SPACE-TIME RESIDUAL DISTRIBUTION SCHEMES

FOR TWO-DIMENSIONAL EULER AND
TWO-PHASE FLOW SIMULATIONS

Arpéd Csik, Mario Ricchiuto and Herman Deconinck

VON KARMAN INSTITUTE FOR FLUID DYNAMICS,
Chaussée de Waterloo, 72

B-1640 Rhode Saint Genese, Belgium

Email: arpi@uki.ac.be, ricchiut@uki.ac.be, deconinck@uki.ac.be
web page: hittp://www.vki.ac.be

Abstract. Multidimensional upwind residual distribution schemes are ex-
tended to the time accurate solution of systems of hyperbolic conservation
laws, based on a consistent discretization of the space-time domain. Due
to the upwind property of the schemes and to an appropriate choice of the
space-time mesh geometry, the solution is decoupled into temporal slabs, al-
lowing to construct an efficient unconditionally stable implicit time marching
procedure, while maintaining full consistency, monotonicity and second order
accuracy both in space and time. The method is tested on two-dimensional
problems involving the solution of the compressible Euler and Homogeneous
Two-Phase flow equations. Numerical results demonstrate the robustness
and the accuracy of the method.
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1 INTRODUCTION

Over the last decade, a class of upwind spatial discretization techniques,
known as fluctuation splitting or residual distribution (RD) schemes has
been developed for the numerical solution of systems of hyperbolic conser-
vation laws on unstructured grids [1,2,3]. The method operates on triangles
and tetrahedra, in two and three spatial dimensions, respectively. It incorpo-



rates the same upwind properties at the basis of Godunov type finite volume
schemes, but carried over to a cell vertex framework with a continuous piece-
wise linear representation of the solution, like in finite element methods.

The main advantage of the RD approach is that both a monotonic reso-
lution of discontinuities, and second order of accuracy in smooth steady flows
can be achieved for arbitrary unstructured grids, on the compact stencil of
the nearest neighbors. The latter property enables an efficient implicit and
parallel implementation. Another attractive feature of the method is that
true multidimensional information derived from the physics of the problem
is incorporated into the upwinding procedure.

However, these schemes have been developed for the solution of steady
state problems and the second order accuracy degrades to first order, when
they are used in combination with the method of lines (such as Runge-Kutta
schemes) for the computation of unsteady flows. Second order spatial ac-
curacy can be recovered if a consistent mass matrix formulation is applied
for the temporal derivative (hence leading to an implicit scheme), similar
to what is required in stabilized finite element methods. Another route to
second order of accuracy in space and time is the Taylor-Galerkin approach,
equivalent to the Lax-Wendroff scheme in its simplest setting. Unfortunately,
in both cases the resulting discretization is non-positive and oscillatory solu-
tions are obtained in the presence of discontinuities. Some cures to this prob-
lem have been investigated, e.g. applying a Flux Corrected Transport (FCT)
technique [4]. In this approach a monotone first order and a non-monotone
second order schemes are combined to obtain a high order non-linear mono-
tone scheme [1,5,6,7]. However, experience has shown that a Flux Corrected
Transport approach as a cure to recover monotonicity for systems lacks ro-
bustness. Moreover, using FCT as a way to stabilize a characteristic based
upwind scheme is very unsatisfactory from the theoretical point, especially
in combination with the mass-matrix approach.

A more attractive framework might be to consider space-time methods, as
e.g. applied in the context of stabilized finite element methods [8] or discon-
tinuous Galerkin methods [9,10,11]. More recently, Abgrall [1,12] proposed a
continuous space-time formulation of the RD method in two spatial dimen-
sions. The solution representation is based on a bilinear interpolation over
prismatic elements which are triangular in space and linear in time. The ap-
proach allows to decouple the space-time domain into temporal slabs of one



single row of elements per time step, thus effectively resulting in a implicit
time-marching procedure. Unfortunately, the positivity of Abgrall’s implicit
schemes requires the satisfaction of an explicit type time step limitation.

In the present paper we elaborate on the idea of a linear continuous
space-time residual distribution. We use the standard schemes operating
on piecewise linear elements, developed in the past, applying them to the
solution of unsteady problems on space-time meshes [14,15]. The intrinsic
upwinding property of these schemes is used to decouple the solution on
the entire space-time domain in a sequence of temporal slabs containing two
layers elements. It turns out that the decoupling (past shielding) can only
be obtained if the mesh satisfies certain geometric properties, and if the time
step for the first layer is limited by a CFL type condition as in Abgrall’s
approach. However, since no past shielding is needed for the second layer,
arbitrary CFL numbers can be obtained, while maintaining second order of
accuracy and monotonicity both in space and time.

The paper is organized as follows: in section 2 we describe the space-
time formulation of standard residual distribution schemes. The particular
geometry of the space-time grid and the past shielding condition are discussed
in section 3. Results of several Euler computations are presented in section 4,
while in section 5 we deal with the solution of the Homogeneous Two-Phase
flow equations. In the last section conclusive remarks and future perspectives
are given.

2 DISCRETIZATION IN SPACE-TIME

We consider a system of hyperbolic conservation laws consisting of ¢ equa-
tions in d spatial dimensions over space-time domain €):

oU
E+V.G:O’ for V(x, 1) € €, (1)

where U is the vector of conserved variables and G is the ¢ x d flux function.
The quasilinear form of equation (1) is:

oU 0G,,
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In equation (2) and in the rest of this paper, index m = [1,...,d| refers to

the Einstein summation convention and X,, is the unit vector in the m-th



spatial direction. The unit vector in time is denoted by t. Using space-time
notation, system (1) can be rewritten as:

V-F=0, (3)

where the space-time flux vector F and the nabla operator V are:

- ~ — -~ a
F=G+Ut and V:V+t§. (4)
In the following, we limit ourselves to the case of two spatial dimensions.
The corresponding three-dimensional space-time domain is divided into non-
overlapping tetrahedra. The solution U is approximated in the continuous,

piecewise linear finite element space:
N
U(x,t) = Z Ujw; (x.1), (5)
7=1

where U; is the discrete solution at node j, w;(x,t) is the piecewise linear
finite element shape function and N is the total number of nodes in the
space-time mesh.

In element E the cell residual ®F is defined as:

JF
ok

where i is the outward pointing unit normal of surface element dS and
OG, /OU is the m-th component of the flux Jacobian evaluated in an averaged
state U chosen such that equation (6) holds exactly at the discrete level [13].
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Let @i; = n’ %X,, + n!t be the inward pointing vector normal to the face
opposite to node i in element E (see figure 1). Introducing the following
linear combination of the space-time Jacobian matrices:

1 0G,, . L

= (i, Il ) 7
d+1<6U T+ ”t> (7)
the cell residual can be written in the following compact form:

d+2

" =3 KU;. (8)
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Figure 1: Tetrahedral element with inward pointing scaled normals

Since system (1) is hyperbolic, the ¢ eigenvalues of matrix K; are real,
and a complete set of ¢ real linearly independent eigenvectors exists. The
diagonalization of matrix K; yields: K; = R;A\;L;, where A; is the eigenvalue
matrix, the columns of R; contain the right eigenvectors and L; = (R;)™ !
The eigenvalue matrix can be decomposed as A; = A + A;, where

Ai £ A
AF == 9)

The generalized upwind parameters K;” and K; defined as

play an important role in the multidimensional upwind property of the system
residual distribution schemes. In element E, node ¢ does not receive any
contribution from the cell residual if all the eigenvalues of the corresponding
matrix K; are non-positive, i.e. A is the null matrix. The distribution
function ®F is the fraction of the cell residual ®* distributed to node i in
element F. For consistency we require that

d+2
3 oF = o (11)
=1

We consider three different schemes, the first order positive linear N scheme,
the second order linear LDA scheme and the second order positive nonlinear



B scheme. The corresponding distribution functions are defined by:

d+2 g
i=1 i=1
—1
B0 = AT, -k (Br0) L )
E
P = O + (1 - O)BH, O, = -

Assembling the contributions ®¥ from all the elements E to the nodes, the
nodal values of the unknown U; in the space-time mesh are the solution of
the algebraic system of equations:
> @ =0 Viell,..,N] (13)
EjicE
In the present work we use explicit iterations in pseudo time to solve the im-
plicit system for each physical time step. Typically 10 — 50 explicit iterations
are needed to converge the solution in pseudo time.

3 SPACE-TIME GEOMETRY

In order to design an efficient time marching procedure, the full space-
time solution of the problem has to be decoupled into temporal slabs. Upwind
RD schemes operating on properly designed space-time grids naturally lead
to this decoupling. We propose a space-time mesh geometry containing three
levels of nodes and two layers of elements in the temporal direction. The first,
second, and third levels of nodes have temporal coordinates t,, £, 1/2, and
tni1, and will be called respectively past, intermediate and future time levels.
The time steps corresponding to the first and second layers are denoted by
Aty = tpy10 — t, and Aty = t,1 — t,41/2, respectively. The space-time
solution is decoupled if no residual contribution is sent to the nodes located
at the past level, i.e. past nodes are shielded against artificial propagation
of information backward in time. In this paper the past shield condition is
described for a 2D scalar conservation law. More details on the extension to
hyperbolic systems can be found in [14,15].

Consider the following 2D scalar hyperbolic problem:

% + A Vu =0, for V(x,t) € Q, (14)



where \ is the locally linearized advection speed vector. For a given trian-
gulation of the 2D spatial domain a particular space-time grid is generated
containing two layers of tetrahedra. The first layer consists of three types of
elements (see figure 2). Type E1 has three past nodes situated at level n,
and one node at the intermediate level n + 1/2. The spatial position of the
intermediate node is at the mass center of the base triangle in the past plane.
Type E2 has two past and two intermediate nodes. Finally, type E3 has one
past node and three intermediate nodes. The second layer is obtained by
mirroring the first one with respect to the intermediate plane and stretching
it in the temporal direction according to the ratio Q = Aty/At;.

type: E1 type: E 2
type E 3

— A

Figure 2: Three types of basic tetrahedra used to build the first layer of the
space-time mesh in two spatial dimensions, and the schematic view of the
mesh.




The past shield condition translates into the constraint that no residual
has to be sent to the past nodes of elements E1, E2 and E3. It is straightfor-
ward to verify that in elements of type E3 no residual is sent to the unique
past node by any of the schemes introduced in the previous section. Consid-
ering elements of type E1, let us define the triangle TjS as the projection of
the face opposite to node j onto the past plane. Using the notation of figure
1 the past shield condition for all the three past nodes leads to the following
constraint on the time step Atf"! associated to the element:

ki At
CFLY' = max (u) <1, (15)

j=1,2,3 Srps
7

where Sps is the area of T, k = max (0, k;) and
; .

which is the scalar upwind parameter corresponding to vertex j of the base
triangle (i.e. n; is scaled with the length of the edge opposite to j in the base
triangle of the initial spatial triangulation). A similar constraint is obtained
for the time step AtF? associated to elements of type E2. The time step At,
is obtained as
Aty = min (At Atf?).

Since Aty is not restricted by any conditions, arbitrarily large global time
steps can be obtained according to

For the extension of the analysis to the system case see references [14,15].

4 NUMERICAL RESULTS: EULER EQUATIONS

The Euler equations describe the dynamics of compressible inviscid fluids.
In their conservative form (1) the state vector U and the flux function G are
given by:

p v
U= pv and G=| pvw+1Ip |, (17)
E (E+p)v



where p is the density, v is the velocity vector, p is the thermal pressure
and F' is the total energy density. We present the results of three test-cases
in two spatial dimensions, i.e. the interaction of linear sound waves, a 2D
Riemann Problem and the Mach 3 flow in a channel with a forward facing
step proposed by Colella an Woodward [16].

Interaction of Linear Sound Waves

This test case concerns the propagation and interaction of linear sound waves
over a static background. In the initial state two exponentially decaying
axisymmetric pressure perturbations with a maximum amplitude of dp = 0.1
are superposed onto a static background with p = 140, v = 0, and p = 100.
In the solution of this problem the pressure perturbations are carried away
by linear waves propagating with the speed of the sound. In figure 3 we
show a series of snapshots at different time steps computed by the second
order linear LDA scheme on a mesh containing 101 x 101 points in space. On
the last two plots the interference of the two waves can be observed. This
test case illustrates the robustness of the space-time method for problems
involving static regions without the need of any special treatment.

A 2D Riemann Problem

To further validate the method in two spatial dimensions we propose a 2D
Riemann problem. At ¢ = 0 a squared shaped [3.6 x 3.6] uniform domain with
p1 = 3, vy = 0 and p; = 3 is embedded into an infinite uniform domain with
p2 =1, vo =0 and p; = 1. For symmetry reasons it is sufficient to compute
the solution over one quarter of the full domain. The solution is computed
at ¢ = 0.4 on a structured triangulation of the 2D spatial domain containing
101 x 101 points in space (Az = Ay = 0.02). The density and pressure
surfaces are shown in figure 4. for the first order N and the second order B
schemes. The shock, shear and the expansion are well resolved in both spatial
directions. Since at ¢ = 0.4 the corner effect of the 2D Riemann problem has
not reached the boundaries of the computational domain, the solution along
the coordinate axes is identical to the solution of the 1D Riemann problem
with the same initial data. In figure 5 we show a comparison between the
density computed by the 1D space-time schemes (on a mesh with the same
spacing) and the cut along the z-axis of the 2D computations for both for
the N and B schemes. We observe that the numerical solutions match with
a high accuracy in the case of the second order B scheme. The first order N
scheme is more dissipative in 2D.
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Figure 3: Interaction of linear sound waves. Four snapshots of the pressure
surface for a mesh containing 101 x 101 nodes. Computation made by the
second order linear LDA scheme.
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Figure 4: 2D Riemann problem: ¢ = 0.4. Top: N scheme. Bottom: B
scheme.
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Figure 5: 2D Riemann problem: profile of the density at t = 0.4. Squares:
true 1D solution. Diamonds: 2D solution along the z-axis. Left: N scheme.
Right: B scheme.
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Mach 3 Wind Tunnel with a Forward Facing Step

To illustrate the benefit of the unconditionally stable implicit RD schemes,
we compute the test case proposed by Colella and Woodward [16]. The
spatial mesh is a uniform triangulation of the domain with average size of
the triangles given by h = 1/80, except for the corner of the step, where a
severe local refinement was used, as shown in figure 6. This refinement is
necessary to limit the numerical entropy production at the corner, see also

[10] for more details. In total the spatial mesh contains 38,740 triangles and
19,715 nodes.

1
125

X

Figure 6: Mach 3 flow over a forward facing step. Part of the unstructured
grid close to the corner of the step.

The computation is performed by the second order nonlinear B scheme. The
global time step is chosen such that CF'L = 1 for the triangles in the uniform
region. However, in the corner region this amounts to a local value of CF'L ~
12, due to the small size of the cells in this area. This clearly shows the benefit
of an unconditionally stable implicit scheme, even for unsteady computations.
Isolines of the density at different instances in time are presented in figure
7, and compared with the solution of Colella and Woodward [16]. This
reference solution was computed by a third order PPM method on a uniform
mesh containing quadrilaterals of size h = 1/80 (note that in the reference
computation the entropy was fixed at the corner in order to avoid the artificial
entropy generation).
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Figure 7: Density isolines of a Mach 3 flow in a wind tunnel with a forward
facing step. Left: second order space-time B scheme. Right: third order
reference solution [16]. From top to bottom: ¢t = 1.0,¢ = 1.5,¢ = 3.0,¢ = 4.0.
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5 NUMERICAL RESULTS: TWO-PHASE FLOW EQUATIONS

In this section the space-time method is applied to the simulation of un-
steady gas liquid two-phase flows. In particular, we employ the homogeneous
isentropic model given by the following hyperbolic system:

oU

e +V-G=0Q, for V(x,t) € Q, (18)

where the state vector U and the flux function G are given by:

a0 apv
U=1 agpg |, G = QgPgV ) (19)
pv pvv + Ip

and the source term () describes the effect of gravity:

0
Q=1 o0 |. (20)
g

In equations (19) and (20) «, is the gas or void fraction (volume concen-
tration), ay is the liquid fraction, v is the velocity vector, p is the mixture
density and g is the gravitational acceleration. The model is closed by the
following equations:

p = op+ QgPg,s

a = 1-—ay,

ol = o + p;IQpOJ (21)
p = ng_;’g-

System (18) has been solved by the space-time B scheme and an upwind
treatment of the source term (). Details regarding the source term discretiza-
tion will be given in a forthcoming paper. More information related to the
two-phase flow modeling are given in references [17,18,19].

Sloshing of a Water Column in a Tank

This is a very common benchmark test for two-phase flow codes. The problem
consists of a liquid column initially at rest in hydrostatic equilibrium in
a tank. The initial height and width of the water column are 2L and L
respectively. The length of all the sides of the tank is 4L and its top side is
open to the atmosphere.
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At time ¢ = 0 the water column is released and starts to move due to the effect
of gravity. The water flows toward to opposite end of the tank until it splashes
against the wall and then it moves back. The problem has been studied both
numerically and experimentally [17,20,21]. In particular, experimental data
are available in literature for the position of the leading edge of the moving
liquid front. The distance of the front from the left wall of the tank Z scaled
by the initial width of the water column L is given as a function of the

reduced time ¢* defined as:
t* =t\/2g/L . (22)

The width of the initial water column is L. = 0.146 m. The same value was
used in the experiments of Koshizuka et al. [21]. Unfortunately, due to the
numerical diffusion the interface between the phases is spread over several
computational cells. Consequently, the precise position of the interface is
hard to define. To compare with the experimental data in [20,21] we assume
that the interface is located at the position where the gas void fraction is
ag = 0.5.

In the computations the mesh is an isotropic Delaunay triangulation con-
taining 11804 nodes and 23206 triangles. The C'FL number was fixed to
100. The unsteady motion of the liquid starting from its initial position is
visualized in figures 8, 9 and 10 by plotting the shaded isolines of the gas
void fraction at different instants. The pure liquid and the gas phases are
indicated by blue and red colors respectively.

Figure 8: Sloshing of a water column in a tank. Void fraction contours
computed by the B Scheme. Left: ¢* = 0. Right: ¢* ~ 2.5.
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Figure 9: Sloshing of a water column in a tank. Void fraction contours
computed by the B Scheme. Left: t* =~ 3.7. Right: t* ~ 4.4.

Figure 10: Sloshing of a water column in a tank. Void fraction contours
computed by the B Scheme. Left: t* &~ 7.5. Right: t* ~ 9.

On the left in figure 11 we present the streamline pattern at ¢* ~ 9 super-
imposed onto the shaded contour plot of the gas void fraction. Three main
recirculating regions are visible in correspondence to the gas-liquid interface.
This is a direct consequence of the main assumption at the basis of model
(18), that the two phases have the same velocity everywhere corresponding
to an infinite viscous drag acting at their interface. Finally, on the right of
the same figure we show the comparison of the computed liquid front position
with the experimental data of [20,21]. The numerical results properly predict
the parabolic behavior obtained by the experiments. At the earlier times the
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agreement, is particularly good. However, after t* ~ 2 the numerical values
deviate from the experimental ones. The reason could be the poor modeling
of the physics. Indeed, the model considered is one of the simplest, since it
does not include viscous effects and both the action of the surface tension
and eventual mechanical non-equilibrium due to non-zero relative velocity
are neglected.

u Koshizuka & Tamako (L =0.146m) ™
A Martin & Moyce (L =1.125in)
®  Martin & Moyce (L =2.25in) .
35 Numerical Solution n
L]
3 m A
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.5 ‘1 1‘.5 t‘i 2‘.5 é 3‘.5
Figure 11: Sloshing of a water column in a tank. Left: void fraction and
streamlines at ¢* ~ 9. Right: comparison with experimental data.

6 CONCLUSIONS

Multidimensional upwind residual distribution schemes have been extended
to the context of linear space-time elements for the approximation of the
unsteady solution of hyperbolic systems of conservation laws. Positivity and
linearity preservation of the original schemes are carried over to the full
space-time solution, 7.e. the linearity preserving schemes retain second order
accuracy in smooth flows and the positive schemes resolve discontinuities
without spurious oscillations both in space and time.

Due to the intrinsic upwinding properties of the standard RD schemes,
the space-time solution is decoupled onto a sequence of temporal slabs con-
taining two layers of elements. Although, in the first layer an explicit type
CFL condition has to be respected, in the second layer arbitrary time steps
can be taken.
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The robustness and reliability of the approach has been demonstrated
on a wide range of applications. Compared to most common implicit time-
integrators the main disadvantage of the space-time method concerns the
increases computational cost and the higher memory requirements. Nev-
ertheless, its great potential for the solution of time dependent problems,
especially involving moving boundaries, is indisputable.

8 REFERENCES

[1] H. Deconinck, K. Sermeus and R. Abgrall “Status of Multidimensional Up-
wind Residual Distribution Schemes and Application in Aeronautics”, ATAA-
CP 2000-2528 (2000)

[2] H. Paillere, H. Deconinck and P.L. Roe “Conservative Upwind Resid-
ual Distribution Schemes Based on the Steady Characteristics of the Euler

Equations”, ATAA-CP 95-1700 (1995)

[3] E. var der Weide, H. Deconinck, E. Issmann and G. Degrez “Fluctuation
Splitting Schemes for Multidimensional Convection Problems: an Alternative
to Finite Volume and Finite Element Methods”, Computational Mechanincs,
Vol. 23, No. 2, 199 208 (1999).

[4] R. Lohner, K. Morgan, J. Peraire and M. Vahdati “Finite Element Flux-
Corrected Transport for the Euler and Navier-Stokes Equations”, Interna-
tional Journal for Numerical Methods in Fluids, Vol. 7, 1093-1109 (1997).

[5] A. Ferrante and H. Deconinck “Solution of the Unsteady Euler Equations
using Residual Distribution and Flux-Corrected Transport”, PR1997-08, von
Karman Institute (1997)

[6] M.E. Hubbard and P.L. Roe “Compact High-Resolution Algorithms for
Time-Dependent Advection on Unstructured Grids”, International Journal
for Numerical Methods in Fluids, Vol. 33, No. 5, 711-736 (2000)

[7] M. Ricchiuto and H. Deconinck “Time Accurate Solution of Hyperbolic
Partial Differential Equations using FCT and Residual Distribution”, SR1999-
33, von Karman Institute (1999)

[8] C. Johnson “The Streamline Diffusion Finite Element Method for Com-
pressible and Incompressible Flow”, Lecture Series: Computational Fluid
Dynamics, von Karman Institute (1990).

18



[9] R.B. Lowrie, P.LL. Roe and D. van Leer “Space-Time Methods for Hyper-
bolic Conservation Laws”, Barrier and Challenges in Computational Fluid
Dynamics, Kluwer Academic Publishers (1998)

[10] B. Cockburn, “Discontinuous Galerkin Methods for Convection Dom-
inated Problems”, High-Order Methods for Computational Physics, editors
T.J. Barth and H. Deconinck, Springer (1999)

[11] P. Hansbo, “The Characteristic Streamline Diffusion Method for Convection-
Diffusion Problems”, Computer Methods in Applied Mech. and Eng., Vol. 96,
239 253 (1992)

[12] R. Abgrall and M. Mezine “A Consistent Upwind Residual Scheme for
Unsteady Advection Problems”, AMIF Conference, Italy (2000)

[13] H. Deconinck, P.L.. Roe and R. Struijs “A Multidimensional Generaliza-
tion of Roe’s Flux Difference Splitter for the Euler Equations”, Computers
and Fluids, Vol. 22, 215-222 (1993)

[14] A, Csik, M. Ricchiuto, H. Deconinck and S. Poedts “Space-Time Residual
Distribution Schemes for Hyperbolic Conservation Laws”, ATAA-CP 2001-
2617 (2001)

[15] A, Csik and H. Deconinck “Space-Time Residual Distribution Schemes
for Hyperbolic Conservation Laws on Unstructured Linear Finite Elements”,
ICFD Conf. Proc. (2001), accepted for publication in the International
Journal for Numerical Methods in Fluids

[16] P. Colella and P. Woodward “The Numerical Simulation of Two-Dimensional
Fluid Flow with Strong Shocks”, Journal of Computational Physics, Vol. 54,
115 173 (1984)

[17] E. Valero “Advanced 2D Two-Phase Flow Simulation Tool for Applica-
tion to Reactor Safety”, VKITN2001-198, von Karman Institute (2001)

[18] M. Ricchiuto, A, Csik and H. Deconinck “Space-Time Residual Distribu-
tion Schemes and Application to Unsteady Two-Phase Flow Computations
on Unstructured Meshes”, VKIPR2001-23, von Karman Institute (2001)

[19] I. Toumi, A. Kumbaro and H. Paillére “Approximate Riemann Solvers
and Flux Vector Splitting Schemes for Two-Phase Flow”, 30'" Lecture Series
in Computation Fluid Dynamics, von Karman Institute (1999)

[20] J.C. Martin and W.J. Moyce “An Experimental Study of the Collapse

19



of Liquid Columns on a Rigid Horizontal Plane”, Phils. Trans R. Soc. Lond,
Vol. 244, 1952

[21] S. Koshizuka, H. Tamako and Y. Oka “A Particle Method for Incom-
pressible Viscous Flow with Fragmentation”, Journal of Computational Fluid
Dynamics, Vol. 4 (1995)

20



