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Abstract. We examine the cut-off resolvent R,(\) = x(—Ap —
A2)~1y, where Ap is the Laplacian with Dirichlet boundary con-
dition and x € C§°(R"™) equal to 1 in a neighborhood of the obstacle
K. We show that if R, () has no poles for ImX\ > —¢, § > 0, then
IRy (M)l z2—r2 < CIA"72, XA € R, |A| > Cp. This estimate implies a
local energy decay. We study the spectrum of the Lax-Phillips semi-
group Z(t) for trapping obstacles having at least one trapped ray.

1. Introduction

Let K C R", n > 2, be a bounded domain with C°° boundary 0K
and connected complement {2 = R"\ K. Such K is called an obstacle
in R™. We consider the Dirichlet problem for the wave equation

(02 — Ay)u =0 in R x £,
=0 onR x 9K, (1)
u(0,z) = fo(x), du(0,7) = fi(z).

Let K C B, ={z € R": |z| <a} and for m > 0 set

IVaullL2(B,ne) + [10kull L2 (B,ne2)
IV follim(Bane) + 1 f1ll m(Bine)

Pm(t) = sup

(0,0) # (fo, f1) € Cg=(£2) x C5°($2), supp fi C Ba}|.
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For Im A > 0 consider the cut-off resolvent R, (\) = yR(A\)y : L*(2) —
L%(92), where R(\) = (—Ap — A7, x € C§°(Ba+1), X = 1 on B,
and Ap is the Dirichlet Laplacian with domain D(Ap) = H3(12).

The following result of Vodev generalized the classical one of
Morawetz for n > 3 odd.
Theorem 1 ([20]). The following conditions are equivalents:
(a) imy— 4 po(t) = 0,
(b) There exist Cy > 0, Cy > 0 so that

AR, (M|l < C1, A R, |A| > Cy,

(¢) There exist constants C > 0, v > 0 so that

Ce ", nodd,
po(t) <

Ct™",n even.

It is known that (b) holds if the obstacle K is non-trapping, that is
the singularities of the solution of the Dirichlet problem with initial
data with compact support leave any compact w C R" for ¢t > t(w)
(see for instance [4] for more details). For trapping obstacles without
any condition on the geometry of K we have the following

Theorem 2 ([3]). We have the estimate
[ Byl < Ce“P AR, A = Co

and for every integer m > 1 we have

Cm,
(logt)™’

Pm(t) < t>1. 2)

The cut-off resolvent R, (\) has a meromorphic continuation in C for
nodd and in C' = {z € C: z # —ip, u € R} for n even ([10], [19]).
There are many examples when we have a domain

{zeC: = <Imz<0},6>0

without poles (resonances) of R, () (cf. for example [7]). In this talk
we some results showing that in this case we have a polynomial bound
of the cut-off resolvent R, (A) on R and a better local energy decay
than (2). Our main result is the following

Theorem 3. Assume that the cut-off resolvent R, (\) has no poles
forIm A > —§, 6 > 0. Then

1R (M z2(2)—1200) < CIA™2, X eR, |A > Co. (3)
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Remark 1. Notice that if for some M > 0 we have the estimate
IR M r2(0)—12(2) < C1IAM, Im A > =6, |Re A| > C,
then a result of N. Burq [5] says that

log(2 +[A*)

L AER, A > Co.
1+ [A] A= Co

R (M 22(2)—12(02) < Ca

In particular, a such estimate holds for two strictly convex disjoint
obstacles and under some conditions for several strictly convex dis-
joint obstacles ([7]).

Remark 2. For the semiclassical Schrodinger operators —h2A +
V(z) in the case of dimension 1 a polynomial bound O(h~M) of the
cut-off resolvent in

W={2€C:0<ay<Rez<ay, Imz>—ash,a; >0,i=0,1,2}

has been obtained in [2], provided that we have no resonances in W.
It is natural to conjecture that under the condition of Theorem 3, the

cut-off resolvent R, ()) is bounded uniformly on R for any dimension
n > 3.

2. Estimates of R, ()

It is useful to transform the problem to a semi-classical one. Setting
)\:%,O<h§1,wehave

(=Ap — X)L =h3(=h?Ap — 2)7!

and we will study the operator x(P(h)—z)~'x with P(h) = —h?Ap,h >
0, in the domain

D, ={2€C:0<ayg<|Rez| <a;,—c1th <Imz<c9,a; >0,¢,i=0,1}.

We will work in the “black box” setup ([15], [17]). For this purpose
define H, = L?(2N B,) and set

L="H,®L*R"\ B,).

We consider P(h) as an operator P(h) : L — L with domain D(P) C
L and the hypothesis in [15], [17] for a “black box” framework are
satisfied. In particular, setting

HE = H, @ LT\ By), T} = R"/(aZ"),
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we introduce P#(h) by replacing —h?Ap by —h?Aqn. The operator
P%(h) has a discrete spectrum and we denote by N(P#(h),\) the
number of eigenvalues of P#(h) in [\, A]. Then we we have

N(PER),A) = 0((%)"/2), for A > 1.

This follows from the Weyl asymptotic for the counting function for
eigenvalues of P#(h).

In the following for simplicity we will write P instead of P(h).
We will examine the resolvent of the complex dilated operator Py(h)
defined as follows. Introduce a function fy(¢) : Rt — C having the
properties:

fo(t) =tfort <a-+1,

fo(t) =€, t > 1,
0< argf@(t) < 9) atf@(t) 75 Oa

arg fo(t) < arg O, fo(t) < arg fo(t) + e

with small € > 0. Let pg(tw) = fo(t)w, t = |z| € R*, w € S and
set Iy = pg(R™). Let ¥ € C§°(Bat1) be equal to 1 near B,. As in
[15], [16], we introduce the dilated operator Py

Pyu = P(Wu) — Ar,(1 —¥)u
with domain
Dy = {u € L*(I}y) : u € D(P), (1 —W)u € H*(Ip)},

D(P) being the domain of P. Here —Ap, is the dilated Laplacian
corresponding to the change R" 5 z — fy(t)w € C" and we refer
to [15], [16], [17] for more details. Next set # = cih so that in the
domain

Q={2€C:|z—w|<0, —0 <Imz<ayf} CD,, az>1

there are no eigenvalues of Py. Note that the eigenvalues of Py co-
incide with their multiplicities with the resonances of P ([15], [16],
[17]). From [8], [11] the counting function of the eigenvalues of P# (h)
satisfies

N(P# [\ —h,A+h]) = O(h'™™),

for A € [ag,a1]. Then, following a construction, given by one of the
authors [1], we may find a finite rank operator L so that

(P4 0L —2)"t =001, Vz € 12, (4)
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(Pp—2)"'=00""), 2€ 2f =2gn{Imz>ef}, 0<e<as, (5
HLHD(PO)_)[Q(FQ) = 0(1), rank L = < Coh7n+1

with a constant Cy > 0 independent on h. This construction gener-
alises that of Sjostrand [16] with a finite rank operator Ky, rank Ky =
Ch™™. Now consider the Grushin problem

{(Pg —2)u+ R_(2)u_ = v, (6)

R+(Z)u = U4,

where u € D(Py),v € L*(Iy), while u_,vy € C*. Given an orthonor-
mal basis (eq, ..., ;) in Image L*, the operators Ry have the form

Riu= (u,€;)j=1,. r

K
R_u_ = ZU_J(PQ +0L—2)ej, u— = (U_1,...,u_4),
j=1

where (,) is the scalar product in L?(I}).

Following the results in Section 6, [16], the problem (6) is invertible
and the inverse operator is given by

(£ 1ih)

To estimate the operators E(z), E_(z), E1(z), E_ (%), consider an
orthonormal basis

(€415 vy €y -er)

1
in <Image L*) = Ker L. Let

K o0
u—E u]ej+ E u]e]—u+u.
j=1 j=r+1

From (6) we get
K
(P —2)(u/ + ")+ (P + 0L — 2)(Y_u_ je;) = v,
j=1
(u,ej) =uj=vyj, j=1,..,K

This implies

(Py+ 0L — 2)(u" + Zu,,jej) =v— (Py—2)u
j=1
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K
=v—(Py—2) Zujej,
j=1

hence
K —1
<u" + Zu,,jej> = <P9 + 0L — z) v
j=1

_(Pg + 0L — Z>71(Pg — Z) Z’U+J€j = A+ B.
j=1

The estimate (4) leads to A = O(0~1)||v||. Using once more (4), we
get

B= (-1 +(Py+ 0L — z)’leL) 3 v jej = O(1) oy lcx.
j=1

Thus
[u"|| + fu—]lcx = OO H)|[v] + OD)]vy e

and ||u'[|cx = O(1)]|v4||cx. Consequently,
lull + ullcs = OO vl + O [lo |lcs
and we get the estimates
IE()[l = 007", |E-(2)| = O,

1E+(2)| = O(), [E-+(2)] = O),

where E_ (z) : C* — C*. Moreover, the resolvent (Py — z)~
(E_ 1(2))7! are related by the equality (see for instance, [16])

(Pp—2)"" = B(2) — B+ (2)((B- +(2)) " E_(2)
and the above estimates yield

1(Po = 2)7H I SIEE)] + 1B+ (I (E-+ () IIE-(2)]
=001+ [I(B-+(2)7I])-

L and

Obviously,

tcomatrix(E_ ) O (%)

det(E_y)  det(E_4)

(B-4)"' =

and the problem is reduced to obtain a lower bound of D(z) =

det(E_,_,_).
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Since ||E_ 1 (2)|lcx—cr = O(1), we have | D(2)| < eCF, z € 5. On
the other hand, in Qj we get

(B—+(2)) tuy = =Ry (2)(Pp — 2) ' R-(2)uy

- —R+(z)<f + (P — z)_leL) iu_,jej =0(1)

j=1
and the estimate (5) for z € Qg‘ yields

1

[D()] = |det(E-+(2))] = ‘det((Ef +(z

> e—Cm, = Q‘F.
))’1)‘ ’

Recall that Py has no eigenvalues in 2, hence D(z) has no zeros in
{29. This makes possible to introduce the positive harmonic function
G(z) = Ck —log|D(z)| > 0, z € £25. We have in (2, the estimate
log |D(z)| > —C4k, so we can apply the Harnack inequality for posi-
tive harmonic functions. In fact, for every M CC {2y we have

sup G(z) < Cy inf G(z) < Cp inf  G(2).
zEM zeM zeMN2F

Making a small decrease of {2y, which means to replace ¢; by a con-
stant 0 < ¢3 < ¢1, we deduce

G(z) < Cak, log|D(z)| > —Csk, z € §29, 6 = c2h.

Next suppose that {2y is defined by c3 instead of ¢;. Combining the
above estimates with the fact that x = Coh™""!, we conclude that

_ —n+1
[(Py — 2)7 Y| < C5e%4h ™" 2 € 0.

Moreover, the same estimate is uniform with respect to choice of w
in 2, provided w runs over a compact interval in R™ so that P has
no eigenvalues in (2. Thus we obtain

_ —n—+1
[(Py — 2)7Y| < C5¢%5h"7 | 2 € D,.

The complex scaling was chosen so that fy(t) =1 for t < a+ 1. Since
suppx C Bg+1, it is easy to see that

X(P—2)7""x=x(P—2)""x,
hence

IX(—=h2A = 2) Xl r2 () r2() < Coe® ™, 2 € D,
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Taking into account the scaling A = %, for z € D, we get
Rez = h2(Re? A —Im% \) > ag, Im z = 2h2 Re A\Im A > —coh

which imply

C2

ag
Rel > — > 0, ImA> — = —ao.
e_h_a0>,m_2\/% as
Consequently, we obtain
IR (V)| < C7e“ M Re A > ag, Im A > —ay. (7)

In the same way we treat the domain Re A < —ag, Im A > —a9 and
we get (7) for |[Re A| > ag > 0.

3. Estimates on the real axis and decay of local energy

Proposition 1. Let f(z) be a holomorphic function in
Uy={2€C: Imz>—a}, a >0,

such that
|f(Z)| < COBC|z|ma S Ua, m > 15

If(2)] < G , Imz > 0.

~ |z|Imz

Then we have |f(z)] < Cao(1+ |2|)™ L, z € R.

Proof. Introduce the function g(z) = €™<™ " f(z), where 4 > 0 is
sufficiently large. Consider the domain bounded by the curves:

1
Y+ =1{2€C: Imz=—- Rez > 1},

2|
v ={2€C: Imz=—a, Rez > 1},
1
Y={2€C: —a<Imz< —/Rez=1}.

2™

For z € v_ and Rez > 1 we have

2)| < C eC/(Rez)m ex —A(m + 1)
9(2)] < Cy p(-alm

(Rez)™ Im z) < Cy

taking 2C" — A(m 4 1)ae < 0. On the curve 74 we obtain

9021 < Culel™ " exp((m + DARe 2" 1 =[1+ 0 ()] )
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B(Rez)™

—1
< Cyf™ eXP< ER

(m+1)) < Csl" 2.

To obtain the estimate, we apply the Pragmen-Lindel6f theorem for
the function ¢g(z) and deduce

l9(2) < Cglz|™ !

for

1
Rez>1, —a<Imz < —.
|2

In particular, for z > 1 we get
|f(2)] < Gl

In a similar way we treat the case z < —1.

To apply Proposition 1, notice that the operator —Ap with Dirich-
let boundary condition on 0?2 is a self-adjoint positive operator and
it is easy to see that

R 22— 12(2) < | , Imz > 0.

z|Im z

Combining the estimate (7) and Proposition 1 with m = n — 1, we
obtain (3) and the proof of Theorem 3 is complete.

Theorem 3 makes possible to apply a result of G.Popov and G.
Vodev (see Proposition 1.4 in [13]) in order to obtain the following

Theorem 4. Under the hypothesis of Theorem 3 for every m > 0
and t > 1 we have for n odd the estimate

P(t) < Ot log )™ =),
while for n even and t > 1 we have
C(t~'logt)™ =1 for0 < m < n(n—1),
ponlt) < { (1~ logt) (n—1)

Ct™"form > n(n —1).

The factor m/(n —1) comes from the estimate of the resolvent of the
generator G of the unitary group U(t) = ¢/ related to the problem
(1). More precisely, we have

G =i 0 Id)

Ap 0
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with domain
D(G) = {(u,v) : uw € H3(2), ve Hp(N)} C H,
where H = {(u,v) : v € Hp(2), v € L?(2)} and Hp(£2) is the

closure of C§°(£2) with respect to the norm

loll?, = / Vg|2da.
(93

For the resolvent (G'— A\)~! we have the representation

_ AR(N)  —iR(A
(@-N7= (—z‘AD(R)()\) )\R(()\))>'

Therefore (3) implies the estimates (see [20], [5])
INR M) 11 < CIA T IIXAD ROy 12 < CIA T
IR Ml z2— b, < CIAMTH X ER, A > Co
and we obtain

IX(G = N Xl < CIAPTH X €R, A 2 Co.

4. Spectre of the Lax-Phillips semigroup Z(t)

In this section we assume n > 3, n, odd and we examine the spectrum
of the Lax-Phillips semigroup Z°(t) = P2U(t)P®,t > 0, where U (t) is
the unitary group introduced in Section 3 and P{ are the orthogonal
projections on the orthogonal complements of the spaces

DY ={feH :Uyt)f =0, |z| < £t +b}, b> a.

Here Uy(t) is the unitary group related to the Cauchy problem for the
wave equation in R; x R™ (see [10]). We choose x € C§°(R") so that
x =1 for |z| <a, x =0 for |x| > b. We fix b > a with this property
and note that P2y = x = xP? and for simplicity we will write Z(t)
instead of Z°(t). Let B be the generator of Z(t). Therefore,

o(B) C {z€C:Rez <0}

and the eigenvalues z; of iB coincide with their multiplicities with
the poles of R, () (see [10]). The condition

sup [[ARy (M)l 22(0)—r12(0) = +00 9)
ACR
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implies
sup [|(B +i\) ™ [p—n = +oo. (10)
AeR

In fact, for Re A > 0 we have

x(iG = \) "ty = —/ e Mye@ydt
0

—— [ ez = s -»
0

and by analytic continuation for Re A > 0 we obtain
(G +iN) "y, = x(B+1i\) "'y, VA eR

and we may exploit the representation (8). On the other hand, (9)
means that the condition (b) of Theorem 1 is not satisfied, so we
have not an uniform decay of the local energy. This holds for obsta-
cles having at least one generalized non-degenerate trapping ray (see
[14] and [12] for more details).

In the following we assume the condition (9) satisfied. Suppose
that there are only finite number of resonances in the domain

{z€eC:Imz > —4d}, § > 0.

Choose 0 < «a < ¢ so that we have no resonances on the line {z €
C : Imz = —a}, hence the resolvent (B + « +i)\)~! exists for every
A € R. It is easy to see that

sup [|(B + o + i) 51 = 4o0. (11)
AR

Indeed, if the resolvent (B + « + iA\)~! is uniformly bounded with
respect to A € R, the cut-off resolvent [|[AR, (—icv + A)|| 2,2 will be
also bounded uniformly with respect to A € R. Consider the domain

{zeC:—a<Imz<c¢y, |Rez| >¢1,¢>0,i=0,1}

with sufficiently large cq. For all z in this domain we have an estimate
(see for example [18])

lRo ()22 < CO"

and an application of the Pragmen-Lindel6f theorem leads to a con-
tradiction with (9). Next, assume that

e ¢ g(eP), VB e R.
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Then ||(e=~% — eB)~1|| < C,, VB € R and from the equality

1
T — BB+0¢+Z'5 _ —(B Lo+ Zﬂ)/ 6t(B+a+lﬂ)dt
0

we deduce

1

(B+a+if) ' =- / e!(BrotiB) gy(] — eBrotif)=1,
0

Consequently, the resolvent (B4« +i3)~! is uniformly bounded with

respect to € R and we obtain a contradiction with (11). This shows
that there exists 8y € R so that

e~ 70 ¢ g(eP)\ (P,

Now we are in position to apply the result in [9] saying that there
exists a set M, C RT with Lebesgue measure zero so that for all
t €]0,00[\ M, we have

etlma=ih)eiv ¢ 5(Z(t)) : Vw € R,

hence '
e M ¢ o(Z(t)), Vw € R.

Assume that for Z—: €Q,0< Z—: < 6 we have no resonances on the

line

{zeC: Tmz = LY.
q

n

The above argument implies the existence of a set M,, C RT with
Lebesgue measure zero such that for ¢ €]0, oo[\.M,, we have

et T € o(2(1)).

The rationals are dense in ]0, J[ and the spectrum o(Z(t)) is closed.
Thus for ¢ €]0, co[\ <Un€NMn> we get the relation

{z=eWT co(Z(t): 0<y <6, weR}
Finally, we have the following

Theorem 5. Suppose that we have a finite number of resonances z
with Imz > —4§, 6 > 0. If the condition (9) holds, there exists a set
R C RT with Lebesque measure zero so that for all t €]0,00[\R we
have

{zeC:e ¥ <|z| <1} Cco(Z(2)).
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Next we will examine the singularities of the cut-off resolvent
x(U(t) —2)"ty for 2 — z9 € S, |2] > 1. Let ¢ € C°(R") be a
function such that ¥ (z) =1 for |z| < a+1, ¢(x) =0 for |z| > a+ 2.
Introduce the operator

Lilg:h) = (0,920, Vag) + (A0)g).

In particular, we define Ly, (U (¢) f) and Ly, (Up(t) f) and will write sim-
ply LyU(t) and LyUp(t). It is easy to see that we have the following
equalities:

t

(1= $)U(t) = Uo(t)(1 — ) + /0 Un()LyU (¢ — 5)ds,
U0 =) = (=000 + [ U= )Ll(s)as.

Applying these equalities, we get

U) = Uy + (L= 0)0h(e) + [ wU(t = 5)Luo()ds
+ /O Up(t—8)(1—t) Ly Uo(s)ds+ /O /0  Up(r) LyU(t—s—7)LyUp(s)dsdr
— GU ) + Uo (Dl — ) + (1 - ¥)Us(t) + /0 WUt — $)LyUo(s)ds
+ /Ot Uo(s)LypU(t — s)ipds + /Ot Uo(t — s)(1 — ) LyUy(s)ds

t t—s
+/ / UQ(T)L#,U(t — S — T)Ld,Uo(S)deT.
0 JO

Now let z € C be such that |z| > 1. Let g € C5°(Bqa+2) be a cut-off
function equal to 1 on B,i1. We choose the projectors P. = Py so
that

Pip =y =9¢Ps, Prg=g=gPs.
Next we fix b > 0 and the projectors Py with these properties

and note that gL, = L, = Lyg. Let To > 0 be chosen so that
P,Uy(t)P- =0 for t > Tp. Given a t > 0, we have

(Z(t)— 2" == 2z 'PLU(jt)P-
j=0

= Pip(U(t) — 2) "pP- = > 277 P U (i) (1 — ) P-

Jt<To
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— > TP (1 - ) U (jt) P

jt<To

To

_/0 P U (8)Lo(U(t) — 2)7 10U (— )i P_ds
To

- [ PeU) = ) U (=) Ly Ui(s)Pds

min(jt,7o) - ‘
-y / 2P U () DUy (—5) (1 — ) Ly Uo (s) P—ds
jt<1y 70

To To
_ /0 /0 PoUy(r)Ly(U(t)—2)" 01U (—s—7) Ly Uo(s) P dsdr+G(2)

with a function G(z) holomorphic for z # 0. Here ¢ and &; are cut-
off functions with compact support determined by the finite speed of
propagation so that

(1 —=®)Up(—s)g =0 for 0 < s <7y,
(1—-21)U(—t)g =0 for 0 <t <2Tp.

Finally, 71 > 0 is chosen so that P, U(t)® = 0 for t > T;. The terms
in the above presentation of (Z(t) — z)~! given by finite sums are
holomorphic functions with respect to z. Consequently, if
lim  |@(U(t) — 2) | < oo
z—20,|2|>1

for € Cg°(x € R™: |z| < ¢+ 1) and equal to 1 for |z| < ¢ for some
suitably large and fixed constant ¢ > 0, we conclude that (Z(t)—z)~!
is not singular at zp € S'. Combining this argument with the fact
under the condition (9) we have S' C ¢(Z(t)) for almost ¢ > 0, we
obtain the following

Theorem 6. Assume the condition (9) fulfilled. Then for almost all
t €]0,00[ and all zo € St we have
lim ([T (U(t) — 2)" | = 4.
z—20,|2|>1

This result is important for the analysis of the analytic continuation
of the cut-off resolvent U, (z) = x(U(T,0) — z) "Ly of the monodromy
operator U(T,0) related to the propagator U(t,s) for time-periodic
perturbations of the wave equation. In particular,we conclude that for
trapping periodically moving obstacles we have not a meromorphic
continuation of Uy (z) from {z € C : |z| > A > 1} across the unit
circle S.
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