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Contribution

Filtering is the problem of estimating the state of a system as a

set of observations becomes available in time, and it has gained
a great importance in many fields of science, engineering and
finance. To solve it, one begins by modeling the evolution of
The re-

sulting models typically exhibit complex non-linearities and non-

the system and the uncertainty in the measurements.

Gaussian distributions, thus precluding analytical solution. Se-
quential Monte Carlo methods, also known as particle filters can
be used to estimate the a posteriori distribution of the system state.
They are mainly composed by two steps: the evolution of initial
samples using some dynamic equation, and the resampling of par-
ticles according to their likelihood (in a Bayesian sense), with re-
spect to the current observation. Modern lines of research in dif-
ferent fields like target tracking, computer vision, financial mathe-
matics, and biology make wide use of these techniques; neverthe-
less they develop and adopt each concept rather autonomously,
with very few connections with each other and with the mathe-
matical foundation of the field. We try to illustrate one of the pos-
sible links among these disciplines, more precisely how Bayesian
filtering applied to multi-target tracking can be completely and
fruitfully cast into the framework of genetic algorithms.

Bayesian filtering

The target motion is modeled by a transition probability density:

Tk ~ Jrlk—1(|Tr—1) (1)

The target state x;, generates an observation vy according to the
observation model:

Yk ~ gk (-|Tk) (2)

The aim is to construct the posterior probability density function
of the target state given the observations. The Bayes filter is a re-
cursion based on two steps: prediction (3) and update (4):

Dot 1 (@klyre—1) = / Frhor @pl2)pp—1 (@lyrn_1)dz ()

9k (Yk |k )PE | k—1 (K |Y1:6—1)
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Pr(Tr|y1:k) = (4)

The analytical solution to the Bayes filter is generally intractable,
with the exception of the linear Gaussian case whose exact solu-
tion is given by Kalman filter. Extended Kalman filter (EKF) and
Unscented Kalman filter (UKF) have been proposed to address
non linear models. A more general solution strategy is to use se-

quential Monte Carlo methods, also known as particle filters.

Multi-target tracking and PHD filter

Multi-target tracking involves jointly estimating the number and
the states of a finite, time varying number of targets given a set of
finite and time varying measurements of uncertain origins.

The PHD Filter:

e is a suboptimal but tractable alternative to the multi-target
Bayes filter.

e It propagates the first order moments of the targets random
finite sets (RFS) known as intensity (or PHD) function.

e Given a RFS X on X C R"» with probability P the inten-
sity function is a non-negative function v on X" such that,
for any closed subset S C X:

/ v(x)dx = / X NS|P(dX)
S
providing an estimate about the number of elements of a

RFS in the region considered.

e In the SMC-PHD filter the PHD function is approximated
by the particle representation vy (x) = Zf\fl w,(;) 0_(i) ().
k

e Importance sampling and resampling are applied to prop-
agate the particle-approximated intensity function through
the recursion

Vi = (Yk © Ppi—1)Vk—11k—1

as specified in equations 8 and 9.
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Particle Filtering and Genetic Algorithms
Genetic Algorithms

In mathematical terms a genetic algorithm is a Markov chain X, = (X},)1<;<n defined on the product space EV. The evolution of the
chain is composed by a phase of selection, during which individuals are selected according to certain criteria (fitness) and by a phase of
state exploration.

selection

. Ny mutation
Xn = (X})1<i<nN > Xn = (X})1<i<nN ‘

Xnt1 = (X} 11)1<i<n

e For the selection phase a positive function (fitness) is given
and each new individual is selected proportionally to his fit-
ness.

e During the mutation phase the state space is explored ac-

cording to the Markov transition M (:cq(,fJ)rl s ))

~(i)y _ N G(X}) |

j=1 x?(f_)H ~ M(xfg:/—%-l?@?(;))

Filtering

In filtering problems, the correction/prediction phases of the optimal filter:

prediction
> Mn+1 = nnMn—l—l

correction
LaW(Xn‘Y()...Yn_l) = Mn >

Law(X,|Yo ... Yn) =Yg, (n) = Tn

are estimated using a Markov process defined on the product space E*V:

mutation

’ €n+1

mn mn

7(1]\7) _ ( 7(1]\7,2) SeleCtiOI} g(N) _ (g(N’Z)

) 1<i<N ) 1<i<N
This genetic algorithm is a particle filter as the occupation measures of the predicted and updated populations (or selected and mutated
in terms of genetic algorithms) converge almost surely to the optimal predictor and filter.
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Feynman Kac Measures
Let’s consider the probability distribution flow (1, ), >0 defined by equations:

Mn = Pn (77n—1) = \PGn_l (nn—l)Mn (5)

The measures 7, and the corresponding updated measures 7, := W¢g _(nn) can be expressed as weighted path integrals known as

Feynman-Kac formulae. These functional representations are defined on test functions f,, by the following equations:

Mn(frn) = (fn)/1m(1) et nn(fn) =n(fn)/In(1) (6)
With ~,, and 7, being unnormalized measures defined by:
Yn(fn) = E[fn(Xn) Hogk<n Gr(Xk)] et Yn(fn) =W (fnGn) (7)

PHD filter

The PHD prediction and update operators ®;,;,_; and Wy used to approximate the first moment of the posterior distribution are respec-
tively defined as

(Prip—12) () = [[Ps kik—1(2) fr|k—1(x]§) + bijr—1 (z|§)]a(E)A(dE) + Vi () (8)

(Uha)(@) = [(1= Po(0) + L.ez, mrtpmtaion tpmar) (@ ®)

Simulations

Simulation 1: Particle filter approximating the posterior distribution Law (X, |Yp ... Y, ) of a target moving on a square. Three
sensors report only angular measurements, the observation noise is Gaussian, centered with variance 0° = 0.1rad. A random walk is
used as a priori model for target evolution. 1000 particles are used.

Particle approximated posterior distribution (Time = 2 sec) Particle approximated posterior distribution (Time = 12 sec) Particle approximated posterior distribution (Time = 24 sec) Particle approximated posterior distribution (Time = 39 sec)
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Fig.1: Time = 2 sec. Fig.2: Time = 12 sec. Fig.3: Time = 24 sec. Fig.4: Time = 39 sec.

Simulation 2: PHD Filter estimating the posterior intensity function of multiple targets moving over a 1D surveillance zone with
false alarms and detection uncertainty:.

Observation and clutter Observation and clutter

100 : —— : . 100 "
* *a * * * Ta g+ * * * *
* o * * . *; T * 0% * o * . *i;* ;:*
BOF %ty an R e 80 g T
* * * * gl * b
* e oo,
¥ *** * % * e . Ha,‘.‘ . ¥ *x *
/ *
60f * PINRRKRRRE” o ey 60
* *y * . * i * *
*_ 2o : *
J—ACs e
40 W - ., d’—‘t.;.(. : : L _:d 40
8 * : ;;“‘ o® * * O* P GC)
o b p oM s . R . o
N 20 e * o4 - . N » N 20 %
o * @ .-.;_p' I * * * () 4
(&) * 9 * * o
c * rox c
E 0 e *_.t .—,: _f*#z f_U 0
= * e =
g e e U e ¥ F.F' il o { *ok GE"
_ E. < o e ok _
8 20 :.n.* *f .'“ * v y;ub;, *x *x - 8 20
? . - S oSy @
— * R - ] - - L —
40 A * x ‘.h_rj'f S * % 40
* S C
* ¥ 2,0 * * * . %
Y] SRRRCERERL SUES SYCPURTREERN PRSI A4 SRR Y -60 .t R W e
o e % N * *e . * S 3 ﬂ ; by * *
* . e ¥ L * L ] * * ‘ * o ¥ !
SBOF s et T 80, * kTR A Rt T Ty 1
* * * *; *
* " ** * < * ** *x L * . Re % * * ¥ ¢ I
* e ey * L * A i 8 * * W*‘*ﬁ « f
-100 * * ¥ xx * % R ™ I % -100 —M o Hy X Fxt ¥ oy, ; ' *i* ; }
0

20 40 60 80 100 0 20 40 60 80 100
Time Time

Fig.5: Targets (green), measurements (blue) and clutter (black) Fig.6: SMC-PHD filter output.

Fig.7: 3D plot of the posterior intensity.

Simulation 3: PHD Filter applied to a realistic 3D scenario, radar-like measurements containing false alarms are used to estimate the
position of multiple targets (airplanes and boats) maneuvering in the surveillance zone.
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Fig.8: Maneuvering targets (blue), measurements (red)

and clutter (black).

Fig.9: SMC-PHD Filter estimated target positions. Fig.10: PHD particles surrounding true target

trajectories during filtering.
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