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Introdu
tionOVER the last de
ade, a 
lass of upwind spatialdis
retization te
hnique has been developed forthe numeri
al solution of systems of hyperboli
 
on-servation laws on triangles (2D) and tetrahedra (3D),known as 
u
tuation splitting or residual distribution(RD) s
hemes3, 16, 17. The method in
orporates thesame upwind properties whi
h are at the basis of Go-dunov type �nite volume methods, but 
arried over toa 
ell vertex framework with 
ontinuous solution rep-resentation as in standard Finite Element methods.The key advantage of the RD method is that botha high resolution monotoni
 solution a
ross dis
onti-nuities, and se
ond order spatial a

ura
y in smoothsteady 
ows 
an be a
hieved on arbitrary unstru
turedgrids, based on the 
ompa
t sten
il of the nearestneighbors. The latter property also enables an eÆ-
ient impli
it and parallel implementation. Anotherattra
tive feature of the RD s
hemes is that true mul-tidimensional information 
an be in
orporated into theupwinding pro
edure, derived from the physi
s of theproblem.However, these s
hemes have been developed for thesolution of steady state problems and the se
ond ordera

ura
y degrades to �rst order, when they are used in
ombination with the method of lines (su
h as Runge-Kutta s
hemes) for the 
omputation of unsteady 
ows.Se
ond order spatial a

ura
y 
an be re
overed if a
onsistent mass matrix formulation is applied for thetemporal derivative term (hen
e leading to an impli
its
heme), similar to what is required in stabilized �-nite element methods. Another route to se
ond orders
hemes in time and spa
e is the Taylor-Galerkin ap-1 of 13



proa
h, equivalent to the Lax-Wendrow s
heme in itssimplest setting. Unfortunately, both of these meth-ods loose the positivity properties of the underlyingspa
e dis
retization and lead to os
illatory solutionsin the presen
e of dis
ontinuities. Some 
ures to thisproblem have been investigated, e.g. applying a FluxCorre
ted Transport (FCT) te
hnique13. In this ap-proa
h a monotone �rst order solution obtained froma lumped treatment of the mass matrix (hen
e �rstorder) is blended with a se
ond order non-monotonesolution obtained by a 
onsistent mass matrix formu-lation3, 9, 12. A similar approa
h has been proposedfor the expli
it Lax Wendro� s
heme11, 12. However,experien
e has shown that a Flux Corre
ted Trans-port approa
h as a 
ure to re
over monotoni
ity forsystems la
ks robustness, apart from being 
omputa-tionally expensive. Moreover, using FCT as a way tostabilize a 
hara
teristi
 based upwind s
heme is veryunsatisfa
tory from the theoreti
al point.A more attra
tive framework might be to 
onsiderspa
e-time methods, as e.g. applied in the 
ontextof stabilized �nite element methods15 or dis
ontinuousGalerkin methods1, 8, 14. In both approa
hes the spa
e-time method method is usually dis
ontinuous in time(although not in1), in order to obtain a time mar
hingmethod. Sidilkover presented spa
e-time �nite volumes
hemes satisfying the TVD property, also indi
atingpossible extensions to the RD method2.More re
ently, Abgrall3{5 proposed a 
ontinuousspa
e-time formulation for the RD approa
h, appliedto the Euler equations in two spatial dimensions. Thesolution representation is 
ontinuous in spa
e-time,based on a bilinear interpolation over prismati
 ele-ments whi
h are triangular in spa
e and linear in time.He developed new residual distribution s
hemes forthese elements, imposing an additional 
onstraint oflimiting the distribution to the nodes lo
ated at theforward time level. In this way, the spa
e-time do-main e�e
tively de
ouples in slabs of one single rowof elements per time step, thus e�e
tively resulting ina time-mar
hing approa
h with a system of equationswhi
h is impli
it in the unknowns lo
ated at the for-ward time level of the spa
e-time slab. In Abgrall'swork, this de
oupling 
ondition, 
ombined with a pos-itivity requirement for the update of the solution inspa
e-time, imposes a severe limit on the allowed timestep, very similar to a CFL type 
ondition required forexpli
it s
hemes.In the present paper we elaborate on the same ideaof a 
ontinuous spa
e-time residual distribution, start-ing from a di�erent philosophy. Instead of imposingthe time mar
hing (past shielding) 
ondition dire
tlyon the distribution s
heme, we use standard distribu-tion s
hemes operating on pie
ewise linear elementsdeveloped in the past for spatial triangles and tetra-hedra, but apply them to solve unsteady problems onspa
e-time meshes. The intrinsi
 upwinding property

of these s
hemes is used to de
ouple the solution onthe entire spa
e-time domain in a sequen
e of tempo-ral slabs. The slabs may 
onsist of one or two layersof 
ells in the temporal dire
tion. It turns out thatthe de
oupling 
an only be obtained if the mesh sat-is�es 
ertain geometri
 properties, and if the timestepfor the �rst (or only) layer is limited by a CFL-like
ondition as in Abgrall's approa
h. However, sin
e node
oupling 
ondition is needed for the se
ond layer, ar-bitrary CFL numbers 
an be applied for the 
ombinedtwo layer s
heme, while maintaining se
ond order a
-
ura
y and monotoni
ity in spa
e-time.The paper is organized as follows: First, standardresidual distribution dis
retizations are brie
y re
alledand applied to the general dis
retization of the spa
e-time domain. Then the parti
ular spa
e-time meshesand the de
oupling 
ondition are dis
ussed, allowingto solve the spa
e-time equations by mar
hing in timeon a sequen
e of spa
e-time slabs. In the last se
-tion several 
omputational results are presented for theEuler equations to demonstrate the a

ura
y and therobustness of the s
hemes. Finally some 
on
lusionsare drawn and future perspe
tives are given.Spa
e-Time Residual DistributionDis
retizationS
alar Conservation LawWe 
onsider a s
alar hyperboli
 
onservation law ind spatial dimensions over the spatial and temporal do-main 
 = 
S � [0; tmax℄ with boundary �
:�u�t +r �G = 0; for 8(x; t) 2 
; (1)where u(x; t) is the 
onserved quantity andG(u) is the
orresponding 
ux fun
tion. In terms of the lo
al ad-ve
tion speed ve
tor ��� = �Gm=�u x̂m, the quasilinearform of equation (1) is written as:�u�t + ��� � ru = 0: (2)Using the spa
e-time notations introdu
ed before,equations (1) and (2) take the following 
ompa
t form~r � ~F = 0 and ~��� � ~ru = 0; (3)where the spa
e-time 
ux ve
tor is ~F = G + u t̂, andthe spa
e-time adve
tion speed ve
tor is ~��� = ���+ t̂.In this paper we propose to apply standard, fullyupwind residual distribution s
hemes3, 17 to the numer-i
al solution of equations (3) on spa
e-time domain 
,dis
retized by triangles and tetrahedra in one and twospatial dimensions, respe
tively.For a 
lassi
al 
ontinuous (in time) stabilizedGalerkin Finite Element method (su
h as SUPG orGLS), this would lead to a system 
oupling the un-knowns for all of the grid points in the spa
e-time2 of 13
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 linear elements with inward point-ing s
aled normal ve
tors. Triangles and tetrahe-dra are used in one and two spatial dimensions,respe
tively.domain, whi
h is 
learly una

eptable from a 
ompu-tational point of view. Therefore, most Finite Elementapproa
hes use a dis
ontinuous formulation in time.However, in the 
ontext of upwind RD methods it ispossible to maintain a 
ontinuous formulation in time,and to de
ouple the spa
e-time solution on temporalslabs with thi
kness �t, su
h that e�e
tively a timemar
hing pro
edure is obtained. Indeed, sin
e thetemporal 
omponent of the adve
tion speed ve
tor ~���is always positive (equal to unity), the use of fully up-wind RD s
hemes naturally leads to the de
oupling ofthe solution if 
ertain geometri
 
onditions of the meshare satis�ed, as will be dis
ussed below. Thus, advan
-ing one physi
al step �t in time is equivalent to thesolution of a steady state problem in d+1 dimensionson a spa
e-time slab 
S ��t.First we brie
y outline the solution pro
edure forstandard residual distribution s
hemes, applied tospa
e-time meshes. For further details the reader isreferred to the above referen
es on the steady s
hemes.Following the standard approa
h, we divide the spa
e-time domain 
 into non overlapping elements, whi
hare triangles and tetrahedra in one and two spatialdimensions, respe
tively. For example, in one spatialdimension the spa
e-time domain 
 forms a re
tangleif 
S is �xed in time (i.e. non moving grids), as shownin Fig. 2. Just like in linear �nite element methods,the state ve
tor u is approximated by a 
ontinuous,pie
ewise linear fun
tion over 
:u(x; t) = NXj=1 ujwj(x; t): (4)where N is the total number of nodes, uj is the nodalvalue of the state variable u at node j and wj(x; t)is the 
orresponding pie
ewise linear shape fun
tionwith 
ompa
t support. Integration of the spa
e-time
ux divergen
e over element E yields the de�nition ofthe spa
e-time 
ell residual:�E = ZE r � ~F d
 = ZE ~��� � ~ru d
: (5)

Following the pro
edure of a 
onservative lineariza-tion18, the 
ell residual 
an be written as:�E = ~������ � ZE ~ru d
 = d+2Xi=1 kiui; (6)where ~������ is a 
ell averaged spa
e-time adve
tion speed
onstru
ted su
h that~������ � ZE ~ru d
 = I�E ~F � ~n dS; (7)for a 
onsistent dis
retization of the 
ontour integralin the right hand side. Based on the 
ellwise linearapproximation of u, the 
oeÆ
ient ki (
alled upwindparameter in the following) is obtained aski = ~���� � ~nid+ 1 ; (8)where ~ni = nimx̂m + nit t̂ labels the inward pointingnormal ve
tor of the fa
e opposite to node i, s
aledwith the area of the fa
e (see Fig. 1).In the 
u
tuation splitting method the 
ell residualis distributed to the nodes of element E a

ording tothe following formula:�Ei = �Ei �E ; (9)where the distribution fun
tion �Ei is the fra
tion ofthe total 
ell residual �E distributed to node i in ele-ment E, and �Ei is the so 
alled distribution 
oeÆ
ient.For 
onsisten
y, we require that for a given 
ell Ed+2Xi=1 �Ei = �E or d+2Xi=1 �Ei = 1;where a 
ellwise lo
al numbering of the nodes is used.Di�erent residual distribution s
hemes are deter-mined by the way �Ei or �Ei is de�ned. In the present
ontext the satisfa
tion of appropriate multidimen-sional upwinding properties by the s
hemes is 
ru
ial,sin
e it will ensure that no 
ontribution of the 
ellresidual is sent to nodes at the initial time level ofthe spa
e-time slab. Multidimensional upwind RDs
hemes are de�ned by the 
ondition�Ei = 0 or �Ei = 0 for ki � 0: (10)Indeed, this 
ondition expresses that residual 
ontri-butions in 
ell E are only sent to downstream nodes,whereby a node is de�ned to be downstream if the fa
eopposite to this node sees an ingoing 
ux (i.e. ki > 0).In this paper we use three di�erent s
hemes whi
h sat-isfy this property: the optimal positive, linear, �rstorder N s
heme, the non-monotone, linear, se
ond or-der LDA s
heme, and the monotone, nonlinear, se
ondorder B s
heme3, 6, 16, 17 (see appendix). Distributing3 of 13



the total 
ell residual in all of the elements E a

ord-ing to equation (9) and assembling the 
ontributionsto the nodes, we arrive to the dis
rete form of equation(3): XE;j2E �Ej = 0 for 8j 2 [1; N ℄: (11)Equation (11) is an impli
it system whi
h in prin
i-ple 
ould involve the unknowns of all grid points in thespa
e-time domain. However, due to the use of upwindRD s
hemes, the solution is de
oupled on temporalslabs, and a time mar
hing pro
edure is obtained aswill be shown below. In the present paper, system (11)is solved by embedding it in a pseudo time dependentiteration pro
edure.Extension to a System of EquationsWe 
onsider a system of hyperboli
 
onservationlaws 
onsisting of p equations in d spatial dimensionsover spa
e-time domain 
:�U�t +r �G = 0; for 8(x; t) 2 
; (12)where U is the ve
tor of 
onserved variables and G isthe p�d 
ux ve
tor. Equation (12) in quasilinear formreads: �U�t +��Gm�U x̂m� � rU = 0: (13)Just like in the s
alar 
ase, we introdu
e the spa
e-time formulation of equation (12):~r � ~F = 0; (14)where the spa
e-time 
ux ve
tor is ~F = G+ U t̂. As-suming pie
ewise linear variation of the 
omponents ofthe state variable U :U(x; t) = NXj=1Ujwj(x; t); (15)and applying a proper 
onservative linearization18, thetotal residual ve
tor �E in element E is written as:�E = I�E ~F � ~n dS = � ��Gm�U x̂m + Î t̂� � ZE ~rU d
;(16)where ��Gm=�U is the m-th 
omponent of the 
uxJa
obian taken in an averaged state of �U , su
h that
onservation is satis�ed a

ording to equation (16).Introdu
ing the following linear 
ombination of thespa
e-time Ja
obian matri
es:Ki = 1d+ 1 � ��Gm�U nim + Î nit� ; (17)

the 
ell residual 
an be written in the 
ompa
t form:�E = d+2Xi=1KiUi: (18)Sin
e equation (12) is hyperboli
 in physi
al time,the p eigenvalues of matrixKi are real, and a 
ompleteset of p real linearly independent eigenve
tors exists.Diagonalization of matrix Ki yields: Ki = Ri�iLi,where �i is the eigenvalue matrix (diagonal matrix
ontaining the eigenvalues in the diagonal) of Ki, the
olumns of Ri 
ontain the right eigenve
tors ofKi, andLi = (Ri)�1.The eigenvalues and the eigenve
tors of matrix Ki
an be easily obtained from the eigenvalue de
ompo-sition (i.e. the eigenvalues and the eigenve
tors) ofmatrix Ci = ��Gm=�Unim. Let us rewrite equation(17) as Ki = 1d+ 1(Ri ~�iLi + Î nit); (19)where ~�i is the eigenvalue matrix of Ci. Hen
e, Ki
an be further written asKi = 1d+ 1Ri(~�i + Î nit)Li = 1d+ 1Ri�iLi: (20)Equation (20) re
e
ts an important property of thespa
e-time method: Even if the original matrix Ci issingular (as o

urs e.g. for vanishing 
ow speed in the
ase of the Euler equations), matrix Ki is still regulardue to the presen
e of the 
ow independent diagonalentries. The importan
e of non vanishing eigenvaluesin the 
ase of quasi stagnant 
ow problems is 
lear,sin
e the RD s
hemes require the inversion of matri
esd+2Xi=1K+i or d+2Xi=1 K�i ; (21)whi
h are singular for vanishing velo
ity (
fr. ap-pendix). Although Abgrall has shown that the RDs
hemes remain well-de�ned in these degenerate 
ases,spe
ial 
are is required to treat the singularity, whi
his not ne
essary for the spa
e-time approa
h (as willbe demonstrated in the results se
tion).The eigenvalue matrix 
an be de
omposed as �i =�+i +��i , where ��i = �i � j�ij2 : (22)The generalized upwind parameters K+i = Ri�+i Liand K�i = Ri��i Li play an important role in the mul-tidimensional upwind property of the system residualdistribution s
hemes. In element E, node i does notre
eive any 
ontribution from the 
ell residual if allof the eigenvalues of the 
orresponding matrix Ki arenegative, i.e. �+i is the null matrix (see appendix).4 of 13



Otherwise, node i will re
eive a 
ertain amount from�E . The distribution fun
tion is de�ned as:�Ei = �Ei �E ; (23)where �Ei is the distribution matrix. For 
onsisten
ywe require thatd+2Xi=1 �Ei = �E or d+2Xi=1 �Ei = Î : (24)The de�nition of �Ei for the system version of theN, LDA and B-s
heme is given in the appendix.Finally, assembling the 
ontributions from the sur-rounding elements, the dis
retization of equation (12)is given by XE;j2E�Ej = 0; for 8j 2 [1; N ℄: (25)Remark on the Conservative LinearizationIf the spatial 
ux fun
tionG is a non linear fun
tionof u (s
alar) resp. U (system), then the same rulesapply for the 
onservative linearization as in the steady
ase. For example, if G and u resp. U 
an be writtenas a quadrati
 fun
tion of a 
ertain Roe parametervariable z resp. Z, then the Struijs-De
onin
k-Roelinearization18 
an be used to a
hieve full 
onservationof the spa
e time 
uxes.Geometry of the Spa
e-Time GridIn order to design an eÆ
ient time mar
hing pro
e-dure, the full spa
e-time solution of the problem hasto be de
oupled into temporal slabs. It turns out,that upwind RD s
hemes operating on properly 
on-stru
ted spa
e-time geometries naturally lead to su
ha temporal de
oupling of the solution. In this paper wepropose to use a spa
e-time mesh 
ontaining three lev-els of nodes and two layers of elements in the temporaldire
tion, see7 for some details about the single layerversion of the approa
h. The �rst, se
ond, and thirdlevels of nodes have temporal 
oordinates tn, tn+1=2,and tn+1, and will be 
alled respe
tively past, interme-diate and future time level. The spa
e-time solution isde
oupled if no residual 
ontribution is sent from the
ells of the two layers to the nodes lo
ated at the pastlevel (t = tn).Two layers appear to be the minimum ne
essary toallow for a s
heme with un
onditionally stable impli
ittime stepping. The time step �t1 = tn+1=2� tn is lim-ited by a severe CFL-like 
ondition similar to expli
its
hemes in order to de
ouple the solution in the �rstlayer of elements (see below). However, in the se
ondlayer an arbitrary time step �t2 = tn+1 � tn+1=2 
anbe taken. The e�e
tive CFL number for the wholetemporal slab is 
ontrolled by the ratio Q of the timesteps over the two layers:Q = �t2=�t1:
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Fig. 2 Valid 
on�gurations of the spa
e-time meshin 1D. Nodes at levels n, n+1=2 and n+1 are labelledby bla
k, gray and empty 
ir
les, respe
tively.One Spatial DimensionFig. 2 shows two valid 
on�gurations of the spa
e-time mesh. Both 
on�gurations require some nodesin the intermediate level whi
h are staggered in spa
e,lo
ated at the midpoints of the segments on the pastlevel as will be shown below. The top 
on�gurationis optimal in terms of 
omputational 
ost and will beused in all 
omputational experiments. The se
ond
on�guration is also useful, as it allows more easilyfor a generalization in two spa
e dimensions. In both
on�gurations, the se
ond layer of triangles is obtainedfrom the �rst layer by mirroring it to the t = tn+1=2line. Then the temporal width of the mirrored layer isstret
hed a

ording to the ratio Q. The �rst layer ofthe spa
e-time mesh 
ontains two types of triangles,E1 and E2 (see Fig. 3). Triangles of type E1 have twopast nodes and one intermediate node, while trianglesof type E2 have one past node and two intermediatenodes.De
oupling 
ondition for a s
alar 
onservation lawIn order to de
ouple the solution and allow timemar
hing, no 
ontribution of the residual must be sentto the past level from the triangles of the �rst layer,i.e. the upwind parameter ki must be non positive forall of the past nodes i a

ording to 
ondition (10).For triangles of the E2 type the value of ki for theunique past node is ki = ��x=2 < 0, therefore thisnode never re
eive a residual 
ontribution from theseelements.Let us 
onsider a triangle of type E1 as shown inFig. 3. Using lo
al numbering of the nodes, the in-ward s
aled normal ve
tors are ~n1 = (��t1;��x=2),~n2 = (�t1;��x=2), and ~n3 = (0;�x). The 
or-responding upwind parameters for the nodes at thepast level are therefore k1 = ����t1=2 � �x=4 andk2 = ���t1=2��x=4, where �� = � �Fx=�u is the spatial5 of 13
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xFig. 3 Basi
 triangular elements in the �rst layerof the spa
e-time mesh in one spatial dimension.
omponent of the linearized adve
tion speed ve
tor.Imposing that both k1 and k2 must be non positiveleads to the following lo
al time step restri
tion:CFL1 =  �t1 �������x !E � 12 8E 2 E1 (26)Equation (26) is 
alled the lo
al past shield (LPS) 
on-dition, sin
e its satisfa
tion guarantees that the pastnodes are lo
ally prote
ted from any arti�
ial propaga-tion of information from the future due to element E1.The global timestep �t1 for the �rst layer is obtainedfrom �t1 � min8E2E1 �x2 ������!E : (27)Clearly, the intermediate nodes 
an be 
oupled withthe past and future nodes if the two layers are solvedin one impli
it system. Therefore, no 
ondition is re-quired for the time step �t2 of the se
ond layer, whi
henables to take large physi
al time steps. Using theratio Q, the total time step 
an be written as�t = �t1 +�t2 = (Q+ 1) min8E2E1 �x������ !E CFL1;(28)where CFL1 � 1=2. This leads to the following e�e
-tive CFL number:CFL = �t �������x = (Q+ 1)CFL1: (29)Equation (29) shows that in 
ase of large value of thetime step ratio Q, the s
hemes 
an operate at highCFL numbers, while maintaining the un
onditionallinear stability and positivity properties of the under-lying RD s
hemes. This property is extremely usefulwhen the spatial mesh 
ontains highly re�ned regions.Due to the un
onditional stability of the s
hemes,the global time step is not restri
ted by the presen
eof very small elements, whi
h is the 
ase when anexpli
it type CFL 
ondition must be satis�ed.

System of 
onservation laws in 1DThe method extends trivially to a hyperboli
 systemof equations by applying the system version of the up-wind RD s
hemes (see appendix). These s
hemes donot distribute any residual to a node if all the eigen-values of the 
orresponding matrix Ki are non positive(�+i = 0̂), for nodes i belonging to the past level. Forthe Euler equations in one spa
e dimension, this leadsto the following LPS 
ondition:CFL1 = ��t1(j�vj+ �
)�x �E � 12 8E 2 E1; (30)where �v and �
 are the averaged 
ow speed and soundspeed, respe
tively. The global 
ondition follows as inthe s
alar 
ase.Geometri
al 
onditions on the spa
e-time mesh in 1DConsider the 
ase of a general spa
e-time triangle oftype E1 as shown in Fig. 4. The parameter � de�nesthe spatial lo
ation of the node at the intermediatetime level. For j�j > 12 , one obtains an obtuse triangle(i.e. the proje
tion of node 3 falls outside the edgelo
ated at level n), while � = 0 
orresponds to thesymmetri
 
ases dis
ussed before (Fig. 2). The fa
enormals are given by~n1 = (��t1;�( 12 � �)�x); (31)~n2 = (�t1;�( 12 + �)�x); (32)~n3 = (0;�x): (33)Expressing again the de
oupling 
ondition for nodes 1and 2, one observes that no positive solution for �t1exists for j�j > 12 , thus ex
luding obtuse triangles oftype E1 in the �rst layer. For j�j < 12 the time steplimitation on the �rst layer isCFL1 = �t1 �������x � 12 � j�j: (34)One observes that the CFL 
ondition on the �rstlayer be
omes more and more severe as j�j approa
hes12 , giving the una

eptable limit solution �t1 = 0 forthe Cartesian grid 
ase shown in Fig. 5. Hen
e, thevalue � = 0 used for both 
on�gurations of Fig. 2is optimal in terms of maximal allowable timestep forarbitrary sign of the 
hara
teristi
 speed.
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Fig. 4 General triangle of type E1 in the �rst layerof a spa
e-time mesh.6 of 13
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Fig. 5 Una

eptable Cartesian spa
e-time meshSpa
e-time Mesh in Two Spatial DimensionsAs in 1D, di�erent mesh 
on�gurations are possible.Starting from a given arbitrary triangulation in spa
e,the simplest (but not the most e
onomi
) 
hoi
e isprobably the following generalization (see Fig. 6) ofthe 1D 
on�guration shown at the bottom of Fig. 2.The �rst layer of elements is built from three typesof tetrahedra as shown in Fig. 7. Type E1 has threepast nodes situated at level n, and one node at theintermediate level n + 12 . The spatial position of theintermediate node is at the 
entroid of the trianglesof the original 2D mesh. Type E2 has two past andtwo intermediate nodes. Finally, type E3 has one pastnode and three intermediate nodes. The se
ond layerof elements is obtained from the �rst layer by mirroringto the t = tn+1=2 plane, and stret
hing the temporalwidth of the mirrored layer a

ording to the ratio Q,as in the 1D 
ase.De
oupling 
ondition for the s
alar 
aseConsider the generi
 tetrahedra E1, E2, and E3 ofthe �rst layer. It is straightforward to show that forelements of type E3 no 
ontribution of the residual issent to the unique past node. Expressing the de
ou-pling 
ondition for generi
 tetrahedron E1 for the 3
t

∆

∆ t

t
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1

∆

Fig. 6 Positioning of the nodes in the spa
e-timemesh in 2D. Nodes at levels n, n + 1=2 and n + 1are respe
tively labelled by bla
k, gray and empty
ir
les. Squares indi
ate intermediate nodes posi-tioned in the 
entroid of the triangles of the leveln spatial mesh.

type: E 3

t

x
y

t
∆

Fig. 7 Three types of basi
 tetrahedra used tobuild the �rst layer of the spa
e-time mesh in twospa
e dimensions, and s
hemati
 view of the mesh.past nodes leads to (using the notation of Fig. 8):CFLE11 = maxj=1;2;3 k+j �tSj !E1 < 1; (35)where Sj = ntj is the temporal 
omponent of ~nj, i.e.the area of the fa
e opposite to vertex j in the tetrahe-dron, proje
ted on the level n plane. For the present
on�guration where node 4 is lo
ated in the 
entroid ofthe base triangle, this area is easily 
al
ulated as 1=3of the area of the base triangle. On the other hand,k+j = max (0; kj), wherekj = ���� � n123j2 ;whi
h is the in
ow parameter 
orresponding to vertexj of the base triangle (i.e. n123j is s
aled with the lengthof the edge opposite to j). A similar analysis for thepast nodes 1 and 2 of the generi
 tetrahedron of typeE2 leads to the 
onditionCFLE21 = maxj=1;2 k+j �tSj !E2 < 1; (36)where Sj = ntj is de�ned as before (
omputed to beequal to the area of the fa
e opposite to node j inthe tetrahedron, proje
ted on the level n plane) and
n
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xFig. 8 Elementary tetrahedra of types E1 (left)and E2 (right), see also Fig. 7.7 of 13



kj is the in
ow parameter of node j in the proje
tedtriangle �j34. Equations (35) and (36) have to be si-multaneously satis�ed in all of the tetrahedra of typesE1 resp. E2, giving the global time step limitation forthe �rst layer�t1 = CFL1min0B�minE2E1 ( 1maxj=1;2;3 k+jSj ; minE2E2 ( 1maxj=1;2 k+jSj 1CA(37)with CFL1 � 1.Just like in the 1D 
ase, there is no restri
tion onthe time step of the se
ond layer. By in
reasing thevalue of the time step ratio Q, arbitrarily large globaltime steps 
an be taken a

ording to�t = (Q+ 1)�t1 (38)with an e�e
tive CFL 
orresponding toCFL = (Q+ 1)CFL1 (39)De
oupling 
ondition for the system 
aseThe analysis extends again trivially to the system
ase. The s
alar in
ow parameter k+j in equations (35)and (36) is repla
ed by the largest eigenvalue of thespa
e Ja
obians K+i .Geometri
al 
onditions on the spa
e-time mesh in 2DConsidering the 
ase of a general spa
e-time tetra-hedron of type E1, one obtains similar results as in the1D 
ase. The area's Sj in eq. (35) are now propor-tional to the area 
oordinates of node 4 in the basetriangle (equal to 1=3 if node 4 
oin
ides with the 
en-troid). Hen
e, at least one of the Sj be
omes negativeif the proje
tion of node 4 on the level n plane fallsoutside the base triangle, and no positive solution for�t1 exists in this 
ase. Similarly, if node 4 approa
hesthe boundary opposite to node j, Sj approa
hes zeroand the allowable time step approa
hes zero. Hen
e,for an arbitrary 
onve
tion speed ve
tor, the lo
ationof node 4 in the gravity 
enter leads to the largestallowable time-step.For tetrahedra of type E2, one arrives at the 
on-dition that the proje
tion of the straight line throughedge 3-4 on the level n plane has to 
ut the segment1-2 in between the nodes 1 and 2. This 
ondition is al-ways satis�ed if no obtuse triangles exist in the spatialmesh, but it 
ould be violated for severely distortedspa
e meshes with obtuse triangles.Numeri
al ResultsThe spa
e time residual distribution method dis-
ussed so far has been applied for the solution of the1D and 2D Euler equations governing invis
id 
om-pressible 
ows. The state ve
tor U and the 
ux G are

given by:U = 0� ��vE 1A and G = 0� �v�vv + Îp(E + p)v 1A ; (40)respe
tively, where the notation of the 
ow variableshas been given in the nomen
lature.Veri�
ation of the Order of A

ura
yThe order of a

ura
y for the spa
e-time method hasbeen veri�ed in7 for smooth test
ases in one spa
e di-mension with known analyti
 solution. The observedorder of a

ura
y is summarized in table 1. Resultsindi
ate that the measured a

ura
y in spa
e time pre-serves the formal a

ura
y of the RD s
hemes3.Distribution S
heme: N LDA BSteady nozzle (density): 1.00 2.01 2.14Unsteady adve
tion: 0.97 2.00 1.66Table 1. Measured order of a

ura
y of the N,LDA and B s
hemes.1D Shu-Osher Riemann ProblemWe perform the 
omputation of a test 
ase proposedby Shu and Osher19, 
orresponding to the propagationof a Ma
h 3 sho
k into a uniform domain superim-posed by a sinusoidal density perturbation. The initialstate is given by �L = 3:857143, vx;L = 2:629367,p = 10:33333 for x � �4 and �R = 1 + 0:2sin(5x),vx;R = 0, pR = 1 for x > �4. In the 
omputation weuse Q = 2 and CFL = 1:49. The solution 
omputedby the se
ond order non linear B-s
heme at t = 1:8 isshown on the left of Fig. 9 and 10 for 401 and 801 spa-tial nodes, respe
tively. The solid line 
orresponds toa solution on 1601 spatial nodes. For 
omparison wealso show 
omputational results published by Shu andOsher19: The right of Fig. 9 and 10 show the refer-en
e result for a third order ENO s
heme on 400 pointsand a se
ond order MUSCL type �nite volume s
hemeon 800 points, respe
tively. The 
omparisons indi-
ate that the se
ond order spa
e-time RD B-s
hememat
hes surprisingly well with the third order ENOs
heme on this test 
ase, although the third orderENO-s
heme is undoubtly more a

urate. However,the se
ond order spa
e-time RD s
heme is de�nitelymore a

urate than the se
ond order MUSCL-s
hemeused by Shu and Osher19 for their 
omparison.2D Sound Wave Intera
tionThis test 
ase 
on
erns the propagation and intera
-tion of linear sound waves in a two-dimensional stag-nant 
ow. As initial state, two exponentially de
ayingaxisymmetri
 pressure perturbations with a maximumamplitude of Æp = 0:1 are superposed onto a stagnantba
kground with � = 140, ~v = 0, and p = 100. In thesolution of this problem the pressure perturbations are8 of 13
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Fig. 9 Shu-Osher test 
ase at t = 1:8. Left: Solution for the se
ond order nonlinear B-s
heme on 401nodes in spa
e. Right: Referen
e solution 
omputed by a third order ENO s
heme on 400 points19.
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Fig. 10 Shu-Osher test 
ase at t = 1:8. Left: Solution for the se
ond order nonlinear B-s
heme on 801nodes in spa
e. Right: Solution for a se
ond order MUSCL TVD Finite Volume s
heme on 800 points19.propagated in the radial dire
tion in the form of lin-ear sound waves, with the speed of sound. In Fig. 11we show a series of snapshots at di�erent time steps,
omputed by the se
ond order linear LDA-s
heme ona mesh 
ontaining 101� 101 points in spa
e. On thelast two plots the interferen
e of the two waves 
anbe observed. This test
ase illustrates the robustnessof the method for quasi-stati
 problems without theneed of any spe
ial treatment.2D Riemann ProblemTo further validate the method in two spatial dimen-sions we propose a truely 2D Riemann problem. Att = 0 a squared shaped [3:6�3:6℄ uniform domain with�1 = 3, v1 = 0 and p1 = 3 is embedded into an in�niteuniform domain with �2 = 1, v2 = 0 and p2 = 1. Forsymmetry reasons it is suÆ
ient to 
ompute the solu-tion over one quarter of the full domain. The solutionis 
omputed at t = 0:4 on a stru
tured triangulationof the 2D spatial domain 
ontaining 101� 101 pointsin spa
e (�x = �y = 0:02).The density and pressure surfa
es are shown in Fig.12 and 13 for the �rst order N and the se
ond order
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Fig. 11 Intera
tion of linear sound waves. Foursnapshots of the pressure surfa
e for a mesh with101 X 101 nodes. Computation made with the se
-ond order linear LDA-s
heme.9 of 13



1

1.5

2

2.5

3

de
ns

ity

-1
-0.5

0
0.5

1 x coordinate

-1
-0.5

0
0.5

1

y coordinate

1

1.5

2

2.5

3

pr
es

su
re

-1
-0.5

0
0.5

1 x coordinate

-1
-0.5

0
0.5

1

y coordinateFig. 12 2D Riemann problem 
omputed by the �rst order linear N s
heme at t=0.4.
1

1.5

2

2.5

3

de
ns

ity

-1
-0.5

0
0.5

1 x coordinate

-1
-0.5

0
0.5

1

y coordinate

1

1.5

2

2.5

3

pr
es

su
re

-1
-0.5

0
0.5

1 x coordinate

-1
-0.5

0
0.5

1

y coordinateFig. 13 2D Riemann problem 
omputed by the se
ond order nonlinear B s
heme at t=0.4.

-1 -0.5 0 0.5 1
x coordinate

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

de
ns

ity

-1 -0.5 0 0.5 1
x coordinate

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

de
ns

ity
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ond order non linear B-s
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Fig. 15 Ma
h 3 
ow over a forward fa
ing step.Part of the unstru
tured grid 
lose to the 
orner ofthe stepB s
hemes, respe
tively. The sho
k, shear and the ex-pansion are well resolved in both spatial dire
tions.Sin
e at t = 0:4 the 
orner e�e
t of the 2D Riemannproblem has not rea
hed the boundaries of the 
ompu-tational domain, the solution on the 
oordinate axes isidenti
al to the solution of the 1D Riemann problemwith the same initial data. In Fig. 14 we show thedensity 
omputed by the 1D s
heme (on a mesh withthe same spa
ing) and the 
ut along the x-axis of the2D 
omputation for both the N and B s
hemes. Weobserve that the 2D solution on the x-axis a

uratelymat
hes the true 1D solution in the 
ase of the se
ondorder B-s
heme. For the N-s
heme, the 2D solutionshows some additional spatial di�usion 
aused by thetriangulation of the spa
e domain.Ma
h 3 Wind Tunnel with a Forward Fa
ing StepTo illustrate the bene�t of the un
onditionally stableimpli
it RD s
hemes, we 
ompute the test
ase pro-
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Fig. 16 Ma
h 3 
ow over a forward fa
ing step:Density iso-lines at t = 1:0. Top: nonlinear se
ondorder spa
e-time B-s
heme. Bottom: Referen
esolution: third order PPM s
heme on Cartesianmesh20.

posed by Colella and Woodward20. The spatial meshis a uniform triangulation of the domain with averagesize of the triangles given by h = 1=80, ex
ept for the
orner of the step, where a severe lo
al re�nement wasused, as shown in Fig. 15. This re�nement is ne
es-sary to limit the numeri
al entropy produ
tion at the
orner, see also8 for more details. In total the spatialmesh has 38,740 triangles and 19,715 nodes.The 
omputation is made with the se
ond order non-linear B-s
heme using the double layer approa
h onspa
e-time tetrahedra. The global timestep is 
hosensu
h that CFL � 1 for the triangles in the uniformregion. However, in the 
orner region this amounts toa lo
al value of CFL � 12, due to the small size ofthe 
ells in this area. This 
learly shows the bene�tof an un
onditionally stable impli
it s
heme, even forunsteady 
omputations.Isolines of the density at di�erent instan
es in timeare presented in Fig. 16 and 17, and 
ompared withthe solution of Collella and Woodward20. This ref-eren
e solution is 
omputed with a third order PPMmethod on a uniform mesh with square 
ells of sizeh = 1=80 (note that in the referen
e 
omputation en-tropy was �xed at the 
orner in order to avoid thearti�
ial entropy generation).Flow in a 
hannel with a bumpWe 
ompute a transoni
 
ow in a 
hannel21 with asinusoidal bump at the bottom, with an inlet Ma
hnumber M1 = 0:675. As inlet 
onditions we impose
ow angle (� = 0), together with total tempera-ture and total pressure (
omputed relative to the inletMa
h number). At the outlet we impose an os
illatingstati
 pressure, given by pout = p0 + p1 sin !t, with
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Fig. 17 Ma
h 3 
ow over a forward fa
ing step:Density iso-lines at t = 4:0. Top: nonlinear se
ondorder spa
e-time B-s
heme. Bottom: Referen
esolution: third order PPM s
heme on Cartesianmesh20.11 of 13



Fig. 18 The mesh used for the 
omputation of the
ow in a 
hannel with a bump. It 
ontains 3,162nodes and 6,102 elements.

Fig. 19 Transoni
 
ow in a 
hannel with os
illatingba
k pressure. Ma
h number 
ontours (from topto bottom) at t = 2�=!, t = 2:5�=!, t = 2:75�=! andt = 3:5�=!.

p1=p0 = 0:16, ! = 0:792, and p0 = 1=(
M21), 
 = 1:4.The spatial grid 
ontaining 3,162 nodes and 6,102 el-ements is shown on Fig. 18. The time evolution ofthe Ma
h number 
ontours of the solution 
omputedwith the nonlinear B-s
heme is shown in Fig. 19, fort = 2�=!, t = 2:5�=!, t = 2:75�=! and t = 3:5�=!.At t = 2:5�=! the sho
k has rea
hed the bottom walland is moving ba
kwards. At t = 2:75�=! the sho
khas disappeared and the outlet pressure is in
reasing.At t = 3:5�=! the sho
k reappears again on the topwall. After a full period of the outlet pressure evolu-tion at t = 4�=!, the solution is again identi
al to theone shown in Fig. 19 (top).Con
lusionsPreviously developed multidimensional upwindresidual distribution s
hemes on simplex elements havebeen extended to spa
e-time domains for solving un-steady hyperboli
 systems. Thus, positivity and lin-earity preservation properties of the original s
hemesare 
arried over to the full spa
e-time solution, i.e. thelinearity preserving s
hemes retain se
ond order a

u-ra
y in smooth 
ows and the positive s
hemes produ
eos
illation free solution a
ross dis
ontinuities both inspa
e and time.Due to the intrinsi
 upwinding properties of thestandard RD s
hemes, the spa
e-time solution is ob-tained as a sequen
e of impli
it solutions on temporalslabs 
onsisting of two layers of elements. In the �rstlayer an expli
it type CFL 
ondition of order one isrequired, but in the se
ond layer an arbitrary CFLnumber 
an be taken.The spa
e time RD s
hemes have been applied tothe time a

urate solution of di�erent s
alar 
onserva-tion laws and to the system of Euler equations both inone and two spatial dimensions. Numeri
al results inone spa
e dimension demonstrate that the presentedse
ond order spa
e-time RD s
hemes are de�nitelymore a

urate than standard se
ond order TVD �nitevolume s
hemes, e.g. 
ombined with a higher orderRunge Kutta time integrator, and even 
ompare fa-vorably with a third order ENO s
heme. Results in2D have been 
ompared favorably with a third orderPPM s
heme on Cartesian grids.The key advantage of the present RD s
hemes overthe bilinear s
hemes proposed by Abgrall is that theyallow an un
onditionally stable impli
it time stepping,while in the s
hemes of Abgrall an expli
it type CFL
ondition has to be satis�ed in order to maintain pos-itivity. Also, our RD s
hemes are not sensitive to thepresen
e of stati
 ba
kgrounds, sin
e a non vanishingeigenvalue regularizes the Ja
obians for that 
ase. Thisfeature has its advantage at the level of 
oding, sin
eno parti
ular treatment is needed for zero 
ow speeds.However, the s
hemes proposed by Abgrall seem to beless dissipative for shear 
ows than our RD s
hemes.Future work on the spa
e-time RD approa
h is12 of 13



needed with respe
t to handling moving geometries.For these problems the method o�ers a great potential,sin
e the spa
e mesh 
an evolve arbitrarily in time,e.g. allowing 
hanges in topology and number of gridpoints without any need for interpolation data on thenew mesh. Also the eÆ
ient solution of the impli
itsystem on the spa
e-time slab (not dis
ussed in thepresent paper), needs further investigation.The most important 
hallenge for the future is theextension in three spa
e dimensions. No attempt inthis dire
tion has been made yet, although the under-lying s
hemes trivially generalize to four-dimensionalhyper-tetrahedra. The biggest problem to handleis probably the 
onstru
tion of the four-dimensionalspa
e-time slabs satisfying the upwinding 
onditions,and the 
omputational 
ost involved to solve the im-pli
it systems. In this respe
t, the RD s
hemes pro-posed by Abgrall generalize mu
h easier, sin
e the
onstru
tion of the spa
e-time slab is immediate.AppendixDe�nition of Some Distribution Fun
tionsS
alar N s
heme: �Ni = k+i (ui � uin), whereuin = d+2Pi=1 k�i uid+2Pi=1 k�i .S
alar LDA s
heme: �LDAi = �LDAi �T ,where�LDAi = k+id+2Pi=1 k+i .S
alar B s
heme: �Bi = ��Ni + (1� �)�LDAi , where� = �Td+2Pi=1j�Ni j .System N s
heme: �Ni = K+i (Ui � Uin), whereuin = �d+2Pi=1K�i ��1 d+2Pi=1K�i Ui.System LDA s
heme: �LDAi = �LDAi �T , where�LDAi = �d+2Pi=1K+i ��1K+i .System B s
heme: �Bi = ��Ni + (1��)�LDAi , where�j;j = �Tjd+2Pi=1j�Ni;j j .
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