ANALYTIC CONTINUATION OF THE RESOLVENT OF THE LAPLACIAN
AND THE DYNAMICAL ZETA FUNCTION

VESSELIN PETKOV AND LUCHEZAR STOYANOV

ABSTRACT. Let sp < 0 be the abscissa of absolute convergence of the dynamical zeta function
Z(s) for several disjoint strictly convex compact obstacles K; C RY i=1,...,ko, ko > 3, and let
Ry (2) = x(=Ap — 22)7x, x € C(RY), be the cut-off resolvent of the Dirichlet Laplacian —Ap

in Q = RN\ UM, K;. We prove that there exists o1 < so such that the cut-off resolvent R, (z) has
an analytic continuation for Im(z) < —o1, |Re(z)| > J1 > 0.

1. INTRODUCTION

Let K be a subset of RY (N > 2) of the form K = K; UKy U...U K,,,where K; are compact
strictly convex disjoint domains in RN with C* boundaries T'; = K; and ko > 3. Set Q = RN \ K
and I' = 0K. We assume that K satisfies the following (no-eclipse) condition:

(H) {for every pair K;, K; of different connected components of K the convex hull of

K; U K; has no common points with any other connected component of K.

With this condition, the billiard flow ¢, defined on the cosphere bundle S*(€2) in the standard way
is called an open billiard flow.It has singularities, however its restriction to the non-wandering set
A has only simple discontinuities at reflection points. Moreover, A is compact, ¢; is hyperbolic and
transitive on A, and it follows from [St1] that ¢; is non-lattice and therefore by a result of Bowen
[Bol], it is topologically weak-mixing on A.

Given a periodic reflecting ray v C €2 with m., reflections, denote by d, the period (return time)
of , by Ty the primitive period (length) of v and by P, the linear Poincaré map associated to 7.
Denote by II the set of all periodic rays in 2 and let A\; 4,2 =1,..., N — 1, be the eigenvalues of P,
with [A;| > 1 (see [PS1]).

Let P be the set of primitive periodic rays. Set

1
5'7 — _§]Og()\1’,\/ R AN—I,’y)a e P’
0 if m, is even,
TN =
71 if my s odd

and consider the dynamical zeta function

Z(S) — Z % Z(_l)er€m(78Ty+5ﬁy).
m=1

= YEP

It is easy to show that there exists sgp € R such that for Re(s) > so the series Z(s) is absolutely

convergent and sg is minimal with this property. The number sy is called abscissa of absolute

convergence. On the other hand, using symbolic dynamics and the results of [PP], it follows that
1
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Z(s) is meromorphic for Re(s) > so —a, a > 0 (see [I4]) and Z(s) is analytic for for Re(s) > so.
According to some recent results ([St2] for N = 2, [St4] for N > 3 under some additional conditions)
there exists 0 < € < a so that the dynamical zeta function Z(s) admits an analytic continuation
for Re(s) > sp — €.

The cut-off resolvent defined by

Ry(2) = x(—AKx —2%)7'x : LH(Q) — L*(Q)

for Im(z) < 0, where x € C°(RY), x = 1 on K, and A is the Dirichlet Laplacian in €, has a
meromorphic continuation in C for N odd with poles z; such that Im(z;) > 0 and in C\ {i{R*} for
N even. The analytic properties and the estimates of R,(z) play a crucial role in many problems
related to the local energy decay, distribution of the resonances etc. In the physical literature and
in many works concerning numerical calculation of resonances (see [CE], [W], [L], [LZ], [LSZ]) the
following conjecture is often made.

Conjecture: The poles pj (with Re(u;) < 0) of Z(s) and the poles z; of Ry (z) are related by
iZj = M-

At least one would expect that the poles z; of R, (z) lie in sufficiently small neighborhoods of
—ip;. Presumably for this reason the numbers —ip; are called pseudo-poles of R, (z).

The case of several disjoint disks has been treated in many works (see [W] for a comprehensive
list of references), and a certain method for numerical computation of the resonances has been
used. Although it is not rigorously known whether the numerically found resonances approximate
the (true) resonances in the exterior of the discs, and whether the dynamical zeta function has an
analytic continuation to the left of the line of absolute convergence, this way of computation is
widely accepted in the physical literature.

In the case of two strictly convex disjoint domains it was proved ([I1], [G]) that the poles of
R, (X) are contained in small neighborhoods of the pseudo-poles

m%+iak,m6Z,k€N.

Here d > 0 is the distance between the obstacles and «j, > 0 are determined by the eigenvalues A;
of the Poincaré map related to the unique primitive periodic ray.

It is known that the above conjecture is true for convex co-compact hyperbolic manifolds
X =T \H""!, where T is a discrete group of isometries with only hyperbolic elements admitting a
finite fundamental domain (then X is a manifold of constant negative curvature). More precisely,
the zeros of the corresponding Selberg’s zeta function coincide with the poles (resonances) of the
Laplacian A, on X [PPe].

The case of several convex obstacles is generally speaking much more complicated. However
the case sg > 0 is easier, since we know that for —sg < Im(z) < 0 the cut-off resolvent R,(z) is
analytic (see [16]).

In the following we assume that sy < 0. The first problem is to examine the link between the
analyticity of Z(s) for Re(s) > sg and the behavior of R, (z) for 0 < Im(z) < —s¢. (The parameters
z and s are connected by the equality s = iz). In this direction Ikawa established the following

Theorem 1. ([I3]) Assume so < 0 and N = 3. Then for every e > 0 there exists Ce > 0 so that
the cut-off resolvent R, (z) is analytic for Im(z) < —(so + €), |Re(2)| > C..
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A similar result for a control problem has been established by Burq [B]. The proofs in [I3]
and [B] are based on the construction of an asymptotic solution Ups(x, s; k) with boundary data
m(x;k) = *@h(z), k € R, k > 1, where 1 is a phase function and h € C*(T) has a small
support. More precisely, Ups(., s; k) is C°°(€)-valued function for Re(s) > sg, and we have

(Ay — sHUps(.,53k) =0forz € (OZ, Re(s) > so, (1.1)

Un(.,s:k) € L*(Q) if Re(s) > 0, (1.2)
Uni(z, s;k) = m(z; k) + ra(z, s;k) on T, Re(s) > so,

where, for ry/(z, s; k) and Re(s) > so + d > so, |s + ik| < ¢, we have the estimates

[rar (s 85 K) || ooy < Cd,w,hk_M- (1.4)
To obtain the leading term of Ups(z, s; k) it is necessary to justify the convergence of series having
the form
o0
Z Z e*s%'(m)aj(x, s; k), (1.5)
n=0|j|=n+3,jn+2=I
where j = (jo, ..., Jn+2) is a configuration (word) of length |j| = n + 3, ¢j(z) are phase functions

and the amplitudes a;(z, s; k) depend on the complex parameter s € C and a real parameter k£ > 1
(see Sections 3 and 5 for the notation and more details). These parameters are not connected but
to have (1.4) we must take |s + ik| < ¢. The main difficulty is to establish the summability of
above series and to obtain suitable CP estimates of their traces on I' for Re(s) > sg. The absolute
convergence of Z(s) makes it possible to study the absolute convergence of these series and to
get estimates which lead to the properties (1.1)-(1.4). This might seem a bit surprising since the
dynamical zeta function Z(s) is determined by the periods of periodic rays and the corresponding
Poincaré maps, and formally from Z(s) one gets almost no information about the dynamics of the
rays in a whole neighborhood of the non-wandering set. As it turns out, the absolute convergence
of Z(s) is a strong condition which enables us to justify the absolute convergence of (1.5).

The existence of a domain {z € C: Rez € [E -0, E+ 6], 0 <Imz < hs} free of resonances has
been proved by S. Nonnenmacher and M. Zworski in [NZ] for the operator —h2A + V(z), V(x) €
C§°(R™), assuming that the trapping set of the Hamiltonian flow ®¢ of [£|? + V (x) has a hyperbolic
dynamics similar to that of the billiard flow in the exterior of K. The existence of a resonance
free domain in [NZ] is established under the hypothesis Pr(1/2) < 0, where Pr(s) is the topological
pressure associated with the (negative infinitesimal) unstable Jacobian of the flow ®!. In our
situation this condition is equivalent to Pr (¢g) < 0, where Pr (g) is the pressure of the function
g associated with the symbolic dynamics related to the flow (see Sect. 3 for the definition of g
and its pressure). It is shown in Sect. 3 below that C1Pr (¢) < so < CyPr (g) for some constants
Cy >0, Cy > 0,s0 Pr(g) <0 if and only if sg < 0. It should be mentioned that the techniques and
tools in [NZ] are different from those in [I3], [B] and the present work.

In the case Re(s) < sg, it is an interesting problem to examine the link between the analytic
continuation of R, (z) for Im(z) > —sp and that of the dynamical zeta function Z(s). Several
years ago, Ikawa [I5] announced a result concerning a local analytic continuation of R, (z) in a
neighborhood of a point zy in the region

Do, ={2z€ C:Im(z) < —sp + |Re(2)|7%, |Re(2)| > Cc}, 0 < e < 1,
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assuming the following conditions:
(i) Z(s) is analytic in a neighborhood of izp and

|Z(iz0)| < |20|'7, 0 < e < 1, (1.6)
(i) if w(n) > 0 is an eigenfunction of the Ruelle operator L_ 75 with eigenvalue 1, then the
constants
M = max w(e) , m = min 50l (©)+3()
€, nex} w(n) gexth

satisfy the inequality %\/@ < 1 with a global constant 0 < 6 < 1 depending on the expanding
properties of the billiard flow (see [I3], [14]). We refer to Sect. 3 for the notation X7, f, §.

Ikawa announced in [I5] that (i¢) holds in the case of three balls centered at the vertices of an
equilateral triangle, provided the radii of the balls are sufficiently small. In general the condition
() is rather restrictive. On the other hand, it is difficult to check the condition (i) if we have
no precise information about the spectral properties of L, = L_,j,; for Re(s) close to so. In [I5]
there are no comments when (i) holds and whether this happens at all. As we show in Sect. 5,
the estimate (1.6) for z € D, . is related to the behavior of the iterations of the Ruelle operator I~/S
introduced in Sect. 3. It does not look like the tools required to do this were available at the time
[I5] was written. To our knowledge a proof of the result announced in [I5] has not been published
anywhere.

Starting with the work of Dolgopyat [D], there has been a considerable progress in the analysis
of the spectral properties of the Ruelle transfer operators L related to hyperbolic systems. The so
called Dolgopyat type estimates for the norms of the iterations L? (see [D], [St2], [St4]) imply an
estimate for the zeta function Z(s) in a strip so — e < Re(s) < sp, € > 0 (see Sect. 3 and Appendix
C below for details). On the other hand, it is important to note that the information given by the
estimates of the iterations and the behavior of the spectrum of Ly is richer than that related to the
zeta function Z(s).

Assuming certain regularity of the family of local unstable manifolds W*(x) of the billiard flow
over the non-wandering set A (see Appendix C) and that the Dolgopyat type estimates (3.3) hold
for the related operator L, for some class of functions, in this paper we prove the following main
result:

Theorem 2. Let sg < 0. Suppose that the estimates (3.3) for the operator L hold and that the
map A > x — WHX(x) is Lipschitz. Then there exist o1 < so and Ji > 0 such that the cut-off
resolvent R, (z) is analytic in

S={2€C: Im(z) < —o1, |[Re(2)| > J1}.
Moreover, there exists an integer m € N such that
o o < m . .
IR 5,y < CO D™ 2 €8 (1.7
The geometric assumptions in the above theorem are always satisfied for N = 2. In particular,
the Dolgopyat type estimates (3.3) stated in Sect. 3 below always hold when N = 2 ([St2]). For
N > 3 it follows from some general results in [St4] that (3.3) hold under certain assumptions about
the flow on A. These assumptions are listed in detail at the beginning of Appendix C. It seems

likely that most of these assumptions are either always satisfied or not really necessary in proving
the estimates (3.3) for open billiard flows. In fact, it was shown very recently in [St5] that one of
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the conditions® imposed in [St4] (and in [PS2] as well) is always satisfied for pinched open billiard
flows. Apart from that in [St5] a class of examples with N > 3 is described for which the results in
this paper can be applied.

Our argument in Sects. 7-8 shows that the integer m in (1.7) depends on o1 and N, however
we have not tried to get precise information about m. It seems that to obtain an optimal growth
in (1.7) is a difficult problem.

One should stress that the Dolgopyat type estimates only apply to a special class of functions
on A, namely to Lipschitz functions on A which are constant on any local stable manifold Wy (z)
of the billiard flow ¢; (see Sect. 3 below for details). Notice that the estimates for the iterations of
the Ruelle operator were originally obtained for the Ruelle operator L related to a coding given
by a Markov family of rectangles (see [PS2], [St4] and Appendix C for the notation). For the proof
of Theorem 2 we need Dolgopyat type estimates for the iterations of the Ruelle operator L related
to the symbolic coding using the connected components of K. The link between the operators L
and L5 and the estimates leading to (3.3) are given in Section 3 in [PS2] (see also Proposition 5 in
Appendix C).

We should mention that our result implies the existence of an analytic continuation of R,(2) in
a strip 0 < Im(z) < —o1, |Re(z)| > Ji, without any restrictions on the eigenfunction w(n) and the
behavior of Z(s) for o1 < Re(s) < sg. The estimate (1.7) enables us to obtain a scattering expansion
with an exponential decay rate of the remainder for the solutions of the Dirichlet problem

(02 — A)u(t,z) =0, € Q, ulrxr = 0, (1.8)
u|t:0 = f (S CSO(Q), 8tu]t:0 =gc CSO(Q)

Set H = H(Q) @ L%(Q), DI = HI(Q) & H'1(Q), j > 2, where the space H(R) is the closure of

B 5 \1/2
ol 6, = ([ 190(e)ar) "

C°(§2) with respect to the norm

Collorary 1. Let N be odd and let x € C§°(R™) be equal to 1 in a neighborhood of K. Let u(t,z)
be the solution of (1.8) with initial data (xf,xg). Then under the assumptions of Theorem 2 there
exists L € N such that for every € > 0 and for t > 0 sufficiently large we have

m(z;)
xult.z) = Y0 3w @)+ B(1)(.9),

Im (Zl)S—O'l Jj=1

where

IE@®)(f,9)llr < Cee™ (£, 9)lIpe-

Here 01 < s is as in Theorem 2, z; are the resonances with Im(z) < —o1, my(z;) are the multi-
plicities of z; and w, ; are related to the cut-off resonances states corresponding to z.

A similar result was established by Ikawa [I3] with o; replaced by so < 0. Recently, a local decay
result for the solutions of the wave equation related to hyperbolic convex co-compact manifolds

IThis is the non-degeneracy of the symplectic form over the non-wandering set A — see the condition (ND) in
Appendix C below.
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'\ H"*! was proved by C. Guillarmou and F. Naud [GN]. They obtain an exponentially decreasing
remainder related to the abscissa § of absolute convergence of the Poincaré series

_ ’
Ps(m,m') _ Z e sdp (m,ym )’ m,m' c Hn—H,
~yell

dy, being the hyperbolic distance. To improve this result, one would have to establish a polynomial
growth of the corresponding cut-off resolvent for § — e < Re(s) < 4, |Im(s)] > C. and small
e > 0, and an analog of Corollary 1 can be conjectured for convex co-compact manifolds (for
which Dolgopyat type estimates are known). For other results concerning scattering expansions for
trapping obstacles the reader could consult [TZ] and the references given there.

The proof of Theorem 2 is long and technical. The reason for this is that we are trying to
exploit some quite weak information coming from the Dolgopyat type estimates for some restric-
tive class of functions defined on a symbolic model to build approximations of the resolvent of a
boundary value problem based on infinite series which are not absolutely convergent. This reflects
the geometric situation and we have to deal with infinite series related to reflections of trapping
rays. In this direction it appears the present work is the first one where infinite series of this kind
are used for a WKB construction.

Below we discuss the main steps in the proof of Theorem 2.

As in [I3], [I5], the idea is to construct an approximative solution Ups(z, s; k) for o1 < Re(s) <
s0, |Im(s)| > Ji, k > 1, so that Ups(z, s; k) satisfies the conditions (1.1) - (1.3). For our analysis
in Sect. 8 we need to study the Dirichlet problem for (A, — s?) with initial data m(z;k) =
G (z)elFl@m }:C er, = G (z)elk#@) |a: er; coming from a representation by using the Fourier transform.

On the other hand, it is convenient to pass to data m(z, s; k) = e—se(@)p, (z,s; k) with by (z, s; k) =
e(s+ik)@0(‘”)G(m) and to work with two parameters s € C and k£ > 1. After the preparation in Sects.
3-5, we construct in Sect. 6 the first approximation V(©) (z, s; k). The first step in the construction
of V(O)(x, s; k) is the analysis of the series

wO,j(.Z',S;k’) = Z Z e_sgpj(x)aj(xas;k) = Z Un+2,j(xvs;k)> HAS Fjv

n==2jl=n+3,jnt+2=j n=—2

where j = (Jo, ..., Jn, jnt1,Jnt2) are configurations of length |j| = n + 3, pj(x) are phase functions
and a;(x,s; k) are amplitudes determined by a recurrent procedure starting with m(x,s; k). This
series corresponds to the sum of the leading terms of the asymptotic solutions constructed after an
infinite number of reflections. The analysis of wg ;(z, s; k) is given in Sects. 3-5. The main goal
there is to justify the existence of wg j(x, s; k) and to obtain an analytic continuation of wo ;(x, s; k)
from Re(s) > sg to a strip o9 < Re(s) < s¢ with g < sp. To do this, as in the analysis of Dirichlet
series with complex parameter, the strategy is to establish suitable estimates for Uy 12 j(x, s; k) and
to apply a summation by packages. The structure of Uy, ; is rather complicated since the phases
@j(x) and the amplitudes a;(x, s; k) are related to the dynamics of the reflecting rays having |j|
reflections and issued from the convex front {(z,Vy(z)) : = € supp h}. It seems unlikely that an
explicit relationship exists between U, 42 ;(z, s; k) and the iterations L’zs i of the Ruelle operator
L_, P+ (see Sects. 3 and 5). Consequently, one would not expect a particular relationship between
Yool 5 Unya,(z, s; k) and the zeta function Z(s). Thus, it appears the situation considered here is
rather different from the case of convex co-compact surfaces where it is known that the singularities
of the Selberg zeta function coincide with the singularities of the corresponding Poincaré series which
in turn is related to the resolvent of the Laplacian [PPe].
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It was observed by Ikawa [I5] that U, 2 (x, s; k) can be compared with L’istrgMn,s (2)Gsv5(§),

where M, s(z) and G are suitable operators defined by means of billiard trajectories issued from
appropriate unstable or stable manifolds, while 75(§) is a function related to the boundary data
m(x,s; k) = e~5?(@) . The precise definitions with some small but essential differences? are given
in Sect. 3.

The crucial step in this direction is Theorem 3 in Sects. 3-4 below which provides an estimate

of the form
HLisf_,_g n,s(2)Gs0s(§) — Unt2,4(z, 331‘?)“01’( < Cp(s,,h)(0 +ca)”, Vp EN, Vn €N,

where a = sp—Re(s) and ¢ > 0,0 < § < 1, C), > 0 are global constants. The assumption concerning
the Dolgopyat type estimates (3.3) of L, is not required for the proof of Theorem 3. A statement
similar to part (a) of Theorem 3 (corresponding to p = 0) was announced by Ikawa in [I5], however
as far as we know no proof has ever been published. The proof of Theorem 3 is long and technical,
however we consider it in detail since it is of fundamental importance for the considerations later
on. It is essential to notice that the link between U, 2 ; and the iterations of the Ruelle operator
L ; g s crucial and allows us to find suitable estimates and deduce the convergence of wo j(x, s; k).
This could be considered as a mathematical interpretation of the interaction between the terms
with complex phases in U, 12 ;. Sect. 3 contains the proof of Theorem 3 in the case p = 0, while
Sect. 4 deals with p > 1.

In Sect. 5 we obtain estimates for wo ;(x,s;k) applying Theorem 3. The convergence of
wo;(z, s; k) is reduced to the convergence of the series > o7 Lﬁsﬁng(m)gs@s(g). Here the
Dolgopyat type estimates (3.3) for the iterations Lis Fid play a crucial role and we can justify
the analyticity of wo ;(x,s;k) for Re(s) > o9 with o9 < sg. The estimates of wy ;(x,s;k) for
oo < Re(s) < sp are different from those in the domain of absolute convergence Re(s) > so.

In Sect. 6 we construct outgoing parametrix P, Py, P, respectively for the hyperbolic, glancing
and elliptic sets of T*(I';) related to a fixed strictly convex obstacle K;. We set Sj(s) = P,+P;+ P,
and define the first approximation

Ko

VO (2 s:k) = (8(shwo, ) (@, sik).w €

j=1
which is an analytic function for s € Dy = {s € C: o9 < Re(s) < 1, [Im(s)| > J > 2}. Here
the estimates for U2 j(z, s;k) obtained in Sect. 5 are crucial for the convergence of the series
S;j(s)wo,j. Next, we need to examine the leading terms of the traces of V© on Ty, ¢+ j, and for this
purpose we use a microlocal analysis based on the frequency set introduced in [GS] and [G] as well
as a global construction of asymptotic solution with oscillatory boundary data e*iwi(x)b(:v, s;k)
with frequency set in the hyperbolic domain given by Ikawa [I3]. Thus, we show that V(O (z, s; k)
satisfies the conditions:

(A, — SQ)V(O)(JJ, s;k) =0,z € EZ, s € Dy,

VO (2, 5: k) € L2() for Re(s) > 0
VO (x,s;k) = m(z,s;k) + s 'Ry(z,sk)onT, s € Dy,

°In fact, it is difficult to see how the original definitions of the operators M, s and Gs in [I5] would work without
the changes we have made in Sect. 3 below.
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with estimates
IRy (, 5 k)l co(ry < Cp(s + ik)PH2[s[PHNF9/240 0 < gy < 1, ¥p € N,

where (z) = (1 + |z|). The main point here is that R;(x,s; k) is analytic for s € Dy. Finite higher
order approximations V(j)(az, s;k), j=0,...,M — 1, are examined in Sect. 7, and we show that

M-1
Z VO (2, s:k) = m(x,s; k) + s MQu(x,s:k), 2 €T, s € Dy,
5=0

with estimates
19 (z, 53 k)| cory < OV (s +ik) M) | s € Dy,

where N(M) > M depends on M and L(M) — oo as M — oo and Qp(z, s; k) is analytic for
s € Dy. The situation here is quite different from the absolutely convergent case treated in [I3], [B],
where we have N(M) = 0 for Re(s) > sp +d > so. We need a finite number M —1 > (N — 3)/2
of higher order approximations, so we fix M and, applying a version of the three lines theorem, we
choose o1 < sg close to sg so that for

se{seC: o1 <Re(s) <sp+ec [Im(s)| > J,|s+ik| < |oo| + ¢}, so+c>1

we get an estimate
Q@ (@, s; k)| cory < Buk®

with 0 < a < M — % The final step of our argument is in Sect. 8, where we solve an integral
equation on the boundary I'. To do this, we invert in L?(T") an operator I + Q(s; k) and we apply
the last estimate to show that Q(s;k) has a small L?(T") norm for k > k.

Depending on how much details the reader is prepared to see in trying to understand the proof
of our main result, we would suggest three different ways to proceed. The first (shortest) one is
to start by reading Sect. 2 and only the beginning of Sect. 3 concerning the definitions of u;(z, s)
and the statement of Theorem 3, however omitting the proof of this theorem in Sects. 3-4. Then
one should read the definition of wy ;(z, s) in Sect. 5, and skipping the proof of the estimates (5.8)
of wp; in Sect. 5, one could go directly to the constructions in Sect. 6, followed by Sects. 7 and
8. The arguments in Sect. 6-8 use only the estimates (5.8) and some geometrical facts from Sect.
2 and Appendix B, so the reader should be able to understand the proof of Theorem 2 in Sect. 8
modulo the omitted technical details. The second way to proceed is to read Sect. 2 and then to
follow the dynamical proofs in Sect. 3, assuming the estimate (3.3). One could then proceed as
above up to Sect. 8. In this way at a first reading Sect. 4 could be skipped, if the reader is not
interested in the details of the estimates of the derivatives of Uy42 ;. Finally, the third (complete)
way is to read Sect. 2 and then Appendix A and Appendix C in order to understand the estimates
(3.3) and the restrictions on the class of functions for which we have Dolgopyat type estimates
based on [St4] and [PS2]. Then one could proceed as in the second way.

Acknowledgement. The authors are very grateful to the referees for their thorough and careful
reading of the paper. Their remarks and suggestions lead to a significant improvement of the first
version of this paper.
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2. PRELIMINARIES

This section contains some basic facts about the dynamics of the billiard flow in the exterior
of K. Our main reference is [I3]; see also [B] and [PS1]. The notation follows mainly [I3].

Throughout the whole paper we use the notation ¢ and C' to denote positive global constants
depending only on K. These constants might be different in different expressions. Notation of the
form C), ¢, will be used to denote global constants that depend on K and possibly the number p.

Here and in the rest of the paper we assume that K is as in Sect. 1. Denote by A the kg X K¢
matrix with entries A(,j) =1 if i # j and A(4,7) = 0 for all 4, and set

EA = {("'777—7717--'777—1a7707771a"-777m7"') 1< Ui < R0, 1j GN, Ui 7£"7j+1 for all .7 € Z} ;
EZ ={(Mo,m,---sMm,-..) 1 1 <mj < ko, pj €N, 1 #njq1 forall j >0},
Ya={C.n=ms--sm—1,m0) : 1 <mj < ko, m; €N, nj_1 #n; forall j <0} .

Let pry : S*(Q) = Qx SV~ — Q and pry : S*(2) — SV~! be the natural projections. Introduce
the shift operator o : ¥4 — X4 and 0 : X§ — X7 by (0(€)); = &1, 1 € Z, £ € T4 and
(O’(é))l = €i+1, 1€ N, f S Ej;

Fix a large ball By containing K in its interior. For any x € I' = 0K we will denote by v(x)
the outward unit normal to I' at x.

For any 6 > 0 and V' C € denote by S5 (V) the set of those (z,u) € S*(€2) such that € V' and

there exist y € I' and ¢ > 0 with y +tu =z, y + su € RV \ K for all s € (0,t) and (u,v(y)) > 6.
The condition (H) implies the following (see Lemma 3.1 in [I3])

Lemma 1. There exist constants dg > 0 and dg > 0 such that for alli,j5 =1,..., Ko, if a ray issued
from x € T'; with direction u hits I'; at a point y € T'j such that (u,v(y)) > —do, then the forward
ray issued from (y,v) with v =u — 2{u,v(y))v(y) does not meet a dy neighborhood of Ups; K.

That is, there exists a constant ¢’ > 0 such that if for some (y,v) € S*(Q2) with y € T', both its
forward and backward billiard trajectories have common points with T', then ¢’ < (v, v(y)).

Let zo = (xo,up) € S*(2). Denote by X1(20), X2(20),- -, Xm(20),... the successive reflection
points (if any) of the forward trajectory v4(zo0) = {pri(é(20)) : 0 < t} . If v4(20) is bounded (i.e.
it has infinitely many reflection points), we will say that it has a forward itinerary n = (n1,n2,...)
(or that it follows the configuration 1) if X;(20) € 0K, for all j > 1. Similarly, we will denote
by v-(z0) the backward trajectory determined by zp and by ..., X_,,(20),..., X_-1(20), Xo(20) its
backward reflection points (if any). For any j € Z for which X;(29) exists denote by Z;(z9) the
direction of (z0) = 7 (20) U4 (20) at X;(z0) = pri(én,(20)), ie. Z5(z0) = iy, pra(cu(z0)).
Thus, ¢¢;(20) = (X;(20),Z;(20)). A finite string j = (jo, j1,72, - - -, Jm) of numbers j; = 1,2,..., ko
will be called an admissible configuration (of length |j| = m+1) if j; # ji41 foralli =0,1,...,m—1.
We will say that a billiard trajectory v with successive reflection points g, x1, ..., T, follows the
configuration j if x; € I';, for all i = 0,1,...,m.

A phase function on an open set U in RY is a smooth (C*°) function ¢ : i/ — R such that
IVl = 1 everywhere in U. For = € U the level surface

Co(z) ={y €U : o(y) = o(x)}
has a unit normal field £V(y).

Remark 1. It should be mentioned that in Sects. 2-4 the C'*° smoothness assumption can be
replaced by CF for any k > 1.
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Definition 1. The phase function ¢ defined on U is said to satisfy the condition (P) on V if:

(i) the normal curvatures of Cy, with respect to the normal field —V ¢ are non-negative at every
point of Cy;

(i) UT(p) = {y +tVp(y) : t > 0,y €UNV} D Uiy, K.

A natural extension of ¢ on U™ (p) is obtained by setting ¢(y + tVe(y)) = ¢(y) +t for t > 0
andy e NV.

Given a phase function ¢ satisfying (P) on I'; and i # j, denote by U;(p) the set of all points
x of the form x = X1(y,Ve(y)) + tZ1(y, Ve(y)), where y € U NT; and ¢t > 0 are such that
Xl(y, ch(y)) S Fi,(j)a where

Lig) = {xely: (v(z),(y—2)/|ly—z|) > d forall yely}.

Then setting p;(z) = ¢(X1(y, Ve(y))) + t, one gets a phase function ¢; satisfying the Condition
(P) on I'; ([I3]). The operator sending ¢ to ¢; is denoted by <I>§-, ie. (I>§-(<p) = ;.

Given an admissible configuration j = (jo,J1,...,Jm) and a phase function ¢ satisfying the
Condition (P) on I'j,, define

Jos

=@im o pim! o...q)ﬁ o@?é (p) .

Jm—1 Jm—2

Notice that for any z in the domain Uf(¢) of ¢; there exists (x,u) € S%(I'j,) such that 2 € ¢ and
v (z, u) follows the configuration j, i.e. it has at least m reflection pomts and Xi(z,u) € I';, for all
i=1,...,m,and z = X;,,(z,u) + t Z,,(z,u) for some ¢t > 0. Denote

Xt (2,95) = Xmn—e(z,u) , 0<L<m.

Several well-known facts about the dynamics of the billiard in €2, phase functions and related
objects will be frequently used throughout the paper and for convenience of the reader we state
them here.

The following is a consequence of the hyperbolicity of the billiard flow in the exterior of K and
can be derived from the works of Sinai on general dispersing billiards ([Sil], [Si2]) and from Ikawa’s
papers on open billiards ([I3]; see also [B]). In this particular form it can be found in [Sj] (see also
Ch. 10 in [PS1]).

Proposition 1. There exist global constants C > 0 and a € (0,1) such that for any admissible

configuration j = (Jo, ji,---,Jm) and any two billiard trajectories in Q with successive reflection
POINLS T, L1y - - -y T GNA Yo, Y1, - - - Ym, bOth following the configuration j, we have
lzi —w]| <C (' +a™ % |, 0<i<m.

Moreover, C and o can be chosen so that if there exists a phase function o satisfying the condition
(P) on some open set U containing xo and yo and such that Vip(zg) = (1 — z0)/[|71 — 20| and
Veo(yo) = (y1r — vo)/llyr — woll, then ||z —yil| < Ca™™ for 0 <i<m.

0z, aaN , and for
any C! vector field f : U — RY (U Cc RY) and any V C U set | f|o(V) = sup,ey || f(2)| and
lfllo = |l fllo(U). Assuming f has continuous derivatives of all orders < p (p > 1), set

1fllp(2) = (Do) - Do H@ 5 1V )=§1€15||f|!p() £l = 1 £12(U)

a(D) a() SN-1

77777

Next, given a vector a = (ay,...,ay) € RV, denote Dy = a1 — + ... + ax
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11l () = max [|f[lj(x) , [fllEV) Zilel‘gllf!\(p)(w) » Ml = 1l @) -

0<j<p
Similarly, for x € I and V C I set

1fllep(z) = - max — [(Deo - Do H) @I 1fIrp(V) = sup [ fllep(@) s [1fllre = [ flrp @)
a® ... alPes,T zeV

where S,I' is the unit sphere in the tangent plane T,I" to I' at x. Finally, set
1f Iy (%) = Jnax [Alleg(x) 5 [ lem (V) = sup 1y (=) IS

r,p) = I fllr,(U) -

Remark 2. It follows easily from the definitions that for any § > 0 and any integer p > 1 there
exists a constant A, = A, (4, K) > such that if ¢ is a phase function which is at least CP+l.smooth
on some subset V of Q and x € V NT with (z, Vy(z)) € S5(V), then ||[Vo[,(x) < Ay VY[ p(2)

The following comprises Proposition 5.4 in [I1], Propositions 3.11 and 3.12 in [I3] and Lemma
4.1 in [I2] (see also the proof of the estimate (3.64) in [B]).

Proposition 2. For every integer p > 1 there exist global constants C, > 0 and o € (0,1) such that
for any admissible configuration j = (jo, J1,---,Jm) and any phase functions ¢ and ¢ satisfying the
Condition (P) on T'j, on some open set U, we have

IVeslln(z) < Cp Vel (U N Bo) (2.1)
for any x € Uj(p) N By, and
Vs = Villp(z) < Cp o™ [V = Vo[l (U N Bo) (2.2)
X7, Viy) = X700 V) inp() < Cp o™ [V = Vbl ) (U 1 Bo) (23)
for any x € Us(p) NU;(¢p) N By and 0 < £ < m. Finally, we can choose C, > 0 so that
X, Vi)llrp(x) < Cp af (2.4)

for all x € Us(¢p) N By and 0 < £ < m.

Given z in the domain U of a phase function ¢, denote
G 1/(N-1)
A@(x) = ( _(T(x> ) )

where Gy (y) is the Gauss curvature of Cy(y) at y. It follows from [I3] (or [B]) that there exist
global constants 0 < a1 < a < 1 such that

0<ar <Ayy) <ax<l (2.5)

for any phase function ¢ and any y € U(yp).
Now for any j = (jo = 1,/1,-..,Jm) and any x € U;(yp), slightly changing a definition from [I3],
set
(A5(p) h) () = Ay () (X (2, Vi) ,

where

A@,j ($) = ASD(jl Jm) ($) ASD(jl Jm—1) (Xil(xa VSOJ)) T A@(Xim(J% VQOJ)) € (07 1) .

..........

The following facts can be derived from [I1], [I3] (see also Proposition 5.1 in [B]).
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Proposition 3. For every integer p > 1 there exists a global constant Cp, > 0 such that for any
admissible configuration j = (jo, ji,--.,Jm) and any phase function ¢ satisfying the Condition (P)
on T'j, on some open set U, we have ||A,jl|p(7) < Cp ||Vl ) (U N By) for x € Us(p) N By -

3. RUELLE OPERATOR AND ASYMPTOTIC SOLUTIONS

Given £ € X4, let ..., P_o(§), P_1(£), Py(&), P1(§), P2(&), ... be the successive reflection points
of the unique billiard trajectory in the exterior of K such that P;(§) € K¢, for all j € Z. Set

f(&) =1IPo(&) = (9]l -

Following [I3] (see also Appendix A), one constructs a sequence {(¢ ;}32 ., of phase functions such
that for each j, ¢ ; is defined and smooth in a neighborhood Ug ; of the segment [P;(§), Pj11(€)]
in © and:

(i) Vel =1 on Ug j and Vg ; satisfies the part (i) of condition (P) on Ug j;

B _ Pia(§) - B
(i) Ve ;(P;(€)) = ||-P]il(£) - PO’

(iii) pe,j = pej+1 on Ley MU N Ug i

(iv) for each = € Ug; the surface C¢ j(x) = {y € Ug;j : @ej(y) = e j(x)} is strictly convex
with respect to its normal field Vg ;.

More precisely, one can proceed as follows. Given § € ¥4, let £~ = (...,&-2,£-1,&) and let
Ye- be the phase function with e (Py) = 0 and Vie- (Py) = (P1 — Po)/||[P1 — Po|| constructed
in Proposition 4(a) in Appendix A. Set ¢ = Y- and ¢ j = (Ve-)(go.c.,...¢;) for any j > 0. For

§ <0, setting €U) = (..., & 2,&_1,;) and using again Proposition 4, we get a phase function
1/}5(]') with /l/)g(j)(Pj) = 0 and ng(j)(Pj) = (I:)j_;,_l — Pj)/HPj-H — ]DJH By the uniqueness of the
phase functions 1, (see Proposition 4(c)), it follows that there exists a constant ¢; such that
Y- = (wg(j) + Cj)(§j7€j+1,---7§0) (locally near the segment [P, P1]). Setting ¢¢; = Ve + ¢j, one
obtains a phase function defined on some naturally determined (see the proof of Proposition 4 (a)
in Appendix A) open set U ; such that

(‘Pf,j)(ﬁjéﬂl,---7671,50) = wi‘? J<0. (3.1)

This completes the construction of the phase functions g ;.
Moreover, it follows from Proposition 2 that for any p > 1 there exists a global constant C}, > 0
such that

IVee,llp) < Cp (3.2)

forall £ € ¥4 and j € Z.

Remark 3. Notice that the above construction can be carried out for j < 0 for any £ € ¥, and
any billiard trajectory 7 in Q with reflection points ..., P_2(&), P-1(£), Po(€) such that P;(§) € K¢,
for all j < 0. Then one defines a phase function v~ with 1¢- (Pp) = 0 as above, and using (3.1) one
gets a sequence {p¢ ;};<o of phase functions such that for each j < 0, ¢¢ ; is defined and smooth
in a neighborhood Ug ; of the segment [P;(§), Pj+1(£)] in € and satisfies the conditions (i)-(iv).
Moreover (3.2) holds for any p > 1 and any j < 0.
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For any y € Ug ; denote by G¢ ;(y) the Gauss curvature of C¢ j(x) at y. Now define g : ¥4 — R
by
1 Ge1(P1(§))
9(&) = log :
N -1 7 Geo(Po())
Clearly, g(§) = log Ay, , (P1(§)), where A, is the function introduced in Sect. 2.
Given a function F' : ¥4 — C and an integer n > 0, set

var, F = sup{|F(§) — F(n)| : & =n; for |i] < n},

and for 0 < 0 < 1 we define ||F||g = sup, Y=L |||F||lg = ||F|lo + ||F|lp and introduce the space
Fo(X4) = {F : |[|F|l|lop < oo}. Clearly F»p(X4) is the space of all Lipschitz functions with respect
to the metric dy on 34 defined by dg(§,&) = 0 and dy(&,n) = 0™, where n > 0 is the least integer
with & =n; for |i| < n.

It follows from Proposition 1 that f,g € F,(X4). By Sinai’s Lemma (see e.g. [PP]), there exist
f.ge F./z(¥4) depending on future coordinates only and x1, x2 € F,/5(2X4) such that

FE =FEO +x1(6) —x1(08)  9(6) = 3(8) + x2(6) — x2(0€), £ € T .
As in the proof of Sinai’s Lemma, for any k: = 1,...,Kkg choose and fix an arbitrary sequence
k) = (... ,n(k)n, ..,n(_kl),n((]k)) € ¥, with 17 75 k. Then for any £ € ¥4 (or € € Z+) set

6(5):(777(—6227777(1 7770 §07£17"'7§m7"-) 62A~

Then we have

x1(€) = Y If(a™(€) = fa"e(€))]

n=0
and the function yo is defined similarly, replacing f by g.
Setting x(&,s) = —sx1(§) + x2(&), for the function R({,s) = —s f(&) + g(&) + im we have

R(§7 S) = ﬁ(fv S) +X(§7 S) _X(Ofv 8) for § S EAv s € (C7 where E(fv S) ==S f(g) +§(§) +im depends
on future coordinates of £ only (so it can be regarded as a function on ZX x C). Below we need
the Ruelle transfer operator Ly : C(S}) — C(X7¥) defined by

&)= M uly)
on=¢§

for any continuous (complex-valued) function u on ¥ and any £ € X7 . Notice that

LMu(€) = Z e—sF(m+a(n),, (n) = (—1)" Lﬁsﬁgu(g) ., n>0,
on=¢§

hence ||L? || = HL_str H Set Ly = L_ifi5
Define the map ® : ¥4 — Agx = AN S}, () by

(&) = (Po(&), (P1(§) — Po(€))/1P1(&) — Po()]l) -

Then @ is a bijection such that ® o 0 = B o ®, where B : Agg — Ak is the billiard ball map. It
is well-known (and relatively easy to see) that there exist global constants 0 < o/ <a <1, C >0
and ¢ > 0 (« is actually the constant from Proposition 1) such that

dor (§,0) < dist(®(8), ®(n)) < Cda(&,n) , EneXa,
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where dist is the Euclidean distance in S*(Q) € RY x S¥=1. Thus, if h : Agx — C is Lipschitz,
then ho ® € F,(X4), and if v € Fr(X4), then v o ®~! is a Lipschitz function on Agg.

Let m: X4 — EX be the natural projection. Notice that for any function v : Ej — C the
function vor : ¥4 — C depends on future coordinates only, so (vom)o®~! : Agg — C is constant
on local stable manifolds. Conversely, if h : Agg — C is constant on local stable manifolds, then
v=ho®:3%,4 — C depends on future coordinates only, so it can be regarded as a function on
>h. For any (p,u) € S*(Q) sufficiently close to A, let w(p,u) € S5, (92) be the backward shift of
(p,u) along the flow to the first point at the boundary. That is, w(p,u) = (q,u) € S5, (£2), where
p=q+tuand (p,u) = ¢:(q,u) for some some ¢ > 0 and (u,v(q)) > 0. Thus, w: Vo — S5, (2) is
a smooth map defined on an open subset Vj of S*(£2) containing A.

Denote by nglp(AaK) the space of Lipschitz functions h : Aggr — C such that how is constant
on any local stable manifold W (z) of the flow ¢; contained in the interior of Vg \ 57, (€2). For
such h let Lip(h) denote the Lipschitz constant of h, and for ¢t € R, [t| > 1, define

Lip(h)
It

12llLip,e = 1Allo + [Allo = sup |h(z)] .

rEAsK

To estimate the norm of L?, we will apply Dolgopyat type estimates ([D]) established in the

case of open billiard flows in [St2] for N = 2 and in [St4] for N > 3 under certain assumptions (see
Appendix C below). It follows from these results that there exist constants oy < sp, top > 1 and
0 < p < 1sothat for s = 7+it with 7 > 09, [t| > tp and n = p[log |t|]+1,p € N, 0 <1 < [log|t|] — 1,

for any function v € C(X7) of the form v = h o ® for some h € nglp(AaK) we have
|Z5vlloe < CoPoB T CmT0) , (3.3)
Here Pr (F') denotes the topological pressure of F' defined by
Pr(F) = sup [hy(o)+ / Fdy],
HEM s 21{

where M, is the set of all probability measures on EX invariant with respect to o and h, (o) is the
measure-theoretic entropy of o with respect to .

The abscissa of absolute convergence sy introduced in Sect. 1 is determined by the equality
Pr(—sof + g) = 0. Thus,

h,,(a)—so/fdu—i—/gdugo , YweM,.

Let vy be the equilibrium state of g such that Pr (g) = hy,(0) + [ gdvy. Then Pr (g) < so [ fdv,.
Next, let vg € M, be the equilibrium state of —sgf + g with

hy (o) — 8()/de() +/gd1/0 =0.
This yields sg [ f dvg = hyy(0) + [ gdry < Pr (g). Consequently,

Prig) .. o Prl)
f f dl/g f f dl/()
and we deduce that sg < 0 if only if Pr (g) < 0.
We will deal with oscillatory data on I'; (which can be replaced by any I';) of the form

uy(z,s) =e*?@pz) | zel,seC,o0<Re(s)<1.
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Here ¢ is a C*° phase function defined on some open subset U = U(p) and satisfying the condition
(P) on I'; (see Sect. 2 above) and h is a C*°(I") function with small support on I'y. In fact, using
a C™ extension, we may assume that h is a C™ function on RY, so in particular h is C™ on U, as
well. For every configuration j = (jo,j1,---,7Jm), jo = 1, |j| = m + 1, we can construct a function
uj(x, s) following a recurrent procedure (see [I5]). We construct a sequence of phase functions yj(x)
and amplitudes a;(z) and define

uj(w, s) = (=) tem A g (z) .

For the configurations j and j’ = (jo,Jj1,-- - Jm,Jm+1) we have uj (z,s) = wi(x,s) on I'y and
uj(x,s) +uy(z,s) =0on Ty . .

The phase functions ¢; and their domains U;(p) are determined following the procedure in
Section 2. In particular, each j satisfies the condition (P) on I'j,,, so it follows from the definition
of the condition (P) (see (ii) there) that I'; C U;(¢p) for every i = 1,..., Ko, i # jm. The amplitudes

aj(x) are determined on U;(p) as the solutions of the transport equations
2<V(pj, Vaj> + (Agoj)aj =0.

More precisely, using the notations of Sect. 2 (see also Sect. 4 in [I3] and Sect. 4.1 in [I5]), we will
assume that a;(z) has the form

aj(z) = (Aj(p)h)(z) , =z €Ujly). (3.4)

Next, let = (o = 1,p11,...) € 4. It follows from [I3] that there exists a unique point
y(pn) € I'y such that the ray v(y, ¢) issued from a point y(u) in direction Vi (y(u)) follows the
configuration p. Let Qo(n) = y(u), Q1(w),. .., be the consecutive reflection points of this ray.

Define
A P . Gi,i(QiH(M))
£ () =1Qi(w) = Qena(wll 97" (1) = 77— log 7 Qi)

where G:f ,(y) denotes the Gauss curvature of the surface

<0,

C;f,i($) ={z € Z/{(MO#L---JM)(SD) : SO(MOava--wMi)(z) = 90(#071117---,%)(33)}
at y. As for g(€), the function g;" (1) can be expressed by means of the function A, introduced in

.....

Using the points Q;(u) constructed above, define & € Fy(X%) by
93(€) = e~ AXE Qo (£))

if £ = 1 and 95(§) = 0 otherwise. Here the function h comes from the boundary data u(z, s).
Next, for s € C and ¢ € ¥ with & = 1, following [I5], set

[e.9]

¢T(Es) =D (=sf(a"e(€)) = [ ()] + [9(0™e(€)) = g (€)]) - (3.5)

n=0

Formally, define ¢ (£, s) = 0 when & # 1, thus obtaining a function ¢ : ¥ x C — C.
Now for any s € C define the operator G, : C(X}) — C(T}) by

(Gu)(©) = D e I ) weC(S]), £€ X
on=¢
(Although similar, this is different from the corresponding definition in [I5].)
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Fix an arbitrary ¢/ = 1,...,kp and an arbitrary point zg € I'y. Define the function
¢ (zo;+,+) + ¥4 x C — C (depending on ¢ as well) as follows. First, set ¢~ (zg;n,s) = 0 if
no # ¢. Next, assume that n € X4 satisfies 79 = ¢. There exists a unique billiard trajectory in
Q with successive reflection points Pi(zo:n) € 0K, (—oo < i < 0) such that zg = P_(zo:n) +
tVi,- ( 1(xo;m)) for some ¢ > 0. (See the beginning of this section and Appendix A for the
definition of 1, -.) Notice that in general the segment []5_1(370; 1), xo] may intersect the interior of
K,. Denote ﬁo(xo; n) = xg, and for any i < 0 set

1 o Gn,i(ﬁiﬂ(ﬂﬁo;n))_

I o) = WP (eoin) = Ploonll o (awin) = g loy =2 A
Then define
¢ (xo;m,8) = —s > [f(a'(m) = f; (wo;m)] + Z —g; (zo;m)] -
i=—1 i=—1

We will show later that this series is absolutely convergent.
Next, define the operator M,, 5(z¢) : C(X}) — C(X}) (depending also on ¢) by

(M, s(zo)v Z o=@ (zoio"Hle(n),s)—x(o ”“6(77)75)—8f(77)+§(n)v(

on=¢

n)

for any v € C(X}), any 29 € T and any £ € ¥}.

Let so € R be the abscissa of absolute convergence of the dynamical zeta function (see Sect. 1)
determined by Pr(—sof + §) = 0.

The first part in the following theorem is similar to (4.10) in [I5]:

Theorem 3. There ezist global constants ¢ > 0, a > 0, 8 € (0,1) and Cp, > 0 for every integer
p > 0 such that for any choice of £ =1,... ko and xo € I'y the following hold:

(a) For all integers n > 1, all £ € 7 with & = ¢ and all s € C with Re(s) > so — a we have

(LgMn,s(x())gsﬁs) (5) - Z UJ(x(), 8)

Ij|:n+37jn+2:£
< Co(f+ca) eCo[Re(s) (1+llelr,0)+IIVellr, )] KM + HV‘»””R(D) [h|lro + ||h||l“,(1)} . (3.6)

(b) For alln > 1, all ¢ € £} with & = ¢ and all s € C with Re(s) > sp — a we have

(LEMips()Gs0s) (&) — Z uj('v s)

U|:n+37jn+2:€ I')p

P
< Cp(0+ca)” eCrllRe(s)] (1t llellr,0)+1IVellr, )] Z <|
=0

i+1
i+ 19l ) " hlirp-i (3.7)

In this section we deal with part (a). The proof of part (b) is given in Section 4 below.
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Proof of Theorem 3(a). Fix ¢, xg € Iy and & € X with £ = ¢. Then for any s € C and n > 1,
using Sect. 4.1 in [I5], setting j = (1, j1,72,- - -, Jjn+1,£), We get

. + . + s
U1 ojmas £)(T0, 8) = (—1)"+2 o~ [P(QoW)+ 15 (z0:i)+ i1 (wo3)] a;j(xo) (3.8)

where f; (z0;j) = [|Qi(z0;§) — Qit1(z0;j)|l (i = 0,1,...,n + 1), Qi(x0;j) being the reflection
points of the billiard trajectory issued from a point y € I'y in direction V(y) which follows
the configuration j for its first n + 1 reflections and is such that Q,y2(zo;j) = . Notice that
the segment [Qn11(0;]j), z0] may intersect® the interior of K,. Then there is exactly one such
trajectory. Given a function F(§) : ZX — C, introduce the notation

Fo(§) = F(§) + F(0(§)) + .. + F(a"1(€))-
We have
(LiMys(20)GsBs) (€)= (1) D e s+t (M, ((20)Gsts) (1)
onn=¢§
= (-1)" Z e~ 5Fn (M) +gn(n) Z e~ 9 (o0 1e(),5)—x(o™ 1 e(€),5)—sf(O)+3(C)
onn=¢ ol=n
% Z e~ 0T (s)tx(e(w).)=sF 1) +a(w) (1))
opu=(¢
= (=1)" Z o~ 8fnt2 (1) +gn+2 (1) g7 (n+2) (20 s 8) (3.9)
Un+2ﬂzf7MO:1
where the function
W("+2)(930; o) = Wl(jz+2)(1:0; o) Ej xC—C
is defined by W2 (z0; 1, s) = 0 when pig # 1 or pin42 # £ and
W2 (g0: 1, 5) = e~ ¢ @ose™ T he(on).s)=x(0" T e(op),8) =0T (wos) +x(e(w).5) =5 2(Qo(w) (Qy(n))  (3.10)

whenever pp = 1 and pip4+2 = £. It follows from (3.9) that

(L2 Moo (20)G55:] (€) = (=1)" [L72 (WO (s, 5)) | (£) (3.11)
Clearly, in (3.9) the summation is over sequences
n= (le)an s 7jn+1,€7 gl?&?a e ) = (j?g) ) (312)

with Hn+2 = gu Wherej = (17j17j27 s )jn-‘rl?g)'
Write for convenience

W (n+2) (o5 1, 8) = eZ(@oiks) o=sp(Qo(n)) h(Qo(p)) , (3.13)

where
2(woy . 8) = =0 (w03 0" e(op),s) — x(0" e(op), s) — ¢7 (1, 5) + x(e(n), s) - (3.14)
3In fact one can define the functions fiT(z0;3) (i=0,1,...,n+1) and therefore u;(zo, s) for any zo € Uj() in a

similar way. Just consider the (unique) billiard trajectory issued from a point y = Qo(zo;j) € I'1 in direction V(y)
following the configuration j for its first n + 1 reflections and such that if v is the reflected direction of the trajectory
at Qn+1(20;j), then zo = Qn41(xo,j) + tv for some ¢t > 0.
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It follows from Propositions 1 and 2 that there exist global constants C' > 0 and « € (0, 1) such
that

[f(e™e(€)) = fa(§) <Ca™ , g(a"e(§)) — gu ()] < ClIVellr,a) @
for all £ € ¥ 4 and all integers n > 1, so by (3.5),
n+1

¢"(m,s) = (sl + IVellr,) +Z w) = fi (W] + lg(a'e(w) — g (w)]) -

Thus, using the definitions of f, § and x and the fact that x(c""2e(u),s) = x(c"e(ou),s) +
|s| O(a™), we get
=slfg () + A7) + -+ Lo (W] + oo (1) + 97 () + -+ ng(M)]
= (1)) O(a™) = ¢ (. 5) — s[f(e(n) + floe(n) + ...+ f(o" e(n)]
+g(e(w) + gloe(w) + ... + g(a"e(w)]
= (sl + 1V¢lr,m) O@™) = ¢ (1, 8) = sfas2(p) + Gns2() + x(e(p), s) = x(a" e(op), s) .

Now, fix for a moment n > 1 and x as in (3.12), and set = 0" 'e(o(1)). Then we have

n= U”He(a(u)) = (o ok U, 12y e e ey 15 g2 = £y i3y - - ) (3.15)
and as for ¢ one gets

—n—1 —n—1

¢~ (20, 8) = (Is| + IVellr,0) O(@™) =5 Y [f(0"n) = f; (wosm)] + Y lo(o'n) — g; (wosm)] -

i=—1 i=—1

From these estimates and (3.14) one derives that

n+1 n+1
2xo; 1, 8) = sfura() = Gnra(p) — ¢~ (zoim,8) —s D i (1) + Zgl r,(1)) Oa")
i=0
= Sfara(pt) — Gnr2(p) — sc(xo; p) + d(zo; ) + (|s] + HVSDHF,(l)) (™), (3.16)
where
n+1 n+1 —n—1 n+1
c(wo; ) = = Y _[f(o'm)—f; (woim Jer+ ,d(zoip) == Y [a(o"n)—g; (woin +Z~%
i=0 i=—1
We will show that
n+1
xOv Zf+ .7](),_] < Ca" (317)
=0
and
!0t b (Qo(p)) — (Aj(@)h)(xO)‘ C (IVellr,ay lIplro + 12l q) 0" (3.18)
for some global constant C' > 0, where
6=+ae(,1).

There exists a unique ray (y, ¢) issued from a point y = y,(xo; ) € 'y in direction V(y),
following the configuration p for its first n + 1 reflections and such that if Q;(zo; ) (1 <i<n+1)
are its first n + 1 reflection points and v is the reflected direction of the trajectory at Qpn+1(xo;]j),
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then xg = Qn+1(xo,j) +tv for some t > 0. Set ©n+2 (zo; ) = xo. Notice that as before the segment
[Qn1(zo; 1), 20] may intersect the interior of Ky (or be tangent to I'y at ).

Before we continue, let us make a few simple (however essential) remarks concerning the se-
quences of points

Qo(p) €T =Ty, Q1(p) € Tpyse oo, Quyr(p) € Ty Qua(pt) €Ly =Ty (3.19)
Qo(zo; 1) € T1 = T, Q1 (20; 1) € Ty -+ Q1 (203 1) € Thays Qa2 (o; 1) € Ty (3.20)
Py ) ET, =Ty ..., Pa(n) €Ty =T .. Po(y) €Ty =T, ., =Tp,..., (3.21)
o By (@i €Dy =Turyo o Poy(wo;p) €0y =Ty Po(zo;m) € Ty = Ty :(;?2'2)

It is clear that the sequences (3.19) and (3.20) ’start’ from the same convex level surface ¢ = c,
therefore by Proposition 1 there exist constants C' > 0 and « € (0, 1) such that

1Qi(p) — Qi(zo; )| < C ™" | 0<i<n+2. (3.23)

(Notice that Qn2(z0; 1) = 2o € Ty, 50 [|Qn2(pt) — Qnya(wo; p)|| < diam(K) < C.) Similarly, the
right ends of sequences (3.21) and (3.22) determine points on the same unstable manifold of the
billiard flow ¢;, so by Proposition 1 these sequences ‘converge backwards’, i.e.

|Pi(n) = Pi(zoim)| < Call i <0, (3.24)

On the other hand, notice that the sequences (3.19) and (3.21) continue indefinitely to the right
following the same patterns. Thus, these sequences ‘converge forwards’. More precisely, using
Proposition 1 again, we have

1Qi(p) — Picn—a()| <Ca’ , 1< (3.25)

Similarly, the sequences (3.20) and (3.22) ‘converge forwards’ to @n+2(:cg;u) = ]30(3:0;7)) = 1y,
namely

1Qi(w0; 1) — Piona(aoin)| < Ca’ , 1<i<n+2. (3.26)
It now follows from (3.2) and (3.24) that,
1 Ghi(Pit1(n)) 1 Gri(Pi1(z0;m))

< Call (3.27)

log — log =
N -1 Gni(Pi(n)) N-1 Gr,i(Pi(zo;m))
for all ¢ < 0. In particular, the second series in (3.5) is absolutely convergent, and by (3.27) and
Proposition 3, |d(xo; u)| < C for some global constant C' > 0.
Next, setting

l9(a"(m) — g; (wo;m)| =

1 Gi,i(@i—i—l(x(];ﬂ))) (3.28)

ai(zo; p) = —— log ( =
N-1 G (Qi(wo; 1))
and using (3.23) and Proposition 2, one gets
. G¥ Qi1 (z0; 1)) " log Gl Qi1 (p))
G? (Qiwo; ) G7 (Qi(p))
C 19l oy (1Qi(w0s 1) — Qe + 1@ (i ) — Qi ()])
CIVellr ) a7 (3.29)

1
N -1

|ai(zo; 1) — g7 ()| =

IA A

foralle=0,1,...,n+ 2.
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Next, notice that by construction ¢y, ; = (¥5n,-n—2) (u1,....uns040)
by (2.2), (3.2) and (3.25), for all —n — 1 < ¢ < —1 we have

+cfor —n—1<17< —1. Thus,

) — (el _ 1 1 G} ni2ri(@niztiti(p)) ] Gr,i(Piga(n))
|9n+2+z(ﬂ) g(o'n)| N_1 og Gin+2+z(Qn+2+i(M)) og G ( )

S C (”vgp(ul?'“?”n-‘r2+i) - V((,On’ n— 2)(/“ ~~~~~ /J‘n+2+z)||F (1)
+Qnt2tit1() = Pl + |Qnr2+i(1)) — Pi(m)|)
ClIVe = V(pn—n-2)lr,q) @ QI O gt

<
< ClVelp,m ™. (3.30)
In a similar way (3.26) implies
|an+2+i(zo; 1) — g5 (o3 n)| < Cl[Vellra) I R (3.31)

To prove (3.18), notice that (A;j(p)h)(xo) = Ay j(z0) h(Qo(xo; 1)) . The definition of A, and
@na(o; 1) = wo give

n+1

log Ay j(w0) = log Ay i (Qnaa(wos ) = Y ai(xo; 1) - (3.32)
=0

Next, assume for simplicity that n is odd (the other case is similar), and set m = (n + 1)/2.
Using (3.27) — (3.31), we get

n+1 —n—1 n+1
log Ay j(zo) — d(zo; ) = Y ai(zoip) + Y [g(o™n) — g7 (zosn Zgl
i=0 i=—1
—n—1 A m
= > lglo'n) =g (wosm)) + Y [ai(xo; 1) — g ()]
t=—m—1 1=0
n+1
+ Z [&i(ﬂfo; — Gi_p_o(x0in + Z 9;[+2+1‘(M)]
1=m+1 1=—1
= 0@ IVellr,a) = 00" [Velr,q) - (3.33)
Since by (3.23),
[(Qo(zo; 1) — R(Qo(w))| = [[hllra Oa™), (3.34)

the above gives

I1(Qo()
+A4(a0) [ (Qo()) = h(@olaoi )|

< emax{d(zo;u)log Ay j(z0)}
|d(z0; 1) — log Ay j(xo)| [|llr,0 + ||, 1) O(a™)
C (IVellr,ay Ikllro + [Allr,qy) @

ed(oin) W Qo(p)) — (Aj(go)h)(xo)‘ < )ed(mo;u) clog Ay j(wo)

IN

which proves (3.18).



ANALYTIC CONTINUATION OF THE RESOLVENT 21
Similarly to (3.27) one gets |f(o?(n)) — f; (w0;n)| < Call | and also

i (1) = £ (2o: )] = [1Qi(1) = Qisr ()] = 1Qi(0;§) — Qusa(wos )l < Ca”F27

Combining these two estimates yields (3.17).

Next, using the notation from the beginning of this proof, notice that for any u as in (3.12)
we have Qi(z0;j) = Qs(wo;p) for all i = 0,1...,n + 2 and therefore fH(@os§) = 1Qi(zo; 1) —
Qir1(zo; p)|| for all i = 0,1,...,n+ 1. (This has been used already in the proof of (3.17).)

Define the function

W (o, ) = W (@0, ) : B x € — €
by W2 (20 1, 8) = 0 when pig # 1 0 finys # ¢ and
We+2) (z0: 1y 8) = o5 fn2(1)=Gn+2() =5 ¢(Qo(wosn)) —s 14 1Qilos) — Qi1 (woim) |
x Ay j(0) h(Qo(xo; 1) | (3.35)

whenever g = 1 and jin42 = ¢, where j = j(**2) () is defined by (3.12).
Using (3.8), we can now write

Z uj(xo, —is)
lil=n+3,j0=1,jn+2=¢
= (=) Z o~ 59(Qo(zo;n) —s 720 1Qi (z0341)— Qi1 (wosu) | Ay (o) h(@o(xo; 1))
o2 p=¢,no=1

= ()Y et ) ) () = (1) {Li—;%—i-g (W(nﬂ)(xo; .73)” €) .
o2 p=¢

This and (3.11) imply

| (LEMas(20)G,5.) () = Y wi(wo.s)

|jl=n+3
Iniamt
- L’i}%ﬁ [(W(n+2) (20; -, 8) — WO (z0: 5)>] (5)‘ ‘ (3.36)

Standard estimates for Ruelle transfer operators yield that there exists a global constant C' > 0
such that

HLp f+~HH < O eCIRe@)| pPr(-Re(&) [49) |||, , p>0, seC, (3.37)
—sJT9g 00

for any continuous function H : EZ — C.

Remark 4. The above estimate can be derived e.g. from [St3] — see the proof of Theorem
2.2, Case 1, there which uses arguments from [Bo2] (see also the proof of Theorem 2.2 in [PP]).
More precisely, since f,g € Fo(X4), where o > 0 is as in Proposition 1, we have f,§ € Fo(3h),
where 0 = /o € (0,1). Setting u = —Re(s) f + §, v = —Im(s) f, A = e’T"(-Re(s) [+9) e have
—sf+§=u+1iv, and A > 0 is the maximal eigenvalue of the operator L, on fg(EX). Let
h € Fy(X}) be a positive corresponding eigenfunction, i.e. Lyh = Ah. It is then easy to check (see
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e.g. (2.2) in [St3]) that ||Llisf+§H||oo < Il \p ||H || for any p > 0 and any continuous functions

— minh

H on ©}. To estimate Uﬂﬁ; one can use e.g. (3.6) in [St3] — it follows from there that

Hf{Hoo < K = 205/(1-0)\M M ulloe

min h
where M > 1 is a constant (one can take M = 2 in the situation considered here) and b =
max{l, [luflp}. Clearly, [ullp < [Re(s)||[fllo + [lglle < C(|Re(s)| + 1) and similarly, [ullo <

C (|Re(s)| + 1), so (3.37) follows.

To use (3.37), we need to estimate

sup

o (W(n+2) (xo;-,8) — W (nt2) (wo; -, 3)> (5)‘ )
€ A

Fix for a moment s € C. According to the definitions of W("*2) and W("”), it is enough to
consider 1 € X with 9 = 1 and pin42 = £. For such p, using (3.13), (3.16), (3.32), (3.33) and
(3.35), we have

(W2 (20: 1, 5) — WO (05 1, 5)|

e$fn+2(ﬂ)*§n+2(ﬂ)*5 @(Qo(zoin))—s S0 7 (woid)+ 717y @i(zosm)

% ‘6(5+||V80||F,(1))0(9")—5[0(330;#)—2?;01 £ (@os)]—s[e(Qo (1) —(Qo(wo;u)] h(Qo())
—h(Qo(wo; )] - (3.38)
To estimate (3.38), first notice that by (3.15) and Proposition 1,
f(o'u) = fo™ Py <Ca’ , 0<i<n+2.

Using this, (3.24), (3.26) and Proposition 1 again, one gets

n+1 n+1
Faralu) — Z fH@ei)| < C+|fora(p) — Z fit (z033)
=0 - | =0
< C+ Y |flo'n) — fHwesd)| < C, (3.39)
i=0

for some global constant C' > 0. Similarly, it follows from (3.15), (3.29) and (3.30) that

Gnva(p) — Zfbi(xo;ﬂ) < Clelr,q - (3.40)

Next, notice that

(T IVelr)oe™) _q| < O C (IRe(s)[+[IVellr,m)) (Is] + I Vellr ) 6™ .
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Using the latter, (3.17), (3.18), (3.39) and (3.40) in (3.38) yields
(W) (s, 5) = WO+ (o, 5)

< O LIRS (L elr o)+ Veln, ] ‘ (+19lm.0)0™) (0 (1)) — h( Do u))]
< 060[|Re<s>|<1+||sour,o>+||wnr,<1>}‘ (s+1Vellr, 1))0(0") _ 1‘ Qo)

4O CIReE)] (1+llr,0) +HIVelr 1) ‘ h(Qo(p)) — (Qo(m;ﬂ))‘
< ©LCIRWI(Hleleal 1Vl ml [(1s] + [Vepllr, ) 1o

Thus, choosing the global constant C' > 0 sufficiently large, combining the above with (3.37) gives
12 (WD g, 5) = WO (@o;-,9)) | (€)|

—sf+g
< OEIRDIOHIR TR (5] + [Vl ) 1Mo + Al )
X (eP“—Re(S) J+a) 0) " (3.41)
Next we have (see for example Ch. 4 in [PP])
%Pr(—Seré) T - fdv = - - fdv = —co <0,

where v is the equilibrium state of (—sof+§). Recall that Pr(—sof+g) = 0, so ePT(-Re(s) f+9) < 1
for Re(s) > sp. Now assume sy — a < Re(s) with some small constant a > 0. Then

Pr(-=Re(s)[+9) — 1 4 ¢o(sg — Re(s)) + O((Re(s) — s0)2) < 1+ c1a

for some constant ¢; > 0. Thus, i
ePT(Re(s)f+9)g < 9 4 cq

for some global constant ¢ = ¢10 > 0. Combining this with (3.41), completes the proof of (3.6).

4. ESTIMATES FOR THE DERIVATIVES

In this section we prove Theorem 3(b). Throughout we assume that p > 1.

For any = € T'y close to xg and any nn € ¥4 with 19 = ¢ define the points ﬁj(x;n) and the
functions f; (x;n), g; (z;1), ¢~ (257, s), etc., as in the beginning of Section 3 replacing the point
xo by x. We will assume that the segment [P 1(z0; 1), xo] has no common points with the interior
of Ky and x is close enough to zg so that the same holds with x( replaced by x.

By Proposition 4 in Appendix A below there exists a unique phase function 1/, (also depending
on zg) defined in a neighborhood U of xq in I', such that 1/, (x¢) = 0 and the backward trajectory
v—(x, Vapy(x)) of any point x € U with v, (x) = 0 has an itinerary (...,n—s,...,1n-1,70), that is

Po(z;n) — Poa(z;n)

[ Po(z;m) — P-1(x;n)|

for any = € Cy, NU. (Notice that in general v, is different from the functions ¢, ; defined in the
beginning of Sect. 3.) For any ¢ < 0, denoting J = (1, i+1, ... ,7—1,M0), We can write ¥, = (V)7
for some phase function 1, ; (defined on some naturally defined open subset V}, ;of RY) satisfying
Ikawa’s condition (P) on I'y,. We then have Pi(z;n) = X(x,V(¢y:)s) - As in the beginning

V() =
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of Sect. 3 (see (3.2) there) one derives that there exists a global constant C,, > 0 such that
19m,illgpy (Vi,i N Bo) < €y for all n and i < 0. Using (2.4) in Proposition 2 with ¢ = 1y ;,, for some
m > 4 and replacing C), with a larger global constant if necessary, we get

1B, mrp(@) < Cpal i <0 (4.1)
Similarly, for any p € EJAf with g = 0 and pp4+2 = k we have
1Qi(sm)llrp(2) < Cpa™™7 . 0<i<n+2, (4.2)
and
1Qi(5 1) = Picn—2(55m)llrp(e) < Cpa® , 0<i<n+2. (4.3)
Next, recall the function A, from the beginning of this section. By Proposition 2,
IVesllry < CplIVellr,p) (4.4)

for any finite admissible configuration J. N
Since for any i < 0 we have g; (z;n) = log Ay, ,(Pi+1(x;n)) , it follows from (4.1)—(4.3) and
Proposition 3 that for any p > 1 there exists a global constant C}, > 0 such that

lgi (5m)llrp(z) < Cpall i <o0. (4.5)
Similarly, according to (3.28) and Proposition 2,
lai(s millp(@) < CplIVeplir gy @™ 0<i<n+2, (4.6)
and as in the proof of (3.31) one gets,
i (5 1) = gi—n—a (50 lp(2) < Cp [V

Next, given z as above, p and n with pi, o = £, define W™+ (z; 4, 5) by (3.10), 1 by (3.15)
and W2 (z; 11, s) by (3.35) replacing zo by z. We will estimate the derivatives of

W2 (241, 5) = WO (25 1, 5)

rpine . 0<i<n+2. (4.7)

with respect to x. -
First look at the first derivatives D, [W ™2 (- u, )= W™+ (. 1, 5)](x), where v € S,I". Writing
¢~ (3, 8) = =s ¢y (w;n) + @5 (z;7) , where

i) = S @) — @] . by e =3 lalo’tn) - g (z:n)]
i=—1 =

notice that for any z, 2’ € 'y (close to xy) we have
¢y (w3m) — ¢y (2'sm) = —hy(2) + hp(a')
so Dy (97 (;n))(x) = Dy(hy(x)). Therefore by (3.14)

Dyz(5 py8)(x) = =5 Doty (x) + i Dy(g; (sm))() - (4.8)

i=—1

Next, using the notation j = (uo, pi1, 2, - - - , fin+2) and

2w e 8) = s fura () = Gnsa(p) — 5 (0 (@) 4
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it follows from (3.38) that
WD (5, 5) = WO, 8)(56)

= e AR (Qo(p) — ) Ay i (Qua (@ 1)) h(Qolws 1)

= (D(z) +{I)(z), (4.9)
where

(I)(x) = [62(15%3)*5@(@0(#)) 2 (@ip,s 5)+1og Ay §(Qnia(win)) [ h(Qo(p)) ,
and

(IT)(x) = ) Ay 5(Quaaler; 1)) [1(Qo(1)) = A(Qo(w; )] -
Let O be a small compact connected neighborhood of z in I'. Fix temporarily u, s, n and n
with (3.15), and set

Ay) = 2(y:1,5) = s9(Qo(w) . Bly) = 2z 8) +log Ap(Qnalzip) . yeO.
To estimate (I) first notice that by the estimates in Sect. 3,
1A]l0(O) = O(ls| + Is [l¢liro + IVellr,ay) »

and
|eA\p70((’)) <Cef [IRe(s)| (1+llelir.0)+IVellr, @) (4.10)

It follows from (4.6) and (3.40) that |gn+2(p)| < C[|[Ve|r 1). Combining this with the definition
of Z(x; pu, s) and (3.39) implies
12C:5 1, 8)10(O) = O([s| + [s] leliro + Vellr,)) » [[Bllo(O) = O(s| + [s] lellro + [Velr,w) -

Next, we will estimate the derivatives of A and B. For any ¢ > 1 and any y € O, using (4.8),
(2.1) and (4.5), we get

[Allrg(y) = llser(5m) = é2 (sm)lirg(y) < Is| IVeyllr.q(y) Zng 5 Mrg(y)

i=—1

< JslCa+Cy Y < (s + 1) (4.11)

i=—1

Thus, for any ¢ > 0,
letlrg(0) < Clle?|lro(O) (max [|Afri(0))?
<i<q

< G, eC [IRe(s) (1+elr o)+l Vellr, 1)) (Js| +1)7 .

A

Similarly, (4.4) gives

1ZC5 1 8)lIma(y) = N5 (Puo)illr .o (w) < Cy s IVellr(q) -
while (3.31) and (4.6) imply
n+1
og Ay 5(-)lIr.q(v) Z (-5 1) llr.q(y) < Cq[[Velr,

for any ¢ > 0, so
IBllrg(y) < Cq(Isl+ 1) IVelrg » veO.
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The next step is to estimate the derivatives of A — B. First notice that by Proposition 2 and
(2.1) we have

IVihy =V (040) 10,4 (O) < Cq ™ [[Vihy = Vgl < Cg v

I'v(q) -

Set again m = ”TH, assuming for simplicity that n is odd, and 8 = /o € (0,1). As in the proof

of (3.18) above, for any y € O and any ¢ > 1, using (4.5), (4.6) and (4.7), we have

n+1
|A = Bllrgly) < H—sww g im) +s(pue)s — Y ailsm|| ()
i=—1 i=0 g
< sl = (o) aling@) + > llgr (5m)lIrg(®)
1=—m—1
n+1
+ZHaz leg() + D it m) = g o (imlirg )
i=m+1
< q(| |HVSOHF,(q) + IVl (g+1)) 0"
From Sect. 3, a similar estimate holds for ¢ = 0. Consequently,
1"~ Arg(©) < Cylle”lo(O) (max (0))
<i<q

< Cg e IRV ®) (15| Vellr, ) + IV (g4+) 70" -
Finally, as in the estimate just after (3.40), it follows that
le”~4 = 1]0(0) < € e IRV W) (|| + (| Vg1, 1) 6
The above, (4.10) and (4.11) imply that for any ¢ > 1,
1D Irg(0) < Cq ||Allo(T) MR OHIARDHIVARW (|s] [V () + IV lr (g11))7 0"

Using similar estimates, for any ¢ > 1 one gets

q—1
((ID)|r4(0) < Cya™ eC [IRe(s) (1+lellr,0)+IVellr, )] Z(’S‘ + 1)r+1 (HVSOHF,(T))H_I I
r=0

F,qfr(o) .

It now follows from (4.9) and the estimates for (I) and (/1) found above that for any p > 1 we
have

WD (5 p,8) = WO () o

»(0)

YT LA 1 ()

q
< Cpgﬂec[\Re( )l A+lelle,0) +HIVelr,m] « Z B
=0

Combining this with (3.6), (3.36) and the argument from the end of Sect. 3 completes the proof of
Theorem 3. ®
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5. ESTIMATES FOR wyp ;(, 5)

Our purpose in this section is to prove that the series

wo j(x,s) = Z Z uj(x,s), x €Ty

n=n; |j|l=n+3, jnt+2=j

is convergent and that wo ;(x,s) is an analytic function for s € Dy with values in C*°(I';). Since
we deal with initial data m(z,s) = ui(z,s) on I'y we set ny = —2 and n; = —1, j = 2,...,k9. By
Theorem 3, it is clear that the problem is reduced to the convergence of the series

oo

Z(L?Mn,s(x)gs@S)(‘g)v S Fj.

n=0
Throughout this and the following sections we will use the notation
Jj+1 )
CrlIRe(s)] (1+]lelir,0)+IVellr, 1)) Z§zo<|3|’|v‘PHFJ + Ve F,j+1) |\hllrp—jif p>1,
CoeCrlIRe A+ lelar VAl [ (1] -+ Vgl ) ) Il + [l ] if 2= 0,

EP(S) ®, h) =

where as before by C), we denote positive global constants depending on p which may change from
line to line.
First we will establish for oy < Re(s) <1 the inequality

HL?M%S(-) - Lg_an—l,S(-)LSHF,p < CPEP(Sv(pv h)ena (5-1)

where Ls = —L_ P45 and op < sp. The precise choice of oy depends on the estimates (3.3) and
will be discussed below. For this purpose we write

(L?Mn,s - Lgian—l,sLs)w(g) = _LZJFI Y(n) (ZE, S, ,U,) - ?(n) (:1:7 S, M)i| (5)7
where

Y0 (@55,1) = exp (=0~ (30" e (), 5) = (o e, 5) (i),

V0)(;5, 1) = exp (67 (w3 0" e(op), s) = x(o"elon). ) )w(p).

The inequality (5.1) follows from the estimates
|67 @i ome(©).5) = 6™ (s 0" e (©)). )
x(@"e(€), 5) — x(0"e(0(€)), 5)| < C(1 + |s)6" (5.3)

and the form of the operators M,, s(z). The estimate (5.3) is a consequence of the choice of x1, x2
and the fact that f,g € F»p(X4). To prove (5.2), notice that

r S CPEP(87 ®, h)en’ (52)
P

‘ D (e e(€)) = fo"e(a(€)))]| < CO™,
i=—1
and similar estimates hold for the function g. The terms involving f and g are independent of x

and they are not important for the estimates of the derivatives. To deal with the terms depending
on x, recall that

¢~ (z3n) = —sy (x3n) + ¢y (3n)
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with Dy (97 (;;n)(x) = Dy(1,(x)). Here and below we use the notation of the previous section. On
the other hand,

“vwa”+1e(u) (.%') - ngne(o(u))(x)ur,l) < Cpan' (5'4)
In fact, the backward trajectories v—(z, Vignt1e() () and - (2, Vione(o(u)) (2)) follow an itinerary
(tnt1s tny - - -, 1) and we can apply Proposition 2. Now we repeat the argument used in the
previous section for the estimate of |4 — Blr,. Set m = 2L and assume for simplicity that n is

odd. For fixed n we set n = 0" *le(u), 7 = o™e(o(p)). The estimate of
161y (w5 m) — &y (37) 0 p

follows from (5.4). Next we write

> (o7 (@) = g7 (i) = i (97 @im) = g7 (@)

i=—1 i=—m—1
n+1 n+1

+ Y Giiaa(mim) — i) = D (9 o(w ) — @il ).
1=m-+1 i=m-+1

The ||.||r,p norms of the sums from ¢ = m + 1 to n + 1 can be estimated as in Section 4 by using
(4.7), since

n= 0n+1e(:u’) = ("‘7*7*7,“’07/1’17” <y Hn+1 = 67/1’714-27"‘)7
n= 0’”6(0’(#)) = ( o Ey R U, gt = 4 fing2s ')7

and
ntl n+1
ST g pa(@sm) = aizsp)lry < Y o
i=m+1 i=m+1
n+1 n+1
> ginoa(@si) — ai(zp)lrp < Y o
i=m+1 i=m+1

To estimate the sums from i = —m —1 to —oo, we apply (4.5) and this completes the proof of (5.1).

From the representation

n

LM, = Z(L’;Mk,s - L’S“‘l/\/lk_LsLs)Lg‘k + Mo L"
k=1
we get

n
Z LMy w0 = Z [Z (L’;M,C,S — L’;—le_LsLs) L *w + Mo L w) .

n=1 k=1

Since so € R is the abscissa of absolute convergence, for Re(s) > so we have Pr(—Re(s)f 4 §) < 0
and ||L?] < 1, ¥n. Consequently, the double sum in the right hand side is absolutely convergent
for Re(s) > sg and we can change the order of summation. Applying Fubini’s theorem, we are
going to examine

i LM,y G5 = (Mo,s - Qs) i LG, 0s, (5.5)

n=0 n=0
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where
o0

Qs = Y (LEMys — LE My Ly ).
k=1
According to (5.1), the series defining Qs is absolutely convergent for op < Re(s) <1 and

H QSHFJD < CPEP(Sv ©s h)

Consequently, the problem of the analytic continuation of the left hand side of (5.5) for Re(s) < so
is reduced to that of the series > > ; L7 ws, ws = Gs0s.

The analysis of Y ° | Lw, is based on Dolgopyat type estimates (3.3) and we must show that
wg = hs o ® with some h, € Cgfip(AaK) (see Appendix C for the definition of the map ® and the
space cr ip(Aa k). This assertion is proved in Appendix C, where we show that for |Re(s)| < a we
have [|hs||1ips < Co with Cp independent on s. Thus for s = 7+it, 09 <7 < 1, [t] > g > 1, we get

oo [loglt]]-1

S lLwile <3 Y, oI D
—re p=0 =0
CCy [log [¢[]—1

Z JPT(=7f+9)

< -0
=1 llogll]

< €y max{log [¢], [¢[F*+9).

On the other hand, for oy sufficiently close to sy we have Pr(—oof + §) = 8y < 1. Combining this
with the estimate for Qg, we conclude that for og < Re(s) and |t| > to we have

00
HZ L?Mn,sgsﬁs ro S CQ’t’1+ﬁO.
n=0 ’

The analysis in Sect. 5 of [I1] implies that the series defining wq j(z, s) is absolutely convergent
for x € T'j, Re(s) > sg+d > sop and we have

||w07j(x, S)HFJ-,O < Cj,d; Re(s) > 5o+ d. (5.6)

On the other hand, the analytic continuation of the series > " ; LM, ;G0s established above and
Theorem 3(a) with a sufficiently small ¢ = sp — Re(s) > 0 guarantee an analytic continuation of
wo,j(z, s) for z € ', Re(s) > g, [Im(s)| > to with op = s9 — €. Applying Theorem 3(a) once more
for s = o9 + it, we get the estimate

lwo,j(, 00 + it)l|r,.0 < Dyt

The same argument works for all £ =1, ..., kg and we get the same estimate for

o

woe(x,s) = Z Z uj(z,s), v € I'y.

n=n¢ |jl=n+3,jo=1, jnt2=~

Clearly, we can choose 0 < Bg < 1 independent of £ =1,..., Kg.
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Now we will obtain CP(I';) estimates for wg j(z, s). To examine the regularity of the functions
wo j(x,s) on I'j, set
Un+2,j(x78) = Z Uj(l',s).
lil=n+3,jnt2=j
We start with an estimate of the CP(I';) norms of U,y (2,5 ’F For this purpose, applying

Theorem 3(b) with p > 1, we must estimate the norms || L°M,, (. )wer‘j,p, where ws = G405 and
LY are independent of x € I'. We write

m
L My sty = Mo Liws + > (LEMys = LET My oLy ) Lo,
k=1

n
+ Z (LI;MIC,S - L];ilefl,sLs> Lgikws - BO + Bl + BQv
k=m+1
where m = [n/2]. We apply the estimate (3.3) combined with [|As||1ip.;
obtain

< Cy, t = Im(s) and we

1 t[PI‘— f+3)-1 }
1L2w,lo < Cpre ™ LTI o oo v e N
with0 < p <1, By = Pr(—aof—i— g) —log p > 0. Increasing p, we can arrange [y < 1 but this is not
important for our argument (see also Remark 7 in Appendix C).
For the term By we get
1Bollr, p < Cpllm(s)|® Ey(s, 0, h)p".

In the same way for the term B; we have

I1Billr; p < Cpllm(s)|® Ey(s, o, b 29’%’” < Cplm(s)| P Ep(s, ¢, 1) (v/p)"-
k=1

Finally, for By we obtain

n
IBallr; p < DplIm(s)| P Ey(s,0,h) > 6% < Dy|Tm(s)|? Ey(s, 0, h)o™ .
k=m+1

So, changing 6 by another global constant 0 < 6 < 1, § > max {v/p, \/5}, we arrange an estimate
[ Lg M swslr; p < Bp[Im(s )lﬁoEp(S,‘P, h)én
Thus, with global constants C,, D, we deduce
[Un2,5 (@ 5)liry o < CplTm(5)| By (s, 0, )(0" + 67) < DylTm(5)|* Eyp(s, 0, )", ¥ € N, (5.7)

Consequently, the series wo j(x,s) is convergent in C?(I';) norm and for o9 < 7 < s9 + 1 we have
the estimates
lwoj (&, 7 + it)l|r p < Bylt|* Ey(s. o, h), p > 1, (5.8)
where the constants B, are independent of j. Summing over ¢ = 1,...,Kp, we obtain the same
estimate for ||wo(z, T + it)||r, and for Re(s) > o¢ the trace wp(zx,s) is an analytic function in s
with values in C*°(T").
It is interesting to observe that contracting the domain oy < Re(s) < sp + 1 we may obtain
better bounds for the CP(I') norms. For example, we treat below the case p = 0 and the same
argument works for p > 1. In the domain o9 < Re(s) < sg +d, d > 0, Im(s) > g, we apply the
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Phragmen-Lindelof theorem (see 5.65 in [T]). Notice that when we decrease d > 0 the constant
Cj.q in (5.6) change but we always have the bound (5.6). Consequently, for o < 7 < 59+ d we
deduce

|wo,j(x, T+ it)[Ir; 0 < BIt]F) t > t,

where () is a linear function such that
k(00) =14 By , k(so+d) =0.
It is clear that choosing d > 0 small enough, there exist o, with oy < o, < sp and 0 < 3 < 1 so
that for 7 > of, we have
HwO,j(fL‘aT + it)HFj,O < Aj |t|/6? t>to,

and similarly we treat the case ¢t < —to. Finally, for 7 > of, [t| > to we have

lwo,j(x, 7 +1t) ;.0 < Aj[t)°. (5.9)
Here the constants A; depend on the norms of Vy and h.

Remark 5. In the following we will not use the estimate (5.9), however a similar argument based
on Phragmen-Lindel6f theorem will be crucial in Section 7, where we need to control the behavior of
the remainder Qp/(z, s; k) and its bounds when |Im(s)| — co. On the other hand, (5.9) is related to
the assumption (1.6) of Ikawa mentioned in the Introduction. The estimate (1.6) can be established
choosing o, < s¢ close to sp and applying (3.3). This is not necessary for our exposition and we
leave the details to the reader.

6. THE LEADING TERM V) (z, 5; k)

Our purpose here is to apply the construction in Section 3 with boundary data
m(x,s; k) = eikw(x)b(a:, s;k), xz €Ty,

where k > 1 and s € Dy = {s € C: 09 < Re(s) <1, |[Ims| > J > 0}, with some constant J which
will be chosen below. We suppose that there exists a phase function () satisfying the condition
(P) in 'y such that o(z)|r; = ¥(z) for x € supp, b(x,s; k). The amplitude b(z, s; k) is analytic
with respect to s € Dy and Ung supp, b C I';,

b(, 83 k)|[r; p < Cp, Vk =1, s € Dy, Vp € N.

In the following we will use the notation (z) = (1 4 |z|). For our construction it is convenient to
write the oscillatory data m(z, s; k) with phase e=*¥(*) and we set

m(z, s; k) = e V@ HRV@ (1 5 k) = eV @by (2, 51 k).

Then
[b1(, 83 F)[Ir; p < C’é(s + k)P, Vp € N.

Notice that our data depends on two parameters s € Dy and k£ > 1. The complex parameter
s will be related to the convergence of the series wgj(x,s; k) constructed in Sect. 5 starting
with initial data m(z,s; k), while the real parameter k is connected with the oscillatory data
G(x)eik<$’”>|y€pj, In] <1—-01/2 < 1, coming from a Fourier transform (see Sect. 8). It is important
to note that up to the end of Sect. 7 the parameters s and k£ will not be related and the estimates
obtained depend on expressions of the form (s +ik)™. After the application of Phragmen-Lindelof
argument at the end of Sect. 7, we take |s+ik| < Const in order to get bounds by powers of k. We
consider amplitudes b(z, s; k) depending on s and k to cover higher order approximations in Sect.
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7. Starting with boundary data e~*¥b; and following the procedure in Sects. 3-5, we can justify
the convergence of the series wy j(z, s; k) which are analytic for s € Dy.

Now we will discuss the domain where the parameter s is running. For Im(z) < 0 we define the
resolvent (—Ag — 2%)~1 of the Dirichlet Laplacian —Aj related to K by the spectral calculus and
we get,

C
“Ap — )1 < — 01 .
||( K—Zz ) ||L2(Q)~>L2(Q) = |ZHIH1(Z)" Hl(Z) <0

The cut-off resolvent 1(—Ax — 22) "1, 1 € C§°(£2), has a meromorphic continuation in C for N
odd and in C\ iR* for N even. This resolvent is called outgoing. Setting z = —is, we obtain
an outgoing resolvent (A — s2)~! which is a bounded operator in L?(2) for Re(s) > 0 and the
analytic singularities of /(Ax — s2)~14¢ are included in Re(s) < 0. Set ©; = RY \ K; and suppose
that K C {z € R : |z| < po}. Since the real parameter k > 1 is positive, we assume in this and
in the following sections that Im(s) < 0. To treat the case Im(s) > 0, we must take k¥ < —1 and
repeat the argument. For our analysis it is more convenient to consider the outgoing resolvent R(s)
acting on functions f € H?(T') defined for s outside the set of resonances (and also for s ¢ iR™ for
N even). More precisely, given f € H%(T) we define R(s)f = v(z,s), where v(z, s) is the unique
outgoing solution of the problem

{(A— 2 =0,x¢ (OZ,
vlp = f.
Here outgoing means that
v(rf) = 7“_%6_87"(10(9) +0(1)), Orv+sv=0(1)v, r — +00
uniformly with respect to § € SV~! with some w € C°(SN¥~1). This condition is equivalent to
v||m‘2p1 = (S’o(s)u)‘lx‘zp1 (6.1)

for some p; >> po and a compactly supported (in a compact set independent of s) function wu,
where
So(s) = (A = %) 7" 1 L2, (RY) — Hi (RY)

comp

is the outgoing resolvent of the Laplacian in RY. If we replace above K by the strictly convex
obstacle K, we can choose J > 2 so that the outgoing resolvents

Ry(s) : HP*2(Ty) — H™(Q; 0 {Jo] < RY), p € N
are analytic (see [V], [G]) for

se€Dy={seC: o9 <Re(s) <1, [Im(s)| > J}.
and w; = R;(s)f is outgoing solution of the problem

(A —s?)w; =0, x €,
{wj’Fj = f.
Moreover, for s € Dy and R > pg + 1 we have the estimate
IR () fll o0, mq1ei<ry) < Crp ()P 2 Fllmezy)s 5= 1, K0 (6.2)

with some constant Cg, > 0. The above estimate was established for p = 0 in Proposition A. II. 2
in [G]. For the sake of completeness we give the argument for p > 1. Let x € C5°(RY) be a cut-off
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function such that x(z) =1 for |z| < R and x(x) = 0 for |x| > R+ 1. Set w; = R;(s)f and observe
that

A(xw;) =2 < Vx, Vw; > +s*xw; + A(x)w; = Fj.
The function ywj is a solution of the Dirichlet problem in wp = (Jz| < R+1)N; and the standard
estimates for boundary problems imply

Il < Cra (1Bl z2wm) + Il meey))-

To estimate ||xw;ll12(,y,), write w; = e(f) — (Ax,; — %) "1 (A — s*)e(f), where e(f) is extension
operator from H?(I';) to HCSO/I%p(wR_l). This implies ||xwjllr2(wgz) < Br($)|fllz2(r;), since for
strictly convex obstacles we have (see for instance, Chapter X in [V])

IX(Ax, = %) "Xl 22 < O(s) 7"

In the same way one estimates ||A(x)w;jl|r2(,,) by using another cut-off, and applying (6.2) for
p = 0 we obtain this estimate for p = 1. The general case can be considered by using an inductive
argument. More precise estimates than (6.2) can be obtained following a construction of outgoing
parametrix for the Dirichlet problem outside K; (see Appendix II in [G]).

Finally, notice that for v with supp v C {|z| < R} we have the estimates (see [V])

1So(8)vl| gr+1(jxj<r) < Crpllvl P (2)<R), P €N, s € Do. (6.3)
For our construction we need to introduce some pseudodifferential operators depending on the
parameter s € Dy. For this purpose we will use the notation and the results in Appendices A.I,
IT in [G] (see also [SV], Appendix). Given a set X € RY~! we denote by C®(X) the space
of the functions u(x,s), s € Dy, such that u(.,s) € C*(X) and p(u(.,s)) = O((s)”>°) for all
seminorms p in C*°(X). In a similar way we define distributions D’(X). Next, given two open sets
X c RN-1'Y ¢ RN~L consider the spaces of symbols a(z,y,7,s) € SZ;;Z(X x Y') such that for
every compact U C X x Y, all multiindices «, 3, and s € Dy we have

S 050, alz,y,n, 5)| < Ca,pauls| T 4 )bl
xvy E

Consider the pseudodifferential operator Op(a) € LT&Z(X ) defined by

s
2

Ov@u(es) = (5)" [ atey.n.s)uty.s)dydo,

where the support of a(z,y,7n,s) € SZ}Z(X x Y') with respect to (y,n) is uniformly bounded for
s € Dy and a(z,y,7n,s) is analytic for s € Dy. The operator Op(a) maps C§°(Y) into C°(X).
Below we will take Y = I'; and the symbols a(z,y,n,s) will have compact supports with respect
to (y,m). Moreover, we will work with symbols in S(T 6l. We say that Op(a) is properly supported
if the kernel K(z,y,s) of Op(a) is properly supported uniformly with respect to s. Recall that
K(z,y,s) is properly supported if both projections from the support of K(x,y,s) to X and Y are
proper maps (see Definition 18.1.21 in [H]). We refer to Appendix A. I in [G] for the properties of
pseudodifferential operators depending on s. Notice that a properly supported pseudodifferential
operator Op(a) can be defined also by a symbol a(z,n,s). A properly supported pseudodifferential
operator Op(a) is called elliptic at (zo,n0) € T*(X) if a(x,n, s) satisfies the estimate

la(x,n,s)| > C(s)’, p>0, (x,n) €V, s € Dy,
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V being a neighborhood of (xg,79) independent of s.

Next, consider Fourier integral operators with real phase function ¢(x,n) and complex param-
eter s € Dy having the form

s \N—1
I, = (5n) [ €D 0Dl . s)u(y. )y
where as above the support of a(z,y,n, s) € SZ?(;Z(X xY') with respect to (y,n) is uniformly bounded
for s € Dy and a(z,y,n, s) is analytic for s € Dy. For example, the local parametrix constructed in
the hyperbolic region defined below is a Fourier integral operator in this form.

To examine the asymptotic behavior with respect to the parameter s we will use the frequency
set WF(u) introduced in [G] (see also [GS], [SV]) (The notation WF(u) is used to avoid the
confusion with the wave front set WF(u) of a distribution). We recall the definition of ﬂ(u)
only for the so called finite points (x,n) € T*(X), since this is sufficient for our argument. Let
u(z,s) € D'(X) be a distribution depending on the parameter s so that for every compact X’ € X
there exists M such that u(z,s)|x, € H™M(X’) and |u(., ‘X,HH v < Opr(s)™. We say that
(xo,m0) € T*(X) is not in V[A/j:’(u) if there exists Op(a) € LM(X), p+ 9 < 1, properly supported
and elliptic at (xg,np) such that for every compact U C X we have

1(Op(a)u)(z, )|l i@y < Cuari{s) ™, Vj €N, VM €N, s € Dy.

If U is a neighborhood of K and if the distribution kernel Q(z, y, s) of an operator Q(s) : C*°(I') —
C>°(U\ K) belongs to C°(U \ K xT), we will say briefly that Q(s)u is a negligible term. The terms
having behavior O((s)~™) with large M will also be called negligible. It is important to note that
a series of negligible terms in general is not negligible, and one needs to have uniform estimates
with respect to s of the terms of the series to conclude that such a series is negligible.

6.1. Construction of the operators P, P;, P.. In the analysis below we fix j € {1,...,k0}.

Consider the hyperbolic, glancing and elliptic sets on T*(I'j) defined respectively by
H=A{(y,n) e ") : Inl <1}, G ={(y,n) € T"([j) = [n| =1},

E={(y,m) e T"(ITj) = In| > 1},

where (y, n) are local coordinates in 7% (I';). Let xo € C§°(T*(I';)) be a function such that 0 < xo <
1 and xo(y,n) = 0 in a small neighborhood Gy of G U &, while xo(y,n) = 1 for (y,0) € G1, G1 C
T*(I'j) \ Go C H. Choosing a finite covering of I';, we may suppose that in local coordinates (y,n)
we have xo(y,n) =1 for y € I';, |n| < 1— 61, where /1 — 62 < 1—4; < 1 and dy € (0,1) is a global
constant chosen as in Lemma 1 (see Sect. 2). Thus if a ray -, issued from Up.; K, meets I'; at
y € I'; with direction £ € SN=1 5o that xo(y, {\Ty(pj)) = 1, then the reflected or diffractive outgoing
ray Yout issued from (y,§ — 2(&,v(y))v(y)) does not meet a neighborhood of U,»; K, depending
only on dg.

Consider a finite partition of unity of the set supp(xo) C H and, as in [G], a finite partition of
unity of psedodifferential operators to localize the construction. Let (yo,70) € supp(xo) C H and
let x(y,n) € Cg°(T*(I;)), 0 < x(y,m) < 1, be a function such that x = 1 in a neighborhood of

(y0,1m0). Let Z/{ be a small neighborhood of K; and let U; = U \ K. Let I'y, C I'; be the projection
of supp x(z, 77) onI';.
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We will omit again the dependence on k in the notation if the context is clear. Given boundary
data u(y,s), in the hyperbolic region we construct an outgoing parametrix Hj, : C*°(I'y) —
C*>°(Uj;) of the form

o

- —s xz,m)—(y, M
(e = (5) [e (e-0m) S5 o)ty

v=0

We have
(A, — 32)(Hh,xu)(m,s) = S*MAM(s)u, x € Uj,
(Ha)(z,)]p. = Op(x)u
where
S\ [ —sw@m) - ) 2
Au(sju= () [[e e om A, - ) (ays (e, ) )ty )y

The construction of Hj,, is given in Appendix A. IL. 2 in [G]. Here the phase ¢(x,7) satisfies the
equation
|Vazw|2 =1, QMFJ- = <.T, 77>a (.%', 77) close to (1107770)-
The amplitudes a,(z,y,n) are determined from the transport equations with initial data
a0|x€Fj = X(yvn)v al/|$€rj = 0) 14 Z 1

Notice that a, depend only on x(y,n) and the integration in H}, ,u is over a compact domain with
respect to y and 7, so for s € Dy the integral is well defined. Applying a finite partition of unity,
we construct an outgoing parametrix Hj, : C*°(I'j) — C*°(U;) such that

(A, — %) (Hpu)(z,8) = s M By (s)u, x €U,
(HhU)(LU, 8)|Fj = Op(X(])U,
where the operator Bj/(s) is analytic with respect to s and satisfies the estimates
1Ba(8)ull oy < ColsPlullor, . ¥p € N

with some global constants. Let W(z) € C5°(U;) be a cut-off function such that ¥(z) = 1 in a
small neighborhood of K;. Then we obtain

(Ay — [T Hpu] = s MIBy(s)u+ [A, O)Hyu, © € U
and we define the outgoing parametrix
(Pyu)(z,s) = WHpu — Sp(s) (s_M\I/BM(s)u + [A, \Il]Hhu), x € §y.

Thus we get

(Am - 52)(Phu)(l‘,5) = 07 WS Q]a ERS DOv

(Pyu)(.,s) € L*(Q;) if Re(s) > 0,

(Ppu)(z, 3)‘rj = Op(xo)u + Qn(s)u,
where for large M we obtain a negligible operator Qp(s) coming from the trace of the action of
So(s). Here we use the fact that the frequency set of Sp(s)w is given by the outgoing rays issued
from W F(w) and the outgoing rays issued from [A, ¥]Hpu do not meet I';. Notice that the oper-
ator Py depends analytically on s.
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Next, let x1(x,n) + x2(z,n) = 1 — xo(z,n), where x1(z,n) € C°(T*(T;)) is a function with
support in {(x,n) : 1 — 3 <1 —2¢y < |n| <14 2¢}, while x2(x,n) € C>°(T*(I';)) has support in
{(z,n) : In| > 14+e€0}, €0 > 0 being small enough. In the glancing region following the construction
in Appendix A. II. 3 in [G] and Appendix A. 3 in [SV]), we construct an outgoing parametrix H,,
such that

(A, — %) (Hgu) = s M By(s)u, = €U,

(Hgu)(.,s) € L*(£;) if Re(s) > 0,

Hgulr; = Op(x1)u + s~ By(s)u,,
where By(s) and By(s) are Fourier-Airy operators with complex parameter. The only difference
with the construction in [G] is that we have s™ By(s) and s~ B} (s) instead of operators with
kernel in C°° (U;j xT';) and C'OO(Fj x I'j), respectively. For this purpose, as in the hyperbolic case,
we use a finite sum of amplitudes instead of an asymptotic infinite sum of symbols. The advantage
is that our parametrix H,, as well as By(s) and By(s), depend analytically on s. Now define

(Pyu)(z,s) = WHgu — Sp(s) (S_M\IlBg(s)u + [A, \II]ng>, x € (.

In the elliptic region the construction of a parametrix in Appendix A. II. 4, [G] is given by a
Fourier integral operator with big parameter A and complex phase function. When A is complex,
there are some difficulties to justify this construction (see Appendix A.4 in [SV]). For this reason

in the elliptic region we introduce P.u = R;(s) (Op()@)u) keeping the analytic dependence on s.
Thus setting S;j(s) = P, + Py + Pe, we have

(Ay — s3)(Sj(s)u)(z,s) =0, z € Qj, s € Dy,
(S;i(s)u)(.,s) € L*(;) if Re(s) > 0,
(Si(s)u)(@, 5)|, = u+ Qj(s)u

where for large M the operator Q;(s) is negligible.

Our strategy is to apply the above construction to the function

o
wo(#,8) = Y Unsaj(,8)|p,
where
Unt2,(@,s) = > ulxs)

[il=n+3,jnt2=j
and u;j(x, s) are defined in Sect. 3 starting with initial data e™*#b;(x,s;.). Recall that in the pre-
vious section we obtained estimates for the CP(I';) norms of Uy, 42 j(z, s) for s € Dy. Thus applying
Py, P, and P, to wo j(z, s) we obtain convergent series. Consequently, the function (S;(s)wo ;)(z, s)
is analytic for s € Dy with values in C*°(§;) and here we use the fact that wg ;(z,s) € C*(T;). It
is convenient to introduce the following

Definition 2. Let w C RN be an open set and let D be a domain in C. We say that the function
U(z,s; k) satisfies the condition (S) in (w, D) if the following hold:
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(i) for k> 1, U(.,s;k) is a C*°(w)-valued analytic function in D,
(i3) U(.,s; k) € L*(w) for Re s > 0,

(iii) (Ay — s?)U(x,8,k) =0 in w for every s € D.
It is clear that (S;(s)(s)wo ;)(z,s) satisfies the condition (S) in (£2;,Dp). Taking the sum over
j=1,..., K, we conclude that the function

KO

VO(z,s)= Z(Sj(s)wO,j)(xa s)

[e)

satisfies the condition (S) in (£2, Dp).

6.2. Traces of Sj(s)wp; on I'y. The analysis of the traces (Sj(s)woyj) (ZC,S)‘FZ, ¢ # j, is more

difficult. The main contributions come from (Pjwo_; £ # j. Our goal is to find the leading term

r,s
of Py (Un+2,j(l‘,5)‘Fj> ’Fé, ¢ # j. Let j be a configuration such that |j| = n + 3, ju+2 = j and let

e~%%i(®)q;(x, 5) be a term in Uy 42 (v, s). For x € T; consider

Op(x0) (¢ ay(a, ), ) = [ Km0 g, sy, 5)dyn

T T
= 37 [ O sy, 5) 8 mdydn = Y 1w,
p=1 pn=1
where 3, € C§°(T*(I'j)) are cut-off functions such that 25:1 Bu(y,n) =1 for (y,n) € suppxo(y,n).
For I,(x,s) we will apply the stationary phase argument with big complex parameter s € Dy

(see for instance, Lemma 2.3 in [G]). The critical points of I,,(x, s) satisfy the equations x =y, n =
Vyo(y), the matrix

; I
=2y )
is invertible and we have

G =% )

—Piyy
An application of the stationary phase argument yields

Op(xo) (e_s‘pj(x)aj (z, S)\rj) = e ) [Xo(ln Vyej(x))aj(z, s)
M—-1
—q -M )
+ 3 Luiy: Dy Dy)(x003) (@, Vyp5())s™ + Augglar, )5~ w € T (6.4)
q=1

Here L,;(y, Dy, D;) are operators of order 2¢ and the form of (Gj(y))~! shows that all terms in
L, ; contain derivatives with respect to one of the variables 7;, ¢ = 1,..., N — 1. Thus, the terms in
(6.4) with coefficients s79, 1 < ¢ < M — 1, vanish if |Vyp5(2)| < 1 — 0.
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For s € Dy we have

Ph[ Z Un+2,4|p } R()KOP(XO)"‘Qh )( Z Unt2,|p )}

J=1,j#L J=1,j#L
and for large M, the operator Qy j u = (R;(s)Qn(s) {F , j # £, is negligible.
The leading contribution in the traces on I'y comes from the trace of the terms

Rj(s) <e*3¢j(x)><0(367vy90j(37))% (@, 9)|p, )

that is from the action of R;(s) on the leading term in (6.4). To examine this contribution we
construct, as in Sect. 4 in [I3], an asymptotic outgoing global solution

. — oYl
vj M (z,8) = e * g C_],ul‘s

of the problem
(Ay = %)M (2, 5) = SfMTj,M(x, s), x € §,
{UJvM(‘T’S)‘Fj = e~ o (@, Vyps(2))aj(z, s |p
We have 9j(z) = ¢j(x) on I'; and the phase () is defined following the procedure in Sect. 2.

Moreover, v;(x) satisfies the condition (P) on I';. Next, the amplitudes c; ,(z, s) are determined
globally by the transport equations. It is easy to see that

cjvo(x’ S)|Fl = _a’(j,ﬁ)(xv S)‘Fev L # 7,
where (j, £) is the configuration (jo, j1, ..., jn+2 = J,£). This follows from the definition of a; »(, s)
in Sect. 3 and from the transport equation for the leading term c; (see Section 4 in [I3]) combined
with the fact that if ¢;o(x,s)|r, # 0, then z must lie on a ray issued from (y, Vypj(y)) with
Xo(y, Vypi(y)) = 1. The sign (-) appears since for the configurations (j,¢) we have to include
the factor (—1)"™*. Next, we choose a function ® € C$°(|x| < pg + 1) which is equal to 1 in a
neighborhood of K and introduce

Vim(z,s) = ®vym(x,s) — So(s) (S*MTJ,M(x, s) + [A, ®lvj a(z, s))
We have (A, — s?)Vi m(x,s) =0 in Q; and for M large the traces

Vim(z, S)‘Fe — (Rj(s) [(e*ssoj(fr)xo(:c, Vygoj(a:))aj(x,s)) ‘FJ})}F[, (=1,.., Ko

are negligible terms coming from the action of Sp(s). We obtain this first for the trace on I'; and
then use the estimates for the resolvent R;(s). On the other hand, for large M we get Vj r(x, s ‘F

vy, v (z, 8)‘1,2 modulo negligible terms related to the action of Sy(s). Thus the leading term of the
trace on Iy is e—5¢i(@ )cJ o(z, s ‘F

Next, consider e=*?@)p;(z with bj(z,s)|r; = 0 for [Vyp;j(z)] < 1~ 61. Moreover, assume

lr,
that if bj(x,s) # 0 for x € T'j, then z is lying on a segment issued from some obstacle Ky, £ # j.
From (6.4) we see that the terms with coefficients s77, 1 < ¢ < M — 1, have these properties.

According to Theorem A. II. 12 in [G], the frequency set of R;(s) (e*sg"i @)p;(, s)]pJ) is included in

the set determined by the outgoing rays issued from V[ﬁ(efwi (‘”)bj(a: s) ) According to Lemma

I,
1, our choice of §; shows that these rays do not meet a neighborhood of Uy; K. Consequently, the
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traces of Rj(s)( —5i @)y (, s)Ir, ) on I'y, ¢ # j, are negligible. It is clear also that all terms with

factors s~ will produce traces with this factor.

For fixed n and fixed j,¢ # j we take the finite sum over the configurations |j| = n + 3 of all

terms having coefficient s7%,1 < ¢ < M, in the trace R;(s) (Op(Xo)Unng,j r and we denote this

Ir,
sum by Sith,n,jjg(ZL', s). Since we cannot estimate directly the series with the contributions s~9,
we are going to include in S_thm,j,g(l', s) all terms mentioned above as negligible and appearing
with coefficients s79, 1 < ¢ < M.

Thus for fixed n, summing over j = 1,...,k9, 7 # £ and j, we obtain all configurations j with
lil =n+4, jnt3 = ¢ and we conclude that

K0
(P X Unsaale )l == X gl 5 Rugelas) (65)
J=1,j#L lil=n+4,Jn+3=¢

+Qh,j,z< i Un+2, !Fj) :

=1, j#L
To treat (P,wo ;)|r,, £ # j, we apply the same argument. Observe that according to the results
in Appendix II in [G], the frequency set of R;(s) (Op(xl)UnngJ(x, 3)|F_) is related to the outgoing
J
rays issued from the frequency set of

opa)( Y e a9l ).

|j|=n+3, jny2=j

For every j the frequency set of Op()g)( 05 Wa;(y, . ‘F ) is given by (y, Vy¢;j(y)) such that

y € supp a;(y, -)\F]., Vyei(y)] > 1—061.

‘F = ( for some configuration j, then y is lying on a segment

issued from some I'y,, p # j. Our choice of 01 guarantees that the outgoing rays mentioned above
pass outside a neighborhood of Ug;,ng i. Thus, we deduce

( Z Un+2,y

J=1,j#L

Here the series > o o Ry j¢ is convergent but we cannot show that s= 3" 'R, ., is negligible.
In fact, the results of Theorem 3 cannot be applied to this series and for this reason we take M =1
in (6.6) and consider Ry, ;¢ together with the terms Ry, 5, j,. A similar analysis can be applied to

If y € T'; has this property and a;(y, .

) ’F,g s MRy (. 5). (6.6)

R;(s) (Op(xg)UnH,j ‘F ) ’Fé since there are no outgoing rays issued from the elliptic region, and we
J
obtain

(Rj(S)(Op(XZ)UTH-Q,j)‘]_“J.)‘FZ Qe,ﬂ( n+27]‘r>

where the operator Q. ;, has kernel in C’OO(Fg x T'j).

Summing over n and j = 1, ..., kg, we conclude that for x € I' we have

VO (x5 k) = m(x,s:k) + s Ri(z, 5 k) + 5 M Quro(x, 55 k), (6.7)
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where in the notations the dependence on k is involved. The cancellation of the leading terms
follows from the equality

(ag.0 (@) +a5(@.9)) |,cp, = 0. £ £

and the representation (6.5). The negligible terms coming from the action of Qp j¢, Qe e, J, =
1,..., ko to wo,; are included in s™™ Qs 0(x, s;k), while Ry (z,s;k) is the sum over n, j and ¢ of
the contributions Ry, j¢(z, s; k) and Ry, je(z, s;k) coming from (6.6) with M = 1. Applying the
estimates for Un+27j’Fj and the analyticity of P, P, and P., we deduce that Qaso(z,s; k) and

VO (z,s; k)|F are analytic for s € Dy. Thus we conclude that Ry (x, s; k) is analytic for s € Dy. We
can prove directly that R (z,s; k) is analytic examining the series

ZPhn]gxsk Z om0 (X, 81 k).

n=mn; n=n;

In fact, it suffices to obtain estimates ‘th’j,d < Bh’j’gén,Vn € N, and we treat this question in
the next subsection. Thus the analyticity of Ry (z, s; k) is not related to the analyticity of V() and
Q@ and we may work with a parametrix P, which is not analytic in s (see Appendix A. 4 in [SV]
and Sect. 8). This could simplify a little bit our argument, but we arrange V() to be analytic in
order to have similarity with the construction in [I3]. On the other hand, to obtain estimates for
the outgoing resolvent better than (6.2) we must use an approximation by a parametrix.

6.3. Estimates of R;(z,s;k). To estimate R;(z, s; k) we need to estimate Ry, j o and Ry, j¢. To
deal with Ry, ;¢, we use the equality (6.5). Notice that the trace

(Ph i Un+27j‘rj> ‘Fg

=1,

is given by the trace on I'y of

o) (57 Bu(o) + D 0H) Y Tl |
Jj=1,j#¢L

The term involving s~ is easy to be handled, and we treat the term with [A, ¥]. Applying the

estimates (5.7) with p = 0 and applying the L? estimates for the action of the Fourier integral
operator Hp, we get

I[A, U]H, ( Z Unm)\F lo < Cls/Z (s + k)7,
J=1,j#L
where fy and 0 < 6 < 1 were introduced in Sect. 5 and (s + ik) comes from (5.7). Next for

g € C°(RYN) with compact support we write So(s)g = Fs * g, where F,(z) is the kernel of Sy(s).
This kernel has the form

Bu(x) = () HO slal), v = (N - 2)/2,

27|z |

where Hﬂ(yl)(z) is the Hankel function of first type. Since I'y N supp ¥ = (), we can estimate the C?
norms of (S (s)[A, V] )‘F exploiting the estimates for the derivatives of Ha(yl)(z). Thus setting
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By = (N —3)/2+ (o, we deduce

[S0(s)[A, V]Hj, Z Unt2,p,lIrp < Bjup(s +ik)| s> PN G™. (6.8)
Jj=1,j#¢

Next for the sum ;.4 —5%3(@) a5z, 5 ’F in (6.5) we apply Theorem 3(b). Conse-

e
7‘]n+3:€
quently, summing over n, we obtain estimates for s ! Zn:nj Py ¢ with the same order as in (6.8).

The analysis of Ry, ;¢ is very similar. To estimate [A, W]Hy(3 72, 4, Un+2,j{r_), we observe
’ J
that outside a small neighborhood of K; the parametrix H, in the glancing domain can be written

as a Fourier integral operator with real phase and we may estimate (So(s)\A, \Il}ng) as in the

Ir,
hyperbolic case discussed above. For the remainder Qg ar(z, s; k) we have

1Qa0(z, 8;K)||rp < Dp(s + ik)PH2|s|PH2H0 p e N, (6.9)

where (s+ik)P*2 comes form the estimates of the amplitude by (z, s; k). Finally, we get the following
crude estimates
| Ry (z, 55 k) ||rp < Cpls + ik)PF2|sPH3H8N s € Dy, Vp € N (6.10)

and the term s~!||Ry(, s; k)||r,0 has no order O(|s|™!) for all s € Dy.
It is important to note that in the domain of absolute convergence Re(s) > so+d > so we have
better estimates for R;(x,s; k). First, in this domain for all v and |z| < R the series

D} (Z Z —seile aJ x S)) (6.11)

n=lljl=n

are absolutely convergent (see [I3]). Next Proposition 2 shows that the phases ¢j(x) and their
derivatives are uniformly bounded with respect to j and by recurrence we obtain the absolute

convergence of the series
505 (
E Ee 3 an:D)aJ(xs)
n=l|j|l=n

Lg;(x, D;) being partial differential operators of order ¢ independent on j and n with coefficients
uniformly bounded with respect to j. Now in the equality (6.4) we can sum over the configurations
j and after the action of R;(s) the sum of all terms with coefficients s79, 1 < ¢ < M — 1, and the
remainder yield contributions which can be included in Q. To deal with the traces of

> Y R Ve@e e w9l ).

=0 [j|=n+3,jn+2=j

we can exploit the estimates in Sects. 4, 5 in [I3] for the amplitudes c¢;,(z,s) of the asymp-
totic solutions vj a(z,s). In the same way, we can estimate and sum the negligible contributions
sM Ry . j¢ coming from the glancing region and show that they yield a negligible term. Thus, for
Re(s) > so +d > so we deduce

|R1(,5;k)|Irp < Cpals +ik)PT2|s[P, p € N, (6.12)
while for |s + ik| < a + 1 we obtain
| R1(z, 85 k)Irp < Cp gkP, p € N. (6.13)



42 V. PETKOV AND L. STOYANOV

7. HIGHER ORDER TERMS OF THE ASYMPTOTIC SOLUTION

Our purpose is to improve (6.7) by higher order approximations VU (z,s;k), j =1,..,M — 1,
where M is an integer such that M > (N —1)/2. In particular, for N = 2 we can take M = 1 and
the construction in Sect. 6 is sufficient. Recall that the term R;(z, s; k) in the previous section has

the form o o
Z Z (Rh,n,j,é(xv 55 k;) + Rg,n,j,ﬁ(x’ 53 k))

n=n; jl=1
with n1 = —2 and n; = —1 for j # 1. Fix j and ¢ and set
e 5en (@) 0 e)(:v s;k) = Ry jo(x,8:k) + Ry pje(x,sik), x €Ty,

where ¢, () is one of the phases ¢j(x) in U,42 ;(x, s; k). The choice of ¢, is not important and we
omit in the notation the dependence of (j,¢). The analysis in the previous section shows that we
have the estimates

Im) (2, 558) [, < Dpls + k)2 s P30 Gm wn € N, (7.1)
where 0 < § < 1 is the same as in Sect. 5. Here and below we denote by FUA some terms
depending on the traces on K; and Kj, j,¢ = 1,..., ko, while j, j’ denote configurations. Now for

fixed n we apply the construction of Sects. 3 and 6 to the oscillatory data e_S‘P"(x)m(j 2 (z,s;k)
and we obtain a series > -, U (z,s; k) with

1,n,m
Ul (e sk) = Y () Pe s @0 (4 k),
‘j/|:m+3’j»¢n+2:l

where the phase functions ¢, j(2) depend on the configurations j'. Taking the summation over
n, we are going to study the double series

wi je(x, s k) Z Z Ul(Jngm (z S;k)’r/ rely. (7.2)

n=n; m=—1

We repeat the argument of the Sect. 5 for oy < Re(s) < 1 and applying (7.1) and Theorem 3(b),
we get the estimates

U (@, 55%)|[p,p < Dh{s + ik)PH3|s[prAtovthognim vn ¢ Nvm e N, (7.3)

with constants Dzlo independent of n,m € N. Thus, the double series defining wy j,(z,s; k) is
convergent. Applying S¢(s) to wy j(z,s; k) and exploiting (7.3), we justify the convergence of the
corresponding series and for s € Dy we obtain analytic terms. The function

V(l)(acsk 1284 (wljgxsk)>
7.0=1
satisfies the condition (S) in (52, Do) and for s € Dy and z € ' we get
v (© (x,s;k) + V(l)(x, s;k) =m(z,s:k) + s 2Ro(z, 53 k) + S_MQMJ(x, s k). (7.4)

Here Ry(z,s; k) and Qpr1(x, s;k) are analytic for s € Dy, Qa1 satisfies the same estimates as in
(6.9), while for Ra(x, s; k) we have

|Ra(z, 55 k)||rp < Cpls + ik)PF3|sPH6+2N v € N. (7.5)
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For Re(s) > sg 4+ d > sg we obtain again better estimates, since we can choose ¢, (z) = ¢j(z) and

(7:0)

my (x,8:k) = ¢j1(x, 85k where ¢;1(x, s; k) is the coefficient in front of s~ in the asymptotic

M,
4
solution vj ar(x, s; k) introduced in Sect. 6. Exploiting the convergence of the series (6.11), we

deduce that in this domain the growth in the right hand side of (7.5) is (s + ik)P*3|s|P.

Repeating this procedure, we construct V@ (z, s; k), 0 < j < M—1, which are analytic functions

for s € Dy with values in C*°(£2). They satisfy the condition (S) in (Sol, Dy) and we have
M-1
Z V(j)(x,s; k) =m(z,s;k) +s MQu(x,s:k), z €T, (7.6)
=0
with polynomial estimates
10 (2, 5;k)|lro < Car(s + ik)EM |5 N s e Dy, (7.7)

Here Qs (z, s; k) is analytic for s € Dy and C)s depend on the norms of the derivatives of 1 (z) and
b(x, s; k) involved in the boundary data m(x, s; k) introduced in the beginning of Sect. 6. Thus, we
establish crude estimates with orders N (M), L(M) depending on M and it seems quite difficult to
obtain more precise estimates for s € Dy. Of course, we have N(M) > M, however we will apply
the above estimates for fixed M and the precise value of N (M) is not important for our argument.
For Re(s) > so + d > sp, Im(s) < —J the absolutely convergence of (6.11) implies

19 (@, 8:K)||r0 < Cagas + k)LD, (7.8)
The constant Cjsq depends on d but L(M) is independent of d. Now we fix an integer M € N so
that M > &=L N (M) and L(M) are fixed. Next, we fix d > 0 small enough so that
N(M N -1
(M) <M

so+d— oy 2
In the domain {s € C: 09 < Re(s) < so+d < 0, Im(s) < —J} consider the analytic with
respect to s function

Qum(z, s; k)
(s + ik)L(M)
The estimates (7.7) and (7.8) combined with the Phragmen-Lindel6f theorem (see [T]) show that
forse {se€C: Re(s) =t, oo <t <s9+d, Im(s) <—J}, we have
1E (2, 53 F)llro < Anrls|™,

k(t) being the linear function such that x(og) = N(M), k(so + d) = 0. We can choose o1 < sg so
that 0 < k(t) < «a for o7 <t < sp+ d with some 0 < o < M — % Thus, for o1 < Re(s) <
so +d, Im(s) < —J,|s +ik| < |og| + 1 we get

100 (2, 5;k)|lro < Anls + ik|“D|s|* < Byk®, k> 1. (7.9)
Moreover, the constant Bj; depends on the derivatives of Vi and b(zx, s; k) involved in the boundary
data m(x, s; k) as well as on some global constants depending only on K. The restriction o; <
Re(s) < 5o+ d with sg + d < 0 was used only to guarantee that the factor (s + ik)“™) = 0 in this

domain. For Re(s) > so + d we can apply the estimate (7.8) to obtain (7.9) with another constant
Ay and o = 0. Consequently, for some fixed ¢ such that sp + ¢ > 1 the estimates (7.9) hold for

seDi={seC: o1 <Re(s) <so+c, Im(s) < —J, |s+ik| <|og| + c}.

F(z,s;k) =
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8. INTEGRAL EQUATION ON THE BOUNDARY

The purpose in this section is to define for s € D; an operator R(s, k) : L?(I') — C°°(£2), where
k > J + |og| + ¢ will be taken sufficiently large and D; is the domain introduced in the previous
section. The operator R(s, k) satisfies

(Ay — s2)R(s,k)f =0, z € Q,

R(s,k)f € L2(Q), for Re (s) > 0, (8.1)

R(s, k) f|. = f
and to arrange the boundary condition we will solve an integral equation on I'. After the construc-
tion of a solution Zj]\ial V0U)(z, s; k) with the properties in Sect. 7, it was mentioned in Proposition
2.4 in [I3] that the existence of R(s; k) can be obtained by the argument in [I2]. On the other hand,
[I2] deals with the case of two strictly convex obstacles and in that case the geometry of the trapping
rays is rather different from that in [I3] and our paper. For the sake of completeness we will discuss

briefly how we can construct R(s, k) by using the construction in Sects. 6-7 in the hyperbolic region
and those in [I1], [I3], [SV] in the glancing and elliptic regions.

Fix M >(N—-1)/2and 0 < a < M — % as in the previous section and j € {1,...,k0}. Let
Y CT'jandlet F € L*(T;) with supp F' C Y. As in Sect. 6, choose local coordinates (y,7) in T*(Y")
with y = (y1,...,ynv—1) € W € RV~! | and write

F(y) = (2) N [ <= P = (1) Gl [ <0 Fion)an,

where G(y) € C°(RM~1), G(y) = 1 on supp F(y) and

F(n) = / e ISV F(y)dy.

Consider a partition of unity xo(7) + x1(1) + x2(n) = 1 with C* functions x;(n), 0 < x;(n) <
1,7=0,1,2, such that

2 2
supp xo(n) C {n: |n| <1—=1481/2}, supp xi(n) C {n: 1— 551 <|nf <1+ 551},

supp x2(n) C {n: n| = 1+4d1/2},
0 < 41 < 1 being the constant in Sect. 6. Set

k\N-1 " . ,
Fi(y) = (g) G(y) /6‘ <Y1 xi(n) F(kn)dn, i =0, 1,2.
To treat Fy we will apply the results of Sects. 3-7. Consider the function

V(yin) =<y,n> y €W, [n <1-20b/2.
We can construct a phase function ¢ = ¢(x;n) defined in V; such that

(1) @lopp = Y Win), y € W,

. Op
(i) a(a:;nﬂvjmrj >d0>0,yeW,
(i17) the phase ¢(x;n) satisfies the condition (P) on T';.
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The local existence of p(z;7n) satisfying the conditions (i)-(ii) has been discussed in [I12], [I3].
To arrange (iii), we use a suitable continuation and we treat this problem in Appendix B below.
Starting with the oscillatory data mg(y;n) = (27)"NT1G(y)e* ¥ |n| < 1 — §1/2 and applying
the argument of Sects. 6-7, we construct an approximative solution Vy(z, s; k,n) which satisfies the

condition (S) in (2, Dp) and such that
Voly, s:k,n) = mo(y;n) + s~ Qui(y, s;k,m), = € T.

Moreover, for Qs (z, s; k,n) we have the estimate (7.9) and it is clear that the constants By and
a in (7.9) can be chosen uniformly with respect to 7, |n| <1 — 6;/2. Define the operator

Uo(s; k) F = /Vo(rc,S;k,n)xO(n)F(kn)kN‘ldn
with values in C*°(Q2) so that Uy(s; k)F satisfies the condition (5) in (SO),Dl) and

Uo(s;k)F|r = Fy + sM/QM(x,s;k,n)Xo(n)F(k:n)kN1dn

= Fp+ Lo(s; k‘)F
Therefore

. 2
ILo(s; k) Fl[72ry < Co (/ k—M+(N—1)/2+a|F(kn)’k(N—l)/2dn)

[n|<1-81/2

< Cgk_2M+N_l+2a/ dn /I‘{N_l ’F(kﬁ)’Qk‘N_ldn < Clk—2M+N—1+2aHFH%2(F)

[n|<1-61/2
with a constant C; > 0 depending only on K. Moreover, for s € D; we obtain the estimate
1U0o(s; k) Fll 2(an{jzi<ry) < Co,rk™ || F| L2 (82)
To prove this, it is sufficient to show that
1Vo(x, 53 k,0)| L2 (0ngjei<ry) < Co.rk", s € D1, (8.3)
uniformly with respect to |n| < 1 — d1/2. On the other hand,
M—1
Vo, sik,m) = VO(a,s:k,m) = > VI (@, 51k,m)s™
m=1
and
Ko
VOl (@, sikn) = Y Sj ()W g, (@, 51 F,7).
J1,J2,jm=1

Here wj, j,. i (2, 5;k,m), € Ty, are infinite series and the estimates of ||V (™) I 22(2n{|z|<r}) follow
from the estimates for the operators Hy, Hy, So(s), P and the estimates for ||wj, j, . . | m2(1,0)-
According to the recurrence procedure in Sect. 7, we deduce that

Wi, v 200y < Dy|s|?™ s e Dy,m=0,..M—1,

for some integers ¢(m), and we get (8.3) with py = sup,,, g¢(m).
To deal with Fy(y), introduce &(y,n) € SV~ such that

)~ (W), Em) = () EE=swpp @ x {1 —201 < ol ~ 1 < 261}
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and consider (y,n) = £(y,n) — 2{v(y), £(y,n))v(y) € S¥~L. Our choice of §; in Sect. 6 and Lemma
1 show that at least one of the rays {y + t{(y,n) : t > 0}, {y +t¢(y,n) : t < 0} does not meet
a do-neighborhood of | J,.; Ky. For every fixed (yo,70) € E we have the above property for at
least one of the rays related to &(yo,m0) and ((yo,7m0) and the same is true for (y,n) sufficiently
close to (yo,n0). Consider a microlocal partition of unity Zﬁ/[,_ll Yu(y)=u(n) = 1 on = so that
supp Z, C {n: —61 < |n| =1 < 61}, while for (y,n) € supp ¢, =, we have the property of the
rays mentioned above. We fix p and assume first that the outgoing rays {y + t{(y,n) : t > 0},
(y,m) € supp ¥,=, do not meet a neighborhood of U#j K. Consider boundary data

g (ys ko) = (2m) NG (Y)Y (y) eV |y € supp E,,.

Following Proposition 4.7 in [I3] (see also Proposition 7.5 in [I1]), for every M > 1 there exists a
function Z,, pr(x, s; k,n) which satisfies condition (S) in (;,D;) and

| Zyna (- 83 ksm)llor,nilzi<ry) < Crpk®, Vp €N, (8.4)
Zyna (Y, 53 k,m) = mgu(ys kyn) + 1~ Dy (y, 57k,m), y €T
with

| Dyni(,s:k,m)|lrp < CpkP, Vp € N.
The constants in the above estimates are uniform with respect to n and p and they depend only
on the geometry of K.

The construction of Z, in [I1] is long and technical. We sketch below the main points. The
starting point is to introduce oscillatory boundary data

(2m) VLG (y) e (y)h(t) e @Dy € supp E,, |

depending on y and ¢ with h € C§°(R™), supp h C (T,T+1), T > 1 and to construct an asymptotic
solution w,,(z, t; k,n) of the wave equation (97 — A, )u = 0 for ¢ > 0 with supp wy(z,t;.,.) C {(z,1) :
t > 0} and big parameter k. We omit in the notation here and below the dependence on M. In
the glancing region we have two phase functions p1 = 0(y,n) £ %p3/2(y, n) (see [I1], [G], [SV]) and
¢4 are constructed so that their traces on supp G NT'; coincide with (y,n). The outgoing rays are
propagating with directions V., while the incoming rays are propagating with directions Vp_.
The proofs in [I1] and [I3] work assuming N odd and one considers the Laplace transform

[e.o]

Wy (z,s7k,m) = / e_Stwu(:B,t; k,n)dt, s € D;.
—0o0

The assumption N odd is used only by applying the strong Huygens principle to guarantee that for
every fixed x € {); the support of w, with respect to ¢ is compact, hence the integral is convergent.
For N even we apply the finite speed of propagations and the fact that the supports of the solutions
of the transport equations are propagating along the rays {y +tVei(y,n) : t > 0} to show that for
|z| < po the solution wy,(x,t;k,n) vanishes for ¢ large. This justifies the existence of w,(z, s;k,n)
for |z| < po. Next, using the notation of Sect. 6, consider

Z(, 5 k) = h(slﬂk) Dy, — So(s) (A — )iy + A, @) |, (8.5)

where h is chosen so that /(s + ik) # 0 for |s + ik| < |og| + ¢. Now let u be such that the rays
{y+tC(y,n) : t <0}, (y,m) € supp ¥,=,, do not meet a neighborhood of (J,,; K. In this case we
repeat the procedure in Section 7 in [I1] and Section 4 in [I3] to construct an asymptotic solution
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wy(z,t; k,n) of the wave equation for ¢ < 0 with supp wy(z,t;.,.) C {(z,t); t < 0} starting with
oscillatory boundary data

(2m) NGy (y) h(—t)e F WDy € supp E,.

We express (y,n) by the trace of the phase function ¢_ ‘F_ related to the incoming directions and
J

we consider for |z| < po the Laplace transform

o0

Wy (z, sk, m) —/ e*'w,(z,t; k,m)dt, s € Dy.

—00
Next, we define Z,,(z, s; k,n) by (8.5) using the outgoing parametrix Sy(s) and deduce the estimates
(8.4). Finally, we introduce

My
s F =Y [ Zuosskom)Z, (0 () F )k dy
pn=1

and conclude that Uy (s; k)F is analytic for s € Dy and satisfies

(Ay — s)Ui(s;k)F =0, x € Qj,
Ui(s;k)F|p = Fi + Li(s; k) F.

As above, exploiting the estimates (8.4), we obtain
L1 (55 k) F |l z2ry < Cark™ || F| 2y, s € Da,

and

N—-1
[UL(s; k) F| Crrk 2 [[F| 2 (8.6)

o <
L2@Qn{lz|<R}) —
Now we pass to the analysis of the term F5 in the elliptic region. Let Z:lj be a small neighborhood
of Kj and let U; = U; \ K;. Following [SV], Appendix A. 4, we construct a parametrix H, :

C=(supp G) — C*°(U,) as a Fourier integral operator with complex phase function 3(x,7) and
big parameter k having the form

N-1 o
(Hoay(ws) = (52) [ P 0mDa(a . Kyuy)dyd,
2T

so that

(A — s2)Heu = Kou, o € U;,

He“‘rj = Op(Gx2)u, ’
where LN

_1 .
Op(Gx2)u = (g) / T8I G ()Xo (n)u(y) dydn.

The last operator is defined for u € C°°(T';) but it can be prolonged to F' € L*(T;) since the symbol

x2(n) € S((]?(’)O) (see Proposition A.L 6 in [G]).
Assume that locally the boundary I'; is given by the equation xzny = 0 and let locally U; C
{xn > 0}. To satisfy the equation (A, — s?)H.u = 0 modulo negligible terms, we must choose @

so that
s

Vol =~(2)" =2 ¢lp, =tz (87)
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For |s + ik| < |og| + ¢ we see that v = 1 + O(k™1) is a complex parameter close to 1 and we may
repeat the argument in Appendix A. 4 in [SV] and Appendix A. II. 4 in [G] to construct ¢ with
the properties

Im @(x,m) > corn(1+ 1), co > 0, [Re gz, n)] < (1 + |n)).
The phase ¢ satisfies the eikonal equation modulo O(«%’), the amplitudes satisfy the corresponding

transport equations modulo O(z%?) and a(x,n, k) € 587’8. Notice that the sign of Im@(x, n) is related
to the choice £k > 0. We have

Re(ik(@(z,n) = (y,m)) ) = ~kIm @z, 1) < —cokan(1 + [n])
and the integral H.F is convergent for zy > 0 and F € L%(Y). Moreover, we have

sup afre 0rNIHMD < ¢ (1 4 |n)T™ET™, Vm e N
zn>0
and this implies that the kernel of K, is in C°°(U; x supp G) and we obtain K, = O(|k|=>)
uniformly with respect to xy € [0, €].
Next, let W(x) € C§°(U;) be a cut-off function such that ¥(z) = 1 in a small neighborhood of
K. Define

Us(s; k)F = [\IJH — So(s) (\IIK A, \IJ]H)} F.
Then Us(s; k) F satisfies

(A — s2)Ua(s;k)F =0, z € SO), s € Dy,
Us(s; k)F | = Fo + Lo(s; k) F,

but Us(s; k) F' is not analytic with respect to s which will not be important for the proof of Theorem
2 below. On the other hand, the trace on I' of Sp(s)[A, W]H.F is negligible and the same is true
for the trace of So(s)WKF. Thus, ||La(s; k)F|| 2y < Cark ™| F|| 12y, VM € N. Moreover, we
have the estimate

1U2(s5 k) Fll 22, {jz1<ry) < C2rIIF L2y (8.8)
which is a consequence of L? estimates of WH.F and [A, U] H.F. In fact, the estimate of ||[A, U] H F|| ;2
is easy since ¥ = 1 in a neighborhood of Q; and the kernel of [A, ¥]H, is in C’OO(Uj x supp G).
To estimate | WH.F'|| 12, we observe that for small xy > 0, H. is a Fourier integral operator with
non-degenerate phase function of positive type ¢(z,y,n) = ¢(x,n) — (y,n) (see Definition 25.4.3 in
[H]). Thus, we can estimate

[(HeF)(@n, - 8 8) | L2 @ynfan=21) < BIF L2

uniformly with respect to z € [0,¢] (see Theorem 25.5.6 in [H]) and this leads to (8.8). Finally,
introduce

Ly (s;k)F =Uy(s; k)F + Ui (s; k)F + Ua(s; k) F
and conclude that

2
Ly(s;k)Flr = F+ Y Li(s;k)F = F + Qy (s; k) F
=0

with

1Qy (s; k) F | p2ry < By k™M =D/2 e Bl 1 0.
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By using a partition of unity on I', we define an operator

L(s;k) : L*(T) o f — L(s; k)f € C*™(Q)

and deduce that L(s;k)f satisfies

(Ay — )L(s, k) f =0, 7 € Q,
L(s,k)f € L*(Q), for Re (s) > 0,
L(s,k)F|. = f + Q(s; k) f

with
1Q(s; k) fll poqry < Bl MEN=D/2Fe g

Choosing ky sufficiently large, the operator I +Q(s; k) : L?(I') — L?(T') is invertible for s € Dy and
k > k1. We define

R(s.k)f = L(ss k)T + Q(s: k)" f + LA(T) — C™()

and it is clear that R(s,k)f for s € D; satisfies (8.1).

Proof of Theorem 2. Given g € L2(S?2) and x € 080(53) with supp x C {|z| < p}, p > po, by
(6.3) we obtain So(s)(xg) € H'(|z| < p) and this yields [So(s)(xg)]|. € H'2(T). Setting s = iz,
consider for Im (z) < 0

v = 50(i2) (xg) — R(iz, k) ([S0i2) (x| ) (8.9)
Then for the cut-off resolvent R, (z) introduced in Sect. 1 we get

Ry(2)(xg) = xv, Im (2) < 0.

The operators xSy (iz)x and R, (z) admit respectively analytic and meromorphic continuation from
Im(z) <0to{z€C:Im(z) <—o1, Re(z) < —Ji}, where —J; = min{—J, |og| + ¢ — k1 }. Thus,
xR(iz, k) ([Sg(iz)(xg)]‘r> is also meromorphic in this domain and to show that it is analytic for

iz € D, it suffices to prove that this operator is bounded. For iz € D; this follows from the

estimates (8.2), (8.6), (8.8) above and we obtain a polynomial bound for ||XR(iz,k:)||L2(F) 2@

Consequently, R, (z) admits an analytic continuation and we get (1.7) for Re (2) < —J; < 0. Next
to cover the case Re (2) > J; > 0, we can use the fact that the poles of R, (z) are symmetric with
respect to iR™ or repeat the argument with k¥ << 0. m

To obtain Corollary 1 we establish the estimate

[1Bx (2 <C(L+ )"t z €8,

HL(Q)—L2(2) —

where m € N is the integer in (1.7) and L € N, L > m. The proof goes repeating that in the
non-trapping case (see Theorem 1 in [TZ]) and we omit the details. ®
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9. APPENDIX A : STABLE AND INSTABLE MANIFOLDS FOR OPEN BILLIARDS

Let zp = (xo,up) € S*(€2). For convenience we will assume that o ¢ K. Assume that the
backward trajectory v—(zo) determined by zy is bounded, and let n € ¥, be its itinerary.

Given € RY and ¢ > 0, by B(z,¢€) we denote the open ball with center 2 and radius € in RY.

In this section we use some tools from [I3] to construct the local unstable manifold* Wi (zo) of
2o in S*(Q2) and show that it is Lipschitz in zp (and 7). In a similar way one deals with local stable
manifolds.

Notice that if the boundary T' of K is only C* (k > 2) the C* smoothness below should be
replaced by C*.

Proposition 4. There exists a constant €y > 0 such that for any zy = (xg,up) € SgkO(QﬂBo) whose
backward trajectory v—(z9) has an infinite number of reflection points X; = X;(20) (j < 0) and
n € X, is its itinerary, the following hold:

(a) There exists a smooth (C™) phase function ¢ = 1, satisfying part (i) of the condition (P)
onU = B(x,€0) N such that (xo) = 0, ug = Vi(z0), and such that for any x € Cy(xo) NUT ()
the billiard trajectory v—(xz, Vi (x)) has an itinerary n and therefore d(¢(z, Vip(x)), ¢e(20)) — 0 as
t — —oo . That 1is,

Wite(z0) = {(2. V(@) : & € Cylao) NUT (1)}
is the local unstable manifold of zy. Moreover, for any p > 1 there ewists a global constant C, > 0
(independent of zo and n) such that

[Vl (U) < Cp . (9.1)

(b) If (y,v) € S*(Q2N By) is such that y € Cy(xo) and y—(y,v) has the same itinerary n, then
v=V(y), i.e (y,v) € W (20)-

(c) There exist a constant o € (0,1) depending only on the obstacle K and for everyp > 1 a
constant Cp, > 0 such that for any integer r > 1 and any (,n € ¥, with ; = n; for —r < j <0,
we have ||[Vip, — Ve |,(V) < Cpa”, where V.= U(py) NU(Y¢).

Proof. (a) Take ¢y > 0 so small that whenever (z,u) € 5;0/2(QOBO) and (y,v) € S*() is such
that ||z — y[| < €o and [[u — v|| < e we have (y,v) € Sj (). Then define U as in part (a) above.

Set,d—m = [|X—mi1 — Xom|| and u_, = % € S»7! (m > 1). Given any integer
m > 1, consider the linear phase function (™ = (™" in Q such that V(™ = u_,, and
(X ) = —(d_yy +d_py1+ ... +d_1). Then define

Ui = = B, o B0 Bt o B (™)

m N—m+1
Clearly ¢£,T ) is a smooth phase function defined everywhere on U (in fact, on a much larger subset
of Q) with w&n ) (Xo) = 0. Moreover, it follows from Proposition 2 in Sect. 2 above that
IV = Vo lo@) < Cpa™ , m=1 (9.2)
for some global constant C, > 0 depending only on K and p. Here we use the fact that ||V1/J(m) —
Vw(m“)ﬂ(p) < C, due to the special choice of the phase functions ¥(™ and ™+ Since

wy(ﬁn)(Xo) = wgy_ﬁl)(XO) = 0, it now follows that there exists a constant C;, > 0 such that

4Notice that Wiée(20) and W (z0) (see Appendix C) coincide in a neighborhood of zo.
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||w,(nm) (x) — wgﬁtl)(:n)H < Cpa™ for x € U N By . This implies that for every x € U there ex-
ists ¥(z) = limpy—oo w,(ﬁn)(x). Now (9.2) shows that v is C*°-smooth in ¢ and

V5™ = VlU) < Cpa™ , m>1. (9.3)

In particular, |V || = 1 in Y. Extending ® in a trivial way along straight line rays, we get a phase
function v satisfying part (i) of the condition (P) in U.

Let us now show that W = {(z, Vi)(2)) : © € Cy(xo) NUT(¢)} is the local unstable manifold
of zg. Given z € Cy(zg) NUT(¢) sufficiently close to z¢ and an arbitrary integer r > 0, consider

the points X 7" (x, 7(717)) € 0K,_, for m > r. By Proposition 1 in Sect. 2 above, there exist
global constants C' > 0 and « € (0,1) such that || X" (=, ﬁén)) - X*T(as,wg,l/))ﬂ < Ca™ " for
m’ > m > r . Thus, there exists X" = lim,;, oo X " (z, 1[J£nm)) € 0K,_, and

X7 (2, ™) = X" <Ca™" | m>r. (9.4)

It is now easy to see that {X 7 };?’;0 are the successive reflection points of a billiard trajectory in Q2

and this is the trajectory v_(x, V4). The backward itinerary of the latter is obviously 1. Moreover,
(9.3) implies d(¢¢(x, Vi)(z)), ¢i(20)) — 0 as t — —o0, so (z, Vi(x)) € W (20).

Finally, by (2.1), |5 ||y @) < Cp [[9™)]| ) < Cp , and combining this with (9.3) gives (9.1).
(b) Let (y,v) € S*(Q2) be such that y € Cy (o) and v—(y, v) has the same itinerary 7. Define the

phase functions gp%n ) and ©(™) as in part (a) replacing the point zg = (o, ug) by z = (y,v), and let
o(x) = limy,— 00 ol (z). Then by part (a), we have W} (2) = {(z, Vi (x)) : z € C,(y) NUT(¢)}.

On the other hand, it follows from Proposition 2 that there exist constants C' > 0 and « € (0, 1)
such that HV@Z)q(nm) - Vgpq(fln)ﬂ < Ca™ for all m > 0, which implies ¢ = . Thus, v = Vop(y) =
Vip(y) € Wig.(20)-

(c) Choose the constants a € (0,1) and Cp, >0 (p=1,...,k) as in part (a). Let {,n € ¥, be
such that ¢; = n; for all —r < j < 0 for some r > 1. Construct the phase functions 1/1%” M and
5 (m > 1) as in part (a); then v, = limpy oo 5™, the = limpy oo 5. Tt follows from
Proposition 2 that ||V (™" — V(|| < C,a”. Combining this with (9.3) with m = r for n and
then with 7 replaced by ¢, one gets

IV = Vel < 1V = VP 4 [V — Vg9 4+ | VO — V]| < Cpa”

This proves the assertion. ®

10. APPENDIX B : CONSTRUCTION OF A PHASE FUNCTION SATISFYING THE CONDITION (P)

Consider a local representation zy = h(y) of the boundary I'; with y = (y1,...,ynv—1) € W C
RN~1. We wish to construct a phase function o(x;n) such that

oy, My);n) = (y,n), (y,h(y)) €U, n=(m,....,nN-1),

U being a small neighborhood of a fixed point xzy € I'; so that ¢(x;n) satisfies the conditions
(1) — (4i7) of Sect. 8. Assume that |n| < 1 — p, where 0 < p < 1. It is convenient to consider
a little more general problem with boundary data given by a smooth function x(y) such that
|IVyx(y)| <1 —pfor y € W. We will construct a phase function ¢(z) such that

e(y,h(y) =x(y), ye W, (10.1)



52 V. PETKOV AND L. STOYANOV

omitting the dependence on 7 in the notation. From the boundary condition (10.1) we determine
the derivatives of ¢ on the boundary I'j. Set ¢, = (©y1s -, Pyn_1), Py = (hyrs s hyy 1)y Xy =

(Xy1» - Xyn_1)- We have oy + pg hy = Xy, S0 setting ¢z, = /1 — |¢y|? and solving the system
Py 14/ 1 — |py|?hy = xy

(1- |‘Py|2)|hy’2 = ‘Xy‘Z + |80y‘2 - 2<Xy780y>-

2<Xya‘/7y> + 2\/ 1- |‘10y‘2<hany> = 2|Xy’2 )
(14 1Ry ) (1 = 10y [) = 2(hy, xy)\ /1 = 1oy 2 + xy* = 1 = 0.

Consequently, for ¢, = /1 — |¢y|? we obtain
1
S 2 Z v |2 2
o 1(0)) = = (s o) /S (L= (1 [yf)).

Now it is easy to see that we have the condition

we get

On the other hand,

which gives

(Vo) () > do > 0, 2 = (3, h(y)) € U. (10.2)
In fact in local coordinates = = (y, h(y)) the outward normal to I'; is given by
1
v(x) =

ViEaTmEi

and we deduce

1
(Ve(z),v(z)) = ST [(1 + |hy ) oy — <hy7Xy>} > /1= Ixyl? > V21— p?2 >0,
y
By using (10.2) and a standard argument, we can solve locally the eikonal equation |V (z)| = 1
with initial data

oy, h(y)) = x(v),

Vap(y, h(y)) = (soy(y,h(y)),som(y, h(y))), (y,h(y)) € U.

This argument works for local boundary condition x(y) = (y,n), |n] < 1 —§1/2, and we obtain a
phase function ¢(z;n), x = (y,h(y)), y € W. As in [I3],[B], we show that the principal curvatures
of the wave front

Ge(2) = {y € RV : o(yin) = (1)}
are strictly positive for every z = (y, h(y)) € U.

In order to satisfy the condition (P) on I';, we will construct a suitable continuation of p(x;n).
For this purpose fix a point g = (yo, h(yo)) € U. Without loss of generality, we can assume that
¢(x0;n) = 0. Consider a sphere Sy passing through z¢ with center O in the interior of K so that
the unit outward normal vy of Sy at xg coincides with V(xg;n).

Choosing local coordinates (8, 2(0)), # € W C RN~ on Sy, let Zg = {(0,2(0)) : |0 — o] <
2e} C Sp be a small neighborhood of z¢ = (6, 2(6p)). Consider the trace ®(6) = (6, 2(0)) of ¢ on
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Z0. (We omit again the dependence on 7 in the notation.) Since ®(6p) = 0 and Vg®(6y) = 0, we
have

[B(0)] < Coe?, [Ve®(0)] < Cie, 0 € Zy.
Choose a smooth cut-off function a(f), 0 < «(f) < 1, such that a(#) = 1 for |#—60y| < €/2, () =0
for |0 — 0y > € with |[Vea| < Cae™ L. Set x(0) = a(0)®@(6). Then for small € > 0 we have

IVox(0)] < (CoC2+Cr)e<1—pu<1.
By the above procedure we construct a phase function ¥(z) so that W(6, z(6)) = x(0), |6 —6o| < 2e.
For 2/ = {(0,2(0)) : € <0 — 0| < 2€} C Ey, it is easy to see that V,¥|_, coincides with the unit
normal vy to Sp. Thus if x = 2 4+ try(z), t > 0 with 2z € Z', we have ¥(x) = ¢t and for such z the
phase ¥(z) coincides with the phase function ¥(z) defined globally in a neighborhood of Sy and
having boundary data \Tf(x) = 0, Vx € Sy. Consequently, we may consider \TJ(:L‘) as a continuation
of U(z), so ¥(x) is defined globally outside a small neighborhood of the center O of Sy lying in
the interior of K. It is clear that ¥ satisfies the condition (P) on Sp. On the other hand, for
=1 =1(6,2(0)) : |0 — 0] < €/2} we have \If‘El = 90’51 and locally in a neighborhood of xy the
phases ¥(z) and () coincide. Thus, we can consider ¥(x) as a continuation of ¢(x).

11. ApPPENDIX C: DOLGOPAYT TYPE ESTIMATES FOR OPEN BILLIARDS

Here we first state the assumptions about the billiard flow and the non-wandering set A under
which the results in [St4] imply the Dolgopyat type estimates (3.3). Following [PS2], we then explain
how to apply these in the situation described in Sect. 6 above. Full details of the arguments can
be found in [PS2].

For z € A and a sufficiently small € > 0 let

We(x) = {y € 57(Q) : d(de(x), ¢e(y)) < efor all £ >0, d(de(x), $e(y)) =100 0},
Y

(), ot
W (x) ={y € 57(Q) : d(di(x), di(y)) < efor all £ <0, d(di(z), dr(y)) —t--0c 0}
be the (strong) stable and unstable manifolds of size e. Then E"(z) = T,W(x) and E*(x) =
T,W5(z).
The following pinching condition® is one of the assumptions mentioned above:

(P): There exist constants C > 0 and 0 < o < 3 such that for every x € A we have
1
&€ lull < llddu(z) -ull < CeP ull -, ue E'z) t>0,

for some constants oz, By > 0 depending on x but independent of u and t with o < ay < B, < 0
and 20, — B > « for all z € A.

Notice that when N = 2 this condition is always satisfied. For N > 3, some general conditions
on K that imply (P) are given in [St5]. According to general regularity results, (P) implies that
W (z) and W2 (z) are Lipschitz in x € A. In fact, it follows from [Ha2] (see also [Hal]) that
assuming (P), the map A 3 z +— E%(z) is C'*¢ with € = 2inf,cp(a,/B:) — 1 > 0, in the sense that
this map has a linearization at any « € A that depends (uniformly Holder) continuously on x. The

same applies to the map A > x — E%(x).

ot appears that in the proof of the estimates (3.3), in the case of open billiard flows (and some geodesic flows),
one should be able to replace the condition (P) by just assuming Lipschitzness of the stable and unstable laminations
— this will be the subject of some future work.
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Next, we need some definitions from [St4]. Given z € A, let expy : E"(z) — Wg(z) and
exp; : E°(z) — W¢ (2) be the corresponding exponential maps. A vector b € E¥(z) \ {0} will be
called tangent to A at z if there exist infinite sequences {v(™} € E¥(z) and {t,,} C R\ {0} such
that exp®(t,, v(™) € ANW(z) for all m, v™ — b and t,, — 0 as m — co. It is easy to see that
a vector b € E%(z) \ {0} is tangent to A at z if there exists a C! curve z(t) (0 <t < a) in W(2)
for some a > 0 with z(0) = 2z and 2(0) = b, and z(t) € A for arbitrarily small ¢ > 0. In a similar
way one defines tangent vectors to A in E*(z).

Denote by da the standard symplectic form on T*(RY) = RY x RV, The following condition
says that da is in some sense non-degenerate on the ‘tangent space’ of A near some its points:

(ND): There exist zo € A, € > 0 and po > 0 such that for any 2 € ANWE(20) and any unit vector
b € E“(2) tangent to A at % there exist Z € AN Wk¥(2g) arbitrarily close to Z and a unit vector
a € E%(Z) tangent to A at Z with |da(a,b)| > po.

Remark 6. Clearly the above is always true for N = 2. It was shown very recently in [St5] that
for N > 3 this conditions is always satisfied for open billiard flows satisfying the pinching condition

(P).

It follows from the hyperbolicity of A that if € > 0 is sufficiently small, there exists § > 0 such
that if 2,y € A and d(z,y) < 6, then Wi(x) and ¢_. (W (y)) intersect at exactly one point
[z,y] € A (cf. [KH]). That is, there exists a unique t € [—¢, €] such that ¢;([x,y]) € W (y). Setting
A(z,y) = t, defines the so called temporal distance function. Given E C A, we will denote by
Intp (E) and OpE the interior and the boundary of the subset E of A in the topology of A, and by
diam(F) the diameter of E. Following [D], a subset R of A will be called a rectangle if it has the
form R=[U,S] ={[z,y] : x € U,y € S}, where U and S are subsets of W*(z) N A and W2 (z) NA,
respectively, for some z € A that coincide with the closures of their interiors in W*(z) N A and
Ws(z) NA.

Let R = {R;}}¥_, be a Markov family of rectangles R; = [U;, S;] for A (see e.g. [Bol], [D] or
[St4] for the definition). Set R = U¥ | R; , denote by P : R — R the corresponding Poincaré map,
and by 7 the first return time associated with R. Then P(z) = ¢,(,)(7) € R for any x € R. Notice
that 7 is constant on each stable fiber of each R;. We will assume that size x = max; diam(R;)
of the Markov family R = {Ri}le is sufficiently small so that each rectangle R; is between two
boundary components I'), and I'y, of K, that is for any x € R;, the first backward reflection point
of the billiard trajectory ~ determined by x belongs to I'j,, while the first forward reflection point
of v belongs to I'y,.

Moreover, using the fact that the intersection of A with each cross-section to the flow ¢; is a
Cantor set, we may assume that the Markov family R is chosen in such a way that

(i) for any i = 1,...,k we have 0p\U; = 0.

Finally, partitioning each R; into finitely many smaller rectangles if necessary and removing
some ‘unnecessary’ rectangles from the family formed in this way, we may assume that

(ii) for every = € R the billiard trajectory of z from z to P(z) makes exactly one reflection.

From now on we will assume that R = {R;}¥_, is a fixed Markov family for ¢; of size x < €0/2
satisfying the above conditions (i) and (ii). Set

U=uk,U;.
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The map 6 : U — U is given by 6 = 7Y) o P, where 7(U) : R — U is the projection along stable
leaves.

Let A = (.Aij)ﬁj:l be the matrix given by A;; = 1 if P(R;) N R; # () and A;; = 0 otherwise.
Consider the symbol space

Ya={(ij)j2:1<i; <k, A =1 forall j},
")), where

with the product topology and the shift map o : ¥4 — X given by o((i;)) = ((4]
z; = 441 for all j. As in [Bol] one defines a natural map ¥ : ¥4 — R . Namely, given any
(i§)72 oo € XA there is exactly one point z € R;, such that PI(z) € R;, for all integers j. We then
set W((ij)) = . One checks that ¥ oo =P oWV on R. It follows from the condition (i) above that
the map ¥ is a bijection.

In a similar way one deals with the one-sided subshift
Sh =)0 : 1 <ij <k, Ay 4, =1 forall >0},

ij Gj41

where the shift map o : Zj\ — Ej is defined in the same way. There exists a unique map
P Zj\ — U such that o = 70 o U, where 7: X4 — Ej\ is the natural projection.

Notice that the roof function r: ¥ 4 — [0, 00) defined by r(§) = 7(¥(£)) depends only on the
forward coordinates of { € X 4. Indeed, if {4 = n4, where {4 = ()72, then for x = ¥({) and
y = U(n) we have z,y € R; for i = & = 1o and P’(z) and P/(y) belong to the same R;; for all
j > 0. This implies that = and y belong to the same local stable fibre in R; and by condition (ii),
it follows that 7(z) = 7(y). Thus, r(£) = r(n). So, we can define a roof function r : &3 — [0, 00)
such that romr =70 W,

Let B(X,) be the space of bounded functions g : ¥ — C with its standard norm |[|glo =
SUWPgeyt 19(€)|. Given a function g € B(S},), the Ruelle transfer operator Lq: B(X}) — B(ZY)

is defined by (Lgh)(n) = >, ()¢ e9h(n) . Denote by CHP(U) the space of Lipschitz functions

h:U — C, and for h € CUP(U) let Lip(h) denote the Lipschitz constant of h. For t € R, |t| > 1,
define
Lip(h)
I
Given a real-valued function g on Ej‘ with goyp~! € CLip(U ), there exists a unique number
s(g) € R such that Pr(—s(g)r + ¢g) = 0. Notice that if G : A — C is a continuous function such
that (go =t o n())(z) = fg(w) G(¢¢(x)) dt (x € R), then s(g) = Pry, (G), the topological pressure
of G with respect to the flow ¢ on A (see e.g. Ch. 6 in [PP]).
The following is an immediate consequence of the main result in [St4], taking into account the
particular considerations for open billiard flows in [St5].

1hllLip,e = l[2llo +

» |[hllo = sup |h(z)] .
zelU

Theorem 4. Assume that the billiard flow ¢, over A satisfies the conditions (P) and (ND). Let
g : EZ — R be such that g o p~' € CYP(U). Then there exist constants a > 0, to > 1,
o(g) < s(g), C >0 and 0 < p < 1 so that for any s = 7 + it with 7 > o(g), |7| < a and
t| > to, any integer n > 1 and any function v : ¥ — C with voyp~! € CUP (1), writing
n=plloglt|]] +1, peN, 0 << [logl|t|]] — 1, we have

(L7 g ) 00 HLipy < CoPlo8 T 9 1 0 0=, (11.1)

Remark 7. Another way to state the above estimate is the following ([D], [St4]): For every
g: E:z — R with goy™! € CLIP(U) and every € > 0 there exist constants 0 < p < 1, ag > 0
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and C > 0 such that for any integer m > 0, any s = 7+ it € C with || < ag, |t| > 1/ap and any
function v: X — C withvoy™' € CHMP(U) we have

| (£T5r+g U) © @Z’_lHLip,t <Cp" |t lvo @Z’_lHLip,t .

In the remaining part of this section, following [PS2], we show how to apply the Dolgopyat
type estimates (11.1) to obtain the estimates of ||LyGs¥s|lr,0 required in Sect. 5. The problem
is that the operator Ly acts on C(Ejg), that is, it is related to the coding of billiard trajectories
by means of the components of K, while the Dolgopyat type estimates apply to Ruelle transfer
operators L_g14 defined by means of Markov families and acting on functions v such that v o 1
is Lipschitz with respect to the standard metric in the phase space. Here we describe how the two
types of Ruelle transfer operators relate, and show that the function (Gs@) o1p~! is Lipschitz. This
makes it possible to apply (11.1).

Apart from the coding described above, we can also use the coding of the flow over A by using
the boundary components of K described in Sect. 3 above. We will use the notation from there,
notably f(£), g(€), n™ for any k = 1,... ko, e(€), x5 = X1, Xg = X2, f(€) and §(£). Define the
map © : 4 — Ao = AN S5(Q) by D€) = (RoE), (PL(E) — Po(€)/IPA(E) — Pol&)). Then @ is
a bijection such that ® o 0 = B o ®, where B : Agg — Agk is the billiard ball map. As before,
given any function G € B(X}), the Ruelle transfer operator L¢ : B(X}) — B(XY) is defined by
(LaH)(€) = X = € H(n) -

Let w : Vo — S5, (€Q) be the backward shift along the flow defined in Sect. 3 on some
neighborhood Vp of A in S*(£2). Consider the bijection S = ® lowoW : ¥ 4 — ¥ 4. Its restriction
to Ej\ defines a bijection S : Zj‘ — Ej. Moreover Soo = 008. Define the function ¢’ : ¥4 — R
by (1) = 9(S(0). | |

Next, for any ¢ = 1,...,k choose j(l) = (...,j(_zzn,...,j(_l)l) such that (j(z),i) € ¥, Itis

convenient to make this choice in such a way that i(i) corresponds to the local unstable

manifold U; C AN WH(z;), i.e. the backward itinerary of every z € U; coincides with i(i). Now

for any i = (ig,i1,...) € S% (or i € $4) set &) =

A'(io), we then have U(é(i)) = ¢ (i) € U;,. (Notice that without the above special choice
)

;10,91,...) € X4 . According to the

choice of j
we would only have that W(é(z)) and (i) € Uj, lie on the same stable leaf in R;,.) Next, define
o

Xg(1) = Z [¢'(6"(i)) — ¢’ (o™ é(i))] for i € £ 4. As before, the function § : ¥4 — R given by
n=0

G(i) = ¢'(i) — X4(2) + Xg(0 i) depends on future coordinates only, so it can be regarded as a function
on E:’[‘.

We will now describe a natural relationship between the operators Ly : B (Zj‘) — B (Ej\) and
L, : B(X}) — B(X}) with v appropriately defined by means of V.

First define I' : B(X4) — B(X4) by I'(v) =vo® lowoW¥ =voS. Since by property
(ii) of the Markov family, w : R — Ayx is a bijectiion, it follows that T' is a bijection and
IY(V) =VoU¥low!od Moreover, I induces a bijection I' : B(X}) — B(X}) . Indeed,
assume that v € B(X ) depends on future coordinates only. Then vo®~1 is constant on local stable
manifolds in S%(£2). Hence v o ® ! ow is constant on local stable manifolds on R, and therefore
I'(v) =vo® ! owo V¥ depends on future coordinates only.
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Next, let v,w € B(X}) and let V =T'(v), W = T'(w). Given i,j € X7 with o(j) = 4, setting
§=8(i) and n = S(j), we have o(n ) = ¢. Thus,

Lwvi) = 3 MOV = 3D S0 y(S(j)) = Lyo(e)
o(j)=i o(j)=i
for all i € X7, This shows that (Lyv) 0 S = Ly I'(v).
The equality
Pr(—7r+g) = Pr(—7f +3) (11.2)
and the following proposition are established in Section 3 in [PS2].

Proposition 5. Assume that the map A > x — WH(x) is Lispchitz. Then there exist Lipschitz
functions 61,09 : U — R such that setting 04(i) = eV @I+20Q) e pape

(L7, 7. pu) (S@) = 5;) Ly (B @ed)) ) . iexjseC.  (113)

for any u € C(ZD and any integer n > 1.
Combining (11.1), (11.2), (11.3), we deduce the following

Theorem 5 ([PS2]). Assume that the billiard flow ¢, over A satisfies the conditions (P) and (ND).
Then there exist constants a > 0, tg > 1, 09 < sg, C' > 0 and 0 < p < 1 so that for any
s=T1+it € C with T > oo, |7| < a, |t| > to, any integer n > 1 and any function u : ¥ — R
with wo S op~' € CHP(U), writing n = pllog|t|]] +1, pe N, 0 <1 < [log|t|]] — 1, we have

H(L”ng >o$o¢_l‘ < O pPlos e PTI40) [0 8 0 Y| Lip.- (11.4)

The estimate (3.3) is a consequence of (11.4) and it could hold even if the assumption (P) is
not fulfilled (see Remark 6 above for (ND)).

Next, for the needs of Sect. 5 above, we have to estimate HLﬁSerggsﬁsHp,o, where the operator

Lip,t

Gs is defined in Sect. 3. For any integer n > 0 we have

L 5, . Gsv(6) = Z Z e8P Fn (1) =07 (G8)=s 1O+ ()
o"n=§ o(=n
= Z e~ 8 Fnt1(O+gn+1(¢) e—¢+(475)v(0 LTL_}Jrg( —¢+('75)U) (€) .
onHic=¢
Thus, it is enough to estimate HL”'F;+ (e=® 9 5.)|Iro. As in Sects. 3-5 above, we will consider

these operators over I'y.
Given s € C, consider the functions ws : Uy — R and w; : Ejl — R defined by

ws(#) = we($(D) = (i) = e E05(6)
for x = 1(i) € Uy, i € ¥, € = S(i). In order to use the Dolgopyat type estimate (3.3), we have to
show that w;y is Lispchitz on U;. We will deal in details with

wl (z) = 8 Tatol (" e@)=F (€)=s9(Qo(©) p(Qy(€)) ;

in a similar way one can deal with wl? ( )=e€" Yilola(0"e(€) =91 ()] Tt follows from the definitions
of ¢7 (€, s) and ¥, in Sect. 3 that wy(z) = w (z) w?(

ws () ws™ ().
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Fix an arbitrary point y; € A such that 77(1) € X, corresponds to the local unstable manifold
Wi (y1), i.e. the backward itinerary of every z € W2 (y1) N Vo coincides with nM. It follows from
the Lipschitzness of the stable and unstable laminations that the map Hy : Uy — W} (y1) defined
by H1(2) = ¢A(zy,)([2,y1]) is Lipschitz. Here A is the temporal distance function defined in the
beginning of this section.

Next, consider the N-dimensional submanifold X = {(q,q+tVp(q) : ¢ € T1, 0 <t} of S*(RY)
and the (stable) holonomy map H : Wi (y1) N A — X defined by H(y) = W} (y) N X. Since
¢ satisfies Ikawa’s condition (P), it is easy to see that Wy (y) is transversal to X, so H(y) =
Wi (y) N X is well-defined for y € W (y1) N A. Moreover, it follows from our assumtions that
the stable (and unstable) holonomy maps for the billiard flow ¢; are Lipschitz. In particular, H is
Lipschitz.

We can now write down wgl)(x) using the maps H and H; as follows. Given x € U;, we have
x = (i) for some i € Ej‘, with 79 = 1. Setting £ = S(i), we then have {x = 1. For any integer
m > 1 consider

m—1
Bn = > [f(c"e(€)) = £;T(&)] — 0(Qu(€)) -
n=0
) € W (y1) and z = H(y), we have that z € W} (y), and moreover w(z) =
)). Thus, Qo(§) = pri(w(z)) = pri(w(H(Hi(x)))) is Lipschitz in x € U;. Next,
) — pry(w(w))[; then u = ¢c()(w(y)) and e(u) is a smooth function on an open
where w is defined and takes values in S} (Q2)). For B, we have

By =00™) + €(y) — €(2) — p(w(2)) = O0™) + €e(y) — ¢(2) ,
and letting m — oo we get
ng(a;) — Sl —¢(2)] h(w(z)) = esle(Hi(z))—p(H(Hi(2)))] h(w(H(H1(2)))) ,

Setting y = H1(
(Qo(€), Ver(Qo(&
set €(u) = [|pry(
subset of S*(§2)

8

~—

<

—~

(1)

so ws ' (z) is Lipschitz in = € U;. Moreover, for z € U; and bounded Re(s) we obtain an uniform

(1)

bound for the Lipschitz norm of ws ’(x). The same argument works for w? (x).
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