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1 Introduction and main results

This work is part of a long term effort to develop a modern unstructured shock-
fitting algorithm. The authors have so far shown the capabilities of their approach
for steady flows in two [12, 13] and three [6] spatial dimensions, as well as some
potential for time dependent moving shocks [7]. In all the mentioned works fitted
shocks are treated as interior boundaries of zero thickness that are free to move
throughout a triangular/tetrahedral mesh. This underlying unstructured triangula-
tion/tetrahedrization covers the entire computational domain, and locally adapts to
exactly fit the shock motion. The latter is ruled by the Rankine-Hugoniot jump re-
lations which are in turn deduced from an approximate flow solution obtained by
discretizing the compressible flow equations on either side of the discontinuity. To
this end, in this work we will focus on the numerical solution of the perfect gas Eu-
ler equations. This contribution is a first step to evaluate the unsteady fitting method
when schemes with different properties are used. We evaluate the results obtained
with explicit residual distribution schemes in Arbitrary Lagrangian Eulerian (ALE)
form, developed in [16, 5].

The paper investigates quantitatively and qualitatively the influence on the fitted
solutions of the accuracy order (first or second here) of the method, as well as on
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Fig. 1: Shock-fitting: schematic illustration of some of the algorithmic ingredients.

the stabilization mechanism used. The main result is that accuracy seems to be the
most influent factor.

2 Numerical methods

2.1 Shock-fitting algorithm

The unstructured shock-fitting algorithm consists of two key ingredients: 1) a local
re-meshing technique that constructs a time-dependent mesh in which the fitted dis-
continuities are internal boundaries of zero thickness and 2) an algorithm for solv-
ing the Rankine–Hugoniot jump relations that provide the Lagrangian velocity of
the discontinuity and an updated set of dependent variables within the downstream
side of the fitted shock.

More precisely, in two space dimensions, the fitted shock fronts are made of
polygonal curves, i.e., a connected series of line segments (which we call the shock
edges) that join the shock points. These shocks are free to move throughout a back-
ground triangular mesh that covers the entire computational domain (see Fig. 1a).
Starting from a background grid, at a given time level n local mesh modifications are
performed by re-generating a constrained Delaunay triangulation in the neighbour-
hood of the shock. This allows to ensure that the edges that make up the shock front
are also part of the mesh that covers the entire computational domain (see Fig. 1b).
The shock speed σsh is computed from the Rankine–Hugoniot jump relations within
each of the shock points. Using nodal values of shock speed and shock normal n,
the fitted shock front is moved in a Lagrangian manner, as shown in Fig. 1c. A
second-order-accurate temporal integration of the shock trajectory is obtained using
a predictor-corrector scheme [7].

In the smooth regions on either side of the shock, a vertex-centred ALE dis-
cretization, described in Section 2.2, allows to obtain an approximation of the flow
variables on the mesh. The ALE formulation allows to embed naturally in the
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schemes the presence of the shock front as a moving boundary. This is schemati-
cally shown in Fig. 1c where dashed lines are used to show the edges of the trian-
gular cells when the shock front is at time level n and solid lines to show the same
sides when the shock has reached time level n+1.

The interested reader can refer to [7] for additional details on the unsteady fitting
procedure.

2.2 Predictor-corrector ALE residual distribution

We consider discretization methods for the Euler equations recast in the following
ALE compact form:

∂t(Jw)+ J∇ · (f(w)−σw) = 0 (1)

with w the array of conserved quantities (mass, momentum and energy), f the con-
servative fluxes, J the determinant of the Jacobian of the transformation between the
reference and actual frame, and σ the local deformation velocity. To discretize (1),
we consider the two-step explicit Residual Distribution (RD) method developed in
[16, 4, 15],which can be written in the compact discrete form
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The vector σh represents the mesh velocity with nodal values σi = (xn+1
i − xn

i )/∆ t .
The values w∗i are obtained from a first order predictor which is computed as
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where now the fluctuations Φ̃K
i are a splitting of the following geometrically non-

conservative average steady cell residual [4]
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Almost all the geometrical quantities in the scheme are evaluated on the half-time
n+1/2 averaged configuration T

n+1/2
h which ensures

|Kn+1|− |Kn|= ∆ t
∫

∂Kn+1/2

σh ·nds = 0 , (7)

thus the satisfaction of a Discrete Geometric Conservation Law (DGCL).
The properties of the method introduced above are determined by the definition

of the split residuals ΦK
i , ΦK

i and Φ̃K
i , which, following [16, 4, 15] have the form :
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and similarly for Φ̃K
i . The β j are distribution matrices, uniformly bounded w.r.t the

cell residuals (6), (3), while the mK
i js are mass matrix entries consistent with the

definition of the spatial distribution [16]. Independently of the specific construction
of these quantities, the above definitions give a scheme which is formally second
order accurate in space and time, fully conservative, and verifying the DGCL. The
interested reader is referred to [4, 3, 15, 16] for more details. In practice, we have
used two main classes of methods: multidimensional upwind (MU) schemes, and
centered schemes with some form of stabilization. In particular, the computations
shown in the paper will compare results using the first order linear and monotone
N scheme and the second order linear LDA scheme. These are MU distribution
methods. A nonlinear method obtained by blending these two, and referred to as
the LDAN scheme, is also tested. Two non-upwind methods are also considered,
in particular, the explicit predictor-corrector formulation of the second order lin-
ear Streamline-Upwind (SU) method proposed in [16] (see also [9] and references
therein), and the nonlinear blended central (Bc) discretization obtained when blend-
ing the SU method with a limited Lax-Friedrich’s distribution. The interested reader
may consult the above mentioned references for more details.

3 Numerical results

3.1 Shock-expansion interaction

We start by investigating the behaviour of the schemes on the computation of an
expansion fan interacting with a moving shock. The problem involves a rectangular
cavity initially filled with an inviscid perfect gas at rest, as shown in the sketch of
Fig. 2a. The left end of the domain acts as a piston which is impulsively set into
motion, generating a planar shock wave moving towards the closed (right) end of
the domain. Given the density ratio across the shock wave, all other kinematic and
thermodynamic quantities follow from the Rankine-Hugoniot (R-H) jump relations
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and are summarized in Tab. 1. The upstream and downstream dimensionless quan-
tities have been labelled with the subscripts 1 and 2 in Tab. 1. The Mach number
in a reference frame attached to the shock is denoted by Mr, and its upstream value
coincides with that of the dimensionless shock speed Ws, since a1 has been chosen
as the reference velocity.

After the impulsive startup, the piston starts slowing down at t = t0 + ts; its ve-
locity and position are prescribed analytically by:

up (t) =

{
u2 t0 < t ≤ 0
u2 exp−t t ≥ 0

, xp (t) =

{
u2 t t0 < t ≤ 0
u2 (1− exp−t) t ≥ 0

, (9)

where t0 =−ts and:

ts =
x0

sh
Ws−u2

' 0.3755

ρ u v p Mr a
Upstream (1) 1.4 0.0 0.0 1.0 1.5336 1.0

Downstream (2) 2.6872 0.7346 0.0 2.5772 0.6895 1.1588

Table 1: Shock-expansion interaction: initial conditions.

The flow evolution is sketched in the x− t plane of Fig. 2c. We start the simula-
tions at t = 0 with the shock located x0

sh = 0.3 unit lenghts ahead of the piston and
we initialize the solution using the initial conditions listed in Tab. 1.

The tail of the expansion wave (marked by arrows in Fig. 2c) is the straight,
characteristic line of slope u2 + a2 that is shed from the origin of the space-time
plane and divides the expansion wave from the uniform, shock-downstream region,
labelled 2 in Fig. 2. Up to time:

t̂ =
x0

sh
(u2 +a2)−W

=
x0

sh
(1−Mr,2) a2

' 0.8339

when the tail of the expansion wave meets the shock trajectory, the expansion region
is a simple wave, so that an analytical solution can be computed as described, for
instance, in [20, §4.1.5]. At later times, the expansion wave is reflected off the mov-
ing shock as an expansion wave of the opposite family, the shock starts reducing its
speed and the region of the x− t plane that is between the moving piston and the
moving shock ceases to be a simple wave.

Simulations have been advanced until the final time t2 = 2.8 when the shock is
located at xt2

sh ' 4.43 and has almost reached the closed (right) end of the cylinder.
We present results obtained on a background grid of 639 nodes, 12448 triangles,
with a shock front discretized by 41 points (cfr. right picture of Fig. 2a). During the
time evolution, the streamwise size of the computational domain is reduced because
of the piston’s motion. All nodes of the background mesh move as the time elapses,
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(a) Computational set-up at t = 0. (b) Nested meshes and shock position at t = 2.8.

(c) Pressure iso-contours in the space-time plane.

Fig. 2: Shock-expansion interaction.

but the topology of the mesh does not change. At any time instant, the location of
the nodes of the background mesh is prescribed using the following equation:

xi (t) = xi (0)+ xp (t)
(

1− xi (0)
L

)
where L = 5 is the streamwise length of the computational domain at t = 0.

Figure 3 provides the pressure field at three subsequent time instants for all the
five different spatial discretization schemes and the two shock-modelling schemes.
Apart from the excessive shock-thickness of the shock-capturing solutions, it is clear
that shock-fitting provides a much cleaner representation of the shock-downstream
region. Observe, in particular, that the crossflow non-uniformities are considerably
less pronounced in the shock-fitting calculations.

Figure 4 shows the streamwise pressure profiles at two subsequent time instants
for all the five spatial discretization schemes. Note that the figures report all the
data points in the mesh. The superiority of the shock-fitting calculations is evi-
dent, particularly in the reduction of cross-shock spurious variations, despite the
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fact that both the fitted, and captured solutions are represented on unstructured tri-
angulations with almost identical topologies. We do observe an impact of the nu-
merical discretization chosen. The upwind or centered nature of the method does
not seem to affect the results as much as the resolution of the scheme. The N
scheme clearly provides the “wrong boundary conditions” for the shock, which
seems slighly miscplaced w.r.t. the analytical solution, as one can see in the right
frame of Fig. 4a. Shock amplitude and position are instead perfectly matched by
the high order schemes, with perhaps a barely visible off-set present only in the
LDAN result, shown in Fig. 4c. These differences are clearly much more impor-
tant in the captured solutions: the linear, first-order-accurate N scheme smears the
shock-profile over a considerable streamwise extent; as expected, the linear, second-
order-accurate, but non-monotone LDA and SU schemes give rise to overshoots
around the discontinuity; the non-linear, second-order-accurate LDAN scheme is
monotonicity preserving, but the otherwise similar Bc scheme also overshoots the
shock profile.

3.2 Shock-vortex interaction

The interaction between a shock and a vortex has been frequently reported in the
literature as a tool for understanding the mechanisms of noise generation due to
the interaction between a shock-wave and a turbulent flow [14, 11, 10, 8]. This
problem has also been frequently used as a code verification benchmark [23, 1,
18]. Shock-fitting calculations of shock-vortex interactions have been previously
reported in [14, 21, 2].

A uniform, supersonic stream, characterised by a shock-upstream Mach number
Ms = |u∞|/a∞, carries a vortex, from the left to the right of Fig. 5, towards a station-
ary normal shock. The computational domain, which is sketched in Fig. 5 along with
the boundary conditions applied along its boundaries, is the rectangle [0,2L]× [0,L].
At the initial time, t = 0, the vortex is centred in (xv/L,yv/L) = (0.5,0.5) and the
shock is located 0.2L downstream of the vortex centre. The vortical structure we
have used, which is an exact solution of the steady Euler equations, consists in a
clockwise vortex characterised by a purely tangential velocity component. More
precisely, using a polar coordinate system with the origin at the centre of the vortex
and moving at constant speed |u∞|, the perturbation velocity field ũ reads:

ũθ = −ε |u∞|τ eα(1−τ2) (10a)
ũr = 0 (10b)

In Eq. (10) τ = r/rc is the non-dimensional radial distance from the pole of the
moving reference frame and ε , α and rc are user-defined parameters that control
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the shape and magnitude of the perturbation. This particular solution of the Euler
equations features a divergence-free velocity field, which implies that density is
constant along the streamlines and a non zero vorticity field. Since the free-stream
flow is isentropic, the thermodynamic variables can be easily obtained from the
linear momentum equation, and Crocco’s form of the steady momentum equation
implies that there must be a gradient of the perturbation total enthalpy in the radial
direction, so that total enthalpy also changes across the streamlines.

A vortex Mach number, Mv, can be defined as the ratio between the maxi-
mum velocity perturbation and the sound speed, a∞, of the shock-upstream flow:
Mv = max(ũθ )/a∞. For the particular vortical structure used here, the vortex Mach
number becomes:

Mv = ε Ms
e(α− 1

2 )
√

2α
(11)

Making the same choice of constants in Eqs. (10) and (11) also used in [23, 1, 18]:
α = 0.204 and rc/L = 0.05, the vortex radius is about 0.35L, the maximum velocity
perturbation occurs at about 0.11L from the vortex centre and the strength ε of the
velocity perturbation follows from Eq. (11), once Ms and Mv have been set.

The topological pattern that arises once the vortex impinges on the shock depends
upon both the shock and vortex strengths. We shall hereafter refer to the taxonomy
adopted by Grasso and Pirozzoli [8], who define weak shock-vortex interactions as
those that do not exhibit any shock reflection and strong shock-vortex interactions
as those that feature secondary shocks; strong interactions can be further classified
depending on whether a regular reflection or a Mach reflection occurs. The same
authors identify in the (Ms, Mv) pair the two independent variables that govern the
interaction: when the vortex Mach number is sufficiently low, weak interactions al-
ways occur; however, at a given shock strength, an increase in the vortex Mach
number above the Mv ≈ 0.1÷ 0.2 threshold causes the shock to fold thus produc-
ing reflected and diffracted shocks that yield either a regular or a Mach reflection,
depending upon the value of Mv.

In the present work, we have set the shock and vortex Mach numbers respec-
tively equal to Ms = 2.0 and Mv = 0.2, so that a weak interaction occurs. The reason
for doing so is that the present shock-fitting algorithm is currently unable to auto-
matically identify and follow the appearance of those secondary shocks that arise
when a strong interaction takes place. Nonetheless, as demonstrated in [7], strong
interactions can be simulated with the available algorithm, thanks to a hybrid mode
of operation whereby the normal shock is fitted and the secondary shocks are cap-
tured. This hybrid modelling is however not suited for the grid-convergence analysis
which will be performed hereafter, since it is impossible to separately identify the
effects of the two different shock-modelling practices. Therefore, only weak inter-
actions will be considered here and simulations will be performed using each of the
five schemes, both in shock-fitting and shock-capturing mode.

When simulations are run in shock-fitting mode, the linear LDA and SU schemes,
that are not monotonicity preserving, can be used without giving rise to oscillations
because they are used in smooth regions of the flowfield. The use of non-linear
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schemes is unnecessary in this case, but non-linear scheme have also been tested
in conjunction with shock-fitting to allow a comparison with the shock-capturing
calculation using the same scheme.

When simulations are run in shock-capturing mode, it should be expected and it
is indeed observed that the linear schemes give rise to wiggles around the captured
shock wave. Nonetheless, shock-capturing calculations with linear schemes have
also been performed to allow a comparison with the shock-fitting calculation using
the same scheme.

A qualitative view of the solutions obtained with the two approaches is given
in Fig. 6. The pictures show the total enthalpy contours in the solutions obtained
with the LDA and LDAN schemes with shock capturing and fitting on the finest
mesh level of table 2. Note that the fitted results are virtually indistinguishable, and
only those of the LDA are reported. As for the shock-expansion interaction, the
qualitative difference is already quite striking from the comparison of the contours.
In particular, besides the oscillations related to the approximation of the shock, we
can see clearly that the contours downstream of the discontinuity are much less
smooth in the captured solutions. This is more visible in the LDAN results (Figs. 6d-
6f), however a similar behaviour is also present in the LDA solutions. The fitted
computations, on the other hand, show very nice and smooth contours.

In order to perform a quantitative comparison among the various combinations
of spatial discretization schemes and shock-modelling practices, we have used the
following global measure:

Sh (t) =
1
|Ω |

∫
Ω

sh (x, t)dΩ (12)

where s = pρ−γ is entropy and we have computed the corresponding discretization
error and order-of-convergence. To perform a grid convergence analysis, the com-
putational domain has been discretized using a sequence of four nested Delaunay
triangulations, hereafter labelled g1 to g4. The coarsest g1 mesh has been created
using the Triangle code [22] by specifying a maximum area constraint, whereas the
other three grid levels have been obtained by recursive subdivision of each triangle
of the coarser level into four sub-triangles. Table 2 summarizes the characteristics
of the various meshes that have been used both in the shock-capturing computation
and as background triangulations in the shock-fitting computation. The dimension-
less, characteristic spatial size hk of grid k has been set equal to the uniform spacing
along the boundaries of the computational domain; observe that both hk and the di-
mensionless time-step length ∆ tk are halved when moving from grid level k to the
finer grid level k+1.

Whenever an exact, or manufactured solution to the set of governing PDEs is avail-
able, the discretization error can be evaluated straightforwardly. However, when the
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grid N. of triangles N. of gridpoints ∆ tk hk

g1 6794 4181 0.00160 0.03000
g2 27128 14437 0.00080 0.01500
g3 108438 55277 0.00040 0.00750
g4 433778 218269 0.00020 0.00375

Table 2: Shock-vortex interaction: grid features.

exact solution is not known, the discretization error of a numerical solution and the
convergence properties of a numerical scheme can still be estimated using a suite of
techniques collectively known as Richardson extrapolation (RE). There exist differ-
ent variations of the RE technique depending on the number of grid levels involved
and on the expression of the leading error terms that is a priori assumed in the anal-
ysis; hereafter we refer to the generalized RE technque of fixed order, following
the nomenclature used in [19]. The term generalized refers to the fact that the RE
technique is applied to nth-order-accurate schemes and grids refined by an arbitrary
factor r. Note that the use of nested triangulations fixes the grid refinement ratio
between each couple of meshes in the sequence to a value r = 2. It is also assumed
that the order of convergence n is known (hence, the term fixed) and is typically set
equal to the design order of the scheme. The method used here relies on an error
expansion of the type

εh (x) = uh (x)−u0 (x) =
∞

∑
p=n

gp (x)hp = gn (x)hn +HOT (13)

Neglecting the HOT , writing Eq. (13) for two grid levels h and rh, and solving for
the unknown exact solution, one obtains:

ũ0 = uh−
urh−uh

(rn−1)
(14)

In Eq. (14) we have used a tilde to underline the fact that ũ0 is only an approximation
of the corresponding quantity that appears in Eq. (13), because the higher-order
contributions have been neglected.

Since an exact solution is not known, for the present test-case, Eq. (14) has been
used as follows:

S̃0 = Sh4 −
Sh3 −Sh4

3
to provide an approximation of the exact entropy integral of Eq. (12). This is a rather
common practice that, according to Roache [17], has been in use in the CFD arena
since the early 1990s, even though the procedure is somewhat questionable, because
the order is a-priori given in order to perform the RE.

The results obtained with this procedure are summarized in the convergence plots
of Fig. 7. The plots show that all the captured solutions converge at best with a first
order rate. When removing the error due to the shock-capturing, all the schemes
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behave as if the solution were smooth. In particular, all the schemes provide con-
vergence rates very close to those observed in [16]: 2 for the liner LDA and SU
schemes, very close to 2 for the Bc scheme, a rate of roughly 1.5 for the LDAN
scheme, and an order 1 for the N scheme.

4 Conclusion and outlook

We have provided a preliminary study of the behaviour of explicit ALE residual dis-
tribution when coupled with shock-fitting. The results show that the fitted solutions
are quite independent on the stabilization mechanism used. Multidimensional up-
wind schemes, and centered schemes with some form of artificial dissipation yield
very similar results. What makes most of the difference is the accuracy of the dis-
cretization. Even with fitting, first order schemes fail to provide the correct bound-
ary conditions for the discontinuity, producing a visible error in shock position and
strength. high order discretizations, both linear and nonlinear, are thus required. A
comparison with captured solutions, shows two main results: fitting allows to re-
cover second order of accuracy where capturing leads to first order; the fitted results
are much less sensitive to the use of monotonicity preserving methods, as well as
to mesh irregularities due to the absence of mesh dependent errors generated in the
captured region. In addition anomalies related to the mesh dependent nature of the
capturing error error are removed so that the methods behave as if the flow were
smooth. This has been proven on two test cases.

Natural extensions of this work will be to consider more complex cases, and more
interesting discretization strategies. The first aspect may involve stronger shock-
vortex interactions, with the appearance of secondary (lambda) shocks. Concerning
the discretization, the ALE framework used here would allow quite naturally the
use of a hybrid fitting/adaptive approach, with an r−adaptation strategy in the non-
fitted domains, as proposed e.g. in [3]. Lastly, a very interesting test would be to
repeat the studies of this paper when the fitting is performed using non-conservative
formulations in the CFD part. This may reveal very useful when considering flows
also involving strong contact discontinuities, and chemistry.
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(a) t = 0.4 N scheme (b) t = 1.2 N scheme (c) t = 2.0 N scheme

(d) t = 0.4 LDA scheme (e) t = 1.2 LDA scheme (f) t = 2.0 LDA scheme

(g) t = 0.4 LDAN scheme (h) t = 1.2 LDAN scheme (i) t = 2.0 LDAN scheme

(j) t = 0.4 SU scheme (k) t = 1.2 SU scheme (l) t = 2.0 SU scheme

(m) t = 0.4 Bc scheme (n) t = 1.2 Bc scheme (o) t = 2.0 Bc scheme

Fig. 3: Shock-expansion interaction: pressure contours at times t = 0.4 (left), t = 1.2
(centre) and t = 2.0 (right): 20 equally spaced contour levels between 0.5 and 2.6,
fitted solutions on top and captured solutions on the bottom of each frame.
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(a) N scheme

(b) LDA scheme

(c) LDAN scheme

(d) SU scheme

(e) Bc scheme

Fig. 4: Shock-expansion interaction: streamwise pressure profiles at two time in-
stants for all the five spatial discretization schemes. Right column: zoom of the
t = 0.8 peak.
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Fig. 5: Shock-vortex interaction: computational domain and boundary conditions.

(a) t = 0.2 LDA (capturing) (b) t = 0.3 LDA (capturing) (c) t = 0.4 LDA (capturing)

(d) t = 0.2 LDAN (capturing) (e) t = 0.3 LDAN (capturing) (f) t = 0.4 LDAN (capturing)

(g) t = 0.2 LDA (fitting) (h) t = 0.3 LDA (fitting) (i) t = 0.4 LDA (fitting)

Fig. 6: Shock-vortex interaction: total enthalpy contours at times t = 0.2 (left),
t = 0.3 (centre) and t = 0.4 (right): 15 equally spaced contour levels obtained with
the shock-capturing versions of the LDA (top), and LDAN (middle), and with shock-
fitting and LDA (bottom).
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(a) t = 0.4 N scheme
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(b) t = 0.4 LDA scheme
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(c) t = 0.4 SU scheme
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(d) t = 0.4 LDAN scheme
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(e) t = 0.4 Bc scheme

Fig. 7: Convergence histories obtained by means of Richardson Extrapolation for
the shock-vortex interaction problem at time t = 0.4.


