
RESONANCES FOR MAGNETIC STARK HAMILTONIANS IN TWODIMENSIONAL CASEMOUEZ DIMASSI AND VESSELIN PETKOVAbstra
t. We study the resonan
es of the two-dimensional S
hr�odinger operator P1(B; �) =(Dx�By)2+D2y+�x+V (x; y); B > 0; � > 0, with 
onstant magneti
 and ele
tri
 �elds. We de�nethe resonan
es of P1(B; �) and the spe
tral shift fun
tion �(�) related to P1(B; �) and P0(B; �) =P1(B;�) � V (x; y) without any restri
tion on B and �. For strong magneti
 �elds (B ! 1) weobtain a representation of the derivative of �(�), a tra
e formula for tr(f(P1(B; �))� f(P0(B;�)))and an upper bound for the number of the resonan
es lying in fz 2 C : j<z � (2n � 1)Bj ��B; Im z � �Im �g; 0 < � < 1; 0 < � < 1; Im � < 0: Moreover, for B ! 1 we examine thefree resonan
es domains and show that the resonan
es are in
luded in the neighborhoods fz 2 C :j<z�(2n�1)Bj � C0g, where (2n�1)B are the Landau levels and C0 > 0 is a 
onstant independenton B and n 2 N� = N n f0g: 1. Introdu
tionThe two-dimensional S
hr�odinger operator with homogeneous magneti
 and ele
tri
 �elds 
anbe written in the formP1(B;�) = (Dx �By)2 +D2y + �x+ V (x; y); D� = �i ��� ;where B and � are proportional to the strength of the homogeneous magneti
 and ele
tri
 �elds.In this paper we study the spe
tral shift fun
tion of the pair (P1(B;�); P0(B;�)), whereP0(B;�) = (Dx �By)2 +D2y + �xand V 2 C1(R2 ;R): We assume that there exists � > 0 so thatj��x;yV (x; y)j � C�hxi�2��hyi�1��; 8�; (1.1)where hXi = (1 + jXj2)1=2.The essential spe
trum of P1(B; 0) and P0(B; 0) are the same and it is well known that thespe
trum of the operator P0(B; 0) is given by[1n=1f(2n� 1)Bg:The numbers �n = (2n � 1)B; n 2 N� = N n f0g; 
alled Landau levels, are eigenvalues of in�-nite multipli
ity (see [2℄). Outside the Landau levels we have dis
rete eigenvalues 
aused by thepotential V . The presen
e of ele
tri
 �eld 
reates resonan
es whi
h will be 
hara
terized as theeigenvalues of a distorted operator.The spe
tral properties of the 2D S
hr�odinger operator P1(B; 0) have been intensively studiedin the last ten years. In the 
ase of perturbations the Landau levels �n be
ome a

umulationpoints of the eigenvalues of P1(B; 0) and the asymptoti
s of the fun
tion 
ounting the number ofthe eigenvalues lying in a neighborhood of �n have been examined by many authors in di�erent1



2 M. DIMASSI AND V. PETKOVaspe
ts. For re
ent results the reader may 
onsult [25℄, [17℄, [14℄, [18℄, [26℄, [23℄ and the referen
esgiven there. We would like to mention that it seems diÆ
ult to obtain a tra
e formula involvingsome summation over the eigenvalues 
lose to a Landau level (see [22℄ for a result in this dire
tion).For the 2D S
hr�odinger operator with 
rossed magneti
 and ele
tri
 �elds (� 6= 0) the situation
ompletely 
hanges and �ess(P0(B;�)) = �ess(P1(B;�)) = R: For de
reasing potentials the operatorP1(B;�) 
an have embedded eigenvalues � 2 R, but this question seems not suÆ
iently investi-gated. From physi
al point of view, it is expe
ted that V (x; y) 
reates resonan
es z 2 C ; Im z � 0;and it natural to de�ne and to study the spe
tral shift fun
tion (SSF) �(�) related to P1(B;�)and P0(B;�). There are only few works treating magneti
 Stark resonan
es. The 
ase B ! 1was studied in [32℄, while the 
ase � ! 0 has been examined in [12℄, [13℄g (see also [19℄, [20℄,[31℄, [33℄). In these works the authors study mainly the resonan
es 
lose to the eigenvalues of thenon-perturbed operator P0(B;�): Moreover, in [32℄, the 
omplex s
aling and the de�nition of theresonan
es for B !1 lead to some diÆ
ulties when we try to show that there are no resonan
es zwith Imz > 0 and this was an open problem in [32℄. We 
an de�ne SSF following the general setup[34℄, but to our best knowledge the SSF for magneti
 Stark Hamiltonians has not been investigated,as well as there are no tra
e formulae involving the resonan
es lying in a 
ompa
t domain in C .In this work we are strongly inspired by the re
ent progress in the analysis of the resonan
es,SSF and tra
e formulae for S
hr�odinger operators (see [28℄, [29℄, [30℄, [24℄, [4℄, [6℄, [8℄, [10℄, [11℄).In this dire
tion the role played by the SSF is very important and it was shown in [4℄ how manyappli
ations as Weyl asymptoti
s of SSF, tra
e formulae and Breit-Wigner approximations, 
anbe dedu
ed from a representation of the derivative of SSF as a sum of harmoni
 measures relatedto resonan
es z with Im z < 0, Dira
 measures asso
iated to embedded eigenvalues z 2 R and, aharmoni
 fun
tion. In [11℄ we have followed this strategy for Stark Hamiltonians without magneti
�elds (B = 0). In this paper we study the 
onnexions between the resonan
es and the SSF formagneti
 Stark Hamiltonians and our main goal is to show that the derivative �0(�) has the samerepresentation as that mentioned above. Assuming � = 0, in the 3D 
ase a representation of SSFhas been obtained in [5℄.In Se
tion 2 we de�ne the SSF for P1(B;�) and P0(B;�) without any restri
tion on B and �.Next without a restri
tion on the generality, we assume throughout the paper that � = 1 and wewill use the notations P1(B) = P1(B; 1); P0(B) = P0(B; 1):To de�ne the resonan
es, we will suppose that V admits a holomorphi
 extension in the x-variable into the domain �Æ0 = fz 2 C : 0 � jIm zj � Æ0gfor some Æ0 > 0: We assume also that for some � > 0 we have the estimatesj��V (x; y)j � C�hj<xji�2��hyi�1��; for x 2 �Æ0 ; y 2 R; 8�: (1.2)In Se
tion 3, by using a 
omplex s
aling in x-dire
tion, (x; y) �! (x + �; y); we introdu
e thedilated operators Pj(B; �) = U�1� Pj(B)U�; j = 0; 1;where for � 2 R we 
onsider the unitary operatorU� : L2(R2 )! L2(R2); f ! f(x+ �; y)



MAGNETIC STARK HAMILTONIANS 3and for � 2 D(0; �0) � C we extend Pj(B; �) (see Lemma 1 in Se
tion 3). The notations Pj(B; �)makes no 
onfusion with the notations Pj(B;�) given above sin
e � = 1. The resonan
es arede�ned as the eigenvalues of the dilated operator P1(B; �) (see Se
tion 3 for more details) and inthis dire
tion we follow the previous works on Stark Hamiltonians [1℄, [16℄ (for a more 
ompletelist of referen
es see [11℄).Denote by Res P1(B) the set of resonan
es of P1(B). In Se
tions 4-6 we study the strongmagneti
 �elds 
hara
terized by B !1: Denote by �(�;B) the spe
tral shift fun
tion related tooperators P1(B); P0(B): Let 0 < � < 2; 0 < �1; 0 < � < 1 be �xed and let
n = fz 2 C : j<z � (2n+ 1)Bj � �B; �1B � Im z � � Im�g :Let 
 � 
n and letW be an open relatively 
ompa
t subset of 
: Suppose that J = 
\R; I =W\Rare intervals. Our main result is the followingTheorem 1. Assume that V satis�es the assumption (1:2): Then for B large enough and � 2 Iwe have the representation�0(�;B) = 1� Im r(�;B) + X!2Res (P1(B))\
;Im !<0 �Im !�j�� !j2 + X!2�pp(P1(B))\J Æ(�� !); (1.3)where r(z;B) is a fun
tion holomorphi
 in 
 andjr(z;B)j � C(W )B; z 2W: (1.4)We like to stress that this representation of the derivative of �(B;�) is the same as that es-tablished for operators with perturbations whi
h de
ay to 0 as jxj ! 1 ([4℄, [24℄) and for StarkHamiltonians without magneti
 �eld [11℄. As an appli
ation we obtain a lo
al tra
e formula 
om-pletely similar to those in [30℄, [24℄, [11℄ This formula follows immediately from Theorem 1 (see[24℄).Theorem 2. Assume that V satis�es the assumption (1:2). Let
 � fz 2 C : Im z � �Im �g; 0 < � < 1be an open, simply 
onne
ted, relatively 
ompa
t su
h that I = 
 \ R is an interval. Suppose thatf is holomorphi
 on a neighborhood of 
 and that  2 C10 (R) satis�es (�) = � 0; dist (I; �) > 2�;1; dist (I; �) < �;where � > 0 is suÆ
iently small. Then for B large enough we havetrh( f)(Pj(B))i1j=0 = Xz2 Res P1(B) \ 
 f(z) +E
;f; ; (1.5)where [aj ℄1j=0 = a1 � a0 andjE
;f; j �M( ;
)sup fjf(z)j : 0 � dist (
; z) � 2� ; Im z � 0gB :Our dilatation is simpler than that exploited by Wang [32℄ and this enables us to prove thatthere are no resonan
es z with Im z > 0. We have not raised the question if our de�nition of theresonan
es and that in [32℄ are equivalent for B ! 1: Nevertheless, we think that our approa
his more natural, sin
e the resonan
es, introdu
ed in Se
tion 3, lie in the "non-physi
al" plane



4 M. DIMASSI AND V. PETKOVfz 2 C : Im z � 0g. The de�nition of the SSF is independent on the resonan
es, and this 
on�rmsour 
hoi
e of 
omplex dilatation.We establish the following properties of the resonan
es.Proposition 1. Let 0 < � < 1; n 2 N be �xed. Then there exists a 
onstant C0 > 0, independenton B, and Bn su
h that for B � Bn, the operator P1(B) has no resonan
es z lying in the domainfz 2 C : C0 � j<z � (2n� 1)Bj � B; Im z � � Im �g:Moreover, we show that there are no resonan
es z with <z < �B; 0 < � < 1 and we establishan upper bound #fz 2 Res P1(B) : j<z � �nj � C0; Im z � �Im �g � C1Bwith C1 > 0 independent on B and �n. In parti
ular, in every 
ompa
t subset of C we have onlya �nite number of resonan
es with �nite multipli
ities.Remark. From physi
al point of view, we see that the presen
e of a 
onstant ele
tri
 �eld gener-ated by the potential �x leads to the absen
e of embedded eigenvalues and resonan
es with in�nitemultipli
ity. On the other hand, the Landau levels �n are the only points that may play the roleof attra
tors of resonan
es 
reating the gaps and free resonan
es regions. For �xed B it is provedin [12℄ that there are no resonan
es z of P1(B) with j<zj � R0 > 0: In this dire
tion we obtain astronger result saying that we have no resonan
es with negative real part.The main diÆ
ulty in the proof of Theorem 1 is the 
onstru
tion of an operator L(B; �) and atra
e 
lass operator K with kKktr = O(B) so thatP1(B; �)� z = L(B; �)� z +K;where (L(B; �)� z)�1 = O(1) for z in a 
omplex neighborhood 
n of �n. For this purpose we muststudy for z 2 
n the invertibility of the non-selfadjoint operator �(I � �)P1(B; �) � z�(I � �),where � is the spe
tral proje
tor on the eigenspa
e of (Dx� y)2+D2y related to �n. The existen
eof double 
hara
teristi
s of the operator (Dx � By)2 +D2y whi
h is not globally ellipti
, 
ombinedwith the Stark e�e
ts 
aused by x, lead to several diÆ
ulties. The proof of Theorem 1, given inSe
tion 5, works without a redu
tion to an e�e
tive Hamiltonian. Following the same strategy, wewill study elsewhere the general 
ase without the assumption B � 1. On the other hand, in Se
tion6 we 
onstru
t an e�e
tive Hamiltonian E1;�+(z); related to P1(B; �), and the existen
e of the res-onan
es is redu
ed to the invertibility of E1;�+(z) in 
n: This leads to Proposition 1 given above.It is possible, applying the argument of Wang [32℄, to obtain a more pre
ise information of the ex-isten
e of resonan
es 
lose to some energy level E asso
iated to the maximum or the minimum of V .A
knowledgments. The authors are grateful to G. Raikov for many helpful dis
ussions. Wewould like to thank the referee for his suggestions and remarks 
on
erning our exposition.2. Spe
tral shift fun
tionThroughout this work we will use the notations of [9℄ for symbols and pseudodi�erential oper-ators. In parti
ular, if m : Rd ! [0;1[ is an order fun
tion (see De�nition 7.5 in [9℄), we say that



MAGNETIC STARK HAMILTONIANS 5a(X;�) 2 S0(Rd ;m) if a(X;�) 2 C1(Rd ) is su
h that for every � 2 Nd , there exists C� > 0 su
hthat j��a(X;�)j � C�m(X;�) :In the spe
ial 
ase when m = 1, we will write S0(Rd) instead of S0(Rd ; 1): We will use the standardWeyl quantization of symbols. More pre
isely, if P (y; �) is a symbol in S0(R4 ;m), then Pw(y;Dy)is the operator de�ned byPw(y;Dy)u(y) = (2�)�2 ZZ ei(y�y0)��P�y + y02 ; ��u(y0)dy0d�; for u 2 S(R2 ):Sometimes we will quantize a fun
tion P (x; y; �; �) only with respe
t to the variable (y; �). Inthis 
ase we will denote by Pw(x; y; �;Dy) the operator obtained as above, 
onsidering (x; �) as aparameter. Finally, when P (y; �) is a fun
tion on T �(R2 ) (possibly operator-valued), we denote byPw(y; hDy) the semi
lassi
al quantization obtained as above by quantizing P (y; h�).In this se
tion we assume that V (x; y) satis�es only the assumption (1.1). The operatorsP1(B); P0(B) are essentially self-adjoint with domain C10 (R2): In this se
tion we de�ne the spe
tralshift fun
tion related to P1(B) and P0(B).Introdu
e the unitary operator U : L2(R2 )! L2(R2) by(Uu)(x; y) = B 342� ZZR2 ei'B(x;y;x0;y0) u(x0; y0) dx0dy0where 'B(x; y; x0; y0) = Bxy �pBxy0 �Bx0y +pBx0y0 � 12pB3 y0:A simple 
al
ulus shows that~P0(B) = U�1P0(B)U = B(D2y + y2) + x� 14B2 ;~P1(B) = U�1P1(B)U = ~P0(B) + V !�x�B�1=2Dy � 12B2 ; B�1=2y +B�1Dx� :The fa
t that U is unitary 
an be easily obtained by a dire
t 
al
ulation, but a deeper reason forthis is the following observation. Sin
e U is a metaple
ti
 operator (i.e. operator asso
iated with alinear 
anoni
al transformation), it follows from a 
lassi
al result of the theory of Fourier integraloperators that U is unitary (see [10℄, Theorem A.2, Chapter 7). The reader 
ould 
onsult [3℄, [15℄,[32℄, [7℄), for more details 
on
erning the 
onstru
tion of U . We have the followingProposition 2. Assume that V satis�es the estimate (1:1). Then(i) The operator (P1(B)� i)�1 � (P0(B)� i)�1 is a tra
e 
lass one.(ii) For Im z 6= 0 we havek(i� P1(B))�1(z � P1(B))�1 � (i� P0(B))�1(z � P0(B))�1ktr = O(jIm zj�2): (2.1)Proof. Sin
e U is unitary, it is suÆ
ient to show that the operator( ~P1(B) + i)�1 � ( ~P0(B) + i)�1is tra
e 
lass. In the following we will write ~Pj ; j = 0; 1; instead of ~Pj(B): By applying the resolventequality, we get ( ~P1 + i)�1 � ( ~P0 + i)�1 = �( ~P1 + i)�1V !( ~P0 + i)�1



6 M. DIMASSI AND V. PETKOV= �( ~P0 + i)�1V !( ~P0 + i)�1 + ( ~P1 + i)�1V !( ~P0 + i)�1V !( ~P0 + i)�1 :The operator ( ~P1 + i)�1V ! is bounded and the proof is redu
ed to show that( ~P0 + i)�1V !( ~P0 + i)�1is tra
e 
lass. Next we assume that B � �0 > 0: For simpli
ity suppose that �0 = 1. Let�(t) 2 C10 (R; [0; 1℄) be a 
ut-o� fun
tion su
h that �(t) = 1 for jtj � 1 and �(t) = 0 for jtj � 2: Fixa number k, maxf1; 21+�g < k < 2; and introdu
e the symbolq(x; y; �) = �� hy; �ikj�2 + y2 +B�1(x+ i)j� ;where hy; �i = (1 + y2 + �2)1=2: It 
lear that q(x; y; �) 2 S0(R4(x;�;y;�)) and we set A = q!(x; y;Dy):We de
ompose ( ~P0 + i)�1V !( ~P0 + i)�1= ( ~P0 + i)�1AV !A( ~P0 + i)�1 + ( ~P0 + i)�1(I �A)V !A( ~P0 + i)�1+( ~P0 + i)�1(I �A)V !(I �A)( ~P0 + i)�1+( ~P0 + i)�1AV !(I �A)( ~P0 + i)�1 = L1 + L2 + L3 + L4 :To treat L1, noti
e that on the support of q(x; y; �) we have(B(�2 + y2) + x+ i)�1 2 S0(R4 ; hy; �i�k) :In fa
t, on the support of q we obtainhy; �ik � 2B�1jB(�2 + y2) + x+ i)j � 2jB(�2 + y2) + x+ ijand it is easy to estimate the derivatives of (B(�2 + y2) + x + i)�1. A

ording to the 
al
ulus ofpseudodi�erential operators, L1 be
omes a pseudodi�erentail operator with symbol inS0(R4 ; hy; �i�khx�B�1=2�i�2��hB�1=2y +B�1�i�1��);and the tra
e of L1 
an be estimated (see for instan
e, Theorem 9.4 in [9℄) bykL1ktr � C0 ZZZZ hy; �i�2khx�B�1=2�i�2��hB�1=2y +B�1�i�1��dxd�dyd�� C 00B ZZ hy; �i�2kdyd� � C 000Bwith 
onstants C 00; C 000 ; independent on B. To deal with Lj ; j = 2; 3; 4; we will show that (I�A)V !and V !(I�A) are tra
e 
lass operators. For our analysis in Se
tions 4-6 we examine the dependen
eon B of the tra
e estimates. Noti
e that on the support of the symbol of (I �A) we havehy; �ik � j(�2 + y2) +B�1(x+ i)j :Taking into a

ount the estimate (1:1), we getk(I �A)V !ktr �C1 ZZZZhy;�ik�j�2+y2+B�1(x+i)jhx�B�1=2�i�2��hB�1=2y +B�1�i�1��dxd�dyd�� C2B ZZZhy;�ik�j�2+y2+B�1(x+i)jhx�B�1=2�i�2��dxdyd�� C2B2 ZZZhy;�ik�j�2+y2+B�3=2�+u+B�1ijhBui�2��dudyd�



MAGNETIC STARK HAMILTONIANS 7� C 02B2 ZZZ hy;�ik�j�2+y2+B�3=2�+uj;juj� 12 hy;�ik hBui�2��dudyd�+C 02B2 ZZZ hy;�ik�j�2+y2+B�3=2�+uj;juj� 12 hy;�ik hBui�2��dudyd�� C 02B2�ZZZjuj�C3;jyj�C3;j�j�C3hBui�2��dudyd� + ZZZjuj� 12 hy;�ik hBui�2��dudyd��� C4B + C5B2 Z hBui�2���Z (2juj) 1k0 rdr�du � C4B + C6B2 Z hBui�2��+2=kdu � ~CB ;sin
e �2 � � + 2=k < �1: The analysis of V !(I � A) is 
ompletely similar. Finally, we obtain theestimate k( ~P0 + i)�1V !( ~P0 + i)�1ktr � A0B; B � 1with a 
onstant A0 > 0 independent on B:To establish (2:1), we write the left-hand side in the form�(i� P1(B))�1 � (i� P0(B))�1�(z � P1(B))�1+(i� P0(B))�1�(z � P1(B))�1 � (z � P0(B))�1�= �(i� P1(B))�1 � (i� P0(B))�1�(z � P1(B))�1�(z � P1(B))�1(i� P0(B))�1V (z � P1(B))�1 :The �rst term at the right-hand side of the last equality is tra
e 
lass. To estimate the se
ond one,we repla
e (z � P1(B))�1 by(i� P1(B))�1 � (z � i)(i� P1(B))�1(z � P1(B))�1and, as above, we write (i�P0(B))�1V (z�P1(B))�1 as a produ
t of (i�P0(B))�1V (i�P0(B))�1and a bounded operator. Combining this with the estimate k(z � Pj(B))�1k = O(jIm zj�1), we
omplete the proof of (2:1). �The property (i) of Proposition 2 enables us to de�ne the spe
tral shift fun
tion �(B;�) 2 D0(R)related to operators P1(B) and P0(B) following the general theory (see for instan
e, p.297-303, [34℄)by the equality h�0; fi = tr�f(P1(B))� f(P0(B))�; f 2 C10 (R) :For our analysis it is important to have a representation of �(B;�) involving the resolvents ofPj(B). Let ~f(z) 2 C10 (C ) be an almost analyti
 extension of f . Set g(z) = f(z)(z � i). By theHel�er-Sj�ostrand formula we haveg(Pj(B)) = � 1� Z ��z ~f(z)(z � i)(z � Pj(B))�1L(dz); j = 0; 1 ;and we obtaintr�f(P1(B))� f(P0(B))� = � 1� Z ��z ~f(z)(z � i)trh(Pj(B)� i)�1(z � Pj(B))�1i1j=0L(dz) ;where L(dz) is the Lebesgue measure on C and [aj ℄1j=0 = a1�a0: Sin
e ��zf(z) = O(jImzjN ); 8N 2 N,the tra
e is well de�ned.



8 M. DIMASSI AND V. PETKOV3. Resonan
es for magneti
 Stark hamiltoniansIn this and in the following se
tions we assume that V (x; y) satis�es the estimates (1.2). LetD(0; �0) be the disk in C of 
enter 0 and radius �0 > 0. For � 2 D(0; �0); �0 > 0 small, we will usethe dilation (x; y) �! (x+ �; y). For � 2 R, 
onsider the unitary operatorU� : L2(R2)! L2(R2 ); f ! f(x+ �; y):Let U be the unitary operator introdu
ed in Se
tion 2. Setting ~U� = UU�, we introdu
e theoperators U�1� Pj(B)U� := Pj(B; �); j = 0; 1; (3.1)~U�1� P0(B) ~U� := ~P0(B; �) = B(D2y + y2) + x+ � � 14B2 ; (3.2)~U�1� P1(B) ~U� := ~P1(B; �) (3.3)= ~P0(B; �) + V w(x+ � �B� 12Dy � 12B2 ; B� 12 y +B�1Dx);Re
all that throughout the paper we will use the notations Pj(B; �); ~Pj(B; �); j = 0; 1; for theoperators de�ned above and this makes no 
onfusion with the notation Pj(B;�) given in theIntrodu
tion.Lemma 1. There exists �0 > 0 su
h that the self-adjoint operators P1(B; �); ~P1(B; �), de�ned for� 2℄ � �0; �0[, extend to an analyti
 type-A family of operators on D(0; �0) with the same domainD as that of P0(B; 0); ~P0(B; 0). Moreover,�ess( ~P1(B; �)) = �ess( ~P0(B; �)) = �( ~P0(B; �)) = f�+ �; � 2 Rg:Proof. Clearly, the domain D of ~P0(B; �) is independent of � and � ! ~P0(B; �)u is analyti
 forall u 2 D. On the other hand, the analyti
 assumption on V implies that there exists �0 > 0 smallenough su
h that D(0; �0) 3 � ! V w�x+ � �B� 12Dy � 12B2 ; B� 12 y +B�1Dx�uis analyti
 for any u 2 L2(R2). Following [21℄, this gives the �rst statement of the lemma. For these
ond one, noti
e that �ess( ~P0(B; �)) = �( ~P0(B; �)) = f�+ � : � 2 Rg:Using (1:2) and Lemma 3 of [27℄, p. 111, we dedu
e that �ess( ~P1(B; �)) = �ess( ~P0(B; �)) and this
ompletes the proof. �Below we take � 2 D(0; �0); Im � � 0; and 
onsider the domain
� = fz 2 C : Im z > Im �g :It is easy to see that there exist �0 > 0 small enough su
h that for � 2 D(0; �0) with Im � � 0we have k(z � ~P0(B; �))�1k � 1jIm � � Im zj (3.4)for z 2 
�.Now, repeating the argument in [11℄, we prove the followingLemma 2. Let Im z0 > Im �: Then the operator P1(B; �)� z0 is a Fredholm one with index 0.



MAGNETIC STARK HAMILTONIANS 9Proof. Let ��(x; y) = (x+ �; y): For z 2 
 we haveP1(B; �)� z = �I + �V Æ ���(1�  z(u))hP0(B; �)� z+�V Æ ��� z(u)i�1�hP0(B; �)� z + �V Æ ��� z(u)i ;where u = (x; y);  z(u) 2 C1(R2 ; [0; 1℄) is a fun
tion su
h that  z(u) = 0 for juj � C1;  z(u) = 1 forjuj � C1+1: Choosing C1 > 0 (depending on z) large enough, we may assume that j�V Æ���j z(u)is small, so the operator A�(z) = P0(B; �)� z + �V Æ ��� z(x)is invertible for z 2 
�. On the other hand,K�(z) = �V Æ ���(1�  z(u))A�(z)�1is 
ompa
t. Then dimKer ( ~P1(B; �)� z0) = dimKer (I +K�(z0));provided Im z0 > Im �:A simple argument shows that Image (P1(B; �)� z0) is 
losed and
odim (P1(B; �)� z0) = dimKer (I +K�� (z0)):Thus P1(B; �)� z is a Fredholm operator with index 0 and the proof is 
omplete. �De�nition 1. Let Im � < 0. We say that z 2 
� is a resonan
e of P1(B) ifdimKer (P1(B; �)� z) > 0:As in [11℄, we show that P1(B) has no resonan
es z with Im z > 0, as well as, that theresonan
es in fz 2 C : Imz > Im �2 > Im �1g are independent of the 
hoi
e of � satisfying the
ondition 0 > Im �2 � Im � � Im �1:Following [27℄ and repeating the argument in [11℄, we 
an establish a link between the eigen-values of the 
omplex s
aling operator P1(B; �) and the poles of the suitably regularized resolvent.For this purpose, noti
e thatL2(R2 ) 3 f �! f(x+ �; y) 2 L2(R2); � 2 Rform an unitary group. Then there exists a dense set A � L2(R2) of analyti
 ve
tors so that1Xn=0 �nn! 


�nf�xn


; f 2 Ais 
onvergent for � 2 D(0; �0): This implies that for �0 small and for f 2 A the fun
tionsU�f = f(x + �; y) admit a holomorphi
 extention in D(0; �0) . The same is true for U�1� f:Now suppose that � 2 
n is an eigenvalue for P1(B; �). Then we 
an �nd ' 6= 0 and  6= 0so that ( ; (P1(B; �) � z)�1') has a pole at z = �. By approximation, we 
onstru
t fun
tions n 2 A; 'n 2 A so that  n �!  ; 'n �! ': For n large enough ( n; (P1(B; �) � z)�1'n) willhave a pole at z = �. We �x a su
h n and setting F = U�1�  n; G = U�1� 'n; we dedu
e that(F; (P1(B)� z)�1G) has a pole at z = �.



10 M. DIMASSI AND V. PETKOVWe de�ne the multipli
ity of a resonan
e z0 bym(z0) = rank 12�i Z
�(z0)(z � P1(B; �))�1dz;where 
�(z0) = fz = z0 + �ei'; 0 � ' � 2�g and � > 0 is small enough. In the following we �x� 2 D(0; �0) with Im � < 0 and we denote the set of resonan
es of P1(B) by Res P1(B):Remark. Clearly, the operatorsP1(B; �) = U�P1(B)U�1� = (Dx �By)2 +D2x + x+ � + V (x+ �; y);and ~P1(B; �) have the same eigenvalues in 
� with the same multipli
ity. In a su
h way, we 
anwork dire
tly with ~P1(B; �).Proposition 3. Let V satisfy (1:2) and let the 
ondition1 + �xV (x; y) > 0be ful�lled. Then, there exists �0 , Im �0 < 0, su
h that P1(B) has no resonan
es in 
�0 .Proof. First, sin
e �xV (x; y) tends to 0 when j(x; y)j tends to in�nity, it follows from our assump-tions that 1 + �xV (x; y) � � > 0;uniformly on (x; y) 2 R2 . For u in the domain of P0(B) we have�Im ((P1(B; �)� z)u; u) = (Im z � Im �)kuk2 � Im (V (�+ �; �)u; u):Applying Taylor's formula for the fun
tion � 7! V (x+ �; y), we obtainIm V (x+ �; y) = Im � �xV (x+ <�; y) +O(jIm �j2):Thus �Im ((P1(B; �)� z)u; u) = Im zkuk2 � Im �((1 + �xV (�+ <�; �))u; u) +O(jIm �j2)kuk2:Next, we 
hoose Im � < 0 small enough, and using the above inequality, we get the proposition. �4. Estimates of the resolvent for strong magneti
 fieldsIn this se
tion we will examine the 
ase of strong magneti
 �eld 
hara
terized by B !1: Forsimpli
ity we assume � 2 iR. Let 'n be the n-th real normalized Hermite fun
tion given by(D2y + y2)'n = (2n� 1)'n; k'nk = 1; n 2 N� :To examine the resolvent (P1(B; �)� z)�1, we will study the resolvent of the operator~P1(B; �) = B(D2y + y2) + x+ � � 14B2 + V ! :Re
all that V ! is a bounded pseudodi�erential operator in L2(R2) with Weyl symbolV �x�B�1=2� � 12B2 ; B�1=2y +B�1�� :We �x an integer n � 1 and let � be the spe
tral proje
tion of the operator D2y + y2 asso
iated tothe interval [2n� 2; 2n℄: Introdu
e the operatorQ(B; �) = (I ��)hB(D2y + y2) + x+ � � 14B2 + V !i(I ��) :



MAGNETIC STARK HAMILTONIANS 11The main result in this se
tion is the followingProposition 4. Let 0 < � < 2; 0 < �1; 0 < � < 1 be �xed and let
n = fz 2 C : j<z � (2n+ 1)Bj � �B; �1B � Im z � � Im�g :Then for B � 1 suÆ
iently large and z 2 
n the operator (Q(B; �) � z)�1(I � �) is well de�nedand there exists a 
onstant 
 > 0, independent on B, su
h thatk(Q(B; �)� z)(I ��)uk � 
jIm �jk(I ��)uk; u 2 D (4.1)uniformly with respe
t to z 2 
n:Consider a partition of unity G21(x) +G22(x) = 1 with Gi 2 C1(R; [0; 1℄); i = 1; 2,suppG1 � fx 2 R : jxj � 2gand G1(x) = 1 for jxj � 1: Choose 1=2 < Æ < 1 and introdu
e the operatorsA1 = G!1�x�B�1=2DyBÆ �; A2 = G!2�x�B�1=2DyBÆ �with Weyl symbols Gi�x�B�1=2�BÆ �; i = 1; 2: By a partial Fourier transform with respe
t to y, we
an view Ai as an multipli
ation operator. Then, it is easy to see that A�i = Ai; i = 1; 2; andA2i = Op!G2i�x�B�1=2DyBÆ �; A21 +A22 = 1 :Here Op!g(x;Dy) denotes the Weyl pseudodi�erential operator with symbol g(x; �):Lemma 3. Let G 2 C10 (R): ThenhOp!G�x�B�1=2DyBÆ �;�i = O�B�1=2�Æ�in the spa
e of bounded operators L(L2(R2)):Proof. Choose a fun
tion f 2 C10 (℄2n�2; 2n[) su
h that f = 1 near 2n�1. Obviously, f(D2y+y2) =� and the pseudodi�erential 
al
ulus yields yf 0(D2y + y2) = O(1) in L(L2(R2)): ThushOp!G�x�B�1=2DyBÆ �;�i = hOp!G�x�B�1=2DyBÆ �; f(D2y + y2)i= B�1=2�ÆO�Op!(G0)�x�B�1=2DyBÆ �yf 0(D2y + y2)� = O(B�1=2�Æ) : �To estimate the norms of the 
ommutators, we need the followingLemma 4. There exist 
onstants C0 > 0; C1 > 0, independent on B, and B0 � 1 so that forB � B0 we have ky Op!�G0i�x�B�1=2DyBÆ ��(I ��)uk� C0k(Q(B; �)� z)uk+ C1k(I ��)uk; i = 1; 2; 8z 2 
n; u 2 D: (4.2)



12 M. DIMASSI AND V. PETKOVProof. Introdu
e the symbol gi(x; y; �) = yG0i�B�Æ(x�B�1=2�)��2 + y2 +B�1x+ i :We will show that this symbol is in the 
lass S0(R4 ): In fa
t, the derivative �lx�py�k� gi(x; y; �) 
anbe written as a sum of termsB�(q�1)Æ yp0+1�k0(�2 + y2 +B�1x+ i)k+p+l0G(q)i �B�Æ(x�B�1=2�)�; q � 1with p0 � p; k0 � k; l0 � l + 1: Setting u = B�Æ(x�B�1=2�); we need to estimateTl;p;k(B; y; �; u) = yp+1�k��2 + y2 +B�1+Æu+B�3=2� + i�k+p+lG(q)i (u)uniformly with respe
t to B; y; �; u: For B�1+Æjuj � 12(�2 + y2); we havej�2 + y2 +B�1+Æu+ ij � 
0(�2 + y2 + 1); 
0 > 0and we get Tl;p;k = O(1) with respe
t to B; y; �; u. On the other hand, the support of G(q)i (u) isbounded and B�1+Æjuj � 12 (�2 + y2) leads to (�2 + y2) � 
1B�1+Æ � 
2. Thus we obtain againTl;p;k = O(1): Now 
onsider the operator Op!gi(x; y;Dy) with Weyl symbol gi(x; y; �): We haveOp!gi(x; y;Dy)(D2y + y2 +B�1x+ i) = yOp!�G0i�x�B�1=2DyBÆ ��+Ri(x; y;Dy) :Using the expli
it formulae of Ri given by the 
al
ulus of pseudodi�erential operators, and repeatingthe above arguments, we see that the symbol of Ri is in the 
lass S0(R4). It follows from theCalderon-Vaillan
ourt's theorem (see for instan
e, Theorem 7.11 of [9℄) that Op!gi(x; y;Dy) andRi are bounded. Thus, ky Op!�G0i�x�B�1=2DyBÆ ��(I ��)uk� kOp!gi(x; y;Dy)(D2y + y2 +B�1x+ i)(I ��)uk+ C2k(I ��)uk� C3k(D2y + y2 +B�1x+ i)(I ��)uk+ C2k(I ��)uk� C3k(D2y + y2 +B�1(x� z))(I ��)uk + C 02k(I ��)uk� C3k�B(D2y + y2) + x+ � � 14B2 + V ! � z�(I ��)uk+ C4k(I ��)uk� C3k(Q(B; �)� z)uk+ C1k(I ��)uk; 8z 2 
n; u 2 D :Here we have used the fa
t that B�1z is bounded for z 2 
n as well as the estimate [�; V !℄ =O(B�1=2): �.To estimate the a
tion of Q(B; �) on Ai(I ��)u; i = 1; 2; we need the following



MAGNETIC STARK HAMILTONIANS 13Lemma 5. There exists a1 > 0, independent on B, and B0 � 1 so that for B � B0 and z 2 
nwe have kh(I ��)�B(D2y + y2) + x+ � + V !�(I ��)� ziA1(I ��)uk� a1BkA1(I ��)uk � O(B1=2�Æ)k(I ��)uk; u 2 D: (4.3)Lemma 6. There exists a2 > 0, independent on B, and B0 � 1 so that for B � B0 and z 2 
nwe have kh(I ��)�B(D2y + y2) + x+ � + V !�(I ��)� ziA2(I ��)uk� a2jIm �jkA2(I ��)uk �O(B�1=2�Æ)k(I ��)uk; u 2 D: (4.4)Assuming the above estimates established, we will 
omplete the proof of Proposition 4.Proof of Proposition 4. We haveF (u) = k(Q(B; �)� z)(I ��)uk2= �(A21 +A22)(Q(B; �)� z)(I ��)u; (Q(B; �)� z)(I ��)u�= Xi=1;2 kAi(Q(B; �)� z)(I ��)uk2 :Thus F (u) � 12 Xi=1;2 k(Q(B; �)� z)Ai(I ��)uk2 � 2 Xi=1;2 k[Ai; Q(B; �)℄(I ��)uk2 :The operators Ai;� 
ommute with x and[Ai; Q(B; �)℄ = [Ai; (I ��)B(D2y + y2)(I ��)℄ + [Ai; (I ��)V !(I ��)℄= [Ai; (I ��)B(D2y + y2)(I ��)℄ +O(B�1=2�Æ) ;sin
e by the pseudodi�erential 
al
ulus we get[Ai;�℄ = O(B�1=2�Æ); [Ai; V !℄ = O(B�1=2�Æ):Next [Ai; (I ��)B(D2y + y2)(I ��)℄ = [Ai; B(D2y + y2)℄(I ��)�B(D2y + y2)[Ai;�℄ :Then we have B(D2y + y2)[Ai;�℄ = B1=2�Æ(D2y + y2)Lif 0(D2y + y2); i = 1; 2with operators Li having symbols uniformly bounded with respe
t to B. The symbol of the operatoron the right hand side of the above equality is bounded with its derivatives and we dedu
eB(D2y + y2)[Ai;�℄ = O(B1=2�Æ)in the spa
e of bounded operators L(L2(R2 )): To treat the 
ommutator with B(D2y+ y2), we applyLemma 4. It is 
lear that[Ai; B(D2y + y2)℄(I ��) = O(1)B1=2�Æy Op!�G0i(B�Æ(x�B�1=2Dy)�(I ��) +O(B1=2�Æ) ;so for B large enough, a

ording to (4.2), we obtaink(I ��)[Ai; B(D2y + y2)℄(I ��)uk



14 M. DIMASSI AND V. PETKOV� C5B1=2�Æk(Q(B; �)� z)(I ��)uk+ C6B1=2�Æk(I ��)uk; z 2 
n; u 2 D ;with 
onstants C5 > 0; C6 > 0 independent on z and B. Finally, taking into a

ount the estimates(4.3), (4.4), we dedu
e2(1 � C 05B1�2Æ)F (u) � ha21B2kA1(I ��)uk2 + a22jIm �j2kA2(I ��)uk2i�C7B1�2Æk(I ��)uk2� h�minfa1B; a2jIm �jg�2 � C7B1�2Æik(I ��)uk2 :For B suÆ
iently large this implies the estimate (4.1). �Proof of Lemma 5. First noti
e that the operator D2y + y2 + 1 is ellipti
, sokDyuk � k(D2y + y2 + 1)uk +C8kuk � k(I ��)(D2y + y2)uk + (C8 + 2n+ 2)kuk� B�1k(I ��)hB(D2y + y2)� ziuk+ C 08kuk; (4.5)where we have used that B�1z is bounded for z 2 
n: Se
ond, applying the estimate (4.5) for theterm (I ��)B�1=2DyA1(I ��)u;we obtain k(I ��)hB(D2y + y2) + x+ � � 14B2 + V ! � ziA1(I ��)uk= k(I ��)hB(D2y + y2) +BÆ�x�B�1=2DyBÆ �+B�1=2Dy � 14B2 + V ! � ziA1(I ��)uk� (1�B�3=2)k(I ��)hB(D2y + y2)� ziA1(I ��)uk�BÆ


�x�B�1=2DyBÆ �A1(I ��)u


� C9kA1(I ��)uk :Our assumptions on 
n and the spe
tral theorem for D2y + y2 implyk(I ��)hB(D2y + y2)� ziA1(I ��)uk � a1Bk(I ��)A1(I ��)k� a1BkA1(I ��)uk � O(B1=2�Æ)k(I ��)uk; a1 > 0 :Next 
hoose a fun
tion ~G1 2 C10 (R; [0; 1℄) with support 
lose to that of G1 and su
h that ~G1 = 1on supp G1: Then BÆ�x�B�1=2DyBÆ �A1(I ��)u= BÆ�x�B�1=2DyBÆ �Op! ~G1�x�B�1=2DyBÆ �A1(I ��)uand, sin
e u ~G1(u) is bounded, we 
an estimate this term by C10BÆkA1(I � �)uk: Taking B largeenough, we 
omplete the proof. �Proof of Lemma 6. We have����h(I ��)�B(D2y + y2) + x+ � � 14B2 + V !�(I ��)� ziA2(I ��)u;A2(I ��)u����



MAGNETIC STARK HAMILTONIANS 15� �Im �h(I ��)�B(D2y + y2) + x� 14B2 + � + V !�(I ��)� ziA2(I ��)u;A2(I ��)u�= (Im z � Im �)kA2(I ��)uk2 � Im�(I ��)V !(I ��)A2(I ��)u;A2(I ��)u�� �(1� �)jIm �j � C11B�1=2�Æ�kA2(I ��)uk2�Im�(I ��)V !A2(I ��)u;A2(I ��)u�� C11B�1=2�Æk(I ��)uk2 :Now we 
hoose a fun
tion ~G2 2 C1b (R; [0; 1℄) with support 
lose to that of G2 and su
h that ~G2 = 1on supp G2, and repla
e V !A2 by V !Op! ~G2(B�Æ(x�B�1=2Dy))A2. On the support of ~G2(u) wehave juj � 1: Thus to treat the termIm�(I ��)V !Op! ~G2(B�Æ(x�B�1=2Dy))A2(I ��)u;A2(I ��)u� ;we take B large enough in order to arrange the estimatekV !(x�B�1=2Dy � 12B2 ; B�1=2y +B�1Dx)Op! ~G2(B�Æ(x�B�1=2Dy))k � (1� �)2 jIm �j :The de
ay properties of the potential V and its derivatives and the pseudodi�erential 
al
ulus makethis possible, sin
e on the support of the symbol ~G2(B�Æ(x�B�1=2�)) we havejx�B�1=2�j � BÆ :Combining this with the above estimates, we 
omplete the proof. �Remark. By the same argument, we obtain the estimatek(Q�(B; �)� �z)(I ��)uk � 
jIm �jk(I ��)uk; z 2 
n; u 2 D :Thus the operator Q(B; �)� z is bije
tive on Image (I ��) and we denote its inverse byR̂(z) = �(I ��) ~P1(B; �)(I ��)� z��1(I ��): (4.6)A modi�
ation of the proof of Proposition 4 yields the followingProposition 5. Let 0 < � < 1; �1 > 0; 0 < � < 1; n � 0 be �xed. Then for B large enough theoperator P1(B) has no resonan
es z lying in the domains<z � �B; �1B � Im z � � Im �; (4.7)((2n+ 1) + �)B � j<zj � ((2n+ 3)� �)B; �1B � Im z � � Im �: (4.8)Proof. To treat the domain (4.8), it is suÆ
ient to repeat the proof of Proposition 4 without theproje
tor �. For example, in the proof of Lemma 5 we estimate the termkhB(D2y + y2)� ziA1uk � �BkA1ukand we follow the same argument. To deal with z lying in (4.7), �rst assume that�B � <z � �B; � < 0:Then we 
an repeat the argument of the proof of Proposition 4 with � repla
ed by 0, sin
e B�1zis bounded. Now suppose that <z � �B < 0: There are two points, where we have used the fa
t



16 M. DIMASSI AND V. PETKOVthat B�1z is bounded. The �rst one is the estimate (4.3) in the proof of Lemma 5. For <z < 0,the operator D2y + y2 �B�1<z + 1 is ellipti
 and sin
e B�1Im z is bounded, we getkDyuk � k(D2y + y2 �B�1<z)uk+ C9kuk� B�1k(B(D2y + y2)� z)u)k + C9kuk :Next we estimate the term B�1=2DyA1u;exploiting the fa
t that Dy and A1 
ommutes and apply the above estimate. The se
ond point isrelated to Lemma 4. For <z < 0 
onsider the symbolgi(x; y; �) = yG0i�B�Æ(x�B�1=2�)��2 + y2 +B�1(x�<z) + i :It is easy to show that this symbol is in S0(R4 ): Then the proof of Lemma 4 goes without any
hange and we obtain (4.2). Finally, we get the estimatek ~P1(B; �)� z)uk � 
jIm �jkuk; u 2 D ;and we 
on
lude that P1(B) has no resonan
es z with <z < 0: �5. Representation of the derivative of the spe
tral shift fun
tion for strongmagneti
 fieldsOur purpose in this se
tion is to prove Theorem 1 given in the Introdu
tion. We use thenotations of the previous se
tions and we work in the domain 
n: Consider the operatorsL1(B; �) = (I ��)�B(D2y + y2) + x+ � � 14B2 + V !�(I ��) ;L2(B; �) = ��B(D2y + y2) + x+ � � 14B2�� ;W! = (I ��)V !�+�V !(I ��) + �V !� :It is 
lear that L1(B; �) + L2(B; �)� z +W! = ~P1(B; �)� z :The operator ~L(B; �)� z := L1(B; �) + L2(B; �)� z is invertible for z 2 
n: In fa
t, we havek(~L(B; �)� z)uk2 = k(L1(B; �)� z)(I ��)uk2 + k(L2(B; �)� z)�uk2 :For the �rst term at the right hand side we apply Proposition 4, while for the se
ond one weestimate the imaginary part of (L2(B; �)� z)�u;�u): Thus for z 2 
n we obtaink(L(B; �)� z)uk2 � 
1k(I ��)uk2 + 
2k�uk2 � 
3kuk2; 
j > 0; j = 1; 2; 3 :Sin
e [�; V !℄ = O(B�1=2), for B large enough, the operatorL(B; �)� z := ~L(B; �) + (I ��)V !� +�V !(I ��)� zis invertible for z 2 
n: On the other hand, K = �V !� is a pseudodi�erential operator in L2(R2 )with prin
ipal symbolf(�2 + y2)V �x�B�1=2� � 12B2 ; B�1=2y +B�1��f(�2 + y2);



MAGNETIC STARK HAMILTONIANS 17and we 
on
lude that K is a tra
e 
lass one. Moreover, one obtains immediately the estimatekKktr � CB (5.1)with a 
onstant C > 0, independent on B. Thus we have the followingTheorem 3. Let B be suÆ
iently large. Then for z 2 
n we havez � ~P1(B; �) = z � L(B; �)�K (5.2)and the operator z � L(B; �) is invertible for z 2 
n:By using the above theorem, it is easy to establish dire
tly the existen
e of a meromorphi

ontinuation of the resolvent ( ~P1(B; �)� z)�1 for z 2 
n: In fa
t, we writez � ~P1(B; �) = [I �K(z � L(B; �))�1℄(z � L(B; �)) ;and we 
on
lude that the operator [I � K(z � L(B; �))�1℄ has a meromorphi
 
ontinuation forz 2 
n: In the next se
tion we will 
onstru
t an e�e
tive operator E1;�+(z) so that the eigenvaluesof ~P1(B; �), and hen
e those of P1(B; �), 
oin
ide with the zero eigenvalues of E1;�+(z): This willbe more 
onvenient for the analysis of the free resonan
es regions.Introdu
e the fun
tions��(z) = (z2 + 1)trh(Pj(B)� i)�1(Pj(B) + i)�1(z � Pj(B))�1i10; � Im z > 0;where [aj ℄10 = a1 � a0: It follows from Proposition 2 that ��(z) are well de�ned and we have��(z) = �+(�z); Im z < 0 :For � real the operator (Pj(B)� i)�1(Pj(B) + i)�1(z � Pj(B))�1 is unitary equivalent to( ~Pj(B; �)� i)�1( ~Pj(B; �) + i)�1(z � ~Pj(B; �))�1:Consequently, the 
y
li
ity of the tra
e yields�+(z) = (z2 + 1)trh( ~Pj(B; �)� i)�1( ~Pj(B; �) + i)�1(z � ~Pj(B; �))�1i10 (5.3)for all z 2 
+ = 
n \ fIm z > 0g, � 2 D(0; �0) \ R.Now, �x Æ > 0 and let z 2 
Æ = 
n \ fIm z � Æg. Sin
e ~Pj(B; �) extends to an analyti
 type-A family of operators on D(0; �0), for suÆ
iently small �0 and z 2 
Æ, the r.h.s of (5.3) extends byanalyti
 
ontinuation in � to the disk D(0; �0). For � 2 D(0; �0) with Im � < 0, both terms of (5.3)are holomorphi
 on 
+, and, 
onsequently, (5.3) remains true for all z in 
+.From now on, the number � will be �xed in D(0; �0) with Im � < 0. We drop the subs
riptB; �; most of the time and write Pj; L instead of ~Pj(B; �); L(B; �). For simpli
ity of the notationswe set B = h�1: As we have proved, there exists a tra
e 
lass operator K, kKktr = O(h�1), su
hthat P1 = L�K and (L� z)�1 = O(1) : L2(R2 )! D uniformly for z 2 
n :Then (z�P1) = (I+ ~K(z))(z�L) with ~K = K(z�L)�1 and the resonan
es z 2 ResP1(B) 
oin
idewith their multipli
ities with the zeros of the fun
tionD(z; h) = det(I + ~K(z)):Then, as in Proposition 3 in [11℄, we obtain the upper bound#fz 2 Res P1 : z 2 
ng � C(
n)h�1: (5.4)
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tion �+(z) we have the followingProposition 6. There exists a fun
tion a+(z; h), holomorphi
 in 
n, su
h that for z 2 
n \ fz 2C : Im z > 0g we have �+(z) = tr�(P1 � z)�1K(L� z)�1�+ a+(z; h): (5.5)Moreover, ja+(z; h)j � C1(
n)h�1; z 2 
n: (5.6)Proof. The proof is similar to that of Proposition 3 in [11℄, so we will omit some details. We write�+(z) = I1(z) + I2(z), whereI1(z) = (z2 + 1)tr�(P1 � i)�1(P1 + i)�1(z � L)�1�(P0 � i)�1(P0 + i)�1(z � P0)�1� ;I2(z) = (z2 + 1)tr�(P1 � i)�1(P1 + i)�1(P1 � z)�1K(z � L)�1� :As in [11℄, Se
tion 3, by using the resolvent equation and the 
y
li
ity of the tra
e, we show thatI2(z) is equal to tr((P1 � z)�1K(L � z)�1) modulo a fun
tion holomorphi
 in a neighborhood of
n and satis�es (5.6). Next we de
ompose I1(z) as followsI1(z) = (z2 + 1)tr�h(Pj � i)�1(Pj + i)�1i1j=0(z � L)�1�+(z2 + 1)tr�(P0 � i)�1(P0 + i)(z � P0)�1K(z � L)�1�+(z2 + 1)tr�(P0 � i)�1(P0 + i)�1(z � P0)�1V !(z � L)�1� ;and we 
on
lude that I1(z) is holomorphi
 in 
n: For the �rst and the se
ond terms in the aboveequality we obtain bounds O(h�1): In fa
t, for the �rst term we apply the argument of the proofof Proposition 2 with B = h�1, while for the se
ond one we use the estimate (5.1) 
ombined withthe estimate of the resolvent (z � L)�1: Finally, to estimate the tra
e of the term(P0 � i)�1(P0 + i)�1V !�x+ � � h1=2Dy � 12h2; h1=2y + hDx�;we write V ! = AV !A + (I � A)V !A + AV !(I � A) + (I � A)V !(I � A) with the operator Ahaving symbol q(x; y; �), introdu
ed in the proof of Proposition 2, and we follow the argument ofthis proposition. �A

ording to Lemma 1 in [11℄, for every f 2 C10 (R) we haveh�0; fi = lim�&0 i2� Z f(�)h�+(�+ i�)� ��(�� i�)id� ;where the limit is taken in the sense of distributions. Following without any 
hange the proof inSe
tion 6 of [11℄, we obtain Theorem 1.
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tive Hamiltonian for strong magneti
 fieldsIn this se
tion we use freely the notations of the previous se
tion. In parti
ular, the set 
n andthe proje
tion � are asso
iated to a Landau level (2n � 1)B with a �xed integer n � 1. Let usintrodu
e the operatorsR+ : L2(R2x;y ) 3 v �! (hv(x; �);  n(�)iL2(Ry) = ZRy v(x; y) n(y)dy 2 L2(Rx);R� = R�+ : L2(Rx) 3 u �! u(x) n(y) 2 L2(R2x;y ):These operators satisfy R+R� = IL2(Rx); R�R+ = �:Consider the following Grushin problem:P0(z) = � ~P0(B; �)� z R�R+ 0 � : D � L2(Rx;y )! L2(R2x;y )� L2(Rx):By a simple 
omputation, we have the followingLemma 7. The operator P0(z) is uniformly invertible for z 2 
n and � 2 D(0; �0). Its inverse isholomorphi
 in (z; �) and has the formE0(z) = � E0(z) E0;+E0;� E0;�+(z) � ;where E0(z) = bR0(z); E0;+ = R�; E0;� = R+; E0;�+(z) = z � (2n� 1)B � x� � + 14B2 ;bR0(z) = �(I ��) ~P0(B; �)(I ��)� z��1(I ��):Now 
onsider the Grushin problem for the perturbed Hamiltonian ~P1(B; �)� z :P1(z) = � ~P1(B; �)� z R�R+ 0 � : (6.1)Proposition 7. For B large enough the operator P1(z) is invertible for z 2 
n and its inverse isgiven by E1(z) = � E1(z) E1;+(z)E1;�(z) E1;�+(z) � ;where E1(z) = R̂(z)a(z); (6.2)E1;�(z) = R+a(z); (6.3)E1;+(z) = �R̂(z)a(z)[V !;�℄R� +R�; (6.4)E1;�+(z) = �R+a(z)[V !;�℄R� + hz � (2n� 1)B � x� � + 14B2 �R+V !R�i: (6.5)Here a(z) = �I + [�; V !℄R̂(z)��1 and R̂(z) is given by (4:6):



20 M. DIMASSI AND V. PETKOVProof. Set ~E(z) =  R̂(z) R�R+ z � h(2n� 1)B + x+ � � 14B2 +R+V !R�i ! :We have V !R� �R�R+V !R� = V !R�R+R� ��V !R� = [V !;�℄R� = O(B�1=2) :A simple 
al
ulus impliesP1(z) Æ ~E(z) = � I + [�; V !℄R̂(z) [V !;�℄R�0 I �= I +O(B�1=2) ;sin
e [V !;�℄ = O(B�1=2). Consequently, for B large enough, the operator P1(z) has a right inverseand we get E1(z) = ~E(z) Æ� (I + [�; V !℄R̂(z))�1 �(I + [�; V !℄R̂(z))�1[V !;�℄R�0 I �= � R̂(z)a(z) �R̂(z)a(z)[V !; �℄R� +R�R+a(z) �R+a(z)[V !;�℄R� + z � (2n� 1)B � x� � + 14B2 �R+V !R� � :This 
ompletes the proof. �To study the properties of the operators Ej;�+(z); j = 0; 1; we set B�1 = h. We need thefollowingLemma 8. We have[V !;�℄ : L2(R2) �! L2(R2) 2 Op !�S0�R4 ; hxi�2��hB�i�1��hyi�1h�i�1��: (6.6)Proof. Re
all that we may write � = f(D2y + y2) with f 2 C10 (℄(2n � 2; 2n[): A

ording toTheorem 8.7 in [9℄, we have � 2 Op!�S0(R2 ; hyi�1h�i�1)� :Sin
e the operator V ! 2 Op!�S0(R4 ; hxi�2��hB�i�1��)�, we obtain (6.6) by the 
al
ulus of pseudo-di�erential operators. �Proposition 8. The operator E1;�+(z)�E0;�+(z) is a h-pseudodi�erential one with Weyl symbola(x; �; z; h) 2 S0(R2 ; hxi�2��h�i�1��) su
h thata(x; �; z; h) � 1Xj=0 aj(x; �; z)hj ; (6.7)where a0(x; �; z) = �V (x+ �; �); a1(x; �; z) = �(2n� 1)�x;�V (x+ �; �)=4: (6.8)



MAGNETIC STARK HAMILTONIANS 21Proof. The proof is similar to that of Proposition 2.5 in [7℄, so we will omit some details. We haveE1;�+(z) �E0;�+(z) = �R+a(z)[V !;�℄R� �R+V !R�:The operator R+V !R� : L2(Rx) �! L2(Rx) has the form(R+V !R�u)(x) = DV !�x+ � � 12h2 � h1=2Dy; h1=2y + hDx�(u(x) n(y));  n(y)EL2(Ry) :This implies that the symbol of R+V !R� is given byJ(h1=2) = hV !(x+ � � 12h2 � h1=2Dy; h1=2y + �) n(y);  n(y)iL2(Ry) :The estimate �����x��� V !(x+ � � h1=2�; h1=2y + �)���� C�;�hxi�2��h�i�1��h�i2+�hyi1+�and the fa
t that  n(y) = e� y22 Pn(y); Pn(y) being a polynomial, imply(x; �)! V !(x+ � � 12h2 � h1=2Dy; h1=2y + �) 2 S0�R2 ; hxi�2��h�i�1��� :Applying Taylor's formula, we obtainV !(x+ � � h1=2Dy � 12h2; h1=2y + �) = V !(x+ �; �)�h1=2Dy�xV !(x+ �; �) + h1=2y��V !(x+ �; �) + : : : :Sin
e  n(�y) = (�1)n n(y), we have hD2k+1y  n;  ni = 0 for all k 2 N. This implies that J(h1=2) =J(�h1=2), so J(h1=2) has an asymptoti
 expansion in power of h (see Proposition 4.3 in [7℄ for moredetails.) Thus the symbol of R+V !R� satis�es (6.7). To show thatR+a(z)[V !;�℄R� 2 Op!�S0(R2 ; hxi�2��h�i�1��)�; (6.9)�rst we prove that a(z)[V !;�℄ is a h-pseudodi�erential operator and next we repeat the aboveargument 
ombined with Lemma 8. This 
ompletes the proof. �From the 
onstru
tion of the Grushin operators one obtains the following well known formulae(see for instan
e, [15℄, [6℄, [7℄):(z � ~Pj(B; �))�1 = �Ej(z) +Ej;+(z)E�1j;�+(z)Ej;�(z) ;Ej;�+(z)�1 = �R+( ~Pj(B; �)� z)�1R�+; j = 0; 1 :Consequently, z 2 �( ~Pj(B; �)) , 0 2 �(Ej;�+(z)); j = 0; 1: (6.10)Re
all that the operators ~Pj(B; �) are unitarily equivalent to the operators Pj(B; �), so the eigen-values of these operators 
oin
ide. A

ording to Proposition 8, the analysis of the invertibility ofthe operator E1;�+(z) is redu
ed to that of the operatorz � (2n� 1)h�1 � x� � + 14h2 + a!(x; hDx; z);



22 M. DIMASSI AND V. PETKOVwhere a!(x; hDx; z) is a h-pseudodi�erential operator with Weyl symbola(x; �; z; h) � 1Xj=0 aj(x; �; z)hjgiven by (6.7).Proof of Proposition 1. SetAw(x; hDx; z) := z � (2n� 1)B � x� � � 14B2 � V w(x+ �; hDx)= E0;�+(z) � V w(x+ �; hDx) :Clearly, E�10;�+(z) = �z � (2n� 1)B � x� � � 14B2��1 2 Op!(S0(R2 ));and kE�10;�+(z)k � 1(1� �)jIm �j ; (6.11)uniformly with respe
t to z 2 
n.Let R > 0 be a large 
onstant su
h thatsupjxj>R; �2Rj��x;�V (x+ �; �)j < (1� �)j�j2 ; j�j � N0;where N0 is an integer independent on B and n: In fa
t, N0 depends on the 
hoi
e of a semi-norm in the spa
e of symbols S0(R2 ) whi
h by the Calderon -Vaillan
ourt's theorem 
on
erning L2
ontinuity of Weyl pseudodi�erential operators is equivalent to the norm in the spa
e of boundedoperator L(L2(R2)) (see Theorem 7.11 in [9℄). Forz 2 ~
n := fz 2 C : j<z � (2n� 1)j > 2 sup(x;�)2R2; j�j�N0j��x;�V (x+ �; �)j+ j<�j+Rg;we have sup(x;�)2R2; j�j�N0�����x;���z � (2n� 1)B � x� � � x��1V (x+ �; �)���� < 12 : (6.12)To see this, it suÆ
es to noti
e that, for z 2 ~
n and jxj < R, we havejz � (2n� 1)B � � � xj > 2 sup(x;�)2R2; j�j�N0j��x;�V (x+ �; �)j:It follows from the Calderon- Vaillan
ourt theorem that for h small enoughkV w(x+ �; hDx)E�10;�+(z)k � 12 :Combining this with (6.11) and using the equalityAw(x; hDx; z) = (I � V w(x+ �; hDx)E�10;�+(z))E0;�+(z);we dedu
e that, for h small enough we havekAw(x; hDx; z)�1k � 2(1� �)jIm �j :



MAGNETIC STARK HAMILTONIANS 23By Proposition 8, we get E1;�+(z) = Aw(x; hDx; z) +On(h). Here the estimate of the norm On(h)depends on n, sin
e the lower order symbol of a!(x; hDx) is given by�(2n� 1)�V (x+ �; y)=4 :So for 0 < h � h(n) we obtain the invertibility of E1;�+(z), and a

ording to (6.10), this 
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