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1 Introduction

In the present contribution we describe residual distribution methods, seen from a rather fundamental point of
view. We try to focus on the basic features that distinguish these methods from the more traditional Finite
Volume and Finite Element methods, at the same time showing the many links and similarities. We aim to make
clear that, after almost 25 years of research, there is very rich framework, even though still far from being fully
developed.

Historically, the residual based discretizations discussed in this contribution have their origin in two differ-
ent research lines. The first line was concerned with the study of cell-vertex Finite Volume schemes by Hall,
Morton and collaborators in the early 1980’s [105]. They realised that improved accuracy could be obtained
by discretizing the residual operator as a whole, instead of treating the terms in the PDE separately, since a
careful design of the residual operator could then lead to cancelation of truncation error terms resulting from the
different terms. At the same time the stabilization needed for convection operators could be designed consider-
ing multidimensional aspects like diffusion along the streamline, following similar idea’s used in Finite Element
schemes. Independently, R.-H. Ni proposed, in a landmark paper in 1981, a Lax-Wendroff Residual Distribution
scheme [71]. Similar ideas are also at the basis of the Residual Based schemes developed by Lerat and Corre [66].

The second line of research was the work of P.L. Roe, aiming to mimic key properties of the physics of the
PDE by the discretization. In 1982, Roe [100] proposed an Upwind Residual Distribution framework for the 1D
Euler equations under the name of ”fluctuation splitting”, starting from a reinterpretation of his flux difference
splitting Finite Volume scheme. In 1D, the residual (or ”fluctuation” as Roe called it) is just the flux balance (or
flux difference) over the cell. Roe’s classical Finite Volume scheme [96] corresponds to a downwind distribution
of the residual, used to update the solution located at the vertices. The residual distribution view of Roe’s “first
order” upwind scheme allowed to obtain second order accuracy at steady state on non uniform grids in presence
of a source term which was included in the residual [97].

Generalization for a scalar convection equation in two space dimensions followed in 1986, with the ”fluc-
tuation” being defined as the flux contour integral, i.e. the residual, computed over triangular cells [99]. In
this paper some of the most used linear multidimensional upwind distribution schemes (N and LDA) were al-
ready introduced. The nonlinear positive (Local Extremum Diminishing, LED) and second order version of the
N-scheme (PSI scheme) followed in 1990, see e.g. [113].

∗Work performed while the second author was member of the doctoral program of the von Karman Institute for Fluid Dynamics
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Extension to hyperbolic systems in two space dimensions proved however to be much more difficult. Multidi-
mensional characteristic-based decompositions for the Euler equations were explored in the late eighties, aiming
to decompose the equations in a set of minimally coupled scalar convection equations [39], or using simple wave
models [98]. These decomposition techniques aimed to include multidimensional physics, like the propagation
of entropy and total enthalpy along the streamline in smooth steady flow, or acoustic Riemann invariants along
the Mach lines in 2D steady supersonic flow.

The application of such decomposition models was first attempted in a standard Finite Volume context, with
modest success [83, 82, 85, 55]: the main problem is that classical upwind finite Volume schemes base their
upwinding on a splitting of the normal fluxes crossing each cell face, which introduces implicitly a locally 1D
model in the direction of the normal. Instead, the residual (the flux divergence in the limit of vanishing cell
size) is independent of the geometry, and it makes more sense to split this quantity in its multidimensional
components. Attempts of residual distribution schemes based on multidimensional splittings have led to some
remarkable successes, e.g. in the case of full decoupling into scalar convection equations, which is possible in 2D
supersonic steady flow [80, 78]. This allowed the straight forward use of the scalar convection schemes. However,
application to subsonic and 3D flow has still not lead to superior schemes which justify the increased complexity,
although progress has been achieved by so called hyperbolic-ellyptic splittings [73].

An alternative for the decomposition techniques to handle the system case, was the introduction of ma-

trix distribution schemes, which are an algebraic generalization of the scalar convection schemes, introduced
in [116, 78] and [117]. This approach, which is applicable to any hyperbolic system, is discussed in the present
contribution. For a decoupled system it is equivalent to the decomposition methods combined with the scalar
schemes.

In this paper, we attempt to give a review of the principles of the method, with a “modern” point of view,
which benefits from the knowledge of the fundamental theoretical properties acquired over the years. The
lay-out of the paper proceeds as follows: After introducing some generalities, a very basic prototype residual
discretization for a scalar steady convection equation is presented in section 3, and its properties of accuracy,
monotonicity and energy stability are discussed. Then a large number of schemes are cast in this framework,
including also some Finite Volume and Petrov-Galerkin Finite-Element schemes (like SUPG). Special attention
is paid to nonlinear LED schemes and to conservation for nonlinear conservation laws. Then, in section 4,
the prototype discretization of section 3 is generalized to include unsteady terms, with the aim of solving the
time-accurate problem. Again, accuracy (also in time), monotonicity and stability are reviewed, and a number
of time-accurate schemes are presented. Finally, in section 5, the extension to systems is discussed, building on
the matrix extension of the scalar schemes, and numerical results are presented for the Euler equations of gas
dynamics, for a hyperbolic model for homogeneous two-phase flow and for the shallow water equations. The
contribution ends with summarizing the main achievements and highlighting the ongoing research directions and
open issues.

2 Generalities

2.1 Model problem : hyperbolic conservation laws

This paper presents a class of numerical discretizations for the model problem

∂u

∂t
+ ∇ · F(u) = S(u, x, y, t) on ΩT = Ω × [0, tf ] ⊂ R

d × R
+ , (1)

with u a vector of m conserved quantities, d the number of space dimensions (2 or 3), F the m × d tensor
of conservative fluxes, S a vector of m source terms, and ΩT = Ω × [0, tf ] the space-time domain over which
solutions are sought. System (1) is equipped with a set of boundary conditions on ∂ΩT (or on properly defined
portions of this set), and with an initial solution

u(x1, . . . , xd, t = 0) = u0(x1, . . . , xd) . (2)
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We focus on the twodimensional case d = 2, F(u) = (F(u), G(u)), and ~x = (x1, x2) = (x, y), however the theory

easily extends to three dimensions. We assume (1) to be hyperbolic, that is ∀ ~ξ = (ξ1, ξ2) ∈ R
2, the matrix

K(~ξ,u) =
∂F(u)

∂u
ξ1 +

∂G(u)

∂u
ξ2 (3)

admits a complete set of real eigenvalues and linearly independent eigenvectors. A lot of information can be
obtained from the analysis of the scalar (m = 1) counterpart of (1):

∂u

∂t
+ ∇ · F(u) = S(u, x, y, t) on ΩT ⊂ R

2 × R
+ , (4)

The most simple example of scalar conservation law we will consider is the linear advection problem

∂u

∂t
+ ~a · ∇u = S(x, y) on ΩT ⊂ R

2 × R
+ , (5)

obtained with F = ~au, and ~a = (a1, a2) ∈ R
2 constant, or such that ∇ · ~a = 0, and with S = S(x, y).

2.2 Notation : mesh geometry

We are concerned with the construction of algorithms for the approximation of solutions to (1) on unstructured
triangular meshes. We introduce in this section some basic notation used throughout the text. We denote by
Th, a triangulation of the spatial domain Ω. The mesh parameter h is a reference element length. We denote
by E the generic triangle, whose area is denoted by |E|. Given a node j ∈ E, ~nj denotes the inward pointing
vector normal to the edge of E opposite to j, scaled by the length of the edge (left on figure 1). Since E has a
closed boundary one has ∑

j∈E

~nj = 0 (6)

Given a node i ∈ Th, Di denotes the set of triangles containing i. By abuse of notation, we will say that j ∈ Di

if node j belongs to an element E ∈ Di. For any vertex i of the grid, we denote by Si the median dual cell
obtained by joining the gravity centers of the triangles in Di with the midpoints of the edges meeting in i (right
on figure 1). The area of Si is

|Si| =
∑

E∈Di

|E|

3
(7)

The temporal domain [0, tf ] is discretized by a sequence of discrete time levels {t1 = 0, . . . , tn, tn+1, . . . , tM = tf}.
The schemes we consider allow to compute an approximation of the solution at time tn+1, known its value at
time tn (and eventually at a finite set of time levels tn−1, tn−2, · · · ). Throughout the text, we often focus our
attention on a generic space-time slab Ω× [tn, tn+1]. The time-width of the slab is the time-step ∆t = tn+1 − tn.
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Figure 1: Median dual cell Si and nodal normal ~nj

3



Throughout the text the following grid and time step regularity assumptions are supposed to be true, in any
space time slab Ω × [tn, tn+1] :

Cmesh
1 < sup

E∈Th

h

|E|
< Cmesh

2 , Cmesh
3 <

∆t

h
< Cmesh

4 (8)

for some finite, positive constants Cmesh
1 , Cmesh

2 , Cmesh
3 , and Cmesh

4 .

2.3 Notation : discrete approximation

We consider continuous discrete approximations of the unknown, built starting from its values in given locations
in the grid. Given a continuous variable θ(x, y, t), if not stated otherwise, θh will denote any continuous discrete
approximation of θ, such that given θn

i = θ(xi, yi, t
n), one has θh(xi, yi, t

n) = θn
i . If θ is a function of the

unknown u, we shall often suppose θh = θ(uh). When specified in the text, we will use the same notation to refer
to continuous piecewise polynomial approximations in space of the type

θh = θh(x, y, t) =
∑

i∈Th

ψi(x, y)θi(t) =
∑

i∈Th

ψi(x, y)θ(xi, yi, t) =
∑

E∈Th

∑

i∈E

ψi(x, y)θ(xi, yi, t) , (9)

where in general the summation extends not only over the vertices of the triangulation but also over a properly
chosen set of nodes placed along the mesh edges and/or within the elements. Several choices are possible to
contruct such polynomial approximations. For a review, the reader can refer to [49] and references therein. In
any case we consider basis functions verifying

ψi(xj , yj) = δij ∀i, j ∈ Th,
∑

j∈E

ψj(x, y) = 1 ∀E ∈ Th (10)

with δij Kroenecker’s delta. In fact the discrete approximation θh is nothing else than a polynomial Finite
Element interpolant of the values of θ in the chosen set of nodes. In particular, for any element E, we denote
by K the number of degrees of freedom (nodes) it contains.

Most of the time, however, we will consider continuous piecewise linear approximations of the unknown, and
refer to {ψi}i∈Th

as the continuous piecewise linear P 1 Finite Element (FE) basis functions, respecting

ψi(xj , yj) = δij ∀i, j ∈ Th, ∇ψi|E =
~ni

2|E|
,

∑

j∈E

ψj(x, y) = 1 ∀E ∈ Th (11)

3 Prototype discrete approximation for steady problems

In this section we introduce the basics of the residual distribution (RD) approach for steady problems. We
recall some elements of the accuracy and stability analysis of the schemes. Examples are given. We focuse on
the scalar case and, unless stated otherwise, on continuous second order P1 Finite Element approximations built
starting from the values of the unknown in the vertices of the grid.

3.1 The Residual Distribution idea

Consider the solution of the steady limit of (4). We are interested in the following class of discretizations

Definition 3.1 (Residual Distribution/Fluctuation Splitting scheme). A Residual Distribution or Fluctuation
Splitting scheme is defined as one that, given u0

h, uh, Fh, and Sh, the continuous approximations in space of the
initial solution, of the unknown, of the flux, and of the source term, respectively, evolves the nodal values of uh

toward a steady solution of the problem as follows
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1. ∀E ∈ Th compute the residual or fluctuation

φE =

∫

E

(∇ · Fh − Sh) dx dy =

∫

∂E

Fh · n̂ dl −

∫

E

Sh dx dy (12)

2. ∀E ∈ Th distribute fractions of φE to each node of E. Denoting by φE
i the split residual or local nodal

residual for node i ∈ E, by construction one must have

∑

j∈E

φE
j = φE (13)

Equivalently, denoting by βE
i the distribution coefficient of node i:

βE
i =

φE
i

φE
(14)

one must have by construction ∑

j∈E

βE
j = 1 (15)

3. ∀i ∈ Th assemble the contributions from all E ∈ Di and evolve ui in time by integrating the ODE

|Si|
dui

dt
+

∑

E∈Di

φE
i = 0 (16)

Note that the time derivative in (16) has the the role of an iterative means to get to the solution of the steady
discrete equations : ∑

E∈Di

φE
i = 0 ∀ i ∈ Th (17)

The properties of the discrete solution are determined by the distribution strategy, i.e. by the choice of the split
residuals φE

j , or equivalently by the choice of the βE
j coefficients. Independently of this choice, however, under

reasonable continuity hypothesis on the φE
i ’s, and assuming that the consistent approximation of the flux Fh is

continuous, the following Lax-Wendroff theorem can be proven [9, 11].

Theorem (Lax-Wendroff theorem for RD). Given bounded initial data u0 ∈ L∞(R2), a square integrable func-
tion u ∈ L2(R2 ×R

+), and a constant C depending on u0 and u such that the approximation uh(x, y, t) obtained
from (12)-(16) verifies

sup
h

sup
(x,y,t)

|uh| ≤ C lim
h→0

‖uh − u‖L2
loc(R

2×R+) = 0 ,

then u is a weak solution of the problem.

We will show that many FE and FV schemes can be recast in the residual distribution formalism. However,
before giving examples of particular schemes, we recall general conditions allowing to characterize the accuracy
and the stability of the discretization.

In the remaining text, we will omit the superscript E , when the reference to a generic element E is clear from
the context.
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3.2 Accuracy of steady RD discretizations

We consider the issue of the accuracy of the approximation for steady smooth problems. Even though second
order schemes are the main focus of this contribution, we give a definition of a k-th order accurate scheme, and
recall a necessary condition for a RD scheme to satisfy such definition. We follow [11, 2, 13]. The analysis is
performed for the scalar case, equation (4). The generalization to system (1) is immediate.

The idea is to derive an estimate of how well a scheme reproduces the weak formulation of the problem, in
correspondence of a smooth solution. Suppose a solution exists, say w, such that ∇ · F(w) = S(w, x, y) in a
pointwise manner. Denote by wh the continuous piecewise polynomial approximation in space of w (cfr. equation
(9)). We suppose that wh is of degree k − 1, and k-th order accurate. Consider then the following quantity :

TE(wh) :=
∑

i∈Th

ϕi

( ∑

E∈Di

φi(wh)
)

(18)

with ϕ a smooth compactly supported function ϕ ∈ Ck
0 (Ω), and ϕi = ϕ(xi, yi). The notation φi(wh) indicates

that the split residuals have been evaluated starting from the continuous interpolant of the nodal values of the
exact solution w (and of the exact flux and source term F(w) and S(w, x, y)). We recall that the superscript E

has been dropped for simplicity. We also recall that, as in (9), the summation in (18) extends not only over the
vertices of the grid but also over a properly chosen set of nodes placed along the mesh edges and/or within the
elements (cf. §2.3).

Note that wh is not the numerical solution given by the RD scheme of definition 3.1, but the k − 1 degree
continuous piecewise polynomial approximation of the smooth exact solution w. Hence, in general TE(wh) 6= 0.
The magnitude of this quantity describing how well an interpolant of the exact solution satisfies the discrete
equations, is what we define as being the truncation error. It gives an estimate on the accuracy of the scheme.
In particular we give the following definition.

Definition 3.2 (k-th order accuracy, steady problems). A RD scheme is said to be k-th order accurate at steady
state if it verifies TE(wh) = O(hk), for any smooth exact solution w, with TE(wh) given by (18).

Consider now ϕh, the k-th order accurate continuous piecewise polynomial interpolant of ϕ, constructed
starting from the nodal values ϕi (cf. §2.3 and (18)). Due to the regularity of ϕ and the assumptions (8), we
have

‖ϕ‖L∞(Ω) < C1 , |ϕi − ϕj | ≤ ‖∇ϕ‖L∞(Ω)h < C2 h = O(h) , ‖∇ϕh‖L∞(Ω) < C3 (19)

for some finite positive constants C1, C2, and C3, eventually depending on the mesh regularity constants in (8).

We now analyse the truncation error (18). We start by rewriting it as

TE(wh) =
∑

E∈Th

( ∑

i∈E

ϕiφi(wh)
)
, (20)

and write the term between brackets as

∑

i∈E

ϕiφi(wh) =
∑

i∈E

ϕiφ
G
i (wh) +

∑

i∈E

ϕi

(
φi(wh) − φG

i (wh)

)

=

∫

E

ϕh

(
∇ · Fh(wh) − Sh(wh, x, y)

)
dxdy +

∑

i∈E

ϕi

(
φi(wh) − φG

i (wh)

)

with φG
i (wh) the Galerkin residual

φG
i (wh) = φG,a

i (wh) − φG,s
i (wh) =

∫

E

ψi∇ · Fh(wh) dx dy −

∫

E

ψiSh(wh, x, y) dx dy (21)
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defined as the residual weighted with the continuous polynomial basis functions ψi given in equation (9). Thus,
equation (20) becomes

TE(wh) =

∫

Ω

ϕh

(
∇ · Fh(wh) − Sh(wh, x, y)

)
dxdy +

∑

E∈Th

∑

i∈E

ϕi

(
φi(wh) − φG

i (wh)

)

Since
∑

i∈E

(
φi(wh) − φG

i (wh)
)

=
∑

i∈E

(
φh(wh) − φh(wh)

)
= 0 (cf. equation (11)), we can write

TE(wh) =

∫

Ω

ϕh

(
∇ · Fh(wh) − Sh(wh, x, y)

)
dxdy

︸ ︷︷ ︸
I

+

II︷ ︸︸ ︷
1

K

∑

E∈Th

∑

i∈E

∑

j∈E

(ϕi − ϕj)

(
φi(wh) − φG

i (wh)

)

where we recall that K is the total number of degrees of freedom (nodes) contained in element E. In the last
equation, the term I is associated to the error introduced by the choice of the polynomial interpolation in space,
while the second term represents the additional error introduced by the RD discretization.

We first estimate I. Since by hypothesis w verifies (4) in a pointwise manner, we have
∫

Ω

ϕh

(
∇ · Fh(wh) − Sh(wh, x, y)

)
dxdy =

∫

Ω

ϕh

(
∇ ·

(
Fh(wh) −F(w)

))
−

∫

Ω

ϕh

(
Sh(wh, x, y) − S(w, x, y)

)
dxdy.

We decompose the first integral in elemental contributions, use Green-Gauss’ formula on each element, and sum
up. Due to the continuity of Fh(wh) and ϕh across edges, and to the compactness of the support of ϕh, we get

∫

Ω

ϕh ∇ ·
(
Fh(wh) −F(w)

)
dxdy = −

∫

Ω

∇ϕh

(
Fh(wh) −F(w)

)
dxdy = O(hk)

provided that Fh(wh) is a k-th order accurate approximation of F(w), and thanks to (19). If also Sh is a k-th
order accurate approximation of S, then (19) ensures that

∫

Ω

ϕh

(
Sh(wh, x, y) − S(w, x, y)

)
dxdy = O(hk). (22)

Hence, on a smooth solution, for k-th order flux and source term approximations, we have I = O(hk).
Then we estimate II. We start by estimating φG

i (wh) :

φG
i (wh) =

∫

E

ψi ∇ ·
(
Fh(wh) −F(w)

)
dxdy −

∫

E

ψi

(
Sh(wh, x, y) − S(w, x, y)

)
dxdy

=

∮

∂E

ψi(Fh(wh) −F(w)) · n̂ dl −

∫

E

(Fh(wh) −F(w)) · ∇ψidxdy

+

∫

E

ψj

(
Sh(wh, x, y) − S(w, x, y)

)
dxdy

= O(hk+1) + O(hk+1) + O(hk+2) = O(hk+1)

(23)

having used (19), the fact that Fh and Sh are k-th order accurate, that ∇ψi = O(h−1) (cfr. equation (11)),
the boundedness of ψi, and the estimates |∂E| = O(h), and |E| = O(h2). Note that the number of nodes in
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each element is bounded, while the total number of elements in a regular (in the sense fo (8)) triangulation is of
O(h−2). Due to this and to (19), we get for the error

TE(wh) = O(hk) + O(h−2) ×O(h) ×O(φi(wh)) + O(h−2) ×O(h) ×O(φG
i (wh))

= O(hk) + O(h−1) ×O(φi(wh))

where the quantity O(φi(wh)) denotes rather the supremum over the nodes and over the elements of the mag-
nitude of the split residuals.

At last we have an error estimate allowing to formulate a necessary condition for second order of accuracy.

Proposition 3.3. Given a smooth function ϕ ∈ Ck
0 (Ω), satisfying the regularity assumptions (19). Given a

triangulation satisfying the regularity assumption (8). Given wh, the k−1 degree, k-th order accurate continuous
piecewise polynomial interpolant of w, a smooth exact solution to (4), and denoting by Fh and Sh continuous
k-th order accurate approximations to the exact flux and source term F(w), and S(w, x, y) on Th. Then, in two
space dimensions, a RD scheme verifies the truncation error estimate

TE(wh) :=
∑

i∈Th

ϕi

∑

E∈Di

φi(wh) = O(hk) (24)

provided that the following condition is met

φi(wh) = O(hk+1) ∀ i ∈ E and ∀E ∈ Th (25)

Condition (25) guarantees that formally the scheme has an O(hk) error. In practice, there is no guarantee
that this convergence rate is observed, unless some other (stability) constraints are respected. For example, even
though it does verify the accuracy condition, the Galerkin scheme (21) is known to be unstable when applied to
(4), and to diverge when the mesh is refined. In this sense the condition of proposition 3.3 is only necessary.

Linearity or k-exactness preservation. Last proposition allows to introduce an important class of
schemes. Given continuous and k-th order accurate flux and source terms approximations, Fh and Sh, for
a smooth exact solution one has

φE(wh) =

∫

E

(∇ · Fh(wh) − Sh(wh)) dx dy

=

∮

∂E

(Fh(wh) −F(w)) · n̂ dl −

∫

E

(Sh(wh, x, y) − S(w, x, y)) dx dy

= O(hk+1) + O(hk+2) = O(hk+1) ,

(26)

since |∂E| = O(h) and |E| = O(h2). As a consequence, we can give the following characterization.

Definition 3.4 (Linearity or k-exactness Preserving scheme). A RD scheme is linearity preserving (LP) or
more generally k-exactness preserving if its distribution coefficients βj defined in (14), are uniformly bounded
with respect to the solution and the data of the problem:

max
E∈Th

max
j∈E

|βj | < C <∞ ∀ φE , uh, u
0
h, . . .

LP schemes satisfy by construction the necessary condition for k-th order of accuracy of proposition 3.3.

The term linearity preserving, initially introduced to refer to second order schemes of this type, is kept here
to denote in general RD schemes with uniformly bounded distribution coefficients. In fact a better denomination
is k-exactness preservation, a term introduced by T.J. Barth in the context of Finite Volume schemes to denote
schemes based on a k-th degree polynomial reconstruction.
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Let us now give a few remarks on the choice of Fh. Condition 3.3, only requires Fh to be k-th order accurate.
A simple way to achieve this is to use for Fh the same polynomial nodal interpolant as used for wh. This simpli-
fies a lot the computation of the residual, which can be evaluated directly, by computing, once and for all, edge
integrals of the shape functions. This approach is similar to the quadrature free implementation of the Discontin-
uous Galerkin method [17]. Clearly, the more expensive choice Fh(uh) = F(uh), with uh as in (9), is also possible.

On the discrete treatment of source terms. The treatment of the source terms deserves particular
attention. Not only is it important for a wide variety of applications, but its analysis will also be useful when
discussing the extension of the schemes to time dependent problems.

First, for the estimate (22) to be valid the spatial approximation Sh must k−th order accurate. This, even
though a k−1-th order approximation of the source term would suffice to guarantee that φE(wh) = O(hk+1) (cf.
equation (26)). A possible choice for Sh is the same k−1 degree piecewise polynomial as used for wh, ultimately
leading again to a quadrature free algorithm in which the integral of Sh ony depends on integrals of the basis
functions which can be stored in a pre-processing step. Alternatively, one might choose a representation of the
type Sh = S(uh, x, y), with uh as in (9), and chose a proper quadrature formula to integrate it over an element.
The accuracy of such formula has to be consistent with estimate (22). For a second order scheme, for example,
one could use ∫

E

Sh(wh, x, y) dx dy = |E|Sh(wG, xG, yG)

where wG, xG , yG denote the solution value and coordinates of the gravity center of element E.
Condition (25) can also be used to show that, in general, pointwise discretizations of the source term are only

first order accurate. We focus on the case of a piecewise linear approximation of the unknown, and consider the
following variant of (16)

|Si|
dui

dt
+

∑

E∈Di

βiφ
E,a = |Si|S(ui, xi, yi) (27)

where φE,a denoted the advective element residual

φE,a =

∫

E

∇ · Fh(uh) dx dy ,

which, without loss of generality, we have assumed to be distributed by means of a linearity preserving scheme.
Equation (27) is the semi-discrete nodal approximation obtained when the forcing term is approximated in a
pointwise fashion. Scheme (27) is obtained with the following definition of split residuals

φi(uh) = βiφ
E,a(uh) −

|E|

3
Si =

∫

E

(
βi∇ · Fh(uh) −

1

3
Si

)
dx dy (28)

having set Si = S(ui, xi, yi). Let us now consider a smooth exact solution of the problem w, and let us check
what condition (25) becomes for scheme (28). First of all, we note that

∑

j∈E

φj(uh) = φE,a(uh) −
|E|

3

∑

j∈E

Sj = φE,a(uh) −

∫

E

Sh dx dy

having denoted with Sh the piecewise linear approximation of the source term obtained with (9). This approxi-
mation is second order in smooth areas. Hence, with this approach we can hope, at most, to reach second order
of accuracy. In particular, let us also assume that Fh is second order, and let us now estimate the split residual

9



(28) when it is evaluated on a discrete interpolant of the smooth exact solution w :

φi(wh) =

∫

E

(
βi∇ · Fh(wh) −

1

3
Si

)
dx dy =

∫

E

(
βi∇ · Fh(wh) − βi∇ · F(w) + βiS(w, x, y) −

1

3
Si

)
dx dy

= βiφ
E,a(wh − w) +

∫

E

(
βiS(w, x, y) −

1

3
Si

)
dx dy

having used the fact that ∇ · F(w) − S(w, x, y) = 0. One easily sees that φE,a(wh −w) = O(h3), hence for (25)
to be verified in the case of second order accuracy, we must have

Is =

∫

E

(
βiS(w, x, y) −

1

3
Si

)
dx dy = O(h3) (29)

One immediately recognizes that, apart from the unstable central scheme obtained with the choice βi = 1/3,
∀ i ∈ E (cf. section §3.6), in general condition (29) is never respected. In particular, the boundedness of S and
of Si leads in the general case to the estimate Is = O(h2).

Proposition 3.5 (Linearity preserving schemes and pointwise source term). Apart from the centered scheme
obtained with βC

i = 1/3, ∀ i ∈ E, a linearity preserving distribution of the advective fluctuation φE,a coupled
with a pointwise source treatment leads in general to a first order accurate discretization. The centered scheme
is formally second order accurate.

Numerical evidence to support the previous analysis and last proposition can be found in [92].
As a final remark we note that one might think of constructing schemes which still approximate the source

term in a pointwise manner by adding a proper correction to a linearity preserving scheme :

φi = βiφ
E,a −

|E|

3
Si + Γi

By repeating the above accuracy analysis, using the fact that on E we have S = Si +∇S
∣∣
i
· (~x−~xi)+O(h2), and

that for the exact solution w one has ∇S
∣∣
i
· (~x− ~xi) = ∇(∇ · F(w))

∣∣
i
· (~x− ~xi), it is easy to show that a second

order scheme can still be obtained provided that βi = 1/3, and that Γi is at least a second order approximation
of

Γi ≈ −

∫

E

∇(∇ · F(w))
∣∣
i
· (~x− ~xi) dx dy

Even though possible in theory, this technique has never been investigated in literature. The main issues are
how to choose Γi in practice, and what the stability properties of the final discretization would be.

3.3 Monotonicity: positive cell-vertex schemes on unstructured grids

We now consider the issue of the non-oscillatory character of the approximation. This characterization is achieved
by resorting to the theory of positive coefficient discretizations. We focus on the homogeneous case S = 0, and
only consider continuous piecewise linear approximations, for which the discrete unknowns are the values of the
solution in the vertices of the triangulation. We assume to be able to write the split residuals as

φi =
∑

j∈E
j 6=i

cij(ui − uj) (30)

such that the semi-discrete form of the scheme reads (cf. equations (12)-(16))

|Si|
dui

dt
= −

∑

E∈Di

∑

j∈E
j 6=i

cij(ui − uj) , ∀i ∈ Th (31)

10



This is certainly possible in the case of the scalar advection problem (5), and it is still admissible in the general
nonlinear case if (4) can be locally replaced by a properly linearized version of its quasi-linear form

∂u

∂t
+ ã · ∇u = 0 , ~a(u) =

∂F(u)

∂u

For a linearly varying discrete solution, an example of such an admissible linearization is the conservative mean-
value flux jacobian

ã =
1

|E|

∫

E

~a(uh) dx dy

The analysis reported here has the objective of giving conditions on coefficients cij in (30), which guarantee
the existence of a discrete maximum principle for the discrete solution. The first part of the analysis is an
adaptation to the case of the RD method of the LED principles also used in [20, 22] (see also [111]) for the
analysis of FV discretizations on unstructured meshes. We then use these principles to present a maximum
principle analysis of schemes (12)-(16), when the time derivative is integrated using a two-step scheme.

3.3.1 LED schemes and discrete maximum principle

We start by recalling the Local Extremum Diminishing (LED) principle.

Proposition 3.6 (LED property). The prototype scheme (31) is Local Extremum Diminishing (LED), i.e. in
the solution of the ODE (16) local maxima are non-increasing and local minima are non-decreasing, if

c̃ij =
∑

E∈Di ∩Dj

cij ≥ 0 , ∀j ∈ Di, j 6= i and ∀i ∈ Th (32)

Proof. From property (32) it follows that

dui

dt
= −

1

|Si|

∑

E∈Di

∑

j∈E
j 6=i

cij(ui − uj) = −
1

|Si|

∑

j∈Di

j 6=i


 ∑

E∈Di ∩Dj

cij


 (ui − uj) = −

1

|Si|

∑

j∈Di

j 6=i

c̃ij(ui − uj)

is ≤ 0 if ui is a local maximum (ui ≥ uj), and it is ≥ 0 if ui is a local minimum (ui ≤ uj). Hence the result.

The LED property guarantees that local extrema are kept bounded by the numerical scheme. A stronger
requirement is obtained by asking each cij to be positive, leading to a sub-element LED property:

Corollary 3.7 (Sub-element LED). Scheme (31) is LED if cij ≥ 0 ∀j ∈ E and ∀E ∈ Di

In order to obtain an estimate on the discrete solution fully discrete versions of (31) need to be analyzed.
Here, we consider the following two-level explicit and implicit time discretizations: explicit (forward) Euler (FE),
implicit (backward) Euler (BE), Crank-Nicholson (CN ) and trapezium rule. For linear problems, the last two
are equivalent. The fully discrete version of (31) obtained with one of these time integration schemes can be
compactly written introducing the θ-scheme:

|Si|(u
n+1
i − un

i ) = −∆t
∑

E∈Di

(
(1 − θ)φFE

i + θφBE
i

)
(33)

with the Forward Euler (FE) and Backward Euler (BE) contributions given by

φFE
i =

∑

j∈E
j 6=i

[cij(ui − uj)]
n
, φBE

i =
∑

j∈E
j 6=i

[cij(ui − uj)]
n+1

. (34)

11



The Forward Euler, Backward Euler, and the trapezium (equivalent to the CN scheme for linear advection)
schemes are obtained from (33) for θ = 0, θ = 1, and θ = 1/2, respectively. Denoting by Un and Un+1 the arrays
containing the nodal values of u at time tn and tn+1, the θ-scheme can be recast in the form:

AUn+1 = BUn , (35)

where the matrices A and B are sparse with a fill-in pattern given by the connectivity graph of the grid. The
entries of these matrices depend on the cij coefficients, on the time-step, and on Si :

Aii = |Si| + θ∆t
∑

E∈Di

∑
j∈E
j 6=i

cij , Aij = −θ∆t
∑

E∈Di

∑
j∈E
j 6=i

cij

Bii = |Si| − (1 − θ)∆t
∑

E∈Di

∑
j∈E
j 6=i

cij , Bij = (1 − θ)∆t
∑

E∈Di

∑
j∈E
j 6=i

cij

(36)

We have the following result.

Proposition 3.8 (Positivity - Discrete Maximum Principle). The space-time discrete analog of (4) in the time
interval [tn, tn+1] represented by the θ−scheme (33), verifies the global discrete space-time maximum principle

un
min = min

j∈Th

un
j ≤ un+1

i ≤ max
j∈Th

un
j = un

max , (37)

and the local discrete space-time maximum principle given by

ui = min
{
un

i , min
j∈Di

j 6=i

(un
j , u

n+1
j )

}
≤ un+1

i ≤ max
{
un

i ,max
j∈Di

j 6=i

(un
j , u

n+1
j )

}
= U i (38)

if the LED condition (32) holds and under the time-step restriction

|Si| − (1 − θ)∆t
∑

E∈Di

∑

j∈E
j 6=i

cij ≥ 0 ∀i ∈ Th (39)

Under the same time-step constraint, the solution obtained with the explicit FE scheme verifies the sharper bounds

ũn
i = min

j∈Di

un
j ≤ un+1

i ≤ max
j∈Di

un
j = Ũn

i , (40)

In particular, the BE scheme verifies (37) and (38) ∀∆t > 0, while the time-step allowed by the CN scheme is
twice as large as the one allowed by the positivity of the FE scheme.

Proof. The proof is obtained by noting that the LED condition (32) guarantees that Aii ≥ 0 and Aij ≤ 0 ∀j 6= i
independently on ∆t. Moreover, A is diagonally dominant since

|Aii| −
∑

j∈Di

j 6=i

|Aij | = |Si| > 0 .

Hence, A is an M−matrix, and it is diagonally dominant. This implies that A is invertible and A−1 is positive
[23]: A−1

ij ≥ 0 ∀i, j. Consider now the array Umin having the same length of Un and Un+1 but with elements all
equal to un

min. Thanks to the time-step restriction (39), we have Bij ≥ 0 ∀i, j, hence

(BUn)i ≥ (BUmin)i ∀i ∈ Th

12



since un
i ≥ un

min ∀i ∈ Th. Moreover

(BUmin)i =
∑

j∈Di

Biju
n
min = |Si|u

n
min =

∑

j∈Di

Aiju
n
min = (AUmin)i

Since AUn+1 = BUn, this shows that (AUn+1)i ≥ (AUmin)i, ∀i ∈ Th. The positivity of A−1 ≥ 0 implies the left
inequality in (37). The right inequality is obtained in a similar way.
The local bounds (38) are instead obtained by using the positivity of the c̃ij coefficients (32). In fact, given
Un+1, on has for a node i:

Aiiu
n+1
i +

∑

j∈Di

j 6=i

Aiju
n+1
j =

(
|Si| + θ∆t

∑

j∈Di

j 6=i

c̃ij

)
un+1

i − θ∆t
∑

j∈Di

j 6=i

c̃iju
n+1
j =

Biiu
n
i +

∑

j∈Di

j 6=i

Biju
n
j =

(
|Si| − (1 − θ)∆t

∑

j∈Di

j 6=i

c̃ij

)
un+1

i + (1 − θ)∆t
∑

j∈Di

j 6=i

c̃iju
n
j

Using the positivity of the c̃ij ’s, the time-step restriction (39) and the definition (38) of U i, one has

(
|Si| + θ∆t

∑

j∈Di

j 6=i

c̃ij

)
un+1

i =
(
|Si| − (1 − θ)∆t

∑

j∈Di

j 6=i

c̃ij

)
un+1

i + (1 − θ)∆t
∑

j∈Di

j 6=i

c̃iju
n
j + θ∆t

∑

j∈Di

j 6=i

c̃iju
n+1
j ≤

(
|Si| + θ∆t

∑

j∈Di

j 6=i

c̃ij

)
U i (41)

which gives the right bound in (38). The left bound is obtained in a similar way. For the explicit FE scheme,
the sharper bounds (40) are instead readily obtained by noting that

un+1
i =


1 −

∆t

|Si|

∑

j∈Di

j 6=i

c̃ij


un

i +
∆t

|Si|

∑

j∈Di

j 6=i

c̃iju
n
j = ciiu

n
i +

∑

j∈Di

j 6=i

ciju
n
j =

∑

j∈Di

ciju
n
j .

Bounds (40) are easily verified using the fact that cij ≥ 0 ∀ i j, due to (32) and (39), and that
∑

j∈Di
cij = 1.

The last assertion of the proposition is easily checked by comparing the limiting values of the time-step obtained
by taking θ = 0, θ = 1/2, and θ = 1 in (39).

Definition 3.9 (Positive scheme). A scheme of the form (33) respecting proposition 3.8 is said to be positive.

As done for the LED property, we introduce a local form of positivity. First, we note that the components
of the A and B matrices can be decomposed as a sum of local contributions:

A =
∑

E∈Th

AE , B =
∑

E∈Th

BE

where Aij ,Bij = 0 ∀i, j /∈ E, and for i, j ∈ E one has

AE
ii =

|E|

3
+ θ∆t

∑
j∈E
j 6=i

cij , AE
ij = −θ∆t

∑
j∈E
j 6=i

cij

BE
ii =

|E|

3
− (1 − θ)∆t

∑
j∈E
j 6=i

cij , BE
ij = (1 − θ)∆t

∑
j∈E
j 6=i

cij

(42)

With this notation we have the following trivial result.
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Proposition 3.10 (Local Positivity - Discrete Maximum Principle). The space-time discrete analog of (4) in
the time interval [tn, tn+1] represented by the θ−scheme (33), verifies the global space-time discrete maximum
principle (37) and the local space-time discrete maximum principle (38) (and (40) in the explicit case θ = 0), if
the sub-element LED condition holds and under the time-step restriction

|E|

3
− (1 − θ)∆t

∑

j∈E
j 6=i

cij ≥ 0 ∀i ∈ E and ∀E ∈ Th (43)

In particular, the BE scheme verifies (37) and (38) ∀∆t > 0, while the time-step restriction of the CN scheme
is twice less severe than the one guaranteeing the local positivity of the FE scheme.

Definition 3.11 (Locally positive scheme). A scheme verifying proposition 3.10 is said to be locally positive.

The last proposition shows that local positivity implies positivity. It seems quite disappointing that an
implicit scheme must respect a time-step restriction of the same order as the one of the explicit FE scheme in
order to preserve the monotonicity of the discretization. Unfortunately, it can be shown that, for high-order time-
integration schemes, this limitation has a quite general character [25]. Finally, following [20, 22], we mention two
important corollaries of proposition 3.8. The first is that, thanks to the positivity of the c̃ij coefficients implied
by condition (32), we have:

Proposition 3.12 (Steady-state discrete maximum principle). Under the hypothesis that the c̃ij coefficients in
(32) are all positive, the steady limit of (33) verifies the local maximum principle in space given by:

min
j∈Di

j 6=i

u∗j ≤ u∗i ≤ max
j∈Di

j 6=i

u∗j (44)

where the superscript ∗ denotes the steady limit u∗j = lim
n→∞

un
j .

The second and more important consequence is that the solution respects at all times the L∞ stability bounds:

Theorem 3.13 (L∞−stability). If the hypotheses of proposition 3.8 are verified in all the time slabs {[tn, tn+1]},
with n = 0, . . . ,M − 1, then scheme (33) is L∞−stable and the following bounds hold for its numerical solution:

min
i∈Th

u0
i ≤ un

j ≤ max
i∈Th

u0
i , ∀i ∈ Th, n ∈ [1,M ] . (45)

3.4 Linear schemes and Godunov’s theorem

It is desirable to have a scheme which is both second-order accurate and that respects a discrete maximum
principle. It is known that this is not possible, unless the local structure of the solution is somehow monitored
by the cij coefficients. This is formally expressed by the following definition and theorem [52, 78, 11].

Definition 3.14 (Linear scheme). A scheme of the form (31) is said to be linear if all the cij are independent
on the numerical solution.

Theorem 3.15. No linear RD scheme can be simultaneously positive and second-order accurate.

3.5 Energy stability

After having characterized the accuracy and monotonicity (L∞ stability) of the discretization, we consider a
different type of stability, related to the dissipative behavior of the schemes: the energy stability. We focus on
the scalar linear case of (5) with S = 0, and on piecewise linear discrete variation of the solution. It is known that
the advection equation is characterized by a bound on the L2 norm of its exact solutions: the energy [50] . At
the discrete level, this translates into a stability criterion: for stable schemes energy attains its maximum value
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at t = 0, i.e. energy is dissipated by stable discretizations. In this section, we give estimates for the evolution in
time of the energy of the solution obtained by scheme (31). The analysis is inspired by [18].

We start by rewriting the prototype scheme in the compact vector form

D|Si|
dU

dt
= −CU , (46)

and introducing the discrete analog of the energy of the solution

Eh =
UT D|Si| U

2
=

∫

Ω

Ih dx dy , I =
1

2
u2 (47)

with Ih piecewise linear, as in (9). The stability of the schemes can be characterized by analyzing

dEh

dt
= −UT C + CT

2
U = −UT MEh U . (48)

We start giving the following definition.

Definition 3.16 (Energy stable scheme - semi-discrete form). The prototype scheme in semi-discrete form (31)
is energy stable if

dEh

dt
= −UT MEh U ≤ 0 . (49)

It is common experience that schemes yielding monotone numerical solutions, such as LED and positive
schemes, also exhibit a dissipative behavior, i.e. sharp profiles of the solution are smeared as if a viscous diffusion
mechanism was present. To characterize our prototype scheme (31) from the energy point of view, we look at
the form of the MEh matrix. In particular, from (48) and (31) we have

MEh

ii =
∑

j∈Di

j 6=i

c̃ij , MEh

ij = −
1

2
(c̃ij + c̃ji) = −

∑

E∈Di∩Dj

cij + cji

2
.

For LED schemes MEh has positive entries on the diagonal and negative off-diagonal terms. However, this is
not enough to ensure positive semi-definiteness, unless the matrix is also irreducibly diagonally dominant [23].
In particular, some of the schemes we consider in this paper can be characterized by the following property.

Proposition 3.17 (Energy stability of LED schemes - semi-discrete case). A scheme of the form (31) verifying
the LED condition (32) is energy stable in the sense of definition 3.16 if

∑

j∈Di

j 6=i

c̃ij =
∑

j∈Di

j 6=i

c̃ji ∀i ∈ τh (50)

Proof. Simple manipulations allow to recast the quadratic form on the right hand side in (48) as

UT MEh U =

≥0︷ ︸︸ ︷
1

2

∑

i,j∈Th
Di∩Dj 6=0

(ui − uj)
c̃ij + c̃ji

2
(ui − uj)+

∑

i∈Th

ui

( ∑

j∈Di

j 6=i

c̃ij − c̃ji

2

)
ui

The LED condition (32) guarantees that the first sum is non-negative. Moreover, if condition (50) is verified,
the second term in the last equation vanishes, hence UT MEh U ≥ 0, which is the desired result.

Additional information is obtained by including the temporal discretization in the analysis. For the θ−scheme
(33) we have the following result.
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Proposition 3.18 (Discrete energy stability - θ−scheme). The family of schemes represented by the θ−scheme
(33) verify the following fully discrete energy balance

En+1
h = En

h − ∆t
(
θUn+1 + (1 − θ)Un

)T
MEh

(
θUn+1 + (1 − θ)Un

)
− (2θ − 1)ǫh (51)

with the discrete time energy production ǫh given by

ǫh =
1

2

(
Un+1 − Un

)T
D|Si|

(
Un+1 − Un

)
≥ 0 .

The time discretization has a stabilizing effect for θ > 1/2 and a destabilizing effect for θ < 1/2. In particular,
the explicit FE time discretization has the maximum energy destabilizing character and the implicit BE scheme is
the most stable. The CN scheme is the only one preserving the dissipation properties of the spatial discretization.
For this reason the CN scheme is said to be energy conservative.

Proof. The proof reduces to showing that the balance (51) is true. The remaining assertions are trivially verified
by analyzing the sign of the additional term in the balance, governed by the quantity 2θ−1. The energy balance
is easily obtained by first noting that

θun+1
i + (1 − θ)un

i =
un+1

i + un
i

2
+ (2θ − 1)

un+1
i − un

i

2
∀i ∈ Th

Upon multiplication of (33) by θun+1
i + (1 − θ)un

i , and summing the expression thus obtained to its transpose,
we obtain the desired result.

The last proposition shows that while implicit schemes with θ > 1/2 might stabilize space discretizations
which, by themselves, are not energy stable, the use of the FE scheme (or in general of schemes with θ < 1/2)
might spoil the stability of the spatial discrete operator. These competitive effects are controlled by the magnitude
of the time-step. For stable space discretizations, one might then seek a limiting value of ∆t for the time
discretization guaranteeing the stability of explicit schemes. This study, not undertaken here, can lead sometimes
to time-steps constraints for energy stability which are stricter than the ones proved to yield positivity (see e.g.
[115]).

3.6 Examples of RD/FS schemes for steady advection

We finally give some examples of RD schemes. This is done for the case of the advection equation (5). In this
case, the element residual φE can be expressed in a simple analytical form. For uh and Sh both piecewise linear,
as in (9), and using the properties of the basis functions (11), one easily shows

φE =

∫

E

(~a · ∇uh − Sh) dx dy =
∑

j∈E

kj uj −
∑

j∈E

|E|

3
Sj (52)

where kj denotes the scalar

kj =
1

2
~a · ~nj (53)

with ~nj the scaled inward normal of figure 1. The kj parameters in (52) can be used as sensors to distinguish
between down-stream and up-stream nodes. In particular, kj > 0 only if ~a is oriented as ~nj , hence only if node
j is down-stream. Note that, due to (6), one also has the identity

∑

j∈E

kj = 0 (54)

With this notation, we will recall in the following section well-known equivalences between cell-vertex first-order
FV schemes, linear FE schemes, and RD schemes. The presentation of these more classical methodologies, will
give additional input for the analysis of discretizations which can only be constructed in the RD framework: the
multidimensional upwind schemes. We mainly focus our attention on the homogeneous case S = 0.
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3.6.1 Finite Volume schemes in FS formalism
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Figure 2: FV scheme. Neighboring cells Si and Sj (left) and cell normals (right)

On the dual mesh composed of the median dual cells, consider the piecewise constant approximation u′h, with
u′h|Si = ui ∀ i ∈ Th. We consider first-order FV schemes for which the semi-discrete counterpart of (5) in the
homogeneous case reads

|Si|
dui

dt
= −

∮

∂Si

Fh(u′h) · n dl = −
∑

lij∈∂Si

Hh(ui, uj) · ~nij

where H(u, v) is the FV numerical flux, respecting H(u, u) = F(u), lij is the portion of ∂Si separating Si from
Sj (see left picture on figure 2), nij is the exterior unit normal to ∂Si on lij , and ~nij = |lij |nij the scaled exterior
normal as in the right picture on figure 2. With reference to this picture, we can easily recast the right hand
side in last equation as a sum of contributions coming from elements in Di:

|Si|
dui

dt
= −

∑

E∈Di

∑

j∈E
j 6=i

H(ui, uj) · ~nij

The definition of the median dual cell (see right on figure 2), and the fact that the hull composed by the edges
opposite to i is closed (see left on figure 3), imply the following geometrical identities

∑

j∈E
j 6=i

~nj

2
= −

~ni

2
=

∑

j∈E
j 6=i

~nij and
∑

E∈Di

~ni = 0 (55)

Using these identities, one easily shows that the FV semi-discrete equation can be equivalently recast as

|Si|
dui

dt
= −

∑

E∈Di

∑

j∈E
j 6=i

(H(ui, uj) −H(ui, ui)) · ~nij , H(ui, ui) = F(ui)

We consider now the family of flux functions defined as

H(ui, uj) =
F(ui) + F(uj)

2
· ~nij −

1

2
D(ui, uj)(uj − ui) (56)

with D(ui, uj) a dissipation matrix (e.g. Roe’s absolute value matrix [96]) satisfying the symmetry condition
D(ui, uj) = D(uj , ui). With this definition the FV scheme can be written as

|Si|
dui

dt
=−

∑

E∈Di

φi , φi =
1

2

∑

j∈E
j 6=i

((F(uj) −F(ui)) · ~nij −D(ui, uj)(uj − ui)) (57)
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For last expression to define a FS scheme, the φi’s must verify the consistency condition (13), for a continuous
approximation of the flux. The symmetry of D(ui, uj), relation ~nij = −~nji, and the first in (55), easily lead to

∑

i∈E

φi =
∑

i∈E

1

2
F(ui) · ~ni

corresponding to (12) integrated exactly for a continuous piecewise linear approximation of the flux Fh, as the
one obtained with (9), and reducing precisely to (52) for constant (homogeneous) advection. The analogy extends
to nonlinear problems, and systems as well [9].

Closed hull

Di

i

i

E1

E2

~n1

~n2

∂Ω

∂Ω

Figure 3: Closed hull around node i

The upwind FV scheme: positivity and energy stability

For scalar advection, the most natural choice for H(u, v), is the upwind flux

H(ui, uj) =
F(ui) + F(uj)

2
· ~nij −

1

2

∣∣∣∣
∂F

∂u
· ~nij

∣∣∣∣
ij

(uj − ui)

which for this linear problem reduces to

H(ui, uj) = kij
(ui + uj)

2
−

|kij |

2
(uj − ui), kij = ~a · ~nij (58)

using which we finally arrive to the upwind FV −RD scheme defined by [78]

Si|
dui

dt
= −

∑

E∈Di

φFV−RD
i , φFV−RD

i = −
∑

j∈E
j 6=i

k−ij(ui − uj) (59)

Scheme (59) is of the form (31) with cij = −k−ij ≥ 0, hence it verifies the sub-element LED condition, and it
verifies propositions 3.8, 3.10, and 3.12, and theorem 3.13, and the related stability bounds. In particular, the
time-step restrictions for its positivity and local positivity are given by

∆t ≤
|Si|

(1 − θ)
∑

E∈Di

∑
j∈E
j 6=i

−k−ij
, ∀i ∈ Th and ∆t ≤

|E|

3(1 − θ)
∑

j∈E
j 6=i

−k−ij
, ∀E ∈ Di, ∀i ∈ Th (60)

with θ ∈ [0, 1). Unconditional positivity is obtained with backward Euler time-integration. For this scheme
the distribution coefficients are not explicitly defined. They have to be computed as βFV−RD

i = φFV−RD
i /φE ,

and their boundedness for φE → 0 is not guaranteed. Hence, the scheme is not LP . First-order of accuracy is
observed in practice. However, since kij = −kji, making use of the first identity in (55), and of the definitions
of kij and ki, we have

∑

j∈E

(cij − cji) = −
∑

j∈E

(k−ij − k−ji) = −
1

2

∑

j∈E

(kij − |kij | + kij + |kij |) = −
∑

j∈E

kij = ki
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Due to the second relation in (55), for constant advection
∑

E∈Di
ki = 0, which proves that the upwind FV−RD

scheme respects the energy stability criteria of proposition 3.17. Note that, with reference to the right picture
on figure 3, for a boundary node i ∈ ∂Ω the last sum is not zero but it is given by:

∑

E∈Di

ki = −
1

2
~a · (~n1 + ~n2)

with the inward normals to the boundary ~n1 and ~n2 scaled by the length of the edges. When included in the
energy balance, these terms give an approximation of the energy flux across ∂Ω, the energy balance becoming
(see (47) and (48))

dEh

dt
= −UTMEhU −

1

2

∮

∂Ω

Ih(~a · n̂) dl

with n̂ the exterior unit normal to ∂Ω, and Ih. How to handle this extra term is shown in the next section.

3.6.2 Central and Finite Element (FE) schemes

We now consider another family of discretizations, which originally were not formulated as FS schemes, but that
naturally admit a RD formulation. They are all variations of a central scheme obtained by equidistributing the
residual to the nodes of an element. We start by showing the equivalence of this centered RD scheme with the
Galerkin FE discretization of (5). For steady constant advection, and neglecting the BC terms, the P 1 Galerkin
FE scheme reads ∫

Ω

ψi~a · ∇uh dx dy = 0 ∀i ∈ Th (61)

with ψi the linear basis functions (11), and uh as in (9). In the case of a constant advection speed, using the
compactness of the support of the basis functions and (11), the Galerkin scheme can be immediately recast as

∑

E∈Di

1

3
φE = 0 ∀i ∈ Th

which is nothing else but the steady-state discrete approximation of the advection equation with the centered
LP fluctuation splitting scheme with distribution coefficients

βC
i =

1

3
(62)

For constant advection speed ~a, this centered RD scheme is then exactly equivalent to the FE Galerkin scheme.

Petrov-Galerkin schemes and streamline dissipation

The Galerkin method is known to be unstable when approximating the advection equation. Consider then the
stabilized Petrov-Galerkin (PG) schemes, obtained by adding to the Galerkin discretization a so-called streamline
dissipation term [62, 63, 64, 114]:

∫

Ω

ψi~a · ∇uh dx dy +
∑

E∈Th

∫

E

τ(~a · ∇ψi)(~a · ∇uh) dx dy

︸ ︷︷ ︸
PG streamline dissipation

= 0 ∀i ∈ Th (63)

In the case of a constant advection speed ~a, proceeding as before, we quickly arrive to

0 =
∑

E∈Di

1

3
φE +

∑

E∈Di

τ
ki

2|E|
φE =

∑

E∈Di

φC
i +

∑

E∈Di

τ
ki

2|E|
φE ∀i ∈ Th (64)
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which shows the equivalence of stabilized streamline dissipation Galerkin FE scheme with the class of linearity
preserving RD schemes defined by the distribution coefficient

βSD-G
i =

1

3
+ τ

ki

2|E|
with τ ≥ 0, τ = O

(
h

‖~a‖

)
(65)

This analogy is of course known for a long time [30, 78]. However, strictly speaking the analogy is an equivalence
only in the constant coefficients case, while in general the RD and the FE schemes give different discrete
equations since the integrals in (63) no longer reduce to (64). The streamline dissipation terms introduce some
kind of upwind bias in the distribution, since we have (see also section 3.6.3)

βSD-G
i > βC

i if i is downstream, hence ki > 0

βSD-G
i < βC

i if i is upstream, hence ki < 0

The stabilization mechanism introduced by this upwind bias is better understood by looking at the energy
stability of the schemes.

PG schemes: energy stability

Streamline-diffusion FE schemes have well known energy stability properties that we will recall here. The energy
balance of the SD-G scheme reads

dESD-G
h

dt
= −

∑

E∈Th

∑

i∈E

∑

j∈E

1

3
uikjuj −

∑

E∈Th

∑

i∈E

∑

j∈E

ui
kiτkj

2|E|
uj =

dEC
h

dt
− ǫSD

h (66)

Due to the properties of the basis functions, if ~a is constant, one easily shows that

∑

i∈E

∑

j∈E

1

3
uikjuj =

∫

E

uh~a · ∇uh dx dy , ǫSD
h =

∑

E∈Th

1

2|E|



k1u1

k2u2

k3u3




T 

τ 0 0
0 τ 0
0 0 τ






k1u1

k2u2

k3u3


 ≥ 0 (67)

showing that the upwind bias of the streamline-diffusion adds an L2 stabilizing dissipation mechanism. Finally
the global balance can be recast as

dESD-G
h

dt
= −

∑

E∈Th

∫

E

uh~a · ∇uh dx dy − ǫSD
h = −

∫

Ω

uh~a · ∇uh dx dy − ǫSD
h (68)

Unless the boundary conditions are taken into account, this only shows that a dissipative mechanism is present,
through the ǫSD

h term. For simplicity, suppose that homogeneous BCs are prescribed. To be completely faithful
to the FE formulation, the BCs should be included in the variational formulation (63) using the admissibility
condition [19]

min(~a · n̂, 0)u = (~a · n̂)−u = 0 on ∂Ω

with n̂ the exterior normal to ∂Ω. Here we suppose that the BCs are imposed in a strong nodal sense, such that
∮

∂Ω

uh(~a · n̂)−uh dl = 0 (69)

either because we impose uh = 0 (inflow boundary, (~a · n̂)− ≤ 0), or because (~a · n̂)− = 0 (outflow boundary).
We then rewrite the energy estimate (68) as

dESD-G
h

dt
= −

∫

Ω

uh~a · ∇uh dx dy − ǫSD
h = −

1

2

∮

∂Ω

uh(~a · n̂)uh dl − ǫSD
h =

−

∮

∂Ω

I(uh)(~a · n̂) dl − ǫSD
h = −

∮

∂Ω

I(uh)|~a · n̂| dl − 2

∮

∂Ω

I(uh)(~a · n̂)− dl − ǫSD
h
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having used the identity ~a · n̂ = 2(~a · n̂)− + |~a · n̂|, and (47). Using the BCs (69), we obtain the stability estimate

dESD-G
h

dt
= −

∮

∂Ω

I(uh)|~a · n̂| dl − ǫSD
h ≤ 0 (70)

As already remarked, a faithful analysis would have included the boundary conditions directly into the variational
formulation. This, however, would have led precisely to estimate (70) [19]. The analysis shows that the total
energy production can be split into the energy dissipation introduced by the upwind bias (ǫSD

h ) plus the energy
production due to the centered discretization. The latter is then simplified taking into account the boundary
conditions, finally obtaining an energy stability estimate.

The Rusanov scheme

Among the central schemes, we also report the LED Rusanov’s (Rv) scheme [106, 11, 12] defined by

φRv
i =

1

3
φE +

1

3
α

∑

j∈E
j 6=i

(ui − uj), α ≥ max
j∈E

|kj | > 0 (71)

The Rv scheme is obtained by adding to the centered scheme a stabilizing term. To see this, we rewrite (71) as

φRv
i =

1

3

∑

j∈E

kjuj +
1

3
α

∑

j∈E
j 6=i

(ui − uj) = −
1

3

∑

j∈E
j 6=i

kj(ui − uj) +
1

3
α

∑

j∈E
j 6=i

(ui − uj) =
1

3

∑

j∈E
j 6=i

(α− kj)(ui − uj)

where (54) has been used in the second equality. The Rv scheme can be recast as in (31) with 3cij = (α−kj) ≥ 0
(by definition of α). Hence, the scheme respects the sub-element LED condition, and it verifies propositions 3.8,
3.10, and 3.12, and theorem 3.13. The time-step restrictions for its positivity and local positivity read

∆t ≤
3|Si|

(1 − θ)
∑

E∈Di

∑
j∈E
j 6=i

(α− kj)
, ∀i ∈ Th and ∆t ≤

|E|

(1 − θ)
∑

j∈E
j 6=i

(α− kj)
, ∀E ∈ Di, ∀i ∈ Th (72)

with θ ∈ [0, 1). The Rv scheme is unconditionally positive when backward Euler time-integration is used in (16).
The distribution coefficients of the Rv scheme are not guaranteed to be bounded, hence the scheme is not LP.
The energy stability of the Rv scheme can be easily shown noting that

dERv
h

dt
= −

∑

E∈Th

∑

i∈E

∑

j∈E

1

3
uikjuj −

1

3

∑

E∈Th

∑

i∈E

∑

j∈E

uiα(ui − uj) =
dEC

h

dt
− ǫRv

h (73)

with the dissipation term reading

ǫRv
h =

∑

E∈Th

1

3



u1 − u2

u1 − u3

u2 − u3




T 

α 0 0
0 α 0
0 0 α






u1 − u2

u1 − u3

u2 − u3


 ≥ 0 since α ≥ 0, ∀E ∈ Th (74)

Proceeding as for the PG scheme, we obtain the energy estimate

dERv
h

dt
= −

∮

∂Ω

I(uh)|a · n̂| dl − ǫRv
h ≤ 0 (75)
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Figure 4: Inflow and outflow state. One-target (left) and two-target element (right)

3.6.3 A truly multidimensional upwinding strategy

For a linear (or linearized) problem in quasi-linear form, the residual can be expressed as in (52). We consider
now the homogeneous case S = 0, and recast (52) in an alternate form. Using the upwind parameters

k+
j = max(0, kj), k−j = min(0, kj) , (76)

and the identity kj = k+
j + k−j , one has

φE =
∑

j∈E

k+
j uj +

∑

j∈E

k−j uj =
( ∑

j∈E

k+
j

)( ∑

j∈E

N k+
j uj +

∑

j∈E

N k−j uj

)

having introduced the quantity

N =
( ∑

j∈E

k+
j

)−1

= −
( ∑

j∈E

k−j

)−1

=
1

2

( ∑

j∈E

|kj |
)−1

> 0 (77)

Defining the inflow and outflow states of element E

uin =

∑
j∈E

k−j uj

∑
j∈E

k−j
= −

∑

j∈E

N k−j uj and uout =
∑

j∈E

N k+
j uj (78)

the residual can be written as [78]

φE = M (uout − uin) , M =
∑

j∈E

k+
j = N−1 (79)

To give a geometrical interpretation of (79) we observe that the inflow and outflow states represent the values of
uh in the most upstream (resp. most downstream) node of the E, with respect to the streamline ζ cutting the
triangle (see figure 4), that is uout = uh(~xout) and uin = uh(~xin), with [78]:

~xout =
∑

j∈E

Nk+
j ~xj , ~xin = −

∑

j∈E

Nk−j ~xj

Hence, the residual (79) represents a one dimensional balance along ζ. This framework gives the basis for a truly
multidimensional generalization of concepts derived from the study of one dimensional advection. Depending on
how ~a is oriented in E, we can distinguish two situations (see figure 4). If ~a points in the direction of a single
point of E, as in the left picture, then this point coincides with the outflow point and is the only downstream
point. In this situation the element is said to be 1-target. Conversely, if ~a points in the direction of one of the
edges of E, as in the right picture, then there is only one upstream point coinciding with the inflow point. In
this situation the element is said to be 2-target. If E is 1-target, then there is a node j such that

kj = k+
j > 0, k−j = 0 and kl = k−l < 0, k+

l = 0 ∀l 6= j
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Similarly, if E is 2-target, then there is a node k such that

kk = k−k < 0, k+
k = 0 and kl = k+

l > 0, k−l = 0 ∀l 6= k

This distinction allows to build discretizations taking into account in a real multidimensional way the propagation
of the information described by the advection equation. In particular, we define the following class of schemes.

Definition 3.19. A FS scheme is multidimensional upwind (MU) if

(i) in a 1-target element E, if kj > 0 and ki, kk < 0, then: φj = φh and φi = φk = 0

(ii) in a 2-target element E, if kk < 0 and ki, kj > 0, then: φk = 0

Clearly, MU schemes reduce to 1D upwind schemes along the streamline cutting the triangle: all the in-
formation contained in the fluctuation is sent to the outflow point. This is an important simplification : all
MU schemes are equivalent in the 1-target case, different MU schemes are defined just by choosing different
distribution strategies in the 2-target case. The geometrical framework of figure 4 allows to perform this choice
on the basis of heuristics making use of the directional propagation of the information which characterizes exact
solutions. There is quite a number of possible choices [78, 99]. Here, only two of these will be analyzed in more
detail. Before that, we recall the following simple result.

Proposition 3.20 (MU schemes, LED, LP property and energy stability: 1-target case). In the 1-target
configuration, MU schemes are LP and positive. Moreover, they are locally dissipative.

Proof. Let us locally number as (1, 2, 3) the nodes of the 1-target triangle T . Suppose 1 is the only downstream
node : k1 > 0, k2, k3 < 0. One immediately shows that a MU scheme is LP , by noting that

φ1 = φE(uh), φ2 = φ3 = 0 =⇒ β1 = 1, β2 = β3 = 0

which are clearly uniformly bounded. Positivity is quickly checked by noting that

φ1 = φE =
∑

j∈T

kjuj = −k2(u1 − u2) − k3(u1 − u3) = c12(u1 − u2) + c13(u1 − u3)

with c12, c13 ≥ 0 by hypothesis, and having used (54). Lastly, we show that the scheme is locally dissipative.
With the notation of (47), we note that we can write for the total energy of the solution

∂Eh

∂t
=

∫

Ω

∂Ih

∂t
=

∫

Ω

∑

i∈Th

ψi
∂Ii

∂t
=

∑

i∈Th

|S|i
∂Ii

∂t
=

∑

i∈Th

ui|S|i
∂ui

∂t

= −
∑

i∈Th

∑

E∈Di

uiφi = −
∑

E∈Th

∑

j∈E

ujφj = −
∑

E∈Th

ΦE
I = −ΦI

(80)

As seen earlier, a dissipative (viz. energy stable) scheme verifies ΦI =
∮

∂Ω
Ih~a · n̂ dl+ ǫI with ǫI ≥ 0 Hereafter,

we show that for a MU scheme one has in the 1-target case

ΦE
I =

∮

∂E

Ih~a · n̂ dl + ǫ1-targetI , ǫ1-targetI ≥ 0 .

Recalling that we assumed node 1 to be the only downstream node, a direct calculation shows that

ǫ1-targetI = ΦE
I −

∮

∂E

Ih~a · n̂ dl = u1φ
E(uh) −

∫

E

~a · ∇Ih dx dy =
∑

j∈E

u1kjuj −
∑

j∈E

1

2
ujkjuj

= UT M1-targetU =
1

2
UT

(
M1-target + MT

1-target

)
U = UT Msymm

1-targetU
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where U denotes the array U = [u1 u2 u3], and with M1-target and Msymm
1-target given by

M1-target =
1

2



k1 2 k2 2 k3

0 −k2 0
0 0 −k3


 Msymm

1-target =
1

2



k1 k2 k3

k2 −k2 0
k3 0 −k3




We see that Msymm
1-target has positive diagonal and non-positive off-diagonal entries, moreover, the row and column

sums of its elements are zero due to (54). Hence, Msymm
1-target is positive semi-definite [23]. As a consequence

ǫ1-targetI = UT Msymm
1-targetU ≥ 0 which is the desired result.

In the 1-target case MU schemes have all the properties one can possibly desire. Note that last proposition
is not in contradiction with Godunov’s theorem, since the LED property would require the positivity of the
coefficients in all the elements of the mesh, which obviously (and unfortunately) are not all 1-target. Similarly,
LP schemes must have bounded coefficients in all E ∈ Th. Only one (or none) of the two properties can be
retained in the 2-target case by a linear MU scheme. Two examples are recalled in the following.

1

2

T143
T423

l34

~a

3 ≡ in

4 ≡ out

Figure 5: Geometry of FS schemes. LDA in the 2-target case

3.6.4 Multidimensional Upwind schemes: the LDA scheme

The LDA (Low Diffusion A) is the linear linearity preserving MU scheme defined by the distribution coefficients:

βLDA
i = k+

i N = k+
i

( ∑

j∈E

k+
j

)−1

∈ [0, 1] . (81)

In the homogeneous case, (79) gives for the local nodal residuals

φLDA
i = βLDA

i φE = k+
i (uout − uin) (82)

The scheme is clearly LP , since βLDA
i is bounded independently on φE , hence φi = O(h3). One easily checks

that it is not LED [78]. In the 2-target case, a simple geometrical interpretation is possible [78, 99]. With
reference to figure 5, we define the sub-triangles T423 and T143. Simple trigonometry shows that

|T423| =
l34k1

‖~a‖
, |T143| =

l34k2

‖~a‖
and |E| = |T423| + |T143| =

l34(k1 + k2)

‖~a‖

The distribution coefficients of the two downstream nodes 1 and 2 can be written as the area ratios

βLDA
1 =

k1

k1 + k2
=

|T423|

|E|
, βLDA

2 =
k2

k1 + k2
=

|T143|

|E|
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LDA scheme: energy stability

Using the definition of φLDA
i , and equations (52) and (79), the energy balance of the LDA scheme is

dELDA
h

dt
= −

∑

E∈Th

∑

j∈E

ujφ
LDA
j = −

∑

E∈Th

uoutM (uout − uin)

Simple manipulations lead to the more convenient expression

dELDA
h

dt
= −

∑

E∈Th

(uout + uin)

2
M (uout − uin) − ǫLDA

h (83)

with

ǫLDA
h =

1

2

∑

E∈Th

(uout − uin)M (uout − uin) ≥ 0 (84)

As for the PG scheme, the energy production of the LDA can be split into a stabilizing term, due to the
upwinding, plus a centered term. In this case both contributions act along the streamline, making the analysis
less clear. Indeed, we can express the energy balance of the LDA scheme as (see equation (47))

dELDA
h

dt
= −

∑

E∈Th

M (I(uout) − I(uin)) − ǫLDA
h , ǫLDA

h ≥ 0 (85)

the first term representing the approximation of the net energy flux through the whole spatial domain. Estimate
(85) proves the dissipative character of the scheme, however, in this case it is not clear how to simplify the first
terms by means of the BCs, to obtain eventually a full proof of stability.

3.6.5 Multidimensional Upwind schemes: the N scheme

The N scheme is perhaps the most successful first-order scheme for the solution of the advection equation. First
proposed by Roe in the 80’s [99], it has been since then the basis for the construction of nonlinear positive and
LP schemes. Thanks to its MU character it has the lowest numerical dissipation among first-order schemes [78].
It is defined by the following local nodal residuals:

φN
i = k+

i (ui − uin) . (86)

Being MU , the N scheme differs from the LDA only in the 2-target case, in which a simple geometrical repre-
sentation exists. In particular, we introduce the vectors ~a1 and ~a2, parallel to the edges 31 and 32 respectively,
such that ~a1 + ~a2 = ~a (see figure 6). Simple algebra shows that

φE(~a) =

∫

E

~a · ∇uh dx dy = φE(~a1) + φE(~a2) = k1(u1 − u3) + k2(u2 − u3)

which immediately gives for the N scheme

φN
1 = k1(u1 − u3) = φE(~a1), φN

2 = k2(u2 − u3) = φE(~a2)

In the 2-target case, the scheme reduces to first-order upwinding along the edges, with properly defined advection
speeds.
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~a1

3 ≡ in

out

Figure 6: Geometry of FS schemes. N scheme in the 2-target case

N scheme: positivity and energy stability

To check that it verifies the local LED condition, we rewrite the N scheme as

φN
i = k+

i ui +
∑

j∈E

k+
i Nk

−
j uj = −

∑

j∈E
j 6=i

k+
i Nk

−
j (ui − uj) =

∑

j∈E
j 6=i

cij(ui − uj)

Since cEij = −k+
i Nk

−
j ≥ 0, the N scheme verifies propositions 3.8, 3.10, and 3.12, and theorem 3.13, and the

related stability bounds. The time-step restrictions for its positivity and local positivity read

∆t ≤
|Si|

(1 − θ)
∑

E∈Di

k+
i

, ∀i ∈ Th and ∆t ≤
|E|

3(1 − θ)k+
i

, ∀E ∈ Di, ∀i ∈ Th (87)

with θ ∈ [0, 1). These constraints can be shown to be larger than the corresponding ones of the upwind FV−RD
and Rv scheme [78]. In addition to this, we note that

∑

j∈E
j 6=i

(cij − cji) = −
∑

j∈E
j 6=i

(k+
i Nk

−
j − k+

j Nk
−
i ) = −

∑

j∈E

(k+
i Nk

−
j − k+

j Nk
−
i ) = k+

i + k−i = ki

which, as for the upwind FV − RD scheme, cancels identically when summed over the elements of Di, in the
case of constant advection. As a consequence the scheme respects the energy stability criteria of propositions
3.17 and 3.18. In particular, the energy evolution of the scheme can be easily shown to be given by

dEN
h

dt
= −

1

2

∮

∂Ω

Ih~a · n̂ dl −
∑

E∈Th

∑

i∈E

∑

j∈E

uiM
N

ijuj

where the boundary integral can be handled as done for the SUPG scheme, and M
N

is the (positive semi-definite)
matrix energy operator [7, 18, 11]

M
N

=
1

2



k1

k2

k3


N



k1

k2

k3




T

+
1

2



k+
1 0 0
0 k+

2 0
0 0 k+

3


 −

1

2



k+
1

k+
2

k+
3


N



k+
1

k+
2

k+
3




T

+

+
1

2




−k−1 0 0
0 −k−2 0
0 0 −k−3


 −

1

2




−k−1
−k−2
−k−3


N




−k−1
−k−2
−k−3




T
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3.6.6 Relations between the N and LDA schemes: dissipation, non-homogeneous problems

Here, we elaborate on the relations between the N and the LDA schemes,. We show that the N scheme can be
written as the LDA scheme plus an anisotropic dissipation term. We start with the following observation. The
definition of the inflow state (78) is such that, for the N scheme, in the homogeneous case one has automatically

φE =
∑

j∈E

φN
j

We can reverse things and, given φE , compute a state u∗in from the satisfaction of the consistency constraint
(13): ∑

j∈E

k+
j (uj − u∗in) = φE =⇒ u∗in = N

( ∑

j∈E

k+
j uj − φE

)
. (89)

Clearly, if φE is given by (52) (with S = 0), using the relation kj = k+
j + k−j , we get back u∗in = uin as in (78).

However, we can obtain additional information by using (89) in (86):

φN
i = k+

i (ui − u∗in) = k+
i ui − k+

i

uout︷ ︸︸ ︷∑

j∈E

Nk+
j uj +

βLDA
i φE

︷ ︸︸ ︷
k+

i Nφ
E

and finally
φN

i = φLDA
i + dN

i , dN
i = k+

i (ui − uout) (90)

Clearly, the term dN
i is such that the local LED condition is verified, as shown in the previous section. Moreover

∑

j∈E

dN
j = 0 (91)

We can say more about this term by examining its contribution to the energy balance of the N scheme. Denoting
by (1, 2, 3) the nodes of the element, we define the vector dN = [dN

1 , d
N
2 , d

N
3 ]T given by:

dN = DNU, DN =



k+
1 0 0
0 k+

2 0
0 0 k+

3


 −



k+
1

k+
2

k+
3


N



k+
1

k+
2

k+
3




T

(92)

with U = [u1, u2, u3]
T . The matrix DN is symmetric, and it is positive semi-definite, as shown by

ǫN = UTDNU = (u1 − u2)k
+
1 Nk

+
2 (u1 − u2) + (93)

(u1 − u3)k
+
1 Nk

+
3 (u1 − u3) +

(u2 − u3)k
+
2 Nk

+
3 (u2 − u3) ≥ 0

Clearly dN
i is a dissipation term. In particular, the N scheme is more dissipative than the LDA scheme [2, 11]:

dEN
h

dt
=
dELDA

h

dt
−

∑

E∈Th

ǫN ≤
dELDA

h

dt
. (94)

Relations (90) and (91) give a simple means of extending the N scheme to more general situations. In particular,
in the non-homogeneous case S = S(x, y), we have (using (52)) and (90)

φN
i = βLDA

i φE + dN
i = k+

i (ui − uin) −
∑

j∈E

|E|

3
βLDA

i Sj (95)

with uin as in (78). One can show that, if the source term is independent on the solution, scheme (95) verifies
a modified discrete maximum principle (see [86, 110] for more details). Scheme (95) was initially proposed in
[110].
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3.6.7 Nonlinear RD schemes

Nonlinear schemes are needed to combine linearity preservation and LED. The interest in FS discretizations
is largely due to the success of the nonlinear PSI scheme of Struijs [113]. For steady scalar advection, the
PSI scheme has been proved to performe better than standard second-order limited FV schemes, especially on
irregular grids [113, 78, 102, 110, 12, 11]. Being completely parameter free, it is an interesting alternative to
FE schemes with shock-capturing terms [78, 30]. Unfortunately, when dealing with inhomogeneous or time-
dependent problems and systems, the extension of the PSI scheme is unclear. This has led to a large number of
techniques to design nonlinear FS schemes for which we refer to references given in the introduction.

Here we consider two approaches: the local blending of a linear LP scheme with a linear LED one, and the
nonlinear limiting of a LED scheme into a LP one. We mainly consider discretizations which use as linear LED
scheme the N scheme.

Blended schemes

Given a LP scheme defined by the split residuals φLP
i , and a linear LED first-order scheme, defined by the local

nodal residuals φLED
i , a blended scheme is defined by

φi = (1 − Θ(uh))φLP
i + Θ(uh)φLED

i (96)

where Θ(uh) is a blending parameter, which must ensure that φi = O(h3) in smooth regions, and that the LED
character of the first-order scheme prevails across discontinuities. Even though the idea is quite simple, the
design of Θ is not trivial at all. When blending the LDA and the N schemes, the blending approach has an
interesting interpretation. In particular, using (90) we can write that

φi = (1 − Θ(uh))φLDA
i + Θ(uh)φN

i = φLDA
i + Θ(uh)dN

i (97)

Blending the LDA and the N scheme is equivalent to adding to the LDA scheme a nonlinear dissipation term.
Defining Θ in a very rigorous way, might not be extremely important in practice, as shown by the fact that the
heuristic definition of the blending parameter of Deconinck and collaborators [108, 41]

Θ(uh) =
|φE |∑

j∈E

|φN
j |

∈ [0, 1] (98)

has given good results in several applications [108, 54, 11, 35, 38]. A rigorous study of this problem is found in
[2, 11]. In the reference it is also shown that the PSI scheme of Struijs can be rewritten as a blended LDA/N
scheme, for a particular choice of Θ(uh).

Limited nonlinear schemes

Several generalizations of the PSI scheme of Struijs exist (see e.g. [78] for a discussion). The most general
formulation is obtained introducing the framework of the so-called limited schemes [78, 11, 12, 13]. Consider a
first-order linear FS scheme, with split residuals φLED

i , verifying the sub-element LED condition. Suppose then
to have a continuous nonlinear mapping ϕ(x0, x1, x2, x3) : R

4 7→ R
3 such that

ϕ(x0, x1, x2, x3) = (x0 y1, x0 y2, x0 y3) (99)

with

xj =0 =⇒ yj = 0 ∀j = 1, 2, 3 (100)

xj .(x0yj) ≥ 0 ∀j = 1, 2, 3 (101)

|yj | < ∞ ∀j = 1, 2, 3 (102)

y1 + y2 + y3 = 1 (103)
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A limited FS scheme is obtained as

(φ1, φ2, φ3) = ϕ(φE , φLED
1 , φLED

2 , φLED
3 ) (104)

The properties of such a scheme are determined by those of the mapping. In particular, (103) guarantees that
the scheme verifies the consistency condition (13). Property (102), together with (99), and with the continuity
of the mapping, guarantees that the scheme is LP . Moreover, conditions (100) and (101) guarantee that, if
φE 6= 0, then if φLED

j = 0 also φj = 0, otherwise one has

φj = x0yj =
x0yj

xj
xj = αjxj = αjφ

LED
j with αj =

x0yj

xj
≥ 0

hence, the resulting scheme also verifies the sub-element LED condition. There are quite a number of construc-
tions leading to functions ϕ verifying (99)-(103). A review can be found in [11, 12, 13]. In particular, starting
from the N scheme, one obtains the PSI scheme of Struijs with the choice

ϕ(x0, x1, x2, x3) =
1∑

j=1,3

(x0xj)+
(
(x0x1)

+, (x0x2)
+, (x0x3)

+
)
x0 (105)

This formulation of the PSI scheme has been known since long. However, only lately this more general framework
has emerged as a way of constructing nonlinear schemes for time-dependent problems and systems [78, 12]. We
remark that (105) can be rewritten in the simpler form

βi =
max(0, βN

i )∑
j=1,3

max(0, βN
j )
, βN

j =
φN

j

φE
(106)

which is how the limited N scheme is normally presented in literature [78, 12, 13]. Compared to the blending
approach, the nonlinear mapping has the advantage of requiring only the evaluation of the local nodal residuals
of the linear LED scheme. We recall once more that, for steady advection, in [2] it has been shown that the
scheme obtained by applying (105) to the N scheme can be written as a blended LDA/N scheme. Generally
speaking, often the limited schemes work quite well even when blended schemes fail [36, 11, 12]. Nevertheless,
mapping (105), which is the one commonly used in practice, is known since a very long time and improved
constructions still have to appear. The study and the understanding of these nonlinear mappings is one of the
most important subjects of future research. We mention to this end, the recent work of [4, 87] investigating the
algebraic well-posedness of limited schemes. The well-posedness of the construction has been studied in [90],
where the following simple result has been proven.

Proposition 3.21 (Well-posedness of the mapping - sufficient condition). Given a linear scheme satisfying the
sub-element LED condition, defined by the split residuals φLED

j , a condition to construct a well-posed nonlinear
mapping satisfying properties (99)-(103) is that

φE
∑

j∈E

φLED
j > 0 (107)

Even though last condition seems trivial, schemes violating (107) have been considered in some works (see
e.g. [13] and [90, 86] for a discussion).

Nonlinear schemes: energy stability

This is an on-going research topic. Only some qualitative arguments can be given. We only consider the blended
LDA/N scheme and the limited schemes. For the former, using the result of the analysis of the LDA and N
schemes, the energy evolution equation can be easily shown to be

dEh

dt
= −

∑

E∈Th

( ∑

j∈E

k+
j

)
(I(uout) − I(uin)) − ǫLDA

h −
∑

E∈Th

Θ(uh)ǫN ǫLDA
h , ǫN,Θ(uh) ≥ 0 (108)
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having used (85), and with ǫN given by (93). Last expression clearly shows the dissipative character of the
blended LDA/N scheme, due to its MU character. Last expression also applies to the PSI scheme of Struijs
(limited N scheme, obtained with (105)), which, for a particular choice of Θ(uh), has been proven to reduce to a
blended LDA/N scheme in [2]. So far, MU seems enough to guarantee good stability properties. Unfortunately,
similar stability properties cannot be shown for nonlinear schemes obtained by applying for example mapping
(105) to non-MU schemes, such as the Rv or the FV-RD schemes. Even in the case of the PSI scheme of Struijs,
a local analysis shows that in the 2-target cases local sources of energy instability might appear (see [18] and
also [86]), even though in practice the scheme is perfectly stable, confirming the validity of (108). Conversely, in
several occasions these instabilities have been shown to pollute the numerical results, when applying the limiting
technique to non-MU schemes. The symptoms of this lack of stability are poor iterative and grid convergence
[11, 86] (only first-order, even if the schemes are LP by construction). We limit ourselves to observe that the
limiting approach is built entirely on stability considerations in the maximum (L∞) norm, and it does not take
into account in any way neither the energy (L2) norm, nor the directional propagation of the information typical
of hyperbolic PDEs. In this respect nonlinear limited RD schemes are substantially different from stabilized
Galerkin FE schemes with nonlinear shock-capturing (SC), which have by construction a dissipative character.
The energy stability of the resulting schemes is quite clear [19]. However, L∞ stability is only recovered indirectly
for nonlinear FE schemes, thanks to the regularization of the solution introduced by the additional nonlinear
dissipation [114]. Conversely, nonlinear limited RD schemes are constructed by imposing their local positivity.
This guarantees the preservation of the local monotonicity of the solution. However, a dissipative character can
only be achieved if the overall discretization maintains a marked upwind character. The RD nonlinear limiting
and the FE nonlinear SC are then two completely different approaches to stabilize discontinuities. The first has
a strong L∞ flavor, while the second relies on a very strong L2 stabilization due to dissipation. Again we refer
to [4, 87] for a recent analysis of the problem. The study of improved and more general constructions certainly
deserves more attention.

3.7 Nonlinear problems

We now discuss some issues related to the extension of RD schemes to the case of fully nonlinear conservation
laws such as (4). We mainly consider the issues of constructing conservative and stable discretizations. As far
as accuracy is concerned, the analysis of §3.2 applies equally to the nonlinear case.

3.7.1 Conservation

In this and in the next paragraph, we consider the homogeneous counterpart of (4), which reads

∂u

∂t
+ ∇ · F(u) = 0 on Ω ⊂ R

2 (109)

or, in quasi-linear form
∂u

∂t
+ ~a(u) · ∇u = 0 , ~a(u) =

∂F(u)

∂u
(110)

The schemes presented in the previous section rely on the use of the quasi-linear form (110). However, even for
smooth initial and boundary data, nonlinear problems evolve discontinuous solutions across which the relevant
form of the problem is obtained by integrating (109) in space-time [109, 50], while (110) cannot be used unless
appropriate linearizations are introduced. As a motivational example, consider (109) with the exponential flux

F(u) = (eu, u) .

We take Ω = [−0.025, 1.2]× [0, 0.5] with BCs:

u(x, y = 0) =

{
sin(2πx) if 0 ≤ x ≤ 1
0 otherwise

, u(−0.025, y) = 0 (111)
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On a fine unstructured discretization of Ω (h = 1/200), we compute the steady solution of this problem with
the limited N scheme obtained by blindly linearizing (110) on each element and applying mapping (106) to the
N scheme (86), and with the same scheme but with a more accurate mean-value linearization. In other words,
on each element we solve the linearized problem

∂u

∂t
+ ã · ∇u = 0

with ã given by

ã =
1

3

∑

j∈E

~a(uj)

for the first scheme (referred to as non-conservative limited N scheme, or LN-NC), and with ã obtained evaluating

ã =
1

|E|

∫

E

~a(uh) dx dy =
1

|E|

∫

E

(euh , 1) dx dy (112)

with a 4 points Gaussian formula for the second scheme (referred to as conservative limited N scheme, or LN-C).
Contour plots of the solutions obtained with the two schemes are reported on figure 7. From the plots, we see
that, even if the boundary data are continuous, with piecewise continuous derivatives, the solution contains a
shock which develops at a finite and relatively small distance from the lower boundary, where the smooth data
are imposed. At first sight, the two solutions look identical. However, a closer examination shows some major
differences in the approximation of the discontinuity. This is shown on figure 8, where we have reported on the
left a line plot of the two solutions at y = 0.5 (upper boundary), and on the right a close up view of the solution
of the LN-NC scheme, superimposing the direction of the shock, as computed by the LN-C scheme.
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Figure 7: Nonlinear problem with exponential flux. Contour plot of the solution obtained with the LN-NC (left)
and LN-C (right) schemes
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Figure 8: Nonlinear problem with exponential flux : conservation error. Left: solution at y = 0.5 in vicinity of
the shock. Right: close-up of the shock, solution of the LN-NC with conservative shock angle superimposed

The two schemes give a different prediction of angle and position of the shock. An explanation of this fact is
the following. Suppose that the error made when approximating (112) with 4 Gaussian points is small enough,
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in particular, that we can assume that for the LN-C scheme equation (112) is integrated exactly and so ã is an
exact mean-value linearization. In this case we have, using (52) and applying Gauss’ theorem

φE =
∑

j∈E

k̃juj =

∫

E

ã · ∇uh dx dy =

∫

E

a(uh) · ∇uh dx dy =

∫

E

∇ · F(uh) dx dy =

∮

∂E

F(uh) · n̂ dl (113)

Hence, if the error made in the evaluation of (112) is negligible, the LN-C scheme is consistent with the integral
form of (109), thus giving a correct approximation of the discontinuity. The same cannot be said for the LN-NC
scheme, for which the third equality in (113) is not true. This shows that, in extending RD schemes to nonlinear
conservation laws, care must be taken in ensuring that the element residual is a consistent approximation of the
flux balance over the element, before the distribution step. This leads to the following definition.

Definition 3.22 (Conservative RD scheme). A RD scheme is conservative if there exist a continuous approx-
imation of the flux Fh such that

φE =

∮

∂E

Fh · n̂ dl (114)

In [9] it is proved that under assumptions of continuity of the split residuals and of the flux Fh, conservative
RD schemes respect a Lax-Wendroff theorem. Conservative schemes guarantee a correct approximation of the
integral form of (109), hence yielding a correct prediction of steady discontinuities. Unfortunately, we have arrived
to a problem of incompatibility between the use of the integral form of equation (109), needed to guarantee the
approximation of the correct weak solution, and the use of the flux Jacobians, needed in the definition of the kj

parameters used in the distribution of the residual. A discussion of this problem and two alternative possible
solutions can be found in [7] and [36], and is reviewed in the following paragraphs.

Conservative RD: accurate quadrature of the quasi-linear form

The analysis of our motivational example leads to the approach used in [7] to construct FS schemes based on the
use of the quasi-linear form (110), still guaranteeing a correct approximation of weak discontinuous solutions.
The basic idea is contained in equation (113): if ã is computed exactly, the schemes obtained in this way
obey definition 3.22 with Fh = F(uh), and uh as in (9). However, the derivation of such an exact mean-value
linearization of the flux Jacobian ~a(u) can be difficult, and in the case of a system even impossible. This was the
motivation to introduce in [7] an approximate mean-value linearization obtained with the Gaussian integration

a = |E|

NQ∑

l=1

ωl~a(u(xl, yl)), (xl, yl) ∈ E (115)

where ωl is the quadrature weight corresponding to the l-th Gaussian point (xl, yl). This leads to

φE =
∑

j∈E

kjuj =

∫

E

∇ · F(uh) dx dy + RNQ (116)

with RNQ the conservation error due to the approximate integration of ~a(uh). The properties of the Gaussian
integration, namely the behavior of the quadrature error, allows the authors of [7] to prove that

(a) provided that the number of quadrature points NQ is large enough, the conservation error due to the
approximate integration is strictly smaller than the discretization error of the schemes;

(b) Lax-Wendroff theorem: provided that the number of quadrature points NQ is large enough and under
some continuity assumptions on the split residuals φi, RD schemes based on the approximate Gaussian
quadrature of the quasi-linear form of the problem converge to the correct weak solutions.
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This approach indeed represents a solution for the extension of RD schemes to general nonlinear conservation
laws. It is mathematically sound, and it allows to apply the maximum discrete principle analysis of §3.3 also
in the nonlinear case. However, it has the drawback of requiring the evaluation of the flux Jacobians in sev-
eral quadrature points, which becomes computationally demanding when approximating solutions to systems,
especially in presence of strong discontinuities (see [7] for more).

Contour integration of the fluxes and monotone schemes

A simpler, yet very effective, alternative approach is proposed in [36]. The first element of the construction is
the definition of the element residual. Given a continuous approximation of the flux Fh, one computes φE as

φE =

∮

∂E

Fh · n̂ dl =

3∑

lj=1

F lj · ~nlj with F lj =

NC∑

p=1

ωpFh(xp, yp), (xp, yp) ∈ lj (117)

lj being the j-th edge of E, ~nlj its exterior normal, scaled by its length, and ωp is the weight of the p-th quadrature
point on lj . As before, the computation of the residual is based on a quadrature formula, however, now definition
(117) satisfies by construction (114). Hence, conservation is in this case guaranteed by construction. However,
we still need to specify how the flux Jacobians can be used to distribute φE . We will distinguish between the
case of a LP scheme and the one of schemes which are positive when applied to a linear problem.

Linearity preserving schemes The case of LP schemes is quite simple. These schemes are defined by

φi = βiφ
E

with βi uniformly bounded and respecting by construction the consistency relation
∑

j∈E

βj = 1

The dependence of the distribution coefficients on the kj parameters does not alter any of these two
properties (boundedness and consistency): we can use for the computation of the βi’s the parameters

kj =
~a(uE) · ~nj

2
(118)

with uE an arbitrary average of uh over E.

Positive schemes The case of the positive schemes is more difficult. This is easily seen for the N scheme,
whose definition (equation (86)) is entirely based on the quasi-linear form of the problem. As proposed in
[36], the solution of this problem is difficult to put in a general framework. We use instead the formulation
proposed in [86], where it has been underlined how the conservative N scheme of [36] is a particular case
of a class of positive RD schemes which can be written as

φi = βiφ
E + di = βiφ

E +
∑

j∈E

Dij(ui − uj) , Dij ≥ 0 (119)

with bounded distribution coefficients βi and dissipation terms di respecting the consistency relations
∑

j∈E

βj = 1,
∑

j∈E

dj = 0

Due to the last relations, independently on the linearization used to evaluate βi and di, conservative variants
of the positive schemes are obtained just by using in (119) the residual computed according to (117). The
cases of the N scheme and of the Rv scheme are easily obtained from equations (90) and (71), giving

φN-C
i = βLDA

i φE + dN
i = βLDA

i φE +
∑

j∈E

k+
i Nk

+
j (ui − uj) (120)
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for the N scheme (where C stands for conservative), and giving for the Rv scheme

φRv-C
i =

1

3
φE + dRv

i =
1

3
φE +

1

3
α

∑

j∈E
j 6=i

(ui − uj) (121)

We refer the reader to [86] for a discussion on the relations of this approach with other conservative formulations
proposed in literature. Relations with FV schemes, in particular with the 1D scheme of [56], are discussed in
[93]. Note that conservative positive schemes trivially verify condition (107), since for φE 6= 0

φE
∑

j∈E

φj =
(
φE

)2
> 0

making the constructions of limited nonlinear LP positive schemes always well-posed.

3.7.2 Positive schemes for nonlinear problems

The fact that nonlinear problems admit discontinuous solutions makes the need of schemes satisfying a discrete
maximum principle even greater. For RD schemes, we have to distinguish whether one makes use of the approach
of [7], based on the Gaussian quadrature of the quasi-linear form, or of the conservative formulation of [36], based
on boundary integration of the fluxes. As already remarked, in the first case the use of the quasi-linear form
allows to apply to the nonlinear case all the results of §3.3. We shall then focus on the second approach, for
which no results are available in the published literature, with the exception of [86]. Even though the schemes
of [36] are based on the use of the (nonlinear) fluxes for the definition of the local residual, for the analysis one
can anyway make use of the quasi-linear form. In particular, we make the following assumption.

Assumption 3.23. Given a NC-points line quadrature formula used to evaluate (117), it is possible to find a
NQ-surface quadrature rule to be used in (115), such that the equivalence

φE =

3∑

lj=1

NC∑

p=1

ωpF(up,lj ) · ~nlj = |E|

NQ∑

l=1

ωl~a(ul) · ∇ uh|E =
∑

j∈E

kjuj (122)

holds up to the smallest between the quadrature error in (117), and the one in (116).

In the following, we shall use the notation kj , to denote the scalar upwind parameters based on the ap-
proximate mean-value linearization, while using kj to denote the ones based on any (also inexact) arbitrary
linearization. Using the general representation of a monotone RD (119), we are then to analyze schemes of the
form

φi = βi

∑

j∈E

kjuj +
∑

j∈E

Dij(ui − uj) (123)

where in general Dij is evaluated making use of the kj ’s. Now we can recast our prototype in the form (30),
with

cii = βiki +
∑

j∈E

Dij , cij = βikj −Dij ; Dij ≥ 0

This notation allows to prove two results, one positive and the other (unfortunately) negative.

Proposition 3.24 (Rv-C scheme and sub-element LED). The Rv-C scheme (121) respects the sub-element LED
condition, provided that α in (121) is chosen big enough.

Proof. Trivially, for α big enough φRv−C
i =

∑
j∈E
j 6=i

cij(ui − uj), with cij =
1

3
(α− kj) ≥ 0
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Last proposition makes the Rv-C scheme a very good candidate to be used as a basis for the construction
of a positive limited nonlinear LP scheme. Unfortunately, as underlined in §3.6.7, the limited knowledge on
the (L2) stability of the limited schemes does not guarantee that the resulting scheme would have the expected
convergence properties. Even though recent developments (see [4, 87]) would allow for stable contructions based
on centered low order schemes, the basic available technology works best with schemes with a pronounced upwind
character, such as the N scheme for which, unfortunately, we have the following negative result.

Proposition 3.25 (N-C scheme and sub-element LED). The N-C scheme (120) cannot be proven to respect the
sub-element LED condition. In particular, the scheme is prone to the violation of this condition in multiple-target
elements.

Proof. We start by writing (123) for the N-C scheme:

φN−C
i = k+

i N
∑

j∈E

kjuj +
∑

j∈E
j 6=i

k+
i Nk

+
j (ui − uj)

Since the kjs sum up to zero over an element (see (54)), one can show that

φN−C
i =

∑

j∈E
j 6=i

k+
i Nkj(uj − ui) +

∑

j∈E
j 6=i

k+
i Nk

+
j (ui − uj) =

∑

j∈E
j 6=i

k+
i N(k+

j − k
+

j )(ui − uj) −
∑

j∈E
j 6=i

k+
i Nk

−

j (ui − uj)

If kj = kj , as in the linear case or when using the formulation of [7], the scheme reduces to its standard expression,

with cij = −k
+

i Nk
−

j ≥ 0, proving the local LED condition in the nonlinear case. In general, however

cij = k+
i N(k+

j − k
+

j ) − k+
i Nk

−

j , −k+
i Nk

−

j ≥ 0

Since the sign of the first term on the right hand side is unknown, we cannot prove the sub-element LED
condition. Consider now the multiple-target situation in which ki, ki, kj > 0 for some j 6= i:

cij = k+
i N(k+

j − k
+

j )

where the beneficial effect of the second term has disappeared. The sign of cij could be either positive or negative,
depending on the local structure of the solution and on the average used for the evaluation of kj . Hence, the
scheme is particularly prone to the violation of the local LED condition in multiple-target elements.

This result, seems to spoil the hopes of constructing a non-oscillatory second-order nonlinear scheme, based
on the use of the N-C scheme. On twodimensional triangular grids the non-LED character of the N-C scheme
could be limited to 2-target elements, but in three dimensions things could get worse, due to the presence of a
larger number of 2-target tetrahedra and of 3-target ones. In practice, these effects have never been observed in
any numerical result, in two and three space dimensions, for scalar problems and for systems [36, 90, 86, 89].
Extensions of the N-C scheme to meshes composed of quadrilaterals [84, 45, 8] have also proven to yield non-
oscillatory numerical solutions. We believe that the monotone resolution of discontinuities observed in practice
is due partly to a compensation of the violation of the local LED condition when assembling the contributions
of all the elements, and partly to the dissipative character of the scheme, which might be enough to dissipate
weak new local extrema, eventually appearing in the numerical solution.

3.7.3 A note on stability: conservative RD and entropy

In the nonlinear case, the L2 norm (energy) stability analysis is replaced by a better suited tool : the entropy
stability analysis. The study of the stability of RD schemes in the so-called entropy norm is formally very
difficult. Very few results are available in the published literature (see [11] for a review). For this reason this
subject is left out of the paper. The reader is referred to [6, 7, 11, 86] and refences therein for further information.
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4 Extension to time-dependent problems

4.1 Preliminaries

This section considers the extension of RD schemes to the approximation of solutions to (4) in the time dependent
case. Common experience is that the prototype scheme of definition 3.1 yields in practice first order of accuracy
in unsteady computations, whatever the distribution strategy adopted [112, 69, 51]. There is perhaps only one
exception to this, represented by a Lax-Wendroff discretization which we shall discuss later.

In general, however, it seems that achieving second (or higher) order of accuracy in time dependent computa-
tions requires the time derivative to be consistently introduced in the element residual. A heuristic explanation
can be obtained as folows. First, redefine the source term as

S̃(u, x, y, t) = −
∂u

∂t
+ S(u, x, y, t)

Then, repeat the analysis of section §3.2 for the (pseudo-)steady problem

∇ · F(u) = S̃(u, x, y, t)

Proceeding exactly as in section §3.2, we can write down the truncation error due to the spatial approximation

TE(wh) =

∫

Ω

ϕh

(
− S̃h(wh, x, y, t) + ∇ · Fh(wh)

)
dx dy +

1

K

∑

E∈Th

∑

i∈E

∑

j∈E

(ϕi − ϕj)

(
φE

i (wh) − φG
i (wh)

)

=

∫

Ω

ϕh

(
∂wh

∂t
+ ∇ · Fh(wh) − Sh(wh, x, y, t)

)
dx dy

︸ ︷︷ ︸
I

+ ∆TE(wh)︸ ︷︷ ︸
II

(124)

for a given smooth exact solution of the time dependent problem w, and C1-class function ϕ with compact
support. We recall that in equation (124) the term I is associated to the error introduced by the choice of
the discrete polynomial approximation of the unknown, the flux, and the source term, while the second term
represents the additional error introduced by the RD discretization.

From (124), the analysis proceeds exactly as in §3.2. In particular, k-th order schemes must verify (25),
and linearity preserving schemes (cf. definition 3.4) are formally high order. More importantly, following the

analysis at the end of paragraph §3.2.1, we conclude that, since pointwise discretizations of the source term S̃
are generally first order accurate in space, the prototype RD scheme of definition 3.1 will be in general only
first order during the transient. This is true no matter what the approximation of the time derivative is, since
the lack of accuracy is due to an inconsistency in the spatial discretization. Concerning the technical details of
the analysis, no major differences are present with respect to what we have seen in section §3.2. The reader is
referred to [89, 103] for a detailed study, including also the influence of the choice of the discretization of the
time derivative.

In order to contruct higher order schemes for time dependent problems, in the following section we introduce
a more general prototype. Even though this can be done in a very general fashion, for simplicity we focus on a
particular case of second order discretizations. Additional references are given in the text, allowing the reader
to have a wider overview on the subject.

4.2 A more general prototype

We assume to be given the set of nodal values of u at time tn, {un
i }i∈Th

. Next, we note that in the space-time
slab Ω × [tn, tn+1], each element E in the mesh defines a prism in space-time, defined as (see figure 9)

P
n+1/2
E := E × [tn, tn+1] (125)
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By abuse of notation, we shall say that P
n+1/2
E ∈ Di if E ∈ Di. In addition, we denote by un and un+1 the

piecewise linear discrete approximations (cf. equation (9))

un =
∑

i∈Th

ψi(x, y)u
n
i , un+1 =

∑

i∈Th

ψi(x, y)u
n+1
i

with {ψi}i∈Th
the piecewice linear Finite Element basis functions verifying (11). With this notation, we give the

following characterization in the scalar case.

1

1

2

2

3

3

tn+1

tnE

E

Figure 9: Space-time prism P
n+1/2
E = E × [tn, tn+1]

Definition 4.1 (Space-time RD). A space-time Residual Distribution or space-time Fluctuation Splitting
scheme is defined as one that, given un, the discrete approximation in space of u at time tn, and given a
continuous discrete representation in space and time of the unknown u, denoted by uh, and of the flux and of
the source term, Fh and Sh respectively, computes the unknowns {un+1

i }i∈Th
as follows:

1. ∀E ∈ Th compute the space-time residual

ΦP
n+1/2

E =

∫

P
n+1/2

E

(∂uh

∂t
+ ∇ · Fh − Sh

)
dx dy dt =

∫

E

tn+1∫

tn

(∂uh

∂t
+ ∇ · Fh − Sh

)
dx dy dt (126)

2. ∀E ∈ Th distribute fractions of ΦP
n+1/2

E to the nodes of E. Denoting by Φ
P

n+1/2

E

i the split residual or local
nodal residual for node i ∈ E, one must have by construction

∑

j∈E

Φ
P

n+1/2

E

j = ΦP
n+1/2

E =

∫

P
n+1/2

E

(∂uh

∂t
+ ∇ · Fh − Sh

)
dx dy dt (127)

Equivalently, denoting by β
P

n+1/2

E

i the distribution coefficient of node i:

β
P

n+1/2

E
i =

Φ
P

n+1/2

E

i

ΦP
n+1/2

E

(128)

one must have by construction ∑

j∈E

β
P

n+1/2

E

j = 1 (129)

3. ∀i ∈ Th assemble the elemental contributions of all P
n+1/2
E ∈ Di and compute the nodal values of un+1 by

solving the algebraic system ∑

P
n+1/2

E ∈Di

Φ
P

n+1/2

E

i = 0, ∀i ∈ Th (130)
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Before proceeding with the analysis of this new prototype let us give a few remarks. First of all, the above
definition introduces a continuous approximation of the unknown (and of flux and source term) in space and
time. As announced, this section only considers second order discretizations, in which case it is assumed that
uh has the following particular form :

uh =
t− tn

∆t
un+1 +

tn+1 − t

∆t
un (131)

Note that in the slab Ω× [tn, tn+1], uh can be recast as a continuous space-time bi-linear interpolant of the data

{uk
i }

k=n,n+1
i∈Th

, with basis

Ln
i =

tn+1 − t

∆t
ψi , Ln+1

i =
t− tn

∆t
ψi (132)

Concerning Fh and Sh, we will shortly see that, as in the steady case, their choice can be made on the basis of
accuracy considerations.

As a second remark note that the algorithm defined by steps 1.-3. constitutes a time marching procedure,
the nodal values at time tn being considered as given data. A more subtle way to see this is that on a space-time
prism no residual is distributed to nodes at the past level. We shall discuss in some more detail this issue when
introducing the concept of space-time upwinding. Until then, we shall simplify the notation by dropping the
super-script n + 1/2, referring to the prism E × [tn, tn+1] simply as PE . Hence, element residual, local nodal
residual, and distribution coefficients will be denoted by ΦPE , ΦPE

i , and βPE

i respectively.
Finally, we underline that more general variants of the class of schemes of definition 4.1 exist. Perhaps the

most important aspect to highlight is that several different ways of approximating the time derivative can be
thought of. Since such a general characterization is out of the scope of this paper, we limit ourselves to the
comment that, other than approximations obtained via continuous discrete functional representations in space-
time, one can resort to the application of a finite difference formula in time to obtain a semi-discrete equivalent
of the continuous problem, to be fed into (126) for the computation of the residual. This allows somehow to
decouple the approximation of the temporal derivative from the spatial ones (see e.g the representation used in
[89]). In addition to this, the integral in time in (126) is not strictly necessary. In particular, one can think of
schemes obtained by first discretizing the time derivative, and then distributing a residual defined as the spatial
integral of the semi-discrete operator obtained in this way. The first second (and higher) order RD schemes
were actually constructed in this way [51, 69, 29]. More recent examples can be found in [5, 28, 44, 103]. The
approach considered here is instead more closely related to the truely space-time formulation of [10] and [34, 37].

In the following sections we review some of the basic properties of the schemes characterized by definition
4.1, and give some examples.

4.2.1 Accuracy

This section considers the characterization of the accuracy of the prototype of definition 4.1. In the following
we make explicit use of the regularity hypothesis on time step and mesh size (second in (8)), so that we have
∆t = O(h) and vice versa. The following can be shown (the reader is referred to [103, 89], and to [28, 10, 44]
and references therein).

Proposition 4.2 (Space-time RD : second order of accuracy). Given any smooth function ϕ ∈ C1(Ω× [0, tf ]),
with ϕ(·, t) having compact support on Ω. Given a discretization of the spatial and temporal domain satisfying
(8). Given uh, Fh, and Sh, continuous, second order accurate space-time interpolants of a smooth exact solution
to (4), and of the corresponding exact flux F(u) and source term S(u, x, y, t). Then, a space-time RD verifies
the truncation error estimate

TE(uh, tf ) :=
N∑

n=0

∑

i∈Th

ϕn+1
i

∑

PE∈Di

ΦPE

i (uh) = O(h2) (133)
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provided that the following condition is met
ΦPE

i = O(h4) (134)

Note that, even though apparently different, last condition is consistent with the condition for second order
of accuracy at steady state (φE

i (uh) = O(h3), cf. equation (25)). The extra order of magnitude in (134) is due to
the extra integral in time used for the definition of the element residuals, which brings an extra O(∆t) = O(h)
into the analysis (see [103, 89] for details).

Proposition 4.2 gives a criterion to choose the discrete approximations (polynomial interpolant) of the flux
and of the source term. Indeed, condition (134) is valid provided that Fh and Sh are second order accurate. For
a given smooth solution u, an obvious choice is to take Fh = F(uh) and Sh = S(uh, x, y, t). However, we note
that the bi-linear polynomials

Fh =
t− tn

∆t
Fn+1 +

tn+1 − t

∆t
Fn and Sh =

t− tn

∆t
Sn+1 +

tn+1 − t

∆t
Sn

with Fn+1, Fn, Sn+1, and Sn linear in space (cf. equations (131), (9) and (11)), also satisfy this requirement.
In this particular case, the element residual can be explicitly computed as :

ΦPE =
∑

j∈E

|E|

3
(un+1

j − un
j ) +

∆t

2

∑

j∈E

Fn+1
j + Fn

j

2
· ~nj −

∆t

2

∑

j∈E

|E|

3

(
Sn+1

j + Sn
j

)
(135)

In particular, simple arguments can be used to show that, given a smooth exact solution u, for any second order
accurate variable, flux, and source term approximations in space and time one has [103, 89]

ΦPE (uh) = O(h4)

Hence, as in the steady case, the following characterization is possible.

Definition 4.3 (Linearity preserving schemes). A space-time RD scheme for which ΦPE

i = βPE

i ΦPE , with βPE

i

uniformly bounded, that is

max
E∈Th

max
j∈E

‖βPE

j ‖ < C <∞ ∀ ΦPE , uh, u
0
h, h, δt

n, . . .

is said to be Linearity Preserving (LP). For any given second order approximation of the variable, the flux, and
the source term, a linearity preserving scheme verifies by construction the truncation error estimate (133).

Space-time RD schemes can also be abstractly represented by indroducing the following discrete prototype

∑

E∈Di

( ∑

j∈E

mE
ij(u

n+1
j − un

j ) + φi

)
= 0 ∀ i ∈ Th (136)

where φi represents any splitting of the spatial part of the residual

∑

j∈E

φj =

tn+1∫

tn

∫

E

(
∇ · Fh − Sh

)
dx dy dt

and with mE
ij a mass matrix respecting the consistency constraints :

∑

i∈E

βM
i = 1 with βM

i =
1

|E|

∑

j∈E

mE
ij (137)

where the superscript M stands for mass matrix. This representation shows another feature in common with
finite element methods : a consistent discretization in space, naturally leads to the appearence of a mass matrix
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multiplying the time derivative. The first examples of second and third order schemes of this type are due to
the independent work of [29, 27, 28], and [69, 51].

Concerning the form of the mass matrix, a very interesting analysis, based on geometrical arcuments, can be
found in [44]. For linearity preserving schemes, one can show the following particularly simple form

mE
ij =

|E|

3



βPE

1 βPE
1 βPE

1

βPE
2 βPE

2 βPE
2

βPE
3 βPE

3 βPE
3




having denoted by {1, 2, 3} the nodes of E. In particular, in this case βM
i = βPE

i . Other examples of mass
matrices are given hereafter

Examples of mass matrices : finite element schemes

A well-known member of the class of schemes defined by (136) is the Galerkin FE scheme. In the space-time
slab Ω × [tn, tn+1], it is defined by

tn+1∫

tn

∫

Ω

ψi
∂uh

∂t
dx dydt+

tn+1∫

tn

∫

Ω

ψi

(
∇ · Fh − Sh

)
dx dy dt = 0, ∀i ∈ Th (138)

If ψi denotes the continuous piecewise linear shape function, we end up with a scheme formally identical to (136)
with the Galerkin mass matrix given by

mE
ij = mG

ij =
|E|

12




2 1 1
1 2 1
1 1 2




Note that, strictly speaking, this is not a truely space-time Galerkin scheme, the test function being the standard
linear shape function in space, and not the space-time bi-linear polynomials (132), used to contruct (131).

The streamline dissipation Galerkin scheme with stabilisation parameter τ can be derived in a similar fashion :

tn+1∫

tn

∫

Ω

ψi
∂uh

∂t
dx dydt+

tn+1∫

tn

∫

Ω

ψi

(
∇ · Fh − Sh

)
dx dy dt

+
∑

E∈Th

tn+1∫

tn

∫

E

τ ã · ∇ψi
∂uh

∂t
dx dy dt+

∑

E∈Th

tn+1∫

tn

∫

E

τ ã · ∇ψi

(
∇ · Fh − Sh

)
dx dy dt = 0

(139)

with ã a properly chosen average of the flux jacobian (cf. equation (115)). As before, we obtain a scheme
formally identical to (136) with

mSD-G
ij =

1

12




2|E| + 2τ k1 |E| + 2τ k1 |E| + 2τ k1

|E| + 2τ k2 2|E| + 2τ k2 |E| + 2τ k2

|E| + 2τ k3 |E| + 2τ k3 2|E| + 2τ k3




We observe that both for the Galerkin scheme and for the SD-G scheme, formulation (31) is obtained by
substituting to the mass-matrix of the schemes, the lumped mass-matrix obtained as

mlumped
ij = δij

∑

k∈E

mE
ik = δij

|E|

3

The mass lumping procedure introduces an inconsistency, ultimately spoiling the spatial accuracy of the schemes.
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Figure 10: LW scheme: geometry of the construction

Examples of mass matrices : a RD Taylor-Galerkin procedure and the second order LW scheme

For the case of the advection equation (5) with zero source term, we show the construction of a consistent
second-order cell-vertex RD Lax-Wendroff (LW) scheme. We start with the Taylor expansion in time [78, 99]:

un+1 = un +

(
∂u

∂t

)n

∆t+
∆t2

2

(
∂2u

∂t2

)n

+ O(∆t3)

For linear homogeneous scalar advection, one has

∂u

∂t
= −∇ · (~a u) and

∂2u

∂t2
= ∇ ·

(
~a∇ · (~a u)

)

hence
un+1 − un

∆t
+ ∇ · (~a u)n −

∆t

2
∇ ·

(
~a∇ · (~a u)

)n
= O(∆t2)

which is a semi-discrete second-order accurate equivalent of the time dependent advection equation. Neglecting
terms of O ≥ ∆t2, and discretizing the resulting expression with Galerkin FE leads to the well-known Taylor-
Galerkin scheme [48]. The RD analog is usually obtained by integrating the last expression over the median
dual cell Si: ∫

Si

un+1 − un

∆t
dx dy +

∫

Si

∇ · (~a u)n dx dy −
∆t

2

∫

Si

∇ ·
(
~a∇ · (~a u)

)n
dx dy = 0

which we recast as

∑

E∈Di

( ∫

Si∩E

un+1 − un

∆t
dx dy +

∫

Si∩E

∇ · (~a u)n dx dy −
∆t

2

∮

∂Si∩E

∇ · (~a u)n~a · n̂ dl
)

= 0 (140)

One easily checks that for uh given by (9), and due to the definition of Si (see also figure 10)
∫

Si∩E

∇ · (~a u)n dx dy =
1

3
φE(un) ,

∆t

2

∮

∂Si∩E

∇ · (~a u)n~a · n̂ dl = −
∆t ki

2|E|
φE(un)

with φE(un) as in (52) (with S = 0). Integrating the first term in (140) exactly with respect to a piecewise linear
approximation of un+1 and un of the type (9), we arrive to the LW scheme

∑

E∈Di


∑

j∈E

mLW
ij

(
un+1

j − un
j

)
+ ∆tβLW

i φE(un)


 = 0, ∀i ∈ Th βLW

i =
1

3
+

∆t ki

2|E|
(141)

where the consistent RD Lax-Wendroff mass-matrix mLW
ij is given by

mLW
ij =

|E|

108




22 7 7
7 22 7
7 7 22


 (142)
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Scheme (141) is fully consistent with a second-order approximation of the solution in space and, not surprisingly,
features a non-diagonal mass matrix. The LW scheme traditionally encountered in literature [78, 99, 58, 43] is
obtained from this consistent discretization after lumping of mLW

ij , yielding

un+1
i = un

i −
∆t

|Si|

∑

E∈Di

βLW
i φE(un), ∀i ∈ Th (143)

As in the case of the Galerkin and SD-G schemes, one would expect the lumping of the mass-matrix to lead to
a first-order discretization. Surprisingly, this inconsistency has never been observed in practice, scheme (143)
having had some success in literature [58, 43, 44]. With the exception of the recent results reported in [44], we
remark however that most of the numerical tests presented in the references were performed on regular grids, on
which error cancellation might occur. For triangular grids obtained by cutting a Cartesian grid with uniformly
right-running diagonals, this has been shown in [91], where the modified equation of scheme (143) has been
derived, showing second order of accuracy.

The results presented in [44] on unstructured grids seem to fall out of the last remarks. An explanation of
these results might be obtained by adapting to the time dependent case the observations done for the treatement
of source terms in §5.2.1. However, at the moment, no formal evidence has been given that the inconsistent LW
scheme (143) is second order accurate.

4.2.2 Monotonicity

The schemes of definition 4.1 are inherently implicit. Their monotonicity will generally depend on the form of
the mass matrix. Generally speaking, the idea is that if the spatial part of (136) defines a LED scheme and if
the mass-matrix is an M-matrix [23], then, upon its inversion, one would end up with a scheme which is still
LED, hence respecting a discrete maximum principle.

For the particular case of definition 4.1, with uh is taken as in (131), one can characterize this property
making use of the analysis made in §3.3. Let us then consider the homogeneous advection equation obtained
by (5) with S = 0. When uh is taken as in (131), the residual on a space-time prism PE can be written as (cf.
equation (135))

ΦPE =

tn+1∫

tn

∫

E

(
∂uh

∂t
+ ~a · ∇uh

)
dx dy dt =

∑

j∈E

|E|

3
(un+1

j − un
j ) +

∆t

2

∑

j∈E

(kju
n
j + kju

n+1
j )

Last expression can equivalently be recast as

ΦPE =
∑

j∈E

|E|

3
(un+1

j − un
j ) +

∆t

2
(φE(un) + φE(un+1))

where φE(un) and φE(un+1) are the steady scalar element residuals of equation (52) (with S = 0), evaluated
at time tn and tn+1 respectively. Suppose now to be given a LED splitting of the steady element residual, and
denote by {φLED

j }j∈E the corresponding local nodal residuals. A trivial splitting of ΦPE can then be obtained
as :

ΦLED
i =

|E|

3
(un+1

i − un
i ) +

∆t

2
(φLED

i (un) + φLED
i (un+1))

One immediately sees from last expression, that this approach is equivalent to the one of definition 3.1, when the
discretization in time is performed with the Crank-Nicholson scheme, or equivalently, in the case of the advection
equation, with the trapezium scheme. This remark, combined with proposition 3.8, leads to the following result.

Proposition 4.4 (Linear positive space-time schemes). A positive linear space-time RD scheme is obtained from
a linear LED RD one, upon integration of (16) with the trapezium or Crank-Nicholson scheme. The positivity
of the resulting discretization is constrained by the time-step restrictions of proposition 3.8.
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The last proposition defines a particular class of monotone schemes. However, we still have not exploited
to its maximum the space-time nature of the discretization defined by definition 4.1. This will be done in the
following section.

4.2.3 Multidimensional Upwinding in space-time

The objective of this section is to try to make explicit use of the local space-time geometry of the prism
E × [tn, tn+1] to construct schemes which incorporate, at the discrete level, the directional propagation of
the information which is typical of solutions to (5). The idea is to rewrite the element residual as

ΦPE =
∑

j∈E

(
∆tkj

2
+

|E|

3

)
un+1

j +
∑

j∈E

(
∆tkj

2
−

|E|

3

)
un

j =
∑

j∈E

kju
n+1
j +

∑

j∈E

k̂ju
n
j (144)

Introducing the space-time flux (~au, u) ∈ R
2 ×R, we can show that the kj and k̂j parameters, implicitly defined

by (144), are the projection of the space-time flux Jacobian (~a, 1) ∈ R
2 × R along directions determined by the

geometry of the prism E × [tn, tn+1]. To do this, we consider the shell SE formed by joining the gravity centers
of E at times tn and tn+1 with the nodes of the element at time tn+1/2 = tn + (tn+1 − tn)/2 (left on figure 11).
We can associate to each node of the prism the face of SE opposite to it, as illustrated on the right on figure
11 for node 1. With reference to this last picture, we introduce the space-time vectors n1 and n̂1, normal to the
faces of SE opposite to node 1, pointing inward with respect to the shell, and scaled by the area of the faces.
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Figure 11: Closed shell in E × [tn, tn+1] (left), and space-time directions n1 and n̂1 (right)

Simple geometry shows that
k1 = n1 · (~a, 1) and k̂1 = n̂1 · (~a, 1)

Since (~a, 1) is the direction of a characteristic line cutting through the prism, we deduce that k1 and k̂1 are the
projections of the direction of the characteristic onto n1 and n̂1. For the exact solution of the advection equation
all the information propagates along (~a, 1). We have the possibility to apply this criterion to design schemes
with a true space-time MU character in which node 1 at time tn+1 receives a portion of ΦPE only if k1 > 0.
This philosophy is at the basis of the schemes proposed in [34, 37], the case of prismatic space-time elements
being discussed in [37]. In particular, one can introduce space-time inflow and outflow states defined as

uin =
∑

j∈E

( ∑

j∈E

(k
−

j + k̂−j )
)−1

(k
−

j u
n+1
j + k̂−j u

n
j ) = −

∑

j∈E

N(k
−

j u
n+1
j + k̂−j u

n
j ), (145)

and

uout =
∑

j∈E

( ∑

j∈E

(k
+

j + k̂+
j )

)−1

(k
+

j u
n+1
j + k̂+

j u
n
j ) =

∑

j∈E

N(k
+

j u
n+1
j + k̂+

j u
n
j ), (146)

with

N =
( ∑

j∈E

(k
+

j + k̂+
j )

)−1

, (147)
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This notation allows to express the residual as

ΦPE =
( ∑

j∈E

(k
+

j + k̂+
j )

)
(uout − uin). (148)

The last equations show the analogy with a onedimensional balance along the characteristic line ζ intersecting
the prism E × [tn, tn+1] in uout and uin. Note however that since the k̂j are not necessarily all negative, uin

does not necessarily lay on the plane t = tn. Similarly, uout does not necessarily lay on the plane t = tn+1. In
general, one will have a configuration as, for example, the one in figure 121.

x

y

t

1

1
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3 tn+1

tnE

E

ζ

ũin

ũout

Figure 12: Space-time inflow and outflow states

These concepts allow a natural extension of the MU idea to the space-time framework. To be able to do
this, first we have to enlarge the class of schemes we consider. As already remarked, definition 4.1 gives a time-
marching procedure allowing to compute the unknown at time tn+1, given its nodal values at time tn. Here, we
suppose instead to be solving on the entire space-time domain at once, on a discretization which is given by the
ensemble of the space-time prisms E × [tn, tn+1], ∀E ∈ Th and ∀n = 1,M . In this case, the fully discrete analog
of (5) can be written as

∑

E∈Di

Φ
P

n−1/2

E

i,n +
∑

E∈Di

Φ
P

n+1/2

E

i,n = 0, ∀i ∈ Th, ∀n = 2,M − 1

∑

E∈Di

Φ
P

M−1/2

E

i,M = 0, ∀i ∈ Th

where ∀E ∈ Th and ∀n = 1,M − 1

∑

j∈E

(Φ
P

n−1/2

E

j,n−1 + Φ
P

n−1/2

E

j,n ) = ΦP
n−1/2

E ,
∑

j∈E

(Φ
P

n+1/2

E

j,n + Φ
P

n+1/2

E

j,n+1 ) = ΦP
n+1/2

E

where

ΦP
n−1/2

E =

tn∫

tn−1

∫

E

(
∂uh

∂t
+ ~a · ∇uh

)
dx dy dt and ΦP

n+1/2

E =

tn+1∫

tn

∫

E

(
∂uh

∂t
+ ~a · ∇uh

)
dx dy dt

So that Φ
P

n+1/2

E

i,n represents the fraction of ΦP
n+1/2

E distributed to the node i laying in the time plane t = tn, as
illustrated on figure 13. We give the following definition of a space-time multidimensional upwind scheme.

1Even though in the most general situation both uout and uin are inside the prism
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Definition 4.5 (Space-time-MU scheme). A space-time RD scheme is space-time multidimensional upwind

(ST-MU) if in the prism P
n+1/2
E = E × [tn, tn+1]

kj ≤ 0 =⇒ Φ
P

n+1/2

E

j,n+1 = 0

k̂j ≤ 0 =⇒ Φ
P

n+1/2

E

j,n = 0

Proposition 4.6 (Space-time-MU schemes and time-marching). A ST-MU scheme defines a time-marching
procedure if

∆t = tn+1 − tn ≤ min
E∈Th

min
j∈E

2|E|

3 k+
j

, ∀n = 1,M − 1 (149)

Proof. Due to (149), k̂+
j = 0 in all the elements, and in all space-time slabs. Hence, in every space-time slab

Ω × [tn, tn+1], a ST-MU scheme will not distribute any residual to the nodes at time tn, decoupling the values
of uh in these nodes from its values at time tn+1, thus yielding a true time-marching procedure.

In [34, 37], condition (149) is called the past-shield condition. On prismatic space-time elements, the past-
shield condition is exactly equivalent to the time-step restriction ensuring the local positivity of the N scheme
with trapezium (or CN ) time integration (see equation (87)). This condition allows to recast space-time-MU
schemes into the framework of definition 4.1. In the following we will always assume that (149) is satisfied.
This allows to simplify our notation, going back to the labelings ΦPE

i , and ΦPE for the local nodal residuals
and element residual respectively, so as to have uniform labeling with the previous sections. No confusion is
generated, since (149) guarantees that the characterization of definition 4.1 is valid, and only the nodal values
of un+1 are to be computed in Ω × [tn, tn+1].

Hereafter we give some examples of upwind and space-time upwind schemes.

Upwind and space-time upwind RD : LDA schemes

Several extensions of the LDA scheme to the space-time framework exist. One of these resorts to an analogy with
finite element PG schemes, thus introducing a consistent mass-matrix [69, 51, 10]. According to this analogy, a
consistent extension of the LDA scheme is obtained as

ΦLDA-PG
i =

tn+1∫

tn

∫

E

(
ψi +

(
βLDA

i −
1

3

))(
∂uh

∂t
+ ~a · ∇uh

)
dx dy dt
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with ψi the piecewise linear basis functions (11). By assuming uh to have a bilinear variation, we get

ΦLDA-PG
i =

∑

j∈E

(
mLDA-PG

ij (un+1
j − un

j ) +
∆t

2
βLDA

i kj(u
n+1
j + un

j )

)
,

mLDA-PG
ij =

|E|

3

(
βLDA

i −
1

12
+
δij
4

) (150)

with δij Kroenecker’s delta.
A different formulation is obtained by distributing the space-time residual as

ΦLDA
i = k+

i NΦh = βLDA
i ΦPE (151)

with N as in (77). Scheme (151) is equivalent to the one orginally proposed in [29] (see also [27, 28]).
Finally one can use the space-time MU variant of the LDA scheme given by

ΦST-LDA
i = k

+

i N ΦPE = β
ST-LDA

i ΦPE (152)

where now, due to the satisfaction of (149), the parameter N is given by

N =
( ∑

j∈E

k
+

j

)−1

(153)

By construction, the LDA-PG, LDA, and ST-LDA schemes all respect the accuracy condition of proposition 4.2,
hence they are formally second order accurate.

Upwind and space-time upwind RD : N schemes

Two extensions of the N scheme to the space-time framework exist in literature. The first follows from proposition
4.4 and is defined by the space-time local nodal residual

ΦN
i =

|E|

3
(un+1

i − un
i ) +

∆t

2
k+

i (un
i − un

in) +
∆t

2
k+

i (un+1
i − un+1

in ) (154)

This is the positive first-order space-time N scheme as proposed in [10]. As the LDA scheme, the N scheme is
MU but not space-time-MU. A scheme with this property, the ST-N scheme, is instead defined by

ΦST-N
i = k

+

i (un+1
i − uin) (155)

with uin as in (145). The satisfaction of the past-shield condition guarantees that the ST-N scheme (155) satisfies
the consistency condition (127). Moreover, it has, as the scheme defined by (86), a sub-element LED character,
in space-time, which formally ensures the satisfaction of the local space-time discrete maximum principle (40).
As the N and the LDA schemes, the ST-N and ST-LDA schemes are linked by

ΦST-N
i = ΦST-LDA

i + dST-N
i (156)

where dST-N
i is a space-time dissipation term given by

dST-N
i =

∑

j∈E

k
+

i Nk
+

j (un+1
i − un+1

j ) (157)

The space-time nature of this term is such that the ST-N schemes is generally extremely more dissipative than
scheme (154), as confirmed by the results available in literature [86, 90, 37, 89]. Note also that, while the N
scheme of [10] reduces to the standard N scheme at steady-state, the same is not true for the ST-N scheme.
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Nonlinear schemes

The techniques described in §5.6.7 can be also used in time-dependent computations, in the space-time framework.
In this case, little is known about the L2 stability of the resulting schemes (however, see the recent work of [87]).

Linearity preserving space-time schemes can be obtained by applying mapping (106) either to the N scheme
(154) or to the ST-N scheme (155). The limited N scheme (LN scheme) and the limited ST-N scheme (LST-N
scheme) are LP by construction, and inherit positivity from the linear schemes since

Φlimited
i = γiΦ

linear
i , γi ≥ 0

Strictly speaking, last relation makes sense only if the local positivity of the linear scheme is ensured.

4.3 Nonlinear conservation laws

The extension to nonlinear conservation laws is achieved exactly as in the steady case. For example, in the case
of the space time schemes on bilinear prismatic elements, one can give the following definition.

Definition 4.7 (Conservative space-time RD). A space-time RD scheme is conservative if there exist a con-
tinuous approximation of the unknown uh, of the flux Fh and of the source term Sh, such that

ΦPE =

∫

E

(uh(tn+1) − uh(tn)) dx dy +

tn+1∫

tn

∮

∂E

Fh · n̂ dl dt−

tn+1∫

tn

∫

E

Sh dx dy dt (158)

In the homogeneous case, for example, one way to compute the space-time residual is

ΦPE =

∫

PE

(∂uh

∂t
+ ~a(uh) · ∇uh

)
dx dy dt =

∑

j∈E

|E|

3
(un+1

j − un
j ) +

∆t

2

∑

j∈E

k̃n+1
j un+1

j +
∆t

2

∑

j∈E

k̃n
j u

n
j

with k̃n+1
j and k̃n

j still defined by (53), except that they are computed using the mean-value Jacobians

ãn+1 =
2

|E|∆t

tn+1∫

tn

∫

E

t− tn

∆t
~a(uh) dx dy dt and ãn =

2

|E|∆t

tn+1∫

tn

∫

E

tn+1 − t

∆t
~a(uh) dx dy dt

The schemes obtained in this way verify definition 4.7 for Fh = F(uh). This approach leads to a straightfor-
ward extension to the nonlinear case. However, the need of computing conservative mean-value Jacobians with
sufficient accuracy leads to a considerable computational cost, which can be large when going to systems.

A simpler approach is to compute the space-time residual directly as (cf. equation (135))

ΦPE =
∑

j∈E

|E|

3
(un+1

j − un
j ) + ∆t

3∑

lj=1

F lj · ~nlj − ∆t
∑

j∈E

|E|

3
Sj (159)

where l1, l2 and l3 are the edges of E, ~nlj is the exterior normal to lj , scaled by the length of the edge and now

F lj =
1

2

NC∑

p=1

ωpF (un(xp, yp)) +
1

2

NC∑

p=1

ωpF
(
un+1(xp, yp)

)
, (xp, yp) ∈ lj (160)

with un(x, y) and un+1(x, y) piecewise linear. The condition for second order of accuracy ΦPE = O(h4) is already
fulfilled by an exact integration assuming a piecewise linear variation of the flux, leading to (135). Conservative
LP schemes are second-order accurate in space and time. Clearly (159)-(160) alone does not give a nodal
approximation of (4). A distribution strategy has to be formulated. This is easily achieved by combining (159)-
(160) with the definitions of the LDA and N schemes given in §4.2.3, see also §3.6.6, and with the conservative
formulation based on contour integration of §3.7.1 (see [90, 89] for details).
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5 Extension to systems and applications

We briefly sketch the extension of RD schemes to the discretization of systems of conservation laws and show
numerical results, representative of some of the latest developments on RD.

In the first paragraphs, we describe the matrix variant of RD schemes, which is by far the most used in
published literature. Other approaches exist, for which we refer to the references given in the introduction.

The second part of this section is shows the potential of the schemes in computing in an accurate and
non-oscillatory way complex solutions to conservation laws.

5.1 Matrix residual distribution schemes

Two approaches exist to apply RD schemes for the discretization of hyperbolic systems of conservation laws.
One way to achieve this extension is to use the mathematical structure of the system, trying to split the
coupled equations into a sub-set of more or less uncoupled PDEs. For the Euler equations of gas dynamics, the
most successful version of this approach allows, in the steady two-dimensional case, to split the system in four
uncoupled scalar transport equations (total enthalpy, entropy, and two riemann invariants) in the supersonic case,
while in the subsonic case one can split the systems in two scalar transport equations (total enthalpy, entropy)
plus a coupled elliptic sub-system (hyperbolic elliptic splitting) [78, 73]. The advantage of this technique is that
it allows to discretize each split equation (or system) with a different scheme. In the hyperbolic elliptic splitting
of [73], for example, the scalar equations are solved by a high order monotone RD scheme, while the elliptic
sub system is discretized with a least squares approach or with a Lax-Wendrof (matrix) distribution scheme.
This approach has been widely used in the early years of the development of RD schemes for compressible flow
simulations [113, 78, 70].

Although quite powerful, this technique has some important limits in the facts that it does not generalize to
the threedimensional (and time dependent) case, and that it is taylored to a particular set of equations.

A more general apporach is the so-called matrix approach, initially proposed in [116, 118]. The idea underlying
matrix RD schemes is to extend formally scalar distribution schemes to systems, by replacing vector Jacobians
by matrices, whose eigenstructure is used to obtain an upwind discretization. The extension of this approach to
three space dimensions, to the time-dependent case, and to any system of equations do not present any difficulty.
In the next paragraphs we briefly review the matrix RD approach. The reader is referred to the bibliography
for a more extensive overview on the subject.

5.1.1 Linear hyperbolic systems of PDE’s

Consider the linear symmetric hyperbolic system of PDE’s

∂u

∂t
+A1

∂u

∂x
+A2

∂u

∂y
= 0 on ΩT = Ω × [0, tf ] ⊂ R

d × R
+ (161)

with u a vector of m unknowns. To illustrate the basic idea of the matrix approach, it suffices to assume on
Th, an unstructured triangulation of Ω, a piecewise linear discrete representation of the unknown uh of type (9),
and compute on E ∈ Th the spatial residual

φφφE =

∫

E

(
A1

∂uh

∂x
+A2

∂uh

∂y

)
dx dy

Straightforward calculations immediately lead to

φφφE =
∑

j∈E

Kjuj , Kj =
1

2
(A1njx +A2njy) (162)
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which is formally identical to (52) in the homogeneous case, except that in (162) the kj parameters have been
replaced by matrices. In particular, the system being hyperbolic, the Kj matrices admit a decomposition in a
positive and a negative part, in the standard matrix sense

K±
j =

1

2
(Kj ± |Kj|) , |Kj| = Rj |Λj |R

−1
j (163)

with Rj the matrix of the right eigenvectors of Kj, Λj the diagonal matrix of the eigenvalues, and |Λj | the
diagonal matrix of the absolute values of the eigenvalues of Kj . With this basic notation, one can easily write
the matrix variant of the distribution schemes described in the previous sections.

In particular, matrix extensions of the LDA and of the N schemes are defined by the split residuals

φφφLDA
i = βLDA

i φφφE , βLDA
i = K+

i N , N =
( ∑

j∈E

K+
j

)−1

(164)

and
φφφN

i = K+
i (ui − uin) , uin = −N

∑

j∈E

K−
j uj (165)

For symmetrizable systems, the existence of matrix products of the type K+
i N is proven in [2, 11].

The extension to the time-dependent case is obtained in a similar fashion, the space-time schemes of definition
4.1 admitting a natural matrix formulation. For example, on bilinear elements the space-time residual is easily
shown to be

ΦΦΦPE =

tn+1∫

tn

∫

E

(∂uh

∂t
+A1

∂uh

∂x
+A2

∂uh

∂y

)
dx dy dt =

∑

j∈E

|E|

3

(
un+1

j − un
j

)
+

∆t

2

∑

j∈E

(
Kju

n+1
j +Kju

n
j

)
(166)

Nodal discrete equations are obtained by splitting in every PE ∈ Th the residual (166), as described by definition
4.1. For example, with obvious meaning of the symbols, matrix variants of the N scheme (154) and of the ST-N
scheme (155) are defined by

ΦΦΦN
i =

|E|

3
(un+1

i − un
i ) +

∆t

2
K+

i (un
i − un

in) +
∆t

2
K+

i (un+1
i − un+1

in ) (167)

and by

ΦΦΦST-N
i = K̃+

i (un+1
i − ũin) , ũin = −Ñ

∑

j∈E

(K̃−
j un+1

j + K̂−
j un

j ) (168)

where

Ñ =
( ∑

j∈E

(K̃+
j + K̂+

j )
)−1

, K̃j =
∆t

2
Kj +

|E|

3
I , K̂j =

∆t

2
Kj −

|E|

3
I

with I the identity matrix.

5.1.2 Analysis of matrix RD schemes

Only a few comments are given on the formal properties of matrix RD schemes. The easiest task is the
characterization of the accuracy of the discretization, as the analysis of section §4.2.1 generalizes immediately to
systems. Also in the case of the energy stability, the results available for the linear first-order schemes extend to
their matrix counterpart [7, 6, 11, 18, 12, 10].

More delicate is the issue of the non-oscillatory character of the discretization. In the system case, a real
maximum principle for the exact solution does not exist. In the framework of RD schemes, an attempt to give
a characterization of the non-oscillatory character of discretizations of (161) is due to [12, 11]. Arguing that

49



solutions to (161) are generally piecewise smooth, with no oscillations in correspondence of discontinuities, in
the references the authors use a wave decomposition technique to derive estimates on the maximum norm of the
components of the nodal solution vectors for the case of symmetric systems. Here, we give no further details on
this, referring to the mentioned papers for details. We limit ourselves to recall that the matrix variants of scalar
first order LED schemes do respect a monotonicity condition, in the sense of [12].

Finally, concerning the construction of nonlinear limited matrix distribution schemes (cf. section §5.6.7) we
recall the technique proposed in [12], and used to obtain the results discussed later. This technique is thoroughly
discussed in [12, 11] and finds its theoretical justification in the L∞ stability criterion introduced in the same

references. The idea is quite simple : given a monotone scheme with nodal residuals φφφMi and a local direction ~ξ,
decompose the nodal residuals as

φφφM
i =

∑

σ

〈
lσ, φφφMi

〉
rσ =

∑

σ

ϕM,σ
i rσ ,

with lσ the left eigenvectors of K = A1ξ1 + A2ξ2. Each ϕM,σ
i is treated as a scalar residual, and limited. The

nodal residuals of the nonlinear scheme are obtained by projecting back in physical space: φφφi =
∑

σ ϕ
σ
i rσ. The

mappings used here are basically the same that can be used in the scalar case [12, 11, 13], e.g mapping (105) (or

equivalently (106)). Note that, even though the contruction makes use of an arbitrary direction ~ξ, in practice
the results are little affected by its choice [12].

While the well-posedness of the procedure is still subject to proposition 3.21 (applied to each scalar wave),
at present no results exist on the stability of the resulting nonlinear scheme, in the L2 sense. It is observed in
practice that these LP nonlinear schemes show a very sharp and monotone capturing of single or interacting
discontinuities. However their performances are not entirely satisfactory in smooth regions. As already remarked,
this fact is a consequence of the strong L∞ flavor of the construction, and it is still a subject of research. We
refer the reader to [4, 87] for a recent study of this issue.

5.1.3 Nonlinear systems of conservation laws

As in the scalar case, the passage to nonlinear conservation laws has to guarantee the conservative nature of the
final discretization. The thorough discussion of §3.7.1 is also valid in the system case, and will not be repeated
here. We limit ourselves to recalling an important particular case, for which a simple exact mean-value lineariza-
tion exists. Then we recall more general ways of handling the nonlinearity [7, 36, 90].

Consider the issue of computing steady solutions to (1) in the homogeneous case. Given an unstructured
discretization of the spatial domain, we proceed as in definition 3.1, and compute the spatial residual

φφφE =

∫

E

∇ · Fh(uh) dx dy

Let us denote by w a set of primitive variables (not necessarily u) which are assumed to vary piecewise linearly
over the mesh, as in (9). We rewrite the residual as

φφφE =

∫

E

∂F(wh)

∂w
· ∇wh dx dy =

(∫

E

∂F(wh)

∂w
dx dy

)
· ∇wh|E =

∑

j∈E

K̃jwj

with F(wh) = F(u(wh)), and with

K̃j =
1

2

∂̃F

∂w
· ~nj ,

∂̃F

∂w
=

1

|E|

∫

E

∂F(wh)

∂w
dx dy (169)

The computation of the exact mean-value flux Jacobian, needed in the definition of K̃j , can be quite costly,
if not impossible. While the technique proposed in [7] (see also §3.7.1) represents a practical solution to get a
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good approximation of this quantity for any arbitrary (symmetrizable) system of conservation laws, the issue of
the cost of the computation remains. An important exception to this is the system of the Euler equations for
a perfect gas. In this case, in fact, it has been shown that the components of the flux tensor can be written as
quadratic polynomials in terms of the components of a multidimensional generalization of Roe’s parameter vector
z [96]. Hence, assuming zh to be the piecewise linear variable, as in (9), and the entries of the flux Jacobians
being linear in the components of zh, an exact mean-value linearization is obtained simply by evaluating them
in the arithmetic average of the nodal values of zh over E. This simple conservative linearization, due to [40],
allows the application of matrix RD schemes to the Euler equations in a simple and effective way.

The Euler equations for a perfect gas are a lucky coincidence, simple conservative linearizations being in
general hard to find. One solution to this problem is the approach based on approximate Gaussian quadrature
of [7], which however has the drawback of being computationally demanding. In practice, the most effective
approach is the conservative formulation of [36, 90]. The elements given in this section, and in §3.7.1 and
§4.3, allow to easily write down conservative matrix variants of RD schemes, just by replacing the scalar upwind
parameters k+

j with matrix upwind parametersK+
j evaluated using an arbitrary linearized state over the element.

5.2 Some numerical results

To show the potential of the RD approach in computing complex solutions of nonlinear conservation laws, we
present some illustrative numerical results. To validate the RD approach, we use well known tests involving
the solution of the Euler equations for a perfect gas. To show the flexibility of the approach adopted for
conservation, we consider the solution of a simple model of homogeneous two-phase flow, which, due to the
nonlinearity of the equations of state, presents all the generality of systems of conservation laws with complex
thermodynamics. Finally, the shallow water equations are chosen as an application showing the potential of
residual-based discretizations.

All the results presented are obtained on grids with the irregular topology reported on figure 14, using
schemes based on the conservative approach of [36, 90]. The distribution is achieved either by means of the
conservative matrix variant of the N scheme (154) (in the following simply referred to as the N scheme), or its
limited nonlinear LP variant (in the following referred to a the LN scheme).

Figure 14: Unstructured triangulation

Euler equations : double Mach reflection

This problem is a severe test for the robustness and the accuracy of schemes designed to compute discontinuous
flows containing complex structures [119]. It consists of the interaction of a planar right-moving Mach 10 shock
with a 30◦ ramp. We refer to [119] for details concerning the set-up of the test. The simulation has been run on
an unstructured triangulation with h = 1/100 until time tf = 0.2. We present on figure 15 the density contours
obtained (on the same mesh) with the LN scheme and with a second-order cell-centered FV scheme using Roe’s
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numerical flux, linear reconstruction and limiter proposed in [21], and a second-order Runge-Kutta (RK) time
integrator. The RD LN scheme clearly shows sharper approximation of the shocks, and a much better resolution
of the contact emanating from the triple point and of the jet on the ramp.
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Figure 15: Double Mach reflection. Cell-centered FV scheme (top), and LN scheme (bottom)

Euler equations : a shock-shock interaction

We consider one of the two-dimensional Riemann problems studied in [65] and later also in [44, 90]. It consists
of the interaction of two oblique shocks with two normal shocks. See figure 16 for a sketch of the initial solution
(details can be found in [65, 44, 90]). We compare the results obtained on the same grid (h = 1/200) with the
LN scheme, and with a second-order cell-centered FV scheme [21] with second-order RK time-integration.

We visualize the contours of the density on figure 17. The nature of the flow is quite complex. The interaction
generates two symmetric lambda-shaped couples of shocks and a downward moving normal shock. Strong slip
lines emanate from the lower triple points and interact with one of the branches of the upper lambda-shocks. A
jet of fluid is pushed from the high pressure region (state a in figure 16) against the normal shock. Compared
to the FV scheme, the LN scheme gives a richer solution. The formation of Kevin-Helmholtz instabilities in
correspondence of the contact lines interacting with the upper lambda-shock is already visible on this mesh.
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d

1
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0.8~ub
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Figure 16: Shock-shock interaction. Initial solution
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Figure 17: Shock-shock interaction. FV scheme (left) and LN scheme (right)

5.2.1 A two-phase flow model

Consider now the system of conservation laws defined by the following set of conserved variables and fluxes

u =




αgρg

αlρl

ρu
ρv


 , F(u) =




αgρgu αgρgv
αlρlu αlρlv
ρu2 + p ρuv
ρuv ρv2 + p


 (170)

where αg and αl are the gas and liquid volume fractions, ρg and ρl are gas and liquid densities, ~u = (u, v) is the
local flow speed, ρ is the mixture density

ρ = αgρg + αlρl , (171)

and p is the pressure. The model is closed by the relation αg + αl = 1, and by the EOS relating the densities to
the pressure. In the following we will denote by α the gas volume fraction, often referred to as the void fraction.
We assume implicitly that αl = 1 − α. Concerning the EOS, we have used, as in [79], the following relations
representative of air and water:

p = Γg

(
ρg

ρg0

)γg

and p = Γl

[(
ρl

ρl0

)γl

− 1

]
+ pl0 (172)

The values of all the constants in the EOS are taken as in [79, 90, 86]. This system of conservation laws constitutes
a fairly simple model of homogeneous air-water two-phase flow. However, the relation between the pressure and
the conserved mass and momentum fluxes is so complex that a conservative linearization can hardly be derived.
Because of the nonlinearity of the equations of state, pressure and volume fractions cannot be computed in closed
form from the conserved variables. Instead, combining the equations of state and the relation αl = 1 − α, a
nonlinear equation for the pressure is obtained, which can be solved in a few Newton iterations [79].

Two-phase flow model : Mach 3 moving shock

We consider the computation of a planar shock moving in a quiescent two-phase mixture containing 50% gas
and 50% liquid (αlR = αgR = 0.5) at a pressure pR = 106. The shock Mach number is set to MS = 3. The
spatial domain is the rectangle [0, 2] × [0, 0.1]. We have run the simulations on an irregular triangulation with
element size h = 1/100. Periodic boundary conditions are imposed on the top and bottom boundaries. The
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final time of the simulation corresponds to a displacement of the exact shock location (computed analytically)
by a unit length. We present the solutions of the conservative N and LN schemes. The output is visualized
by extracting the data along the line y = 0.05. The results are reported on figure 18. The shock position is
correctly simulated, confirming the conservative character of the discretization. The non-oscillatory character of
the results is evident. The nonlinear scheme gives a very sharp and monotone capturing of the discontinuity.
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Figure 18: Two-phase MS = 3 shock. Pressure (left) and void fraction (right) along the line y = 0.05. Solutions
of the N (top) and LN (bottom) schemes

Two-phase flow model : a shock-bubble interaction

We consider now a two-phase variant of the shock-bubble interaction presented for the Euler equations. The initial
solution consists of a planar shock with MS = 3 moving into an undisturbed quiescent mixture characterized by
αR = 0.8 and pR = 105. On the right of the shock we impose a stationary circular discontinuity in which the
void fraction jumps to α = 0.95. This bubble is centered at x = 0.3 and y = 0, and its radius is rb = 0.2. We
present the results obtained with the LN and LST-N schemes on an unstructured grid with reference element
size h = 1/200, at several time instances.

From the figures we see the shock partially transmitted through the void fraction discontinuity and partially
reflected as an expansion, while the contact itself is set into motion. Once the undisturbed shock has crossed the
region occupied by the whole circular discontinuity, and has joined the transmitted shock, the interface of the
contact folds, rolling-up into a symmetric structure. The LN scheme gives a crisp resolution of the contact, its
wavy structure showing the glimpse of an inviscid instability.

54



t = 0.003

Limited N2

LN scheme

t = 0.003

t = 0.005

Limited N2

LN scheme

t = 0.005

t = 0.015

Limited N2

LN scheme

t = 0.015

t = 0.02

Limited N2

LN scheme

t = 0.02

Figure 19: Two-phase shock-bubble interaction, LN scheme. Mixture density at t = 0.003, t = 0.005, t = 0.015,
and t = 0.02

5.2.2 Shallow water flows: RD schemes and well-balancedness

This last section discusses a few of the results obtained in [86, 89] by solving the shallow water equations with
conservative schemes of [36, 90]. This system of equations can be written as (1), with

u =




H
Hu
Hv


 , F(u) =




Hu Hv

Hu2 + g
H2

2
Huv

Huv Hv2 + g
H2

2


 , S(u, x, y) = −gH




0

∂B(x, y)

∂x

∂B(x, y)

∂y




(173)

with H the local relative water height, ~u = (u, v) the flow speed, g the gravity acceleration, and B(x, y) the local
height of the bottom (see figure 20). We also define the total water height Htot = H +B.

~u

H

x
B(x, y)

Htot = H + B

Figure 20: Shallow water equations: basic unknowns

The shallow water equations admit several classes of known exact solutions. Among these, we are interested in
the lake-at-rest solution

Htot = H0 = const , H = H0 −B(x, y) , u = v = 0

The following result is proven in [86, 89].

Proposition 5.1 (LP schemes and the lake-at-rest solution). Linearity preserving RD schemes preserve exactly
the lake-at-rest solution, provided that the same numerical approximation is used for H and B, and provided
that the element residual is computed exactly with respect to this approximation. This is true independently on
topology of the mesh, on the regularity of B(x, y), and polynomial degree of the approximation.

This proposition shows the big advantage of the residual approach at the basis of the RD discretization. The
following results are a numerical verification of this property.
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Still flow over smooth bed

We verify experimentally proposition 5.1. On the domain [0, 1]2, we consider an initial state in which the velocity
is zero and H = 1 −B(x, y) with [68, 121, 107]

B(x, y) = 0.8e−50((x−0.5)2+(y−0.5)2)

We compute the solution up to time t = 0.5 with the limited N scheme on an irregular triangulation and
h = 1/100. In table 1, we report the values (computation run in double precision) of the norms of the errors on
water-height and velocity components. The results obviously confirm the theoretical result of the proposition.
The numerical output is similar ∀ t > 0.

L∞ L1 L2

H 7.491837e-17 7.085969e-17 7.107835e-17
u 7.478237e-17 7.161000e-17 7.169336e-17
v 7.478237e-17 7.177553e-17 7.177653e-17

Table 1: Norm of the errors at time t = 0.5, LN scheme.

Water height perturbation over smooth bed

We consider now a problem involving a perturbation of the exact lake at rest solution. The objective is to
verify that the schemes are able to resolve the evolution of the perturbation and its interaction with the bed
shape, without spoiling the exact lake-at-rest state in unperturbed regions. The spatial domain is the rectangle
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Figure 21: Water height perturbation over smooth bed. Solution of the LN scheme at t = 0.12 (left) and t = 0.48
(right). Top: contour plot of total water height. Bottom: distribution of Htot at y = 0.5 (h0 = 0.9915)
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[0, 2] × [0, 1]. Initial state and bottom shape are chosen as in [107, 121]. In particular, we set

B(x, y) = 0.8e−5(x−0.9)2−50(y−0.5)2

At t = 0 the velocity is set to zero everywhere, while the relative water height is set to

H =

{
1.01 −B(x, y) if 0.05 < x < 0.15
1 −B(x, y) otherwise

We solve the problem on an unstructured discretization of the domain with reference mesh size h = 1/100.
On figure 21 we visualize the results obtained with the space-time LN scheme at t = 0.12 and t = 0.48, in
terms of total water height contours (top pictures) and water height distribution at y = 0.5 (bottom pictures).
The following observations can be made. In the region ahead of the perturbation the exact solution is perfectly
preserved up to machine accuracy, while behind the perturbation the solution quickly gets back to the lake-
at-rest state. Compared to the results of [121], obtained with a fifth-order finite difference WENO scheme on
a structured mesh with h = 1/100, our results well reproduce the interaction. The small structures contained
in the reference solution are visible in the results of the LN scheme. Obviously, the use of a very high-order
discretization is beneficial when approximating this type of problem. Nevertheless, on an irregular unstructured
triangulation, the LN scheme gives a rich solution structure, while yielding a monotone approximation, and
preserving exactly the lake-at-rest state in the unperturbed region.

6 Conclusions, ongoing work and open issues

General summary

This paper has reviewed the basics of the Residual Distribution methodology, and some of its theoretical foun-
dations. We have tried to analyse the core ingredients of the method rather than having focused on engineering
applications. These ingredients are :

1. a simple way to obtain high order accuracy on unstructured grids, depending only on the polynomial
approximation space and on the use of a bounded distribution strategy ;

2. the strong emphasis on L∞ stabilization (viz monotonicity) relying on the theory of positive coefficient
schemes ;

3. a truly multidimensional upwinding strategy allowing to more faithfully mimic the directional propagation
of the information typical of solutions to conservation laws ;

4. the extension to time dependent equations by a space-time approach ;

5. a general conservative formulation that does not rely on any ad-hoc linearization ;

6. the extension to systems by an algebraic matrix generalization justified by a simple wave analysis.

In no way this contribution has given an exhaustive overview of the present state of the method and of the
ongoing research on the subject of residual based discretizations. For example, we have left out completely the
recent work of Lerat and Corre on RBC (Residual Based Compact) schemes [66, 67, 33], which is based on the
very same idea of constructing a discretization in which the main actor is a local approximation of the original
mathematical equation as a whole, rather than a discrete approximation of the partial derivative themselves.

Despite the effort put in its development since the 1980’s, it is still not possible to claim that the method
is mature, although impressive results have been obtained. The domain is still in full development and much
progress can be expected in the coming years. In the following paragraphs, we make an attempt to illustrate the
presently most active research lines, by reviewing recent work of the different groups active in this field. We will
also try to underline the weak points, and of course the area’s for future research.

57



Monotonicity and stability

Due to their nature, RD schemes hardly allow a proper stability analysis, especially in the energy or entropy
norms. The understanding of the importance of multidimensional upwinding itself in this matter is probably
quite limited. This partly explains the fact that for years most (or all) of the nonlinear RD discretizations that
have been proposed in literature, suffer from a lack of nonlinear iterative convergence, often endangering the
ability of obtaining optimal grid convergence rates, especially when dealing with nonlinear systems.

This has been found to be true for most blended schemes (see section §3.5.7 and [2, 36, 47]), and it is especially
true for the limited schemes for systems, briefly described in section §5.1.2. An analysis of this problem has been
given recently in [4]. In the reference, it is argued that the problem is of algebraic nature, and it is strictly tied
to the issue of properly defining upwinding, especially for systems. The cure proposed in the reference is based
on a stabilization technique since long known in the finite element community, and very close to the one used in
[66, 67, 33] to construct dissipative RBC schemes.

We also mention that different strategies for constructing non-oscillatory RD discretizations have been pro-
posed. Among these, the FCT procedure of [122], has been used for example in [58] and [43]. A novel procedure,
with many similarities with FCT, has also been recently proposed in [44]. Residual distribution schemes based
on WENO reconstructions have also recently appeared [32, 31], while, in the context of higher order schemes,
the dea of limiting the polynomial representation of the variables (in a more classical, FV-like sense), has been
put forward in [59].

At present, a throughout comparison of these different approaches has not been performed. Certainly, the
study of nonlinear non-oscillatory discretizations is far from finished, almost each group proposing a different
strategy. Perhaps, better schemes will come also with better understanding of the dissipative properties of
residual distribution in the syste case. This remains, however, one of the impostant open issues concerning RD;
especially in general situations (itme dependent, source terms, very high order of accuracy, etc. etc.).

Very high order of accuracy

One of the most basic issues left out of this paper is the construction of schemes of arbitrary high order of accu-
racy. The formal theoretical framework to achieve this is mainly due to [13] (see also [3]). We also refer to the
analysis reported in [89], to which section §3.2 is inspired. The potential of residual distribution discretizations
in this sense is summarized by definition 3.4 : as long as the splitting is performed with bounded distribution
coefficients, the formal accuracy is determined only by the polynomial representation of the unknown used to
compute the element residual. This observation is the basis for almost all the proposed higher order discretiza-
tion of the RD type. concerning the improved polynomial representation, two basic approaches have appeared
in literature.

The first, originally proposed in [29] (see also [28]), is based on a reconstruction of the gradient of the
solution, which of course allows a local higher order polynomial approximation. Developments on this line have
been proposed by several authors. We mention the work of [73] where this strategy has been coupled to a
clever splitting of the hyperbolic and elliptic parts of the two-dimensional Euler equations, each solved with a
higher order scheme (upwind for the hyperbolic equations, while a least squares type approach is used for the
elliptic operator). The overall strategy allows to compute very accurately solutions in flow regimes ranging from
potential to supersonic flow. We also mention the recent work of [103], where improved formulations of the third
order schemes of [29] are proposed. Following the analysis of [13, 3], in [103] the authors derive the conditions
for a scheme to be k-th order, and then propose schemes with improved stability with respect to the ones of [29].
Monotonicity is enforced via the procedure proposed by the same authors in [44].

A different framework has been set up instead in [13]. The idea in this case is to locally store all the Degrees
Of Freedom (DOF) necessary to build a second (or higher) degree polynomial approximation of the unknowns,
and derive discrete equations for all the DOF. In its original formulation, the method employs P k Lagrangian
triangular finite elements, k being the degree of the discrete polynomial, even though any other continuous set of
polynomial basis functions can be chosen. Unpublished results for a steady state convection equation using the
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LDA scheme on subtriangulated P2 triangles were already obtained in 1995 by the first author and T.J. Barth
during a summer visit at NASA Ames. Discretizations built following this philosophy have been proposed for
example in [14], where following [4] a procedure to construct simplified stable and monotone centered very high
order schemes is described, and in [94] where upwind RD schemes up to fourth order are presented. We also
mention the work of [88] and [5], in which the same approach is used to construct schemes for time dependent
problems.

These two basic philosophies have been compared in [59], where a novel strategy to build monotone schemes
via an edge-based limitation of the unknown polynomial variation is proposed, and in [72], where several ways
of including higher (second) order derivative terms in the discretization are discussed.

It is worth mentioning that some work has been done also in a different direction, namely trying to improve
the accuracy by extending the stencil of the schemes. At present, this technique only works on structured, and
non-smooth structured meshes. We mention, as an example, the schemes proposed in [61], in which a truncation
error analysis has been used to devise extended stencil distribution strategies on structured grids, allowing to
reach third order of accuracy. In [32], instead, the idea of k-exactness preservation of definition 3.4 has been
combined with a (non-local) WENO variable representation to build schemes up to fourth order of accuracy.
This work has been extended to viscous problems in [31].

The hallmark of future research on this subject will certainly be the use of better polynomial discrete approx-
imations but, most importantly, the understanding of the stability properties of the very high order schemes.
This is clear from the work reported in meny recent publications [14, 32, 31, 103]. Due to the lack of theoretical
tools, it will certainly be a difficult task.

Quadrilaterals and hybrid meshes

Another basic issue, which is not dealt with in this contribution, is the use of the residual distribution idea on
non-triangular meshes. Two main difficulties arise when trying to perform such an extension.

The first is related to conservation and to the lack of a simple conservative linearization on general elements.
This issue is analyzed in detail in [7]. However, the most successfully approach to deal with this problem appears
the one proposed in [84] (see also [36]), later adopted by all authors in the field.

The second difficulty is peculiar to the case of quadrilateral (hexahedral in three dimensions) elements, and
continuous variable representation. It is in fact long known [105] that on quadrilateral meshes linearity preserving
schemes suffer from the appearance of spurious modes polluting the numerical results. On regular quadrilateral
grids, this has been shown with a Fourier analysis in [104, 45]. For second order schemes, the Fourier analysis
nicely allows to highlight the high frequency instability flawing all linearity preserving schemes (and in general
k-exact schemes, with bounded distribution coefficients), we refer to see [104] for the general analysis. Surpris-
ingly enough, one way to cure this instability comes from the work of [4], concerning the analysis of nonlinear
limited schemes. Even though different in nature, the instability on quadrilaterals can be suppressed by adding
to the discretization the same dissipation term used in the reference to stabilize the nonlinear schemes. This has
been clearly shown in [8] for the scalar and system case. In the scalar case, the same technique has been used in
[45].

On the same subject, it is worth mentioning that the WENO RD schemes of [32, 31] operate on quadrilateral
meshes. Being based on a discontinuous WENO approximation of the unknown, however, the schemes proposed
in these references do not seem to suffer from the same type of instability.

Time dependent problems

The improvement of RD discretization for unsteady problems is also a very important subject of research. It is
now evident that the way to go is to define an element residual containing the time derivative. This can however
be done in different ways.
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On way to do this is to investigate on the consistent form of the mass matrix. As already mentioned, an
interesting analysis on this subject, based on geometrical reasoning, is performed in [44]. In the reference,
conditions allowing to construct consistent mass matrices for second order schemes are given. Following the
ideas of [29], an attempt to extend this work to third order of accuracy can be found in [103].

A different line of research considers the use of simplified formulations, following the ideas proposed in [4].
Promising initial results have been presented in [87, 24].

Finally, concerning the construction of very high order schemes for time dependent problems, we also men-
tions the work of [5], and [88].

Also in this case, the greatest challenge is represented by the understanding of the stability of the discretiza-
tion. From this point of view, space time schemes might present some advantages, especially when going to very
high degree polynomial interpolation.

Viscous flow

The extension of the residual distribution philosophy to the solution of viscous flow problems seems to be one
of the hardest problems at present. Even for continuous variable representations, the gradient of the discrete
unknowns is always discontinuous across element edges, which renders a straightforward extension of the schemes
impossible. To deal with this fact, two different approaches have appeared in literature.

The first approach has its roots in the initial work of [29] in which the author tries to exploit at best the
properties of linearity preserving schemes by defining a residual which contains the second order derivatives as
well. To deal with the discontinuity of the gradient of the discrete unknowns (hence of the viscous fluxes), the
author proposes to perform a reconstruction of the nodal gradients of the variable, which are then used to build
a locally continuous polynomial for the gradient. The main works which have followed these lines are the ones
of [74, 76, 72, 77]. The idea emerging from the references is that, by rewriting an advective-diffusive problem as
a first order system, one can then apply the RD technology without any complication concerning the variable
representation. Since the gradient of the solution is part of the discrete unknowns, and hence represented with
the same continuous polynomial, a residual containing the dissipative fluxes can be easily defined. The main
drawback of this approach is perhaps the augmentation of the number of unknowns, since now the components
of the viscous fluxes (more generally the components of the viscous stress tensor) have to be solved for explicitly.
Note however, that a simple variable count will still show a net advantage over methods based on discontinuous
variable representation such as Discontinuous Galerkin.

A different approach tries to make use of a Petrov-Galerkin analogy to couple the RD discrete advective
operator, with a Galerkin or Petrov-Galerkin discrete approximation of the diffusion operator. In this approach,
the main problem is to properly define the coupling between the RD discretization of the advective operator,
with the Galerkin, or Petrov-Galerkin, approximation of the diffusion term, such that the overall discretization
has uniform accuracy over the whole range of cell Reynolds numbers (i.e. mesh sizes). The reader may consult
[94, 95] for an overview on how this can be achieved. This approach does not introduce extra variables. The
problem is that no unique Petrov-Galerkin formulation of residual distribution exist, and that a sound variational
formulation allowing stability and error analysis is also lacking. As a consequence a real understanding of the
properties of the discretization is hard to achieve, and choices are often done by intuition and analogy with
classical Petrov-Galerkin discretizations.

It is worth mentioning a Fourier analysis of discretizations for the advection diffusion equation performed
in [45]. The reader is also referred to [31] for the extension of the work done in [32] on WENO RD schemes
to the viscous case. In the last reference, in particular, the discontinuity of the viscous fluxes posed no partic-
ular problems since the unknown itself is discontinuous, and numerical fluxes replace the physical ones at cell
interfaces.

60



Variable representation and adaptive strategies

An interesting topic of research is also the extension of the residual distribution idea to the case of discontinuous
variable representation. This would allow, at least in principle, an easier formulation of h−p adaptive strategies
in the RD framework.

At present, the only schemes of this type are the ones proposed in [32, 31]. Other researchers have however
developed their versions of discontinuous RD schemes, even though no publications have appeared yet on the
subject [1, 57].

Concerning adaptive strategies, we mention the work of [101] allowing a proper adaptation of the mesh via
a least squares minimization of the element residuals, and the adaptive quadrature proposed in [75], allowing,
through a nonlinear wave detection mechanism, to avoid non-physical expansion shocks (see also the related
work of [108] on this subject).

Applications

Engineering applications of residual distribution schemes have started appearing in the most recent years. The
use of RD schemes for turbomachinery applications has been shown in [54, 53] and [26]. Even more complex
applications including LES simulations can be found in [29] , and in the references therein by the same author.

Other industrial applications start to appear, as for example in [120], where a fluctuation splitting discretiza-
tion has been used to discretize the convective term of a mathematical model used in hard-disk manifacturing.

In aeronautics, we refer to the works of Edwin van der Weide and Kurt Sermeus who developed a 3D
Navier-Stokes solver including RANS turbulence modeling for aeronautical applications, under the support of
the European Space Agency (ESA) and the European Union 6th Framework Program (Project IDEMAS). A
review of this work is given in [41]. Extension to hypersonic applications with flow under thermal and chemical
non-equilibrium already started in [42], with 3D applications and advanced modeling accomplished over the last
year. Unsteady aeronautical applications on moving geometries using an Arbitrary Lagrangian-Eulerian (ALE)
formulation have been developed in the PhD of J. Dobes [46] with application to fluid-structure interaction.

We mention the successful application of the schemes to the solution of the Shallow-Water equations [81, 60,
89]. Some of the results of the last reference have been reported in chapter 5. Successful extension of this work
to the computation of flows with dry areas can be found in [24].

Finally, Residual Distribution techniques have been also applied for Magneto-Hydrodynamics simulations in
[35, 36] and in [15, 16].
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[35] Á. Cśık, H. Deconinck, and S. Poedts. Monotone residual distribution schemes for the ideal magnetohy-
drodynamics equations on unstructured grids. AIAA Journal, 39(8):1532–1541, 2001.
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