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1 Generalities

We consider the discretization of the time dependent hyperbolic problem

∂u

∂t
+ ∇ · F(u) = 0 on Ω × [0, tf ] ⊂ R

2 × R
+ (1)

on unstructured grids. We present residual distribution (RD) schemes which
(i) give non-oscillatory solutions, (ii) are second order accurate by construc-
tion, and (iii) lead to well-posed algebraic problems, that is, they ultimately
lead to linear systems Ax = y, with A invertible. How to construct nonlinear
RD satisfying (i) and (ii) is known for some time [AM03]. However, it is the
satisfaction of (iii) that ensures that a (unique) discrete solution exists, and
that second order of accuracy is actually obtained in practice (convergence).

1.1 Residual distribution for time dependent problems

An abstract framework to picture the basics of RD is the following. Given Th,
unstructured triangulation of Ω, and given (un,un−1, . . . ,u0), solution in the
mesh points at times (tn, tn−1, . . . , 0), first discretize the time derivative :

p
∑

i=0

αi

∆tn+1−i

δun+1−i +

q
∑

j=0

θj∇ · Fn+1−j = 0

where δuk = uk − uk−1, F
n+1−j = F(un+1−j), and with ∆tk = tk − tk−1

the (variable) time step. The αj and θj coefficients may be associated to a
multistage method, as well as quadrature weights, in a space-time framework
[AAM05, RAD03]. The only unknown being un+1, we recast the problem as

M(un+1) = S(un,un−1, . . .), M(un+1) =
α0

∆tn+1

un+1 + θ0∇ · Fn+1 (2)

The nodal values of un+1 are computed through the following simple steps.

1. ∀ triangles T ∈ Th compute the element residual φT =
∫

T
(Mh − Sh),

where Mh and Sh are discrete approximations in space of M and S
2. define a splitting : φT =

∑

j∈T φ
T
j (j ∈ T being the nodes of T )
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3. compute the values un+1
i by solving the (nonlinear) algebraic system

∑

T |i∈T

φT
i = 0, ∀ i ∈ Th (3)

System (3) is solved by means of an iterative procedure. The issue is how to
define the φT

j s such that (3) is well posed, i.e. it admits a unique solution.
Since we are interested in numerical solutions with a non-oscillatory char-

acter, the discretization must have some degree of non linearity. For smooth

problems, most nonlinear RD are known to suffer from a lack of iterative con-
vergence. This is the symptom of a subtle instability, and it limits the overall
accuracy, due to the poor approximation of (3). For one class of schemes this
issue is analyzed in [Abg06]. We proceed along the same lines.

2 Remarks on the iterative convergence of nonlinear RD

First we recall a procedure allowing to define the φT
j s in a way ensuring by con-

struction that the scheme is formally second order accurate and monotonicity
preserving. At the basis of the construction are the following conditions3 :

Accuracy For a r-th degree polynomial approximation of the unknown (and
of the fluxes) a r+1 order accurate scheme is obtained if [Abg06, RAD06]

φj = βjφ , βj uniformly bounded

Monotonicity Given a linear monotonicity preserving first order scheme de-
fined by split residuals φM

j , we look for splittings verifying

φj = λjφ
M
j , λj ≥ 0

We need to satisfy both conditions. One way to do this is to construct split
residuals φ∗j by applying to the φM

j s a uniformly bounded and sign preserving

nonlinear mapping, such as (in the scalar case, see [AM03] for systems) :

φ∗i = β∗
i φ with β∗

i =
max(0, βM

i )
∑

j∈T

max(0, βM
j )

, and βM
j =

φM
j

φ
(4)

Due to boundedness of the β∗
j s defined by (4), and due to the properties of

the mapping, the resulting scheme is formally second order accurate, and it
does have a strong monotonicity preserving (viz. L∞-stable) character [Abg06,
AM03]. The whole procedure leads to a nonlinear algebraic system of type (3).

Let us suppose to be approximating a smooth solution, such that we can
linearize both the nonlinear part of (1) (or equivalently (2)), and also (3).
To this linearized version of (3) we associate the matrix engendered by the
component of the algebraic problem corresponding to the (linearized) operator
M(·) in (2). Let us denote by M∗

h this matrix. Our (linearized) system reads

M∗
hu

n+1 = B∗
h (5)

3 for clarity, we drop the super-script T
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where un+1 contains the unknown nodal values, and in B∗
h we have dumped

whatever does not depend on un+1.
We make the following remark. Denote by Mh the matrix obtained from

the first order monotone scheme, without the application of the mapping. Most
monotone schemes used as a basis for our construction are L∞-stable and also
also L2-stable : they can be shown to be dissipative (in an energy sense). As a
consequence, Mh is an irreducibly diagonally dominant invertible M-matrix
[BP79]. Thus, the existence of a unique numerical solution is guaranteed.

What can we say of M∗
h ? By construction we know that for some λij ≥ 0

[

M∗
h

]

ij
= λij

[

Mh

]

ij
(6)

While ensuring that
[

M∗
h

]

ii
≥ 0 ∀ i and

[

M∗
h

]

ij
≤ 0 ∀ i, j with i 6= j, this does

not guarantee the invertiblility of M∗
h, unless we have some more information

on of its diagonal entries. This is where the trouble comes from. Even though
|
[

Mh

]

ii
| −

∑

j |
[

Mh

]

ij
| ≥ 0 ∀ i, we have no guarantee at all that

λii|
[

Mh

]

ii
| − λij

∑

j

|
[

Mh

]

ij
| = λii

[

Mh

]

ii
+ λij

∑

j

[

Mh

]

ij
≥ 0

It is even possible that λii = 0, for some i : the mapping, in general, weak-
ens the diagonally dominant character of Mh, eventually leading to a ill-
conditioned system matrix M∗

h.
Another way to see it is the following. The whole construction is based on

the constraint φM
j × β∗

j φ ≥ 0. Upwinding is not included in the process : it is
likely that the application of the mapping might lead, locally in an element,
to a down-wind discretization, known to have poor stability.

Even so, the code never blows-up due to the L∞−stable character of the
scheme. However, if a numerical output is obtained, the iterative convergence
in the solution of (3) is often poor, and the result might be affected by spurious
modes not identified/dumped (lack of dissipation/lack of uniqueness).

Let us now go back to the full nonlinear case. As mentioned before, the
convergence problems are relevant mainly when approximating smooth so-
lutions. When dealing with discontinuities the method has enough numerical
viscosity to converge relatively well, both in the inner iterations and with mesh
refinement. An heuristic justification of this fact is the following [Abg06].

In elements containing a singularity, the element residual φT and the first
order monotone residuals φM

j scale according to the same power of the mesh
size h. In particular, in two dimensions, simple arguments lead to

φT ≈ h‖∆F‖T and φM
j ≈ h‖∆u‖T

being ‖∆F‖T and ‖∆u‖T reference values for the norms of flux and variable
differences over T . The two scaling are easily obtained from the definition of
φT , and from the one of positive first order dissipation terms. If T contains a
singularity, what we can say is that ‖∆F‖T and ‖∆u‖T are bounded, which
leads to φM

j = O(h) and φT = O(h). Since φ∗j = O(φT ), then φ∗j/φ
M
j = O(1).

This means that, across a discontinuity, the mapping is likely to preserve more
the algebraic structure of the system obtained with the low order method.
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3 Convergent schemes: a possible solution

We want to improve the properties of the matrix M∗
h in (5). An idea comes

from the observation that our problem is not far away from the one encoun-
tered when discretizing (1) with a pure Galerkin scheme. The simplest way
to improve things could be then to add a streamline dissipation (SD) term.
For years this has been successfully used to stabilize Galerkin discretizations.
A recent analysis focusing on the time dependent case is given in [BGS04].

Forgetting for the moment about shocks, we rewrite our discretization as

φi = φ∗i + φs
i = β∗

i φ
T + hCT

∫

T

∂F(uh)

∂u
· ∇ϕi

(

Mh − Sh

)

dx (7)

where the superscript s stands for stabilization, CT is a positive definite ma-
trix, and ϕi is the finite element (FE) shape function of node i. Numerical
experiments show that this modification solves the problem, the term added
introducing dissipation4. Another way to see it is that the SD term introduces
some kind of upwind bias. The choice of CT seems irrelevant from the point of
view of the numerical results. This confirms that the algebraic nature of the
problem (full L2/entropy-stability not required, even though still desirable...).

Since the evaluation of φs
i in (7) is quite expensive, and since this term,

which destroys the monotonicity preserving character of the discretization, is
only needed in smooth areas, we modify the stabilization term as follows :

φs
i = βs

i φ
T , βs

i = Θ(uh, h)Ki, Ki =
1

2

∂F(u∗)

∂u
· ni (8)

with θ(uh) a solution monitor ensuring that the extra term is only active
in smooth regions, and u∗ an arbitrary average of u over T . The following
remarks can be made:

• φs
i is a rough approximation of the SD term (7) (exact for linear problems)

• φs
i still introduces some kind of upwind bias

This qualitatively explains the reason why this fix works : for smooth prob-
lems, the upwind bias improves the structure of M∗

h in (5). The mechanism is
roughly the same guaranteeing the stability of the SD-Galerkin FE scheme.
In the case of nonlinear RD, it is rather difficult to formalize this with en-
ergy/entropy estimates, even though an analysis similar to the one made in
[BGS04] is possible (see also [Abg06]).

Lastly, different definitions can be used for θ(uh). Here, we take the sim-
plest possible [Abg06] :

Θ = C′
T

[

min
(

1,
|T | ‖u‖T

‖φh‖

)

]m

, C′
T positive definite (9)

Provided that C′
T is of O(h−1), across singularities, this definition leads to

φs
i = O(hm)×O(φT ) [Abg06]. Thanks to this, the amplitude of any oscillations

appear in the solution decreases as some power of h.

4 even though, to be rigorous, we should evaluate the extra term in entropy variables
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4 Computational results

We discuss some results obtained solving the Euler equations with the nonlin-
ear discretization constructed starting from the Lax-Frederich’s scheme com-
bined with Crank-Nicholson time integration :

φLF
i =

|T |

3

δun+1

∆tn+1

+
ψn

i + ψn+1
i

2
, ψi =

1

3

∫

T

∇·F dx+αT
∑

j∈T

(ui −uj) (10)

We call LLF scheme the one obtained by applying (4) to (10). The scheme
obtained by adding the stabilization term (8) is referred to as LLFs.

We first consider a smooth problem, consisting of the advection of a vortex
in inviscid flow (see [DD06] for details). On fig. 1 we report, on the top row,
the exact solution (pressure contours), the solution of the LLF scheme and
of the LLFs scheme on a coarse grid (h = 1/40). On the bottom row we
report the solution of the LLFs scheme on the finer mesh (h = 1/80), and
the 1D pressure distributions through the vortex core. The top row pictures
clearly show the spurious modes not dumped by the LLF scheme, and the
effectiveness of stabilization in suppressing these modes. The contour plot on
the bottom row, as well as the 1D line plots, confirm this observation and
demonstrate the truly second order of convergence of the stabilized scheme
(as shown by the reduction in the L∞ pressure error).

Then on fig. 2 we report the results on the well known problem of the
Mach 3 wind tunnel with a forward facing step [WC84]. The result show the
monotonicity preserving character of the scheme, and the effectiveness of the
definition of the solution monitor (9).

5 Conclusions

We discussed the construction of non-oscillatory RD schemes which are stable
and give genuine second order of accuracy in practical applications. The ap-
proach proposed opens the way to a new class of schemes which need very few
matrix operations. Hence, they are more efficient, while retaining the advan-
tages of the RD approach. In particular, the extension to arbitrary accuracy
is quite natural and it is under way.
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Fig. 1. Vortex advection. Top (left to right): Exact, LLF and LLFs (h = 1/40).
Bottom (left to right): LLFs (h = 1/80), cut along centerline for LLF and LLFs
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Fig. 2. Mach 3 forward facing step. Density contours (left) and distribution at
y = 0.5 (right). Results at time t = 4 computed with the LLFs scheme


