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Abstract

A second order Lax Wendroff timestepping approach has been implemented in the in-
house 2-D solver "IcARus". It has been tested on several scalar 1-D and 2-D problems and
on two Euler testcases. Comparisons have been carried out with an earlier implicit approach
using a consistent mass matrix formulation. Fair agreement between the explicit and implicit
results was found, although the latter were always better.For the scalar testcases, monotonic
results are obtained by a blending of the second order scheme with a monotone first order
scheme based on the Flux Corrected Transport (FCT) approach.For the Euler both methods
still suffer from a lack of monotonicity, and suggestions are made to improve it.
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1. INTRODUCTION

Over the last years, a class of multidimensional upwind schemes also known as resid-
ual distribution or fluctuation splitting schemes, have been developed at VKI and at the
University of Michigan.

Although second order accurate at steady state for homogeneous problems, £LP schemes
become only first-order accurate in space for unsteady computations.

To overcome this problem a finite element interpretation with consistent mass matrix
was introduced in [1|, and the method was shown to be third order accurate in 1-D via a
modified equation analysis. In the same work several schemes were tested in their consistent
formulation on a scalar 2-D problem. Second order of accuracy was demonstrated using a
grid convergence study.

Once a high order of accuracy was recovered, a new problem had to be solved: since
the consistent mass matrix is not positive definite, all the consistent schemes showed an
oscillating behavior also in the computation of continuous solutions, so the positivity was to
be recovered.

The FCT procedure In [3] a way to improve the stability of time accurate methods, the
Flux Corrected Transport algorithm (FCT), was introduced for scalar advection equations,
and in [4] this technique was generalized to multidimensional problems. The FCT technique
is based on the idea of combining the monotonicity of a low order scheme, to prevent spurious
oscillations especially near shocks, and the accuracy of a high order scheme, to prevent the
smearing of discontinuous solutions typical of first order schemes.

These concepts have been reintroduced by Ferrante in [2] to cure the non monotonicity
of the consistent schemes and at the same time a cell based limiting procedure was developed
in order to implement the FCT in a residual distribution environment.

Let U be the vector of unknowns and define the time increment of U as
AU = U™ —pn (1.1)

where U™! and U” are the values of the variable at time levels n and n+1. In order to have
a solution as high order as possible while retaining a monotone behavior, the FCT procedure
acts as follows

AU = AU' + (AU — AUN™ (1.2)

where AU' and AU" are the time increments computed respectively with a low order mono-
tone scheme and with a high order scheme; the superscript lim indicates that the difference
between the two increments is limited in such a way that no undesired overshoots or under-
shoots are produced in the solution at the new time level. The preceding equation can be



rewritten as
Ut = U+ (AU — AUY'™ (1.3)

where U' is the new updated solution obtained using only the low order scheme. To implement
this procedure in a cell-vertex residual distribution approach, a slightly different definition
of the procedure has to be given, i.e.

UMt = Ul + Z AUMT — AU (1.4)

where the subscript ¢ indicates that the value at node i of the variables is considered, while
the summation extends over all the triangles meeting at node .

An algorithm for the implementation of FCT on a solver is given by the following steps:

1. Compute AU;’T : the "Low order Element Contribution from triangle 7' to node 3",
from some low order scheme that guarantees monotonic results.

2. Compute AUih’T: the "High order Element Contribution from triangle T to node ",
from a high order scheme.

3. Define AECY": the "Antidiffusive Element Contribution from triangle T' to node 4"

AECT = AUM — AU (1.5)

4. Compute the update for the low order solution for node :

Ul = U 13 AUMT = U 4 AU (16)
T

5. Limit or "correct" the AECT so that U"*! computed in the next step is free of extrema
not also found in U or U™:

AECH™ = yT « AECT 0<yl <1 (1.7)

6. Apply the limited AECT'"™ for the update:

Urtt = Ul + E AECT!™ (1.8)



The FCT procedure was included in the 2-D solver IcARus by Ferrante only for implicit
computations with the following steps:

1. Compute AU", the global high order increment, using Crank-Nicolson time integra-
tion and the consistent mass matrix (see sect. 2.1) assembled from the local element

contributions: M g
(Kt + g)AU’L =—-R" (1.9)
My AU" = —R" (1.10)

AU is stored.

2. Compute AU', the global low (1st) order increment, that guarantees monotonic results,
using the inconsistent mass matrix formulation (see sect. 2.1) and Explicit Euler time

integration:
AU}
S;—* = —R! 1.11
=R (1.11)
or in global notation:
MpAU' = —R! (1.12)

where M, is the diagonal lumped mass matrix (see sect. 2.1).
3. Compute the low order update and store it:
Ul =U"+ AU (1.13)
4. Split AEC, the nodal antidiffusive correction:
AEC = AU" — AU (1.14)
in element contributions. From (1.10) and (1.12) one has:
Mp(AU" — AU"Y = R — R" + (M}, — My)AU", (1.15)
and splitting in element contributions gives:

MY (AECT) =3 (RVT — RMY 43" (M — M) AU (1.16)

T T T

So, locally to the triangle T

AECT = M7 (R = RM 4 (M} - M}y) AU") (1.17)
and it is easy to verify that
> AECT = AEC (1.18)
T
is satisfied. So, for each node ¢ of the triangle T
At
T _ 1T h,T T T h
ABC] = o (R = RM" + (M — M) AU} (1.19)



5. Limit or "correct" the AECY such that U™, computed in the next step, is free of
extrema not also found in U' or U™:

AECH™ =y« AECT, 0<y’ <1 (1.20)
6. Apply the limited AEC]""™ for the update:
Urtt = UL+ Y AEC]™ (1.21)
T

It is clear that the critical point is the limiting step, in [2] the following procedure was
used and, at least for scalar problems, fully monotone results were obtained:

1. Compute the maximum (minimum) nodal value U between U™ and U':

r ={ e o (1.2

¢ min
2. Compute the maximum (minimum) nodal value of elements T:
* max * * *
Ur = { min (Ux, Ug, UZ) (1.23)
where A, B, C represents the nodes of element T

3. Compute the maximum (minimum) U of all elements surrounding node i, node i in-
cluded:

min max
0 = {0 U (124
where 1,2, ..., m represent the elements surrounding node i;

4. Compute the node-cell limiter:

[ymer _ Ul
77/}1? - p 1; NT (1.25)
ZTED(p) max(O, (Up - Up) )
p =1, ], k represents the nodes of the cell T’
5. Compute the cell limiter as the minimum on the nodes:
¢" = min (¢]) (1.26)

p=t,j,k

More recently in [5| an alternative way was suggested to improve the accuracy in the
computation of the solution of time dependent advection problems. The use of a second
order time accurate scheme based on a time Lax Wendroff time-stepping is proposed, and
monotonicity is ensured by the use of an FCT procedure. Goal of the present work is to
further investigate this approach, to implement the time accurate Lax Wendroff scheme in
the IcARus solver and to compare the results with the implicit consistent formulation used
in [2].



Part 1

The 1-D and 2-D convection equation






2. FLUCTUATION SPLITTING SCHEMES ON TRIANGULAR
MESHES

In the first part of this work, the homogeneous advection equation in 1-D and 2D,

ou
EJFA Vu =0, (2.1)

is solved by residual distribution methods. The solution is approximated continuously over
the elements by piecewise linear (P1) shape functions.

The cell "fluctuation" ¢ is defined as

ou

o == [ SLdo= / - Vu dQ (2.2)
Qr

The nodal residual is then computed by re-distributing (splitting) the fluctuation to the
vertices of the cell by distribution coefficients (;:

R, = Z Lot = Z ol (2.3)

For consistency, the I must sum up to one within an element.

The general semi-discretization of equation (2.1) is then:

> S G A 2.9

where in the first term on the left hand side a generic mass matrix appears (see sect. 2.1).

For the actual distribution, an inflow parameter k; = % X n; is defined (fig. 2.1), where
ny is the scaled inward normal on the corresponding side.

3

k,>0
k,<0
A
1

k>0
’ 2

Fig. 2.1 — Definition of inflow parameters



Using these concepts we can design schemes such that they satisfy certain desirable
properties:

e Upwinding (U): A scheme is said to be upwind when contributions are only distributed
to nodes opposite an inflow edge, i.e. to downstream nodes:

kl§0<:>ﬂl:0 (25)

e Positivity (P): Writing the nodal residual contribution as
oi =Bo" =3 Chu, (2.6)
J

a scheme is locally positive when Cj; < 0Vj # ¢ and Cy > 0. The positivity property
guarantees that no new local extrema are formed in the solution and therefore precludes
spurious oscillations.

e Linearity Preservation (LP): A scheme is said to possess the LP property if the dis-

tribution coefficients 37 remain bounded for ¢ — 0.

Godunov’s theorem states that linear schemes (i.e. schemes for which the distribution does
not depend on the solution itself) cannot be LP and P at the same time.

2.1 Mass matrix formulations

For the mass matrix in equation 2.4 two different formulations have been used in this
work: consistent and inconsistent. The latter is the one mostly used for steady state compu-
tations, even when implicit time integration is used.

The consistent mass matrix has been derived in [1] based on a finite element interpreta-
tion of the residual distribution schemes.lIt is defined by the following integral:

where NN; is the linear shape function used to approximate the solution and the test function
w; 1s defined as follows:

1
Integration of the right hand side of equation 2.7 leads to the consistent mass matrix:

1 T 1 1 T 1 1 T 1
et -3 ith -5 1 +hl—3

(2.9)

W=

1 1 1 1 1 1 1 1
my = —. Z+52_§ §_|_62_§ Z_'_BQ_

1 T 1 1 T 1 1 T 1

Z+ﬁ3_§ Z+ﬂ3_§ 5+ﬂ3_§

8



The inconsistent mass matrix is obtained by lumping to the diagonal all the elements on
a given column:

W=

L,inc,T
mij,mc, — ST . 0

o=
je)
I
[

(2.10)

W=

2.2 Time integration

In the course of this work two time integration strategies will be compared: the implicit
Crank-Nicolson time-stepping with consistent mass matrix (equation (2.11)) used by Ferrante
in [2] and the explicit Lax Wendroff time-stepping with inconsistent mass matrix proposed
in [5] (equation (2.12)):

M J n n,
[Kt + 5] AU" = —R"; (2.11)
I‘IL n __ n

where J is the jacobian of the residual:

[3],. = %Auj. (2.13)

4 an

2.3 Review of existing space discretization schemes

Here follows a short review of the space discretization schemes previously used and of
their properties. In [1] and |2], it was demonstrated that for LP schemes second order of
accuracy in time can only be obtained if they are combined with the consistent mass matrix
this however makes the schemes implicit in time. A deeper analysis is made on the Lax-
Wendroff scheme to show that it could be a possible alternative to the consistent formulation
for time accurate computations.

2.3.1 LDA scheme

The "low diffusion A", or LDA scheme is a linear upwind scheme that is linearity pre-
serving and therefore not positive. Its distribution coefficients are:

ﬁ_T,LDA _ maz (0, k;)

' -~ Y, maz(0, k;) (2.14)

9



Although second order in the steady case this LP scheme has been shown in [1] to be only
first order accurate for time dependent problems if an inconsistent mass matrix is used, so in
[2] the consistent formulation was used to build the high order scheme for the FCT procedure.

2.3.2 N scheme

The N (for narrow) scheme is the optimum linear first order positive scheme with respect
to minimizing crosswise diffusion. Its fluctuation contributions to the vertices are:

O =~k (k) A (g — ), (2.15)
J J

where k" = maz(k;,0), k7 = min(k;,0).

The N scheme can be proven to be positive [7] and therefore cannot be linearity preserv-
ing, so only first order of accuracy can be obtained from it also for steady computations, for
this reason it is worthless to try a consistent second order time integration for this scheme,
but it can be used as a low order monotone computation in the FCT procedure.

2.3.3 PSI scheme

It can be shown that by applying a limiter function ¢, nonlinear monotone P and LP
schemes can be generated from the underlying linear schemes [7]:

T d)éinear)
Bi =¢ <—¢T (2.16)

Applying the min-mod limiter to the N-scheme defines the PSI (positive streamwise invariant)
scheme. Also the PSI scheme shows only first order of accuracy for transient problems when
combined with an inconsistent mass matrix, but being positive it can be used as a low
order monotone scheme in the FCT procedure. When used in combination with a second
order time integration with consistent mass matrix second order of accuracy is obtained but
monotonicity is lost due to the non positive definiteness of the inverse mass matrix.

2.4 The time accurate Lax-Wendroff scheme

The fluctuation splitting formulation of the 2-D Lax-Wendroff scheme can be found in
[7]; the distribution coefficient for node i is given by:

row _ 1, Al

k;. 2.1
e (217)

If At is a cell based time-step, only first order of accuracy in time is obtained, unless a
consistent formulation is used. In the next part of the work this formulation will be called

10



the local formulation of Lax-Wendroff scheme. The time accurate version of the scheme is
produced with the choice Aty = At, a global time-step deriving from the time discretization.

In one space dimension and on an equally spaced mesh it can be easily proven that this
scheme has the following modified equation [8]:

A
up + Aug + |6—|A:L"2 (1 — CFLQ) Uggz + ... =0 (2.18)
where u; + Au, = 0 is the 1-D formulation of equation 2.1 and CFL is the Courant number:
AAL
FL=—. 2.1
C AL (2.19)

From the analysis of the modified equation is clear that the scheme is second order in
time, but it is important to underline that equation 2.18 can be derived only under the
assumption that the time-step present in the Lax-Wendroff dissipation term is equal to the
time-step arising from the time discretization. So as previously mentioned this is a necessary
condition to have second order of accuracy in time for this scheme.

A similar equation in 2-D can be obtained on a regular mesh like the one in figure 5.6.
The configuration considered is depicted in figure 2.2, and Az = Ay = h will be assumed .

>
<

Fig. 2.2 — Regular mesh configuration around node ¢

For the normals one has:
ﬁA:h(l;*l), ﬁB:h(O;l), T_L’C:h(*l;O); (220)

11



and for the advection velocity:

CFL h
At

being At the timestep coming from the time discretization and

X =

(cosd ; sind), (2.21)

(2.22)

The fluctuations ¢’ can be written as:
¢T1 = kAUZ + kBu] + kcuk;

¢ = —kcu; — kauy — kpug;
¢T3 = kBUi + k)cul + kAUm;
Tt = —kau; — kptp — ko
¢T5 = kcui + kAun + kBUO;
¢ = —kpu; — koo — kauy;
where

ks = %Lthz(cosd — sind);

kg = %hszin 0;

ke = —=5%;~ cosd.

Using the notation introduced in the previous lines the Lax Wendroff distribution coef-
ficients can be written as:

/B_Tl _1 + CFL (cosd—sind) ,
i 3 2 )
/B_Tz 1 + CFL cosd.
i 3 2 )
gl — L 4 CFL sind.
i 3 2 )
,6~T4 _1 + CFL (—cosd+sind) ,
i 3 2 )
4T — 1 _ CFL cosd.
i 3 2 ’
/8~T6 _ 1 __ CFL sind
i T3 2 )

In order to obtain a modified equation the following Taylor expansions around node i are
taken, in space:
W =y — by — huy + g, + Dy, + W2y — B, — Py, — B, — By, + O(hY);
n? B 4
U = u; — iy + 3 5 Uyy — K Tty + O(hY);
Up = U; —l— hug + By + vy, + O(RY);
Uy = u; + hug + huy ; tgs + B gy WPy + Pt + By + By + B, + O(RY);
wj = u; + hay + Ly, + By, + O(hY);
Up = U; — huy + ”2—2um }g—suzm + O(hY);
and in time:
Wt =l 4w At Ay, 4 —um + O(Ath).

The discretized form of equation (2.1) for explicit timestepping with mass lumping is:
At
wt = S (2.23)
Si T

12



where the median dual cell area S; is S; = ’;—2 for the grid chosen.

It is easy to check that the following identities hold:

X-Vu= CELA (1, 086 + uy sin d) ;
v (X . Vu) = CFAL; h? (um c0s? § + 1wy, sin® § + 2wy, sin § cos 5) :

AV (Ugy + Au) = CFL B (U COS & 4 Uy COS § + Uy COS § + Uy SIN G + Uy SIS + 2y, SINI) 5

where A(-) is the laplaman operator.

Substituting the Taylor expansions in equation (2.23) and using the previous identities,

one gets:

At At - At? h? -
w4 XV = —7utt+—)\ v (X Vu)—?um——)\ V (tgy + D)+ O(AE, h?). (2.24)

In order to eliminate the second order time derivative the following procedure can be

used:

1. Take the time derivative of equation (2.24) : (LHS), = (RHS), — equation 1;
2. Take the gradient of equation (2.24) : V(LHS) =V (RHS);
3. Multiply by —X :=X-V (LHS) = =X - V (RHS) — equation 2;

4. Sum equation 1 and equation 2 and solve for uy.

Following this procedure one obtains:

At At - - At? CFL* h? .
—7’&” == ——)\ \% ()\ . VU) + TUttt T)\ Vv ()\ Vut)
At hCFL. N h? CFL .
+O(A, h*) (2.25)
In the previous equation the CFL number and the unit vector A= ﬁ have been introduced in

almost all the terms except the first term on the right hand side to underline the cancellation
with the first order term on the right hand side of equation (2.24).

Similarly it can be proven that
Afuy =  CFL*h* X-V (A V) + O(A#, h?) =
—CFL W | X[ A~V [A-V (- Vu)| + O(AE, ¥), (2.26)

Eliminating all the time derivatives and neglecting the higher order terms (i.e. O(3) )
the following 2-D modified equation is obtained:

IIAII h? {

u+ X Vu CFLZ AV [A-V (X Vu)| = XV (ugy + Au) } + O(AE, 1) (2.27)

13



It is easy to verify that in 1-D equation 2.27 reduces to equation 2.18.

So also in 2-D second order of accuracy (at least on the grid considered) should be
guaranteed using the Lax Wendroff scheme for discretizing the scalar convection equation.

A 2-D grid convergence study has been made for both a steady and unsteady scalar
problem in [6], using the local time-step in the distribution coefficient, while in [5] a similar
unsteady testcase has been computed using the time accurate version of the scheme. In both
cases explicit time-stepping was used and, although the local formulation gave truly second
order of accuracy for the steady computations, only first order for the unsteady case was
found, while second order of accuracy was found in |5|, confirming the analysis made here.

In the next chapters the use of the time accurate version of the Lax-Wendroff scheme as
a possible alternative to the implicit-consistent formulation of LP schemes for time accurate
computations will be tested on several scalar linear and non-linear problems.

14



3. VALIDATION RESULTS

The 2-D solver IcARus was modified to implement the option for explicit time integration
in the unsteady case and the time accurate version of the Lax Wendroff scheme. To check
the modifications made, tests were carried out on two scalar testcases and compared with
reference [5].

3.1 The rotating cosine hill

The rotating cosine hill is a classical test-case for numerical schemes of the 2D linear
unsteady advection equation (2.1). The test consists in the transport in 2D of a "cloud" of
cosine shape with a velocity field of constant angular velocity, as shown in figure 3.1. This

(-1,1) (1,1

u(t=0)=(1+cos(4 mtr ))/2

f r

A

A

-1/2,0)
s ()2 X
©

_

(-1-1 (1.-1)

Fig. 3.1 — Rotating cone testcase

testcase was already implemented on IcARus. The only change made was to modify the
advection speed to the same form as used in [5]:

X = [2my, —27x]. (3.1)

The computation was made on a 64x64 diamond grid (fig. 3.2), fixing the ratio ﬁ—; = 0.08
like in the reference. The results using the Lax Wendroff scheme and explicit time-stepping
after one revolution are compared in figures 3.3 and 3.4. Although the height of the hill is
well preserved (82% of the initial height) the need of a limiting procedure is clear from figure

3.4 since the solution is not oscillation free.

15



0.75

0.5

-1 -0.5 0 0.5 1
X

Fig. 3.2 — 64x64 diamond grid

3.2 The rotating cylinder

This testcase differs from the previous only for the initial profile, in fact the initial
solution is

=1 r<0.25, (3.2)

where
r=/(z+0.5)% +y2 (3.3)

like in the previous testcase. The same advection field of the cosine hill problem is assumed
and the computation has been made on the grid of figure 3.2 fixing again the ratio % =0.08
like in the reference. The results obtained here and in the reference paper are displayed in
figure 3.5 and 3.6.

From this testcase it is even more clear than before, that going on with the Lax Wen-
droff scheme requires a limiting procedure to be implemented: an extension to the explicit
inconsistent discretization of the FCT used by Ferrante will be adopted.

16



0.75 F
05F

0.25

-0.25
0.5

0.75F

Fig. 3.3 — Cosine hill: solution obtained
in reference [5]

Fig. 3.4 — Cosine hill: solution obtained
with TcARus

Y

025

-0.25
0.5

075 F

'
-y
'
T

Fig. 3.5 — Rotating cylinder: solution ob-
tained in reference |[5]
Fig. 3.6 — Rotating cylinder: solution ob-
tained with IcARus
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4. FCT PROCEDURE IN THE EXPLICIT INCONSISTENT CASE

To implement the FCT in the explicit inconsistent case the procedure reported in the

introduction was slightly modified, but no changes were made to the limiting algorithm. The

procedure adopted is the following;:

1. Compute AU" and AU', the global high and low order increment using the explicit

lumped formulation:
AUP

S; — _Rh
At ’
AU}
S —L = _R!
At ’
or in global notation:
M AU" = —RM
MAU' = —R'
AU" and AU' are stored.
2. Compute the low order update and store it:
U'=U"+ AU

3. Split AEC, the nodal antidiffusive correction:
AEC = AU" — AU
in element contributions. From (4.3) and (4.4) it gives:
Mp(AU" — AU" = R — R"

and splitting in element contributions gives:

Mg Y (AU — AUMT) = 3 (R — R™T).

T T

So for each node 7 of the triangle 7"

AECT = § {RST - RITY

13

(4.1)

(4.2)

(4.7)

(4.8)

(4.9)

4. Limit or "correct" the AECT such that U""!, computed in the next step, is free of

extrema not also found in U' or U™:

AECH"™ =T« AECT, 0<y? <1

18

(4.10)



5. Apply the limited AECH"™ for the update:

Urtt = UL+ Y AECH™ (4.11)
T

It is clear that in the explicit inconsistent case also the FCT procedure is computationally
cheaper because no matrix products must be evaluated.
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5. RESULTS

As a first test in order to validate the implementation on IcARus of the explicit incon-
sistent FCT, a comparison is again made with reference [5| where use of the same algorithm
is made, but with a slightly less strict limiting algorithm. Then results for several scalar test-
cases are presented and comparisons are made between the inconsistent formulation using
the time accurate Lax Wendroff scheme and the consistent one. The following schemes will
be considered:

1. FCT : Lax Wendroff inconsistent as high order and N scheme as low order;
2. FCT : Lax Wendroff inconsistent as high order and PSI scheme as low order;
3. FCT : LDA consistent as high order and N scheme as low order;

4. FCT : LDA consistent as high order and PSI scheme as low order.

The consistent schemes (consistent FCT) will be used in combination with the implicit Crank-
Nicholson timestepping, while only explicit timestepping will be adopted for the inconsistent
FCT.

5.1 Validation

In figure 5.1, 5.2, 5.3 and 5.4 the results are compared after one revolution for the cosine
hill and rotating cylinder testcases, using the grid of figure 3.2. The time accurate version
of the Lax Wendroff scheme is used as high order and the PSI scheme as low order method.
As noted by the authors of |5] the solutions obtained for the cosine hill with the different
limiters are almost indistinguishable, the only difference is in the cone height that is slightly
less here (74% instead of 76% of the initial height), but this is natural because of the more
strict limiting used. It is interesting to underline that the solution in not only oscillation
free, but also the phase lag of the Lax Wendroff scheme is partially corrected in the FCT
procedure.

20



Fig. 5.1 — Cosine hill: solution obtained
in reference |5

Fig. 5.3 — Rotating cylinder: solution ob-
tained in reference |[5]
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5.2 Rotating cosine hill

As a first step the sensitivity to the mesh topology of the algorithm used was tested
running this testcase on three different types of grids:

1. the 80x80 regular grid of figure 5.6;
2. an 80x80 diamond grid;

3. the isotropic grid of figure 5.5 with 80 cells on each boundary.

The results after one revolution are displayed in figures from 5.7 to 5.12. It is clear that the
solution obtained is almost the same on these grids, the better result on the isotropic one is
mostly due to the fact that although the number of boundary cells is the same of the other
grids, the total number of nodes is larger for this one. As expected the use of the PSI as low
order scheme gives better results than the use of the N scheme, being the PSI scheme less
diffusive.

The results obtained on the 80x80 diamond grid with the consistent implicit formulation
are those in figure 5.13 and 5.14. The computations were carried out by fixing the ratio
% = 0.08 like in the explicit case. Comparing with figures 5.9 and 5.10 it is evident that
the solutions are comparable if the final height of the hill is used to judge their quality.
Actually the implicit solutions do not suffer of the phase lag still present in the inconsistent
FCT computations, so they are better as can be seen in figures 5.15 and 5.16. Especially the
consistent solution obtained using the PSI scheme for the low order computations is a really
good one for both the height preserving and global agreement with the exact solution.
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Fig. 5.15 — Sections at y = 0 of the solutions obtained using the N scheme as low order
scheme

Exact

v s LDAco.+PSI

oo LWinc.+PSI

0.33 -

Fig. 5.16 — Sections at y = 0 of the solutions obtained using the PSI scheme as low order
scheme
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5.3 Rotating cylinder

The consistent and inconsistent formulation were compared also on this testcase. The
80x80 diamond grid has been used and the same ratio ﬁ—fc as in the previous case has been
fixed. The result after one revolution is displayed in the figures from 5.17 to 5.22. Again
the consistent and inconsistent results are close if a section at y = 0 is considered, but the
former are better because of the complete absence of phase lag like in the rotating cosine hill
case. Again the result obtained with consistent formulation and PSI scheme is really good
being globally aximmetric. From the results of this testcase it is really evident that a phase
lag is still present on the solution obtained using the Lax Wendroff scheme with explicit
timestepping and mass lumping. Probably this problem could be cured using a finer grid,but

this will make the computation less cheap.
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0.10 0.00
0.20 0.10
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® N o o s N =
® N o oo on N =

Fig. 5.17 - FCT : LDA consistent and

N inconsistent with Crank- Fig. 5.18 — FCT : L-W inconsistent and N

Nicolson timestepping mconsistent
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5.4 1-D linear step advection

Another typical scalar test-case for numerical schemes is the 1D linear advection of a
step function. The equation (2.1) with A = (a,0) gives the 1D linear wave equation:

% + a% =0 (5.1)
where the convection speed a is a constant.
If the following initial solution is given
u(e,t = 0) = uo(x) = f(x) (5.2
the exact solution is
u= f(z— at). (5.3)

In this section the convection of a discontinuity in the positive x direction is analyzed.
The initial condition (¢ = 0) is the following:

{ u(z,0) =1 r <5 (5.4)

u(z,0) =0 x>5

The grid used for this test is a 2D regular triangular mesh with 81x5 points(fig.5.23).
The CFL adopted (referred to wave speed a = 1) is .95, and the time level at which the
solution is shown is 2.95, reached after 25 constant time steps.

Fig. 5.23 — Grid used for the pseudo 1-D computations

Although the computation was not truly 1-D, all the upwind lumped schemes gave the
same solution on this problem (fig. 5.24), because of the fact that on this grid all the triangles
are 1-target and in this situation these schemes are all equivalent to the 1-D first order upwind
scheme. For this reason there are no differences in the solutions obtained with FCT using
either the N scheme as low order or the PSI scheme (fig. 5.25).

The solution obtained by Ferrante using the FCT and the LDA consistent scheme as
high order with Crank-Nicolson timestepping is reported in figure 5.26. The results of the
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consistent implicit formulation and of the inconsistent explicit method are really close, except
for the smearing near the corner present in the latter due to the fact that for this CFL the
Lax Wendroff scheme is nearly unstable, and the FCT gives the low order solutions where
strong oscillations are present.

T T T T T
0.0 33 6.7 10.0
X

1.20 1.20
] o
ors 0.734
0.274
—-0.20 T T T T T
-0.20 . . . . . 0.0 3.3 < 6.7 10.0
Fig. 5.25 - FCT : L-W inconsistent and N Fig. 5.26 - FCT : LDA consistent and N
(or PSI) inconsistent, ¢ = 2.95 (or PSI) inconsistent, ¢ = 2.95
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5.5 1D Burgers’ equation

The inviscid Burgers’ equation is a non linear scalar advection equation. It is written in
the standard form:

ou 0 [u?
5o () -0 (55
or in quasi linear form:
ou ou

The testcase considered here is the same found in [2], i.e. an expansion fan developing from
the initial solution:

{ uy, 5 r<50,t=0 (5.7)

ugr = 0.02 z>5.0,t=0
This test case has been computed using the 2D code on a 2D regular triangular mesh (fig.5.23)

imposing the y component of the velocity vector to be zero and applying the conservative
linearization:

= 1 oF OF -
)\:—//—dQ:—’:’lI 5.8
St JJr Ou ou () = (58)
where
— u2
F(u) = (5,0> (5.9)
and the average state @ over a triangular cell is simply given by the arithmetic average:

= W (5.10)

since ?9_5 is linear in u.

The CFL adopted (referred to the maximum absolute value of speed 1.5) is .95, and the
time level at which we show the solution is 2.77 after 35 constant time steps.

Like in the 1-D step advection testcase all the lumped upwind schemes gave the same
solution (fig. 5.27), while the results with the FCT using the time accurate Lax Wendroff
scheme are in figure 5.28. The result obtained in [2| is reported in figure 5.29. For this
testcase consistent and inconsistent formulations give nearly the same solution, although the
implicit computations give almost the exact solution.
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Part 11

2D Euler equations
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1. 2D EULER EQUATIONS

The unsteady inviscid compressible flows are governed by the unsteady Euler equations,
which in 2D are a hyperbolic non-linear and non-diagonalizable system. This system of
equations expresses the conservation of mass, momentum and energy in a compressible,
inviscid and non-conducting flow. In conservative form and in two dimensions:

ou OJOF 0G
el My | 1.1
o Tor oy (1)
where U is the vector of conserved variables, and F and G the inviscid fluxes,
P pu pv
pu pu? +p puv
U — , F — , G = 2 (12)
pU puUv pv-+p
pE puH pvH

p represents the gas density, u and v are the z- and y-components of the velocity vector u, p
is the static pressure, and F and H are the specific total energy and specific total enthalpy.
These flow quantities are related by the following equation,

H=E+"ZL (1.3)
p
The system is closed by the equation of state for a perfect gas,
1
p=(r=1p|E- S0 +47). (14)

where v is the adiabatic exponent, equal to 1.4 for air at moderate temperatures. The speed
of sound ¢ needed to compute the Mach number M = ||i]|/¢, is given by

c=¢%¥ (1.5)

and is related to H by the following identity:

&:@-1%H-%@ﬁuﬁ] (1.6)

Quasi-linear forms
In conservative variables

To solve the 2-D Euler equations a matrix approach (see ref. [11]) has been used on a
quasi-linear formulation of the system. The quasi-linear form in terms of the conservative

variables is given by:

ou ou ou
— +A—+B—= 1.
ot * ox + oy 0 (17)

where A = 0F /0U and B = 0G/0U are the Jacobian matrices.
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In symmetrizing variables

Although the jacobian in equation (1.7) can be computed analytically it is more conve-
nient to solve the system using a different set of variables given by:

dp/ pa
0Q = ?)Z = A0U. (1.8)
dp — a*dp
being
_9Q
A= 90" (1.9)

Q is called the vector of symmetrizing variables, since upon this transformation, a sym-
metric system is obtained:

0Q 0Q .0Q
—4+A—=4+B—=0 1.10
ot + Ox + oy ’ (1.10)
where A = AAA" and B = ABA™', and are given by
u a 0 0 v 0 a O
< a u 0 0 o 0 v 00
A = B = 1.11
0 0 O a 0 v 0 ( )
0 0 0 u 0 0 0 v

With this choice of variables the last equation decouples from the others (see ref. [13|)
giving the following scalar convection equation:

oS
— VS =0 1.12
Y +u-V , ( )

where u = (u, v) is the velocity vector and S is related to the thermodynamic entropy:

1 1
0S =0p — ?819 = —;pa(logs). (1.13)

Linearization

The linearization used for the computation of the fluxes is based on the assumption that
the parameter vector

Z=p(1,uv, H)" (1.14)

varies linearly over each element. Since F and G are quadratic in the components of Z the
following relations hold for the linearized fluxes:

~ 1 OF
F,= -+ F,dQ)= || Z;,(1.1
=g [ Fad <8Z>2 - (115)
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o IG
G, = S—T//T G,dQ) = <a—z>2zy, (1.16)

where Z, and Z, are constant over a cell and

2+ 72+ 7Z;
B S

7= (1.17)

For the fluctuation one has
OF oG
T _ _
o —//T(Fz—l—Gy) dQ) = Sy KaZ)iZw—i—(aZ)EZyl (1.18)

Nodal updating

The computation of the nodal residual is made in symmetrizing variables and then it is
transformed back in conservative variables, i.e.:

T _ T T
(ﬁi,symm - [Bi,symm@symm7 (119)
with
@ .= (A2 (1.20)

finally the nodal residual in conservative variables is computed as:

T ou T
= —_— .
@i — ( E >/Z\(I)l,symm‘ (121)

The reasons for this choice are:

1. The distribution matrices [BZT usually depend on the linearized jacobian that are easier
to handle in symmetrizing variables.

2. The decoupling of the entropy equation allows the use of a pure scalar distribution
scheme for this variable .

The explicit time updating for the node 7 is:

U o - 2 > @/, (1.22)
Si T

The description of the consistent formulation of the space discretization for a system of
PDEs can be found in [2| while for the implicit time integration one can refer to |14].
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2. SYSTEM LAX WENDROFF SCHEME

To test the Lax Wendroff scheme on time dependent problems involving the Fuler equa-
tions, the time accurate version of the method has to be extended to matrix schemes .This
has been made on IcARus where only the local version (see ref. [11]|) was implemented before.
On triangles, the distribution matrices that generalize the scalar Lax Wendroff distribution
coefficient are (ref. |7]):

BPH 1y L A (A 4By, (2.1)
4ST
where 71; = n”L + ni,yfy are the inward pointing scaled normals, p is the dimension of the
system to be solved (i.e. the number of variables that in our case is 3, since the entropy
equation is solved by a scalar scheme). A and B are the jacobian matrices computed in the
current system of variables, so in our case they are the jacobian present in equation (1.10).

No changes were made to the other schemes for which one can refer to [11].
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3. FCT FOR SYSTEMS

The extension of the FCT procedure to non-linear systems is not straightforward. The
way it was implemented on IcARus follows the approach found in [12] of computing the
limiter as the minimum between a density limiter and an energy limiter. No changes were
made to this implementation for the computations carried out here, but the results show that
improvement of the limiting must be performed.

A possible method involves the use of the limiting procedure on the decoupled equation
1.12. In fact, since all the results of the first part of this report proved that the FCT
guarantees fully monotone results for scalar advection problems. Hence, computing the
limiter using the entropy equation (1.12) a monotone solution should be obtained at least
for this variable. Because of time restrictions this alternative approach could not be tested
in the course of this work.

39



4. RESULTS

Two testcases have been considered to compare the consistent and inconsistent formula-
tions on the Euler equations.

The first testcase is a 1-D expansion wave. Although this is a 1-D problem the compu-
tation was made on a 2-D triangular mesh (fig. 5.23) using periodic boundary conditions to
avoid gradients in the y direction. An exact solution of this testcase is known and can be
found in [9]. The results will be compared also to this solution.

The second computation made is the Mach 3 wind tunnel with a foreward facing step
testcase of reference [10].The initial conditions and the set-up of the computations were the
same of the reference, except for the fact that there was no special treatment for the corner
here.

Both testcases were chosen to test the accuracy of the scheme as well as its stability in
the presence of strong discontinuities in the flow, and in both the more diffusive N scheme is
used for the low order computations.

4.1 Rarefraction wave

The flow generated from the motion of a piston receding from an initially resting gas is
the test considered here. The piston is instantaneously accelerated from zero to a constant
velocity V' = ug causing an expansion wave to occur in the gas. The exact algebraic solution
can be found in [9] or in 2], while the initial conditions, the speed of the piston and the CFL
number were chosen as in [2].

Results are displayed in figures from 4.1 to 4.4 corresponding to time ¢ = 1.90, reached
with 35 iterations, with a constant timestep corresponding to a CFL number referred to the
speed of the piston (V =1), CFL ~ 0.4. It is evident that the two solutions are really close
to each other and both are close to the exact solution. The consistent formulation with FCT
gives again a better solution, closer to the analytical one, but the time accurate Lax Wendroff
scheme with FCT gives comparable results although it is used with the inconsistent mass
matrix formulation and explicit time-stepping. The solution in not monotone for both the
consistent and inconsistent formulations and this could be due to two factors:

1. Already in [2| it was shown that the low order N system scheme is unexpectedly not
completely monotone on this testcase;

2. The FCT procedure is acting on variables figuring in non-linear coupled equations and
for strong discontinuities it is not able to ensure the complete monotonicity of the
results (see ref. [12]).

40



[BV [ Teseprona [T

1.2

1.1 Triangles : FCT inconsistent

Circles : FCT consistent

5

0.9
0.8
3.0.7
006
205
0.4
0.3
0.2
0.1

Fig. 4.1 — Velocity u : consistent and inconsistent results at ¢ = 1.90 compared with the
exact solution
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Fig. 4.2 — Mach : consistent and inconsistent results at ¢ = 1.90 compared with the exact
solution
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4.2 Mach 3 wind tunnel with a foreward facing step

The unsteady shock structures developing from a Mach 3 incoming flow in a wind tunnel
with a step is the object of this section. Inviscid wall boundary conditions were imposed all
along the step and the upper wall, while supersonic inlet and outlet conditions were given on
the inflow and outflow edges. For a more accurate description of the testcase one can refer
to [10] or to [2].

The computation was made on the same fine grid used in [2|, see (figure 4.5), fixing the
same timestep At = 1.25- 1073, with a CFL number referred to the incoming uniform flow
(u=3), CFL ~ 0.3. The results (density contours) obtained with the FCT using inconsistent
Lax Wendroff and N scheme with explicit timestepping are displayed in figures from 4.6 on,
together with the solution of the reference |10| and with the solution obtained with the FCT
using consistent LDA and N scheme with Crank-Nicolson implicit timestepping.

The solution obtained with explicit inconsistent FCT (inconsistent Lax Wendroff and N
scheme with explicit timestepping) is not bad also compared to the reference solution.The
wiggles in the contour plots could be determined by the weak limiting of the FCT proce-
dure in presence of strong discontinuities and probably by the fact that if a fixed timestep
is used, choosing it by a CFL condition based on the incoming flow and not on the actual
local value of the velocity, during the computation the CFL condition could be violated lo-
cally . To overcome this problem in explicit computations an adaptive timestepping could
be implemented, using as a global timestep the minimum between the local timesteps com-
puted imposing locally the CFL condition. The same problem could be at the origin of the
instabilities developing in the consistent computation, since in the FCT the low order is com-
puted with explicit timestepping, and if the monotonicity of the low order scheme is lost the
monotonicity of the global method is compromised. Pressure and density profiles show that
the solution obtained with the inconsistent FCT and the one obtained with the consistent
mass matrix formulation are close, although the implicit computations give once more better
results, as can be seen from the contour plots. Besides, pressure and density profiles profiles
show the really good shock capturing properties of the algorithms used, although is evident
that some more work should be done to improve the monotonicity of the schemes, since also
for this testcase the FCT works on coupled non-linear equations and, as already said, it is
not able to ensure the monotonicity of the solution.
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Fig. 4.5 — Grid used for the Mach 3 wind tunnel testcase: 17320 nodes, 33998 cells
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Fig. 4.6 — Reference solution [10], ¢ = 0.5
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Fig. 4.7 — FCT : L-W inconsistent and N scheme with explicit timestepping, ¢t = 0.5
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Fig. 4.8 — FCT: consistent LDA with N scheme and Crank-Nicolson timestepping, ¢t = 0.5
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Fig. 4.9 — Pressure profile at y = 0.2: comparison between consistent FCT (LDA cons. and
N) and inconsistent FCT (L-W incons. and N) at ¢ = 0.5
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Fig. 4.10 Density profile at y = 0.2: comparison between consistent FCT (LDA cons. and
N) and inconsistent FCT (L-W incons. and N) at ¢t = 0.5
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Fig. 4.11 — Reference solution [10], t = 1.0
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Fig. 4.13 — FCT: consistent LDA with N scheme and Crank-Nicolson timestepping, ¢t = 1.0
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Fig. 4.14 — Pressure profile on the upper wall: comparison between consistent FCT (LDA
cons. and N) and inconsistent FCT (L-W incons. and N) at ¢t = 1.0
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Fig. 4.15 Density profile on the upper wall: comparison between consistent FCT (LDA
cons. and N) and inconsistent FCT (L-W incons. and N) at ¢t = 1.0
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Fig. 4.16 — Reference solution [10], ¢ = 3.0
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Fig. 4.17 — FCT : L-W inconsistent and N scheme with explicit timestepping, t = 3.0
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Fig. 4.18 — FCT: consistent LDA with N scheme and Crank-Nicolson timestepping, ¢ = 3.0
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Fig. 4.19 — Pressure profiles at y = 0.2,
t=3.0
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Fig. 4.20 — Density profilesat y = 0.2, ¢t =
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Fig. 4.23 — Reference solution [10], t = 4.0
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Fig. 4.24 FCT : L-W inconsistent and N scheme with explicit timestepping, t = 4.0
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Fig. 4.25 FCT: consistent LDA with N scheme and Crank-Nicolson timestepping, t = 4.0
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Fig. 4.26 — Pressure profiles at y = 0.2,
t=4.0
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Fig. 4.28 — Pressure profiles on the upper
wall, t = 4.0
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5. CONCLUSION

An alternative approach for making time accurate computations using fluctuation split-
ting schemes, based on the use of a Lax Wendroff explicit timestepping, has been tested and
compared to the results obtained with an implicit formulation using the consistent mass ma-
trix. The results show that although the explicit formulation gives acceptable results on all
the problems computed, the implicit method is always more accurate and often able to give
almost the exact solution, at least for scalar computations. Improvements in the solutions
obtained with the explicit method could be obtained using finer grids. This however will
make the computations more expensive losing the advantage of the explicit timestepping.

On the Euler equations again the implicit method is slightly better than the explicit
lumped formulation, but both suffer of a weak limiting of the FCT on coupled non-linear
equation, especially in presence of strong discontinuities.

Possible improvements can be made immediately on the code that have not been done
here because of the time restrictions:

1. Implementation of an adaptive timestepping based on finding the minimum between
the timesteps computed by a locally imposed CFL condition, in order to improve the
stability of the explicit low order scheme ;

2. Implementation of the limiting procedure in symmetrizing variables on the decoupled
entropy equation (1.12);since on scalar equations the FCT procedure ensures monotonic
behavior also in presence of discontinuities, this should improve the monotonicity for
Euler equations;

3. Investigation of the possibility of an alternative formulation of the Kuler equations in
wich more decoupled equations appear (like in the steady preconditioned case) so that
the limiting can be done on these equations.
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