before the toe of the bar, gauge 1 at x = 16m, on top of459

the plateau, gauge 3 at x = 23m, and on the lee slope, gauge 5 at x = 26m. We will discuss numerical460

results obtained on three different meshes of size 4cm, 2cm, and 1cm. For the Nwogu model, we could not461

run the hybrid breaking simulations on the last mesh due to instabilities at the Boussinesq-shallow water462

interface. Similarly, when using the hybrid approach we could not go below ∆x = 1cm when using the GN463

model for propagation. Note also that the results discussed here are those obtained after a transient of 36464

seconds, differently from what is done e.g. in [12, 37], where the four first waves are analyzed. The results465

are presented in figures
bar_g1
4,

bar_g3
6 and

bar_g5
7, for gauges 1,3, and 5, respectively.466

467

Figure
bar_g1
4 allows to visualize the behaviour of the models at the toe of the bar, right at the end of the468

wave propagation region. This gauge allows to highlight the initial asymmetry of the waves, essentially due469

to the interaction with the submerged bar. Some preliminary observations can be made. Firstly, the fully470

nonlinear model (left column) seems to capture better the shape of the waves, the weakly nonlinear one471

providing a signal which is slightly too peaky. Secondly, we see already at this stage that while the TKE472

model (blue curves) shows little sensitivity to the mesh size, the signals obtained with the hybrid approach473

(green curves) depend strongly on this parameter. We can clearly see on the intermediate and fine mesh (in474

the GN case) higher frequency components absent in the TKE results. These components are generated in475

correspondence of the boundary of the wave breaking region, as it can be clearly seen in the snapshots of476

figure
bar_sn
5. These instabilities become stronger as the mesh is refined, and may ultimately lead to the blow up477

of the solution, as it is the case for the Nwogu model on the fines mesh, and of the GN model on finer meshes.478

479

Figures
bar_g3
6 and

bar_g5
7 confirm the preliminary observations made for the first gauge. In particular we can480

clearly see the strong dependence of the results of the hybrid model on the mesh size. For this approach481

we can also see how the breaking waves are represented as very sharp fronts. For the GN model, on the482

coarse mesh breaking stops early enough for the signal in these two gauges to be smooth. This however483

leads to a noticeable phase lag. As the mesh is refined, the waves break more strongly. This leads clearly to484

an improvement on the phase. This behaviour curiously is not observed for the Nwogu model which shows485

strong and sharp breaking fronts already on the coarsest mesh level, with a correct phase. This allows486

to highlight the need of tailoring the choice of the breaking detection criterion to the propagation model.487

Here the same parameters have been used for both. Nevertheless, both set of results allow to visually see488

the appearance of spurious higher frequencies in the signal. These are the result of the coupling between489

the dispersive and non-dispersive regions. For the weakly non-linear model (right column) we can see the490

inception of the instability already on the medium resolution used here in figure
bar_g5
7. This is less evident for491

the GN model, which still provides numerical solutions on the finer level used. We where however unable492

to refine once more the mesh without solution blow up.493

The TKE approach is clearly less sensitive, at least for this test, to both the choice of the model494

parametrization, and the mesh size. This is summarized in figure
bar_g3_dx
8, showing a grid convergence for the495

gauge 3. We also would like to remark that, for Nwogu’s equations and for plunging breakers, Demirbliek496

and Nwogu in [3] resorted to a more complex TKE closure with a PDE for the B coefficient in the pro-497

duction term (
prod
19). We found out that the simplified formulation adopted here, combined with the physical498
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Figure 4: Time series of surface elevation at wave gauge 1 for the GN (left) and Nwogu (right) models
using the TKE (blue) and Hybrid (green) wave breaking closure. Mesh size is 0.04, 0.02, 0.01m from top
to bottom. bar_g1

Figure 5: Snapshots of the flow for the GN (left) and Nwogu (right models) using the TKE (blue) and
Hybrid (green) wave breaking closure. Mesh size is 0.02m bar_sn

criteria for the initiation and termination of the process discussed in the beginning of section §4 can simulate499

reasonably well plunging wave breakers.500

7.1.1 Dissipation mechanisms501

We report in figures
energy_bar_GN
9 and

energy_bar_Nwogu
10 the time evolution of the dissipation terms active for this test (cf. section502

§
note_on_dis
5): Dupwind (in blue) and Dvis (in green). The flow is periodic so we focused on 5 periods from time 12s503

to time 14s. The results show the dissipation flashing when the tallest wave approaches the bar, and then504
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Figure 6: Time series of surface elevation at wave gauge 3 for the GN (left) and Nwogu (right) models
using the TKE (blue) and Hybrid (green) wave breaking closure. Mesh size is 0.04, 0.02, 0.01m from top
to bottom. bar_g3

reducing as the breaking process continues on top of the bar. Also, the inception of breaking for the Nwogu505

model has a phase advance of about one second which can be explained by the over-shoaling characteristics506

of this model [93, 94]. The results for the GN model, figure
energy_bar_GN
9, allow the following remarks. The role of507

numerical dissipationDupwind when using the eddy viscosity closure (left column) is extremely small. This508

term definitely does not contribute at all to the breaking process. On the second mesh, its values approach509

machine zero. On the contrary, in the case of the hybrid closure, Dupwind is doing all the job. We can also510

see that the on the coarser mesh the area under the dissipation bells is larger, which means that the overall511

contribution in time to the energy dissipation is more important. When using the model of Nwogu, figures512
energy_bar_Nwogu
10, we can see again, from the left column, that the numerical dissipation plays no role in the breaking513

process, and it quickly reaches very low values. The right column allows to visualize the inception of the514

numerical instabilities (top figure) and their blow up (bottom figure). Note that for the finer meshes used515

in figure 8 the behaviour observed for the GN and in general for the TKE closure are the same. Also, we516

stress once more that further halvening the mesh size was not possible for the GN. The finest computation517

we could perform until the final time is for ∆x = 0.008.518

The behaviour observed allows to clearly demonstrate that the numerica dissipation has no impact on519

the computations performed with the TKE closure. This means that with this closure one could (or should)520

in principle use a non-dissipative numerical method to discretize the PDEs. The results, at least those for521

the GN equations, also show that the overall numerical dissipation when using the hybrid approach is larger522

on coarser meshes.523
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Figure 7: Time series of surface elevation at wave gauge 5 for the GN (left) and Nwogu (right) models
using the TKE (blue) and Hybrid (green) wave breaking closure. Mesh size is 0.04, 0.02, 0.01m from top
to bottom. bar_g5

Figure 8: Time series of surface elevation at wave gauge 3: grid convergence for the GN (left) and Nwogu
(right) models using the TKE (up) and Hybrid (down) wave breaking closure. Mesh size: 0.04m (blue),
0.02m (green), 0.01m (cyan). bar_g3_dx
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Figure 9: Energy dissipation profile for GN model using the TKE (left) and the Hybrid (right) closures for
∆x = 0.04 (top) and ∆x = 0.02 (bottom) energy_bar_GN

Figure 10: Energy dissipation profile for Nwogu model using the TKE (left) and the Hybrid (right) closures
for ∆x = 0.04 (top) and ∆x = 0.02 (bottom) energy_bar_Nwogu

7.2 Solitary waves breaking on a slope524

test_synolakis
One of the most intensively studied problems in long wave modelling is the solitary wave run-up on a525

plane beach, see for example [12, 16, 18, 47, 75, 95, 96] among others. In this test case we want to study526

propagation, breaking and run-up of a solitary wave over a planar beach with a slope 1 : 19.85. With this527

famous test case we asses the ability of our model to describe shoreline motions and wave breaking when528

it occurs. The incident wave height considered in this case is A/d = 0.28 with d = 1, so according to529

Synolakis [47] the wave breaks strongly both in the run-up and in the rundown phase of the motion. The530

GN and Nwogu’s equations are tested and compared, using for each one the turbulent kinetic energy wave531
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breaking model and the hybrid wave breaking model. The same holds for all the test cases that follows.532

The computation domain is of 120m, where x ∈ [−20, 100]. The CFL used is 0.3 and sponge layer533

was applied off-shore with length Ls = 5m. A Manning coefficient of nm = 0.01 was used to define the534

glass surface roughness used in the experiments. As before, computations have been run on three different535

meshes with size ∆x = [0.025, 0.0125, 0 .0063m]. The parameters of the wave breaking criteria used in536

this test case are γ = 0.6 and φc = 30o for both models. To properly capture the hydraulic jump generated537

at during backwash, the TKE parameters depend here both on the propagation model and on the type of538

breaking criterion satisfied. In particular, for unsteady waves the surface time variation criterion is the one539

activated. In this case we use κGN = 0.75, σGN = 0.9 for the GN model and κN = 0.8, σN = 1.5 for540

Nwogu’s model. If the slope criterion is activated, we use instead higher values , namely we set κGN = 1.5,541

σGN = 15.5 and κN = 1.5, σN = 1.5.542

Figure
syn_gn_1
11 compares the numerical surface profiles for the GN equations and the experimental measure-543

ments. The same is plotted for Nwogu’s equations in figure
syn_n_1
12. The numerical solution was obtained using544

∆x = 0.05m. As expected, both mathematical models produced similar behaviour. Until time t
√
g/h = 10545

the solitary propagates to the shore and the two wave breaking models produce, as expected, identical results546

since wave breaking hasn’t started yet. As expected the Nwogu’s model gives a wave which overshoals and547

breaks slightly earlier compared to the one produced by the GN equations. The experimental wave breaks548

around t
√
g/h = 20. The numerical solution for the hybrid model is represented like a bore storing the549

water spilled from the breaking wave behind the front. At time t
√
g/h = 20 the turbulence model rep-550

resents the solution as a triangular bore considerably closer to the experimental data than the hybrid one.551

Similar behaviour has been observed by other researchers that used eddy viscosity models [16–18]. At time552

t
√
g/h = 25 the bore collapses at the shore, and both approaches show good qualitative agreement with553

the data. After that the wave starts to run-up, with a maximum run-up occurring at t
√
g/h = 45. As the554

water recedes, a breaking wave is created near the still water level. The numerical solution is approximated555

as a hydraulic jump for both numerical models. It is fully resolved using both breaking models, since the556

breaking criterion recognises the hydraulic jump and the NSW equations are used for the hybrid model557

while the proper amount of viscosity is added by the turbulent kinetic energy model.558

Figures
syn_con
13 and

syn_con_hj
14 show the numerical results for both breaking phases (at time t

√
g/h = 20 and559

t
√
g/h = 60 respectively) while refining the mesh. Up to the authors knowledge it is the first time that560

such a study is performed for a (quasi-)steady hydraulic jump for an eddy viscosity type model. The first561

set of figures depict the breaking of the wave which travels on-shore for both GN (left column) and Nwogus562

equations (right column). We can clearly see the oscillatory nature of the hybrid wave breaking mechanism.563

The profiles obtained indicate some sort of convergence of the mean. However this is completely spoiled564

by the oscillations produced due to the switching between the two sets of equations. On the contrary the565

turbulent kinetic energy wave breaking mechanism remains stable and gives a convergent solution for both566

sets of equations . The second set of figures plot the same for the hydraulic jump formed at backwash. The567

difference between the two approaches is more accentuated here. It is quite hard to see a convergence for568

the hybrid results, while this is clearly the case for the TKE ones. We must mention that the GN equations569

combined with the hybrid model is blowing up after t
√
g/h = 60 for ∆x = 0.0063, while Nwogu’s570

equations are more sensitive to the hybrid formulation since numerical solution is obtained only for the fist571

two meshes.572

We have repeated this test for a more non-linear initial wave with ε = 0.5, on the mesh with ∆x =573

0.025m. The results obtained at incipient breaking before the runup and during backwash are reported on574

figure
syn_e0P5
15. As before the hybrid mechanism produces oscillations, in both breakers, and it is very unstable575

for Nwogu model. Oscillations are clearly visible for the GN results with the hybrid breaking. Smooth576

capturing of the breakers is obtained also in this case with the TKE model. Figures
syn_con_0P5
16 and

syn_con_0P5_hj
17 show again,577
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Figure 11: Free surface elevation of solitary wave run-up on a plane beach for the GN model. syn_gn_1

the numerical results for both breaking phases while refining the meshes for the turbulent kinetic energy578

mechanism. The Hybrid closure is not converging since the oscillatory nature of the mechanism is more579

pronounced in this case.580

7.2.1 Dissipation mechanisms581

For both cases we now look at the contributions to the dissipation of energy. In this case, all three sources of582

dissipation are active (cf. section §
note_on_dis
5) : numerical dissipation Dupwind, dissipation due to friction Dfriction,583

and the dissipation due to the eddy viscosity Dvis when using the TKE closure. Let us first focus on the584

results for a nonlinearity of 0.28 reported in figures
energy_syn0P28_GN
18-

energy_syn0P28_Nwogu
19 for the GN and Nwogu models. The results with585

the Nwogu model are on coarser meshes to allow some comparison on the behaviour of the hybrid closure586

on different meshes. The figures allow to see the dynamics of dissipation associated to the different phases587

of the flow. The fist breaking of the incoming wave is seen in all figures around time 5s, with the Nwogu588

model again showing earlier breaking certainly due to its over-shoaling characteristics. As the wave reaches589

higher bathymetries and the runup process starts, the friction takes over and dominates the flow, with no or590

very little contributions form the other terms. Dissipation is reduced to zero at the end of the runup, and if591

increases again during backwash, with again the friction dominating, and the other terms providing again592
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Figure 12: Free surface elevation of solitary wave run-up on a plane beach for Nwogu’s model. syn_n_1

non negligible contributions around time 17s − 20s when the hydraulic jump is formed. Note that these593

contributions arise from integrals in space. So the plot may lead to confusion as to which mechanism allows594

to capture the hydraulic jump. Indeed, the friction contributions are localized in the region very close to the595

wet/dry interface, and they would not allow to capture the hydraulic jump.596

Looking at the behaviour of the different terms on the meshes considered, we can remark again that597

when using the TKE closure the numerical dissipation Dupwind is not contributing, or providing very small598

contributions, throughout the flow. In he case of the hybrid closure, we can again see that it is indeed599

Dupwind that provides dissipation during breaking. We can also see from figure
energy_syn0P28_GN
18 that this contribution is600

slightly larger on the coarser mesh, even though is is less clear that in the previous case. The oscillations601

observed during backwash in both the viscous contribution and numerical dissipation are associated to the602

intermittency of the breaking detection criterion. which is certainly something to be improved in the future.603

Finally, we remark that the behaviour for finer meshes is exactly the same, and that the finest meshes on604

which we managed to run this case until the final time with the hybrid closure are those mentioned earlier,605

namely ∆x = 0.0063m for the GN model, and ∆x = 0.025 for the Nwogu model.606

607

We perform the same analysis for the case with a nonlinearity of 0.5. The results are reported on figures608
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Figure 13: Breaking bore on different meshes for the GN (left) and Nwogu’s (right) models, using the TKE
(up) and the hybrid (down) wave breaking closure. syn_con

energy_syn0P5_GN
20-

energy_syn0P5_Nwogu
21. As mentioned already, in this case we could only run the Nwogu model with hybrid closure on the609

coarsest resolution of ∆x = 0.1m. The dynamics observed in the figures are very similar to those of the610

previous case. Of course in this case the first breaking occurs earlier (around 2s) with the Nwogu model611

again providing an earlier breaking. We can again again see the friction dissipation taking over during the612

runup process, then decreasing, and increasing again during backwash. As before, breaking is re-activated613

to capture the hydraulic jump forming during backwash. We can again remark that when using the TKE614

closure the numerical dissipation is not contributing to the process, which is dominated by the terms em-615

bedded in the PDE. On the contrary, it is the numerical dissipation term that rules the dynamics of breaking.616

We can also see quite clearly that a considerable reduction of this contribution is obtained with mesh refine-617

ment. Again, the contributions of Dvis and of Dupwind are quite oscilaltory during the backwash, and this618

is related to the intermittency of the detection mechanism. The meshes shown here are the finest we could619

run this case on until the final time with the hybrid closure.620

621

As for the previous case, this analysis shows that when using the eddy viscosity closure the numerical622

dissipation plays very little or no role. This is motivation to look for non-dissipative/energy conserving623

schemes in this context. The mesh size seems to have an impact on the magnitude of the overall dissipation624

introduced during breaking. Finer meshes providing overall less dissipation. The TKE closure is very little625

sensitive to the mesh. This analysis also shows a very interesting interplay between the breaking and fiction626

dynamics.627
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Figure 14: Hydraulic jump on different meshes for the GN (left) and Nwogu’s (right) models, using the
TKE (up) and the hybrid (down) wave breaking closure. syn_con_hj

7.3 Bore propagation and dissipation in function of the Froude number628

We consider in this test case the propagation of a breaking bore over a flat bottom. We have chosen this629

benchmark as its simple setting allows to perform some quantitative comparison between the discrete energy630

dissipation terms analyzed in the paper, and the exact theoretical shallow water dissipation, equation (
eq:sw-diss
14),631

for different values of the Froude number. The test is defined by an initial step which transforms to a bore.632

The initial solution is defined by633 {
h(x, 0) = 1

2(db − da)(1− tanh x
a ) + da

u(x, 0) = 1
2(ub − ua)(1− tanh x

a ) + ua,
(27)

where da and db are the water depth in front and behind the bore, ua and ub the corresponding depth-634

averaged velocities. In our case ua = 0, da = 1m and a = 2m. For each Froude number (Fr), ub and635

db are computed, solving the mass and momentum conservation conditions across the bore. For Fr > 1.4636

the initial step evolves into a breaking bore. More informations on the test case can be found in [97] and637

references therein.638

639

The computational domain used is x ∈ [−150, 150], CFL = 0.2 and ∆x = 0.1. For this type of wave640

the parameter most sensitive to the onset of breaking is the time derivative of the elevation γ, which we641

have set here to γ = 0.4. For the turbulence model we have used κGN = κN = 1.5, σGN = σN = 0.8 for642

the GN and Nwogu equations respectively. Figure
bore_prop
22 shows the propagated bore at t = 0, 1, 15s for the643
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Figure 15: Breaking in the run-up (up) and the run-down (down) phase for GN (left) and Nwogu’s equations
(right) for ε = 0.5,using the TKE (blue) and the hybrid (green) wave breaking closure. Mesh size is 0.025m. syn_e0P5

Figure 16: Breaking bore on different meshes for the GN (left) and Nwogu’s (right) models for ε = 0.5,
using the TKE wave breaking closure. Mesh size is 0.025m. syn_con_0P5

two models for a Froude number Fr = 2. The bore is breaking as it propagates through the channel, and a644

slightly different behaviour is observed for the two breaking closures. Hybrid breaking provides a travelling645

shock, for both propagation models, while the turbulent closure presents a more diffusive behaviour, with a646

small overshoot before the bore for the GN model.647
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Figure 17: Hydraulic jump on different meshes for the GN (left) and Nwogu’s (right) models for ε = 0.5,
using the TKE wave breaking closure. Mesh size is 0.025m. syn_con_0P5_hj

Figure 18: Energy dissipation profile for GN model using the TKE (left) and the Hybrid (right) closures on
three different meshes: ∆x = 0.025, 0.0125m from top to bottom. The nonlinearity of the wave is 0.28. energy_syn0P28_GN

648

The terms related to the upwind dissipation and to eddy viscosity evolve during the transformation of649

the solution into a bore, as shown on figure
bore_prop
22, and quickly converge to a steady (in time) value, which is650

plotted in figures
Gn_energy_1
23 and

Nwogu_energy_1
24 against the shallow water dissipation (

eq:sw-diss
14), for different Froude numbers and651

on different meshes. Note that in this case, the wave breaking interface is located in correspondence of a652

constant solution region. This makes this case easier compared to the previous ones. This also reduces a lot653

the impact of mesh size on the final value of the dissipation, essentially dictated by the jump in water height.654

Nevertheless, exactly as the previous cases with the hybrid approach the initial development of the solution655

shows instabilities, for meshes finer that those reported in the figures, solution blow up. For the GN model,656

and for the range of Froude numbers tested, the TKE dissipation is within 10-15% of the value predicted657

by (
eq:sw-diss
14), while the upwind terms basically provide a negligible contribution. Conversely, these terms are,658

when using the hybrid approach, within 6% of (
eq:sw-diss
14). As in the previous tests, this allows to demonstrate659

that the numerical dissipation does not contribute to the dynamics of wave breaking when using the TKE660

eddy viscosity closure. It also shows that the particular choice of eddy viscosity we performed allows to661
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Figure 19: Energy dissipation profile for Nwogu model using the TKE (left) and the Hybrid (right) closures
on three different meshes: ∆x = 0.05, 0.025m from top to bottom. The nonlinearity of the wave is 0.28. energy_syn0P28_Nwogu

Figure 20: Energy dissipation profile for GN model using the TKE (left) and the Hybrid (right) closures on
two different meshes: ∆x = 0.1, 0.05m from top to bottom. The nonlinearity of the wave is 0.5. energy_syn0P5_GN

reproduce with some accuracy the behaviour with Froude number predicted by the classical formula (
eq:sw-diss
14).662

Similar conclusions can be drawn for the Nwogu model by looking at figure
Nwogu_energy_1
24.663

7.4 Wave height and setup prediction664

The analysis of [74] shows that wave setup is very sensitive to the dissipation mechanism in wave breaking.665

So this is an interesting parameter to study for our purposes. To investigate this aspect we consider two666

of the experiments performed by Hansen and Svendsen [98]. These experimental studies consider several667

different regular waves shoaling and breaking on a sloping beach. Many authors have used these tests to668
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Figure 21: Energy dissipation profile for Nwogu model using the TKE (left) and the Hybrid (right) closures
on three different meshes: ∆x = 0.1, 0.05m from top to bottom.The nonlinearity of the wave is 0.5. energy_syn0P5_Nwogu
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Figure 22: Free surface profiles at t = 0, 1, 15s of hydraulic bores with Fr = 2.0. Left: GN model.
Right: Nwogu model. bore_prop
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Figure 23: Energy dissipation profile for GN model using turbulent closure (left) and hybrid closure (right). Gn_energy_1

validate their models and the associated breaking closures [6, 12, 17, 23, 75].669

We consider here two cases, one involving a spilling breaker, the second involving a plunging breaker.670

Regular waves are generated over a 0.36m horizontal bottom, propagated shoaled and broke over a slope671

of 1 : 32.26. In the spilling breaking case (test number 05041) the regular wave’s period T is 2.0s, and672
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Figure 24: Energy dissipation profile for Nwogu model using turbulent closure (left) and hybrid closure
(right). Nwogu_energy_1

the wave’s height H is 0.036m. The second test case (test number 03041) is a strong plunging breaking673

case with T = 3.33s and H = 0.043m. The tests have been run on a 52m long domain x ∈ [−26 26],674

discretised with cells of ∆x = 0.02m, and with CFL = 0.3. A sponge layer is applied offshore with675

length Ls = 5m. The wave making internal source was placed 14.78m offshore from the toe of the beach,676

and bottom friction is neglected. The free surface elevation, recorded at wave gauges which placed every677

0.1m., is analysed to compute the mean wave height, and the position of the mean water level (MWL). The678

value of γ in the surface variation criterion equals to 0.5 for both models. Concerning the wave breaking679

closures, we have set κGN = 0.8, σGN = 0.05 and κN = 0.8, σN = 0.4, for the two GN and Nwogu680

models respectively.681

Figure 25: Computed and measured wave heights (left) and set-up (right) using equations. Test number
05041 (spilling breaking). Top: GN equations. Bottom: Nwogu equations. Blue line- TKE closure, green
line- Hybrid closure. case05041

The numerical results obtained for the two cases considered are reported on figures
case05041
25 and

case03041
26, in terms682

of wave height (left) and mean water level (right). As before, the blue lines in the figures refer to the TKE683

results, while the green ones to the hybrid wave breaking, and the top row report the computations of the684
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GN model, while the bottom ones the results of the Nwogu equations.685

For the spilling case, figure
case05041
25 seems to indicate that in all cases the detection criterion provides an686

early breaking. This of course alters the strength of the numerical breaking, which is less intense. This687

translates in a wave height decrease slower than the experimental one. Even so, the computations com-688

pare reasonably well with the experiments, especially when compared with results in the published litera-689

ture [6, 12, 17, 23, 75]. This is confirmed by the mean water level plots. Although we can clearly observe690

the early start of setup, due to the early breaking, the slopes of the numerical signals are quite close to691

those of the experimental ones. According to the analysis of [74] this shows that the amount of dissipation692

introduced is correct. We stress that the differences between the TKE and hybrid approach are minor, even693

though we tend to consider the results obtained with the turbulence model slightly better in terms of both694

wave height and slope of the setup.695

696

Figure 26: Computed and measured wave heights (left) and set-up (right) using equations. Test number
03041 (plunging breaking). Top: GN equations. Bottom: Nwogu equations. Blue line- TKE closure, green
line- Hybrid closure. case03041

For the plunging case, figure
case03041
26, the agreement with the experimental values is even better. We can697

see that the breaking location is detected correctly in this case, even though both the GN and the Nwogu698

model provide an underestimation of the shoaling with both breaking closures. The wave height decrease699

is predicted with a slightly smaller slope, but the agreement with the data is quite satisfactory. The setup700

prediction is very good, with both location of the breaker and slope reproduced correctly by all models.701

Some conclusions can be drawn from the implementation of this numerical test case. The first one702

is that both wave breaking closures allow to detect and handle both spilling and plunging breaking of703

regular waves. We stress that the parametrisation used for TKE closure is the same for the two cases704

considered. This shows the potential of this type of approach to provide a robust accurate energy dissipation705

rate, independently on the number of nodal points per wavelength, and on the nonlinearity of the problem.706
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7.5 Application: propagation, breaking, and overtopping of a 2D reef707

This next test case is reported as a complex application in order to show the potential of the modelling708

choices evaluated here to handle the interaction of the whole range of phenomena: dispersive propagation,709

shoaling, breaking, overtopping, reflection. The benchmark considered was initially proposed in [18, 99],710

and later used by several authors for validation [18, 37, 100, 101]. The problem involves a bathymetry711

consisting of a reef with a fore slope of 1/12 and a crest of 0.2m reef crest and an offshore water depth of712

2.5m. The reef crest is exposed by 0.06m and hides on the lee side a flat with a depth of 0.14m. Water height713

distributions at several time instants and water height time series in 14 wave gauges have been measured in714

the flume experiments at Oregon State University within the PhD work of V. Roeber [99] (see also [18]). A715

sketch of the reef geometry, showing the positioning of the wave gauges, is reported in figure
reef1d_geo
27. The initial716

state consists of a solitary wave of amplitude a = 0.75m which propagates onshore, shoals and breaks in717

front of the reef crest. Walls are present at both ends of the domain. We refer to [18,99] for a more detailed718

description of the experimental and computational setup. Our results have been computed on a mesh with719

size ∆x = 0.05, and setting CFL = 0.3. Manning friction has been used, with a Manning coefficient720

nm = 0.012. Both wave breaking detection criteria are used with γ = 0.6 and φc = 30o. Concerning the721

TKE closure κGN = 0.75, σGN = 0.8 and κN = 1.2, σN = 1.5 but when a hydraulic jump is detected the722

values are set to κGN = 1.5, σGN = 15.5 and κN = 3.5, σN = 16.723

Figure 27: 2D reef geometry and wave gauge locations. Adapted from [18]. reef1d_geo

To visualise the results we group snapshots of the free surface in three phases : propagation and shoaling724

of the initial soliton (figure
reef_wp1
28); overtopping and formation, propagation and reflection of a bores on the lee725

side of the reef (figure
reef_wp2
29); secondary overtopping, with formation of a quasi-steady hydraulic jump and726

of an undular bore (figure
reef_wp3
30). In all the figures, the top rows report the results obtained with the GN727

model, the bottom rows refer to the results of the Nwogu model, the blue lines are those obtained with the728

TKE breaking model, and the green lines are those of the hybrid breaking treatment. Symbols refer to the729

experimental values provided in [99].730

The figures show that all models allow, on this mesh resolution, a quite satisfactory prediction of the731

water height. The differences between different choices appear to be minor. We can mention that, at least732

in our implementation both the fully and the weakly nonlinear models tend to predict the moving bores on733

the lee side with some phase advance. This, at least in our implementation, is more pronounced for the fully734

nonlinear GN mode, as we can see e.g. on figure
reef_wp2
29 (central and right column). This behaviour is indepen-735

dent on the breaking closure adopted. We can also remark that when using the hybrid wave breaking with736

the Nwogu equations some over-prediction of the amplitude of the undulating bores is observed.737

738

To have some more insight in the capabilities of the models, we analyze the water height time series739
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in gauges WG5, WG9, WG10, and WG12. The plots are reported on figures
reef_wg1
31 and

reef_wg2
32. The dispersive740

propagation of the waves is visible in WG5 and, at for the fore side undulating bores, in WG9. We can see741

that all the models capture correctly the shoaling of the initial solitary, and that despite a visible phase lag,742

provide a quite reasonable amplitude and frequency of the undulating bores on the fore side, as it can be743

seen e.g. in the WG5 series on figure
reef_wg1
31, for times larger than 70s, and in WG9 after 80s. In WG5 we744

can see again the over-ampification of the amplitude of the undular bores for the Nwogu model with hybrid745

wave breaking.746

Concerning breaking, we can see the first breaker approximation very well reproduced from the WG9747

series at time around 34.5s. The hydraulic jump forming at 55s is also well reproduced in amplitude, albeit748

with a phase advance. Similar observations can be made when looking at figure
reef_wg2
32. The WG12 results,749

in particular, show an excellent agreement for the first four bores. All the models give an under-prediction750

of the water level behind the slowly moving hydraulic jump which forms behind the main right-going bore751

(time 38s). The first reflected bore at time roughly 50s, as well as the second hydraulic jump forming752

after the second overtopping (time 60s) are also very well captured by the models. The later reflections753

present instead a visible phase error, albeit correct in amplitude. Lastly, the WG10 results in the same figure754

show a nice capturing of the first two overtopping phases, although an over-prediction of the water height755

is also observed. The later overtoppings are affected by a phase advance already mentioned for the bores756

responsible for them.757

758

Overall we consider the results quite good for all the models. Some of the differences w.r.t. the experi-759

mental water heights we are convinced that are also due to the definition of this quantity in presence of air760

entrainment at the free surface, as it was the case for the experimental breakers. We stress very strongly that761

with the current implementation the simple TKE breaking closure can handle without any problem simul-762

taneous breakers of different types, and of different intensities. For this test, as for all the others analyzed763

in the paper, the fully nonlinear GN model with TKE closure provides the most robust combination.764
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Figure 28: Overtopping of a 2D reef. Propagation, shoaling, and overtopping phases.Top row: GN model.
Bottom row: Nwogu model. Blue lines: TKE breaking closure. Green Lines: hybrid wave breaking closure.
Left: t = 31.8036s. Middle: t = 32.8132s. Right: t = 34.5801s. reef_wp1

8 Conclusions765

We have considered the issue of wave breaking closure when using weakly dispersive Boussinesq propaga-766

tion models. We studied weakly and fully nonlinear models representative of classical and well known mod-767

els/codes such as BOUSS-2D [3, 4], Funwave [5, 6], Coulwave [7, 8], BOSZ [9], MIKE21 [10], TUCWave768

[11, 12], and others. We have in particular focused on the enhanced equations of Nwogu [49], and on a769
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Figure 29: Overtopping of a 2D reef. Bore formation and propagation behind the reef. Top row: GN model.
Bottom row: Nwogu model. Blue lines: TKE breaking closure. Green Lines: hybrid wave breaking closure.
Left: t = 35.5897s. Middle: t = 40.7894s. Right: t = 49.5732s. reef_wp2
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Figure 30: Overtopping of a 2D reef. Second overtopping and undular bore formation. Top row: GN model.
Bottom row: Nwogu model. Blue lines: TKE breaking closure. Green Lines: hybrid wave breaking closure.
Left: t = 56.5397s. Middle: t = 60.7297s. Right: t = 76.7325. reef_wp3

frequency enhanced version of the Green-Naghdi system in the form proposed in [37, 52]. We have com-770

pared the now popular hybrid closure initially proposed in [36], with an eddy viscosity closure based on an771

adaptation of the turbulent kinetic energy closure model of [1], modified to be consistent with the detection772

mechanisms proposed of [12, 37], and also used here. The study performed has involved: a systematic773

analysis of the behaviour of the two closures for different mesh sizes; the use of dissipation monitors, con-774

sistent with the available theory of entropy dissipation for conservation laws [69,72], to study the dynamics775

of breaking for several cases; thorough evidence of the equivalent capabilities of the two approaches to776

provide satisfactory results.777

Our results indicate that indeed, at least with the (rather standard) implementation proposed here, both778

closure approaches allow to describe correctly wave transformation and breaking at large scales. We have779

shown that when using the TKE eddy viscosity closure the numerical dissipation plays a negligible role,780

which motivates to look for non-dissipative/energy conserving numerical methods in the future. Also, the781

results clearly show the reduced sensitivity to the mesh of this approach compared to the hybrid one. The782

analysis of the wave breaking of solitary waves on a slope also has allowed to quantitatively study the783

interplay of the dissipation introduced by friction, eddy viscosity, and numerical dissipation.784

Of course, one has to keep in mind that the computational cost required by the TKE closure is higher785

then the one of the hybrid closure. We judge this overhead justified by the increased robustness.786

787

This preliminary study would benefit from further investigation using both improved numerics (e.g. en-788
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Figure 31: Overtopping of a 2D reef. Free surface time series in wave gauges WG5 (left) and WG9 (right).
Top row: GN model. Bottom row: Nwogu model. Blue lines: TKE breaking closure. Green Lines: hybrid
wave breaking closure. reef_wg1

ergy preserving approximations in the propagation region), as well as improved models for both the propa-789

gation and for the breaking. The models considered at the moment present a dependence on the parameters790

of the detection criteria, as well as on the coefficients of the TKE equation. Improved models, including the791

effects of vertical variations of the flow in both the propagation and breaking may be considered in future792

studies (see e.g. [27,28,35]). The multi-dimensional case will also have to be studied with attention. In this793

case more complex effects may come into the picture, related to the interaction with transversal variations794

of the bathymetry (see e.g. [102]). These effects, and their interaction with the breaking closure will have795

to be assessed systematically.796
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