Tracing Resource Usage Over Heterogeneous Grid Platforms:
A Prototype RUS Interface for DGAS

Rosario M. Piro!*, Michele Pace®*, Antonia Ghiselli?, Andrea Guarise',
Eleonora Luppi3, Giuseppe Patania’, Luca Tomassetti®, Albert Werbrouck!

*These authors have contributed equally to the presented work.

INFN Torino 2INFN-CNAF 3INFN Ferrara
Via Pietro Giuria, 1 Viale Berti Pichat, 6/2 Via Saragat, 1
10125 Torino, Italy 40127 Bologna, Italy 44100 Ferrara, Italy

piro@to.infn.it

Abstract

Tracing resource usage by Grid users is of utmost im-
portance — especially in the context of large-scale scien-
tific collaborations such as within the High Energy Physics
(HEP) community — to guarantee fairness of resource shar-
ing, but many difficulties can arise when tracing the re-
source usage of distributed applications over heterogeneous
Grid platforms. These difficulties are often related to a lack
of interoperability of the accounting components across
middlewares.

This paper briefly describes the architecture and work-
flow of the Distributed Grid Accounting System (DGAS) [1]
and evaluates the possibility to extend it with a Resource
Usage Service (RUS) [2, 3] interface — according to the
Open Grid Forum (OGF) specification — that allows to
store and retrieve OGF Usage Records (URs) [4, 5] via
Web Services. In this context the OGF RUS and UR speci-
fications are critically analyzed. Furthermore, a prototype
of a RUS interface for DGAS (DGAS-RUS) is presented
and the most recent results towards a full interoperability
between heterogeneous Grid platforms are outlined.

Keywords: Grid Interoperability, Distributed Grid Ac-
counting, Resource Usage Service, Usage Record.

1. Introduction

Although both research and production Grid projects
have initially focused on designing, implementing and de-
ploying the basic functionalities required for executing
user applications in a transparent way on globally dis-
tributed heterogeneous resources — such as Resource Bro-
kers (RBs) or meta-schedulers, certificate-based security in-

michele.pace@cnaf.infn.it

tomassetti@fe.infn.it

frastructures and middleware components that hide the un-
derlying local systems on Computing Elements (CEs) and
Storage Elements (SEs) — the need for a proper accounting
of resource usage by Grid users has recently significantly in-
creased. Above all multi-organizational collaborations with
stringent funding policies are interested in accurately trac-
ing the resource usage by single users as well as entire Vir-
tual Organizations (VOs).

The requirement of proper usage accounting may con-
cern not only widely distributed resources within a single
Grid environment, but also multiple distinct Grid platforms,
infrastructures or projects. In fact, many international sci-
entific collaborations — involved in research fields such as
High Energy Physics (HEP), Astrophysics, Astronomy and
Bioinformatics — that form VOs of large numbers of sci-
entists from different institutions and countries, contempo-
raneously use multiple “National” or regional Grid infras-
tructures.

The HEP experiment BaBar [6], for example, pressed by
the need to quickly process data, performs its computational
work on the LHC Computing Grid (LCG) [7] in Europe [8]
and GridX1 [9, 10] in Canada [9] without, however, sharing
software and resources between the different Grids.

ATLAS [11], another international HEP experiment,
relies on tools and resources provided by LCG, Nor-
duGrid [12] and Grid3/OSG [13], but wraps the diverse
middleware stacks with a custom tool (Windmill [14]) that
provides uniformity of job submission and management.

Tracing resource usage over multiple Grids will also re-
quire additional efforts to improve the interoperability be-
tween different Grid accounting infrastructures and tools.

The standardization work we describe in this paper is
related to the OMII-Europe project [15] whose Account-
ing Activity task aims at achieving interoperability between
different accounting systems through the adoption of com-

mon standards. Our work is based on two OGF recom-
mendations, the Usage Record (UR) [4, 5], defining a well-
structured XML document containing job usage informa-
tion, and the Web Services-based Resource Usage Service
(RUS) [2, 3] specification, that defines an interface for stor-
ing and retrieving such accounting information. The adop-
tion of standard interfaces for accounting tools allow Grids
to exchange usage information, thereby enabling a fair shar-
ing of resources not only within single Grids but also be-
tween collaborating Grid projects/infrastructures.

In this paper we present the design of a RUS interface
for DGAS [1] (DGAS-RUS) as well as the current DGAS-
RUS prototype and the obtained preliminary results. In this
context we critically analyze the underlying OGF RUS and
UR specifications.

The paper is organized as follows: Section 2 gives a very
brief and generic introduction to DGAS (version 3.1.10),
leaving out nearly all technical details, but allowing to bet-
ter understand the following discussion. The OGF RUS and
OGF UR are then evaluated in Section 3. The design and
prototype of DGAS-RUS are presented in Section 4 and
some final remarks are given in Section 5.

2. The Distributed Grid Accounting System

DGAS is an accounting toolkit — originally developed
within the European DataGrid (EDG) [16] and Enabling
Grids for E-sciencE (EGEE) [17] projects — conceived and
designed to be completely Grid-oriented. It is based on a
fully distributed client/server infrastructure without requir-
ing a central repository of accounting information, relying
instead upon a network of independent accounting servers
used to keep the accounting records, as well as a network of
independent servers for resource pricing in order to enable
the deployment of a Grid resource market. Resource pricing
is optional and of no further importance for this paper.

The Home Location Register (HLR) service is the part of
DGAS that is responsible for keeping the accounting infor-
mation for both Grid users and Grid resources. It receives
the accounting information, the so called usage records’,
from the Grid resources, and stores them for later retrieval.
Usage information can be obtained from the HLR service
for single jobs as well as in aggregate form. Summary in-
formation is computed on the fly and can be queried for
in a flexible way (per user, per resource, per VO, per VO
group/user role, etc.).

2.1. User HLRs and Resource HLRs

DGAS associates accounting information with previ-
ously registered user and resource accounts (identified by

n this case we talk about the DGAS UR format, not the one defined
by OGEF, see Section 2.4.

the User DN — Distinguished Name, or subject of the
user’s certificate — and the Grid CE ID respectively) and
foresees two logical types of primary HLR servers: the User
HLR and the Resource HLR (each HLR server, however,
can manage both user and resource accounts if required). A
User HLR stores information from a user’s or VO’s point of
view and is the DGAS server that users may query for ac-
counting information concerning the jobs they have submit-
ted. A Resource HLR stores information from a resource
owner’s or site manager’s point of view and is the DGAS
server that resource owners, or site managers, can query for
information concerning their resources.

The reason of this division is straightforward. In order
to guarantee a reasonable scalability there will be many
HLR servers on the Grid, and different resources will be
registered with different Resource HLRs. Hence it is de-
sirable that all accounting information concerning a given
user be forwarded to the HLR that manages the user’s ac-
count (“User” HLR) in order to be able to compute account-
ing statistics for the single Grid users although they submit
jobs to many different Grid resources. With a distributed
accounting system with duplicated usage records each Grid
participant (user or resource owner) theoretically needs to
query only a single HLR server in order to have an exhaus-
tive accounting view, nonetheless preserving a reasonable
scalability that cannot be achieved through a single central-
ized accounting repository.

2.2. Second (or Higher) Level HLRs

For those use cases in which the collection of usage in-
formation in centralized accounting repositories is feasi-
ble and desired, DGAS allows to forward usage informa-
tion from the primary Resource and/or User HLRs to so
called Second Level HLRs (L2HLRs) that can in turn for-
ward accounting data to higher level HLRs. This allows
to deploy additional hierarchical levels of regional, national
and/or grid-wide HLR servers without a need to alter the
distributed primary accounting infrastructure. A vertical or-
ganization in VO-specific LZHLRs is also possible.

2.3. Accounting Workflow

Upon job completion, a job usage record (usually built
by the DGAS metering sensors) is sent from the Comput-
ing Element to the Resource HLR that manages its account.
The Resource HLR then forwards the record to the User
HLR that manages the account of the user that submitted
the job.> Optionally, this step may include an “economic

2Note, however, that the single sites have the faculty to decide whether
to forward accounting information from their Resource HLR to the differ-
ent User HLRs or not.

DB (usage records)

Resource HLR node

executing
site

2)transmitUR/ pe=ssmsmseecccemeeeNgmmmmmmmaaa '
7 5) transmit UR "\ (optional)
Computing Element / \

metering
sensors

User/VO HLR node

HLR server daemon

6) insert UR

1) get usage
job run info

DB (usage records)

Figure 1. Simplified DGAS accounting proce-
dure (L2HLRs are omitted).

transaction”, by means of exchanging virtual credits be-
tween user and resource account. For obvious security and
privacy reasons, all connections are authenticated and en-
crypted with x509 host certificates. As can be seen in Fig. 1,
the workflow is somewhat more complex (as most com-
munication is done asynchronously), but further details are
omitted here.

2.4. DGAS Legacy Query Interface

Each HLR server can be queried to retrieve accounting
information. For querying an HLR server the user has to
authenticate with a valid user certificate or proxy. Access to
private information is granted only to authorized users. That
is, users can generally access only information regarding
their own jobs, while VO admins, for example, may have
access to the accounting information of the entire VO. The
role-based access control (RBAC) can be either defined by
means of VOMS certificates [18] or for single user DNs.

Since the development of DGAS started long before
OGF recommendations, like the RUS and the UR, emerged,
the communication between DGAS components uses a
legacy protocol based on non-standard XML documents
that are exchanged — for security and privacy reasons
— via Globus GSI [19]. This DGAS-specific protocol is
wrapped by client programs such that querying a DGAS
HLR server, or pushing accounting information onto it, can
be accomplished by means of a simple command line inter-
face.

3. Evaluation of RUS and UR for DGAS

The OGF Resource Usage Service (RUS) specification
is based on the OGF Usage Record (UR) format, in that it
describes the interface to a service for storing and retrieving
UR documents. Therefore, we evaluate both specifications
separately with respect to functionalities of DGAS (version
3.1.10) and the accounting information stored by it. Since
the RUS is based on the UR we first discuss the latter, while
the RUS itself will be discussed afterwards. We will fo-
cus the discussion in this paper on conceptual aspects, for a
technically more detailed discussion please see [20].

3.1. OGF Usage Record

The first version of the OGF UR specification has re-
cently been finalized and a second version is being planned.
In this Section we refer to version 1 [4].

The OGF UR is a syntactically well-defined XML
document (root element JobUsageRecord) that con-
tains various usage ‘“properties” (element nodes), such
as CpuDuration, WallDuration, Memory, Swap,
Disk, Network and NodeCount that allow to specify
metrics for the consumption of computational resources.
This usage information can be associated with a specific job
(JobIdentity and JobName), user (UserIdentity)
and computational resource (MachineName, Queue, and
Host). Since requirements and usage metrics can widely
vary between different environments and systems, the only
mandatory UR properties are the RecordIdentity and
the job’s Status. Moreover, an extension framework al-
lows to specify resource usage metrics that are not explicitly
covered by the standard UR properties.

Unfortunately, the OGF UR, although syntactically
explicit, is semantically unclear in many data fields.
MachineName, for example, can be the host name, cluster
name, or site name [4]. Pro jectName might be used, for
example, as the name of the user’s VO, but it may also re-
fer to a Grid project or else. Likewise, GlobalUsername
might be the user’s DN or not. Such a lack of semantic def-
inition may undermine standardization efforts because it is
likely that different accounting systems will require these
ambiguous data fields to be populated with different kinds
of information.

Similar considerations can be made for the UR’s exten-
sion framework, that allows to specify arbitrary additional
information (not explicitly covered by the document speci-
fication) by means of optional Resource properties. The
user’s VO, for example, might also be specified as:

<Resource description="VOName">dteam</Resource>

where the Resource node’s attribute description de-
fines the meaning of the additional data field.

As for semantically unclear properties, an extensive
use of the extension framework may lead to incompatible
(although valid) UR documents, if for example different
Resource descriptions are used to refer to the same en-
tity (e.g. "VOName" and "VirtualOrganization™").

The risk of having incompatible UR documents can
usually be neglected when considering the exchange of
accounting information within Grid environments/projects
that use a single accounting tool, but may lead to prob-
lems when exchanging accounting information among dif-
ferent Grids or accounting systems, above all if the exten-
sion framework has to be used to specify properties that are
essential for the correct functioning of the accounting pro-
cedures.

The OGF UR, for example, has no explicit property to
specify the unique Grid ID of a Grid resource/Computing
Element. DGAS, however requires such a data field, since
it associates accounting records to resource accounts that
are identified by the corresponding CE IDs.

Apart from the (already mentioned) lacking property for
specifying the user’s VO, a data field that can be used to
specify the user’s role when submitting a job should be
added (e.g. for role-based charging and billing). Most
High Energy Physics experiments that use the LHC Com-
puting Grid (LCG) [7], for example, require the FQAN
(Fully Qualified Attribute Name) of the user’s VOMS cer-
tificate [18] to be recorded.

Also, the OGF UR does not contain any information on
resource (processor) performance, that can be crucial when
normalizing resource consumption values across heteroge-
neous resources or platforms (the value of a second of CPU
time largely depends on the processing power). Elements
such as ProcessingPower, SpecInt2000 or similar
would be needed, but might in most cases also be specified
through the extension framework.

Another drawback of the OGF UR is the fact that it
is very batch job specific and needs to be extended (cus-
tomized) for other resource types and more generic services.
With respect to storage resources (that we plan to account
with DGAS), for example, the OGF UR as currently de-
fined, would allow to specify disk usage (element Disk),
but no identifier for files (no FileIdentity or similar
UR property).

Nonetheless, a mapping between OGF UR data fields
and DGAS data fields is to a good degree possible [20].
Fields that are present on a DGAS HLR, but not foreseen
by the OGF UR format, can be added as extensions to the
latter (see [20] for a detailed list), having however the disad-
vantage of potentially undermining standardization efforts.
Therefore, while we initially implemented these fields as
OGF UR-compliant extensions, we proposed the addition of
at least the most important fields to the official OGF UR. Of
the extensions we defined (as Resource descriptions) for

DGAS-RUS, those of more general interest for other imple-
mentations are: "GlobalResourceId" (for the global
CEID), "UserVOName", "UserFQAN", "SiteName",
"specInt2000" and "specFloat2000".

3.2. OGF Resource Usage Service

The OGF RUS Working Group (RUS-WG) defines a
Web Services-based interface to accounting systems, allow-
ing a standardized upload and retrieval of resource usage in-
formation in the form of OGF UR documents. Since the first
version of the RUS specification has not yet been finalized,
the following discussion is based on the last stable draft that
has gone through public comment (August 2006) [2]. Some
improvements have already been discussed and decided in
the RUS-WG and will be mentioned here where appropri-
ate.

RUS methods are invoked by means of SOAP mes-
sages and cover the most basic functionalities a usage infor-
mation service should provide (insertUsageRecords,
extractRUSUsageRecords, deleteRecords and
modifyUsageRecordPart to mention the most im-
portant ones). Most queries to the service are spec-
ified — by means of the XML query languages
XPath [21]/XQuery [22] (for extracting stored URs and se-
lecting them for deletion) and XUpdate [23] (for modify-
ing records) — as input parameters to the SOAP methods.
The use of XML query languages enables a standard query
mechanism for UR documents that does not depend on the
underlying implementations and data storage models (see
Section 4.1).

The current RUS specification wraps stored URs in a
RUSUsageRecord (RUS-UR) that contains additional au-
dit information about who has stored/modified a UR (and
when). Upon a user request RUS-URSs rather than URs are
returned, but the RUS-WG has recently decided that the
audit information should be kept distinct from the usage
information and should be returned only upon an explicit
request. Therefore, the wrapping RUS-UR will probably
be removed from the RUS specification. Instead the RUS
interface is supposed to be augmented by an appropriate
SOAP method to extract a UR’s audit trail. This would
allow also for a separate authorization policy for audit in-
formation (users might, for example, access the accounting
data of the jobs they have submitted, but not necessarily the
audit information for the URs).

Since the UR specification declares only the properties
RecordIdentity and Status as mandatory (see Sec-
tion 3.1), but specific RUS implementations may require
other properties to be present, the RUS specification al-
lows to specify further mandatory UR elements and pro-
vides a method for retrieving the list of mandatory elements
(listMandatoryUsageRecordElements). Only

standard UR elements, however, can be declared to be
mandatory, i.e. UR properties included through the ex-
tension framework (Resource elements, etc.) cannot be
made mandatory. The RUS-WG, however, plans to develop
a more flexible and generic mechanism for the specifica-
tion of mandatory UR elements. This would be necessary
for DGAS that requires the non-UR data field CE ID (or
Grid resource ID) to be specified, since this ID defines with
which resource account a usage record has to be associated.
Likewise, DGAS user accounts are identified by the User
DN (subject of the user’s x509 certificate), but the corre-
sponding element node in the OGF UR specification

UserIdentityl|ds:KeyInfo|
ds:X509Data|X509SubjectName

(where the pipe indicates a parent-child relationship) cannot
be declared mandatory according to the current RUS draft
(although the ancestor node UserIdentity can).

Unfortunately, the current RUS specification is limited
to the extraction or retrieval of complete RUS-URs, hence
strongly focusing on a storage service and less on an infor-
mation service. It is for example not possible to retrieve
aggregated summary information, while many users (Grid
users as well as system administrators) will rarely need the
detailed per-job information and will often want only aggre-
gated numbers for specific time periods (e.g. total resource
consumption of a VO during the last month, or of a specific
user on a specific resource within the last year, etc.). The
legacy interface of DGAS allows to query the HLR server
for such aggregated information in a flexible way.

For the RUS interface, additional SOAP methods for
this purpose would be appreciable (we propose to define
the method aggregateUsageRecords). Otherwise all
aggregation has to be done by the client that queries the
RUS, which is suboptimal above all when a large number
of records is involved, since it significantly multiplies the
amount of information that has to be transmitted from the
RUS to the client. However, the OGF UR format is not
meant to handle summary information, and a specific for-
mat for aggregated or summary usage information will have
to be defined. More standardization work within both the
UR-WG and the RUS-WG will be needed for this purpose
and the two working groups have agreed upon a collabora-
tion for achieving this goal.

4. DGAS-RUS Design and Prototype

Based on the evaluation of the OGF recommendations
for UR and RUS, we have designed and implemented a
DGAS-RUS prototype. Here we present its architecture, its
relation to the legacy DGAS core as well as the first results
of interoperability tests.

4.1. Storage Models for XML Documents

The main difficulty in implementing a DGAS-RUS is
that the RUS interface handles XML documents while
DGAS stores records in a relational database. XML docu-
ments can be stored in fundamentally different ways: in flat
files (that are not considered here), native XML database
systems or mapped to relational database tables (see for ex-
ample [24, 25, 26, 27]).

Although it cannot be the purpose of this paper to
evaluate all advantages and disadvantages of native XML
databases and relational databases, it is necessary to discuss
at least the most important ones, since they have a signifi-
cant impact on the implementation of the DGAS-RUS.

Native XML Databases: The most important advantage
of native XML databases is the native supporting of XML
query languages such as XPath [21], XQuery [22] and XUp-
date [23]. The major disadvantage is the generally lower
performance compared to relational databases (see for ex-
ample [26]). Research on more performant indexing tech-
niques for XML documents in native XML databases is still
going on.

Using a native XML database for the DGAS-RUS would
require to continuously synchronize the content of two
databases in two different database systems, since for
reasons of backward compatibility (and performance) the
legacy interface and legacy relational database of DGAS
cannot be simply abandoned. Nonetheless records stored
through the RUS interface should of course be available
through the legacy interface and vice versa.

Important issues that have to be considered when choos-
ing a database system are the critical key features necessary
for a deployment in production environments — such as
concurrency, transactions and safety — but also the license,
that is the legal terms, under which it can be used, and the
continuing support, maintenance and development. Based
on these considerations, the most promising native XML
database system seems to be eXist [28], an open source
project (GNU LGPL).

Relational Databases: A mapping of XML elements to
relational tables (in the following called “XML2RDBS”)
can be either schema-based (using knowledge about the
document format — if a document schema is available as in
the case of the OGF UR — for example by “inlining” child
nodes, that occur at most once, as columns in the tables
of parent nodes [25]) or schema-less (or schema-oblivious;
a generic mapping of the XML structure to a relational
database, with parent and child nodes and associations be-
tween them) [24].

The most important disadvantage of XML2RDBS is
the lack of support for XPath, XQuery and XUpdate

DGAS HLR server node

Relational DB
(legacy usage records)

x
S
r
=}
@
o)
)
m
[
Z

legacy HLR interface

DGAS URs

extract

Computing Element
User (metering sensors)

Figure 2. DGAS-RUS as an additional module
to the core DGAS HLR.

and one of the major problems when translating complex
XPath/XQuery or XUpdate expressions to SQL is the opti-
mization of the queries, since a straight forward translation
often leads to poor performance [25]. Even worse, no com-
plete algorithm that considers all XML query cases seems to
have been developed so far [29], but not being able to trans-
late all possible XPath/XQuery and XUpdate expressions,
that can be executed on UR documents, would undermine
the compliance to the OGF RUS specification.

Last but not least, XML documents have to be parsed
when being “shredded” (decomposed) in order to fit into a
relational schema. Also, they have to be reconstructed in the
correct order (which requires an appropriate order encoding
model in addition to the storage model for the XML data
content) before they can be returned to a RUS client. Both
are costly operations and might add a significant amount of
overhead.

Taking into account these considerations (for a more
complete discussion see [20]), using a native XML database
for the DGAS-RUS seems to be the more appropriate deci-
sion, keeping however in mind the lower performance and
that the synchronization of the two databases (relational and
XML) is a non trivial task.

4.2. DGAS-RUS as Optional HLR Module

The DGAS-RUS is designed to be an optional module
for DGAS, as show in Fig. 2, such that the core system

can work without the RUS interface being installed. In
closed environments, the DGAS core system would be suf-
ficient, while open systems that require interoperability can
additionally install the standard RUS interface. Optionally,
the DGAS-RUS may also be run as a stand-alone service.
The required synchronization of the relational database,
that stores the records in the legacy format, and the XML
database for the DGAS-RUS, will be achieved through a
dedicated process (“synchronizer”) that continuously con-
verts newly inserted usage information from one format to
the other.

This approach would allow both users (for information
retrieval) and metering sensors (for information storage) to
use either the more optimized and performant legacy inter-
face or the more standardized RUS interface, whichever is
more appropriate. For example, a generic RUS-client might
be used by an accounting portal to retrieve OGF URs from
a site that uses DGAS although jobs have been accounted
using the legacy interface. Likewise, a Grid user might also
use the legacy interface to retrieve accounting information
originating from a site that does not use DGAS but has for-
warded OGF URs, using the standard RUS interface, to an
HLR server managed by the user’s VO.

4.3. DGAS-RUS Prototype Implementa-
tion

As previously outlined, the general design of the DGAS-
RUS module is thought to be minimally intrusive and to
follow the architectural design of DGAS. As the DGAS
HLR, the DGAS-RUS prototype has been implemented in
C++. SOAP (de)serializers are generated, by the gSOAP
toolkit [30], from the WSDL description of the RUS ser-
vice. gSOAP offers a SOAP-to-C/C++ language binding
and generates so-called stub (client) and skeleton (server)
routines for all SOAP methods defined for the RUS inter-
face, taking care of all the communication between client
and server.

The following briefly introduces the DGAS-RUS client
and server prototype architecture and implementation.
Technical details are given in [31].

DGAS-RUS clients: The actions of RUS clients may be
basically divided into two classes: user queries (i.e. ex-
traction) of URs and insertion, modification and deletion
(i.e. management) of URs. The DGAS-RUS client proto-
type handles both types of actions and can thus be used for
invoking all server-side methods defined by the RUS speci-
fication. Since information is passed to the client by means
of command line arguments (e.g. XPath expressions, UR
file names, ...), it can be easily incorporated into the scripts
that, for example, orchestrate the collection of resource con-
sumption data on the CE. These DGAS-RUS metering sen-

sors have been derived from the legacy metering sensors
that collect usage information from LRMS and CE log files
to build DGAS accounting records and forward them via the
legacy interface to the Resource HLR (see Section 2). For
reasons of reliability, both versions of the metering sensors
handle UR creation and forwarding asynchronously. This
is achieved by means of two daemons, one of which gener-
ates and locally stores accounting records, the other one tak-
ing these records and forwarding them to the DGAS servers
through the respective interfaces (legacy or RUS).

DGAS-RUS server: All URs received from authenti-
cated and authorized CEs (metering sensors) are stored in
a native XML database (eXist), allowing authorized user
queries (XPath expressions) to be passed to the under-
lying database. Since eXist offers no C/C++ APIs the
communication to the database is done via the XML Re-
mote Procedure Call (XML-RPC) framework, that offers
a good support for exception management and error re-
porting. The DGAS-RUS prototype server keeps an audit
trail (in XML format) for each single UR (see Section 3.2).
Since the modification or deletion of URs is not foreseen by
the DGAS HLR, the DGAS-RUS interface can be config-
ured to return, in compliance with the RUS specification, a
RUSUserNotAuthorizedFault upon such requests.

Synchronizer: The synchronizer, necessary for keep-
ing the legacy relational database and the XML database
aligned, is currently being implemented, but the DGAS-
RUS prototype can already be used as a stand-alone service.

4.4. Interoperability Tests

During this first phase of development we conducted var-
ious interoperability tests to ensure that our implementa-
tion can correctly be used with other implementations of
the RUS interface.

The DGAS-RUS client, developed before the server, has
been tested against a RUS server prototype developed by
KTH (Swedish Royal Institute of Technology) for the Swe-
Grid Accounting System (SGAS) [32]. Cross interoper-
ability has recently been verified by using the SGAS RUS
client implementation to connect to the DGAS-RUS pro-
totype server. In both cases, all possible actions regarding
management (insertion, modification and deletion) and ex-
traction (user queries) of URs could be executed with suc-
cess. This ensured that the two components can effectively
interoperate across different grid middlewares.

Although more extensive functionality and compliance
tests should be done also with other reference implemen-
tations, interoperability — the scope of the OMII-Europe
project — has been taken in consideration since the begin-
ning of the development of the RUS interface for DGAS.

5. Conclusions

In this paper we presented the prototype of a standard-
ized RUS interface for DGAS, that can help in tracing re-
source usage across heterogeneous Grid platforms. In this
context we critically analyzed the OGF UR and RUS rec-
ommendations on which the presented work is based.

For reasons of backward compatibility, the DGAS-RUS
has been designed as an optional module for the existing
HLR service, but it can also be used as a stand-alone ser-
vice. Our preliminary results are an important step to-
wards a full interoperability between heterogeneous Grid
platforms (Grid interoperability) and we will continue our
efforts within (and beyond) the OMII-Europe project for
achieving the goal of providing the necessary information
tools that allow for fair resource sharing between the dif-
ferent Grid projects and infrastructures of a continuously
growing e-Science community.

Acknowledgments

DGAS is supported by the European Union under con-
tracts INFSO-RI-031688 (EGEE-II project) and INFSO-RI-
031844 (OMII-Europe project). The DGAS-RUS module is
developed within the OMII-Europe project. We want to ex-
press our thanks to Gilbert Netzer and Fredrik Hedman of
KTH, Sweden, for their help in testing the interoperability
between the DGAS and SGAS RUS implementations.

References

[1] RM. Piro, A. Guarise, and A. Werbrouck. “An
Economy-based Accounting Infrastructure for the
DataGrid”. Proc. 4th Int. Workshop on Grid Computing
(GRID2003), Phoenix, AZ, November 17, 2003; and
Distributed Grid Accounting System website. http:
//www.to.infn.it/grid/accounting/

[2] J. Ainsworth, S. Newhouse, and J. MacLaren. Resource
Usage Service (RUS) based on WS-I Basic Profile 1.0.
Draft specification: draft-ggf-wsi-rus-17, August 2006.
Available at: http://forge.ogf.org/sf/go/
doc7965?nav=1

[3] OGF Resource Usage Service Working Group web-
site. http://forge.ogf.org/sf/projects/
rus-wg/

[4] R.Mach et al. [L. McGinnis (ed.)]. Usage Record —
Format Recommendation. Version 1. GDF.98, Septem-
ber 2006. Available at: http://www.ogf.org/
documents/GFD.98.pdf

[5] OGF Usage Record Working Group website. http:
//www.psc.edu/ 1fm/PSC/Grid/UR-WG/

[6] N. Geddes. “The BaBar computing model”. Computer
Physics Communications 110(1):38-42, 1998.

[7] The LHC Computing Grid (LHC) project. http://
lcg.web.cern.ch/LCG/

[8] C.A.J. Brew et al. “BABAR Experience of Large Scale
Production on the Grid”. Proc. 2nd IEEE Int. Conf. on
e-Science and Grid Computing (e-Science’06), Amster-
dam, Netherlands, December 4-6, 2006.

[9] A. Agarwal et al. “GridX1: A Canadian computational
grid”. Future Generation Computer Systems 23(5):680-
687, 2007.

[10] GridX1 website. http://www.gridxl.ca/

[11] ATLAS Computing Group [G. Duckeck et al. (ed.)].
ATLAS Computing — Technical Design Report. ATLAS
TDR-017, CERN-LHCC-2005-022, June 2005.

[12] P. Eerola et al. “Building a Production Grid
in Scandinavia”. IEEE Internet Computing 7(4):27-
35, 2003; and NorduGrid website. http://www.
nordugrid.org/

[13] Grid3 website. http://www.ivdgl.org/
grid2003/; and Open Science Grid (OSG) website.
http://www.opensciencegrid.org/

[14] Windmill project website. http://www-hep.
uta.edu/windmill/

[15] OMII-Europe project website.
omii-europe.org/

http://www.

[16] European DataGrid (EDG) project website. http: //
eu-datagrid.web.cern.ch/eu-datagrid/

[17] Enabling Grids for E-sciencE (EGEE) project website.
http://www.eu-egee.org/

[18] R. Alfieri et al. “From gridmap-file to VOMS: manag-
ing authorization in a Grid environment”. Future Gen-
eration Computer Systems 21:549-558, 2005.

[19] I. Foster et al. “A Security Architecture for Computa-
tional Grids”. Proc. 5th ACM Conf. on Computer and
Communications Security, pp. 83-92, 1998.

[20] R.M. Piro. Evaluation and Design Plan of a RUS
Interface for DGAS - Version 0.2 (draft). Technical
report, September 22, 2006. Available at: http:
//www.to.infn.it/grid/accounting/
techrep/RUSandUR4DGAS-0_2.pdf

[21] XML Path Language (XPath) 2.0. http://www.
w3.o0rg/TR/xpath20/

[22] XML Query Language (XQuery) 1.0. http://
www.w3.org/TR/xquery/

[23] XML Update Language. http://xmldb-org.
sourceforge.net/xupdate/

[24] J.H. Gerritsen. “Native XML databases”. 5th Twente
Student Conference on IT, Enschede, Netherlands, June
26, 2006.

[25] I. Tatarinov et al. “Storing and Querying Ordered
XML Using a Relational Database System”. ACM SIG-
MOD’2002, Madison, Wisconsin, June 4-6, 2002.

[26] F. Weigel, K.U. Schulz, and H. Meuss. “Exploiting
Native XML Indexing Techniques for XML Retrieval
in Relational Database Systems”. ACM WIDM 05, Bre-
men, Germany, November 5, 2005.

[27] M. Emandi et al. “Approaches and Schemes for
Storing DTD-Independent XML Data in Relational
Databases”. Transactions on Engineering, Computing
and Technology 13:168-173, 2006.

[28] W. Meier. “eXist: An Open Source Na-
tive XML Database”. Lecture Notes in Com-
puter Science 2593:169-183; and eXist website.
http://exist.sourceforge.net/

[29] R. Krishnamurthy, R. Kaushik, and J.F. Naughton.
“XML-to-SQL Query Translation Literature: The State
of the Art and Open Problems”. st International XML
Database Symposium (XSym 2003), Berlin, Germany,
September 8, 2003.

[30] R.A. van Engelen and K.A. Gallivan. “The gSOAP
Toolkit for Web Services and Peer-To-Peer Comput-
ing Networks”. 2nd IEEE/ACM Int. Symp. on Cluster
Computing and the Grid (CCGRID’02), Berlin, Ger-
many, May 21-24, 2002; and gSOAP website. http:
//www.cs.fsu.edu/ engelen/soap.html

[31] M. Pace. Preliminary Implementation of a
RUS Interface for DGAS - Version 1.0. Tech-
nical Report, July 2007. Available at: http:
//www.to.infn.it/grid/accounting/
techrep/DGAS-RUS-Prototype—-1_0.pdf

[32] T. Sandholm et al. “An OGSA-Based Accounting Sys-
tem for Allocation Enforcement across HPC Centers”.
2nd Int. Conf. on Service Oriented Computing. New
York, USA, November 15-19, 2004; and SweGrid Ac-
counting System website. http://www.sgas.se/

