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t. Multidimensional upwind residual distribution s
hemes are ex-tended to the time a

urate solution of systems of hyperboli
 
onservationlaws, based on a 
onsistent dis
retization of the spa
e-time domain. Dueto the upwind property of the s
hemes and to an appropriate 
hoi
e of thespa
e-time mesh geometry, the solution is de
oupled into temporal slabs, al-lowing to 
onstru
t an eÆ
ient un
onditionally stable impli
it time mar
hingpro
edure, while maintaining full 
onsisten
y, monotoni
ity and se
ond ordera

ura
y both in spa
e and time. The method is tested on two-dimensionalproblems involving the solution of the 
ompressible Euler and HomogeneousTwo-Phase 
ow equations. Numeri
al results demonstrate the robustnessand the a

ura
y of the method.Key words: residual distribution method, spa
e-time method, time a

u-rate 
omputations, unsteady Euler, unsteady two-phase 
ow1 INTRODUCTIONOver the last de
ade, a 
lass of upwind spatial dis
retization te
hniques,known as 
u
tuation splitting or residual distribution (RD) s
hemes hasbeen developed for the numeri
al solution of systems of hyperboli
 
onser-vation laws on unstru
tured grids [1,2,3℄. The method operates on trianglesand tetrahedra, in two and three spatial dimensions, respe
tively. It in
orpo-1



rates the same upwind properties at the basis of Godunov type �nite volumes
hemes, but 
arried over to a 
ell vertex framework with a 
ontinuous pie
e-wise linear representation of the solution, like in �nite element methods.The main advantage of the RD approa
h is that both a monotoni
 reso-lution of dis
ontinuities, and se
ond order of a

ura
y in smooth steady 
ows
an be a
hieved for arbitrary unstru
tured grids, on the 
ompa
t sten
il ofthe nearest neighbors. The latter property enables an eÆ
ient impli
it andparallel implementation. Another attra
tive feature of the method is thattrue multidimensional information derived from the physi
s of the problemis in
orporated into the upwinding pro
edure.However, these s
hemes have been developed for the solution of steadystate problems and the se
ond order a

ura
y degrades to �rst order, whenthey are used in 
ombination with the method of lines (su
h as Runge-Kuttas
hemes) for the 
omputation of unsteady 
ows. Se
ond order spatial a
-
ura
y 
an be re
overed if a 
onsistent mass matrix formulation is appliedfor the temporal derivative (hen
e leading to an impli
it s
heme), similarto what is required in stabilized �nite element methods. Another route tose
ond order of a

ura
y in spa
e and time is the Taylor-Galerkin approa
h,equivalent to the Lax-Wendro� s
heme in its simplest setting. Unfortunately,in both 
ases the resulting dis
retization is non-positive and os
illatory solu-tions are obtained in the presen
e of dis
ontinuities. Some 
ures to this prob-lem have been investigated, e.g. applying a Flux Corre
ted Transport (FCT)te
hnique [4℄. In this approa
h a monotone �rst order and a non-monotonese
ond order s
hemes are 
ombined to obtain a high order non-linear mono-tone s
heme [1,5,6,7℄. However, experien
e has shown that a Flux Corre
tedTransport approa
h as a 
ure to re
over monotoni
ity for systems la
ks ro-bustness. Moreover, using FCT as a way to stabilize a 
hara
teristi
 basedupwind s
heme is very unsatisfa
tory from the theoreti
al point, espe
iallyin 
ombination with the mass-matrix approa
h.A more attra
tive framework might be to 
onsider spa
e-time methods, ase.g. applied in the 
ontext of stabilized �nite element methods [8℄ or dis
on-tinuous Galerkin methods [9,10,11℄. More re
ently, Abgrall [1,12℄ proposed a
ontinuous spa
e-time formulation of the RD method in two spatial dimen-sions. The solution representation is based on a bilinear interpolation overprismati
 elements whi
h are triangular in spa
e and linear in time. The ap-proa
h allows to de
ouple the spa
e-time domain into temporal slabs of one2



single row of elements per time step, thus e�e
tively resulting in a impli
ittime-mar
hing pro
edure. Unfortunately, the positivity of Abgrall's impli
its
hemes requires the satisfa
tion of an expli
it type time step limitation.In the present paper we elaborate on the idea of a linear 
ontinuousspa
e-time residual distribution. We use the standard s
hemes operatingon pie
ewise linear elements, developed in the past, applying them to thesolution of unsteady problems on spa
e-time meshes [14,15℄. The intrinsi
upwinding property of these s
hemes is used to de
ouple the solution onthe entire spa
e-time domain in a sequen
e of temporal slabs 
ontaining twolayers elements. It turns out that the de
oupling (past shielding) 
an onlybe obtained if the mesh satis�es 
ertain geometri
 properties, and if the timestep for the �rst layer is limited by a CFL type 
ondition as in Abgrall'sapproa
h. However, sin
e no past shielding is needed for the se
ond layer,arbitrary CFL numbers 
an be obtained, while maintaining se
ond order ofa

ura
y and monotoni
ity both in spa
e and time.The paper is organized as follows: in se
tion 2 we des
ribe the spa
e-time formulation of standard residual distribution s
hemes. The parti
ulargeometry of the spa
e-time grid and the past shielding 
ondition are dis
ussedin se
tion 3. Results of several Euler 
omputations are presented in se
tion 4,while in se
tion 5 we deal with the solution of the Homogeneous Two-Phase
ow equations. In the last se
tion 
on
lusive remarks and future perspe
tivesare given.2 DISCRETIZATION IN SPACE-TIMEWe 
onsider a system of hyperboli
 
onservation laws 
onsisting of q equa-tions in d spatial dimensions over spa
e-time domain 
:�U�t +r �G = 0; for 8(x; t) 2 
; (1)where U is the ve
tor of 
onserved variables and G is the q�d 
ux fun
tion.The quasilinear form of equation (1) is:�U�t +  �Gm�U x̂m! � rU = 0: (2)In equation (2) and in the rest of this paper, index m = [1; :::; d℄ refers tothe Einstein summation 
onvention and x̂m is the unit ve
tor in the m-th3



spatial dire
tion. The unit ve
tor in time is denoted by t̂. Using spa
e-timenotation, system (1) 
an be rewritten as:~r � ~F = 0; (3)where the spa
e-time 
ux ve
tor ~F and the nabla operator ~r are:~F = G+ U t̂ and ~r = r + t̂ ��t : (4)In the following, we limit ourselves to the 
ase of two spatial dimensions.The 
orresponding three-dimensional spa
e-time domain is divided into non-overlapping tetrahedra. The solution U is approximated in the 
ontinuous,pie
ewise linear �nite element spa
e:U(x; t) = NXj=1Ujwj(x; t); (5)where Uj is the dis
rete solution at node j, wj(x; t) is the pie
ewise linear�nite element shape fun
tion and N is the total number of nodes in thespa
e-time mesh.In element E the 
ell residual �E is de�ned as:�E = I�E ~F � ~n dS =  ��Gm�U x̂m + Î t̂! � ZE ~rU d
; (6)where ~n is the outward pointing unit normal of surfa
e element dS and��Gm=�U is them-th 
omponent of the 
ux Ja
obian evaluated in an averagedstate �U 
hosen su
h that equation (6) holds exa
tly at the dis
rete level [13℄.Let ~ni = nimx̂m + nit t̂ be the inward pointing ve
tor normal to the fa
eopposite to node i in element E (see �gure 1). Introdu
ing the followinglinear 
ombination of the spa
e-time Ja
obian matri
es:Ki = 1d+ 1  ��Gm�U nim + Î nit! ; (7)the 
ell residual 
an be written in the following 
ompa
t form:�E = d+2Xi=1KiUi: (8)4
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3Figure 1: Tetrahedral element with inward pointing s
aled normalsSin
e system (1) is hyperboli
, the q eigenvalues of matrix Ki are real,and a 
omplete set of q real linearly independent eigenve
tors exists. Thediagonalization of matrix Ki yields: Ki = Ri�iLi, where �i is the eigenvaluematrix, the 
olumns of Ri 
ontain the right eigenve
tors and Li = (Ri)�1.The eigenvalue matrix 
an be de
omposed as �i = �+i + ��i , where��i = �i � j�ij2 : (9)The generalized upwind parameters K+i and K�i de�ned asK+i = Ri�+i Li and K�i = Ri��i Li; (10)play an important role in the multidimensional upwind property of the systemresidual distribution s
hemes. In element E, node i does not re
eive any
ontribution from the 
ell residual if all the eigenvalues of the 
orrespondingmatrix Ki are non-positive, i.e. �+i is the null matrix. The distributionfun
tion �Ei is the fra
tion of the 
ell residual �E distributed to node i inelement E. For 
onsisten
y we require thatd+2Xi=1 �Ei = �E: (11)We 
onsider three di�erent s
hemes, the �rst order positive linear N s
heme,the se
ond order linear LDA s
heme and the se
ond order positive nonlinear
5



B s
heme. The 
orresponding distribution fun
tions are de�ned by:�Ni = K+i (Ui � Uin); Uin =  d+2Pi=1K�i !�1 d+2Pi=1K�i Ui;�LDAi = �LDAi �E; �LDAi = K+i  d+2Pi=1K+i !�1 ;�Bi = ��Ni + (1� �)�LDAi ; �j;j = j�Ej jd+2Pk=1 j�Nk;j j : (12)
Assembling the 
ontributions �Ei from all the elements E to the nodes, thenodal values of the unknown Ui in the spa
e-time mesh are the solution ofthe algebrai
 system of equations:XE;i2E�Ei = 0 8i 2 [1; :::; N ℄: (13)In the present work we use expli
it iterations in pseudo time to solve the im-pli
it system for ea
h physi
al time step. Typi
ally 10�50 expli
it iterationsare needed to 
onverge the solution in pseudo time.3 SPACE-TIME GEOMETRYIn order to design an eÆ
ient time mar
hing pro
edure, the full spa
e-time solution of the problem has to be de
oupled into temporal slabs. UpwindRD s
hemes operating on properly designed spa
e-time grids naturally leadto this de
oupling. We propose a spa
e-time mesh geometry 
ontaining threelevels of nodes and two layers of elements in the temporal dire
tion. The �rst,se
ond, and third levels of nodes have temporal 
oordinates tn, tn+1=2, andtn+1, and will be 
alled respe
tively past, intermediate and future time levels.The time steps 
orresponding to the �rst and se
ond layers are denoted by�t1 = tn+1=2 � tn and �t2 = tn+1 � tn+1=2, respe
tively. The spa
e-timesolution is de
oupled if no residual 
ontribution is sent to the nodes lo
atedat the past level, i.e. past nodes are shielded against arti�
ial propagationof information ba
kward in time. In this paper the past shield 
ondition isdes
ribed for a 2D s
alar 
onservation law. More details on the extension tohyperboli
 systems 
an be found in [14,15℄.Consider the following 2D s
alar hyperboli
 problem:�u�t + �� � ru = 0; for 8(x; t) 2 
; (14)6



where �� is the lo
ally linearized adve
tion speed ve
tor. For a given trian-gulation of the 2D spatial domain a parti
ular spa
e-time grid is generated
ontaining two layers of tetrahedra. The �rst layer 
onsists of three types ofelements (see �gure 2). Type E1 has three past nodes situated at level n,and one node at the intermediate level n + 1=2. The spatial position of theintermediate node is at the mass 
enter of the base triangle in the past plane.Type E2 has two past and two intermediate nodes. Finally, type E3 has onepast node and three intermediate nodes. The se
ond layer is obtained bymirroring the �rst one with respe
t to the intermediate plane and stret
hingit in the temporal dire
tion a

ording to the ratio Q = �t2=�t1.
type: E 1 type: E 2

type: E 3

t

x
y

t
∆

Figure 2: Three types of basi
 tetrahedra used to build the �rst layer of thespa
e-time mesh in two spatial dimensions, and the s
hemati
 view of themesh.
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The past shield 
ondition translates into the 
onstraint that no residualhas to be sent to the past nodes of elements E1, E2 and E3. It is straightfor-ward to verify that in elements of type E3 no residual is sent to the uniquepast node by any of the s
hemes introdu
ed in the previous se
tion. Consid-ering elements of type E1, let us de�ne the triangle T Sj as the proje
tion ofthe fa
e opposite to node j onto the past plane. Using the notation of �gure1 the past shield 
ondition for all the three past nodes leads to the following
onstraint on the time step �tE11 asso
iated to the element:CFLE11 = maxj=1;2;30�k+j �tE11STSj 1A < 1; (15)where STSj is the area of T Sj , k+j = max (0; kj) andkj = �� � ~nj2 ;whi
h is the s
alar upwind parameter 
orresponding to vertex j of the basetriangle (i.e. ~nj is s
aled with the length of the edge opposite to j in the basetriangle of the initial spatial triangulation). A similar 
onstraint is obtainedfor the time step �tE21 asso
iated to elements of type E2. The time step �t1is obtained as �t1 = min ��tE11 ;�tE21 � :Sin
e �t2 is not restri
ted by any 
onditions, arbitrarily large global timesteps 
an be obtained a

ording to�t = �t1 +�t2 = (Q+ 1)�t1: (16)For the extension of the analysis to the system 
ase see referen
es [14,15℄.4 NUMERICAL RESULTS: EULER EQUATIONSThe Euler equations des
ribe the dynami
s of 
ompressible invis
id 
uids.In their 
onservative form (1) the state ve
tor U and the 
ux fun
tion G aregiven by: U = 0B� ��vE 1CA and G = 0B� �v�vv + Îp(E + p)v 1CA ; (17)8



where � is the density, v is the velo
ity ve
tor, p is the thermal pressureand E is the total energy density. We present the results of three test-
asesin two spatial dimensions, i.e. the intera
tion of linear sound waves, a 2DRiemann Problem and the Ma
h 3 
ow in a 
hannel with a forward fa
ingstep proposed by Colella an Woodward [16℄.Intera
tion of Linear Sound WavesThis test 
ase 
on
erns the propagation and intera
tion of linear sound wavesover a stati
 ba
kground. In the initial state two exponentially de
ayingaxisymmetri
 pressure perturbations with a maximum amplitude of Æp = 0:1are superposed onto a stati
 ba
kground with � = 140, v = 0, and p = 100.In the solution of this problem the pressure perturbations are 
arried awayby linear waves propagating with the speed of the sound. In �gure 3 weshow a series of snapshots at di�erent time steps 
omputed by the se
ondorder linear LDA s
heme on a mesh 
ontaining 101�101 points in spa
e. Onthe last two plots the interferen
e of the two waves 
an be observed. Thistest 
ase illustrates the robustness of the spa
e-time method for problemsinvolving stati
 regions without the need of any spe
ial treatment.A 2D Riemann ProblemTo further validate the method in two spatial dimensions we propose a 2DRiemann problem. At t = 0 a squared shaped [3:6�3:6℄ uniform domain with�1 = 3, v1 = 0 and p1 = 3 is embedded into an in�nite uniform domain with�2 = 1, v2 = 0 and p2 = 1. For symmetry reasons it is suÆ
ient to 
omputethe solution over one quarter of the full domain. The solution is 
omputedat t = 0:4 on a stru
tured triangulation of the 2D spatial domain 
ontaining101 � 101 points in spa
e (�x = �y = 0:02). The density and pressuresurfa
es are shown in �gure 4. for the �rst order N and the se
ond order Bs
hemes. The sho
k, shear and the expansion are well resolved in both spatialdire
tions. Sin
e at t = 0:4 the 
orner e�e
t of the 2D Riemann problem hasnot rea
hed the boundaries of the 
omputational domain, the solution alongthe 
oordinate axes is identi
al to the solution of the 1D Riemann problemwith the same initial data. In �gure 5 we show a 
omparison between thedensity 
omputed by the 1D spa
e-time s
hemes (on a mesh with the samespa
ing) and the 
ut along the x-axis of the 2D 
omputations for both forthe N and B s
hemes. We observe that the numeri
al solutions mat
h witha high a

ura
y in the 
ase of the se
ond order B s
heme. The �rst order Ns
heme is more dissipative in 2D. 9
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Figure 3: Intera
tion of linear sound waves. Four snapshots of the pressuresurfa
e for a mesh 
ontaining 101 � 101 nodes. Computation made by these
ond order linear LDA s
heme.
10



1

1.5

2

2.5

3

de
ns

ity

-1
-0.5

0
0.5

1 x coordinate

-1
-0.5

0
0.5

1

y coordinate

1

1.5

2

2.5

3

pr
es

su
re

-1
-0.5

0
0.5

1 x coordinate

-1
-0.5

0
0.5

1

y coordinate

1

1.5

2

2.5

3

de
ns

ity

-1
-0.5

0
0.5

1 x coordinate

-1
-0.5

0
0.5

1

y coordinate

1

1.5

2

2.5

3

pr
es

su
re

-1
-0.5

0
0.5

1 x coordinate

-1
-0.5

0
0.5

1

y coordinateFigure 4: 2D Riemann problem: t = 0:4. Top: N s
heme. Bottom: Bs
heme.

-1 -0.5 0 0.5 1
x coordinate

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

de
ns

ity

-1 -0.5 0 0.5 1
x coordinate

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

de
ns

ity

Figure 5: 2D Riemann problem: pro�le of the density at t = 0:4. Squares:true 1D solution. Diamonds: 2D solution along the x-axis. Left: N s
heme.Right: B s
heme. 11



Ma
h 3 Wind Tunnel with a Forward Fa
ing StepTo illustrate the bene�t of the un
onditionally stable impli
it RD s
hemes,we 
ompute the test 
ase proposed by Colella and Woodward [16℄. Thespatial mesh is a uniform triangulation of the domain with average size ofthe triangles given by h = 1=80, ex
ept for the 
orner of the step, where asevere lo
al re�nement was used, as shown in �gure 6. This re�nement isne
essary to limit the numeri
al entropy produ
tion at the 
orner, see also[10℄ for more details. In total the spatial mesh 
ontains 38,740 triangles and19,715 nodes.
0.5 0.75 1 1.25

x

0

0.1

0.2

0.3

0.4

y

Figure 6: Ma
h 3 
ow over a forward fa
ing step. Part of the unstru
turedgrid 
lose to the 
orner of the step.The 
omputation is performed by the se
ond order nonlinear B s
heme. Theglobal time step is 
hosen su
h that CFL � 1 for the triangles in the uniformregion. However, in the 
orner region this amounts to a lo
al value of CFL �12, due to the small size of the 
ells in this area. This 
learly shows the bene�tof an un
onditionally stable impli
it s
heme, even for unsteady 
omputations.Isolines of the density at di�erent instan
es in time are presented in �gure7, and 
ompared with the solution of Colella and Woodward [16℄. Thisreferen
e solution was 
omputed by a third order PPM method on a uniformmesh 
ontaining quadrilaterals of size h = 1=80 (note that in the referen
e
omputation the entropy was �xed at the 
orner in order to avoid the arti�
ialentropy generation).
12
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h 3 
ow in a wind tunnel with a forwardfa
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5 NUMERICAL RESULTS: TWO-PHASE FLOW EQUATIONSIn this se
tion the spa
e-time method is applied to the simulation of un-steady gas liquid two-phase 
ows. In parti
ular, we employ the homogeneousisentropi
 model given by the following hyperboli
 system:�U�t +r �G = Q; for 8(x; t) 2 
; (18)where the state ve
tor U and the 
ux fun
tion G are given by:U = 0B� �l�l�g�g�v 1CA ; G = 0B� �l�lv�g�gv�vv + Îp 1CA ; (19)and the sour
e term Q des
ribes the e�e
t of gravity:Q = 0B� 00�g 1CA : (20)In equations (19) and (20) �g is the gas or void fra
tion (volume 
on
en-tration), �l is the liquid fra
tion, v is the velo
ity ve
tor, � is the mixturedensity and g is the gravitational a

eleration. The model is 
losed by thefollowing equations: � = �l�l + �g�g;�l = 1� �g;�l = �l0 + p�p0a2l ;p = �g�
gg : (21)System (18) has been solved by the spa
e-time B s
heme and an upwindtreatment of the sour
e term Q. Details regarding the sour
e term dis
retiza-tion will be given in a forth
oming paper. More information related to thetwo-phase 
ow modeling are given in referen
es [17,18,19℄.Sloshing of a Water Column in a TankThis is a very 
ommon ben
hmark test for two-phase 
ow 
odes. The problem
onsists of a liquid 
olumn initially at rest in hydrostati
 equilibrium ina tank. The initial height and width of the water 
olumn are 2L and Lrespe
tively. The length of all the sides of the tank is 4L and its top side isopen to the atmosphere. 14



At time t = 0 the water 
olumn is released and starts to move due to the e�e
tof gravity. The water 
ows toward to opposite end of the tank until it splashesagainst the wall and then it moves ba
k. The problem has been studied bothnumeri
ally and experimentally [17,20,21℄. In parti
ular, experimental dataare available in literature for the position of the leading edge of the movingliquid front. The distan
e of the front from the left wall of the tank Z s
aledby the initial width of the water 
olumn L is given as a fun
tion of theredu
ed time t� de�ned as: t� = tq2g=L : (22)The width of the initial water 
olumn is L = 0:146 m. The same value wasused in the experiments of Koshizuka et al. [21℄. Unfortunately, due to thenumeri
al di�usion the interfa
e between the phases is spread over several
omputational 
ells. Consequently, the pre
ise position of the interfa
e ishard to de�ne. To 
ompare with the experimental data in [20,21℄ we assumethat the interfa
e is lo
ated at the position where the gas void fra
tion is�g = 0:5.In the 
omputations the mesh is an isotropi
 Delaunay triangulation 
on-taining 11804 nodes and 23206 triangles. The CFL number was �xed to100. The unsteady motion of the liquid starting from its initial position isvisualized in �gures 8, 9 and 10 by plotting the shaded isolines of the gasvoid fra
tion at di�erent instants. The pure liquid and the gas phases areindi
ated by blue and red 
olors respe
tively.

Figure 8: Sloshing of a water 
olumn in a tank. Void fra
tion 
ontours
omputed by the B S
heme. Left: t� = 0. Right: t� � 2:5.15



Figure 9: Sloshing of a water 
olumn in a tank. Void fra
tion 
ontours
omputed by the B S
heme. Left: t� � 3:7. Right: t� � 4:4.

Figure 10: Sloshing of a water 
olumn in a tank. Void fra
tion 
ontours
omputed by the B S
heme. Left: t� � 7:5. Right: t� � 9.On the left in �gure 11 we present the streamline pattern at t� � 9 super-imposed onto the shaded 
ontour plot of the gas void fra
tion. Three mainre
ir
ulating regions are visible in 
orresponden
e to the gas-liquid interfa
e.This is a dire
t 
onsequen
e of the main assumption at the basis of model(18), that the two phases have the same velo
ity everywhere 
orrespondingto an in�nite vis
ous drag a
ting at their interfa
e. Finally, on the right ofthe same �gure we show the 
omparison of the 
omputed liquid front positionwith the experimental data of [20,21℄. The numeri
al results properly predi
tthe paraboli
 behavior obtained by the experiments. At the earlier times the16



agreement is parti
ularly good. However, after t� � 2 the numeri
al valuesdeviate from the experimental ones. The reason 
ould be the poor modelingof the physi
s. Indeed, the model 
onsidered is one of the simplest, sin
e itdoes not in
lude vis
ous e�e
ts and both the a
tion of the surfa
e tensionand eventual me
hani
al non-equilibrium due to non-zero relative velo
ityare negle
ted.
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Figure 11: Sloshing of a water 
olumn in a tank. Left: void fra
tion andstreamlines at t� � 9. Right: 
omparison with experimental data.6 CONCLUSIONSMultidimensional upwind residual distribution s
hemes have been extendedto the 
ontext of linear spa
e-time elements for the approximation of theunsteady solution of hyperboli
 systems of 
onservation laws. Positivity andlinearity preservation of the original s
hemes are 
arried over to the fullspa
e-time solution, i.e. the linearity preserving s
hemes retain se
ond ordera

ura
y in smooth 
ows and the positive s
hemes resolve dis
ontinuitieswithout spurious os
illations both in spa
e and time.Due to the intrinsi
 upwinding properties of the standard RD s
hemes,the spa
e-time solution is de
oupled onto a sequen
e of temporal slabs 
on-taining two layers of elements. Although, in the �rst layer an expli
it typeCFL 
ondition has to be respe
ted, in the se
ond layer arbitrary time steps
an be taken. 17



The robustness and reliability of the approa
h has been demonstratedon a wide range of appli
ations. Compared to most 
ommon impli
it time-integrators the main disadvantage of the spa
e-time method 
on
erns thein
reases 
omputational 
ost and the higher memory requirements. Nev-ertheless, its great potential for the solution of time dependent problems,espe
ially involving moving boundaries, is indisputable.8 REFERENCES[1℄ H. De
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