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Talence, FRANCE
petkov@math.u-bordeaux1.fr

Abstract. We examine the memorphic continuaiton of the cut-off resolvent
Rχ(z) = χ(U(T, 0)− z)−1χ, χ(x) ∈ C∞

0 (Rn), where U(t, s) is the propagator
related to the wave equation with non-trapping time-periodic perturbations
(potential V (t, x) or a periodically moving obstacle) and T > 0 is the period.
Assuming that Rχ(z) has no poles z with |z| ≥ 1, we establish a local energy
decay and we obtain global Strichartz estimates. We discuss the case of trap-
ping moving obstacles and we present some results and conjectures concerning
the behavior of Rχ(z) for |z| > 1.
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1 Introduction

In this talk we present a survey of some recent results concerning two problems
for the wave equation with time-periodic perturbations. The first one is the
Cauchy problem with time-periodic potential

{

∂2
t u−∆u+ V (t, x)u = F (t, x), (t, x) ∈ R × R

n,

u(τ, x) = f0(x), ut(τ, x) = f1(x), x ∈ Rn,
(1)

where the potential V (t, x) ∈ C∞(Rn+1), n ≥ 2, satisfies the conditions:

(H1) there exists R0 > 0 such that V (t, x) = 0 for |x| ≥ R0, ∀t ∈ R,

(H2) V (t+ T, x) = V (t, x), ∀(t, x) ∈ Rn+1 with T > 0.
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Consider the homogeneous Sobolev spaces Ḣγ(Rn) = Λ−γL2(Rn), where
Λ =

√
−∆ and −∆ is the Laplacian in Rn and set Ḣγ(R

n) = Ḣγ(Rn) ⊕
Ḣγ−1(Rn) The solution of (1) with F = 0 is given by the propagator

U(t, τ) : Ḣγ(R
n) ∋ (f0, f1) −→ U(t, τ)(f0, f1)

= (u(t, x), ut(t, x)) ∈ Ḣγ(R
n).

Let U0(t) = eitG0 be the unitary group in Ḣγ(R
n) related to the Cauchy

problem (1) with V = 0, F = 0, τ = 0 and let U(T ) = U(T, 0). Let χ, ψ1

be functions in C∞
0 (Rn) such that χ(x) = ψ1(x) = 1 for |x| ≤ R0 + T. We

suppose also that

(1 − ψ1)U(0, s)Q(s) = 0, 0 ≤ s ≤ T, (2)

where

Q(s) =
(

0 0
V (s, x) 0

)

.

Consider the cut-off resolvent

Rχ(θ) = χ(U(T ) − e−iθI)−1ψ1 : Ḣ1(R
n) 7→ Ḣ1(R

n),

where Im θ ≥ A > 0, −π < Re θ ≤ π and ψ1 is fixed. We show that Rχ(θ)
admits a meromorphic extension in C for n ≥ 3, n odd, and to

C
′

= {θ ∈ C : θ 6= 2πk − iµ, µ > 0, k ∈ Z}

for n ≥ 2, n even. The poles of Rχ(θ) play an essential role in the problems
of local energy decay, global Strichartz estimates, trace formulae and blow up
of the local energy (see [7], [1], [2], [15], [21]).

The second problem we deal with is the Dirichlet problem for the wave
equation outside a time-periodic moving obstacle. Let Q ⊂ Rn+1, n ≥ 3, be
an open domain with C∞ smooth boundary ∂Q. Set

Ω(t) = {x ∈ R
n : (t, x) ∈ Q},

∅ 6≡ K(t) = {x ∈ R
n : (t, x) /∈ Q} ⊂ {x : |x| ≤ R0}.

We suppose that the obstacle is periodically moving

K(t+ T ) = K(t), ∀t ∈ R, T > 0

and for each (t, x) ∈ ∂Q the exterior unit normal (νt, νx) to ∂Q at (t, x)
satisfies |νt| < |νx|. We study the problem











(∂2
t −∆x)u = 0 inQ,

u = 0 on ∂Q,

u(τ, x) = f0(x), ut(τ, x) = f1(x).

(3)
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The solution is given by a propagator U(t, τ) : H(τ) −→ H(t), where H(t)
is the energy space related to Ω(t) (see [7], [14] for a precise definition). As
above we introduce the monodromy operator U(T ) = U(T, 0) and the cut-off
resolvent Rχ(θ) = χ(U(T ) − e−iθI)−1χ with χ = 1 on {x : |x| ≤ R0 + T }.

We examine the problem of the meromorphic continuation of the cut-off
resolvents Rχ(θ) for time-periodic potentials and non-trapping moving obsta-
cles. In contrast to stationary perturbations, the absence of trapping rays is
not sufficient to guarantee an uniform local energy decay. To obtain the last
property, we must exclude the existence of poles of Rχ(θ) with Im θ ≥ 0 and
for this purpose we introduce the condition (R) in Section 2. In Section 3 we
show that the local energy decay of solutions with initial data having compact
support leads to a L2-integrability of the local energy of solutions with data
in the energy space. This is the crucial point in the proof of global Strichartz
estimates for time-periodic non-trapping perturbations.

The investigation of trapping moving obstacles is more complicated and
many problems are still open. In some recent works (see [3], [4]) it was proved
that for stationary trapping obstacles the cut-off resolvent χ(U(t)−z)−1χ has
a singularity as z → z0, |z| > 1, for every z0 ∈ S and almost all t ∈ R+ (see
Theorem 3). Thus we have not a meromorphic extension across the unit circle
S as in the case of non-trapping perturbations. Moreover, it is not known if for
trapping moving obstacles χ(U(T ) − z)−1χ has a meromorphic continuation
from {z ∈ C : |z| ≥ A≫ 1} to {z ∈ C : eǫT ≤ |z| ≤ A}, ǫ > 0. We conjecture
that for obstacles having at least one δ-trapping bicharacteristic the cut-off
resolvent χ(U(T )−z)−1χ is not meromorphic in {z ∈ C : eǫT ≤ |z|}, 0 < ǫ < δ
(see Section 5 for the notations).

2 Resonances for time-periodic potentials

In this section we study the problem (1) and U(t, s) denotes the corresponding
propagator. Let ψ ∈ C∞

0 (Rn) be a fixed cut-off such that ψ(x) = 1 for |x| ≤
R0 + T. By a finite speed of propagation argument we get

(1 − ψ)U(T, s)Q(s) = 0, Q(s)U0(s)(1 − ψ) = 0, 0 ≤ s ≤ T. (4)

ForA > 0 large enough and Im θ ≥ A the resolvents (U0(T )−e−iθI)−1, (U(T )−
e−iθI)−1 exist, we have the equality

U(T )−zI =
[

I−ψ
∫ T

0

U(T, s)Q(s)U0(s)dsψ(U0(T )−zI)−1
]

(U0(T )−zI), z = e−iθ

and

(U0(T )−zI)−1 = (U(T )−zI)−1
[

I−ψ
∫ T

0

U(T, s)Q(s)U0(s)dsψ(U0(T )−zI)−1
]

.
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Assume that ψ1 ∈ C∞
0 (Rn) satisfies (2) and let ψ1(x) = 1 on supp ψ. We

take an arbitrary cut-off function χ ∈ C∞
0 (Rn) so that χ = 1 on supp ψ and

multiply the above equality by χ and ψ1 to get

χ(U0(T )−zI)−1ψ1 = χ(U(T )−zI)−1ψ1

[

I−ψ
∫ T

0

U(T, s)Q(s)U0(s)dsψ(U0(T )−zI)−1ψ1

]

.

Introduce the operator

K(z) = ψ

∫ T

0

U(T, s)Q(s)U0(s)dsψ(U0(T ) − zI)−1ψ1.

For n ≥ 3, n odd, the operator ψ(U0(T ) − e−iθI)−1ψ1 admits an analytic
continuation with respect to θ in C and this follows immediately from the
Huygens principle and the expansion

ψ(U0(T ) − e−iθI)−1ψ1 = −
N(ψ,ψ1)

∑

k=0

ψU0(kT )ψ1e
i(k+1)θ

which holds for Im θ ≥ A > 0. On the other hand, the operator K(z) is
compact in Ḣ1(R

n) and an application of the analytic Fredholm theorem leads
to a meromorphic continuation of Rχ(θ) in C. For n even a similar argument
leads to a meromorphic continuation of Rχ(θ) in

C
′

= {z ∈ C : z 6= 2πk − iµ, µ ≥ 0, k ∈ Z},

but the analysis of the analytic extension of ψ(U0(T ) − e−iθI)−1ψ1 in C
′

is
more complicated (see [20], [21], [15]). Thus we have the following

Proposition 1 The cut-off resolvent Rχ(θ) admits a meromorphic continu-

ation in C for n odd and in C
′

for n even.

The time-periodic potentials are non-trapping perturbations. Nevertheless,
some exponentially growing modes could exist. To establish a local energy de-
cay, we introduce the following condition

(R) The operator Rχ(θ) admits a holomorphic extension from {θ ∈ C :
Im θ ≥ A > 0} to {θ ∈ C : Im θ ≥ 0}, for n ≥ 3, odd, and to {θ ∈ C : Im θ ≥
0, θ 6= 2πk, k ∈ Z} for n ≥ 2, even . Moreover, for n even we have

lim
λ→0, λ>0

‖Rχ(iλ)‖Ḣ1→Ḣ1
<∞.

This condition is independent of the choice of χ, ψ1. Let ϕ ∈ C∞
0 (Rn), f ∈

Ḣ1, f = 0 for |x| ≤ R. We denote the norm in Ḣ1(R
n) by ‖.‖ and we use the

same notation for the norm of bounded operators in Ḣ1(R
n).



2 Resonances for time-periodic potentials 5

Theorem 1 ([15]) Assume the condition (R) fulfilled. Then for 0 ≤ s ≤
t, t− s ≥ t0 > 1 we have

‖ϕU(t, s)f‖ ≤ C(n, ϕ,R)p(t− s)‖f‖,

where

p(t) =

{

e−δt, δ > 0, n ≥ 3, odd,

t−1(ln t)−2, n ≥ 2, even.

The local energy decay has been established for n odd, by Bachelot and Petkov
[1] assuming that the Lax-Phillips operator Zb(T ) = P b+U(T )P b−, b > R0 + T
has no eigenvalues z ∈ C, |z| ≥ 1, (see Section 4 for the definition of the
projectors P b±) and by Vainberg [21] for n ≥ 2 assuming a similar condition
for an operator R(θ) having complicated form. The novelty of our approach
is the role of the cut-off resolvent Rχ(θ). It is worth remarking that the re-
solvent of the monodromy operator plays an essential role in the analysis of
time-periodic perturbations of the Schrödinger operator (see for example, [8]).
On the other hand, the link between the poles of Rχ(θ) and the spectrum of
Zb(T ) has been established in [2].

Sketch of the proof. We have the representation

U(t, 0)f = U0(t)f −
∫ t

0

U(t, s)Q(s)U0(s)fds,

and we will deal with

I(ϕ, f) =

∫ t

−∞

ϕU(t, s)Q(s)U0(s)fds

extending U0(s)f as 0 for s < 0. Introduce the Fourier-Block-Gelfand trans-
form

g(θ, s) = F (U0(s)f)(θ, s) =

∞
∑

k=−∞

U0(kT + s)eikθf

which is well defined for Im θ ≥ α > 0.
Applying the inverse transform of F , we are going to examine

J(t) =
1

2π

∫ t

−∞

ϕU(t, s)Q(s)

∫

dα

g(θ, s)dθds,

where dα = [iα − π, iα + π] and α > 0 will be chosen large enough below.
Choose an integer m ∈ Z so that t′ = t−mT ∈ [0, T [. Then J(t) has the form

1

2π

∫ t′

0

ϕU(t′, s′)Q(s′)U0(s
′)

∫

dα

e−imθg(θ, 0)dθds′
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+
1

2π

∞
∑

k=0

∫ −kT

−kT−T

ϕU(t′, s′)Q(s′)

∫

dα

e−imθg(θ, s′)dθds′

= I1(t) + I2(t).

We write I2(t) as follows

∫

dα

∫ T

0

ϕU(t′ + T, 0)χ(e−iθI − U(T ))−1ψ1

×U(0, ξ)Q(ξ)U0(ξ)e
−imθψg(θ, 0)dξdθ,

where χ = 1 on supp ψ and ϕU(t′ + T, 0)(1 − χ) = 0.
Assume n ≥ 3, n odd. Then (R) implies that Rχ(θ) has no poles θ with

Im θ ≥ 0 and we can choose δ > 0 so that Rχ(θ) has no poles θ with Im θ ≥
−δT,−π < Re θ ≤ π. Let d−δT = [−iδT−π,−iδT+π].Recall that t = mT+t′,
so e−mδT ≤ Ce−δt with C > 0 independent of m and t. On the other hand,

ψg(θ, 0) = e−iθψ(e−iθ − U0(T ))−1f, Im θ > 0

and we conclude that ψg(θ, 0) admits an analytic continuation in C. We shift
the contour of the integration from dα to d−δT (see Figure 1) and we obtain

‖I2(t)‖ ≤ C1e
−δt‖f‖, t ≥ 0.

iα− π
iα+ π

−iδT − π −iδT + π

Figure 1

By the same argument we get an estimate for I1(t) and we conclude that

‖ϕU(t, s)f‖ ≤ C(n, ϕ, f)e−δ(t−s)‖f‖, t− s ≥ 1.
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For n even we apply a similar argument by shifting the contour of integration
to a curve γ going around 0 (see [15]). For the analysis of the integral in a
neighborhood of 0 we use the hypothesis on the behavior of Rχ(θ) and a result
of Vainberg [20], to obtain

‖Ik(t)‖ ≤ C2t
−1(ln t)−2‖f‖, t ≥ t0 > 1, k = 1, 2.

We refer to [15] for more details.

3 Strichartz estimates

We say that the real numbers

1 ≤ p̃, q̃ ≤ 2 ≤ p, q ≤ +∞, 0 ≤ γ ≤ 1

are admissible for the free wave equation if the following estimate holds:
For data (f0, f1) ∈ Ḣγ(R

n), F ∈ Lrt (R;Lsx(R
n)) and u(t, x) solution of (1)

with τ = 0, V = 0 we have

‖u‖Lp
t (R; Lq

x(Rn)) + ‖u(t, x)‖Ḣγ
x

+ ‖∂tu(t, x)‖Ḣγ−1
x

≤ C
(

‖f0‖Ḣγ + ‖f1‖Ḣγ−1 + ‖F‖
L

p̃
t (R; Lq̃

x(Rn))

)

(5)

with a constant C = C(n, p, q, p̃, q̃, γ) > 0 independent of t ∈ R. We refer to
Lindblad-Sogge [11] and Keel-Tao [12] and to the references given there for
global Strichartz estimates for the free wave equation and to [18] for some
results for perturbations depending only of t.

Notice that if q, q̃′ < 2(n−1)
n−3 , then p, q, p̃, q̃, γ are admissible if the following

conditions hold:
1

p
+
n

q
=
n

2
− γ =

1

p̃
+
n

q̃
− 2,

1

p
≤

(n− 1

2

)(1

2
− 1

q

)

,
1

p̃′
≤

(n− 1

2

)(1

2
− 1

q̃′

)

.

Theorem 2 ([15]) Let the condition (R) be fulfilled and let 1 ≤ p̃, q̃ ≤ 2 ≤
p, q ≤ +∞, 0 ≤ γ ≤ min{1, (n − 1)/2}, p > 2 be admissible for the free
wave equation. Moreover, if n is even assume that p̃ < 2. Then for data
(f0, f1) ∈ Ḣγ(R

n), F ∈ Lp̃t (R; Lq̃x(R
n)) and u(t, x) solution of (1) with τ = 0

we have the estimate

‖u‖Lp
t (R; Lq

x(Rn)) + ‖u(t, x)‖Ḣγ
x

+ ‖∂tu(t, x)‖Ḣγ−1
x

≤ C
(

‖f0‖Ḣγ + ‖f1‖Ḣγ−1 + ‖F‖
L

p̃
t (R; Lq̃

x(Rn))

)

(6)

with a constant C = C(n, p, q, p̃, q̃, γ) > 0 independent of t ∈ R.

Sketch of the proof. The proof is based on the following propositions.
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Proposition 2 ([15]) Assume (R) fulfilled and 0 ≤ γ ≤ min{1, (n−1)/2}. Let
(f0, f1) ∈ Ḣγ(R

n) and let F ∈ L2
t (R; Ḣγ

x (Rn)) be supported in {x : |x| ≤ R}.
Then for every fixed ϕ ∈ C∞

0 (Rn) the solution u(t, x) of (1) with τ = 0 satisfies
the estimate

∫ ∞

−∞

‖(ϕu(t, x), ϕ∂tu(t, x))‖2
Ḣγ(Rn)

dt

≤ C(n, ϕ,R)
(

‖f0‖Ḣγ(Rn) + ‖f1‖Ḣγ−1(Rn) + ‖F‖L2
t(R;Ḣγ

x (Rn))

)2

.

Proposition 3 ([19], [15]) Let (p, q, p̃, q̃, γ), f0, f1, F be as in Theorem 2. Let
u0(t, x) be the solution of (1) with τ = 0, V = 0. Then for every ϕ ∈ C∞

0 (Rn)
we have

∫ ∞

−∞

‖(ϕu0(t, x), ϕ∂tu0(t, x))‖2
Ḣγ(Rn)

dt

≤ C(n, ϕ)
(

‖f0‖Ḣγ + ‖f1‖Ḣγ−1 + ‖F‖
L

p̃
t (R;Lq̃

x(Rn))

)2

.

For n odd and 1 ≤ p̃ ≤ 2 Proposition 3 has been established in [19]. To
obtain the L2-integrability of the local energy in Proposition 2, we use the
local energy decay given by Theorem 1 and for this purpose we need the
condition (R). To prove the estimate (6), we write the solution of (1) as a
sum u = u0 + v, where u0 is the solution of the problem

{

(∂2
t −∆)u0 = F,

u0|t=0 = f0, ∂tu0|t=0 = f1,

while v is the solution of the problem

{

(∂2
t −∆+ V )v = −V u0,

v|t=0 = ∂tv|t=0 = 0.

Applying Proposition 3 for V u0, we obtain the estimate

‖V u0‖L2
t (R; Ḣγ

x (Rn)) ≤ C0

(

‖f0‖Ḣγ + ‖f1‖Ḣγ−1 + ‖F‖
L

p̃
t (R; Lq̃

x(Rn))

)

. (7)

In fact, choosing a function β ∈ C∞
0 (Rn) such that β = 1 on suppx V (t, x),

we have
‖V (t, x)u0‖Ḣγ

x (Rn) ≤ Cγ,V ‖βu0‖Ḣγ
x (Rn).

The estimate of ‖u0‖Lp
t (R; Lq

x(Rn)) follows form (5). Next we have

v(t, x) = −
∫ t

0

sin((t− s)Λ)

Λ
(V u0 + V v)(s, x)ds.

The function V u0 satisfies the estimate (7) and by Proposition 2 applied to
the equation (∂2

t −∆+ V )v = −V u0 we deduce
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‖V u0 + V v‖L2
t (R; Ḣγ

x (Rn)) ≤ C1

(

‖f0‖Ḣγ + ‖f1‖Ḣγ−1 + ‖F‖
L

p̃
t (R; Lq̃

x(Rn))

)

. (8)

We wish to show that

∥

∥

∥

∫ t

0

sin((t− s)Λ)

Λ
(V u0+V v)(s, x)ds

∥

∥

∥

L
p
t (R+; Lq

x(Rn))
≤ C2‖V u0+V v‖L2

t (R+; Ḣγ
x (Rn)).

(9)
Following the argument of [19], we conclude that the operator

T : Ḣ−γ(Rn) ∋ g 7→ βe±itΛg ∈ L2
t (R

+; Ḣ−γ
x (Rn))

is bounded. The adjoint operator

(T ∗G)(x) =

∫ ∞

0

e∓isΛβG(s, x))ds

is bounded as an operator from L2
t (R

+; Ḣγ
x (Rn)) to Ḣγ

x (Rn) and this yields

∥

∥

∥

∫ ∞

0

e±isΛβh(s, x)(s, x)ds
∥

∥

∥

Ḣγ(Rn)
≤ C2‖h‖L2

t(R
+; Ḣγ

x (Rn)). (10)

Consider the integral operators

J : L2
t (R

+; Ḣγ
x (Rn)) ∋ h(t, x) −→

∫ t

0

K(s, t)h(s, x)ds ∈ Lpt (R
+; Lqx(R

n)),

where K(s, t) = Λ−1 sin((t − s)Λ)β. To apply Christ-Kiselev lemma [6], it is
sufficient to have an estimate for

∥

∥

∥

∫ ∞

0

sin((t− s)Λ)

Λ
βh(s, x)ds

∥

∥

∥

L
p
t (R+;Lq

x(Rn))
.

By (5) and (10), we get

∥

∥

∥
e±itΛΛ−1

∫ ∞

0

e±isΛβh(s, x)ds
∥

∥

∥

L
p
t (R+; Lq

x(Rn))

≤ C3

∥

∥

∥

∫ ∞

0

e±isΛβh(s, x)ds
∥

∥

∥

Ḣγ−1(Rn)
≤ C2C3‖h‖L2

t(R
+; Ḣγ

x (Rn)).

We take h = V u0 + V v and we use the addition formula for sin((t− s)Λ)
to conclude that

∥

∥

∥

∫ ∞

0

sin((t− s)Λ)

Λ
(V u0+V v)ds

∥

∥

∥

L
p
t (R+;Lq

x(Rn))
≤ C4‖V u0+V v‖L2

t(R
+; Ḣγ

x (Rn)).

(11)
By hypothesis p > 2, so an application of Christ-Kiselev lemma [6] yields im-
mediately (9). Consequently, (8) implies an estimate for ‖v‖Lp

t (R+;Lq
x(Rn)) and,

similarly, we deal with the norm ‖v‖Lp
t (R−;Lq

x(Rn)). To estimate ‖v(t0, x)‖Ḣγ (Rn
x )

uniformly with respect to t0, notice that
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∥

∥

∥
e±itΛΛ−1

∫ t0

0

e±isΛ(V u0 + V v)(s, x)ds
∥

∥

∥

Ḣγ (Rn)

≤ C5

∥

∥

∥

∫ t0

0

e±isΛ(V u0 + V v)(s, x)ds
∥

∥

∥

Ḣγ−1(Rn)

with a constant C5 > 0 independent of t0. As above, we can estimate the
right hand part by ‖V u0 + V v‖L2

t(R; Ḣγ
x (Rn)) uniformly with respect to t0 and

apply (8). A similar argument works for ‖∂tv(t0, x)‖Ḣγ−1(Rn
x ) and the proof of

Theorem 2 is complete.

4 Non-trapping moving obstacles

Throughout this and the following sections we assume that n is odd. To make
a precise definition of non-trapping obstacles we must consider the general-
ized bicharacteristics of the wave operator � = ∂2

t − ∆x determined as the
trajectories of the generalized Hamiltonian flow Fσ in Q related to the sym-
bol

∑n
i=1 ξ

2
i − τ2 of � (see [13] for a precise definition). In general, Fσ is not

smooth and in some cases there may exist two different integral curves issued
from the same point in the phase space. To avoid this situation, we assume
that for every (t, x, τ, ξ) ∈ T ∗(Q) \ {0} the flow Fσ is uniquely determined.
To deal with a continuous flow, following [13] we consider the compressed
cotangent bundle T̃ ∗(Q) which for (t, x) ∈ ∂Q can be identified with

T ∗
t,x(Q)/Nt,x(∂Q),

Nt,x(∂Q) being the fiber of the formers vanishing on Tt,x(∂Q).

Thus given ρ = (t, x, τ, ξ) ∈ T̃ ∗(Q) \ {0} = Ṫ ∗(Q), there exists a unique
generalized (compressed) bicharacteristic γ(σ) = (t(σ), x(σ), τ(σ), ξ(σ)) ∈
Ṫ ∗(Q) such that γ(0) = ρ and we define Fσ(ρ) = γ(σ) for all σ ∈ R (see
[13]). We obtain a flow Fσ : Ṫ ∗(Q) −→ Ṫ ∗(Q) which is called also general-
ized geodesic flow on Ṫ ∗(Q). The projections of the compressed generalized
bicharacteristics on Q are called generalized geodesics.

Definition. The obstacle Q is called non-trapping if for each R > R0

there exists T (R) > 0 such that there are no generalized geodesics of � with
length TR lying entirely in Q ∩ {(t, x) : |x| ≤ R}.

Let P b± be the orthogonal projections on the orthogonal complements of
the Lax-Phillips spaces

Db
± = {f ∈ Ḣ1 : U0(t)f = 0, |x| < ±t+ b,±t > 0},

where U0(t) is the unitary group introduced in Section 1. Set
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Zb(T ) = P b+U(T, 0)P b−.

Following the general results of propagation of singularities (see [13]), it is not
difficult to show that if Q is non-trapping, given a function ϕ ∈ C∞

0 (Rnx) with
supp ϕ ⊂ {x : |x| ≤ a}, a ≥ R0, the operator ϕU(t, 0)P a− : H(0) −→ H(t) for
t > 4a+T4a is compact (see [7], [14]). In fact, set M(t, s) = U(t, s)−U0(t−s)
and let Φ ∈ C∞

0 (Rn) be a cut-off such that Φ = 1 for |x| ≤ 3a, Φ = 0 for
|x| ≥ 4a. Then for t > 4a+ T4a we have

ϕU(t, 0)P a− = ϕM(t, t− 2a)ΦU(t− 2a, 2a)ΦM(2a, 0)P a−

and the operator at the right hand side is compact. Next we take a = R0 and
by a similar argument choosing kT > 4a+ T4a, we deduce that the operator
(Za(T ))k is compact. This implies that the spectrum of the operator Za(T )
is discrete with finite multiplicity. For b ≥ a we can use the same argument
and show that (Zb(T ))m(b) is compact with some integer m(b) ∈ N depending
of b. Consequently, the spectrum of Zb(T ) is also discrete and with finite
multiplicity. According to [7], the eigenvalues of Zb(T ) and their multiplicities
are independent of b. Next given a cut-off χ ∈ C∞

0 (Rn) such that χ = 1 for
|x| ≤ R0, supp χ ⊂ {x : |x| ≤ b}, b > a, we deduce P b±χ = χ = χP b±. It is
clear that for |z| ≥ A≫ 1 we have

χ(Zb(T ) − z)−1χ = χ(U(T ) − z)−1χ.

The left hand side admits a meromorphic continuation for |z| ≤ A and the
same is true for the cut-off resolvent χ(U(T ) − z)−1χ, hence the poles of
χ(U(T ) − z)−1χ are between the poles of (Zb(T ) − z)−1 which are indepen-
dent of b.

To prove that the poles of χ(U(T )−z)−1χ coincide with those of (Zb(T )−
z)−1, we apply with some modification an argument used in [3] for stationary
obstacles. Choose a function ψ ∈ C∞

0 (Rn) so that ψ = 1 for |x| ≤ R0+1, ψ = 0
for |x| ≥ R0 + 2 and consider the operator

Lψ(g, h) =
(

0, 〈∇xψ,∇xg〉 + (∆ψ)g
)

.

In particular, we define Lψ(U(t, s)f) and Lψ(U0(t)f) and will write simply
LψU(t, s) and LψU0(t). It is easy to see that we have

(1 − ψ)U(t, 0) = U0(t)(1 − ψ) +

∫ t

0

U0(t)LψU(t, s)ds, (12)

U(t, 0)(1 − ψ) = (1 − ψ)U0(t) +

∫ t

0

U(t, s)LψU0(s)ds. (13)

An application of these equalities yields
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U(t, 0) =U(t, 0)ψ + (1 − ψ)U0(t) +

∫ t

0

ψU(t, s)LψU0(s)ds

+

∫ t

0

U0(t− s)(1 − ψ)LψU0(s)ds+

∫ t

0

∫ t−s

0

U0(τ)LψU(t− s, τ)LψU0(s)dτds

= ψU(t, 0)ψ + U0(t)ψ(1 − ψ) + (1 − ψ)U0(t) +

∫ t

0

ψU(t, s)LψU0(s)ds

+

∫ t

0

U0(s)LψU(t, s)ψds+

∫ t

0

U0(t− s)(1 − ψ)LψU0(s)ds

+

∫ t

0

∫ t−s

0

U0(τ)LψU(t− s, τ)LψU0(s)dτds.

Let g ∈ C∞
0 (BR0+3) be a cut-off function equal to 1 on BR0+2. We choose the

projectors P b± so that

P b±ψ = ψ = ψP b±, P
b
±g = g = gP b±.

Next we fix b > 0 and the projectors P b± with these properties and will write
P±, Z(T ) instead of P b±, Z

b(T ). Note that gLψ = Lψ = Lψg and let T0 > 0
be chosen so that P+U0(t)P− = 0 for t ≥ T0. For A large enough and z ∈
C, |z| ≥ A, we have

(Z(T ) − z)−1 = −
∞
∑

j=0

z−j−1P+U(jT, 0)P−.

Now we apply the above representation of U(jT, 0) for P+U(jT, 0)P−, j ∈ N,
and write

(Z(T ) − z)−1 = ψ(U(T ) − z)−1ψ

−
∑

jt≤T0

z−j−1P+U0(jT )ψ(1 − ψ)P−

−
∑

jT≤T0

z−j−1P+(1 − ψ)U0(jT )P−

+

∫ T0

0

P+U0(s)Lψ(U(T ) − z)−1ΦU(0, s)ψP−ds

+

∫ T0

0

P+ψ(U(T ) − z)−1ΦU(0, s)LψU0(s)P−ds

−
∑

jT≤T1

∫ min(jT,T0)

0

z−j−1P+U0(jT − s)(1 − ψ)LψU0(s)P−ds

+

∫ T0

0

∫ T0

0

P+U0(τ)LψU(−s, 0)Φ(U(T ) − z)−1Φ

× U(0, τ)LψU0(s)P−dτds +G(z)
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with an operator G(z) holomorphic for z 6= 0. Here Φ is a cut-off function
with compact support determined by the finite speed of propagation so that

(1 − Φ)U0(t)g = 0 and (1 − Φ)U(t, τ)g = gU(t, τ)(1 − Φ) = 0

for |t| ≤ 2T0, 0 ≤ τ ≤ T0. The terms given by finite sums are holomorphic
operators with respect to z 6= 0. Choose a function Ψ ∈ C∞

0 (|x| ≤ c + 1)
equal to 1 for |x| ≤ c and fix c > b large enough. Thus we conclude that if
Ψ(U(T ) − z)−1Ψ is analytic in a neighborhood of z0, 0 < |z0| < A, the same
is true for (Z(T ) − z)−1, hence Ψ(U(T ) − z)−1Ψ and (Z(T ) − z)−1 have the
same poles. The analysis of the multiplicities of the corresponding poles is
more difficult and we refer to [2] for the results in this direction.

To study the local energy decay for non-trapping obstacles, we can follow
the approach in [7] (see also Chapter 6 in [14]). In fact, assume that Ψ(U(T )−
z)−1Ψ has no poles z ∈ C, |z| ≥ 1, for a cut-off function Ψ given above. Then
choosing b > R0 large enough, we get

σ(Zb(T )) ∩ {z ∈ C : |z| ≥ 1} = ∅,
where σ(L) denotes the spectrum of the operator L. The same property of
σ(Za(T )) holds for all a ≥ R0 and we deduce

‖Za(t, s)‖ ≤ Cae
−δa(t−s), t ≥ s (14)

with Ca > 0, δa > 0 independent of t and s. Thus given a function f ∈ H(s)
with supp f ∈ {|x| ≤ R} and ϕ ∈ C∞

0 (Rn), ϕ = 1 for |x| ≤ R0, we conclude
that

‖ϕU(t, s)f‖H(t) ≤ C(ϕ,R)e−γ(t−s)‖f‖H(s), t ≥ s

with γ > 0 independent of t and s. For this purpose we choose suitably b and
apply (14) with a = b.

Finally, to establish the L2-integrability of the local energy, we exploit (13)
and using the notations in (13), we write

U(t, 0)f = U(t, 0)ψf + (1 − ψ)U0(t)f +

∫ t

0

U(t, s)Lψu0(s)ds.

The estimate of
∫ ∞

0
‖ϕU(t, 0)ψf‖2

H(t)dt is trivial, while for

∫ ∞

0

∥

∥

∥

∫ t

0

ϕU(t, s)Lψu0(s)ds
∥

∥

∥

2

H(t)
dt

we apply Young’s inequality. Thus we obtain
∫ ∞

0

‖ϕU(t, 0)f‖2
H(t)dt ≤ C(ϕ)‖f‖2

H(0).

Under the condition that we have no poles z ∈ C with |z| ≥ 1 of the cut-
off resolvent, we can obtain Strichartz estimates modifying the arguments of
Section 3.
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5 Trapping moving obstacles

First let us consider a stationary obstacle K(t) = K, ∀t ∈ R and set Ω =
Rn \K. Let U(t) = eitG be the unitary group related to the Dirichlet problem
(2) in R × Ω and let H = HD(Ω) ⊕ L2(Ω) be the energy space (see [10]).
Let χ ∈ C∞

0 (Rn) be a cut-off function equal to 1 on K and let Rχ(λ) =
χ(−∆D − λ2)−1χ be the cut-off resolvent of the Dirichlet Laplacian ∆D in
Ω which is bounded in L2(Ω) for Imλ > 0. For non-trapping obstacles K we
have the estimate (see for instance, [20])

‖λRχ(λ)‖L2(Ω)→L2(Ω) ≤ C, ∀λ ∈ R. (15)

On the other hand, the existence of at least one trapped ray leads to the
following

Proposition 4 ([4]) If the generalized compressed Hamiltonian flow Fσ in
R ×Ω is continuous and if we have at least one (generalized) trapping ray in
Ω, then

sup
λ∈R

‖λRχ(λ)‖L2(Ω)→L2(Ω) = +∞. (16)

Proof. Our hypothesis imply the existence of a sequence of ordinary reflecting
rays γn with sojourn times Tγn

→ ∞ (see for instance, [13]) and we may apply
the result of Ralston [17] which says that we have not an uniform decay of
local energy. On the other hand, according to the results in [22], the uniform
decay of the local energy is equivalent to (15) and we deduce that the estimate
(15) fails. Consequently, we get (16).

The existence of one trapping ray γ leads to several results (see [3], [4])
which hold without having any knowledge of the geometry ofK outside a small
neighborhood of γ. In particular, we are interested on the analytic properties of
the cut-off resolvent of the monodromy operator U(T ) introduced in Section 1.
Since a stationary obstacle K is periodic with period every t > 0, it is natural
to study the analytic properties of the cut-off resolvent Ψ(U(t) − z)−1Ψ with
Ψ ∈ C∞

0 (|x| ≤ c+ 1), Ψ = 1 for |x| ≤ c, where c > R0 is large and fixed. For
trapping obstacles we cannot obtain a meromorphic continuation across the
unit circle S1 and we have the following

Theorem 3 ([3]) Assume the obstacle K stationary and the condition (16)
fulfilled. Then for almost all t ∈ R+ and all z0 ∈ S1 we have

lim
z→z0, |z|>1

‖Ψ(U(t) − z)−1Ψ‖H→H = +∞.

The proof is based on the following idea. Taking b ≥ c+1, we have P b±Ψ = Ψ =
ΨP b±, where P b± have been introduced in the previous section. Consider the
Lax-Phillips semigroup Zb(t) = P b+U(t)P b−. We fix b with the above property
and for simplicity of the notations we write Z(t) instead of Zb(t). Let B be
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the generator of Z(t), that is Z(t) = etB. Therefore, it is easy to see that the
condition (16) implies

sup
λ∈R

‖(iB − λ)−1‖H→H = +∞.

By applying a result of I. Herbst [9], we deduce that for almost all t ∈ R+ we
have the inclusion

S
1 ⊂ σ(Z(t)). (17)

Next we obtain a representation of (Z(t) − z)−1, |z| > 1, as a sum of terms
involving the cut-off resolvent

Ψ

∞
∑

j=0

z−j−1U(jt)Ψ = −Ψ(U(t) − z)−1Ψ

as we have done this for the operator Z(T ) and the propagator U(T, 0) in the
previous section. Consequently, if the norm of Ψ(U(t) − z)−1Ψ has a limit as
z → z0 ∈ S1, |z| > 1, we obtain a contradiction with (17).

Passing to trapping moving obstacles, introduce the normal speed of ∂Q
by

v(z) =
νt(z)

|νx(z)|
νx(z)

|νx(z)|
.

Given a point z = (t, x) ∈ ∂Q, and a bicharacteristic

γ = (t(σ), x(σ), τ(σ), ξ(σ)) ∈ T ∗(Q)

reflecting at z, denote the incident direction of γ by −ξi

τi
and the reflecting

direction by −ξr

τr
with |ξi|2 = τ2

i , |ξr|2 = τ2
r . Then τr = µ(z)τi and

µ(z) =
(1 − 2|v(z)| cosϕ+ |v(z)|2)

(1 − |v(z)|2)−1
> 0,

where 0 ≤ ϕ ≤ π is the angle between −ξi

τi
and v(z). We say that a bicharacter-

istic (ray) γ issued from (s, y, τ, η) ∈ Ṫ ∗(Q) with infinite number of reflection
points zj ∈ ∂Q, j ∈ N, at times tj → ∞ is δ-trapping if

∏

0≤tj≤t

µ(zj) ≥ Ceδt, t ∈ [0,∞], δ > 0. (18)

It turns out that for stationary obstacles we have always µ(z) = 1 and the
existence of δ-trapping rays is possible only for trapping moving obstacles.
Next we consider a example examined by Popov and Rangelov.

Example. (see [16]) Let K(t) = O1 ∪ O2(t),
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O1 ∩ O2(t) = ∅, O2(t+ T ) = O2(t), ∀t ∈ R.

Suppose that for all t the obstacles O1 and O2(t) are strictly convex and set

d(t) = dist
(

O1,O2(t)
)

, d1 = min d(t), d2 = max d(t).

Assume that the obstacle K(t) and its exterior normal satisfy the hypothesis
in Section 1 and the conditions:

(i) d1 < T/2 < d2,

(ii) there exists y1 ∈ ∂O1 and y2(t) ∈ ∂O2(t) so that

d(t) = |y1 − y2(t)|, ∀t ∈ R,

(iii) the normal speed v(t, y2(t)) of O2(t) vanishes only if d(t) = di, i = 1, 2.

We have |d′(t)| < 1 and by our assumptions there exists s0 > 0 so that
d(s0) = T/2, d′(s0) < 0. We choose s < s0 and set y = y2(s0)+ (s− s0)ω, ω =
y2(t)−y1
|y2(t)−y1|

. The bichracteristic γ(σ) = (t(σ), x(σ), τ(σ), ξ(σ)) issued from

(s, y, 1 − ω) has an infinite number of reflections at zk = (tk, xk), k ∈ N,
with

tk = s0 + (k − 1)T/2, x2k−1 = y2(s0), x2k = y1

and

µ(z2k) = 1, µ(z2k+1) =
1 + |d′(s0)|
1 − |d′(s0)|

> 1.

Moreover, γ(σ) is δ-trapping with

δ =
1

T

(

ln(1 + |d′(s0)|) − ln(1 − |d′(s0)|)
)

> 0.

The following general result of Popov and Rangelov leading to solutions with
exponentially growing local energy can be considered as a generalization of
that of Ralston [17] for stationary obstacles.

Theorem 4 ([16]) Assume that there exists a δ-trapping bicharacteristic γ(σ)
issued from (s, y, τ, η) ∈ Ṫ ∗(Q). Then for every neighborhood W of y in Ω(s)
and every 0 < ǫ < δ there exists f = (f0, f1) ∈ H(s) with supp f ⊂W so that
for R ≥ R0 + T we have

‖U(t+ s, s)f‖HΩ(t+s)∩{|x|≤R}
≥ C(ǫ, s, f)eǫt, t ∈ [s,∞[, (19)

‖.‖HΩ(t+s)∩{|x|≤R}
being the energy norm over Ω(t+ s) ∩ {|x| ≤ R}.

In particular, the above result shows that if we have a δ-trapping bicharacter-
istic γ(σ), then the spectral radius of Zb(T ) = P b+U(T, 0)P b− for b > R0 + T
is greater or equal to eδT .

Following the argument of the previous section, we may compare the
analytic singularities of (Zb(T ) − z)−1 and those of the cut-off resolvent
Ψ(U(T ) − z)−1Ψ, where Ψ ∈ C∞

0 (|x| ≤ c + 1) and c > R0 is large enough
and fixed.
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Theorem 5 Under the hypothesis of Theorem 4 for every 0 < ǫ < δ the
cut-off resolvent of the monodromy operator

Ψ(U(T ) − z)−1Ψ

has not an analytic continuation from {z ∈ C : |z| ≥ A≫ 1} to

{z ∈ C : eǫT ≤ |z| ≤ A}.

The analysis of the spectrum of Z(T ) = Zb(T ) for |z| > 1 is an open
problem. We conjecture that the existence of a δ-trapping bicharacteristic
implies that (Z(T ) − z)−1 has not a meromorphic continuation in

{z ∈ C : eǫT ≤ |z| ≤ A}, 0 < ǫ < δ.

More precisely, we expect that the continuous spectrum of the operator Z(T )
is not empty. In this direction it is interesting to note that for two strictly
convex disjoint stationary obstacles Ki, i = 1, 2, for almost all t ∈ R+ we have
the inclusion (17). In fact, a more stronger result holds.

Theorem 6 ([4]) Let K = K1∪K2, where Ki, i = 1, 2, are strictly convex and
disjoint and let Ω = R

n \K. Consider the semigroup Zb(t) = P b+U(t)P b−, b >
R0, where U(t) is the unitary group related to the Dirichlet problem (3) in
R ×Ω. Then for almost all t ∈ R+ we have

{z ∈ C : |z| ≤ 1} = σ(Zb(t)). (20)
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