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Multidimensional upwind residual distribution schemes have been developed over the
last decade as a monotonicity preserving spatial discretization method for hyperbolic
conservation laws on unstructured grids composed of triangles or tetrahedra. In the
present paper the same schemes are proposed for the time accurate solution of hyperbolic
conservation laws, based on a consistent discretization of the space-time domain. Due
to the upwinding property of the schemes and an appropriate choice of the space-time
mesh geometry, the solution can be decoupled on temporal slabs, allowing to construct
an efficient unconditionally stable implicit time marching procedure while maintaining
full consistency, monotonicity and second order accuracy both in space and time. The
method has been applied to the solution of the compressible Euler equations in one and
two spatial dimensions. Numerical results are shown for several test cases to demonstrate

the robustness and the accuracy of the method.

Nomenclature

Vector definitions:

d: Spatial dimension of the problem (1 or 2).

Xm: Unit vector in the m-th spatial coordinate
direction.

t: Unit vector in the temporal coordinate direction.
Q: Bold characters refer to purely spatial vectors in d
dimensions, with components Q,,, m = 1, ..., d; hence
Q = Q@ Xy,, where summation over the running index
m is understood.

Q: Bold characters with arrow refer to space-time
vectors with spatial components (,, and temporal
component Q;: Q =Q+Q,t.

X = x;mXp,: Spatial position vector with Cartesian
components T,,.

Flow quantities:

~: Ratio of specific heats.

p: Fluid density.

V = v, Xy, Fluid velocity.

p: Static pressure.

E=t+ 1 pmvm: Total energy density.

Operator and matrix definitions:

0: Null matrix.

I: Identity matrix.

V = %, 0/0x,,: Spatial gradient operator.
V=vV+i 0/0t: Space-time gradient operator.
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Introduction

OVER the last decade, a class of upwind spatial
discretization technique has been developed for
the numerical solution of systems of hyperbolic con-
servation laws on triangles (2D) and tetrahedra (3D),
known as fluctuation splitting or residual distribution
(RD) schemes® 1617 The method incorporates the
same upwind properties which are at the basis of Go-
dunov type finite volume methods, but carried over to
a cell vertex framework with continuous solution rep-
resentation as in standard Finite Element methods.

The key advantage of the RD method is that both
a high resolution monotonic solution across disconti-
nuities, and second order spatial accuracy in smooth
steady flows can be achieved on arbitrary unstructured
grids, based on the compact stencil of the nearest
neighbors. The latter property also enables an effi-
cient implicit and parallel implementation. Another
attractive feature of the RD schemes is that true mul-
tidimensional information can be incorporated into the
upwinding procedure, derived from the physics of the
problem.

However, these schemes have been developed for the
solution of steady state problems and the second order
accuracy degrades to first order, when they are used in
combination with the method of lines (such as Runge-
Kutta schemes) for the computation of unsteady flows.
Second order spatial accuracy can be recovered if a
consistent mass matrix formulation is applied for the
temporal derivative term (hence leading to an implicit
scheme), similar to what is required in stabilized fi-
nite element methods. Another route to second order
schemes in time and space is the Taylor-Galerkin ap-
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simplest setting. Unfortunately, both of these meth-
ods loose the positivity properties of the underlying
space discretization and lead to oscillatory solutions
in the presence of discontinuities. Some cures to this
problem have been investigated, e.g. applying a Flux
Corrected Transport (FCT) technique'®. TIn this ap-
proach a monotone first order solution obtained from
a lumped treatment of the mass matrix (hence first
order) is blended with a second order non-monotone
solution obtained by a consistent mass matrix formu-
lation®%'2. A similar approach has been proposed
for the explicit Lax Wendroff scheme'' 2. However,
experience has shown that a Flux Corrected Trans-
port approach as a cure to recover monotonicity for
systems lacks robustness, apart from being computa-
tionally expensive. Moreover, using FCT as a way to
stabilize a characteristic based upwind scheme is very
unsatisfactory from the theoretical point.

A more attractive framework might be to consider
space-time methods, as e.g. applied in the context
of stabilized finite element methods!'® or discontinuous
Galerkin methods® 814, In both approaches the space-
time method method is usually discontinuous in time
(although not in'), in order to obtain a time marching
method. Sidilkover presented space-time finite volume
schemes satisfying the TVD property, also indicating
possible extensions to the RD method?.

More recently, Abgrall®® proposed a continuous
space-time formulation for the RD approach, applied
to the Euler equations in two spatial dimensions. The
solution representation is continuous in space-time,
based on a bilinear interpolation over prismatic ele-
ments which are triangular in space and linear in time.
He developed new residual distribution schemes for
these elements, imposing an additional constraint of
limiting the distribution to the nodes located at the
forward time level. In this way, the space-time do-
main effectively decouples in slabs of one single row
of elements per time step, thus effectively resulting in
a time-marching approach with a system of equations
which is implicit in the unknowns located at the for-
ward time level of the space-time slab. In Abgrall’s
work, this decoupling condition, combined with a pos-
itivity requirement for the update of the solution in
space-time, imposes a severe limit on the allowed time
step, very similar to a CFL type condition required for
explicit schemes.

In the present paper we elaborate on the same idea
of a continuous space-time residual distribution, start-
ing from a different philosophy. Instead of imposing
the time marching (past shielding) condition directly
on the distribution scheme, we use standard distribu-
tion schemes operating on piecewise linear elements
developed in the past for spatial triangles and tetra-
hedra, but apply them to solve unsteady problems on
space-time meshes. The intrinsic upwinding property

the entire space-time domain in a sequence of tempo-
ral slabs. The slabs may consist of one or two layers
of cells in the temporal direction. It turns out that
the decoupling can only be obtained if the mesh sat-
isfies certain geometric properties, and if the timestep
for the first (or only) layer is limited by a CFL-like
condition as in Abgrall’s approach. However, since no
decoupling condition is needed for the second layer, ar-
bitrary CFL numbers can be applied for the combined
two layer scheme, while maintaining second order ac-
curacy and monotonicity in space-time.

The paper is organized as follows: First, standard
residual distribution discretizations are briefly recalled
and applied to the general discretization of the space-
time domain. Then the particular space-time meshes
and the decoupling condition are discussed, allowing
to solve the space-time equations by marching in time
on a sequence of space-time slabs. In the last sec-
tion several computational results are presented for the
Euler equations to demonstrate the accuracy and the
robustness of the schemes. Finally some conclusions
are drawn and future perspectives are given.

Space-Time Residual Distribution
Discretization
Scalar Conservation Law

We consider a scalar hyperbolic conservation law in
d spatial dimensions over the spatial and temporal do-
main 0 = Qg x [0, tym4.] with boundary 99:

ou

E—FV-G:O, for V(x,t) € Q, (1)
where u(x,t) is the conserved quantity and G(u) is the
corresponding flux function. In terms of the local ad-
vection speed vector A = G, /Ou Xy, the quasilinear
form of equation (1) is written as:

Ou

— +A-Vu=0. 2

gt TV @
Using the space-time notations introduced before,
equations (1) and (2) take the following compact form

-

V-F=0 and X-Vu=0, (3)
where the space-time flux vector is F=0G+ ut, and
the space-time advection speed vector is X=X+t

In this paper we propose to apply standard, fully
upwind residual distribution schemes® 7 to the numer-
ical solution of equations (3) on space-time domain (2,
discretized by triangles and tetrahedra in one and two
spatial dimensions, respectively.

For a classical continuous (in time) stabilized
Galerkin Finite Element method (such as SUPG or
GLS), this would lead to a system coupling the un-
knowns for all of the grid points in the space-time
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Fig. 1 Generic linear elements with inward point-
ing scaled normal vectors. Triangles and tetrahe-
dra are used in one and two spatial dimensions,
respectively.

domain, which is clearly unacceptable from a compu-
tational point of view. Therefore, most Finite Element
approaches use a discontinuous formulation in time.

However, in the context of upwind RD methods it is
possible to maintain a continuous formulation in time,
and to decouple the space-time solution on temporal
slabs with thickness At, such that effectively a time
marching procedure is obtained. Indeed, since the
temporal component of the advection speed vector X
is always positive (equal to unity), the use of fully up-
wind RD schemes naturally leads to the decoupling of
the solution if certain geometric conditions of the mesh
are satisfied, as will be discussed below. Thus, advanc-
ing one physical step At in time is equivalent to the
solution of a steady state problem in d + 1 dimensions
on a space-time slab Qg x At.

First we briefly outline the solution procedure for
standard residual distribution schemes, applied to
space-time meshes. For further details the reader is
referred to the above references on the steady schemes.
Following the standard approach, we divide the space-
time domain () into non overlapping elements, which
are triangles and tetrahedra in one and two spatial
dimensions, respectively. For example, in one spatial
dimension the space-time domain () forms a rectangle
if Qg is fixed in time (i.e. non moving grids), as shown
in Fig. 2. Just like in linear finite element methods,
the state vector u is approximated by a continuous,
piecewise linear function over €):

ulx.t) = 3 uju; (x.1). (@

where N is the total number of nodes, u; is the nodal
value of the state variable u at node j and w;(x,t)
is the corresponding piecewise linear shape function
with compact support. Integration of the space-time
flux divergence over element F yields the definition of
the space-time cell residual:

QgE:/v-ﬁdQ:/iﬁudQ. (5)
E E

tion'®, the cell residual can be written as:

d+2

oF = X /ﬁu dQ = Z kiu;, (6)
" i=1

where X is a cell averaged space-time advection speed
constructed such that

i-/ﬁucm:fﬁ-ﬁds, (7)
E OF

for a consistent discretization of the contour integral
in the right hand side. Based on the cellwise linear
approximation of u, the coefficient k; (called upwind
parameter in the following) is obtained as

>

_ .ﬁl
T d+1’

where fi; = n! %X,, + nit labels the inward pointing
normal vector of the face opposite to node i, scaled
with the area of the face (see Fig. 1).

In the fluctuation splitting method the cell residual
is distributed to the nodes of element E according to
the following formula:

¢r =B ", (9)

where the distribution function ¢/ is the fraction of
the total cell residual ¢ distributed to node i in ele-
ment F, and 3 is the so called distribution coefficient.
For consistency, we require that for a given cell E

d+2 d+2

Yool =0¢" or Y pF=1,
i=1

i=1

where a cellwise local numbering of the nodes is used.
Different residual distribution schemes are deter-
mined by the way ¢¥ or 3F is defined. In the present
context the satisfaction of appropriate multidimen-
sional upwinding properties by the schemes is crucial,
since it will ensure that no contribution of the cell
residual is sent to nodes at the initial time level of
the space-time slab. Multidimensional upwind RD
schemes are defined by the condition
BE =0 or ¢F =0 for k; <0.  (10)
Indeed, this condition expresses that residual contri-
butions in cell E are only sent to downstream nodes,
whereby a node is defined to be downstream if the face
opposite to this node sees an ingoing flux (i.e. k; > 0).
In this paper we use three different schemes which sat-
isfy this property: the optimal positive, linear, first
order N scheme, the non-monotone, linear, second or-
der LDA scheme, and the monotone, nonlinear, second
order B scheme? 516:17 (see appendix). Distributing
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ing to equation (9) and assembling the contributions
to the nodes, we arrive to the discrete form of equation

(3):
D ¢ =0

B,jeB

for Vj € [1, N]. (11)

Equation (11) is an implicit system which in princi-
ple could involve the unknowns of all grid points in the
space-time domain. However, due to the use of upwind
RD schemes, the solution is decoupled on temporal
slabs, and a time marching procedure is obtained as
will be shown below. In the present paper, system (11)
is solved by embedding it in a pseudo time dependent
iteration procedure.

Extension to a System of Equations

We consider a system of hyperbolic conservation
laws consisting of p equations in d spatial dimensions
over space-time domain €):

6_U+V.G:0,

5 for V(x,t) € 0, (12)

where U is the vector of conserved variables and G is
the px d flux vector. Equation (12) in quasilinear form
reads:

oU (G, . B

Just like in the scalar case, we introduce the space-
time formulation of equation (12):

V-F =0, (14)

where the space-time flux vector is F=G+Ut. As
suming piecewise linear variation of the components of
the state variable U:

N
U(x,t) = Z Ujw;(x, 1), (15)

and applying a proper conservative linearization'8, the
total residual vector ®F in element E is written as:

dF — ?{ﬁ-ﬁdsz (f_Um*m+f£> -/ﬁUdQ,
oOF E
(16)

where 0G,,/0U is the m-th component of the flux
Jacobian taken in an averaged state of U, such that
conservation is satisfied according to equation (16).
Introducing the following linear combination of the
space-time Jacobian matrices:

1 G, A

d+2
oF =3 " KU (18)
i=1

Since equation (12) is hyperbolic in physical time,
the p eigenvalues of matrix K; are real, and a complete
set of p real linearly independent eigenvectors exists.
Diagonalization of matrix K; yields: K; = R;A;L;,
where A; is the eigenvalue matrix (diagonal matrix
containing the eigenvalues in the diagonal) of K, the
columns of R; contain the right eigenvectors of K;, and
L; = (R,‘,)il .

The eigenvalues and the eigenvectors of matrix K;
can be easily obtained from the eigenvalue decompo-
sition (i.e. the eigenvalues and the eigenvectors) of

matrix C; = 8Gm/5Unfn. Let us rewrite equation
(17) as
l' 7, 7, 7, v )
I+ 1 +1n; 9

where A; is the eigenvalue matrix of C;. Hence, K;
can be further written as

1

1 ~ A .

Equation (20) reflects an important property of the
space-time method: Even if the original matrix Cj; is
singular (as occurs e.g. for vanishing flow speed in the
case of the Euler equations), matrix K; is still regular
due to the presence of the flow independent diagonal
entries. The importance of non vanishing eigenvalues
in the case of quasi stagnant flow problems is clear,
since the RD schemes require the inversion of matrices

d+2 d+2

ZK;“ or ZKT (21)
i=1 i=1

which are singular for vanishing velocity (cfr. ap-
pendix). Although Abgrall has shown that the RD
schemes remain well-defined in these degenerate cases,
special care is required to treat the singularity, which
is not necessary for the space-time approach (as will
be demonstrated in the results section).

The eigenvalue matrix can be decomposed as A; =
Af + A;, where

S

Fe D (22)

The generalized upwind parameters K, = R;A] L;
and K, = R;A; L; play an important role in the mul-
tidimensional upwind property of the system residual
distribution schemes. In element E, node i does not
receive any contribution from the cell residual if all
of the eigenvalues of the corresponding matrix K; are
negative, i.e. A is the null matrix (see appendix).
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®F. The distribution function is defined as:

aF = pED", (23)
where 8P is the distribution matrix. For consistency
we require that

d+2 d+2

Yaf=o" o Y pP=1I (24)
i=1 i=1

The definition of ®¥ for the system version of the
N, LDA and B-scheme is given in the appendix.

Finally, assembling the contributions from the sur-
rounding elements, the discretization of equation (12)

is given by
> ef =0,
EjEE

for Vj € [1, N]. (25)

Remark on the Conservative Linearization

If the spatial flux function G is a non linear function
of u (scalar) resp. U (system), then the same rules
apply for the conservative linearization as in the steady
case. For example, if G and u resp. U can be written
as a quadratic function of a certain Roe parameter
variable z resp. Z, then the Struijs-Deconinck-Roe
linearization'® can be used to achieve full conservation

of the space time fluxes.

Geometry of the Space-Time Grid

In order to design an efficient time marching proce-
dure, the full space-time solution of the problem has
to be decoupled into temporal slabs. It turns out,
that upwind RD schemes operating on properly con-
structed space-time geometries naturally lead to such
a temporal decoupling of the solution. In this paper we
propose to use a space-time mesh containing three lev-
els of nodes and two layers of elements in the temporal
direction, see” for some details about the single layer
version of the approach. The first, second, and third
levels of nodes have temporal coordinates t,, tnt1/2
and t,1, and will be called respectively past, interme-
diate and future time level. The space-time solution is
decoupled if no residual contribution is sent from the
cells of the two layers to the nodes located at the past
level (t = t,).

Two layers appear to be the minimum necessary to
allow for a scheme with unconditionally stable implicit
time stepping. The time step Aty = 1,,1/5 —t, is lim-
ited by a severe CFL-like condition similar to explicit
schemes in order to decouple the solution in the first
layer of elements (see below). However, in the second
layer an arbitrary time step Aty = t,41 — tny1/2 can
be taken. The effective CFL number for the whole
temporal slab is controlled by the ratio @) of the time
steps over the two layers:

Q = Aty /At

A
. o1 At
i i
Q oy §
® ® ® ox At
-

Fig. 2 Valid configurations of the space-time mesh
in 1D. Nodes at levels n, n+1/2 and n+1 are labelled
by black, gray and empty circles, respectively.

One Spatial Dimension

Fig. 2 shows two valid configurations of the space-
time mesh. Both configurations require some nodes
in the intermediate level which are staggered in space,
located at the midpoints of the segments on the past
level as will be shown below. The top configuration
is optimal in terms of computational cost and will be
used in all computational experiments. The second
configuration is also useful, as it allows more easily
for a generalization in two space dimensions. In both
configurations, the second layer of triangles is obtained
from the first layer by mirroring it to the ¢ = ¢, /o
line. Then the temporal width of the mirrored layer is
stretched according to the ratio ). The first layer of
the space-time mesh contains two types of triangles,
El and E2 (see Fig. 3). Triangles of type E1 have two
past nodes and one intermediate node, while triangles
of type E2 have one past node and two intermediate
nodes.

Decoupling condition for a scalar conservation law

In order to decouple the solution and allow time
marching, no contribution of the residual must be sent
to the past level from the triangles of the first layer,
i.e. the upwind parameter k; must be non positive for
all of the past nodes i according to condition (10).

For triangles of the E2 type the value of k; for the
unique past node is k; = —Az/2 < 0, therefore this
node never receive a residual contribution from these
elements.

Let us consider a triangle of type E1 as shown in
Fig. 3. Using local numbering of the nodes, the in-
ward scaled normal vectors are 1y = (—Aty, —Ax/2),
ny, = (At;,—Axz/2), and 13 = (0,Az). The cor-
responding upwind parameters for the nodes at the
past level are therefore k; = —AAt;/2 — Az /4 and
ky = AAt; /2 — Az /4, where A = OF), /Ou is the spatial
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Fig. 3 Basic triangular elements in the first layer
of the space-time mesh in one spatial dimension.

component of the linearized advection speed vector.
Imposing that both k; and ks must be non positive
leads to the following local time step restriction:

crs - () 2

VE € Ey (26)
Equation (26) is called the local past shield (LPS) con-
dition, since its satisfaction guarantees that the past
nodes are locally protected from any artificial propaga-
tion of information from the future due to element E1.
The global timestep Aty for the first layer is obtained

from
A
Aty < min | =2 . (27)
VEEE, 2‘,\| B

Clearly, the intermediate nodes can be coupled with
the past and future nodes if the two layers are solved
in one implicit system. Therefore, no condition is re-
quired for the time step Aty of the second layer, which
enables to take large physical time steps. Using the
ratio (), the total time step can be written as

A
E

(28)

where CFL; < 1/2. This leads to the following effec-
tive CFL number:

At|N

FL =
¢ Az

= (Q +1)CFL,. (29)

Equation (29) shows that in case of large value of the
time step ratio (), the schemes can operate at high
CFL numbers, while maintaining the unconditional
linear stability and positivity properties of the under-
lying RD schemes. This property is extremely useful
when the spatial mesh contains highly refined regions.
Due to the unconditional stability of the schemes,
the global time step is not restricted by the presence
of very small elements, which is the case when an
explicit type CFL condition must be satisfied.

The method extends trivially to a hyperbolic system
of equations by applying the system version of the up-
wind RD schemes (see appendix). These schemes do
not distribute any residual to a node if all the eigen-
values of the corresponding matrix K; are non positive
(A = 0), for nodes i belonging to the past level. For
the Euler equations in one space dimension, this leads
to the following LPS condition:

Aty (o] + ¢

CFL, = ( A
r

) < 1 VE € Ei, (30)
2
where v and ¢ are the averaged flow speed and sound
speed, respectively. The global condition follows as in
the scalar case.

Geometrical conditions on the space-time mesh in 1D

Consider the case of a general space-time triangle of
type E1 as shown in Fig. 4. The parameter « defines
the spatial location of the node at the intermediate
time level. For |a| > 7, one obtains an obtuse triangle
(i.e. the projection of node 3 falls outside the edge
located at level n), while @ = 0 corresponds to the
symmetric cases discussed before (Fig. 2). The face
normals are given by

ﬁ] = (—At] s —(% — Oé)ACU), (31)
ﬁg = (Atl, *(% + OZ)A.’L‘), (32)

Expressing again the decoupling condition for nodes 1
and 2, one observes that no positive solution for At
exists for |a] > 1, thus excluding obtuse triangles of
type E1 in the first layer. For |a| < 1 the time step
limitation on the first layer is

1
5 lal (34

One observes that the CFL condition on the first
layer becomes more and more severe as |a| approaches
%, giving the unacceptable limit solution A#; = 0 for
the Cartesian grid case shown in Fig. 5. Hence, the
value @ = 0 used for both configurations of Fig. 2
is optimal in terms of maximal allowable timestep for
arbitrary sign of the characteristic speed.

Fig. 4 General triangle of type E1 in the first layer
of a space-time mesh.
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Fig. 5 Unacceptable Cartesian space-time mesh

Space-time Mesh in Two Spatial Dimensions

As in 1D, different mesh configurations are possible.
Starting from a given arbitrary triangulation in space,
the simplest (but not the most economic) choice is
probably the following generalization (see Fig. 6) of
the 1D configuration shown at the bottom of Fig. 2.
The first layer of elements is built from three types
of tetrahedra as shown in Fig. 7. Type E1 has three
past nodes situated at level n, and one node at the
intermediate level n + % The spatial position of the
intermediate node is at the centroid of the triangles
of the original 2D mesh. Type E2 has two past and
two intermediate nodes. Finally, type E3 has one past
node and three intermediate nodes. The second layer
of elements is obtained from the first layer by mirroring
to the ¢t = t,,,1/» plane, and stretching the temporal
width of the mirrored layer according to the ratio @,
as in the 1D case.

Decoupling condition for the scalar case

Consider the generic tetrahedra E1, E2, and E3 of
the first layer. It is straightforward to show that for
elements of type E3 no contribution of the residual is
sent to the unique past node. Expressing the decou-
pling condition for generic tetrahedron E1 for the 3

Fig. 6 Positioning of the nodes in the space-time
mesh in 2D. Nodes at levels n, n+1/2 and n + 1
are respectively labelled by black, gray and empty
circles. Squares indicate intermediate nodes posi-
tioned in the centroid of the triangles of the level
n spatial mesh.

type: E 3

7.

Fig. 7 Three types of basic tetrahedra used to
build the first layer of the space-time mesh in two
space dimensions, and schematic view of the mesh.

past nodes leads to (using the notation of Fig. 8):

. kAt
CFLy" = max 1 <1, (35)
=r2s\ S )

where S; = n’ is the temporal component of gj, i.e.
the area of the face opposite to vertex j in the tetrahe-
dron, projected on the level n plane. For the present
configuration where node 4 is located in the centroid of
the base triangle, this area is easily calculated as 1/3
of the area of the base triangle. On the other hand,
k;‘ = max (0, k;), where

N

which is the inflow parameter corresponding to vertex
j of the base triangle (i.e. n}*? is scaled with the length
of the edge opposite to j). A similar analysis for the
past nodes 1 and 2 of the generic tetrahedron of type
E2 leads to the condition

kAt
CFLF? = max | -2 <1, (36)
=12\ S; '
' E2

where S; = nf is defined as before (computed to be
equal to the area of the face opposite to node j in
the tetrahedron, projected on the level n plane) and

4
. 3
e'L

1 2 <

2 1

Fig. 8 Elementary tetrahedra of types E1 (left)
and E2 (right), see also Fig. 7.
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triangle A734. Equations (35) and (36) have to be si-
multaneously satisfied in all of the tetrahedra of types
E1 resp. E2, giving the global time step limitation for
the first layer

1 . 1

Aty =CFL;min | min (———, min (———
EcE, ( kf EcE, ( kf
max 5 max 5
j=1,2,3 =1 j=1,2 =1
(37)

with CF L, < 1.

Just like in the 1D case, there is no restriction on
the time step of the second layer. By increasing the
value of the time step ratio @), arbitrarily large global
time steps can be taken according to

At = (Q + 1)Aty (38)
with an effective CFL corresponding to
CFL=(Q+1)CFL, (39)

Decoupling condition for the system case

The analysis extends again trivially to the system
case. The scalar inflow parameter k;’ in equations (35)
and (36) is replaced by the largest eigenvalue of the
space Jacobians Kf

Geometrical conditions on the space-time mesh in 2D

Considering the case of a general space-time tetra-
hedron of type E1, one obtains similar results as in the
1D case. The area’s S; in eq. (35) are now propor-
tional to the area coordinates of node 4 in the base
triangle (equal to 1/3 if node 4 coincides with the cen-
troid). Hence, at least one of the S; becomes negative
if the projection of node 4 on the level n plane falls
outside the base triangle, and no positive solution for
Aty exists in this case. Similarly, if node 4 approaches
the boundary opposite to node j, S; approaches zero
and the allowable time step approaches zero. Hence,
for an arbitrary convection speed vector, the location
of node 4 in the gravity center leads to the largest
allowable time-step.

For tetrahedra of type E2, one arrives at the con-
dition that the projection of the straight line through
edge 3-4 on the level n plane has to cut the segment
1-2 in between the nodes 1 and 2. This condition is al-
ways satisfied if no obtuse triangles exist in the spatial
mesh, but it could be violated for severely distorted
space meshes with obtuse triangles.

Numerical Results

The space time residual distribution method dis-
cussed so far has been applied for the solution of the
1D and 2D Euler equations governing inviscid com-
pressible flows. The state vector U and the flux G are

p pv
U= pv andG=| pvw+1Ip |, (40)
E (E + p)v

respectively, where the notation of the flow variables
has been given in the nomenclature.

Verification of the Order of Accuracy

The order of accuracy for the space-time method has
been verified in” for smooth testcases in one space di-
mension with known analytic solution. The observed
order of accuracy is summarized in table 1. Results
indicate that the measured accuracy in space time pre-

serves the formal accuracy of the RD schemes®.

Distribution Scheme: N LDA B
Steady nozzle (density): | 1.00 2.01 2.14
Unsteady advection: 0.97 2.00 1.66

Table 1. Measured order of accuracy of the N,
LDA and B schemes.

1D Shu-Osher Riemann Problem

We perform the computation of a test case proposed
by Shu and Osher!?, corresponding to the propagation
of a Mach 3 shock into a uniform domain superim-
posed by a sinusoidal density perturbation. The initial
state is given by pr, = 3.857143, v, = 2.629367,
p = 10.33333 for z < —4 and pgr = 1 + 0.2sin(bx),
Vg, = 0, pr =1 for £ > —4. In the computation we
use Q = 2 and CFL = 1.49. The solution computed
by the second order non linear B-scheme at ¢t = 1.8 is
shown on the left of Fig. 9 and 10 for 401 and 801 spa-
tial nodes, respectively. The solid line corresponds to
a solution on 1601 spatial nodes. For comparison we
also show computational results published by Shu and
Osher!'?: The right of Fig. 9 and 10 show the refer-
ence result for a third order ENO scheme on 400 points
and a second order MUSCL type finite volume scheme
on 800 points, respectively. The comparisons indi-
cate that the second order space-time RD B-scheme
matches surprisingly well with the third order ENO
scheme on this test case, although the third order
ENO-scheme is undoubtly more accurate. However,
the second order space-time RD scheme is definitely
more accurate than the second order MUSCL-scheme
used by Shu and Osher!? for their comparison.

2D Sound Wave Interaction

This test case concerns the propagation and interac-
tion of linear sound waves in a two-dimensional stag-
nant flow. As initial state, two exponentially decaying
axisymmetric pressure perturbations with a maximum
amplitude of dp = 0.1 are superposed onto a stagnant
background with p = 140, v = 0, and p = 100. In the
solution of this problem the pressure perturbations are
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Shu-Osher test case at t = 1.8. Left: Solution for the second order nonlinear B-scheme on 401

nodes in space. Right: Reference solution computed by a third order ENO scheme on 400 points'®.
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Fig. 10 Shu-Osher test case at ¢t = 1.8. Left: Solution for the second order nonlinear B-scheme on 801
nodes in space. Right: Solution for a second order MUSCL TVD Finite Volume scheme on 800 points'®.

propagated in the radial direction in the form of lin-
ear sound waves, with the speed of sound. In Fig. 11
we show a series of snapshots at different time steps,
computed by the second order linear LDA-scheme on
a mesh containing 101 x 101 points in space. On the
last two plots the interference of the two waves can
be observed. This testcase illustrates the robustness
of the method for quasi-static problems without the
need of any special treatment.

2D Riemann Problem

To further validate the method in two spatial dimen-
sions we propose a truely 2D Riemann problem. At
t = 0 a squared shaped [3.6 x 3.6] uniform domain with
p1 =3, vy = 0and p; = 3 is embedded into an infinite
uniform domain with p; =1, vo = 0 and py = 1. For
symmetry reasons it is sufficient to compute the solu-
tion over one quarter of the full domain. The solution
is computed at t = 0.4 on a structured triangulation
of the 2D spatial domain containing 101 x 101 points
in space (Az = Ay = 0.02).

The density and pressure surfaces are shown in Fig.
12 and 13 for the first order N and the second order

ainssaid
ainssaid

ainssaid
ainssaid

Fig. 11 Interaction of linear sound waves. Four
snapshots of the pressure surface for a mesh with
101 X 101 nodes. Computation made with the sec-

ond order linear LDA-scheme.
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Fig. 13 2D Riemann problem computed by the second order nonlinear B scheme at t=0.4.
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Fig. 14 Riemann solution at ¢ = 0.4. Profile of density. Squares: True 1D solution. Diamonds: 2D
solution along the z-axis. The mesh size is Az = 0.02. Left: Computations made by the first order linear
N-scheme. Right: Computations made by the second order non linear B-scheme.

10 oF 13



0.4

03

02

0.1

0.5 0.75 1 125

Fig. 15 Mach 3 flow over a forward facing step.
Part of the unstructured grid close to the corner of
the step

B schemes, respectively. The shock, shear and the ex-
pansion are well resolved in both spatial directions.
Since at t = 0.4 the corner effect of the 2D Riemann
problem has not reached the boundaries of the compu-
tational domain, the solution on the coordinate axes is
identical to the solution of the 1D Riemann problem
with the same initial data. In Fig. 14 we show the
density computed by the 1D scheme (on a mesh with
the same spacing) and the cut along the x-axis of the
2D computation for both the N and B schemes. We
observe that the 2D solution on the z-axis accurately
matches the true 1D solution in the case of the second
order B-scheme. For the N-scheme, the 2D solution
shows some additional spatial diffusion caused by the
triangulation of the space domain.

Mach 3 Wind Tunnel with a Forward Facing Step

To illustrate the benefit of the unconditionally stable
implicit RD schemes, we compute the testcase pro-

y
°
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n
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Fig. 16

Mach 3 flow over a forward facing step:
Density iso-lines at ¢ = 1.0. Top: nonlinear second
Bottom: Reference
third order PPM scheme on Cartesian

order space-time B-scheme.
solution:
mesh?°,

is a uniform triangulation of the domain with average
size of the triangles given by h = 1/80, except for the
corner of the step, where a severe local refinement was
used, as shown in Fig. 15. This refinement is neces-
sary to limit the numerical entropy production at the
corner, see also® for more details. In total the spatial
mesh has 38,740 triangles and 19,715 nodes.

The computation is made with the second order non-
linear B-scheme using the double layer approach on
space-time tetrahedra. The global timestep is chosen
such that CFL ~ 1 for the triangles in the uniform
region. However, in the corner region this amounts to
a local value of CFL =~ 12, due to the small size of
the cells in this area. This clearly shows the benefit
of an unconditionally stable implicit scheme, even for
unsteady computations.

Isolines of the density at different instances in time
are presented in Fig. 16 and 17, and compared with
the solution of Collella and Woodward?®. This ref-
erence solution is computed with a third order PPM
method on a uniform mesh with square cells of size
h = 1/80 (note that in the reference computation en-
tropy was fixed at the corner in order to avoid the
artificial entropy generation).

Flow in a channel with a bump

We compute a transonic flow in a channel?! with a
sinusoidal bump at the bottom, with an inlet Mach
number M, = 0.675. As inlet conditions we impose
flow angle (o = 0), together with total tempera-
ture and total pressure (computed relative to the inlet
Mach number). At the outlet we impose an oscillating

static pressure, given by pyu: = po + p1 sin wt, with

Fig. 17 Mach 3 flow over a forward facing step:
Density iso-lines at ¢ = 4.0. Top: nonlinear second
order space-time B-scheme. Bottom: Reference
solution: third order PPM scheme on Cartesian

mesh?°,
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Fig. 18 The mesh used for the computation of the
flow in a channel with a bump. It contains 3,162
nodes and 6,102 elements.

Fig. 19 Transonic flow in a channel with oscillating
back pressure. Mach number contours (from top
to bottom) at ¢t = 27 /w, t = 2.5w/w, t = 2.757/w and
t =3.57/w.

The spatial grid containing 3,162 nodes and 6,102 el-
ements is shown on Fig. 18. The time evolution of
the Mach number contours of the solution computed
with the nonlinear B-scheme is shown in Fig. 19, for
t=2njw, t =2.57/w, t =2.757/w and t = 3.57/w.
At t = 2.5m /w the shock has reached the bottom wall
and is moving backwards. At ¢t = 2.757/w the shock
has disappeared and the outlet pressure is increasing.
At t = 3.57/w the shock reappears again on the top
wall. After a full period of the outlet pressure evolu-
tion at ¢ = 47 /w, the solution is again identical to the
one shown in Fig. 19 (top).

Conclusions

Previously developed multidimensional upwind
residual distribution schemes on simplex elements have
been extended to space-time domains for solving un-
steady hyperbolic systems. Thus, positivity and lin-
earity preservation properties of the original schemes
are carried over to the full space-time solution, i.e. the
linearity preserving schemes retain second order accu-
racy in smooth flows and the positive schemes produce
oscillation free solution across discontinuities both in
space and time.

Due to the intrinsic upwinding properties of the
standard RD schemes, the space-time solution is ob-
tained as a sequence of implicit solutions on temporal
slabs consisting of two layers of elements. In the first
layer an explicit type CFL condition of order one is
required, but in the second layer an arbitrary CFL
number can be taken.

The space time RD schemes have been applied to
the time accurate solution of different scalar conserva-
tion laws and to the system of Euler equations both in
one and two spatial dimensions. Numerical results in
one space dimension demonstrate that the presented
second order space-time RD schemes are definitely
more accurate than standard second order TVD finite
volume schemes, e.g. combined with a higher order
Runge Kutta time integrator, and even compare fa-
vorably with a third order ENO scheme. Results in
2D have been compared favorably with a third order
PPM scheme on Cartesian grids.

The key advantage of the present RD schemes over
the bilinear schemes proposed by Abgrall is that they
allow an unconditionally stable implicit time stepping,
while in the schemes of Abgrall an explicit type CFL
condition has to be satisfied in order to maintain pos-
itivity. Also, our RD schemes are not sensitive to the
presence of static backgrounds, since a non vanishing
eigenvalue regularizes the Jacobians for that case. This
feature has its advantage at the level of coding, since
no particular treatment is needed for zero flow speeds.
However, the schemes proposed by Abgrall seem to be
less dissipative for shear flows than our RD schemes.

Future work on the space-time RD approach is
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For these problems the method offers a great potential,
since the space mesh can evolve arbitrarily in time,
e.g. allowing changes in topology and number of grid
points without any need for interpolation data on the
new mesh. Also the efficient solution of the implicit
system on the space-time slab (not discussed in the
present paper), needs further investigation.

The most important challenge for the future is the
extension in three space dimensions. No attempt in
this direction has been made yet, although the under-
lying schemes trivially generalize to four-dimensional
hyper-tetrahedra. The biggest problem to handle
is probably the construction of the four-dimensional
space-time slabs satisfying the upwinding conditions,
and the computational cost involved to solve the im-
plicit systems. In this respect, the RD schemes pro-
posed by Abgrall generalize much easier, since the
construction of the space-time slab is immediate.

Appendix
Definition of Some Distribution Functions

Scalar N scheme: ¢ = kfr(uZ — Ujn ), where

at2
>k us
—1

i
Uin = T a—

> ki
i=1

Scalar LDA scheme: ¢FP4 = BEPAGT where

Lpa _ _k}
2 diQ k;}»
i=1
Scalar B scheme: ¢2 = ¢l + (1 — 6)pLP4, where
T
Slor

System N scheme: &N = KZ+(U1 — Uin), where

d+2 —aga
i=1

i=1

System LDA scheme: ®/P4 = gLPAST  where

-1

LDA _ @2 + +
i=1

System B scheme: 2 = Q@Y + (1 - 0)®FP4 where
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