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IntrodutionOVER the last deade, a lass of upwind spatialdisretization tehnique has been developed forthe numerial solution of systems of hyperboli on-servation laws on triangles (2D) and tetrahedra (3D),known as utuation splitting or residual distribution(RD) shemes3, 16, 17. The method inorporates thesame upwind properties whih are at the basis of Go-dunov type �nite volume methods, but arried over toa ell vertex framework with ontinuous solution rep-resentation as in standard Finite Element methods.The key advantage of the RD method is that botha high resolution monotoni solution aross disonti-nuities, and seond order spatial auray in smoothsteady ows an be ahieved on arbitrary unstruturedgrids, based on the ompat stenil of the nearestneighbors. The latter property also enables an eÆ-ient impliit and parallel implementation. Anotherattrative feature of the RD shemes is that true mul-tidimensional information an be inorporated into theupwinding proedure, derived from the physis of theproblem.However, these shemes have been developed for thesolution of steady state problems and the seond orderauray degrades to �rst order, when they are used inombination with the method of lines (suh as Runge-Kutta shemes) for the omputation of unsteady ows.Seond order spatial auray an be reovered if aonsistent mass matrix formulation is applied for thetemporal derivative term (hene leading to an impliitsheme), similar to what is required in stabilized �-nite element methods. Another route to seond ordershemes in time and spae is the Taylor-Galerkin ap-1 of 13



proah, equivalent to the Lax-Wendrow sheme in itssimplest setting. Unfortunately, both of these meth-ods loose the positivity properties of the underlyingspae disretization and lead to osillatory solutionsin the presene of disontinuities. Some ures to thisproblem have been investigated, e.g. applying a FluxCorreted Transport (FCT) tehnique13. In this ap-proah a monotone �rst order solution obtained froma lumped treatment of the mass matrix (hene �rstorder) is blended with a seond order non-monotonesolution obtained by a onsistent mass matrix formu-lation3, 9, 12. A similar approah has been proposedfor the expliit Lax Wendro� sheme11, 12. However,experiene has shown that a Flux Correted Trans-port approah as a ure to reover monotoniity forsystems laks robustness, apart from being omputa-tionally expensive. Moreover, using FCT as a way tostabilize a harateristi based upwind sheme is veryunsatisfatory from the theoretial point.A more attrative framework might be to onsiderspae-time methods, as e.g. applied in the ontextof stabilized �nite element methods15 or disontinuousGalerkin methods1, 8, 14. In both approahes the spae-time method method is usually disontinuous in time(although not in1), in order to obtain a time marhingmethod. Sidilkover presented spae-time �nite volumeshemes satisfying the TVD property, also indiatingpossible extensions to the RD method2.More reently, Abgrall3{5 proposed a ontinuousspae-time formulation for the RD approah, appliedto the Euler equations in two spatial dimensions. Thesolution representation is ontinuous in spae-time,based on a bilinear interpolation over prismati ele-ments whih are triangular in spae and linear in time.He developed new residual distribution shemes forthese elements, imposing an additional onstraint oflimiting the distribution to the nodes loated at theforward time level. In this way, the spae-time do-main e�etively deouples in slabs of one single rowof elements per time step, thus e�etively resulting ina time-marhing approah with a system of equationswhih is impliit in the unknowns loated at the for-ward time level of the spae-time slab. In Abgrall'swork, this deoupling ondition, ombined with a pos-itivity requirement for the update of the solution inspae-time, imposes a severe limit on the allowed timestep, very similar to a CFL type ondition required forexpliit shemes.In the present paper we elaborate on the same ideaof a ontinuous spae-time residual distribution, start-ing from a di�erent philosophy. Instead of imposingthe time marhing (past shielding) ondition diretlyon the distribution sheme, we use standard distribu-tion shemes operating on pieewise linear elementsdeveloped in the past for spatial triangles and tetra-hedra, but apply them to solve unsteady problems onspae-time meshes. The intrinsi upwinding property

of these shemes is used to deouple the solution onthe entire spae-time domain in a sequene of tempo-ral slabs. The slabs may onsist of one or two layersof ells in the temporal diretion. It turns out thatthe deoupling an only be obtained if the mesh sat-is�es ertain geometri properties, and if the timestepfor the �rst (or only) layer is limited by a CFL-likeondition as in Abgrall's approah. However, sine nodeoupling ondition is needed for the seond layer, ar-bitrary CFL numbers an be applied for the ombinedtwo layer sheme, while maintaining seond order a-uray and monotoniity in spae-time.The paper is organized as follows: First, standardresidual distribution disretizations are briey realledand applied to the general disretization of the spae-time domain. Then the partiular spae-time meshesand the deoupling ondition are disussed, allowingto solve the spae-time equations by marhing in timeon a sequene of spae-time slabs. In the last se-tion several omputational results are presented for theEuler equations to demonstrate the auray and therobustness of the shemes. Finally some onlusionsare drawn and future perspetives are given.Spae-Time Residual DistributionDisretizationSalar Conservation LawWe onsider a salar hyperboli onservation law ind spatial dimensions over the spatial and temporal do-main 
 = 
S � [0; tmax℄ with boundary �
:�u�t +r �G = 0; for 8(x; t) 2 
; (1)where u(x; t) is the onserved quantity andG(u) is theorresponding ux funtion. In terms of the loal ad-vetion speed vetor ��� = �Gm=�u x̂m, the quasilinearform of equation (1) is written as:�u�t + ��� � ru = 0: (2)Using the spae-time notations introdued before,equations (1) and (2) take the following ompat form~r � ~F = 0 and ~��� � ~ru = 0; (3)where the spae-time ux vetor is ~F = G + u t̂, andthe spae-time advetion speed vetor is ~��� = ���+ t̂.In this paper we propose to apply standard, fullyupwind residual distribution shemes3, 17 to the numer-ial solution of equations (3) on spae-time domain 
,disretized by triangles and tetrahedra in one and twospatial dimensions, respetively.For a lassial ontinuous (in time) stabilizedGalerkin Finite Element method (suh as SUPG orGLS), this would lead to a system oupling the un-knowns for all of the grid points in the spae-time2 of 13
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3Fig. 1 Generi linear elements with inward point-ing saled normal vetors. Triangles and tetrahe-dra are used in one and two spatial dimensions,respetively.domain, whih is learly unaeptable from a ompu-tational point of view. Therefore, most Finite Elementapproahes use a disontinuous formulation in time.However, in the ontext of upwind RD methods it ispossible to maintain a ontinuous formulation in time,and to deouple the spae-time solution on temporalslabs with thikness �t, suh that e�etively a timemarhing proedure is obtained. Indeed, sine thetemporal omponent of the advetion speed vetor ~���is always positive (equal to unity), the use of fully up-wind RD shemes naturally leads to the deoupling ofthe solution if ertain geometri onditions of the meshare satis�ed, as will be disussed below. Thus, advan-ing one physial step �t in time is equivalent to thesolution of a steady state problem in d+1 dimensionson a spae-time slab 
S ��t.First we briey outline the solution proedure forstandard residual distribution shemes, applied tospae-time meshes. For further details the reader isreferred to the above referenes on the steady shemes.Following the standard approah, we divide the spae-time domain 
 into non overlapping elements, whihare triangles and tetrahedra in one and two spatialdimensions, respetively. For example, in one spatialdimension the spae-time domain 
 forms a retangleif 
S is �xed in time (i.e. non moving grids), as shownin Fig. 2. Just like in linear �nite element methods,the state vetor u is approximated by a ontinuous,pieewise linear funtion over 
:u(x; t) = NXj=1 ujwj(x; t): (4)where N is the total number of nodes, uj is the nodalvalue of the state variable u at node j and wj(x; t)is the orresponding pieewise linear shape funtionwith ompat support. Integration of the spae-timeux divergene over element E yields the de�nition ofthe spae-time ell residual:�E = ZE r � ~F d
 = ZE ~��� � ~ru d
: (5)

Following the proedure of a onservative lineariza-tion18, the ell residual an be written as:�E = ~������ � ZE ~ru d
 = d+2Xi=1 kiui; (6)where ~������ is a ell averaged spae-time advetion speedonstruted suh that~������ � ZE ~ru d
 = I�E ~F � ~n dS; (7)for a onsistent disretization of the ontour integralin the right hand side. Based on the ellwise linearapproximation of u, the oeÆient ki (alled upwindparameter in the following) is obtained aski = ~���� � ~nid+ 1 ; (8)where ~ni = nimx̂m + nit t̂ labels the inward pointingnormal vetor of the fae opposite to node i, saledwith the area of the fae (see Fig. 1).In the utuation splitting method the ell residualis distributed to the nodes of element E aording tothe following formula:�Ei = �Ei �E ; (9)where the distribution funtion �Ei is the fration ofthe total ell residual �E distributed to node i in ele-ment E, and �Ei is the so alled distribution oeÆient.For onsisteny, we require that for a given ell Ed+2Xi=1 �Ei = �E or d+2Xi=1 �Ei = 1;where a ellwise loal numbering of the nodes is used.Di�erent residual distribution shemes are deter-mined by the way �Ei or �Ei is de�ned. In the presentontext the satisfation of appropriate multidimen-sional upwinding properties by the shemes is ruial,sine it will ensure that no ontribution of the ellresidual is sent to nodes at the initial time level ofthe spae-time slab. Multidimensional upwind RDshemes are de�ned by the ondition�Ei = 0 or �Ei = 0 for ki � 0: (10)Indeed, this ondition expresses that residual ontri-butions in ell E are only sent to downstream nodes,whereby a node is de�ned to be downstream if the faeopposite to this node sees an ingoing ux (i.e. ki > 0).In this paper we use three di�erent shemes whih sat-isfy this property: the optimal positive, linear, �rstorder N sheme, the non-monotone, linear, seond or-der LDA sheme, and the monotone, nonlinear, seondorder B sheme3, 6, 16, 17 (see appendix). Distributing3 of 13



the total ell residual in all of the elements E aord-ing to equation (9) and assembling the ontributionsto the nodes, we arrive to the disrete form of equation(3): XE;j2E �Ej = 0 for 8j 2 [1; N ℄: (11)Equation (11) is an impliit system whih in prini-ple ould involve the unknowns of all grid points in thespae-time domain. However, due to the use of upwindRD shemes, the solution is deoupled on temporalslabs, and a time marhing proedure is obtained aswill be shown below. In the present paper, system (11)is solved by embedding it in a pseudo time dependentiteration proedure.Extension to a System of EquationsWe onsider a system of hyperboli onservationlaws onsisting of p equations in d spatial dimensionsover spae-time domain 
:�U�t +r �G = 0; for 8(x; t) 2 
; (12)where U is the vetor of onserved variables and G isthe p�d ux vetor. Equation (12) in quasilinear formreads: �U�t +��Gm�U x̂m� � rU = 0: (13)Just like in the salar ase, we introdue the spae-time formulation of equation (12):~r � ~F = 0; (14)where the spae-time ux vetor is ~F = G+ U t̂. As-suming pieewise linear variation of the omponents ofthe state variable U :U(x; t) = NXj=1Ujwj(x; t); (15)and applying a proper onservative linearization18, thetotal residual vetor �E in element E is written as:�E = I�E ~F � ~n dS = � ��Gm�U x̂m + Î t̂� � ZE ~rU d
;(16)where ��Gm=�U is the m-th omponent of the uxJaobian taken in an averaged state of �U , suh thatonservation is satis�ed aording to equation (16).Introduing the following linear ombination of thespae-time Jaobian matries:Ki = 1d+ 1 � ��Gm�U nim + Î nit� ; (17)

the ell residual an be written in the ompat form:�E = d+2Xi=1KiUi: (18)Sine equation (12) is hyperboli in physial time,the p eigenvalues of matrixKi are real, and a ompleteset of p real linearly independent eigenvetors exists.Diagonalization of matrix Ki yields: Ki = Ri�iLi,where �i is the eigenvalue matrix (diagonal matrixontaining the eigenvalues in the diagonal) of Ki, theolumns of Ri ontain the right eigenvetors ofKi, andLi = (Ri)�1.The eigenvalues and the eigenvetors of matrix Kian be easily obtained from the eigenvalue deompo-sition (i.e. the eigenvalues and the eigenvetors) ofmatrix Ci = ��Gm=�Unim. Let us rewrite equation(17) as Ki = 1d+ 1(Ri ~�iLi + Î nit); (19)where ~�i is the eigenvalue matrix of Ci. Hene, Kian be further written asKi = 1d+ 1Ri(~�i + Î nit)Li = 1d+ 1Ri�iLi: (20)Equation (20) reets an important property of thespae-time method: Even if the original matrix Ci issingular (as ours e.g. for vanishing ow speed in thease of the Euler equations), matrix Ki is still regulardue to the presene of the ow independent diagonalentries. The importane of non vanishing eigenvaluesin the ase of quasi stagnant ow problems is lear,sine the RD shemes require the inversion of matriesd+2Xi=1K+i or d+2Xi=1 K�i ; (21)whih are singular for vanishing veloity (fr. ap-pendix). Although Abgrall has shown that the RDshemes remain well-de�ned in these degenerate ases,speial are is required to treat the singularity, whihis not neessary for the spae-time approah (as willbe demonstrated in the results setion).The eigenvalue matrix an be deomposed as �i =�+i +��i , where ��i = �i � j�ij2 : (22)The generalized upwind parameters K+i = Ri�+i Liand K�i = Ri��i Li play an important role in the mul-tidimensional upwind property of the system residualdistribution shemes. In element E, node i does notreeive any ontribution from the ell residual if allof the eigenvalues of the orresponding matrix Ki arenegative, i.e. �+i is the null matrix (see appendix).4 of 13



Otherwise, node i will reeive a ertain amount from�E . The distribution funtion is de�ned as:�Ei = �Ei �E ; (23)where �Ei is the distribution matrix. For onsistenywe require thatd+2Xi=1 �Ei = �E or d+2Xi=1 �Ei = Î : (24)The de�nition of �Ei for the system version of theN, LDA and B-sheme is given in the appendix.Finally, assembling the ontributions from the sur-rounding elements, the disretization of equation (12)is given by XE;j2E�Ej = 0; for 8j 2 [1; N ℄: (25)Remark on the Conservative LinearizationIf the spatial ux funtionG is a non linear funtionof u (salar) resp. U (system), then the same rulesapply for the onservative linearization as in the steadyase. For example, if G and u resp. U an be writtenas a quadrati funtion of a ertain Roe parametervariable z resp. Z, then the Struijs-Deonink-Roelinearization18 an be used to ahieve full onservationof the spae time uxes.Geometry of the Spae-Time GridIn order to design an eÆient time marhing proe-dure, the full spae-time solution of the problem hasto be deoupled into temporal slabs. It turns out,that upwind RD shemes operating on properly on-struted spae-time geometries naturally lead to suha temporal deoupling of the solution. In this paper wepropose to use a spae-time mesh ontaining three lev-els of nodes and two layers of elements in the temporaldiretion, see7 for some details about the single layerversion of the approah. The �rst, seond, and thirdlevels of nodes have temporal oordinates tn, tn+1=2,and tn+1, and will be alled respetively past, interme-diate and future time level. The spae-time solution isdeoupled if no residual ontribution is sent from theells of the two layers to the nodes loated at the pastlevel (t = tn).Two layers appear to be the minimum neessary toallow for a sheme with unonditionally stable impliittime stepping. The time step �t1 = tn+1=2� tn is lim-ited by a severe CFL-like ondition similar to expliitshemes in order to deouple the solution in the �rstlayer of elements (see below). However, in the seondlayer an arbitrary time step �t2 = tn+1 � tn+1=2 anbe taken. The e�etive CFL number for the wholetemporal slab is ontrolled by the ratio Q of the timesteps over the two layers:Q = �t2=�t1:
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Fig. 2 Valid on�gurations of the spae-time meshin 1D. Nodes at levels n, n+1=2 and n+1 are labelledby blak, gray and empty irles, respetively.One Spatial DimensionFig. 2 shows two valid on�gurations of the spae-time mesh. Both on�gurations require some nodesin the intermediate level whih are staggered in spae,loated at the midpoints of the segments on the pastlevel as will be shown below. The top on�gurationis optimal in terms of omputational ost and will beused in all omputational experiments. The seondon�guration is also useful, as it allows more easilyfor a generalization in two spae dimensions. In bothon�gurations, the seond layer of triangles is obtainedfrom the �rst layer by mirroring it to the t = tn+1=2line. Then the temporal width of the mirrored layer isstrethed aording to the ratio Q. The �rst layer ofthe spae-time mesh ontains two types of triangles,E1 and E2 (see Fig. 3). Triangles of type E1 have twopast nodes and one intermediate node, while trianglesof type E2 have one past node and two intermediatenodes.Deoupling ondition for a salar onservation lawIn order to deouple the solution and allow timemarhing, no ontribution of the residual must be sentto the past level from the triangles of the �rst layer,i.e. the upwind parameter ki must be non positive forall of the past nodes i aording to ondition (10).For triangles of the E2 type the value of ki for theunique past node is ki = ��x=2 < 0, therefore thisnode never reeive a residual ontribution from theseelements.Let us onsider a triangle of type E1 as shown inFig. 3. Using loal numbering of the nodes, the in-ward saled normal vetors are ~n1 = (��t1;��x=2),~n2 = (�t1;��x=2), and ~n3 = (0;�x). The or-responding upwind parameters for the nodes at thepast level are therefore k1 = ����t1=2 � �x=4 andk2 = ���t1=2��x=4, where �� = � �Fx=�u is the spatial5 of 13
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xFig. 3 Basi triangular elements in the �rst layerof the spae-time mesh in one spatial dimension.omponent of the linearized advetion speed vetor.Imposing that both k1 and k2 must be non positiveleads to the following loal time step restrition:CFL1 =  �t1 �������x !E � 12 8E 2 E1 (26)Equation (26) is alled the loal past shield (LPS) on-dition, sine its satisfation guarantees that the pastnodes are loally proteted from any arti�ial propaga-tion of information from the future due to element E1.The global timestep �t1 for the �rst layer is obtainedfrom �t1 � min8E2E1 �x2 ������!E : (27)Clearly, the intermediate nodes an be oupled withthe past and future nodes if the two layers are solvedin one impliit system. Therefore, no ondition is re-quired for the time step �t2 of the seond layer, whihenables to take large physial time steps. Using theratio Q, the total time step an be written as�t = �t1 +�t2 = (Q+ 1) min8E2E1 �x������ !E CFL1;(28)where CFL1 � 1=2. This leads to the following e�e-tive CFL number:CFL = �t �������x = (Q+ 1)CFL1: (29)Equation (29) shows that in ase of large value of thetime step ratio Q, the shemes an operate at highCFL numbers, while maintaining the unonditionallinear stability and positivity properties of the under-lying RD shemes. This property is extremely usefulwhen the spatial mesh ontains highly re�ned regions.Due to the unonditional stability of the shemes,the global time step is not restrited by the preseneof very small elements, whih is the ase when anexpliit type CFL ondition must be satis�ed.

System of onservation laws in 1DThe method extends trivially to a hyperboli systemof equations by applying the system version of the up-wind RD shemes (see appendix). These shemes donot distribute any residual to a node if all the eigen-values of the orresponding matrix Ki are non positive(�+i = 0̂), for nodes i belonging to the past level. Forthe Euler equations in one spae dimension, this leadsto the following LPS ondition:CFL1 = ��t1(j�vj+ �)�x �E � 12 8E 2 E1; (30)where �v and � are the averaged ow speed and soundspeed, respetively. The global ondition follows as inthe salar ase.Geometrial onditions on the spae-time mesh in 1DConsider the ase of a general spae-time triangle oftype E1 as shown in Fig. 4. The parameter � de�nesthe spatial loation of the node at the intermediatetime level. For j�j > 12 , one obtains an obtuse triangle(i.e. the projetion of node 3 falls outside the edgeloated at level n), while � = 0 orresponds to thesymmetri ases disussed before (Fig. 2). The faenormals are given by~n1 = (��t1;�( 12 � �)�x); (31)~n2 = (�t1;�( 12 + �)�x); (32)~n3 = (0;�x): (33)Expressing again the deoupling ondition for nodes 1and 2, one observes that no positive solution for �t1exists for j�j > 12 , thus exluding obtuse triangles oftype E1 in the �rst layer. For j�j < 12 the time steplimitation on the �rst layer isCFL1 = �t1 �������x � 12 � j�j: (34)One observes that the CFL ondition on the �rstlayer beomes more and more severe as j�j approahes12 , giving the unaeptable limit solution �t1 = 0 forthe Cartesian grid ase shown in Fig. 5. Hene, thevalue � = 0 used for both on�gurations of Fig. 2is optimal in terms of maximal allowable timestep forarbitrary sign of the harateristi speed.
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Fig. 4 General triangle of type E1 in the �rst layerof a spae-time mesh.6 of 13
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Fig. 5 Unaeptable Cartesian spae-time meshSpae-time Mesh in Two Spatial DimensionsAs in 1D, di�erent mesh on�gurations are possible.Starting from a given arbitrary triangulation in spae,the simplest (but not the most eonomi) hoie isprobably the following generalization (see Fig. 6) ofthe 1D on�guration shown at the bottom of Fig. 2.The �rst layer of elements is built from three typesof tetrahedra as shown in Fig. 7. Type E1 has threepast nodes situated at level n, and one node at theintermediate level n + 12 . The spatial position of theintermediate node is at the entroid of the trianglesof the original 2D mesh. Type E2 has two past andtwo intermediate nodes. Finally, type E3 has one pastnode and three intermediate nodes. The seond layerof elements is obtained from the �rst layer by mirroringto the t = tn+1=2 plane, and strething the temporalwidth of the mirrored layer aording to the ratio Q,as in the 1D ase.Deoupling ondition for the salar aseConsider the generi tetrahedra E1, E2, and E3 ofthe �rst layer. It is straightforward to show that forelements of type E3 no ontribution of the residual issent to the unique past node. Expressing the deou-pling ondition for generi tetrahedron E1 for the 3
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Fig. 6 Positioning of the nodes in the spae-timemesh in 2D. Nodes at levels n, n + 1=2 and n + 1are respetively labelled by blak, gray and emptyirles. Squares indiate intermediate nodes posi-tioned in the entroid of the triangles of the leveln spatial mesh.
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Fig. 7 Three types of basi tetrahedra used tobuild the �rst layer of the spae-time mesh in twospae dimensions, and shemati view of the mesh.past nodes leads to (using the notation of Fig. 8):CFLE11 = maxj=1;2;3 k+j �tSj !E1 < 1; (35)where Sj = ntj is the temporal omponent of ~nj, i.e.the area of the fae opposite to vertex j in the tetrahe-dron, projeted on the level n plane. For the presenton�guration where node 4 is loated in the entroid ofthe base triangle, this area is easily alulated as 1=3of the area of the base triangle. On the other hand,k+j = max (0; kj), wherekj = ���� � n123j2 ;whih is the inow parameter orresponding to vertexj of the base triangle (i.e. n123j is saled with the lengthof the edge opposite to j). A similar analysis for thepast nodes 1 and 2 of the generi tetrahedron of typeE2 leads to the onditionCFLE21 = maxj=1;2 k+j �tSj !E2 < 1; (36)where Sj = ntj is de�ned as before (omputed to beequal to the area of the fae opposite to node j inthe tetrahedron, projeted on the level n plane) and
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kj is the inow parameter of node j in the projetedtriangle �j34. Equations (35) and (36) have to be si-multaneously satis�ed in all of the tetrahedra of typesE1 resp. E2, giving the global time step limitation forthe �rst layer�t1 = CFL1min0B�minE2E1 ( 1maxj=1;2;3 k+jSj ; minE2E2 ( 1maxj=1;2 k+jSj 1CA(37)with CFL1 � 1.Just like in the 1D ase, there is no restrition onthe time step of the seond layer. By inreasing thevalue of the time step ratio Q, arbitrarily large globaltime steps an be taken aording to�t = (Q+ 1)�t1 (38)with an e�etive CFL orresponding toCFL = (Q+ 1)CFL1 (39)Deoupling ondition for the system aseThe analysis extends again trivially to the systemase. The salar inow parameter k+j in equations (35)and (36) is replaed by the largest eigenvalue of thespae Jaobians K+i .Geometrial onditions on the spae-time mesh in 2DConsidering the ase of a general spae-time tetra-hedron of type E1, one obtains similar results as in the1D ase. The area's Sj in eq. (35) are now propor-tional to the area oordinates of node 4 in the basetriangle (equal to 1=3 if node 4 oinides with the en-troid). Hene, at least one of the Sj beomes negativeif the projetion of node 4 on the level n plane fallsoutside the base triangle, and no positive solution for�t1 exists in this ase. Similarly, if node 4 approahesthe boundary opposite to node j, Sj approahes zeroand the allowable time step approahes zero. Hene,for an arbitrary onvetion speed vetor, the loationof node 4 in the gravity enter leads to the largestallowable time-step.For tetrahedra of type E2, one arrives at the on-dition that the projetion of the straight line throughedge 3-4 on the level n plane has to ut the segment1-2 in between the nodes 1 and 2. This ondition is al-ways satis�ed if no obtuse triangles exist in the spatialmesh, but it ould be violated for severely distortedspae meshes with obtuse triangles.Numerial ResultsThe spae time residual distribution method dis-ussed so far has been applied for the solution of the1D and 2D Euler equations governing invisid om-pressible ows. The state vetor U and the ux G are

given by:U = 0� ��vE 1A and G = 0� �v�vv + Îp(E + p)v 1A ; (40)respetively, where the notation of the ow variableshas been given in the nomenlature.Veri�ation of the Order of AurayThe order of auray for the spae-time method hasbeen veri�ed in7 for smooth testases in one spae di-mension with known analyti solution. The observedorder of auray is summarized in table 1. Resultsindiate that the measured auray in spae time pre-serves the formal auray of the RD shemes3.Distribution Sheme: N LDA BSteady nozzle (density): 1.00 2.01 2.14Unsteady advetion: 0.97 2.00 1.66Table 1. Measured order of auray of the N,LDA and B shemes.1D Shu-Osher Riemann ProblemWe perform the omputation of a test ase proposedby Shu and Osher19, orresponding to the propagationof a Mah 3 shok into a uniform domain superim-posed by a sinusoidal density perturbation. The initialstate is given by �L = 3:857143, vx;L = 2:629367,p = 10:33333 for x � �4 and �R = 1 + 0:2sin(5x),vx;R = 0, pR = 1 for x > �4. In the omputation weuse Q = 2 and CFL = 1:49. The solution omputedby the seond order non linear B-sheme at t = 1:8 isshown on the left of Fig. 9 and 10 for 401 and 801 spa-tial nodes, respetively. The solid line orresponds toa solution on 1601 spatial nodes. For omparison wealso show omputational results published by Shu andOsher19: The right of Fig. 9 and 10 show the refer-ene result for a third order ENO sheme on 400 pointsand a seond order MUSCL type �nite volume shemeon 800 points, respetively. The omparisons indi-ate that the seond order spae-time RD B-shememathes surprisingly well with the third order ENOsheme on this test ase, although the third orderENO-sheme is undoubtly more aurate. However,the seond order spae-time RD sheme is de�nitelymore aurate than the seond order MUSCL-shemeused by Shu and Osher19 for their omparison.2D Sound Wave InterationThis test ase onerns the propagation and intera-tion of linear sound waves in a two-dimensional stag-nant ow. As initial state, two exponentially deayingaxisymmetri pressure perturbations with a maximumamplitude of Æp = 0:1 are superposed onto a stagnantbakground with � = 140, ~v = 0, and p = 100. In thesolution of this problem the pressure perturbations are8 of 13
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Fig. 9 Shu-Osher test ase at t = 1:8. Left: Solution for the seond order nonlinear B-sheme on 401nodes in spae. Right: Referene solution omputed by a third order ENO sheme on 400 points19.
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Fig. 10 Shu-Osher test ase at t = 1:8. Left: Solution for the seond order nonlinear B-sheme on 801nodes in spae. Right: Solution for a seond order MUSCL TVD Finite Volume sheme on 800 points19.propagated in the radial diretion in the form of lin-ear sound waves, with the speed of sound. In Fig. 11we show a series of snapshots at di�erent time steps,omputed by the seond order linear LDA-sheme ona mesh ontaining 101� 101 points in spae. On thelast two plots the interferene of the two waves anbe observed. This testase illustrates the robustnessof the method for quasi-stati problems without theneed of any speial treatment.2D Riemann ProblemTo further validate the method in two spatial dimen-sions we propose a truely 2D Riemann problem. Att = 0 a squared shaped [3:6�3:6℄ uniform domain with�1 = 3, v1 = 0 and p1 = 3 is embedded into an in�niteuniform domain with �2 = 1, v2 = 0 and p2 = 1. Forsymmetry reasons it is suÆient to ompute the solu-tion over one quarter of the full domain. The solutionis omputed at t = 0:4 on a strutured triangulationof the 2D spatial domain ontaining 101� 101 pointsin spae (�x = �y = 0:02).The density and pressure surfaes are shown in Fig.12 and 13 for the �rst order N and the seond order
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Fig. 11 Interation of linear sound waves. Foursnapshots of the pressure surfae for a mesh with101 X 101 nodes. Computation made with the se-ond order linear LDA-sheme.9 of 13



1

1.5

2

2.5

3

de
ns

ity

-1
-0.5

0
0.5

1 x coordinate

-1
-0.5

0
0.5

1

y coordinate

1

1.5

2

2.5

3

pr
es

su
re

-1
-0.5

0
0.5

1 x coordinate

-1
-0.5

0
0.5

1

y coordinateFig. 12 2D Riemann problem omputed by the �rst order linear N sheme at t=0.4.
1

1.5

2

2.5

3

de
ns

ity

-1
-0.5

0
0.5

1 x coordinate

-1
-0.5

0
0.5

1

y coordinate

1

1.5

2

2.5

3

pr
es

su
re

-1
-0.5

0
0.5

1 x coordinate

-1
-0.5

0
0.5

1

y coordinateFig. 13 2D Riemann problem omputed by the seond order nonlinear B sheme at t=0.4.

-1 -0.5 0 0.5 1
x coordinate

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

de
ns

ity

-1 -0.5 0 0.5 1
x coordinate

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

de
ns

ity
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Fig. 15 Mah 3 ow over a forward faing step.Part of the unstrutured grid lose to the orner ofthe stepB shemes, respetively. The shok, shear and the ex-pansion are well resolved in both spatial diretions.Sine at t = 0:4 the orner e�et of the 2D Riemannproblem has not reahed the boundaries of the ompu-tational domain, the solution on the oordinate axes isidential to the solution of the 1D Riemann problemwith the same initial data. In Fig. 14 we show thedensity omputed by the 1D sheme (on a mesh withthe same spaing) and the ut along the x-axis of the2D omputation for both the N and B shemes. Weobserve that the 2D solution on the x-axis auratelymathes the true 1D solution in the ase of the seondorder B-sheme. For the N-sheme, the 2D solutionshows some additional spatial di�usion aused by thetriangulation of the spae domain.Mah 3 Wind Tunnel with a Forward Faing StepTo illustrate the bene�t of the unonditionally stableimpliit RD shemes, we ompute the testase pro-
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Fig. 16 Mah 3 ow over a forward faing step:Density iso-lines at t = 1:0. Top: nonlinear seondorder spae-time B-sheme. Bottom: Referenesolution: third order PPM sheme on Cartesianmesh20.

posed by Colella and Woodward20. The spatial meshis a uniform triangulation of the domain with averagesize of the triangles given by h = 1=80, exept for theorner of the step, where a severe loal re�nement wasused, as shown in Fig. 15. This re�nement is nees-sary to limit the numerial entropy prodution at theorner, see also8 for more details. In total the spatialmesh has 38,740 triangles and 19,715 nodes.The omputation is made with the seond order non-linear B-sheme using the double layer approah onspae-time tetrahedra. The global timestep is hosensuh that CFL � 1 for the triangles in the uniformregion. However, in the orner region this amounts toa loal value of CFL � 12, due to the small size ofthe ells in this area. This learly shows the bene�tof an unonditionally stable impliit sheme, even forunsteady omputations.Isolines of the density at di�erent instanes in timeare presented in Fig. 16 and 17, and ompared withthe solution of Collella and Woodward20. This ref-erene solution is omputed with a third order PPMmethod on a uniform mesh with square ells of sizeh = 1=80 (note that in the referene omputation en-tropy was �xed at the orner in order to avoid thearti�ial entropy generation).Flow in a hannel with a bumpWe ompute a transoni ow in a hannel21 with asinusoidal bump at the bottom, with an inlet Mahnumber M1 = 0:675. As inlet onditions we imposeow angle (� = 0), together with total tempera-ture and total pressure (omputed relative to the inletMah number). At the outlet we impose an osillatingstati pressure, given by pout = p0 + p1 sin !t, with
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Fig. 17 Mah 3 ow over a forward faing step:Density iso-lines at t = 4:0. Top: nonlinear seondorder spae-time B-sheme. Bottom: Referenesolution: third order PPM sheme on Cartesianmesh20.11 of 13



Fig. 18 The mesh used for the omputation of theow in a hannel with a bump. It ontains 3,162nodes and 6,102 elements.

Fig. 19 Transoni ow in a hannel with osillatingbak pressure. Mah number ontours (from topto bottom) at t = 2�=!, t = 2:5�=!, t = 2:75�=! andt = 3:5�=!.

p1=p0 = 0:16, ! = 0:792, and p0 = 1=(M21),  = 1:4.The spatial grid ontaining 3,162 nodes and 6,102 el-ements is shown on Fig. 18. The time evolution ofthe Mah number ontours of the solution omputedwith the nonlinear B-sheme is shown in Fig. 19, fort = 2�=!, t = 2:5�=!, t = 2:75�=! and t = 3:5�=!.At t = 2:5�=! the shok has reahed the bottom walland is moving bakwards. At t = 2:75�=! the shokhas disappeared and the outlet pressure is inreasing.At t = 3:5�=! the shok reappears again on the topwall. After a full period of the outlet pressure evolu-tion at t = 4�=!, the solution is again idential to theone shown in Fig. 19 (top).ConlusionsPreviously developed multidimensional upwindresidual distribution shemes on simplex elements havebeen extended to spae-time domains for solving un-steady hyperboli systems. Thus, positivity and lin-earity preservation properties of the original shemesare arried over to the full spae-time solution, i.e. thelinearity preserving shemes retain seond order au-ray in smooth ows and the positive shemes produeosillation free solution aross disontinuities both inspae and time.Due to the intrinsi upwinding properties of thestandard RD shemes, the spae-time solution is ob-tained as a sequene of impliit solutions on temporalslabs onsisting of two layers of elements. In the �rstlayer an expliit type CFL ondition of order one isrequired, but in the seond layer an arbitrary CFLnumber an be taken.The spae time RD shemes have been applied tothe time aurate solution of di�erent salar onserva-tion laws and to the system of Euler equations both inone and two spatial dimensions. Numerial results inone spae dimension demonstrate that the presentedseond order spae-time RD shemes are de�nitelymore aurate than standard seond order TVD �nitevolume shemes, e.g. ombined with a higher orderRunge Kutta time integrator, and even ompare fa-vorably with a third order ENO sheme. Results in2D have been ompared favorably with a third orderPPM sheme on Cartesian grids.The key advantage of the present RD shemes overthe bilinear shemes proposed by Abgrall is that theyallow an unonditionally stable impliit time stepping,while in the shemes of Abgrall an expliit type CFLondition has to be satis�ed in order to maintain pos-itivity. Also, our RD shemes are not sensitive to thepresene of stati bakgrounds, sine a non vanishingeigenvalue regularizes the Jaobians for that ase. Thisfeature has its advantage at the level of oding, sineno partiular treatment is needed for zero ow speeds.However, the shemes proposed by Abgrall seem to beless dissipative for shear ows than our RD shemes.Future work on the spae-time RD approah is12 of 13



needed with respet to handling moving geometries.For these problems the method o�ers a great potential,sine the spae mesh an evolve arbitrarily in time,e.g. allowing hanges in topology and number of gridpoints without any need for interpolation data on thenew mesh. Also the eÆient solution of the impliitsystem on the spae-time slab (not disussed in thepresent paper), needs further investigation.The most important hallenge for the future is theextension in three spae dimensions. No attempt inthis diretion has been made yet, although the under-lying shemes trivially generalize to four-dimensionalhyper-tetrahedra. The biggest problem to handleis probably the onstrution of the four-dimensionalspae-time slabs satisfying the upwinding onditions,and the omputational ost involved to solve the im-pliit systems. In this respet, the RD shemes pro-posed by Abgrall generalize muh easier, sine theonstrution of the spae-time slab is immediate.AppendixDe�nition of Some Distribution FuntionsSalar N sheme: �Ni = k+i (ui � uin), whereuin = d+2Pi=1 k�i uid+2Pi=1 k�i .Salar LDA sheme: �LDAi = �LDAi �T ,where�LDAi = k+id+2Pi=1 k+i .Salar B sheme: �Bi = ��Ni + (1� �)�LDAi , where� = �Td+2Pi=1j�Ni j .System N sheme: �Ni = K+i (Ui � Uin), whereuin = �d+2Pi=1K�i ��1 d+2Pi=1K�i Ui.System LDA sheme: �LDAi = �LDAi �T , where�LDAi = �d+2Pi=1K+i ��1K+i .System B sheme: �Bi = ��Ni + (1��)�LDAi , where�j;j = �Tjd+2Pi=1j�Ni;j j .
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