RESONANCES FOR MAGNETIC STARK HAMILTONIANS IN TWO
DIMENSIONAL CASE

MOUEZ DIMASSI AND VESSELIN PETKOV

ABsTrACT. We study the resonances of the two-dimensional Schrodinger operator Pi(B;f3) =
(De —By)®+ D} +Bx+V(z,y), B> 0,3 > 0, with constant magnetic and electric fields. We define
the resonances of Pi(B;3) and the spectral shift function £(X) related to Pi(B; ) and Py(B; ) =
Py (B;3) — V(z,y) without any restriction on B and . For strong magnetic fields (B — o) we
obtain a representation of the derivative of £(\), a trace formula for tr(f(Pi(B;3)) — f(Po(B;B)))
and an upper bound for the number of the resonances lying in {z € C : |[Rz — (2n — 1)B| <
aB, Imz > plm#}, 0 < a <1, 0 < p <1 Im6b < 0. Moreover, for B — oo we examine the
free resonances domains and show that the resonances are included in the neighborhoods {z € C :
|Rz—(2n—1)B| < Co}, where (2n—1) B are the Landau levels and Co > 0 is a constant independent
on B and n € N =N\ {0}.

1. INTRODUCTION

The two-dimensional Schrodinger operator with homogeneous magnetic and electric fields can
be written in the form

0

57

where B and [ are proportional to the strength of the homogeneous magnetic and electric fields.
In this paper we study the spectral shift function of the pair (P, (B; ), Py(B;3)), where

Py(B; B) = (Dy — By)? + D} + Bz
and V € C®°(R?;R). We assume that there exists e > 0 so that
102,V (@, )] < Cala)™>(y) ™%, Vay, (L.1)

P(B;B) = (Dy — By)* + D + Bz + V(z,y), D, =—i

where (X) = (14 |X|?)'/2.
The essential spectrum of P;(B;0) and Py(B;0) are the same and it is well known that the
spectrum of the operator Py(B;0) is given by

Ui {(2n — 1) B}.

The numbers A\, = (2n — 1)B, n € N* = N\ {0}, called Landau levels, are eigenvalues of infi-
nite multiplicity (see [2]). Outside the Landau levels we have discrete eigenvalues caused by the
potential V. The presence of electric field creates resonances which will be characterized as the
eigenvalues of a distorted operator.

The spectral properties of the 2D Schrédinger operator P (B;0) have been intensively studied
in the last ten years. In the case of perturbations the Landau levels ), become accumulation
points of the eigenvalues of P;(B;0) and the asymptotics of the function counting the number of
the eigenvalues lying in a neighborhood of A, have been examined by many authors in different
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aspects. For recent results the reader may consult [25], [17], [14], [18], [26], [23] and the references
given there. We would like to mention that it seems difficult to obtain a trace formula involving
some summation over the eigenvalues close to a Landau level (see [22] for a result in this direction).

For the 2D Schrédinger operator with crossed magnetic and electric fields (8 # 0) the situation
completely changes and oess(Py(B; 5)) = dess(P1(B; 8)) = R. For decreasing potentials the operator
Py (B; ) can have embedded eigenvalues A € R, but this question seems not sufficiently investi-
gated. From physical point of view, it is expected that V (z,y) creates resonances z € C, Im z < 0,
and it natural to define and to study the spectral shift function (SSF) £(X) related to Pi(B;0)
and Py(B; /). There are only few works treating magnetic Stark resonances. The case B — oo
was studied in [32], while the case § — 0 has been examined in [12], [13]} (see also [19], [20],
[31], [33]). In these works the authors study mainly the resonances close to the eigenvalues of the
non-perturbed operator Py(B; ). Moreover, in [32], the complex scaling and the definition of the
resonances for B — oo lead to some difficulties when we try to show that there are no resonances z
with Imz > 0 and this was an open problem in [32]. We can define SSF following the general setup
[34], but to our best knowledge the SSF for magnetic Stark Hamiltonians has not been investigated,
as well as there are no trace formulae involving the resonances lying in a compact domain in C.

In this work we are strongly inspired by the recent progress in the analysis of the resonances,
SSF and trace formulae for Schrédinger operators (see [28], [29], [30], [24], [4], [6], [8], [10], [11]).
In this direction the role played by the SSF is very important and it was shown in [4] how many
applications as Weyl asymptotics of SSF, trace formulae and Breit-Wigner approximations, can
be deduced from a representation of the derivative of SSF as a sum of harmonic measures related
to resonances z with Im 2z < 0, Dirac measures associated to embedded eigenvalues z € R and, a
harmonic function. In [11] we have followed this strategy for Stark Hamiltonians without magnetic
fields (B = 0). In this paper we study the connexions between the resonances and the SSF for
magnetic Stark Hamiltonians and our main goal is to show that the derivative £'(\) has the same
representation as that mentioned above. Assuming 5 = 0, in the 3D case a representation of SSF
has been obtained in [5].

In Section 2 we define the SSF for P;(B; ) and Py(B; ) without any restriction on B and /.
Next without a restriction on the generality, we assume throughout the paper that 5 = 1 and we
will use the notations

P1(B) = P1(B;1), Py(B) = Bo(B;1).
To define the resonances, we will suppose that V admits a holomorphic extension in the z-
variable into the domain
[5,={2€C: 0<|Imz| <d}
for some g > 0. We assume also that for some € > 0 we have the estimates
0%V (z,y)| < Col|Ra|) 2 (y) 1€, for 2 € Ty, y € R, Ve (1.2)

In Section 3, by using a complex scaling in z-direction, (z,y) — (z + 60, y), we introduce the
dilated operators
P;(B,0) = U, ' P;(B)Uy, j =0,1,
where for 6 € R we consider the unitary operator

Uy : L*(R*) — L*(R?), f — f(z+6,y)
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and for 6 € D(0,6y) C C we extend P;(B,0) (see Lemma 1 in Section 3). The notations P;(B, )
makes no confusion with the notations P;(B;/) given above since f = 1. The resonances are
defined as the eigenvalues of the dilated operator P; (B, ) (see Section 3 for more details) and in
this direction we follow the previous works on Stark Hamiltonians [1], [16] (for a more complete
list of references see [11]).

Denote by Res P;(B) the set of resonances of P;(B). In Sections 4-6 we study the strong
magnetic fields characterized by B — oco. Denote by &(A, B) the spectral shift function related to
operators P (B), Py(B). Let 0 < « <2, 0 < a1, 0 < g < 1 be fixed and let

Q,={z€C:|Rz—-—2n+1)B|<aB, yB >Imz > pImb}.
Let 2 C Q, and let W be an open relatively compact subset of Q. Suppose that J = QNR, I = WNR

are intervals. Our main result is the following

Theorem 1. Assume that V satisfies the assumption (1.2). Then for B large enough and X € T
we have the representation

1 —Imw
! —
€\ B) = _lmr(\,B) + > TR > 5\ — w), (1.3)
weResI(Plg))nn, wEopp(P1L(B))NJ
where r(z, B) is a function holomorphic in 2 and
Ir(z,B)| < C(W)B, z € W. (1.4)

We like to stress that this representation of the derivative of £(B, \) is the same as that es-
tablished for operators with perturbations which decay to 0 as |z| — oo ([4], [24]) and for Stark
Hamiltonians without magnetic field [11]. As an application we obtain a local trace formula com-
pletely similar to those in [30], [24], [11] This formula follows immediately from Theorem 1 (see
[24]).

Theorem 2. Assume that V satisfies the assumption (1.2). Let
QC{zeC:Imz>plmb},0<pu<1

be an open, simply connected, relatively compact such that I = QN R is an interval. Suppose that
[ is holomorphic on a neighborhood of Q0 and that ¢ € C§°(R) satisfies

(0, dist(I,A) > 2,
v(Y) —{ 1, dist (I, \) < n,

where n > 0 is sufficiently small. Then for B large enough we have
1

w|N@EB)| = Y &)+ o, (15)

I=0 e Res PL(B)NQ
where [%’]}:0 =a; —ay and
|Ea, el < M, Q)sup {|f(2)| : 0 <dist (2,2) <2, Imz <0}B.

Our dilatation is simpler than that exploited by Wang [32] and this enables us to prove that
there are no resonances z with Im z > 0. We have not raised the question if our definition of the
resonances and that in [32] are equivalent for B — oo. Nevertheless, we think that our approach
is more natural, since the resonances, introduced in Section 3, lie in the "non-physical” plane



4 M. DIMASSI AND V. PETKOV

{z € C: Imz < 0}. The definition of the SSF is independent on the resonances, and this confirms
our choice of complex dilatation.
We establish the following properties of the resonances.

Proposition 1. Let 0 < u < 1, n € N be fized. Then there exists a constant Cy > 0, independent
on B, and B,, such that for B > By, the operator Pi(B) has no resonances z lying in the domain

{z€eC: Co<|Rz—(2n—1)B| < B, Imz > pIm6}.

Moreover, we show that there are no resonances z with Rz < aB, 0 < o < 1 and we establish
an upper bound

#{z € ResPi(B): Rz —\y| < Cp, Imz > pulm 0} < C1 B

with € > 0 independent on B and A,. In particular, in every compact subset of C we have only
a finite number of resonances with finite multiplicities.

Remark. From physical point of view, we see that the presence of a constant electric field gener-
ated by the potential Sz leads to the absence of embedded eigenvalues and resonances with infinite
multiplicity. On the other hand, the Landau levels A, are the only points that may play the role
of attractors of resonances creating the gaps and free resonances regions. For fixed B it is proved
in [12] that there are no resonances z of P;(B) with |Rz| > Ry > 0. In this direction we obtain a
stronger result saying that we have no resonances with negative real part.

The main difficulty in the proof of Theorem 1 is the construction of an operator L(B,0) and a
trace class operator K with || K|, = O(B) so that

Pi(B,0) — z = L(B,0) — z + K,

where (L(B,0) —z)~! = O(1) for z in a complex neighborhood €2, of ),,. For this purpose we must
study for z € (2, the invertibility of the non-selfadjoint operator ((I — )P (B,0) — z) (I —1I),
where II is the spectral projector on the eigenspace of (D, —y)? + DZ related to \,. The existence
of double characteristics of the operator (D, — By)? + D; which is not globally elliptic, combined
with the Stark effects caused by z, lead to several difficulties. The proof of Theorem 1, given in
Section 5, works without a reduction to an effective Hamiltonian. Following the same strategy, we
will study elsewhere the general case without the assumption B > 1. On the other hand, in Section
6 we construct an effective Hamiltonian F; | (z), related to P;(B,#), and the existence of the res-
onances is reduced to the invertibility of £} 1 (z) in Q,. This leads to Proposition 1 given above.
It is possible, applying the argument of Wang [32], to obtain a more precise information of the ex-
istence of resonances close to some energy level E/ associated to the maximum or the minimum of V.

Acknowledgments. The authors are grateful to G. Raikov for many helpful discussions. We
would like to thank the referee for his suggestions and remarks concerning our exposition.

2. SPECTRAL SHIFT FUNCTION

Throughout this work we will use the notations of [9] for symbols and pseudodifferential oper-
ators. In particular, if m : RY — [0, 00[ is an order function (see Definition 7.5 in [9]), we say that
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a(X,E) € SO (R%;m) if a(X,E) € C®°(R?) is such that for every a € N, there exists C, > 0 such
that

|0%(X,E)| < Com(X,2).
In the special case when m = 1, we will write S°(R?) instead of S°(R?; 1). We will use the standard
Weyl quantization of symbols. More precisely, if P(y,n) is a symbol in S°(RY;m), then P¥(y, D)
is the operator defined by

!
PPy DyJuly) = (202 [ [ 0P (YL ) utydy'dn, tor w e S(E)

Sometimes we will quantize a function P(z,y,£,n) only with respect to the variable (y,7). In
this case we will denote by P*(x,vy,&, D,) the operator obtained as above, considering (z,§) as a
parameter. Finally, when P(y,7) is a function on 7*(IR?) (possibly operator-valued), we denote by
P"(y,hDy) the semiclassical quantization obtained as above by quantizing P(y, hn).

In this section we assume that V(z,y) satisfies only the assumption (1.1). The operators
Py (B), Py(B) are essentially self-adjoint with domain C§°(R?). In this section we define the spectral
shift function related to P;(B) and Py(B).

Introduce the unitary operator U : L?(R?) — L?(R?) by

3
B1 1 ’or
(UU)(LE,y) = 2—7: //2 6llpB(iE,y,CL‘ Y ) u(x’,y') dx'dy'
R

where
I

2\/B3y '

vp(z,y,7',y') = Bxy — VBay' — Bz'y + VBa'y' -

A simple calculus shows that
1
E )
1

Pi(B) = U'P(B)U = By(B) + V¥ (x ~BVD, — s BTy B_1D$> .

The fact that U is unitary can be easily obtained by a direct calculation, but a deeper reason for
this is the following observation. Since U is a metaplectic operator (i.e. operator associated with a
linear canonical transformation), it follows from a classical result of the theory of Fourier integral
operators that U is unitary (see [10], Theorem A.2, Chapter 7). The reader could consult [3], [15],
[32], [7]), for more details concerning the construction of U. We have the following

Py(B) =U'Ry(B)U = B(D} +y*) + = —

Proposition 2. Assume that V satisfies the estimate (1.1). Then
(i) The operator (Py(B) £i) ' — (Py(B) £14) ! is a trace class one.

(i%) For Im z # 0 we have
(i = P(B) ™!z = Pi(B)) ™" = (i = Po(B) " (z = Ro(B))Hler = O(|Im 2| 7%). (2.1)
Proof. Since U is unitary, it is sufficient to show that the operator
(PL(B) +4)™ = (Po(B) +1) ™!

is trace class. In the following we will write Pj, j =0,1, instead of Pj(B ). By applying the resolvent
equality, we get B B B B
(PL+i) " = (Po+i) = (P +0) V(P +4)
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= —(Py+i) 'V Py4i)t+ (P 40) VY ( Py +1) Ve (Py +4) L
The operator (P, +14)~'V* is bounded and the proof is reduced to show that

(Po+1i) 'V (P +i) !
is trace class. Next we assume that B > [y > 0. For simplicity suppose that Sy = 1. Let

x(t) € C§°(R; [0, 1]) be a cut-off function such that x(¢) =1 for |[¢| < 1 and x(¢) = 0 for |¢| > 2. Fix
a number k, max{1, %Jre} < k < 2, and introduce the symbol

(y,m)* )
% +y2 + B~ (z +14)|/’
where (y,1) = (1 +y? +n%)1/2. It clear that ¢(z,y,n) € S°(R (
We decompose

q(z,y,n) = X(

a:{yn)) and we set A = ¢“(z,y, Dy).

(Py+4)" 'V (P +i)~"
= (Py+14) PAVYCAPy +i) L+ (Py i) I - A)VYA(Py +4) !
+(Py+i) I = AV = A) (P + i)
—|—(P0 + Z)ilAVw(I — A)(P@ + Z-)il =Li+ Lo+ L3 + Ly.
To treat Lj, notice that on the support of ¢(z,y,n) we have
(B* +y?) +a+1)7" € SU R (y,m) 7).
In fact, on the support of ¢ we obtain
() <2B7HB( +y%) + @ +10)| S 2B +9%) + o+l

and it is easy to estimate the derivatives of (B(n? + y?) + « 4+ i)~ !. According to the calculus of
pseudodifferential operators, L becomes a pseudodifferentail operator with symbol in

SORY; (g, ) ™ (w — B2 2BV 2y + BT,

and the trace of L can be estimated (see for instance, Theorem 9.4 in [9]) by

I L1l < Co / / / / (yom) 2 (& — B~Y/2n)"2~<(B~V/2y 1+ B~'6)" '~ dudedydy

< B //(y,m‘%dydn <y

with constants Cj), C{/, independent on B. To deal with L;, j = 2,3,4, we will show that (I —A)V*
and V¥ (I— A) are trace class operators. For our analysis in Sections 4-6 we examine the dependence
on B of the trace estimates. Notice that on the support of the symbol of (I — A) we have

(wom® > | + %) + B (@ +14)].
Taking into account the estimate (1.1), we get
1L = AV <

o fff] o= BBy B dadedyi
(ym*>n?+y?+ B~ (z+1)|
< CyB /// (z — B~Y2p) "2 ~dzdydn
(ym*>|n?+y>+ B~ (z+i)|

< CyB? /// (Bu) =2~ dudydn
(ym)*=[n?+y>+B=3/2ntut B1il
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»B? —2—e¢
S C2B ///(y’n>k>772+y2+3_3/2n+u, <Bu> dudydn

lul< 5w,k

I B2 —2—¢
tOB //ﬁyw>k2W2+y2+B3/2n+u|, (Bu) dudyds)

lul> 4 vk

< 0532( / / / (Bu) =2~ dudydn + / / / (Bur?*fdudydn)
[u|<C3,|y|<C3,|n|<Cs ul>3 (y,m*

(2ul)
< C4B + O B2 / (Bu)’2’€< /
0

since —2 — € + 2/k < —1. The analysis of V¥(I — A) is completely similar. Finally, we obtain the
estimate

S

rdr)du < C4B + CsB? / (Bu) 2 t?/kqu < OB,

(P +0) 'V (Po +0) "l < AoB, B> 1
with a constant Ay > 0 independent on B.
To establish (2.1), we write the left-hand side in the form

(G- PuB) ™ = (= Po(B) ") (= Pu(B) !
+(i - Ro(B) ™ ((z = PB) ™' = (2 = Po(B))™!

= (= PB) ' - G- R(B) )z Pi(B)) !
~(z = P(B)7' (i = Ro(B)) "'V (2 = P(B)) 7"

The first term at the right-hand side of the last equality is trace class. To estimate the second one,
we replace (z — Py(B))~! by

(i = Pu(B) ! = (2 = )(i = P(B)) (= = Pu(B))
and, as above, we write (i — Py(B)) 'V (z — Pi(B)) ! as a product of (i — Py(B)) 'V (i — Py(B)) *
and a bounded operator. Combining this with the estimate ||(z — P;(B)) || = O(|Im 2| 1), we
complete the proof of (2.1). O

The property (i) of Proposition 2 enables us to define the spectral shift function (B, \) € D'(R)
related to operators P (B) and Py(B) following the general theory (see for instance, p.297-303, [34])
by the equality

(€, 1) = te(F(PL(B)) - F(Ro(B))), f € CE(R).

For our analysis it is important to have a representation of ¢ (B, A) involving the resolvents of
P;(B). Let f(z) € C§g°(C) be an almost analytic extension of f. Set g(z) = f(z)(z — ). By the
Helffer-Sjostrand formula we have

o(P(B) =~ [0.F) e~ i)~ P(B)) L), 5= 0.1,
and we obtain

1 _ . 1
e (F(P(B) - 1((B)) =~ [ 8. - ) (Py(B) - ) - ByB) | Lida),
where L(dz) is the Lebesgue measure on C and [aj]}:o = ay—ayg. Since 0, f(z) = O(JImz|"Y),VN €N,
the trace is well defined.
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3. RESONANCES FOR MAGNETIC STARK HAMILTONIANS

In this and in the following sections we assume that V' (z,y) satisfies the estimates (1.2). Let
D(0,6p) be the disk in C of center 0 and radius 6y > 0. For 6 € D(0,6y), 6y > 0 small, we will use
the dilation (z,y) — (z + 0,y). For 0 € R, consider the unitary operator

Up : L*(R?) — L*(R?), f— f(z+0,y).

Let U be the unitary operator introduced in Section 2. Setting Uy = Uly, we introduce the
operators

Uy ' Pj(B)Uy := Pj(B,0), j = 0,1, (3.1)
Uy ' Po(B)Uy == Py(B,0) = B(D: +y*) +z + 60 — 15 (3.2)
U, L P (B)Uy := Py (B,0) (3.3)

= Py(B,0) + V¥(x+6—B 2D, — B 2y+ B 'D,),

2B?%’
Recall that throughout the paper we will use the notations Pj(B,#0), lsj(B,H), j = 0,1, for the
operators defined above and this makes no confusion with the notation P;(B;/) given in the
Introduction.

Lemma 1. There exists 6y > 0 such that the self-adjoint operators Py(B,0), P,(B,#), defined for
0 €] —0y,00, extend to an analytic type-A family of operators on D(0,0y) with the same domain
D as that of Py(B,0), Py(B,0). Moreover,

Uess(ﬁl(Bve)) = Uess(PO(Bae)) = U(PO(Bve)) = {>‘ +0; A€ R}'

Proof. Clearly, the domain D of Py(B,6) is independent of # and 6 — Py(B,6)u is analytic for
all w € D. On the other hand, the analytic assumption on V' implies that there exists 6y > 0 small
enough such that

1
@a
is analytic for any u € L?(R?). Following [21], this gives the first statement of the lemma. For the
second one, notice that

D(0,6,) 9(9—)V“’($—H9—B_%Dy— B—%y+B—1Dx)u

Gess(Po(B,0)) = o(Py(B,0)) = {A+0: \ R}

Using (1.2) and Lemma 3 of [27], p. 111, we deduce that oess(Py(B,6)) = oess(Po(B,6)) and this
completes the proof. O

Below we take 6 € D(0,6p), Im @ < 0, and consider the domain
Q={2€C: Imz>Imb}.

It is easy to see that there exist 6y > 0 small enough such that for 8 € D(0,6y) with Im 6 < 0
we have

1

|Im 6 — Im z|

Iz = Po(B,6) "] < (3.4)

for z € Qy.
Now, repeating the argument in [11], we prove the following

Lemma 2. Let Im zy > Im 6. Then the operator Py (B,60) — zy is a Fredholm one with index 0.
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Proof. Let ®y(z,y) = (x + 60,y). For z € Q we have
Pi(B,0) — 2= (T+ (Vo ®)(1 - 4. (u)[Fo(B,0) - =

+(Vodo) )] ) [Pu(B.0) — 2+ (Vo dy)p.w)].
where u = (z,y), 1, (u) € C®(R?;]0,1]) is a function such that 1, (u) = 0 for |u| < Cy, 9, (u) = 1 for
|u| > C1+1. Choosing C; > 0 (depending on z) large enough, we may assume that |<Vo¢9> [, (u)
is small, so the operator
A(z) = Po(B,0) = 2+ (V 0 g ). ()
is invertible for z € y. On the other hand,

Ky(2) = (Vo @) (1 = th.(w) Ag(2) !
is compact. Then .
dimKer (P (B, 0) — zp) = dimKer (I + Ky(z)),
provided
Im zy > Im 6.
A simple argument shows that Image (P (B, #) — zo) is closed and

codim (P (B, 0) — zp) = dimKer (I + Kj(z)).
Thus P;(B,0) — z is a Fredholm operator with index 0 and the proof is complete. U

Definition 1. Let Im 0 < 0. We say that z € Qg is a resonance of Py(B) if
dimKer (P (B,6) —z) > 0.

As in [11], we show that P;(B) has no resonances z with Im z > 0, as well as, that the
resonances in {z € C: Imz > Im @y > Im 60} are independent of the choice of @ satisfying the
condition 0 > Im @y > Im 6 > Im 6;.

Following [27] and repeating the argument in [11], we can establish a link between the eigen-
values of the complex scaling operator P; (B, ) and the poles of the suitably regularized resolvent.
For this purpose, notice that

L*(R*) > f — f(z+0,y) € L*(R*), 0 € R

form an unitary group. Then there exists a dense set A C L?(IR?) of analytic vectors so that

Sl

!

i ox™
is convergent for 8 € D(0,6y). This implies that for #; small and for f € A the functions
Upf = f(z + 0,y) admit a holomorphic extention in D(0,6p) . The same is true for U, " f.
Now suppose that A € Q, is an eigenvalue for P;(B,0). Then we can find ¢ # 0 and 9 # 0
so that (v, (Py(B,0) — z) ') has a pole at z = A\. By approximation, we construct functions
Yn € A, pn € A so that 9, — 9, ¢, — . For n large enough (¢, (Pi(B,0) — 2z) ‘p,) will

have a pole at z = A. We fix a such n and setting F = leg_lzbn, G = Llf,_lgon, we deduce that
(F,(P1(B) — 2)7'G) has a pole at z = \.

, feA
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We define the multiplicity of a resonance zy by
1
m(zyp) = rank — (z — P1(B,0)) dz,
T J o (20)

where () = {z = 20 + ve’¥, 0 < ¢ < 2r} and v > 0 is small enough. In the following we fix
0 € D(0,6y) with Im @ < 0 and we denote the set of resonances of P,(B) by Res P, (B).

Remark. Clearly, the operators
P(B,0) =UyP (B)U, ' = (D — By)* + D2 +z+ 0+ V(z+0,y),
and 151(B ,0) have the same eigenvalues in Qp with the same multiplicity. In a such way, we can
work directly with Py (B, 0).
Proposition 3. Let V satisfy (1.2) and let the condition
14+ 0,V (z,y) >0
be fulfilled. Then, there exists 6y , Im 6y < 0, such that Pi(B) has no resonances in Qp, .

Proof. First, since 0,V (z,y) tends to 0 when |(x,y)| tends to infinity, it follows from our assump-
tions that
1+ 9,V (z,y) 2n >0,

uniformly on (z,y) € R%. For u in the domain of Py(B) we have
—Im ((P1(B,0) — 2)u,u) = (Im z — Im 0)||u||> — Im (V(- + 6, -)u,u).
Applying Taylor’s formula for the function § — V(z + 6, y), we obtain
ImV(z+60,y) =Im69,V(z+R0,y) + O(|Im 6?).
Thus
—Im ((Py(B,0) — 2)u,u) = Im z|jul* = Im O((1 + 0,V (- + R0, -))u,u) + O(|Tm 0]?)||ul|?.

Next, we choose Im # < 0 small enough, and using the above inequality, we get the proposition. [

4. ESTIMATES OF THE RESOLVENT FOR STRONG MAGNETIC FIELDS

In this section we will examine the case of strong magnetic field characterized by B — oo. For
simplicity we assume 6 € i:R. Let ¢, be the n-th real normalized Hermite function given by

(D; + y2)‘Pn = (2n — L)y, [lenll =1, n € N".

1

To examine the resolvent (Py(B,0) — z) *, we will study the resolvent of the operator

- 1
_ 2, .2
Pi(B,0) =B(D, +y") +z+6— @-FVW.
Recall that V“ is a bounded pseudodifferential operator in L?(R?) with Weyl symbol
1
~1/2 ~1/2 -1
V(x—B P2y — 5, By + B 5).
We fix an integer n > 1 and let II be the spectral projection of the operator D; + y? associated to
the interval [2n — 2, 2n]. Introduce the operator

Q(B,H):(I—H)[B(D§+y2)+x+0—éJrV“’](I—H).
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The main result in this section is the following
Proposition 4. Let 0 < a <2, 0 < a1, 0 < p <1 be fired and let
Q,={z€C:|Rz—-—2n+1)B|<aB, yB >Imz > pImb}.

Then for B > 1 sufficiently large and z € Q, the operator (Q(B,0) — z)"Y(I —1II) is well defined
and there exists a constant v > 0, independent on B, such that

1(Q(B.6) — 2)(I — Myul| > |tm 6| — Wyull, u € D (4.1)
uniformly with respect to z € §,,.
Consider a partition of unity G?(z) + G3(x) = 1 with G; € C®°(R;[0,1]), i = 1,2,
suppG; C {z e R: |z]| <2}
and G1(z) =1 for |z| < 1. Choose 1/2 < § < 1 and introduce the operators
A =Gt (x - BB;/?Dy)’ Az =Gy (x - BBal/2Dy)

with Weyl symbols GK%}I/%), 1 = 1,2. By a partial Fourier transform with respect to y, we

can view A; as an multiplication operator. Then, it is easy to see that A} = A;, + = 1,2, and

z— BY/2D,
BI

Here Op“g(z, D) denotes the Weyl pseudodifferential operator with symbol g(z,n).

42 = 0pG3( ), At +A3=1.

Lemma 3. Let G € C{°(R). Then
we (%~ B7'?D ~1/2-5
or6(——) ] =o(z )
in the space of bounded operators L(L?(R?)).

Proof. Choose a function f € C§°(]2n—2, 2n[) such that f = 1 near 2n—1. Obviously, f(D§+y2) =
IT and the pseudodifferential calculus yields y f’ (DZ +y%) = O(1) in L(L*(R?)). Thus

o6 (=520, = [or6(E= 222 103 + )

- B~'2D,

= B2 00(0p (@) (T uf (D} + 7)) = 0B 0).

O
To estimate the norms of the commutators, we need the following

Lemma 4. There exist constants Cy > 0, C7 > 0, independent on B, and By > 1 so that for
B > By we have

I o (625 20) ) (1~ 1y

< Oo|(Q(B,0) — 2)u|| + C1||(I — Mul|, i = 1,2, Vz € Q,, u € D. (4.2)
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Proof. Introduce the symbol

yGi(B*(z — BV/2))
n?+y?+ B~z +14

gl(xayan) =

We will show that this symbol is in the class S°(R*). In fact, the derivative 8538587’;%(3:,3;,77) can
be written as a sum of terms
p/+1 kl

—(g—1)8 Yy n ( 6 -
By (N2 + y2 + B Lz + i)k+otl G (B (e—B 1/2’7))"1 =1

with p/ <p, k' <k, I' > 1+ 1. Setting u = B~9(z — B~'/?5), we need to estimate

yp+177k G(‘I)(

k+p+l 0
(772 +y? + B-1H0y + B=3/2n + z)

ﬂ,p,k(Bayanau) = u)

uniformly with respect to B,y,n,u. For B~1+0|u| < %(772 +9?), we have

In? + o +Bfl+5u+i| >co(m* +y2+1), o >0

and we get T, = O(1) with respect to B,y,n,u. On the other hand, the support of Gl(-q) (u) is

bounded and B 1*0|u| > £(n? + y?) leads to (n* + y?) < ;B 1% < ¢y. Thus we obtain again
T;px = O(1). Now consider the operator Op“g;(z,y, Dy) with Weyl symbol g;(z,y,n). We have

z— B Y2D
228 D)) & RitenD,).

Using the explicit formulae of R; given by the calculus of pseudodifferential operators, and repeating
the above arguments, we see that the symbol of R; is in the class S°(R*). Tt follows from the
Calderon-Vaillancourt’s theorem (see for instance, Theorem 7.11 of [9]) that Op“g;(x,y, D,) and
R; are bounded. Thus,

Op®gi(w,y, Dy)(DE +y* + B 1w+ 1) = yOop* (G4

Iy o (4(==2P0) ) 1 —

< 10p*gi(z,y, Dy)(Dy + y* + B~ e +i)(I — Wul| + Ca|(I — W)ul|
< Gl|(Dy +y* + B~ e + i) (I — Mul| + Co|(I — Mul|

< Gsll(Dy +y* + B~ (& — 2))(I = Mul| + C3|(I — M)u]
1
< Gl (B(D} +y?) +a+0 — 5 + V¥ = 2) (I - ul| + Cil|( — yu|
< G3|(Q(B,0) — z)ul| + C1||(I = I)u||, Vz € Qp, ue D.
Here we have used the fact that B~z is bounded for z € €, as well as the estimate [IT, V¥] =
O(B~1/?). .

To estimate the action of Q(B,6) on A;(I — II)u, i = 1,2, we need the following
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Lemma 5. There exists ay > 0, independent on B, and By > 1 so that for B > By and z € Q,
we have
[ [(1 — 1) (B(Dj Fyt) + a0+ V“’) (I -10) — z]Al(I D)
> a1 B|| A1 (I — | — O(BY20)|(I — M)ul|, u € D. (4.3)

Lemma 6. There exists ag > 0, independent on B, and By > 1 so that for B > By and z € Q,
we have

1[( =) (BD2 +y?) ++0+ V) (I =T0) = 2] Ao(I — )|
> ag|Im ||| A2 (I — )ul| — O(B~Y279)||(I — M)ul|, u € D. (4.4)

Assuming the above estimates established, we will complete the proof of Proposition 4.

Proof of Proposition 4. We have
F(u) = [(Q(B,6) — 2)(I — W)u|®

= (43 + 43)(Q(B,0) - 2)(I - My, (Q(B,0) — 2)(I ~ M)
=) 14(Q(B,0) — 2)(I — M)ul|*.

1=1,2
Thus

)= 5 Z 1@ — 2)A(I = Myul* =2 Y [|[4i, Q(B,0)](I — Mul*.
z 1,2 i=1,2
The operators A;, [T commute with z and

[4i, Q(B,0)] = [A;, I = I)B(Dy +y*)(I = )] + [A;, (I - V(I —1I)]

y

= [4;, (I - B(D} +y*)(I — )] + O(B~'/*7),
since by the pseudodifferential calculus we get
[Ai7 H] = O(B_1/2_6)’ [Alu Vw] = O(B_1/2_6)'
Next
[Ai, (I =I)B(D; +y*)(I = )] = [A;, B(D; +y*)](I = 1I) = B(D} +y*)[A;, 11].
Then we have
B(D2+y*)[A;,11] = BY* (D2 + y*)Lif' (D2 + 4), i = 1,2

with operators L; having symbols uniformly bounded with respect to B. The symbol of the operator
on the right hand side of the above equality is bounded with its derivatives and we deduce

B(Dy + y*)[4;,11] = O(BY*7?)

in the space of bounded operators £(L?(R?)). To treat the commutator with B(Dz +12), we apply
Lemma 4. It is clear that

(40 B} + "))~ 1) = O() B>~y 0p* (GUB=(a — B~2D,)) (I ~11) + O(B'*),
so for B large enough, according to (4.2), we obtain

I(Z = I)[Az, B(Dy +y*)]( = I)ul|
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< CsB*70|(Q(B,6) — 2)(I — M| + CsB*°| (I = Tul, 2 € U, u €D,
with constants C5 > 0, Cg > 0 independent on z and B. Finally, taking into account the estimates
(4.3), (4.4), we deduce

2(1 - 4B *)F(u) > [G%B2||A1(I — Mu||? + a3|lm 0]?[| A2 (1 — M)ul|?
~CrB'72|(I — W)ul®
2 1-26 2
> [(min{alB,a2|Im0|}) — CoBY2| (I = yulf?.
For B sufficiently large this implies the estimate (4.1). O

Proof of Lemma 5. First notice that the operator D; + 42 + 1 is elliptic, so
IDyull < (D +y* + Dull + Cslull < (I = T)(Dy +y*)ull + (Cs + 2n + 2)|ul|
< B = )[B(DE +y?) - 2|ull + Cillul, (4.5)

where we have used that B~1z is bounded for z € €,. Second, applying the estimate (4.5) for the
term

(I -1)B~Y2D, A (I - )u,
we obtain

1
(1 —10) [B(D§+y2) to =+ —Z]AI(I—H)UH

r — B Y?D 1
Ty> +B~Y2D, - =t VY — z] A (I — )u|

> (1= B2)|(1 = ) [B(DZ + ) — 2] 4y (1 ~ ]

= (1 - [B(DZ +y*) + B

Y (x — B '2D,
BI
Our assumptions on €2, and the spectral theorem for Dz + y? imply

)AL = u|| = CollAx(1 ~ yu.

I( = 10) [B(D2 +4%) = 2] Ay (1 = Wyul| > a B[ ~ M)Ay (1 ~ 1)

> a1 B|| AL (I — u|| — OBY>7)||(I = Mu|, a1 > 0.
Next choose a function Gy € C§°(R; [0, 1]) with support close to that of G; and such that G = 1
on supp G1. Then
z— B Y2D
B‘S(Ty)Al(I ~ M)

z— B~Y2D - (z—B7'2?D
= B (T ) 0p Gy (2 ) Al — T
and, since uG(u) is bounded, we can estimate this term by CyoB°||A;(I — IT)u||. Taking B large
enough, we complete the proof. O

Proof of Lemma 6. We have

‘([(I—H)(B(D2+y2)+x+9— 4—}92+W)(1—H) —Z]AQ(I—H)U,AQ(I—H)U)‘
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> Im ([(I —10) (B(D2 ) o — — 0+ V“’)(I —10) - z]Ag(I ), Ap( — H)u)
= (Im z — Im 0)|| Ao (I — I)u|)? — Im((I — IV (I — L) Ag(I — I)u, A(I — n)u)

> (1= p)ltm 6] = C1uB~/270) | Ay(1 — )l

—Im(([ ~ )V Ay(I — )u, As(I — H)u) — Oy B7Y2|(I — Tyul)? .

Now we choose a function Go € C;°(R; [0,1]) with support close to that of G and such that Gy =1
on supp G2, and replace V¥ Ay by V¥Op®Go(B O (z — B*1/2Dy))A2. On the support of Ga(u) we
have |u| > 1. Thus to treat the term

Im((I — IV2Op“Gy(B O (z — B~ Y2Dy)) Ay (I — Myu, Ay (I — H)u) :

we take B large enough in order to arrange the estimate

1 - 1—
|V¥(z — B~Y%D,, — T B7Y%y + B7D,)Op*Ga(B~°(x — B™Y2D,))| < %ﬂm 9.

B?’

The decay properties of the potential V" and its derivatives and the pseudodifferential calculus make
this possible, since on the support of the symbol Gia(B~%(z — B~1/?p)) we have

o — B~ > B°.

Combining this with the above estimates, we complete the proof. O

Remark. By the same argument, we obtain the estimate
1(Q*(B,6) — 2)(I — ul| = y[Im OJ[|( — ID)ul|, z € Qn, u € D.
Thus the operator Q(B,0) — z is bijective on Image (I — IT) and we denote its inverse by

. . ~1
R(z) = ((1 —T)P(B,0)(I —1I) — z) (I —1I). (4.6)
A modification of the proof of Proposition 4 yields the following

Proposition 5. Let 0 < a <1, a1 > 0,0 < pu <1, n >0 be fired. Then for B large enough the
operator Py(B) has no resonances z lying in the domains

Rz<aB, ;B> Imz > pImé, (4.7)
(2n+1)+a)B<|Rz| < ((2n+3) —a)B, a1 B >Imz > plmé. (4.8)

Proof. To treat the domain (4.8), it is sufficient to repeat the proof of Proposition 4 without the
projector II. For example, in the proof of Lemma 5 we estimate the term

|[BD2 +y?) = 2| Avull > Bl Ay
and we follow the same argument. To deal with z lying in (4.7), first assume that

vB<Rz<aB,r<O0.

Then we can repeat the argument of the proof of Proposition 4 with II replaced by 0, since B~z
is bounded. Now suppose that Rz < vB < 0. There are two points, where we have used the fact
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that B~ !z is bounded. The first one is the estimate (4.3) in the proof of Lemma 5. For Rz < 0,
the operator D; +y?2 — B7'Rz + 1 is elliptic and since B~'Im z is bounded, we get

IDyull < I(Dy +y* = B~ Rz)ul| + Cy|lull

< BT (B(Dg +y*) = 2)u)|| + Collul -
Next we estimate the term
B~Y2D, Ay,
exploiting the fact that D, and A; commutes and apply the above estimate. The second point is
related to Lemma 4. For Rz < 0 consider the symbol

yGi(B*(z — BV/2))
T+ 2+ B (z—Re) i

It is easy to show that this symbol is in S°(R?*). Then the proof of Lemma 4 goes without any
change and we obtain (4.2). Finally, we get the estimate

1P1(B,6) — z)ul| > y[Im O ul, u € D,

and we conclude that P;(B) has no resonances z with ®z < 0. O

gi (LE, Y, 77)

5. REPRESENTATION OF THE DERIVATIVE OF THE SPECTRAL SHIFT FUNCTION FOR STRONG
MAGNETIC FIELDS

Our purpose in this section is to prove Theorem 1 given in the Introduction. We use the
notations of the previous sections and we work in the domain €2,. Consider the operators

Ll(B,H):(I—H)(B(D§+y2)+x+9— +V“’>(I—H),

1
4B2
1
_ 2,2

Las(B,6) = H(B(Dy Fy) ta 40— E)H,

W = (I — L)V¥IL+ IV* (I — I1) + LV*I1.
It is clear that .

Ll(B,e) + LQ(B,H) —z4+ WY = Pl(B,H) —Z.
The operator L(B,0) — z := Li(B,0) + Ly(B,0) — z is invertible for z € Q,,. In fact, we have

I(L(B,6) = 2)ull” = [[(L1(B, ) — 2)(I — W)ul|* + [|(L2(B, ) — 2)Ilul|*.

For the first term at the right hand side we apply Proposition 4, while for the second one we
estimate the imaginary part of (Lo(B,6) — z)[Iu,Iu). Thus for z € Q,, we obtain

I(L(B, ) = 2)ull® > 71 I(L = Wyl + 72| Mul* > ys]lul?, v > 0, j = 1,2,3.
Since [II, V¥] = O(B~'/?), for B large enough, the operator
L(B,0) — z:= L(B,0) + (I — V¥ + V(I —1II) — z
is invertible for z € Q,,. On the other hand, K = IIV“II is a pseudodifferential operator in L?(R?)
with principal symbol

_ 1 _ _
f(n2+y2)V(w—B 1/277—@,3 12y + B 1€)f(n2+y2),
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and we conclude that K is a trace class one. Moreover, one obtains immediately the estimate
K]l < CB (5.1)
with a constant C' > 0, independent on B. Thus we have the following
Theorem 3. Let B be sufficiently large. Then for z € Q, we have
z—P(B,) =z — L(B,#) — K (5.2)
and the operator z — L(B, ) is invertible for z € Q.

By using the above theorem, it is easy to establish directly the existence of a meromorphic
continuation of the resolvent (P;(B,0) — z)~! for z € Q,,. In fact, we write

z— P (B,0)=[I - K(z — L(B,#) Y (z — L(B,#)),

and we conclude that the operator [I — K(z — L(B,6))"!] has a meromorphic continuation for
z € . In the next section we will construct an effective operator E; _ (z) so that the eigenvalues
of Pi(B,6), and hence those of P;(B,#), coincide with the zero eigenvalues of E; ., (z). This will
be more convenient for the analysis of the free resonances regions.

Introduce the functions

1
oy (z) = (2 + Vtr | (P(B) — i)"Y (Pj(B) + i)~ (2 — Pj(B))—l]O, +Imz > 0,
where [a;]§ = a1 — ag. It follows from Proposition 2 that o4 (z) are well defined and we have
o (z)=04(2), Imz<0.
For 6 real the operator (Pj(B) — i) 1(P;(B) +14) (2 — P;(B)) ! is unitary equivalent to
z—P

(B(B,0) — i)~ (P(B,0) +i) " (= — P(B,6))™".
Consequently, the cyclicity of the trace yields
~ ~ ~ 1
01 (2) = (2 + Dt [(B5(B.0) =) (P5(B,0) +1) (= = P;(B,0)) ] (5.3)

forall z € Qy =Q, N{Imz > 0}, 6 € D(0,6p) NR.

Now, fix 6 > 0 and let z € Q5 = Q, N {Im z > §}. Since ]5j(B, ) extends to an analytic type-
A family of operators on D(0, ), for sufficiently small 8y and z € Qg, the r.h.s of (5.3) extends by
analytic continuation in 6 to the disk D(0,6p). For 0 € D(0,60y) with Im € < 0, both terms of (5.3)
are holomorphic on Q4 , and, consequently, (5.3) remains true for all z in Q.

From now on, the number 6 will be fixed in D(0,60) with Im 6 < 0. We drop the subscript
B, 6, most of the time and write P;, L instead of ]5j(B, 0), L(B,#). For simplicity of the notations

we set B = h~!. As we have proved, there exists a trace class operator K, ||K||;; = O(h™1), such
that P = L — K and

(L—2)"'=0(1): L*(R?) — D uniformly for z € Q.

Then (z—P,) = (I+K(2))(z— L) with K = K(z— L)™' and the resonances z € Res P, (B) coincide
with their multiplicities with the zeros of the function

D(z,h) = det(I + K(2)).
Then, as in Proposition 3 in [11], we obtain the upper bound

#{z€ResP,: 2€Q,} <C(Q,)h". (5.4)
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For the function o (z) we have the following

Proposition 6. There exists a function ay(z,h), holomorphic in Q,, such that for z € Q, N{z €
C: Imz > 0} we have

o4 (2) = tr((P1 — ) 'K (L - z)*l) +ay(z,h). (5.5)

Moreover,

las (2, h)| < C1 ()7L, 2 € Q. (5.6)

Proof. The proof is similar to that of Proposition 3 in [11], so we will omit some details. We write
o4(2z) = I1(2) + I2(2), where

L(z) = (22 + 1)tr((P1 —)HP i) (2 — L))
(Py— i) NPy + i) Mz — PO)*I) ,

I(z) = (22 + 1)tr((P1 — )Y P+ )P - 2) T K (2 — L)_1> .

As in [11], Section 3, by using the resolvent equation and the cyclicity of the trace, we show that
I(2) is equal to tr((P; — z) 'K (L — z)~ ') modulo a function holomorphic in a neighborhood of
Q,, and satisfies (5.6). Next we decompose I (z) as follows

1

1) = &+ e ([B -0 B 4] -0

§=0
(2 + l)tr((Po )Py +i) (2 — Py) 'K (2 — L)—l)

(2 + l)tr((Po )Py + i) Mz — Py) V(2 — L)*l) :

and we conclude that I;(z) is holomorphic in ,,. For the first and the second terms in the above
equality we obtain bounds O(h~!). In fact, for the first term we apply the argument of the proof
of Proposition 2 with B = h~!, while for the second one we use the estimate (5.1) combined with
the estimate of the resolvent (z — L)~!. Finally, to estimate the trace of the term

1
(Py — i)~ H(Py +4) "LV (x + 0= hY2D, - hE 2y th),

we write V¥ = AVYA 4+ (I — A)VYA+ AVY(I — A) + (I — A)V¥Y(I — A) with the operator A
having symbol ¢(z,y,n), introduced in the proof of Proposition 2, and we follow the argument of
this proposition. O

According to Lemma 1 in [11], for every f € C§°(R) we have

€0 =tim g [ SO [+ i) — o (0],

where the limit is taken in the sense of distributions. Following without any change the proof in
Section 6 of [11], we obtain Theorem 1.
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6. EFFECTIVE HAMILTONIAN FOR STRONG MAGNETIC FIELDS

In this section we use freely the notations of the previous section. In particular, the set 2, and
the projection II are associated to a Landau level (2n — 1)B with a fixed integer n > 1. Let us
introduce the operators

R LX(R2,) 50— (0@, ), u (N r2e,) = / o(, )W)y € LA(Ry),

Y

R_=R%: X(R) 3 u— u(e)fuly) € L(B,).
These operators satisfy
R+R_ - ILQ(Rz)a R_R+ - H

Consider the following Grushin problem:

Po(z) = ( PO(B]’%? e ) L D x LA(Ryy) = L(R,) x L2(R,).

By a simple computation, we have the following

Lemma 7. The operator Py(z) is uniformly invertible for z € Qp, and 0 € D(0,6y). Its inverse is
holomorphic in (z,0) and has the form

_( Eo(?)  Eos+
bol2) = ( Eo, . Eo_4(z) )’
where

~ 1
Eo(Z) = Rg(z), E07+ = R,, EO,, = R+, E07,+(Z) =z — (2n - 1)B —x—0+ E,

~ ~ —1
Rolz) = ((I — 1) By(B,0)(I — 1) — z) (I —10).

Now consider the Grushin problem for the perturbed Hamiltonian P;(B,6) — z :

Pi(z) = ( Pl(Béi) -5 R )

Proposition 7. For B large enough the operator Pi(z) is invertible for z € Q, and its inverse is

(6.1)

given by
_( Ei(z)  Ei4(?)
51(2) - ( El,l_(Z) E:_—:_(Z) ) )
where

E1(z) = R(z)a(2), (6.2)
E, () = Rya(z), (6.3)
Ei(2) = —R(z)a(z)[V*,IIR_ + R,  (6.4)
Fi4(2) = ~Ria(x)[V*.TR_ + [z~ @2n—)B -z -0+ —= —R.V*R_|.  (65)

4B
Here a(z) = <I+ 11, V“’]R(z))i1 and R(z) is given by (4.6).
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Proof. Set

. R(2) R_
R+ z (2n ].)B +z+0 182 + R+V R_
We have
V¥R_. —R_R,V*R_=V“R_R,R_—1IV’R_=[V¥* IR = 0B ?).

A simple calculus implies

. I+[ILVYR Ve HR_
'pl(z)og(z):< 1L, ; 1R(2) | I] >

=1+ 0(B7Y?,

since [V¥,TI] = O(B~1/2). Consequently, for B large enough, the operator P;(z) has a right inverse
and we get

gl(z)zé(z)o((fﬂ VIR —(I+[H,vw]R§z>>1[vw,H1R_>

_{ R@a(z) —R(z)a(=) [V, TR + R
~\ Ria() -Ria(z)[V¥.OR_+z-(2n—1)B-2 -0+ 5 — RyV*R_ )~
This completes the proof. O

To study the properties of the operators E;_(z), j = 0,1, we set B~ = h. We need the
following

Lemma 8. We have
Ve, 1] s LA(R2) — L2(R) € Op* (80 (RE; () 2 (BE T “y) () =) (6.6)

Proof. Recall that we may write IT = f(D; + y*) with f € C§°(](2n — 2,2n[). According to
Theorem 8.7 in [9], we have

I € Op® (S°(R?; ()~ (1) ™)) .

Since the operator V¥ € Op¥ (SO(R4; (x)‘Q_E(Bf)_1_€)>, we obtain (6.6) by the calculus of pseudo-

differential operators. O

Proposition 8. The operator E1 _1(z) — Ey —(2) is a h-pseudodifferential one with Weyl symbol
a(z, & 2,h) € SO(R?; (x)~27¢(€)~1=¢) such that

a(z,& 2, h) ~ Za]xf, 7 (6.7)

where

ao(z,652) = =V(z +0,€), a1(z,&2) = —(2n — 1) AV (z +6,8) /4. (6.8)
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Proof. The proof is similar to that of Proposition 2.5 in [7], so we will omit some details. We have
El,_+(2’) - EO,_+(Z) = —R+G(Z) [Vw, H]R_ - R+VMR_.
The operator R, V¥R : L*(R,) — L?(R,) has the form

(RAVRw)e) = (V2 (40— g7 V2D, P2y 4 D) () ), )

This implies that the symbol of R V*R_ is given by
1
J(W'?) = (V¥(z +60 - §h2 — B'2Dy, By + OYn(y), Yn(Y)) L2 &) -

The estimate
ROV (@ +0 — b2, W12y + )

< Cap(@) 27O () (y) e
and the fact that 1, (y) = e_y;Pn(y), P, (y) being a polynomial, imply
(z,8) = V¥(z +6 — %hQ — h2Dy, W2y +¢) e §° (RQ; (x>—2—f(g)—1—f) .
Applying Taylor’s formula, we obtain
V¥(z+60-h'/2D, — %h{ B2y 4+ &) = V¥ (z +6,¢)

—hY2D, 8,V (x + 0,8) + hY 2y Ve (x + 0,€) + ...
Since ¥, (—y) = (=1)"n(y), we have (D;’”l@bn,@bn) = 0 for all £ € N. This implies that J(h'/?) =

J(=h'/?), so J(h'/?) has an asymptotic expansion in power of h (see Proposition 4.3 in [7] for more
details.) Thus the symbol of Ry V*“R_ satisfies (6.7). To show that

Rya(2)[V¥, TR € Op (S° (R () 27(¢) 1)), (6.9)
first we prove that a(z)[V¥, 1] is a h-pseudodifferential operator and next we repeat the above

argument combined with Lemma 8. This completes the proof. U

From the construction of the Grushin operators one obtains the following well known formulae
(see for instance, [15], [6], [7]):

(2 = By(B,0)™" = —E(2) + By 1 (:)B; L (2) ;- (),
By (2)™ = =Ry (Py(B,0) — 2) 'R%,j = 0,1.
Consequently,
z € 0(Pj(B,0) & 0€0(E; 4(2),§=0,1. (6.10)

Recall that the operators ISJ(B ,0) are unitarily equivalent to the operators P;(B,0), so the eigen-
values of these operators coincide. According to Proposition 8, the analysis of the invertibility of
the operator £y, (z) is reduced to that of the operator

1
¢=@n—1h"" =z =0+ 1h* + (s, hDq; 2),
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where a“(x,hDy; z) is a h-pseudodifferential operator with Weyl symbol

a(z,&; 2, h) Za] z,&;2)
given by (6.7).

Proof of Proposition 1. Set
1
AY(z,hDy,2):=2z—(2n—1)B —x — 0 — 5. R V¥ +6,hDy,)

— By (2) — V"(x +6,hD,).

Clearly,
Byl (2) = 2n — 1)B 0— 1) cop (s
0-+(2)=(2—2n-1)B -z - Y € Op“(S°(R7)),
and .
) ) ] I ——— (6.11)
uniformly with respect to z € Q,,.
Let R > 0 be a large constant such that
o (1—p)|0|
SUDP|¢|> R, cer|OpeV (2 +0,8)] < O || < Ny,

where Ny is an integer independent on B and n. In fact, Ny depends on the choice of a semi-
norm in the space of symbols S°(R?) which by the Calderon -Vaillancourt’s theorem concerning L?
continuity of Weyl pseudodifferential operators is equivalent to the norm in the space of bounded
operator £(L?(R?)) (see Theorem 7.11 in [9]). For

2€Q:={z€C: [Rz—(2n —1)] > 2 sup 076V (7 +0,8)] + |RO| + R},
(Iri)eRz"CdSNO

we have

sup (6.12)

Lo (e s -s—0-s) Viero0)|< 5

To see this, it suffices to notice that, for z € Q,, and |z| < R, we have

|z —(2n—-1)B—0—z| > 2 sup 107V (z +0,8)].
(I,§)6R2,|Q‘SN0

It follows from the Calderon- Vaillancourt theorem that for A small enough

V(2 +0,hDy) By Ly (2)] <

L\'J|>—~

Combining this with (6.11) and using the equality
A% (@, WDy, 2) = (I = V¥ + 0, hDy) g L, (2)) Bo, (2),

we deduce that, for h small enough we have

2
AY x,th,z_l < —m.
A S T
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By Proposition 8, we get Fi _(z) = AY(z,hDy, z) + Op(h). Here the estimate of the norm O, (h)
depends on n, since the lower order symbol of a“(x, hD,) is given by

—(2n - 1)AV(z +0,y)/4.

So for 0 < h < h(n) we obtain the invertibility of £, (z), and according to (6.10), this completes
the proof. O

1]
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