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Abstract. We examine the cut-off resolvent Rχ(λ) = χ(−∆D −
λ2)−1χ, where ∆D is the Laplacian with Dirichlet boundary con-
dition and χ ∈ C∞

0 (Rn) equal to 1 in a neighborhood of the obstacle
K. We show that if Rχ(λ) has no poles for Imλ ≥ −δ, δ > 0, then
‖Rχ(λ)‖L2→L2 ≤ C|λ|n−2, λ ∈ R, |λ| ≥ C0. This estimate implies a
local energy decay. We study the spectrum of the Lax-Phillips semi-
group Z(t) for trapping obstacles having at least one trapped ray.

1. Introduction

Let K ⊂ Rn, n ≥ 2, be a bounded domain with C∞ boundary ∂K
and connected complement Ω = Rn \K. Such K is called an obstacle

in Rn. We consider the Dirichlet problem for the wave equation











(∂2
t −∆x)u = 0 in R ×Ω,

u = 0 on R × ∂K,

u(0, x) = f0(x), ∂tu(0, x) = f1(x).

(1)

Let K ⊂ Ba = {x ∈ Rn : |x| ≤ a} and for m ≥ 0 set

pm(t) = sup
[ ‖∇xu‖L2(Ba∩Ω) + ‖∂tu‖L2(Ba∩Ω)

‖∇xf0‖Hm(Ba∩Ω) + ‖f1‖Hm(B1∩Ω)
,

(0, 0) 6= (f0, f1) ∈ C∞
0 (Ω) ×C∞

0 (Ω), supp fi ⊂ Ba}
]

.
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For Imλ > 0 consider the cut-off resolvent Rχ(λ) = χR(λ)χ : L2(Ω) −→
L2(Ω), where R(λ) = (−∆D − λ2)−1, χ ∈ C∞

0 (Ba+1), χ = 1 on Ba
and ∆D is the Dirichlet Laplacian with domain D(∆D) = H2

0 (Ω).
The following result of Vodev generalized the classical one of

Morawetz for n ≥ 3 odd.

Theorem 1 ([20]). The following conditions are equivalents:

(a) limt→+∞ p0(t) = 0,
(b) There exist C0 > 0, C1 > 0 so that

‖λRχ(λ)‖ ≤ C1, λ ∈ R, |λ| ≥ C0,

(c) There exist constants C > 0, γ > 0 so that

p0(t) ≤
{

Ce−γt, n odd,

Ct−n, n even.

It is known that (b) holds if the obstacle K is non-trapping, that is
the singularities of the solution of the Dirichlet problem with initial
data with compact support leave any compact ω ⊂ Rn for t ≥ t(ω)
(see for instance [4] for more details). For trapping obstacles without
any condition on the geometry of K we have the following

Theorem 2 ([3]). We have the estimate

‖Rχ(λ)‖ ≤ CeC|λ|, λ ∈ R, |λ| ≥ C0

and for every integer m > 1 we have

pm(t) ≤ Cm
(log t)m

, t > 1. (2)

The cut-off resolvent Rχ(λ) has a meromorphic continuation in C for
n odd and in C′ = {z ∈ C : z 6= −iµ, µ ∈ R} for n even ([10], [19]).
There are many examples when we have a domain

{z ∈ C : −δ ≤ Im z ≤ 0}, δ > 0

without poles (resonances) of Rχ(λ) (cf. for example [7]). In this talk
we some results showing that in this case we have a polynomial bound
of the cut-off resolvent Rχ(λ) on R and a better local energy decay
than (2). Our main result is the following

Theorem 3. Assume that the cut-off resolvent Rχ(λ) has no poles

for Imλ ≥ −δ, δ > 0. Then

‖Rχ(λ)‖L2(Ω)→L2(Ω) ≤ C|λ|n−2, λ ∈ R, |λ| ≥ C0. (3)
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Remark 1. Notice that if for some M ≥ 0 we have the estimate

‖Rχ(λ)‖L2(Ω)→L2(Ω) ≤ C1|λ|M , Imλ ≥ −δ, |Reλ| ≥ C0,

then a result of N. Burq [5] says that

‖Rχ(λ)‖L2(Ω)→L2(Ω) ≤ C2
log(2 + |λ|2)

1 + |λ| , λ ∈ R, |λ| ≥ C0.

In particular, a such estimate holds for two strictly convex disjoint
obstacles and under some conditions for several strictly convex dis-
joint obstacles ([7]).

Remark 2. For the semiclassical Schrödinger operators −h2∆+
V (x) in the case of dimension 1 a polynomial bound O(h−M ) of the
cut-off resolvent in

W = {z ∈ C : 0 < a0 ≤ Re z ≤ a1, Im z ≥ −a2h, ai > 0, i = 0, 1, 2}

has been obtained in [2], provided that we have no resonances in W.
It is natural to conjecture that under the condition of Theorem 3, the
cut-off resolvent Rχ(λ) is bounded uniformly on R for any dimension
n ≥ 3.

2. Estimates of Rχ(λ)

It is useful to transform the problem to a semi-classical one. Setting

λ =
√
z
h , 0 < h ≤ 1, we have

(−∆D − λ2)−1 = h2(−h2∆D − z)−1

and we will study the operator χ(P (h)−z)−1χ with P (h) = −h2∆D, h >
0, in the domain

Dc1 = {z ∈ C : 0 < a0 ≤ |Re z| ≤ a1,−c1h ≤ Im z ≤ c2, ai > 0, ci, i = 0, 1}.

We will work in the “black box” setup ([15], [17]). For this purpose
define Ha = L2(Ω ∩Ba) and set

L = Ha ⊕ L2(Rn \Ba).

We consider P (h) as an operator P (h) : L −→ L with domain D(P ) ⊂
L and the hypothesis in [15], [17] for a “black box” framework are
satisfied. In particular, setting

H♯ = Ha ⊕ L2(Tna \B1), Tna = Rn/(aZn),
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we introduce P ♯(h) by replacing −h2∆D by −h2∆Tn
a
. The operator

P ♯(h) has a discrete spectrum and we denote by N(P ♯(h), λ) the
number of eigenvalues of P ♯(h) in [−λ, λ]. Then we we have

N(P ♯(h), λ) = O
(( λ

h2

)n/2)

, for λ ≥ 1.

This follows from the Weyl asymptotic for the counting function for
eigenvalues of P ♯(h).

In the following for simplicity we will write P instead of P (h).
We will examine the resolvent of the complex dilated operator Pθ(h)
defined as follows. Introduce a function fθ(t) : R+ −→ C having the
properties:

fθ(t) = t for t ≤ a+ 1,

fθ(t) = eiθt, t ≫ 1,

0 ≤ arg fθ(t) ≤ θ, ∂tfθ(t) 6= 0,

arg fθ(t) ≤ arg ∂tfθ(t) ≤ arg fθ(t) + ǫ

with small ǫ > 0. Let µθ(tω) = fθ(t)ω, t = |x| ∈ R+, ω ∈ Sn−1 and
set Γθ = µθ(R

n). Let Ψ ∈ C∞
0 (Ba+1) be equal to 1 near Ba. As in

[15], [16], we introduce the dilated operator Pθ

Pθu = P (Ψu) −∆Γθ
(1 − Ψ)u

with domain

Dθ = {u ∈ L2(Γθ) : Ψu ∈ D(P ), (1 − Ψ)u ∈ H2(Γθ)},

D(P ) being the domain of P. Here −∆Γθ
is the dilated Laplacian

corresponding to the change Rn ∋ x −→ fθ(t)ω ∈ Cn and we refer
to [15], [16], [17] for more details. Next set θ = c1h so that in the
domain

Ωθ = {z ∈ C : |z − ω| ≤ θ, −θ ≤ Im z ≤ a2θ} ⊂ Dc1, a2 ≫ 1

there are no eigenvalues of Pθ. Note that the eigenvalues of Pθ co-
incide with their multiplicities with the resonances of P ([15], [16],
[17]). From [8], [11] the counting function of the eigenvalues of P#(h)
satisfies

N(P#, [λ− h, λ+ h]) = O(h1−n),

for λ ∈ [a0, a1]. Then, following a construction, given by one of the
authors [1], we may find a finite rank operator L so that

(Pθ + θL− z)−1 = O(θ−1), ∀z ∈ Ωθ, (4)
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(Pθ − z)−1 = O(θ−1), z ∈ Ω+
θ = Ωθ ∩ {Im z ≥ ǫθ}, 0 < ǫ < a2, (5)

‖L‖D(Pθ)→L2(Γθ) = O(1), rank L = κ ≤ C0h
−n+1

with a constant C0 > 0 independent on h. This construction gener-
alises that of Sjöstrand [16] with a finite rank operator K0, rankK0 =
Ch−n. Now consider the Grushin problem

{

(Pθ − z)u+R−(z)u− = v,

R+(z)u = v+,
(6)

where u ∈ D(Pθ), v ∈ L2(Γθ), while u−, v+ ∈ Ck. Given an orthonor-
mal basis (e1, ..., eκ) in Image L∗, the operators R± have the form

R+u = (u, ej)j=1,...,κ,

R−u− =

κ
∑

j=1

u−,j(Pθ + θL− z)ej , u− = (u−,1, ..., u−,κ),

where (, ) is the scalar product in L2(Γθ).

Following the results in Section 6, [16], the problem (6) is invertible
and the inverse operator is given by

(

E(z) E+(z)
E−(z) E−,+(z)

)

.

To estimate the operators E(z), E−(z), E+(z), E−,+(z), consider an
orthonormal basis

(eκ+1, ..., em, ...)

in
(

Image L∗
)⊥

= Ker L. Let

u =

κ
∑

j=1

ujej +

∞
∑

j=κ+1

ujej = u′ + u′′.

From (6) we get

(Pθ − z)(u′ + u′′) + (Pθ + θL− z)(
κ

∑

j=1

u−,jej) = v,

(u, ej) = uj = v+,j, j = 1, ..., κ.

This implies

(Pθ + θL− z)(u′′ +
κ

∑

j=1

u−,jej) = v − (Pθ − z)u′
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= v − (Pθ − z)

κ
∑

j=1

ujej ,

hence
(

u′′ +
κ

∑

j=1

u−,jej
)

=
(

Pθ + θL− z
)−1

v

−
(

Pθ + θL− z
)−1

(Pθ − z)
κ

∑

j=1

v+,jej = A+B.

The estimate (4) leads to A = O(θ−1)‖v‖. Using once more (4), we
get

B =
(

−I + (Pθ + θL− z)−1θL
)

κ
∑

j=1

v+,jej = O(1)‖v+‖Cκ .

Thus

‖u′′‖ + ‖u−‖Cκ = O(θ−1)‖v‖ + O(1)‖v+‖Cκ

and ‖u′‖Cκ = O(1)‖v+‖Cκ . Consequently,

‖u‖ + ‖u‖Cκ = O(θ−1)‖v‖ + O(1)‖v+‖Cκ

and we get the estimates

‖E(z)‖ = O(θ−1), ‖E−(z)‖ = O(θ−1),

‖E+(z)‖ = O(1), ‖E−,+(z)‖ = O(1),

where E−,+(z) : Cκ −→ Cκ. Moreover, the resolvent (Pθ − z)−1 and
(E−,+(z))−1 are related by the equality (see for instance, [16])

(Pθ − z)−1 = E(z) − E+(z)((E−,+(z))−1E−(z)

and the above estimates yield

‖(Pθ − z)−1‖ ≤‖E(z)‖ + ‖E+(z)‖‖(E−,+(z))−1‖‖E−(z)‖
=O(θ−1)(1 + ‖(E−,+(z))−1‖).

Obviously,

(E−,+)−1 =
tcomatrix(E−,+)

det(E−,+)
=

O(eCκ)

det(E−,+)

and the problem is reduced to obtain a lower bound of D(z) =
det(E−,+).
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Since ‖E−,+(z)‖Cκ→Cκ = O(1), we have |D(z)| ≤ eCκ, z ∈ Ωθ. On
the other hand, in Ω+

θ we get

(E−,+(z))−1u+ = −R+(z)(Pθ − z)−1R−(z)u+

= −R+(z)
(

I + (Pθ − z)−1θL
)

κ
∑

j=1

u−,jej = O(1)

and the estimate (5) for z ∈ Ω+
θ yields

|D(z)| = |det(E−,+(z))| =
∣

∣

∣

1

det((E−,+(z))−1)

∣

∣

∣
≥ e−C1κ, z ∈ Ω+

θ .

Recall that Pθ has no eigenvalues in Ωθ, hence D(z) has no zeros in
Ωθ. This makes possible to introduce the positive harmonic function
G(z) = Cκ − log |D(z)| ≥ 0, z ∈ Ωθ. We have in Ω+

θ the estimate
log |D(z)| ≥ −C1κ, so we can apply the Harnack inequality for posi-
tive harmonic functions. In fact, for every M ⊂⊂ Ωθ we have

sup
z∈M

G(z) ≤ CM inf
z∈M

G(z) ≤ CM inf
z∈M∩Ω+

θ

G(z).

Making a small decrease of Ωθ, which means to replace c1 by a con-
stant 0 < c3 < c1, we deduce

G(z) ≤ C2κ, log |D(z)| ≥ −C3κ, z ∈ Ωθ, θ = c2h.

Next suppose that Ωθ is defined by c3 instead of c1. Combining the
above estimates with the fact that κ = C0h

−n+1, we conclude that

‖(Pθ − z)−1‖ ≤ C5e
C4h−n+1

, z ∈ Ωθ.

Moreover, the same estimate is uniform with respect to choice of ω
in Ωθ, provided ω runs over a compact interval in R+ so that Pθ has
no eigenvalues in Ωθ. Thus we obtain

‖(Pθ − z)−1‖ ≤ C5e
C5h−n+1

, z ∈ Dc2.

The complex scaling was chosen so that fθ(t) = 1 for t ≤ a+1. Since
suppχ ⊂ Ba+1, it is easy to see that

χ(P − z)−1χ = χ(Pθ − z)−1χ,

hence

‖χ(−h2∆− z)−1χ‖L2(Ω)−→L2(Ω) ≤ C6e
C6h−n+1

, z ∈ Dc2 .
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Taking into account the scaling λ =
√
z
h , for z ∈ Dc2 we get

Re z = h2(Re2 λ− Im2 λ) ≥ a0, Im z = 2h2 Reλ Imλ ≥ −c2h

which imply

Reλ ≥ a0

h
≥ a0 > 0, Imλ ≥ − c2

2
√
a0

= −a2.

Consequently, we obtain

‖Rχ(λ)‖ ≤ C7e
C7|λ|n−1

, Reλ ≥ a0, Imλ ≥ −a2. (7)

In the same way we treat the domain Reλ ≤ −a0, Imλ ≥ −a2 and
we get (7) for |Reλ| ≥ a0 > 0.

3. Estimates on the real axis and decay of local energy

Proposition 1. Let f(z) be a holomorphic function in

Uα = {z ∈ C : Im z ≥ −α}, α > 0,

such that

|f(z)| ≤ C0e
C|z|m, z ∈ Uα, m ≥ 1,

|f(z)| ≤ C1

|z| Im z
, Im z > 0.

Then we have |f(z)| ≤ C2(1 + |z|)m−1, z ∈ R.

Proof. Introduce the function g(z) = eiAz
m+1

f(z), where A > 0 is
sufficiently large. Consider the domain bounded by the curves:

γ+ = {z ∈ C : Im z =
1

|z|m , Re z ≥ 1},

γ− = {z ∈ C : Im z = −α, Re z ≥ 1},

γ0 = {z ∈ C : −α ≤ Im z ≤ 1

|z|m , Re z = 1}.

For z ∈ γ− and Re z ≫ 1 we have

|g(z)| ≤ C0e
C′(Re z)m

exp
(

−A(m+ 1)

2
(Re z)m Im z

)

≤ C3

taking 2C ′ −A(m+ 1)α < 0. On the curve γ+ we obtain

|g(z)| ≤ C4|z|m−1 exp
(

(m+ 1)A(Re z)m Im z
[

1 + O
( 1

|Re z|
)])
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≤ C4|z|m−1 exp
(B(Re z)m

|z|m (m+ 1)
)

≤ C5|z|m−1.

To obtain the estimate, we apply the Pragmen-Lindelöf theorem for
the function g(z) and deduce

|g(z) ≤ C6|z|m−1

for

Re z ≥ 1, −α ≤ Im z ≤ 1

|z|m .

In particular, for z ≥ 1 we get

|f(z)| ≤ C6|z|m−1.

In a similar way we treat the case z ≤ −1.

To apply Proposition 1, notice that the operator −∆D with Dirich-
let boundary condition on ∂Ω is a self-adjoint positive operator and
it is easy to see that

‖R(λ)‖L2(Ω)→L2(Ω) ≤
C

|z| Im z
, Im z > 0.

Combining the estimate (7) and Proposition 1 with m = n − 1, we
obtain (3) and the proof of Theorem 3 is complete.

Theorem 3 makes possible to apply a result of G.Popov and G.
Vodev (see Proposition 1.4 in [13]) in order to obtain the following

Theorem 4. Under the hypothesis of Theorem 3 for every m > 0
and t > 1 we have for n odd the estimate

pm(t) ≤ C(t−1 log t)m/(n−1),

while for n even and t > 1 we have

pm(t) ≤
{

C(t−1 log t)m/(n−1), for 0 < m ≤ n(n− 1),

Ct−n form > n(n− 1).

The factor m/(n− 1) comes from the estimate of the resolvent of the
generator G of the unitary group U(t) = eitG related to the problem
(1). More precisely, we have

G = −i
(

0 Id
∆D 0

)
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with domain

D(G) = {(u, v) : u ∈ H2
0 (Ω), v ∈ HD(Ω)} ⊂ H,

where H = {(u, v) : u ∈ HD(Ω), v ∈ L2(Ω)} and HD(Ω) is the
closure of C∞

0 (Ω) with respect to the norm

‖ϕ‖2
D =

∫

Ω
|∇ϕ|2dx.

For the resolvent (G− λ)−1 we have the representation

(G− λ)−1 =
(

λR(λ) −iR(λ)
−i∆DR(λ) λR(λ)

)

. (8)

Therefore (3) implies the estimates (see [20], [5])

‖λRχ(λ)‖HD→HD
≤ C|λ|n−1, ‖χ∆DR(λ)χ‖HD→L2 ≤ C|λ|n−1,

‖Rχ(λ)‖L2→HD
≤ C|λ|n−1, λ ∈ R, |λ| ≥ C0

and we obtain

‖χ(G− λ)−1χ‖H→H ≤ C|λ|n−1, λ ∈ R, |λ| ≥ C0.

4. Spectre of the Lax-Phillips semigroup Z(t)

In this section we assume n ≥ 3, n, odd and we examine the spectrum
of the Lax-Phillips semigroup Zb(t) = P b+U(t)P b−, t ≥ 0, where U(t) is
the unitary group introduced in Section 3 and P a± are the orthogonal
projections on the orthogonal complements of the spaces

Db
± = {f ∈ H : U0(t)f = 0, |x| < ±t+ b}, b > a.

Here U0(t) is the unitary group related to the Cauchy problem for the
wave equation in Rt × Rn (see [10]). We choose χ ∈ C∞

0 (Rn) so that
χ = 1 for |x| ≤ a, χ = 0 for |x| ≥ b. We fix b > a with this property
and note that P b±χ = χ = χP b± and for simplicity we will write Z(t)

instead of Zb(t). Let B be the generator of Z(t). Therefore,

σ(B) ⊂ {z ∈ C : Re z < 0}

and the eigenvalues zj of iB coincide with their multiplicities with
the poles of Rχ(λ) (see [10]). The condition

sup
λ∈R

‖λRχ(λ)‖L2(Ω)→L2(Ω) = +∞ (9)



Resolvent estimates and local energy decay for hyperbolic equations 11

implies
sup
λ∈R

‖(B + iλ)−1‖H→H = +∞. (10)

In fact, for Reλ > 0 we have

χ(iG− λ)−1χ = −
∫ ∞

0
e−λtχeitGχdt

= −
∫ ∞

0
e−λtχZ(t)χdt = χ(B − λ)−1

and by analytic continuation for Reλ ≥ 0 we obtain

χ(iG + iλ)−1χ,= χ(B + iλ)−1χ, ∀λ ∈ R

and we may exploit the representation (8). On the other hand, (9)
means that the condition (b) of Theorem 1 is not satisfied, so we
have not an uniform decay of the local energy. This holds for obsta-
cles having at least one generalized non-degenerate trapping ray (see
[14] and [12] for more details).

In the following we assume the condition (9) satisfied. Suppose
that there are only finite number of resonances in the domain

{z ∈ C : Im z ≥ −δ}, δ > 0.

Choose 0 ≤ α ≤ δ so that we have no resonances on the line {z ∈
C : Im z = −α}, hence the resolvent (B + α + iλ)−1 exists for every
λ ∈ R. It is easy to see that

sup
λ∈R

‖(B + α+ iλ)−1‖H→H = +∞. (11)

Indeed, if the resolvent (B + α + iλ)−1 is uniformly bounded with
respect to λ ∈ R, the cut-off resolvent ‖λRχ(−iα+ λ)‖L2→L2 will be
also bounded uniformly with respect to λ ∈ R. Consider the domain

{z ∈ C : −α ≤ Im z ≤ c0, |Re z| ≥ c1, ci > 0, i = 0, 1}

with sufficiently large c1. For all z in this domain we have an estimate
(see for example [18])

‖zRχ(z)‖L2→L2 ≤ CeC|z|n

and an application of the Pragmen-Lindelöf theorem leads to a con-
tradiction with (9). Next, assume that

e−α−iβ /∈ σ(eB), ∀β ∈ R.
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Then ‖(e−α−iβ − eB)−1‖ ≤ Cα, ∀β ∈ R and from the equality

I − eB+α+iβ = −(B + α+ iβ)

∫ 1

0
et(B+α+iβ)dt

we deduce

(B + α+ iβ)−1 = −
∫ 1

0
et(B+α+iβ)dt(I − eB+α+iβ)−1.

Consequently, the resolvent (B+α+iβ)−1 is uniformly bounded with
respect to β ∈ R and we obtain a contradiction with (11). This shows
that there exists β0 ∈ R so that

e−α−iβ0 ∈ σ(eB) \ eσ(B).

Now we are in position to apply the result in [9] saying that there
exists a set Mα ⊂ R+ with Lebesgue measure zero so that for all
t ∈]0,∞[\Mα we have

et(−α−iβ0)eiω ∈ σ(Z(t)) : ∀ω ∈ R,

hence

e−αt+iω ∈ σ(Z(t)), ∀ω ∈ R.

Assume that for pn

qn
∈ Q, 0 < pn

qn
≤ δ we have no resonances on the

line

{z ∈ C : Im z = −pn
qn

}.

The above argument implies the existence of a set Mn ⊂ R+ with
Lebesgue measure zero such that for t ∈]0,∞[\Mn we have

e−t
pn
qn

+iω ∈ σ(Z(t)).

The rationals are dense in ]0, δ[ and the spectrum σ(Z(t)) is closed.

Thus for t ∈]0,∞[\
(

∪n∈NMn

)

we get the relation

{z = e−ty+iω ∈ σ(Z(t)) : 0 ≤ y ≤ δ, ω ∈ R}.

Finally, we have the following

Theorem 5. Suppose that we have a finite number of resonances z
with Im z ≥ −δ, δ > 0. If the condition (9) holds, there exists a set

R ⊂ R+ with Lebesgue measure zero so that for all t ∈]0,∞[\R we

have

{z ∈ C : e−tδ ≤ |z| ≤ 1} ⊂ σ(Z(t)).
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Next we will examine the singularities of the cut-off resolvent
χ(U(t) − z)−1χ for z → z0 ∈ S1, |z| > 1. Let ψ ∈ C∞

0 (Rn) be a
function such that ψ(x) = 1 for |x| ≤ a+ 1, ψ(x) = 0 for |x| ≥ a+ 2.
Introduce the operator

Lψ(g, h) =
(

0, 〈∇xψ,∇xg〉 + (∆ψ)g
)

.

In particular, we define Lψ(U(t)f) and Lψ(U0(t)f) and will write sim-
ply LψU(t) and LψU0(t). It is easy to see that we have the following
equalities:

(1 − ψ)U(t) = U0(t)(1 − ψ) +

∫ t

0
U0(t)LψU(t− s)ds,

U(t)(1 − ψ) = (1 − ψ)U0(t) +

∫ t

0
U(t− s)LψU0(s)ds.

Applying these equalities, we get

U(t) = U(t)ψ + (1 − ψ)U0(t) +

∫ t

0
ψU(t− s)LψU0(s)ds

+

∫ t

0
U0(t−s)(1−ψ)LψU0(s)ds+

∫ t

0

∫ t−s

0
U0(τ)LψU(t−s−τ)LψU0(s)dsdτ

= ψU(t)ψ + U0(t)ψ(1 − ψ) + (1 − ψ)U0(t) +

∫ t

0
ψU(t− s)LψU0(s)ds

+

∫ t

0
U0(s)LψU(t− s)ψds +

∫ t

0
U0(t− s)(1 − ψ)LψU0(s)ds

+

∫ t

0

∫ t−s

0
U0(τ)LψU(t− s− τ)LψU0(s)dsdτ.

Now let z ∈ C be such that |z| > 1. Let g ∈ C∞
0 (Ba+2) be a cut-off

function equal to 1 on Ba+1. We choose the projectors P b± = P± so
that

P±ψ = ψ = ψP±, P±g = g = gP±.

Next we fix b > 0 and the projectors P± with these properties
and note that gLψ = Lψ = Lψg. Let T0 > 0 be chosen so that
P+U0(t)P− = 0 for t ≥ T0. Given a t > 0, we have

(Z(t) − z)−1 = −
∞
∑

j=0

z−j−1P+U(jt)P−

= P+ψ(U(t) − z)−1ψP− −
∑

jt≤T0

z−j−1P+U0(jt)ψ(1 − ψ)P−
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−
∑

jt≤T0

z−j−1P+(1 − ψ)U0(jt)P−

−
∫ T0

0
P+U0(s)Lψ(U(t) − z)−1ΦU(−s)ψP−ds

−
∫ T0

0
P+ψ(U(t) − z)−1ΦU(−s)LψU0(s)P−ds

−
∑

jt≤T1

∫ min(jt,T0)

0
z−j−1P+U0(jt)ΦU0(−s)(1 − ψ)LψU0(s)P−ds

−
∫ T0

0

∫ T0

0
P+U0(τ)Lψ(U(t)−z)−1Φ1U(−s−τ)LψU0(s)P−dsdτ+G(z)

with a function G(z) holomorphic for z 6= 0. Here Φ and Φ1 are cut-
off functions with compact support determined by the finite speed of
propagation so that

(1 − Φ)U0(−s)g = 0 for 0 ≤ s ≤ T0,

(1 − Φ1)U(−t)g = 0 for 0 ≤ t ≤ 2T0.

Finally, T1 > 0 is chosen so that P+U(t)Φ = 0 for t ≥ T1. The terms
in the above presentation of (Z(t) − z)−1 given by finite sums are
holomorphic functions with respect to z. Consequently, if

lim
z→z0,|z|>1

‖Ψ(U(t) − z)−1Ψ‖ <∞

for Ψ ∈ C∞
0 (x ∈ Rn : |x| ≤ c+ 1) and equal to 1 for |x| ≤ c for some

suitably large and fixed constant c > 0, we conclude that (Z(t)−z)−1

is not singular at z0 ∈ S1. Combining this argument with the fact
under the condition (9) we have S1 ⊂ σ(Z(t)) for almost t > 0, we
obtain the following

Theorem 6. Assume the condition (9) fulfilled. Then for almost all

t ∈]0,∞[ and all z0 ∈ S1 we have

lim
z→z0,|z|>1

‖Ψ(U(t) − z)−1Ψ‖ = +∞.

This result is important for the analysis of the analytic continuation
of the cut-off resolvent Uχ(z) = χ(U(T, 0)−z)−1χ of the monodromy
operator U(T, 0) related to the propagator U(t, s) for time-periodic
perturbations of the wave equation. In particular,we conclude that for
trapping periodically moving obstacles we have not a meromorphic
continuation of Uχ(z) from {z ∈ C : |z| ≥ A ≫ 1} across the unit
circle S.
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