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Contribution
Filtering is the problem of estimating the state of a system as a
set of observations becomes available in time, and it has gained
a great importance in many fields of science, engineering and
finance. To solve it, one begins by modeling the evolution of
the system and the uncertainty in the measurements. The re-
sulting models typically exhibit complex non-linearities and non-
Gaussian distributions, thus precluding analytical solution. Se-
quential Monte Carlo methods, also known as particle filters can
be used to estimate the a posteriori distribution of the system state.
They are mainly composed by two steps: the evolution of initial
samples using some dynamic equation, and the resampling of par-
ticles according to their likelihood (in a Bayesian sense), with re-
spect to the current observation. Modern lines of research in dif-
ferent fields like target tracking, computer vision, financial mathe-
matics, and biology make wide use of these techniques; neverthe-
less they develop and adopt each concept rather autonomously,
with very few connections with each other and with the mathe-
matical foundation of the field. We try to illustrate one of the pos-
sible links among these disciplines, more precisely how Bayesian
filtering applied to multi-target tracking can be completely and
fruitfully cast into the framework of genetic algorithms.
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Bayesian filtering
The target motion is modeled by a transition probability density:

xk ∼ fk|k−1(.|xk−1) (1)

The target state xk generates an observation yk according to the
observation model:

yk ∼ gk(.|xk) (2)

The aim is to construct the posterior probability density function
of the target state given the observations. The Bayes filter is a re-
cursion based on two steps: prediction (3) and update (4):

pk|k−1(xk|y1:k−1) =

∫
fk|k−1(xk|x)pk−1(x|y1:k−1)dx (3)

pk(xk|y1:k) =
gk(yk|xk)pk|k−1(xk|y1:k−1)∫
gk(yk|x)pk|k−1(x|y1:k−1)dx

(4)

The analytical solution to the Bayes filter is generally intractable,
with the exception of the linear Gaussian case whose exact solu-
tion is given by Kalman filter. Extended Kalman filter (EKF) and
Unscented Kalman filter (UKF) have been proposed to address
non linear models. A more general solution strategy is to use se-
quential Monte Carlo methods, also known as particle filters.

Multi-target tracking and PHD filter
Multi-target tracking involves jointly estimating the number and
the states of a finite, time varying number of targets given a set of
finite and time varying measurements of uncertain origins.

The PHD Filter:

• is a suboptimal but tractable alternative to the multi-target
Bayes filter.

• It propagates the first order moments of the targets random
finite sets (RFS) known as intensity (or PHD) function.

• Given a RFS X on X ⊆ Rnx with probability P the inten-
sity function is a non-negative function v on X such that,
for any closed subset S ⊆ X :∫

S
v(x)dx =

∫
|X ∩ S|P(dX)

providing an estimate about the number of elements of a
RFS in the region considered.

• In the SMC-PHD filter the PHD function is approximated
by the particle representation v̂k(x) =

∑Nk
i=1 w

(i)
k δ

x
(i)
k

(x).

• Importance sampling and resampling are applied to prop-
agate the particle-approximated intensity function through
the recursion

vk|k = (ψk ◦ Φk|k−1)vk−1|k−1

as specified in equations 8 and 9.

Particle Filtering and Genetic Algorithms
Genetic Algorithms
In mathematical terms a genetic algorithm is a Markov chain Xn = (Xi

n)1≤i≤N defined on the product space EN . The evolution of the
chain is composed by a phase of selection, during which individuals are selected according to certain criteria (fitness) and by a phase of
state exploration.

Xn = (Xi
n)1≤i≤N

selection
−−−−−−→ X̂n = (X̂i

n)1≤i≤N
mutation
−−−−−−→ Xn+1 = (Xi

n+1)1≤i≤N

• For the selection phase a positive function (fitness) is given
and each new individual is selected proportionally to his fit-
ness.

ψ(x̂
(i)
n ) =

∑N
i=1

G(Xi
n)∑N

j=1 G(X
j
n)
δXi

n

• During the mutation phase the state space is explored ac-
cording to the Markov transition M(x

(i)
n+1, x̂

(i)
n )

x
(i)
n+1 ∼M(x

(i)
n+1, x̂

(i)
n )

Filtering
In filtering problems, the correction/prediction phases of the optimal filter:

Law(Xn|Y0 . . . Yn−1) = ηn
correction
−−−−−−−→ Law(Xn|Y0 . . . Yn) = ΨGn (ηn) = η̂n

prediction
−−−−−−−−→ ηn+1 = η̂nMn+1

are estimated using a Markov process defined on the product space EN :

ξ
(N)
n =

(
ξ
(N,i)
n

)
1≤i≤N

selection
−−−−−−−−→ ξ̂

(N)
n =

(
ξ̂
(N,i)
n

)
1≤i≤N

mutation
−−−−−−−→ ξ

(N)
n+1

This genetic algorithm is a particle filter as the occupation measures of the predicted and updated populations (or selected and mutated
in terms of genetic algorithms) converge almost surely to the optimal predictor and filter.

ηNn :=
1

N

N∑
i=1

δ
ξ
(N,i)
n

, η̂Nn :=
1

N

N∑
i=1

δ
ξ̂
(N,i)
n

et lim
N→∞

ηNn = ηn , lim
N→∞

η̂Nn = η̂n

Feynman Kac Measures
Let’s consider the probability distribution flow (ηn)n≥0 defined by equations:

ηn = Φn (ηn−1) := ΨGn−1 (ηn−1)Mn (5)

The measures ηn and the corresponding updated measures η̂n := ΨGn (ηn) can be expressed as weighted path integrals known as
Feynman-Kac formulae. These functional representations are defined on test functions fn by the following equations:

ηn(fn) = γn(fn)/γn(1) et η̂n(fn) = γ̂n(fn)/γ̂n(1) (6)

With γn and γ̂n being unnormalized measures defined by:

γn(fn) = E[fn(Xn)
∏

0≤k<nGk(Xk)] et γ̂n(fn) = γn(fnGn) (7)

PHD filter
The PHD prediction and update operators Φk|k−1 and Ψk used to approximate the first moment of the posterior distribution are respec-
tively defined as

(Φk|k−1α)(x) =
∫

[PS,k|k−1(x)fk|k−1(x|ξ) + bk|k−1(x|ξ)]α(ξ)λ(dξ) + γk(x) (8)

(Ψkα)(x) =
[
(1− PD(x)) +

∑
z∈Zk

PD(x)gk(z|x)
κk(z)+〈PD(x)gk(z|x),α〉

]
α(x) (9)

Equipe ALEA: Advanced Learning Evolutionary Algorithms
Joint team with the IMB (CNRS and university Bordeaux 1 et 2). INRIA Bordeaux - Sud Ouest. http://alea.bordeaux.inria.fr/

Simulations
Simulation 1: Particle filter approximating the posterior distribution Law(Xn|Y0 . . . Yn) of a target moving on a square. Three
sensors report only angular measurements, the observation noise is Gaussian, centered with variance σ2 = 0.1rad. A random walk is
used as a priori model for target evolution. 1000 particles are used.
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Particle approximated posterior distribution (Time = 2 sec)
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Particle approximated posterior distribution (Time = 12 sec)
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Particle approximated posterior distribution (Time = 24 sec)
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Particle approximated posterior distribution (Time = 39 sec)

Fig.1: Time = 2 sec. Fig.2: Time = 12 sec. Fig.3: Time = 24 sec. Fig.4: Time = 39 sec.

Simulation 2: PHD Filter estimating the posterior intensity function of multiple targets moving over a 1D surveillance zone with
false alarms and detection uncertainty.
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Fig.5: Targets (green), measurements (blue) and clutter (black) Fig.6: SMC-PHD filter output. Fig.7: 3D plot of the posterior intensity.

Simulation 3: PHD Filter applied to a realistic 3D scenario, radar-like measurements containing false alarms are used to estimate the
position of multiple targets (airplanes and boats) maneuvering in the surveillance zone.

Fig.8: Maneuvering targets (blue), measurements (red) Fig.9: SMC-PHD Filter estimated target positions. Fig.10: PHD particles surrounding true target

and clutter (black). trajectories during filtering.
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