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We propose a new computational approach for embedded boundary simulations of

hyperbolic systems and, in particular, the linear wave equations and the nonlinear shallow

water equations. The proposed approach belongs to the class of surrogate/approximate

boundary algorithms and is based on the idea of shifting the location where boundary

conditions are applied from the true to a surrogate boundary. Accordingly, boundary

conditions, enforced weakly, are appropriately modified to preserve optimal error convergence

rates. This framework is applied here in the setting of a stabilized finite element method,

even though other spatial discretization techniques could have been employed. Accuracy,

stability and robustness of the proposed method are tested by means of an extensive set of

computational experiments for the acoustic wave propagation equations and shallow water

equations. Comparisons with standard weak boundary conditions imposed on body-fitted

grids, which conform to the geometry of the computational domain boundaries, are also

presented.

 2018 Elsevier Inc. All rights reserved.

1. Introduction

In [31], the authors introduced an embedded method for the Poisson and Stokes problems, using an approximate (surro-

gate) domain representation and shifting the location where boundary conditions are imposed from the true to the surrogate

boundary. In the present work, we extend those ideas to the case of hyperbolic systems and, in particular, to linear acoustics

and nonlinear shallow water flows.

Part of the motivation of this work is that time-domain acoustics in complex geometry still presents some computational

challenges. Similar challenges are present for shallow water flows with complex boundary/coastline features.

Immersed and embedded boundary methods offer advantages over geometrically conformal computational methods (i.e.,

methods in which numerical grids conform to the geometrical shape of the physical domains of interest) in that the task

of mesh generation is greatly simplified. On the other hand, the enforcement of boundary conditions is more challenging in

immersed/embedded methods, both from the mathematical and data structure perspectives.
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In immersed boundary methods, the flow equations are discretized continuously both inside and outside the physical

domain, and a smooth approximation to the Dirac delta function is introduced on the physical boundary, with the purpose

of imposing the boundary conditions. Immersed boundary methods are older than embedded methods, dating to the seminal

work of Peskin [36], and being applied in the finite element context by Boffi and Gastaldi [5]. It was observed in [14] that

immersed methods can be interpreted in the context of variational formulations as penalty methods, and for this reason

share with them some of the shortcomings.

In embedded methods, the equations are discretized and solved only on the physical domain, and external regions are

excluded from the computation. These methods generally do not have the problems mentioned for immersed boundary

discretizations, as they employ a “sharp interface approximation.” Within the finite element context, this is typically done

by means of weak enforcement of boundary conditions through Nitsche’s method [34] in combination with XFEM strategies,

as a way to appropriately construct the solution’s approximation spaces [14].

In contrast to a simple penalty approach, Nitsche’s method provides a mechanism to weakly and consistently enforce

boundary conditions and does not adversely affect the conditioning of the discretized problem. Unfortunately, the standard

Nitsche-XFEM method suffers from instabilities on elements that are cut by the interface in such a way that only a small

fraction of them remains inside the physical domain, and consequently their effective mesh size becomes extremely small.

As a consequence, these areas of small support require an arbitrarily large penalty parameter, thereby destroying the good

conditioning properties of Nitsche’s method. A similar challenge exists for embedded boundary methods of finite volume

type, which can suffer from a similar though technically different version of the small cut cell problem.

A variety of clever techniques have been attempted to circumvent this difficulty [2,3,33], but in most cases only within

the context of interior interface problems. For single material problems, Burman [7] introduced the ghost penalty method, in

which the variational form is stabilized by introducing a penalization of the solution gradients at the interface separating

cut and uncut elements. This method was applied to the Stokes problem in [8], to the Navier–Stokes equations in [45],

and to two-phase flow in [44]. The ghost penalty method has some drawbacks, in that the introduction of a fourth order

operator in the ghost penalty term may have a delicate implementation in the nonlinear case and increases the stencil

size when using low order finite elements, with additional complications in the case of parallel computing. An alternative

approach introduced for B-spline variational formulations, known as extended B-splines [17,18], involves eliminating via an

extrapolation procedure those cut B-splines with small support. This technique was applied to the Navier–Stokes equations

for moving boundary problems in [41] and [42].

One additional challenge for the classes of methods just mentioned is that they require the geometric construction of

the partial elements cut by the embedded boundary, typically a complex and computationally intensive process. Since some

sort of adaptive quadrature is used [12,35], it is often the case that a non-negligible portion of the overall wall-clock time

for a simulation is spent handling the embedded boundary.

The small cut cell problem can be circumvented through the introduction of an approximate domain method, in which the

true domain is replaced by a surrogate domain. Boundary conditions are imposed along the frontier of the surrogate domain,

whose geometry is chosen to avoid cut cells. The challenge then reduces to designing effective (i.e., accurate and robust)

boundary conditions on the surrogate boundary. One of the earliest approximate domain methods was proposed in [37]

for inviscid multiphase compressible flow. Referred to as the ghost fluid method (GFM), it was later applied to multiphase

compressible flow in [1,13], to compressible fluid-structure interaction in [19], and to multiphase fluid/structure interaction

in [54]. An approximate domain approach has also been utilized for viscous incompressible flow in [21], where, however, the

approximated domain concept is only harnessed for the continuity equation. Although lacking strong theoretical foundations,

the GFM proved very effective for the simulation of practical problems, due to its ease of implementation and avoidance

of the small cut cell instability. Approximate domains methods were also explored in [10,11] in the context of the shallow

water equations.

In this work, we propose a new approach that falls in the category of embedded finite element methods and leverages

a surrogate/approximate boundary strategy. The key feature of the proposed approach is the idea of shifting the location

where the boundary conditions are applied from the true to the surrogate boundary, and, most importantly, of appropriately

modifying the shifted boundary conditions in order to avoid a reduction in the convergence rates of the overall formulation.

In fact, we show that if the boundary conditions originally applied to the true domain are not appropriately modified, only

first-order convergence can be expected. The appropriate (modified) boundary conditions are then applied weakly, using, for

example, a Nitsche strategy (other boundary enforcement strategies are also possible, e.g., Lagrange multipliers, etc.). This

process yields a method which is simple, robust, accurate and efficient.

We apply our method to the shallow water equations, as a prototypical hyperbolic system. We also consider the lin-

earized limit of the shallow water equations, constituted by the equations of acoustics [20,46,47,50].

We implement the proposed approach for boundary conditions in the context of a stabilized finite element formulation,

which takes inspiration specifically from [46,47,50] and more broadly from [15,16,22–29,40,49,52]. The proposed embedded

method is not limited in applicability, however, to the specific stabilized method considered here. For example, the extension

of the proposed approach to discontinuous Galerkin methods or residual redistribution schemes is straightforward.

The benefit of an embedded method in the context of shallow water flow is evident when considering the complex

morphology of the ocean coastlines. In real scenarios, this geometric complexity may induce considerable meshing costs,

which we attempt to significantly reduce with the proposed method. Applications of interest that we consider here are the

treatment of complex coastlines as reflective walls in the framework of large scale simulations and the simulation of fine
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Fig. 1. Definition of water height h and the bathymetry z.

scale urban floods. In both cases, one may actually treat the coast and the constructions as part of the topography, but

this will introduce hard requirements on the numerical method and the mesh generation. In fact, the alternative option

of adapting the mesh to these geometries often requires very large numbers of cells, even when capturing the fine details

of the flow may not be necessary. In this context our method has the benefit of relaxing the requirements on both the

numerical scheme and the mesh, while allowing a full second order accuracy. Additional problems in which the proposed

method could be beneficial, left for future work, are human phonation simulations (fluid-structure-acoustics interaction) or

dam break simulations (shallow water equations with complex topography).

We assess the accuracy, stability and robustness of the proposed method in a battery of tests, which also involve com-

parisons with finite element simulations on grids that conform to geometric boundaries.

2. The shallow water equations

The shallow water equations, also known as the de Saint Venant equations, are a simplified version of the Navier–Stokes

equations for free-surface flows, and allow for the propagation of nonlinear waves. They are obtained by averaging the

Navier–Stokes equations along the depth direction, and can be written as

∂h

∂t
+
∂hv1

∂x1
+
∂hv2

∂x2
= 0 , (1a)

∂

∂t
(hv1)+

∂

∂x1

(
hv21 +

1

2
gh2

)
+

∂

∂x2
(hv1v2)= S1 , (1b)

∂

∂t
(hv2)+

∂

∂x1
(hv1v2)+

∂

∂x2

(
hv22 +

1

2
gh2

)
= S2 . (1c)

As illustrated in Fig. 1, h is the height of the water column, z is the bathymetry of the water bed, free surface level

η= h + z (2)

and the two-dimensional position and velocity vectors are expressed in Cartesian coordinates as x = {x1 , x2} and v =

{v1 , v2}. ∂/∂t indicates derivation with respect to time, and

S =

{
S1
S2

}
= gh

{
So1 − S f 1

So2 − S f 2

}
, (3)

that is, S is the source vector containing the slope of the basin (e.g., river bed, ocean floor) in the ith direction, Soi = − ∂z
∂xi

and the friction S f i =
f 2v i

√
v21+v22

h4/3
is expressed through the Manning’s roughness coefficient f . Additional forces can be

added to the source term Z if needed, to account, for example, for wind stress or other phenomena. The system (1a)–(1c)

expresses the conservation of mass and momentum for a column of water of height h, is hyperbolic in structure and

amenable to an analysis by means of the theory of characteristics and Riemann invariants. In the one-dimensional case,

there are three characteristic speeds of propagation of information in the system, v − cs , v , and v + cs , where cs =
√
gh

is the speed of gravity waves. Hence a signal can move with the velocity of the flow (in analogy to the entropy waves for

the Euler equations of gas dynamics), or can move with the speed associated with either one of two additional waves, one

receding and the other advancing with respect to the flow velocity with the celerity of gravity waves, ±cs , respectively.

Equations (1a)–(1c) can also be written in system vector form as

∂tU + ∇ · G = Z , (4a)

where ∂t(·)= ∂(·)/∂t , for simplicity, and
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U =

{
h

hv

}
, G = G v + Gh , G v = U ⊗ v , Gh =

{
(02×1)

T

1/2gh2 I2×2

}
, and Z =

{
0

S

}
. (4b)

Here U ⊗ v = U vT and ∇ denotes the spatial gradient operator. The divergence operator ∇·, when expressed in Cartesian

coordinates, is understood to apply to the second index of the 3×2-matrix G , that is ∇ ·G = ∂x j
G i j . The system of equations

(4a) is also often expressed as

∂tU + ∂xi F i = Z , (5)

where the arrays F i are the columns of the matrix G , and can be decomposed as

F i = F v
i + F h

i , F v
i = v iU , F h

i =
1

2
gh2

{
0

δi

}
, (6a)

with

δi =

{
δ1i
δ2i

}
. (6b)

Using any set of variables X , it is possible to rewrite the vector form (5) in quasi-linear form as

A0 ∂tX + Ai ∂xi X = Z . (7)

Here A0 = U ,X and Ai = F i,X is the ith Euler Jacobian matrix. When the vector of variables X are the conservation vari-

ables U , the Euler Jacobians become

A0 = I3×3 , (8a)

A1 =




0 1 0

−v21 + gh 2v1 0

−v1v2 v2 v1


 , (8b)

A2 =




0 0 1

−v1v2 v2 v1
−v22 + gh 0 2v2


 . (8c)

Another natural choice for the vector of variables X are primitive variables Y = {h, vT }T , then the corresponding Euler

Jacobians are

Â0 =




1 0 0

v1 h 0

v2 0 h


 , (9a)

Â1 =




v1 h 0

v21 + gh 2hv1 0

v1v2 hv2 hv1


 , (9b)

Â2 =




v2 0 h

v1v2 hv2 hv1
v22 + gh 0 2hv2


 . (9c)

Adopting the definition of generalized entropy function in Tadmor [51],

E = g
h2

2
+ h

v21 + v22
2

, (10)

then the entropy variables V are given by

V = E T
,U

=





gh −
v21+v22

2
v1
v2



 . (11)
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It is also possible to rewrite the above system using the entropy variables V with

Ã0 =
1

g




1 v1 v2
c2 + v21 v1v2
symm. c2 + v22


 ,

Ã1 =
1

g




v1 c2 + v21 v1v2
v1(3c

2 + v21) v2(c
2 + v21)

symm. v1(c
2 + v22)


 ,

Ã2 =
1

g




v2 v1v2 c2 + v22
v2(c

2 + v21) v1(c
2 + v22)

symm. v2(3c
2 + v22)


 . (12)

Noticing that matrix Ã0 is positive definite and Ãi is symmetric for i = 0, . . . ,nd . Complete specification of the problem

requires initial conditions on �, namely,

v(t = 0)= v0 , (13a)

h(t = 0)= h0 , (13b)

and appropriate boundary conditions. We consider some common boundary conditions for shallow water flows, which are

best understood in the context of the theory of characteristics. Here are a few typical examples:

Inviscid wall boundary conditions (similar to Neumann boundary conditions):

v · n = 0 , on ŴN , (14)

which are typically applied when analyzing flooding around buildings in urban areas, and also when considering a coarse

representation of the flow around large-scale coastal areas that are not the main focus of the simulation. The latter case is

typical when there is interest in simulating a specific geographic area and it is necessary to also simulate some background,

larger areas in order to appropriately characterize the dynamics of the overall flow, but these secondary areas are not of

interest in the simulation, and only a coarse approximation is sufficient. Note that this type of boundary conditions conforms

to the framework of the general Riemann problem, since the velocity is tangent to the boundary, and therefore only one

of the characteristic lines goes across the boundary. In this case then, only one boundary condition is necessary, out of the

possible three conditions that can be enforced (i.e., the height of the water column, the normal and tangential components

of the velocity).

Open-sea (fixed height) boundary conditions (similar to Dirichlet boundary conditions):

h = ηD − z , on ŴD , (15)

where the water height h is expressed as the difference of the free surface level ηD , defined according to (2), and the

bathymetry z. These conditions are somewhat artificial, in the sense that a more appropriate boundary condition on the

far field of an open domain should be given by non-reflective boundary conditions. These are in general considerably more

complicated to implement, and can be constructed starting from the other boundary conditions mentioned here.

Subcritical river inflow boundary conditions (|v · n| ≤ cs):
{
h v · n =mI;sub ,

v · τ = 0 ,
on ŴI;sub , (16)

which, as the name suggests, are typical of river inflows when the speed of propagation of gravity waves is faster than the

normal velocity of the fluid at the inflow, that is |v · n| ≤ cs . Recalling that cs =
√
g h, it is easy to see that this situation

occurs when the speed of the river inflow is relatively low with respect to the height of the water column. In this case

there is always one characteristic line that exists the domain in the upstream direction, and only two Riemann invariants

(i.e. conditions) need to be imposed. The boundary condition on the water flux q = h v · n in (16) can be replaced by the

alternative conditions

v · n = v I;sub , or h = ηI;sub − z , on ŴI;sub . (17)

Supercritical river inflow boundary conditions (|v · n|> cs):
{

v = v I;sup ,

h = ηI;sup − z ,
on ŴI;sup , (18)
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which are imposed at river inflows when the speed of propagation of gravity waves is slower than the normal velocity of the

fluid at the inflow, that is |v ·n|> cs . Opposite to the case of subcritical river inflow, this situation occurs for relatively high

speed inflows, or relatively low water column heights. In this case no characteristic line can leave the domain upstream,

and all three Riemann invariants of the system must be imposed, which means that we need three scalar conditions on the

normal and tangential velocity components and the water height.

Subcritical river outflow boundary conditions (|v · n| ≤ cs):

h v · n =mO ;sub , on ŴO ;sub . (19)

This condition imposes only one constraint (the mass flow exiting the domain) on the three unknowns at the outflow.

Alternatively, other less common boundary conditions can be imposed:

v · n = vO ;sub , or h = ηO ;sub − z , on ŴO ;sub . (20)

In this situation there are two characteristics that exit the outflow boundary and only one condition needs to be imposed,

on the normal velocity, or the tangential velocity, or the water height.

Supercritical river outflow boundary conditions: In this case all characteristics exit the outflow, and no condition need to be

imposed.

The boundary Ŵ= ∂� is partitioned as ŴD ∪ ŴN ∪ ŴI;sub ∪ ŴO ;sub ∪ ŴI;sup ∪ ŴO ;sup , in which all intersections (if any) of

the partitions ŴD , ŴN , ŴI;sub , ŴO ;sub , ŴI;sup and ŴO ;sup are empty.

The reader should not be confused by the fact that an open-sea boundary condition resembles a Dirichlet condition, and

that a land boundary condition resembles a Neumann condition. All the proposed initial and boundary conditions can be

derived uniquely using the theoretical framework of the Riemann invariants and generalized Riemann solvers.

2.1. Linearized shallow waters equations: non-dissipative acoustic wave propagation

In the limit of small disturbances ṽ and h̃ to the hydrostatic state of equilibrium of a fluid, denoted by v̄ = 0 and h̄, we

have

v1 = ṽ1 ≪ 1 , (21a)

v2 = ṽ2 ≪ 1 , (21b)

h = h̄ + h̃ , h̄ = const. , h̃ ≪ 1. (21c)

Substituting (21) in the shallow water equations (1a)–(1c) and neglecting higher-order terms, we obtain

∂t h̃ + ∇ · (h̄ ṽ)= 0 , (22a)

∂t(h̄ ṽ)+ gh̄∇h̃ = S . (22b)

Removing, for the sake of simplicity, the tilde above v , defining p = gh̃, dividing the first and second equation by h̄, denoting

by cs =

√
h̄g the speed of waves, χ = c−2

s and by b = h̄−1 S , we have that (22) yield:

χ∂t p + ∇ · v = 0 , (23a)

∂t v + ∇p = b , (23b)

which is the mixed system of equations governing the propagation of acoustic waves in a homogenous medium. Typical

initial conditions are

v(t = 0)= v0 , (24a)

p(t = 0)= p0 , (24b)

and these complement appropriate pressure boundary conditions on the Dirichlet boundary ŴD and normal velocity bound-

ary conditions on the Neumann boundary ŴN . Namely:

v · n|ŴN
= vN (x, t) , (25a)

p|ŴD
= pD (x, t) . (25b)

Also (23) can be written in vector form. Denoting by Y = {p, vT }T the solution state vector, we have
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∂tU + ∂xi F i = Z , in� , (26)

where

U =

{
χ p

v

}
, Z =

{
0

b

}
, (27)

and the flux vector F i can be decomposed into two parts, that is, F v
i associated with the velocity component of the solution

and F
p

i
associated with the pressure component of the solution:

F i = F v
i + F

p

i , (28a)

F v
i = v i

{
1

0nd×1

}
, (28b)

F
p

i = p





0

δ1i

...

δnd i





. (28c)

Note the similarities in structure between (28) and (6). In order to recover the formalism of the quasi-linear shallow water

equations found in equation (7), we can write

A0∂tY + Ai∂xiY = Z , (29)

where

A0 =

[
χ 01×nd

0nd×1 Ind×nd

]
, (30a)

Ai = F i,Y

=




0 δ1i · · · δnd i

δ1i

... 0nd×nd

δnd i



. (30b)

Note that the ith Euler Jacobian matrix Ai ∈ R
(nd+1)×(nd+1) are constant and symmetric for i = 0 , . . . , nd .

3. Preliminaries: general notation, the true domain, the surrogate domain and maps

Consider the domain �, an open set in R
nd with Lipschitz boundary Ŵ = ∂�, where nd is the number of space di-

mensions. Let Th be a shape-regular triangulation (in the sense of Ciarlet) constituted by a family of non-overlapping

nd-partitions/elements �e of � (e.g., triangles/quadrilaterals for nd = 2 or tetrahedra/hexahedra for nd = 3) such that

� =
⋃nel

e=1�e (where nel is the total number of elements). We denote by he = he(�e) the diameter of element e and

h = max�e∈T h he . Denoting by ω ⊂ � a portion of � (e.g., an element domain �e), and by γ a portion of Ŵ, we define

with

(v,w)ω =

∫

ω

v w and (v , w)ω =

∫

ω

v · w (31a)

the L2(ω)- and (L2(ω))nd -inner products on the interior of ω and with

〈v,w〉γ =

∫

γ

v w and 〈v,w〉γ =

∫

γ

v · w (31b)

boundary functionals on γ . In particular, the space L2(E ) refers to the set of functions whose traces are square in-

tegrable on the interior or exterior boundary set E . Let ‖v‖2 = (v, v)ω , and let W k
j (�) be the Sobolev space with

norm
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Fig. 2. The surrogate domain, the surrogate boundary, and the vector d.

‖v‖W k
j
(�)

=


∑

α≤k

‖Dαx v‖
j

L j(�)




1/ j

, 1 ≤ j <∞ . (32)

For j = 2, let Hk(�)= W k
2(�) and set ‖v‖W k

j
= ‖v‖k .

Consider now an embedded discretization, in which the computational grid does not conform to the boundary, but is

actually overlapped with it (see Fig. 2). The computational grid intersects the true boundary Ŵ of the domain �. We can

then introduce a surrogate boundary Ŵ̃ composed of the edges/faces of the mesh that are the closest to the true boundary Ŵ.

The surrogate boundary Ŵ̃ is the boundary of a surrogate domain �̃, composed of all the full elements contained in the

true domain �. In other words, when all the cut elements of � are removed, we are left with �̃. Ŵ̃ can be constructed, for

example, by computing the intersections of the grid and the true boundary Ŵ and using closest-point projection algorithms

to detect the closet face/edge of Ŵ̃ to Ŵ. Other choices are of course possible, as long as the overall topology of Ŵ and Ŵ̃

are close to each other, that is if Ŵ has a certain number of holes, the same number of holes needs to also be present also

in Ŵ̃. To a certain extent, the construction of Ŵ̃ from Ŵ is a computational geometry problem, and several techniques can

be borrowed from this field. The surrogate boundary Ŵ̃ encloses the surrogate domain �̃. In particular, ñ indicates the unit

outward-pointing normal to the surrogate boundary Ŵ̃, to be distinguished from the outward-pointing normal n of Ŵ. We

now define the map

M : Ŵ̃→ Ŵ , (33a)

x̃ 7→ x , (33b)

which maps a point x̃ ∈ Ŵ̃ on the surrogate boundary to a point x ∈ Ŵ on the true boundary. For example, the map M can

also be built by means of the closest-point projection of points in Ŵ̃ onto Ŵ, as shown in Fig. 2(c).

Remark 1. Note that the closest-point projection, in spite of the segmented/faceted nature of the surrogate boundary Ŵ̃ is

actually a smooth map from points in Ŵ̃ to points in Ŵ, and this is the primary reason why we propose it as the back-bone

of the map M . The reason for the general smoothness of M is that the closest point projection is computed with respect

to the true boundary, and yields a distance vector d in the direction of the normal n (rather than ñ). The only situation

when M loses its uniqueness is when a corner is present in Ŵ, but in this case, the definition of M can easily be adjusted

by picking the vector d of minimal length among the possible choices at the corner. In practice, we observed that the

implementation of M is robust even for the most complex geometries attempted.

In particular, it will become very important to characterize the map M though a distance vector function

dM (x̃) = x− x̃ = [M − I ](x̃) . (34)

In what follows, for the sake of simplicity, the subscript in the definition of dM will be omitted and we will simply write

“d.” If the closest-point projection is used, the vector d is aligned with n. This choice is made throughout the rest of this

article, and is stated as
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Assumption 1. The distance vector is defined as d = ‖d‖n, where the normal n to the true boundary and the normal ñ to

the surrogate boundary satisfy

n · ñ ≥ 0 , (35)

The condition n · ñ ≥ 0 means that we require that ñ lies on the half-plane identified by the normal n, a situation that

is always verified in practice. Through the map M , it is possible to define the extension ψ̄ on Ŵ̃ of a function ψ initially

defined only on Ŵ, as

ψ̄(x̃)≡ ψ(M(x̃)) . (36)

For example, the unit normal vector n and unit tangential vectors τ i (1< i < nd − 1) to the boundary Ŵ can be extended to

the boundary Ŵ̃ as follows:

n̄(x̃)≡ n(M(x̃)) , (37a)

τ̄ i(x̃)≡ τ i(M(x̃)) . (37b)

In what follows, with the purpose of simplifying the notation, we will omit the bar from the expressions of n̄ and τ̄ i ,

whenever this does not cause confusion. Therefore if, in the following, we write n(x̃) we actually mean n̄(x̃), and similarly

for τ i(x̃) and τ̄ i(x̃). We can also introduce the derivative of a function ψ along the directions n̄ and τ̄ i at a point x̃ ∈ Ŵ̃ as

ψ, n̄(x̃)= ∇ψ(x̃) · n̄(x̃)= ∇ψ(x̃) · n(M(x̃)) , (38a)

ψ, τ̄i (x̃)= ∇ψ(x̃) · τ̄ i(x̃)= ∇ψ(x̃) · τ i(M(x̃)) . (38b)

Observe also that the following Taylor expansion formula centered at x̃ ∈ Ŵ̃ holds for a generic field u at x = M(x̃) ∈ Ŵ:

u(x)= u(x̃)+ ∇u(x̃) · (x − x̃)+ O
(
‖x − x̃‖2

)

= u(x̃)+ ∇u(x̃) · (M(x̃)− x̃)+ O
(
‖M(x̃)− x̃‖2

)

= u(x̃)+ ∇u(x̃) · d(x̃)+ O
(
‖d(x̃)‖2

)
. (39)

The last expression in the chain of equalities can be used to develop a new strategy for the imposition of boundary con-

ditions in the context of embedded methods. This approach is intrinsically only second-order accurate, unless additional

terms in the Taylor expansion are included.

4. A review of the weak enforcement of boundary conditions

4.1. Time-domain linear acoustics

Let us first consider the case of weak enforcement of boundary conditions for conformal (i.e., not embedded) mesh

computations of linear acoustic waves. This problem retains all the elements of the hyperbolic system of the shallow water

equations, without the inherent complexity of nonlinearities. The discussion that follows is a summary of the approach

proposed in [50] for time domain acoustics, and its extension to the context of shallow water equations.

For the sake of clarity and without loss of generality, here we consider only the case of a semi-discrete formulation, in

which the equations are discretized in space but not in time. We also consider solution and test spaces that are slightly

more regular than the roughest possible case, that is, the following function spaces are chosen for the velocity and pressure

Sp = Vp =H1(�) , (40a)

Sv = Vv =Hdiv(�) . (40b)

This last assumption is not a limitation, and the discussion can be extended to the most general case with relative ease.

For example, the entire discussion can be adapted with minor changes to the case of discontinuous Galerkin approximation

spaces. We consider a conforming finite element discretization, in which the discrete pressure and velocity spaces are

subsets of the infinite dimensional ones above. For example, equal-order piecewise polynomial interpolation spaces can be

used. Hence we write S h
p ⊂ Sp , V h

p ⊂ Vp , Sv ⊂ Sv and Vv ⊂ Vv . Testing the strong form of the equation against the

appropriate test functions and integrating by parts, we obtain:

Find ph ∈ S h
p and vh ∈ S h

v such that, for all φh ∈ V h
p and ψh ∈ V h

v ,

0 =(φh , χ ∂t p
h)� − (∇φh , vh)� + 〈φh , v̂ ·n〉Ŵ , (41a)

0 =(ψh , ∂t v
h − b)� − (∇ ·ψh , ph)� + 〈ψh ·n , p̂〉Ŵ . (41b)
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The terms v̂ ·n and p̂ are numerical boundary traces of the solution and, if appropriately defined, can be used to impose

boundary conditions weakly. The formulation we propose involves the following choices:

v̂ ·n =

{
v · n on ŴD ,

vN on ŴN ,
(42a)

p̂ =

{
pD on ŴD ,

p on ŴN .
(42b)

Note that the normal velocity component is enforced directly on the boundary ŴN , while the pressure is free, and the

opposite happens on the Dirichlet boundary ŴD . In what follows, we will omit, with the goal of a more readable notation,

the superscript h on the components of the solution and the corresponding test functions, in spite of the fact that these

fields are assumed fully discretized in space. The previous choice yields the final abstract formulation

0 = (φ , χ ∂t p)� − (∇φ , v)� + 〈φ , vN〉ŴN
+ 〈φ , v · n〉ŴD

, (43a)

0 = (ψ , ∂t v − b)� − (∇ ·ψ , p)� + 〈ψ ·n , pD〉ŴD
+ 〈ψ ·n , p〉ŴN

, (43b)

which can be rewritten in system vector form as

0 = (W , A0∂tY − Z)� −
(
∂xiW , F i

)
�

+ 〈W , F̂ ini〉Ŵ, (44a)

with W = {φ,ψ T }T . We can then introduce the generalized vector H of boundary conditions as follows:

H(Y )= F̂ ini =





vN

{
1

0nd×1

}
+ p

{
0

n

}
, on ŴN ,

v · n

{
1

0nd×1

}
+ pD

{
0

n

}
, on ŴD ,

(44b)

which, recalling the identities

F
p

i ni = p

{
0

n

}
, (45)

F v
i ni = v · n

{
1

0nd×1

}
, (46)

can also be rewritten as H = H v + H p , where

H v(Y )=





vN

{
1

0nd×1

}
, on ŴN ,

F v
i ni , on ŴD ,

H p(Y )=





F
p

i
ni , on ŴN ,

pD

{
0

n

}
, on ŴD ,

(47a)

a form that highlights more clearly the type of boundary condition enforced, and the corresponding data. Then the boundary

conditions (25a)–(25b) can be recast as

Neumann condition on ŴN : F ini = H ⇔ v · n = vN , (48a)

Dirichlet condition on ŴD : F ini = H ⇔ pn = pDn . (48b)

Hence, it is possible to reformulate (43a)–(43b) using a stabilized formulation, analogous to the one pursued in [46,47,50]

in the context of hyperbolic wave systems:

0 = (W , A0 ∂tY )� −
(
∂xiW , AiY

)
�

− (W , Z)� + 〈W , H〉Ŵ + (L W , τ A−1
0 (LtY − Z))� , (49)

where τ = cτ
1t
2
, and

Lt = A0∂t + L ,

L = Ai∂xi . (50)
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4.2. Nonlinear shallow water equations

In this case, boundary conditions can be enforced weakly with the following stabilized variational form, inspired again

by the work in [46,47,50], and with close similarities to the variational forms developed in [15,16]:

0 = (W , ∂tU − Z)� −
(
∂xiW , F i

)
�

+ 〈W , H〉Ŵ + (L ∗W , τ Â0
−1 (LtY − Z))� + (∂xiW , ν h2e Â0 ∂xiY )� ,

(51)

where L ∗ = AT
i ∂xi , he is the characteristic mesh size and τ = cτ

1t
2
, again, is the stabilization characteristic time scale. The

term (∂xiW , ν h2e Â0 ∂xiY )� in (51) is a discontinuity capturing operator, with ν an artificial viscosity, defined as

ν = cνmax


0,

[
(LtY − Z) · Ã

−1

0 (LtY − Z)

|∇̂ξY |
Â0

]1/2

−

∣∣∣∣∣
(LtY − Z) · τ Ã0

−1 (LtY − Z)

|∇̂ξY |
Â0

∣∣∣∣∣


 . (52)

Here, denoting ξk ,k = 1,2 the local element coordinates (in the elemental parent domain),

|∇̂ξY |
Â0

= V , Y Y , ξ0 · Â0Y , ξ0 + g i jV , Y Y , i · Â0Y , j , (53)

with g i j = [ξk ,i ξk , j]
−1 and

Y , ξ0 =
Y (tn+1)− Y (tn)

2
. (54)

See [15,16] for more details. Note also that H = H v + Hh , and specifically,

H v(Y )=





vN

{
h

h v

}
, on ŴN ,

v · n

{
h

h v

}
, on ŴD ,

mI;sub

{
1

(v · n)n

}
, on ŴI;sub ,

v I;sup ·n

{
ηI;sup − z(

ηI;sup − z
)
v I;sup

}
, on ŴI;sup ,

mO ;sub

{
1

v

}
, on ŴO ;sub ,

v · n

{
h

h v

}
, on ŴO ;sup ,

Hh(Y )=





1
2
gh2

{
0

n

}
, on ŴN ,

1
2
g (ηD − z)2

{
0

n

}
, on ŴD ,

1
2
gh2

{
0

n

}
, on ŴI;sub ,

1
2
g
(
ηI;sup − z

)2
{

0

n

}
, on ŴI;sup ,

1
2
gh2

{
0

n

}
, on ŴO ;sub ,

1
2
gh2

{
0

n

}
, on ŴO ;sup .

(55)
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Observe the following equivalences of boundary condition expressions:

H(Y )v + H(Y )h︸ ︷︷ ︸
H(Y )

−F ini = 0 ⇔





(vN − v · n)

{
h

h v

}
= 0 ⇔ v · n = vN , on ŴN ,

1
2
g
(
(ηD − z)2 − h2

)
{

0

n

}
= 0 ⇔ h = ηD − z , on ŴD ,

h v · n =mI;sub and v · τ = 0 , on ŴI;sub ,

v = v I;sup and h = ηI;sup − z , on ŴI;sup ,

(
mO ;sub − h v · n

)
{

1

v

}
= 0 ⇔ h v · n =mO ;sub , on ŴO ;sub ,

0 = 0 ⇔ No conditions imposed , on ŴO ;sup .

(56)

To enhance stability, penalty terms are added to the variational form for the open sea and wall boundary conditions,

respectively. Namely:

〈ψ · n , αh (v · n − vN)〉ŴN
, on ŴN , (57a)

〈φ , α (h − (ηD − z))〉ŴD
, on ŴD . (57b)

These penalty terms do not change the Euler–Lagrange equations associated to the variational formulation.

4.3. Discrete conservation properties

The variational formulation (51) naturally incorporates a conservation statement. Taking as test function W = 1 j , where

1 j is an array in which the j th entry is unity and all the others are zero, we obtain:

0 = (1 j , ∂tU − Z)� + 〈1 j , H〉Ŵ , (58)

which is a conservation statement of the mass and the various component of the momentum equation. In fact mass or

momentum would not change if the integral of the boundary fluxes H vanishes as well as the integral of the source vector

Z . A similar statement can be obtained for the acoustic system (49) (recall that the pressure rate equation is effectively a

statement of mass conservation).

4.4. C-property: preservation of a lake at rest

When solving the shallow water equations, a main concern is the so-called well-balanced character of the discretization,

which consists in the ability of the numerical method of exactly preserving the solution

v = 0 , (59a)

h + z = η0 (constant) . (59b)

This is the state of a flat free surface in stationary equilibrium and is often encountered as a background or initial state in

many applications. It is important to exactly preserve the solution (59), since a small spurious perturbation can be amplified

by the bathymetry (or analogous mechanisms). This property is often referred as the C-property (conservation property) and

was originally introduced in [4].

The analysis of the C-property for the stabilized scheme proposed here is very similar to that of the residual based

methods studied e.g. in [38]. We will proceed first by omitting the stabilization and discontinuity capturing terms from

the discussion. These can be treated in a second stage. Substituting (59) in (51) as the solution leads to specific conditions

on the discretization to maintain the C-property. Specifically, no inflow or outflow are possible, the integrals involving

the term F v
i = v i U vanish identically, as well as the volume integrals of the friction source term S f i , as they involve

variations of the flow speed. The only terms left are related to the hydrostatic pressure, and the bathymetry source of

components gh Soi = −gh ∂z/∂xi . In what follows, we will indicate with Zo the simplified version of Z due to the previous

simplifications. Now, if exact quadrature formulas are used for the evaluation of the terms (∂xiW , F h
i
)� and (W , Zo)� ,
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with respect to the piecewise linear interpolation spaces used in the approximation of h and z, then the continuity of the

approximation and integration by parts over each element leads to

(W , ∂tU )� =
(
W , Zo − ∂xi F i

)
�

+ 〈W , F h
i ni − H〉Ŵ . (60)

Let us focus our attention now on the term
(
W , Zo − ∂xi F i

)
�
. Note first that the first component of Zo −∂xi F i , correspond-

ing to the mass conservation equation, vanish, and that the if ψ is a vector test function corresponding to the momentum

equation, we have

(ψ j, ∂x j
(gh2/2)+ gh ∂x j

z)� = (ψ j, gh∂x j
(h + z))� = (ψ j, gh∂x j

η0)� = 0 ,

where the first equality holds because of the assumed exactness of the integration with respect to the linear variation of h

within each mesh element, and the second is true as long as z and h are in the same space and (59) holds. We are thus

left with the boundary term 〈W , F h
i
ni − H〉Ŵ , which will cancel exactly.

Note now that in the case of a stabilized method with a discontinuity capturing operator, the additional terms are

functions of the equation residuals, which vanish exactly in the case of the solution (59). Hence, we conclude that the

stabilized variational form detailed in (51) satisfies the C-property.

Remark 2. The above analysis is true as long as no dry areas are present in the domain. If there are elements in which

h = 0 at some of the nodes, then the condition ∇(h + z)= ∇η0 = 0 may be violated. This is due to the fact that the value

of the polynomial interpolating the nodal values of h + z may be different than η0 at the dry node. To cure this issue, one

must somehow modify the numerical approximation of the bathymetry to compensate for this unphysical effect. This is

particularly necessary in the case in which the dry node is above the wet level in the element. A simple technique for this

purpose is suggested in [38,39] and consists in modifying the nodal values of the bathymetry as follows:

ẑ j =

{
Hmax if h j = 0 and z(x j) > Hmax

z(x j) otherwise

where on each element

Hmax = max
k∈element

hk>0

(hk + z(xk))

Replacing the nodal values of z by ẑ in the computation of the integrals of bathymetric source terms allows to restore the

C-property in dry cells. Some authors [6,9] also suggest to couple this correction with a limiter on the mass flux in vicinity

of dry areas.

5. The shifted boundary method

While weak boundary conditions can be quite effective on conformal grids, their applicability in the case of embedded

boundaries is more challenging, for the following reasons:

a. The presence of cut elements of small size can render the overall approach numerically unstable and/or produce poor

condition numbers in the ensuing algebraic system.

b. Numerical integration on cut elements can be computationally expensive and/or difficult to implement.

Because both of these issues emanate from the mere existence of cut elements near the boundary, one idea could be to

exclude them altogether from the simulation. Excluding these elements has the effect of moving the boundary Ŵ of the

computational domain to the surrogate boundary Ŵ̃. Of course, if boundary conditions are naïvely applied on the surrogate

boundary, then an O (h) error is introduced.

We present next an embedded finite element formulation, which falls under the umbrella of the shifted boundary (SB)

method [31,32]. The key idea behind the SB method is not to apply boundary conditions on the true boundary Ŵ, but, rather,

to shift their location to a surrogate boundary Ŵ̃. The map M defined in (34) and the Taylor formula (39) are instrumental in

imposing on Ŵ̃ a shifted boundary condition that is a second-order accurate approximation to the exact boundary condition

on Ŵ.

5.1. Acoustic waves

We start from the hyperbolic system of non-dissipative acoustics described in Section 2.1 since it is a simpler prototype

for the nonlinear shallow water equations.
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5.1.1. Dirichlet boundary conditions

The goal of this section is to develop a suitable boundary condition on the surrogate Dirichlet boundary Ŵ̃D that, up

to second-order accuracy, is equivalent to imposing the original boundary condition on the true boundary ŴD . To achieve

this, we perform the following Taylor expansion of the pressure field along the direction d = M
(
x̃
)
− x̃, from x̃ ∈ Ŵ̃D to

x = M
(
x̃
)
∈ ŴD ,

0 ≈ p
(
x̃
)
+ ∇p

(
x̃
)
·
(
x− x̃

)
− pD (x)+ O

(∥∥x− x̃
∥∥2

)

= p
(
x̃
)
+ ∇p

(
x̃
)
·
(
M

(
x̃
)
− x̃

)
− pD

(
M

(
x̃
))

+ O
(∥∥M

(
x̃
)
− x̃

∥∥2
)

= p
(
x̃
)
+ ∇p

(
x̃
)
· d

(
x̃
)
− pD

(
M

(
x̃
))

+ O
(∥∥d

(
x̃
)∥∥2

)
. (61)

The last expression in the chain of equalities can be used as the modified boundary condition on the surrogate boundary

of Dirichlet type Ŵ̃D , which preserves the accuracy of the true boundary condition up to second-order. Note that, according

to the notation that we introduced in Section 3, we could have written p̄D(x̃) = pD

(
M

(
x̃
))
. Then the shifted boundary

condition on surrogate Dirichlet-type boundary Ŵ̃D reads

p|Ŵ̃D
= p̄D(x̃)− ∇p

(
x̃
)
· d

(
x̃
)
. (62)

5.1.2. Neumann boundary conditions

A similar strategy can be elaborated to derive the boundary condition on the Neumann surrogate boundary Ŵ̃N . The

main difference with respect to the previous case of Dirichlet boundary conditions is that the normal ñ to the surrogate

boundary and the normal n to the true boundary do not coincide. This situation can be resolved by decomposing the unit

normal vector ñ at x̃ as ñ = (ñ ·n)n + (ñ ·τ j)τ j , where n is the normal to ŴN and τ j ( j = 1, · · · ,nd − 1) are the vectors

tangent to ŴN , respectively, and we also recall that n(x̃)= n(M(x̃)) and τ j(x̃)= τ j(M(x̃)) by (37). Then we can apply the

Taylor expansion to the velocity appearing in the term v(x̃) · n(x̃), so that, again for the point x̃ on the surrogate boundary

Ŵ̃N ,

v(x̃) · ñ(x̃) =
((

v(x̃) · n
)
n +

(
v(x̃) · τ j

)
τ j

)
· ñ

≈
((
(v(x)− ∇v(x̃)d) · n

)
n + (v(x̃) · τ j)τ j

)
· ñ

=
(
vN − nT∇v d

)
n · ñ + (v · τ j)τ j · ñ , (63)

where vN = vN

(
M(x̃)

)
. Equation (63) represents the surrogate Neumann boundary condition on Ŵ̃N , and requires for con-

sistency the tangential term (v · τ j)τ j · ñ, a byproduct of the decomposition of ñ in terms of n and τ j .

5.1.3. Variational formulation

Using the approximate (shifted) Dirichlet and Neumann conditions we can modify formulation (41a)–(41b) as follows:

0 = (φ , χ ∂t p)�̃ − (∇φ , v)
�̃

+ 〈φ , v̂ · ñ〉Ŵ̃ , (64a)

0 = (ψ , ∂t v − b)
�̃

− (∇ ·ψ , p)
�̃

+ 〈ψ ·ñ , p̂〉Ŵ̃ , (64b)

where now

v̂ · ñ =

{
v · ñ , on Ŵ̃D ,
(
vN − nT (∇v)d

)
n · ñ + (v · τ j)τ j · ñ , on Ŵ̃N ,

(65a)

p̂ =

{
pD − ∇p · d , on Ŵ̃D ,

p , on Ŵ̃N .
(65b)

Hence, upon substitution, we obtain the variational formulation

0 = (φ , χ ∂t p)�̃ − (∇φ , v)
�̃

+ 〈φ , ((vN − nT (∇v)d)n + (v · τ j)τ j) · ñ〉Ŵ̃N
+ 〈φ , v · ñ〉Ŵ̃D

, (66a)

0 = (ψ , ∂t v − b)
�̃

− (∇ ·ψ , p)
�̃

+ 〈ψ ·ñ , pD − ∇p · d〉Ŵ̃D
+ 〈ψ ·ñ , p〉Ŵ̃N

. (66b)

The previous equations can be compared with (43a)–(43b) to highlight differences with respect to the case of conformal

grids. Integrating by parts in space leads to the Euler–Lagrange equations,
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0 = (φ , χ∂t p + ∇ · v)
�̃

− 〈(ñ · n)φ , v + (∇v)d) · n − vN〉Ŵ̃N
, (67a)

0 = (ψ , ∂t v + ∇p − b)
�̃

− 〈ψ · ñ , p − pD + ∇p · d〉Ŵ̃D
(67b)

which show that the SB method enforces the partial differential equations on the interior of surrogate domain �̃ and the

shifted boundary conditions on the surrogate boundary Ŵ̃. As in the case of conformal grid computations, also the variational

SB formulation can be cast in vector form:

0 = (W , A0∂tY − Z)
�̃

− (∂xiW , AiY )�̃ + 〈W , F̂ iñi〉Ŵ̃ , (68)

where

F̂ iñi =





((
vN − nT (∇v)d

)
n · ñ + (v · τ j)τ j · ñ

)
{

1

0nd×1

}
+

{
0

pñ

}
, on Ŵ̃N ,

v · ñ

{
1

0nd×1

}
+ (pD − ∇p · d)

{
0

ñ

}
, on Ŵ̃D .

(69)

Denoting H̃ = F̂ iñi , with a little algebra, somewhat tedious but otherwise straightforward, we obtain

H̃ = F̂ iñi =





n·ñ


vN





1

0nd×1



 − ni A

v
i ∇Yd


 + τ j ·ñ

(
F v
i τ

j

i

)
+ F

p

i
ñi , on Ŵ̃N ,

pD





0

ñ



 − ñi A

p

i
∇Yd + F v

i ñi , on Ŵ̃D ,

(70)

in which Av
i = F v

i ,Y and A
p

i = F
p

i ,Y , so that ∇ F v
i d = Av

i ∇Yd and ∇ F
p

i d = A
p

i ∇Yd, respectively. Then the vector form of

(66a)–(66b) is expressed as

0 = (W , A0∂tY )�̃ − (∂xiW , AiY )�̃ − (W , Z)
�̃

+ 〈W , H̃〉Ŵ̃ + (L W , τ A−1
0 (LtY − Z))

�̃
. (71)

5.2. Shallow water equations

In the case of the shallow water equations, it is important to take into consideration the complications that nonlinear-

ities involve. We seek to construct a generalized vector of boundary conditions H̃ , which enforces the modified boundary

conditions on the surrogate boundary Ŵ̃.

We will decompose this problem into a series of subproblems which will be instrumental in forming the appropriate H̃

for each of the six types of boundary conditions considered here. Let us begin by boundary conditions which enforce the

value h = η∗ − z of the water column height on some portion Ŵ∗ of the boundary Ŵ, where Ŵ∗ = ŴD or Ŵ∗ = ŴI;sup . Then,

on Ŵ̃∗ we will have

1

2
g h2(x̃)≈

1

2
g

((
η∗(x)− ([∇(h + z)](x̃)) · d − z(x̃)

))2
, (72)

so that H̃
h
can take the form

H̃
h

∗(x̃)=
1

2
g
(
η∗(x)− ([∇(h + z)](x̃)) · d − z(x̃)

)2
{

0

ñ(x̃)

}
. (73)

The idea behind the specific form of the boundary conditions on Ŵ̃D and Ŵ̃I;sup is that since h is extrapolated using the

Taylor expansion from the surrogate to the true boundary, the same need to hold for the bathymetry z, in order to maintain

a constant free surface condition. This means that the given bathymetry z is approximated by the extrapolated bathymetry in

the region between true and surrogate boundaries. This will have important consequences of the preservation of a constant

free surface boundary condition, as in the case of a lake at rest. More details will be given momentarily.

Turning now our attention to the term H̃
v

N on ŴN , its design is rather straightforward using (63) and other results already

obtained in the acoustics case. A term that requires instead special care is the term H̃
v

∗ , on the surrogate of Ŵ∗ = ŴO ;sub ,

where we impose h v · n =m∗ . We start from (63) and derive, neglecting quadratic and higher-order terms:
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h(x̃) v(x̃) · ñ(x̃) = h(x̃)
((
v(x̃) · n

)
n +

(
v(x̃) · τ

)
τ
)
· ñ

≈ h(x̃)
(
v(x) · n(x)− nT∇v d

)
n · ñ + h(x̃) (v · τ )τ · ñ

≈
(
h(x̃) v(x) · n(x)− h(x̃)nT∇v d

)
n · ñ + h(x̃) (v · τ )τ · ñ

≈
(
h(x) v(x) · n(x)− (∇h(x̃) · d) v(x) · n(x)− h(x̃)nT∇v d

)
n · ñ + h(x̃) (v · τ )τ · ñ

=
(
m∗ − (∇h(x̃) · d) v(x) · n(x)− h(x̃)nT∇v d

)
n · ñ + h(x̃) (v · τ )τ · ñ

≈
(
m∗ − (∇h(x̃) · d) (v(x̃)+ (∇v)d) · n(x)− h(x̃)nT∇v d

)
n · ñ + h(x̃) (v · τ )τ · ñ

≈
(
m∗ − (∇h(x̃) · d) v(x̃) · n(x)− h(x̃)nT∇v d

)
n · ñ + h(x̃) (v · τ )τ · ñ , (74)

where we removed the superscript j from τ j since the shallow water equations are inherently two-dimensional. Hence,

H̃
v

∗ (x̃)=
((

m∗ − (∇h · d) v · n − hnT∇v d
)
n · ñ + h (v · τ )τ · ñ

){
1

v

}
, (75)

where as usual, n(x̃)= n(M(x̃)), and m∗(x̃)=m∗(M(x̃)).

In the case of a subcritical inlet Ŵ∗ = ŴI;sub , one additional boundary condition v · τ = 0 on the tangential component

of velocity needs to be imposed on the surrogate boundary. We start from (74) but we consider a revised approximation for

v · τ = 0, in the term

h(x̃) v(x̃) · ñ(x̃) ≈
(
m∗ − (∇h(x̃) · d) v(x̃) · n(x)− h(x̃)nT∇v d

)
n · ñ + h(x̃) (v · τ )τ · ñ

≈
(
m∗ − (∇h(x̃) · d) v(x̃) · n(x)− h(x̃)nT∇v d

)
n · ñ + h(x̃) (v(x) · τ (x)− (τ )T∇v d)τ · ñ

≈
(
m∗ − (∇h(x̃) · d) v(x̃) · n(x)− h(x̃)nT∇v d

)
n · ñ + h(x̃) (−(τ )T∇v d)τ · ñ

= m̃∗ , (76)

h(x̃) v(x̃) · ñ(x̃) v(x̃) ≈ m̃∗ (v(x)− ∇v d)

≈ m̃∗ ((v(x) · n)n + (v(x) · τ )τ − ∇v d)

≈ m̃∗ ((v(x) · n)n − ∇v d)

≈ m̃∗

(
((v(x̃)+ ∇v d) · n)n − ∇v d

)
. (77)

Then we obtain the following revised term H̃
v

∗ :

H̃
v

∗ (x̃)=
((

m∗ − (∇h · d) v · n − hnT∇v d
)
n · ñ + h (− (τ )T ∇v d)τ · ñ

){
1

((v(x̃)+ ∇v d) · n)n − ∇v d

}
, (78)

where quadratic and higher-order terms can be neglected in the products.

It remains to consider the case of H̃
v

I;sup on ŴI;sup , which can simply be handled using Taylor expansions. Namely,

H̃
v

I;sup(x̃)=
(
ηI;sup(x)− ([∇(h + z)](x̃)) · d − z(x̃)

) (
v I;sup − (∇v)d

)
{

1

v I;sup − (∇v)d

}
. (79)

In conclusion, we obtain the following final variational statement

0 = (W , ∂tU − Z)
�̃

−
(
∂xiW , F i

)
�̃

+ 〈W , H̃〉Ŵ̃ + (L T W , τ Â
−1

0 (LtY − Z))
�̃

+ (∂xiW , ν g i j Â0 ∂x j
Y )

�̃
,

(80a)

with H̃ = H̃
v

+ H̃
h
and
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H̃
v
(Y )=





((
vN − nT∇v d

)
n · ñ + (v · τ )τ · ñ

)
{

h

h v

}
, on ŴN ,

v · ñ

{
h

h v

}
, on ŴD ,

m̃I;sub





1

((v(x̃)+ ∇v d) · n)n − ∇v d



 , on ŴI;sub ,

(
ηI;sup(x)− ([∇(h + z)](x̃)) · d − z(x̃)

) (
v I;sup − (∇v)d

)




1

v I;sup − (∇v)d



 , on ŴI;sup ,

m̃O ;sub

{
1

v

}
, on ŴO ;sub ,

v · ñ

{
h

h v

}
, on ŴO ;sup

(80b)

and

H̃
h
(Y )=





1
2
gh2

{
0

ñ

}
, on ŴN ,

1
2
g
(
ηD(x)− ([∇(h + z)](x̃)) · d − z(x̃)

)2




0

ñ



 , on ŴD ,

1
2
gh2

{
0

ñ

}
, on ŴI;sub ,

1
2
g
(
ηI;sup(x)− ([∇(h + z)](x̃)) · d − z(x̃)

)2




0

ñ



 , on ŴI;sup ,

1
2
gh2

{
0

ñ

}
, on ŴO ;sub ,

1
2
gh2

{
0

ñ

}
, on ŴO ;sup ,

(80c)

where

m̃I;sub =
(
mI;sub − (∇h · d) v · n − hnT∇v d

)
n · ñ + h (− (τ )T ∇v d)τ · ñ , (80d)

m̃O ;sub =
(
mO ;sub − (∇h · d) v · n − hnT∇v d

)
n · ñ + h (v · τ )τ · ñ . (80e)

Similar to the case of body-fitted conformal grids, also in the case of the SB method penalty terms are added to enhance

the stability and convergence properties of the open sea and wall boundary conditions:

〈ψ · ñ +
(
nT∇ψ d

)
n · ñ − (ψ · τ )τ · ñ , αh

(
v · ñ −

(
vN − nT∇v d

)
n · ñ − (v · τ )τ · ñ

)
〉Ŵ̃N

, on ŴN , (81a)

〈φ + ∇φ · d , α (h − (ηD − z)+ ∇h · d)〉Ŵ̃D
, on ŴD . (81b)

5.3. Discrete conservation properties

Also in the case of the SB method, a statement of conservation can be derived for the variational formulations (71) and

(80), by using the same test function W = 1 j defined in Section 4.3, but this time supported over �̃ only. Namely, for (80),

we have,

0 = (1 j , ∂tU − Z)
�̃

+ 〈1 j , H̃〉Ŵ̃ , (82)
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Fig. 3. Linear acoustic wave convergence test. Computational domain geometry and grids at the coarsest level of refinement: conformal grid (left) and

embedded grid (right). For the embedded grid, light blue indicates �̃, that is the active elements inside the computational domain, dark blue indicates the

elements outside, and red and orange indicate the elements intersecting the circular boundary (in white). (For interpretation of the colors in the figure(s),

the reader is referred to the web version of this article.)

and a similar statement holds for (71). Observe that the conservation statement is with respect to the numerical fluxes H̃

and not H . H̃ and H are related by the Taylor expansion used to derive the surrogate boundary conditions.

5.4. C-property

The analysis of the C-property for the SB method is very similar to the one for the base conformal method, but with

one important difference, in that now the boundary condition values are approximated with Taylor expansions, and for this

reason the boundary terms F h
i ni and H̃ in the expression

(W , ∂tU )�̃ =
(
W , Zo − ∂xi F i

)
�̃

+ 〈W , F h
i ni − H̃〉Ŵ̃ , (83)

analogous to (60), may not always simplify exactly. Comparing with (80b)–(80c), we have that perfect cancellations always

occur on the boundaries ŴN , ŴI;sub , ŴO ;sub , and ŴO ;sup , which do not need further care.

Verifying that cancellations also take place on the boundaries Ŵ̃D and Ŵ̃I;sup takes a little more effort. Recalling that the

given bathymetry z is approximated by the extrapolated bathymetry in the region between true and surrogate boundaries,

we have that [∇(h + z)](x̃)= ∇η0 = 0 in the terms associated with H̃
h
, and consequently:

1

2
g
(
η0(x)− ([∇(h + z)](x̃)) · d − z(x̃)

)2
=

1

2
g
(
η0(x)− z(x̃)

)2
=

1

2
g
(
h(x̃)

)2
, (84)

which cancels exactly the terms associated with F h
i
ni .

6. Time integration

The integration in time of the equations is performed using the same algorithms presented in [47,50] for body-fitted con-

formal grids, to which the reader can refer for more details and the analysis of stability and convergence. These algorithms

are space–time integrators that are implemented as explicit predictor/multi-corrector with mass lumping. Specifically, we

use a second-order Petrov–Galerkin space–time method, which, if only one corrector pass is performed, exactly corresponds

to a second-order Runge–Kutta integrator. Full details about its implementation for acoustic wave problems is found in [50].

The extension of this algorithm to the shallow water equations is straightforward.

7. Numerical results for the wave propagation problem

We present a number of numerical results, to confirm the proposed approach is a robust, stable, and accurate strategy

for boundary condition enforcement on embedded boundaries. All computations were run with three corrector passes of

the second-order Petrov–Galerkin space–time integrator (similar to RK2) proposed in [50] for a Courant–Lewy–Friedrichs

(CFL) condition of 0.5. The density ρ and wave speed cs are both equal to the unit constant. We pick the stability parameter

cτ = 0.3 and mass matrices are lumped for all testes. We start with a battery of tests to verify the accuracy of the proposed

method.
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Fig. 4. Convergence of the l1([0, T ] : (L2(�)))-norm for the acoustic pulse propagation problem on an embedded disk domain with zero normal velocity

boundary conditions. On the left, pressure, and on the right, velocity. A comparison between SB method and the conformal Nitsche method is shown for

the errors of each solution field.

7.1. Convergence tests

7.1.1. Neumann boundary condition on an embedded disk

We consider a two-dimensional, radially symmetric, stationary acoustic wave propagation problem, where the computa-

tional domain is a disk of radius R = 2.5, as shown in Fig. 3, with corresponding conformal and embedded grids. The exact

solution is radially symmetric and given by

vr (r , t)=
1

ρ cs
J1

( z1 ,1

R
r
)
sin

(cs z1 ,1

R
t
)
,

vθ (r , t)= 0 ,

p (r , t)= J0

( z1 ,1

R
r
)
cos

(cs z1 ,1

R
t
)
,

where vr is the radial component of the velocity, vθ is the tangential component of the velocity, and the scalar z1 ,1 =

3.83170597020751 is the first root of the first-kind Bessel function J1 . Zero radial velocity boundary conditions are weakly

enforced on the circle of radius R , using the SB method. Specifically, a background rectangular domain [−5,5] × [−3,3] is

meshed using a fully unstructured triangular mesh, and its size is progressively and hierarchically refined from 0.5 to 0.0312

to check convergence rates. We consider the evolution of the problem until T = 4, that is, the instant of time at which the

wave has reflected once against the boundary and is about to return to its original configuration.

Fig. 4 shows the convergence of the pressure and velocity for this test, in the l1([0, T ]:(L2(�)))-norm, defined as:

‖e‖l1([0,T ]:(L2(�∗))) =
1

N + 1

N+1∑

i=0

‖e(ti)‖L2(�∗), (85)

where �∗ =� or �̃, t0 = 0 is the initial time of the simulation, and tN+1 = T is the final time of the simulation. In what

follows, we will abbreviate the notation l1([0, T ] :(L2(�∗)))-norm to l1([0, T ] : L2)-norm. The rates of convergence are very

close to the expected second order using lumped mass matrices. The slight degradation of the convergence rates may be

a byproduct of a more pronounced accumulation of dispersion error over long time durations, a well-known issue in the

case of mass lumping. For comparison, results computed on conformal (body-fitted) grids for the same problem are also

presented in Fig. 4, and are virtually indistinguishable from the results of the SB method.

7.1.2. Dirichlet boundary condition on an embedded disk

To test the SB method in an acoustic problem with Dirichlet boundary conditions, we consider the same domain ge-

ometry of the previous test, and we change the boundary conditions. Consequently, the exact solution has been altered to

comply with a zero pressure boundary condition on the embedded disk or radius R ,

vr (r , t)=
1

ρ cs
J1

( z0 ,1

R
r
)
sin

( cs z0 ,1

R
t
)
,
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Fig. 5. Convergence of the l1([0, T ]:(L2(�)))-norm for the acoustic pulse propagation problem on an embedded disk domain with zero pressure boundary

conditions. On the left, pressure, and on the right, velocity. A comparison between SB method and the conformal Nitsche method is shown for the errors

of each solution field.

vθ (r , t)= 0 ,

p (r , t)= J0

( z0 ,1

R
r
)
cos

( cs z0 ,1

R
t
)
,

where z0 ,1 = 2.40482555769577 is the first root of the first-kind Bessel function J0 . The solutions are computed until T = 4

with embedded and conformal grids.

We compute the error of pressure and velocity in the l1([0, T ]:(L2(�))) norm in Fig. 5. Comparing the SB method with

the reference Nitsche method on conformal grids, we observe that, although the errors in l1-norm associated with the SB

are slightly larger, they still converge with order 1.8 and 1.7. We argue that this is actually a small price to pay when

weighted against the ease of implementation and simplicity of the method, if compared with strategies that require tedious

integration along the true boundary of the computational domain.

7.2. Acoustic waves around circle/rectangle

This third test involves the interaction of radial acoustic wave with boundaries of more complex geometry. The problem

domain consists of the rectangle [−5,5] × [−3,3], in which a circular hole is present, of radius 1.0 and center (3,0), as

well as a square hole of side 2.0, and center (−3,0). The goal of this test is to validate the robustness of the proposed

SB method in the presence of sharp corners, which may induce singularities in the velocity profile. The hump-like initial

condition is given by the fields:

v = 0 ,

p =

{
1+ A

(
1+ 2 r3

R3 − 3 r2

R2

)
, r ≤ 1 ,

1 , otherwise ,

where A = 0.01 is the amplitude, R = 1.0 is an intrinsic radius and r =
√
x2 + y2 is the magnitude of the radial vector. A

zero normal velocity boundary condition is applied on all boundaries.

The computation using the SB method was performed on a grid that filled the entire rectangular domain [−5,5]×[−3,3]

and of element size approximately 0.0312. In this test case, it is easy to observe that the solution is free from spurious

oscillations throughout the many reverberations of the wave against the various boundaries, as shown in the pressure plots

of Figs. 6, 7 and 8.

The same problem is also solved on a conformal grid of almost identical mesh size that is attached to the geometrical

shape of the problem domain. As shown in Figs. 6, 7 and 8, the differences in pressure fields at various times are visually

negligible.

An overlay of the results near the rectangular hole from the SB and conformal Nitsche methods is shown in Fig. 8, where

the solution of the SB method is shown as a solid surface and the solution of the conformal Nitsche method as a black

wireframe. The two results show fairly good agreement.
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Fig. 6. Comparison between pressure contours obtained with the conformal and SB methods for the propagation of an acoustics wave in a complex

two-dimensional domain at various times.
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Fig. 7. Comparison between pressure elevation plots obtained with the conformal and SB methods for the propagation of an acoustics wave in a complex

two-dimensional domain at various times.

8. Numerical results for shallow water flows

Also in the case of shallow water flows, we compare the performance of the proposed SB method against a refer-

ence Nitsche method on conformal grids of equivalent resolution. All computations were run with four corrector passes of

the second-order Petrov–Galerkin space–time integrator proposed in [50] (very similar to RK2 explicit integrator) with a

Courant–Lewy–Friedrichs (CFL) condition of 0.5. Moreover, we chose the stabilization parameter cτ = 0.5, and the primary

variables Y = {h, vT }T as solution variables. The penalty terms detailed in (57) and (81) for the wall and open sea bound-

ary conditions are employed with α = 2.0 in some cases, as specifically indicated in the following. We also note that the

discontinuity capturing operator is active only for the test of Sections 8.3 and 8.4.

8.1. C-property check

The C-property of the proposed SB method, discussed in Section 5.4, was validated in three numerical tests involving a

body of water initially at rest in the rectangular domain [−1,1] × [−1,1]. In the first test, the bathymetry of the river bed

is given by a constant slope in the x-dimension, namely

z(x, y)= 0.25 (x− xmin) . (86)

In the second test, the river bed bathymetry has the shape of a hump, located at the center of the computational domain:
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Fig. 8. Zoom of the elevation plot of the pressure solution near the rectangular boundary for various meshes. The results from SB method are shown as a

solid contour, and are overlaid with the results of the conformal Nitsche method, shown as a black wireframe. The results of the conformal Nitsche and SB

methods are difficult to tell apart.
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Table 1

C-property check. L2-norm of the error in height and velocity at time T = 100s, for the SB and

the conformal Nitsche methods. The C-property is preserved within machine accuracy.

SB method Conformal Nitsche method

height velocity height velocity

Constant slope bottom 1.33205e−13 3.42418e−13 4.52703e−15 3.93743e−13

Central hump bottom 2.10115e−13 4.33058e−13 5.26521e−15 5.04488e−13

Cosine shape bottom 3.0125e−15 7.37541e−13 2.89032e−15 4.86065e−13

Fig. 9. Nonlinear shallow water convergence test. Computational domain geometry and grids at the coarsest level of refinement: conformal grid (left) and

embedded grid (right). For the embedded grid, light blue indicates �̃, that is the active elements inside the computational domain, and red and orange

indicate the (inactive) elements intersecting the circular boundary (in white).

z(x, y)= I
h
1

[
0.4 exp

(
−10

(
x2 + y2

))]
, (87)

where I h
1 is the interpolation operator on the space of piecewise linear polynomials defined on the computational grid

utilized in simulations. In these two tests, the boundaries are solid walls, and no friction is imposed. A third test is then

considered, in which ∇z 6= 0 and, in particular,

z(x, y)= 0.25+ 0.25I
h
1 [cos(π (x− xmin))] , (88)

and fixed height boundary conditions are applied to the left and right hand side boundaries. Specifically, the correction

suggested in (84) is used to maintain the C-property for the SB method. The other two sides are considered as solid walls.

Penalty terms are included for this test, with penalty parameter α = 2.0.

For the SB method case, the right wall of the rectangular domain is embedded. The bathymetry of the river bed

contributes to nonzero source terms Soi . The water inside the domain is initially set at rest and the bathymetric bed is

completely submerged. Ideally, the equilibrium state

h(x, y)+ z(x, y)= 1.0 , (89)

v = 0 , (90)

should be maintained for all three bathymetries, as well as zero velocities everywhere. The simulations are carried out until

T = 100s, using the SB method and the conformal Nitsche method, with a grid of size h = 0.06. The discontinuity capturing

operator is switched off since there is no discontinuity forming. The L2-norm of height and velocity errors are presented

in Table 1 for these three different bottom types. The water height and velocity are unperturbed and the zero velocity is

reproduced within machine double precision in the L2-norm, for all tests and both numerical methods.

8.2. Convergence tests for shallow water flows inside a rectangular domain

We present convergence tests for the SB method with three different types of boundary conditions: impermeable wall,

subcritical river inflow and subcritical river outflow. The computation is confined inside the rectangular domain [0,8] × [0,5].

In all simulations, and only for the case of the SB method, the right side of the rectangle – the set {8}×[0,5] – is embedded,

while for all other sides the boundary conditions are enforced weakly with a standard conformal Nitsche approach. Both the

SB and the reference conformal Nitsche method were tested on five unstructured triangular grids of size h = 0.625, 0.3125,

0.15625, 0.078125, 0.0390625, respectively. We consider the evolution of the problem until T = 3. The computational

domain and the coarsest level of refinement of the conformal and embedded grids are shown in Fig. 9.
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Fig. 10. Convergence of the l1([0, T ] :(L2(�)))-norm for the shallow water flows with zero normal velocity boundary condition on the embedded vertical

right side of the rectangular domain. On the left, height, and on the right, velocity. Comparison between the SB and conformal Nitsche methods are

presented.

Fig. 11. Convergence of the l1([0, T ]:(L2(�)))-norm for the shallow water flows with an inflow boundary condition on the embedded vertical right side of

the rectangular domain. On the left, height, and on the right, velocity. A comparison between the SB and the conformal Nitsche methods is shown.

Fig. 12. Convergence of the l1([0, T ]:(L2(�)))-norm for the shallow water flows with outflow boundary condition on the embedded vertical right side of

the rectangular domain. On the left, height, and on the right, velocity. Three different choices, namely fixed height, fixed velocity flux, and fixed mass flux,

for outflow boundary conditions are tested and verified. A comparison between SB method and the conformal Nitsche method is shown.
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Fig. 13. The coastline near Savannah (GA).

8.2.1. Impermeable wall boundary conditions

In this case, zero normal velocity boundary conditions are applied to all boundaries of the rectangular domain. We

consider the exact solution

h = 2+ 0.1 sin (ωt) cos (λx) , (91a)

v1 = 0.1 sin (λx) , (91b)

v2 = 0 , (91c)
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Fig. 14. A closeup of the coastline and the embedded grids utilized in the computation. White solid lines represent the zero elevation isoline. Light

blue indicates the active elements inside the computational domain, dark blue indicates the elements outside, and red and orange indicate the elements

intersected by the coastline.

obtained with the method of manufactured solutions adding to the equations the source terms

S1 =0.1 (cos (λx) (2λ+ω cos (ωt))+ 0.1λ cos (2λx) sin (ωt)) , (92a)

S2 =0.1 sin (λx) (λ (0.005− 2g + 0.015 cos (2λx)) sin (ωt)

+0.1 cos (λx) (4λ+ω cos (ωt)− gλ sin (ωt) sin (ωt))) , (92b)

S3 =0 , (92c)

where we set, in particular, λ = π/L and ω = 1. In this test, boundary penalty terms are added with penalty parameter

α = 2.0, for both the conformal and SB methods. Fig. 10 shows a comparison of the error convergence rates of the SB

method and conformal Nitsche method. Both methods are nearly second order, but with differences in the L2−norm of the

error that are more noticeable than in the acoustic case. These discrepancies are however within a reasonable range, and

the accuracy sacrificed is a small price to pay for the simplicity of the proposed SB method.

8.2.2. River inflow boundary condition

In this case, zero normal velocity boundary conditions are applied to the top and bottom boundaries of the rectangular

domain, and an outflow boundary condition on the mass flux h v · n = 0.2 is applied to the left boundary. An inflow

boundary condition (h v · n = −0.2) is applied to the right wall, and implemented as embedded in the case of the SB

method. The exact solution is given by

h = 2− 0.1 cos (ωt) sin (λx) , (93a)

v1 = −0.1 cos (λx) , (93b)

v2 = 0 , (93c)

obtained with the source terms:

S1 = − 0.1 (−0.1λ cos(2λx) cos(ωt)− sin(λx)(2λ+ω sin(ωt))) , (94a)

S2 = − 0.1 cos(λx) (λ (−0.005 + 2g + 0.015 cos(2λx)) cos(ωt)

−0.1g λ cos(ω)2 sin(λx)+ 0.1 sin(λx) (4λ+ω sin(ωt))
)
, (94b)

S3 =0 , (94c)

where λ= π/(2 L) and ω= 1.

Note that the inflow boundary condition is enforced using the two separate conditions

h v · n = 0.2 and v · τ = 0 , (95)

as suggested by the theory of Riemann invariants. As shown in Fig. 11, the differences in errors between the conformal

Nitsche method and the SB method are small, and both methods yield the expected second-order convergence rate.
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Fig. 15. Velocity magnitude contours for the propagation of a tsunami along the coastline near Savannah, (GA).

8.2.3. River outflow boundary condition

In this case, zero normal velocity boundary conditions are applied to the top and bottom boundaries of the rectangular

domain. Outflow boundary conditions (v ·n> 0) are applied to the left and right boundaries of the rectangular domain. The

exact solution is given by

h = 2− 0.1 cos (ωt) sin (λx) ,

v1 = −0.1 cos (λx) ,

v2 = 0 ,

and is obtained with the source terms
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Fig. 16. Pressure contours for the propagation of a tsunami along the coastline near Savannah, (GA).

S1 = − 0.1 (−0.1λ cos(2λx) cos(ωt)− sin(λx)(2λ+ω sin(ωt))) , (97a)

S2 = − 0.1 cos(λx) (λ (−0.005 + 2g + 0.015 cos(2λx)) cos(ωt)

−0.1g λ cos(ω)2 sin(λx)+ 0.1 sin(λx) (4λ+ω sin(ωt))
)
, (97b)

S3 =0 , (97c)

where λ= π/L and ω= 1. The following three options for the imposition of the outflow boundary conditions are tested:

a.) Mass flux: h v · n = 0.2;

b.) Fixed height: h = 2;

c.) Velocity flux: v · n = 0.1.
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Fig. 17. Height elevation plots for the propagation of a tsunami along the coastline near Savannah, (GA).

Penalties are introduced in the “fixed height” and “velocity flux” cases, with penalty set, as usual, as α = 2.0. For the choices

of fixed height and velocity flux boundary conditions, penalty terms are utilized with α = 2.0. Results with all the previous

three options are illustrated in Fig. 12. There is a discrepancy in the magnitude of errors between the conformal Nitsche and

SB methods in the case of the mass flux and velocity flux boundary conditions, while for fixed height boundary condition

this discrepancy is negligible. In conclusion, we can say that the convergence rates are approximately second order for all

implementations of the subcritical outflow boundary conditions.

8.3. Coastline test

This test involves the propagation of a surface gravity-driven wave pulse against a portion of a coastline near Savannah,

(GA). The coastline is reconstructed from the digital elevation map (DEM), as presented in Fig. 13. The geometry of this

problem is considerably complicated and may require advanced meshing capability if a discretization using a conformal

Nitsche method is pursued. This is problem makes a good candidate for the proposed SB method. The spatial sampling

interval of the DEM is about 8.75 meters in x-direction and 10.27 meters in y-direction. A triangulated grid of size 10

meters is used to fill the computation domain of [35200, 39300] × [−58400, −54600], with sufficient resolution. A closeup

of the coastline and the embedded grid is presented in Fig. 14. The boundary conditions utilized are of the impermeable

wall type for the coastline, and represent a simplification, since in general one should admit the possibility of flooding.

However, when large areas of coastline that are not the primary focus of a simulation need to be modeled, this is often the
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Fig. 18. Toce valley [53] flash flood test. Bathymetry and probe numbering and location are shown in Fig. 18(a). Zoomed views of the embedded and

conformal grids near the buildings in the urban area are shown in Fig. 18(b): (left) embedded grid (coarse), (middle) embedded grid (fine), (right) conformal

grid. In the left and middle figures, light blue indicates the elements inside the computational domain, dark blue indicates the elements outside, and red

and orange indicate the elements that intersect with the embedded boundaries.

boundary condition utilized. Flooding boundary/interface conditions will be considered in future work, due to their specific

nature.

The initial solution utilized for this test is the same as the hump given in section 7.2, applied to the water height this

time, with parameters Amp = 1, R = 200 and r =

√
(x− 37089)2 + (y − 56250)2 .

The magnitude of the velocity and height are presented in Fig. 15 and 16 at various times, while elevation plots of

the height are presented in Fig. 17. No oscillations are visible in this series of plots, in spite of the fact that the complex

coastline chosen contains many corners. This test confirms that the proposed approach is a viable and robust strategy in

the context of complex shallow water flows.

8.4. Toce valley flash flood test: a simplified urban district layout

In [53], the authors conducted a series of flash flood flow experiments using a scaled model of the Toce river valley

(Italy). The main goal of this work was the study of flow patterns in an urban environment, modeled by means of sixteen

cubic concrete blocks of side 15cm, arranged in a 4×4 grid. Two masonry walls were erected with the purpose of constrain-

ing the flow on either side of the urban area. The problem setup is shown in Fig. 19. Ten probes measuring water heights

are placed at various locations: in front of the first row of houses, in the middle of streets and in the wake of some of the

buildings. The initial state of the model is dry, the pump discharge history data of “low flow” is used for the enforcement

of upstream boundary condition, and supercritical outflow boundary conditions are imposed at the downstream end of the

valley. The frictional coefficient is 0.0162 for the concrete bed. To resolve the possible numerical difficulties of a zero initial

water height, associated with the dry bed condition, a minimal threshold value ǫ = 1.0e−4 is applied to the water height h,

as suggested in [15]. Also, the characteristic element length in the discontinuity capturing term (∂xiW , ν ĥ2e Â0 ∂xiY )� inside

(51) is modified as,

ĥe = he +

ne
nd∑

i=1

0.5‖d (xi)‖ if xi ∈ Ŵ̃ , (98)

where ne
nd

is the number of nodes of element e that are on the surrogate boundary (none, one, two or three, for triangular

elements). This strategy allows to adjust (increase) the dissipation at elements adjacent to the surrogate boundaries, de-
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pending on the number of respective nodes on the surrogate boundary. This approach is of general applicability and robust,

but the benefits were found to be most apparent in the case of this test. Also in this test, boundary penalty terms are added

at building boundaries, for both the conformal and SB methods, with penalty parameter α = 2.0.

In the computations presented here, three modifications and/or assumptions with respect to the experimental setup are

adopted to guarantee the well-posedness of numerical simulations. As shown in Fig. 18, in the case of SB method, the

buildings are embedded and two meshes of different size are used. A conformal mesh with size comparable to the finest SB

method grid is used for comparison.

1. A constant inflow boundary condition is utilized at the inlet, since no specific information is available in the experi-

ment.

2. The location of the inlet was shifted to match the position of probe 2, since the bathymetry at the inlet does not seem

to be represented accurately in the experimental data provided in [53]. Consequently, all the results from the numerical

simulation reported here are offset by one second, which is the time taken by the water front to cover the distance

between probe 1 and probe 2 in the experimental data. The initial flooding time is postponed to t0 = 4.6s, since until

that time, probe 2 shows particularly noisy discharge data.

3. The computational domain is extended to x = 7.5 with a smooth decrease in elevation, to ensure supercritical flow in

the outlet area.

The free surface elevations near the urban district at various times are shown in Fig. 20 for the SB method simulation.

Fig. 19 presents the water depths predicted by the SB method from 4.6 to 55 seconds, compared to the laboratory mea-

surements and the Nitsche method results on conformal grids. The sampling time interval is 0.2 seconds. Overall, there is

good agreement between the simulations of both the SB method and conformal Nitsche’s method with the experiment, with

the exception of probe 5, where the computational results match, but are markedly different from the experimental data.

However, this fact is well documented in the literature of shallow water flow computations for this test [30,43,48], and the

discrepancies observed in our computations are very similar to the ones observed in many other numerical simulations of

this problem reported in the literature.
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Fig. 19. Toce valley [53] flash flood test. Comparison of the numerical predictions for the water height with experimental data for probe locations 3 through

10. Compare with Fig. 18(a) for probe location. The horizontal axis represents time in seconds and the vertical axis represents water depth in centimeters.
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Fig. 20. Toce valley [53] flash flood test. Free surface elevation plots for the SB method solution.
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Highlights

• We propose a new embedded boundary method, in which the location and value of boundary conditions are shifted.

• This process yields a simple, robust, and efficient method, in which boundary conditions are enforced weakly.

• We apply the proposed method to hyperbolic systems: the equations of linear acoustic waves and shallow water flows.

• The benefit of the method is evident when considering the complex morphology of ocean coastlines or urban flooding

scenarios.


