
Conservative Multidimensional Upwind ResidualDistribution Shemes for Arbitrary FiniteElementsTiago Quintino1, Mario Rihiuto1, Arpi Cs��k1;2, Herman Deonink1 andStefaan Poedts21 Dept. Aeronautis and Aerospae, von Karman Institute for Fluid Dynamis2 Center Plasma Astrophysis, Katholieke Universiteit LeuvenAbstrat. We introdue monotone �rst order utuation splitting shemes for solv-ing hyperboli systems on arbitrary �nite elements, thereby generalizing the N-shemepreviously proposed for linear P1 triangles. Conservation is retained by relaxing onstrit monotoniity, using a simple method based on ontour integration over the ele-ment boundaries. Numerial examples are given for the Euler equations solved on Q1elements for appliations ranging from transoni to hypersoni regimes.1 IntrodutionOver reent years, multi-dimensional upwind utuation splitting or residualdistribution shemes (RDS) have gained some momentum with the developmentof the matrix shemes for the solution of systems of onservation laws [1,2℄.These shemes have been mainly onstruted for linear P1 elements, althoughsome generalization to Q1 quadrilaterals have already been disussed in [4,6℄.Multi-dimensional upwind shemes strongly rely on the quasilinear form ofthe governing equations, for the omputation of the so alled upwind parameters.For �rst order shemes, this adds a onservation onstraint, whih is normallytreated by an appropriate linearization of the Jaobians [2℄. In the ase of theEuler equations on P1 elements a onservative linearization is available, based onthe Roe parameter vetor [10,8℄. This linearization depends on two properties,the linearity of the �nite element spae (P1 elements) and the requirement tohave quadrati uxes in some variable [10℄ (LRD approah). Suh a set of vari-ables fails to exist for arbitrary systems of onservation laws and/or for nonlinear�nite elements. Some remedies have been investigated [6,9,11℄, but the solutionsare muh too ostly or ompliated to be of pratial use.In [5℄, Cs��k et al. proposed a new formulation of the positive N-sheme, basedon a onservative ontour ux integration (C RD approah). By relaxing on stritpositivity, this formulation is onservative independently from the averaged stateused for evaluation of the Jaobians of the system. Due to this property, theoniting issues of onservation and upwinding along loal averaged advetionspeeds are deoupled, allowing the extension of the shemes to more omplexsystems and nonlinear elements.In this paper we address the generalization of the �rst order monotone N-sheme for P1 elements to arbitrary �nite elements. This is important sine the



2 Quintino, Rihiuto, Cs��k, Deonink and Poedts.existene of a monotone, shok apturing, �rst order sheme is the basis for theonstrution of nonlinear higher order shemes, that automatialy follow usingstandard proedures [2,3℄.2 Residual distribution shemesConsider the Euler equations for a perfet gas written as:U t +r � F = 0; U = ��; �v; E�T ; F = ��v; �vv + Ip; (E + p)v�T (1)where v is the veloity vetor, E the total energy density and for losure, thepressure p is omputed p = ( � 1)�E � 12�v � v�. Rewriting the system in thequasilinear form (2), where d is the number of dimensions, we obtain:�U�t +Aj �U�xj = 0; j = 1 : : : d (2)Where Aj = �Fj=�U , is the jaobian in terms of U . In this framework, thesolution is approximated in a ompat pieewise �nite element spae over anunstrutured mesh omposed of elements Ω with m number of nodes.Uh(x; t) = mXl=1 U l(t)Nl(x); (3)Where U l(t) is the time dependent nodal value of the solution at node l andNl(x) is the shape funtion with properties of interpolation (4a), onstant sum-mation and onservation (4b): Nl(xk) = Ækl : k; l = 1 : : :m (4a)XNk(x) = 1;XrNk(x) = 0 : k = 1 : : :m;8x 2 Ω (4b)Integrating (2) over an element Ω we get the total ell residual φΩ:
φΩ = Z

Ω
Aj �Uh�xj dΩ (5)Making use of (3) and (4a) we an write (5) as:

φΩ = Z
Ω
Aj �Nl�xj U l dΩ = U l Z

Ω
Aj �Nl�xj dΩ = mXl=1KlU l (6)where the Kl are de�ned by Kl = Z

Ω
Aj �Nl�xj dΩ (7)Integral (7) an be approximated by any partiular numerial integration forwhih we require for onsistenyPKl = 0. This is automatially satis�ed by the



Conservative Residual Distribution for Arbitrary Finite Elements 3property (4b) if the integration is exat for polynomials of suÆient high order,onsidering the order of Nl and the jaobian Aj . The system being hyperboli,Kl have a omplete set of real eigenvalues and eigenvetors and onsidering thepositive and negative eigenvalue matries, we write (8):Kl = Rl�lLl K+l = Rl�+l Ll; K�l = Rl��l Ll (8)We now distribute the residual in frations to the nodes that ompose the el-ement, using some distribution rule, whih de�nes the numerial sheme. Werequire for onsisteny that these frations sum up to the overall residual:
φΩ = mXl=1 φΩl (9)This �nally leads to the following semi-disrete sheme for eah node l, where Slis the dual ell area and the summation is performed over the ells surroundingthe node. ��U�t �l = � 1Sl XΩ;l2Ω

φΩl (10)The hoie of the sheme to ompute these frations φΩl determines the overallproperties of the method: multidimensional upwinding, onservativity, mono-toniity, k-exatness for polynomials of order k. Refer to [1℄ for a review on theproperties of the matrix shemes.2.1 The standard N-shemeFor the N-sheme the frations φΩl are omputed as (11). Then we ombine (9)and (6) to yield (12) and enfore onsisteny by de�ning U� as (13). Clearly thesheme is positive and linear, hene �rst order.
φNl ,K+l (U l �U�) (11)
φΩ = mXl=1 φNl , mXl=1K+l (U l �U�) � mXl=1KlU l (12)=) U� = � mXl=1K�l ��1 mXl=1K�l U l (13)2.2 Conservation of the N-shemeThe above sheme is not onservative. To gain bak onservation we have toensure (14). This is obtained by rede�ning U� as (15), thereby relaxing on thepositive property (C RD approah [5℄).

φΩ = mXl=1 φNl � φ = I�Ω
F j � njd�Ω (14)U� = � mXl=1K+l ��1�� mXl=1K+l U l�� φ� (15)



4 Quintino, Rihiuto, Cs��k, Deonink and Poedts.Here φ is the onservative residual omputed with any integral approximationthat satis�es the order of the uxes involved. In theory any method of integrationfor the integrals in (14) an be hosen as long as the telesopi property isretained. Consequently, a ontour integration is hosen with an Simpson rule.Using this approah, the variables hosen for the averaged state to ompute theKl do not a�et onservation.2.3 Appliation to partiular Finite ElementsThe P1 elements: Assuming in (7) linear triangular elements and the jaobianAj onstant per ell and omputed in an averaged state of �U l, the general upwindparameters have the form (16).Kl = 12 �Ajnjl; �Aj = Aj( �U ) (16)Where njl are the inward pointing saled normals of the triangle, as shownin �gure (1). The hoie of this averaged state, as mentioned, is at the soureof the onservation property. With LRD approah, a linearization with Roeparameter vetor is imposed, but C RD allows any hoie of variables to linearize.The Q1 elements: For quadrilateral elements, with bi-linear shape-funtions,and the jaobian evaluated again at an averaged state, we get the same expression(16), but where the normals njl are de�ned as in �gure (1). In this ase, theLRD with Roe linearization is not aurate, due to the non linearity of theshape-funtions. In the omputation of (14), the shape-funtion variation alongthe edges of arbitrary quadrilaterals is no longer linear. Tests have shown thatthis error is rather small for roughly regular elements.
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n3Fig. 1. Quadrilateral and Triangle nl normalsGeneral Elements: For general higher-order elements, inluding three dimen-sional ones, the upwind parameters (7) are omputed by averaging the jaobianin the element Ω and omputing (17) to satisfy PKl = 0.Kl = �Aj � Z
Ω
�jNl dΩ (17)2.4 Higher Order shemes: a boundedness issueOne a �rst order monotone sheme is avaiable as disussed above, a high ordersheme preserving exat solutions belonging to the Finite Element spae an be



Conservative Residual Distribution for Arbitrary Finite Elements 5obtained. An example for the ase of a salar onservation law follows:�Nl = �Nl�Ω �Ωj = max(0;�Nl )mPl=1max(0;�Nl )�Ω (18)3 Results and Disussion3.1 Transoni ow, Ma = 0:675 irular ar bump hannelThis transoni test-ase, also known as GAMM hannel, onsists of a 3 � 1hannel, with an unity hord irular ar in the middle with 10% height. Thisresults in a soni poket that ulminates in a transoni shok at t 72% of thehord, reahing Ma t 1:32, [7℄. The referene solution was alulated with a�ner 300�90 quadrilateral mesh with the C RD N sheme. The triangle shemesperform better in edge aligned ows, where the ross di�usion is minimal. Thequadrilateral shemes, although onservative, have shown to be very di�usive,as their ross-di�usion minimizes in diagonal aligned ows.
Fig. 2. Mah distribution along the top and bottom walls in the GAMM hannel. Inthe left, the results of the isotropi triangle mesh (TG) t 3400 nodes, in the right theomputed results with the quadrilateral (QD) 100� 30 mesh.3.2 Hypersoni ow, Ma = 6 bow shok in ylinderTo demonstrate the robustness of the N-sheme for Q1 elements, we present theresults of a simulation of a hypersoni bow shok in front of a ylinder of unityradius. The ow Mah number is 6. Plots along the stagnation line are presented,�g.(3). In this ase, a strong normal shok is observed in the stagnation line, andthe sheme yielded monotone evolutions. The omputation grid had 60� 70 Q1elements. The referene solution was omputed in a grid with approximately 10times more elements.4 ConlusionThe general de�nition of the upwind parametersKl for arbitrary �nite elementsis presented and applied in onjuntion with the C RD approah to retain onser-vation. This separates the oniting issues of multidimensional upwinding andlinearization of the jaobians. It shows potential for appliation to non-linear orhigher order �nite elements.
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