SPECTRAL PROBLEMS FOR OPERATORS WITH CROSSED MAGNETIC AND ELECTRIC FIELDS

MOUEZ DIMASSI AND VESSELIN PETKOV

In memory of Pierre Duclos

ABSTRACT. We obtain a representation formula for the derivative of the spectral shift function $\xi(\lambda; B, \epsilon)$ related to the operators $H_0(B, \epsilon) = (D_x - By)^2 + D_y^2 + \epsilon x$ and $H(B, \epsilon) = H_0(B, \epsilon) + V(x, y), B > 0, \epsilon > 0$. We prove that the operator $H(B, \epsilon)$ has at most a finite number of embedded eigenvalues on \mathbb{R} which is a step to the proof of the conjecture of absence of embedded eigenvalues of H in \mathbb{R} . Applying the formula for $\xi'(\lambda, B, \epsilon)$, we obtain a semiclassical asymptotics of the spectral shift function related to the operators $H_0(h) = (hD_x - By)^2 + h^2D_y^2 + \epsilon x$ and $H(h) = H_0(h) + V(x, y)$.

1. Introduction

Consider the two-dimensional Schrödinger operator with homogeneous magnetic and electric fields

$$H = H(B, \epsilon) = H_0(B, \epsilon) + V(x, y), D_x = -\mathbf{i}\partial_x, D_y = -\mathbf{i}\partial_y,$$

where

$$H_0 = H_0(B, \epsilon) = (D_x - By)^2 + D_y^2 + \epsilon x.$$

Here B > 0 and $\epsilon > 0$ are proportional to the strength of the homogeneous magnetic and electric fields and V(x,y) is a $L^{\infty}(\mathbb{R}^2)$ real valued function satisfying the estimates

$$|V(x,y)| \le C(1+|x|)^{-2-\delta}(1+|y|)^{-1-\delta}, \delta > 0.$$
(1.1)

For $\epsilon \neq 0$ we have $\sigma_{\rm ess}(H_0(B,\epsilon)) = \sigma_{\rm ess}(H(B,\epsilon)) = \mathbb{R}$. On the other hand, for decreasing potentials V it is possible to have embedded eigenvalues $\lambda \in \mathbb{R}$ and this situation is quite different from that with $\epsilon = 0$ when the spectrum of H(B,0) is formed by eigenvalues with finite multiplicities which may accumulate only to Landau levels $\lambda_n = (2n+1)B$, $n \in \mathbb{N}$ (see [7], [11], [13] and the references cited there). The analysis of the spectral properties of H and the existence of resonances have been studied in [5], [6], [3] under the assumption that V(x,y) admits a holomorphic extension in the x-variable into a domain

$$\Gamma_{\delta_0} = \{ z \in \mathbb{C} : 0 \le |\operatorname{Im} z| \le \delta_0 \}.$$

On the other hand, without any assumption on the analyticity of V(x, y), it was proved in [3] that the operator $(H-z)^{-1} - (H_0-z)^{-1}$ for $z \in \mathbb{C}$, Im $z \neq 0$, is trace class. Thus, following the general setup [9], [19], we may define the spectral shift function $\xi(\lambda) = \xi(\lambda; B, \epsilon)$ related to $H_0(B, \epsilon)$ and $H(B, \epsilon)$ by

$$\langle \xi', f \rangle = \operatorname{tr} \Big(f(H) - f(H_0) \Big), \ f \in C_0^{\infty}(\mathbb{R}).$$

The second author was partially supported by the ANR project NONAa. 2000 Mathematics Subject Classification: Primary 35P25; Secondary 35Q40.

By this formula $\xi(\lambda)$ is defined modulo a constant but for the analysis of the derivative $\xi'(\lambda)$ this is not important. For the analysis of the behavior of $\xi(\lambda; B, \epsilon)$ it is important to have a representation of the derivative $\xi'(\lambda; B, \epsilon)$. Such representation has been obtained in [3] for strong magnetic fields $B \to +\infty$ under the assumption that V(x, y) admits an analytic continuation in x-direction.

In this paper we consider the operator H without any assumption on the analytic continuation of V(x,y) and without the restriction $B \to +\infty$. For such potentials we cannot use the techniques in [5], [6] and [3] related to the resonances of the perturbed problem. Our purpose is to study $\xi'(\lambda; B, \epsilon)$ and the existence of embedded eigenvalues of H. The key point in this direction is the following

Theorem 1. Let $V, \partial_x V \in L^{\infty}(\mathbb{R}^2; \mathbb{R})$ and assume that (1.1) holds for V and $\partial_x V$. Then for every $f \in C_0^{\infty}(\mathbb{R})$ and $\epsilon \neq 0$ we have

$$\operatorname{tr}\left(f(H) - f(H_0)\right) = -\frac{1}{\epsilon}\operatorname{tr}\left((\partial_x V)f(H)\right). \tag{1.2}$$

Notice that in (1.2) by $\partial_x V$ we mean the operator of multiplication by $\partial_x V$. The formula (1.2) has been proved by D. Robert and X. P. Wang [17] for Stark Hamiltonians in absence of magnetic field (B=0). In fact, the result in [17] says that

$$\xi'(\lambda; 0, \epsilon) = -\frac{1}{\epsilon} \int_{\mathbb{R}^2} \partial_x V(x, y) \frac{\partial e}{\partial \lambda}(x, y, x, y; \lambda, 0, \epsilon) dx dy, \tag{1.3}$$

where $e(.,.;\lambda,0,\epsilon)$ is the spectral function of $H(0,\epsilon)$. On the other hand, the spectral shift function in [17] is related to the trace of the *time delay* operator $T(\lambda)$ defined via the corresponding scattering matrix $S(\lambda)$ (see [16]). The presence of magnetic filed $B \neq 0$ and Stark potential lead to some serious difficulties to follow this way. Recently, Theorem 1 has been established by the authors in [4] but the proof in [4] is technical, long and based on the trace class properties of the operators

$$\psi(H \pm \mathbf{i})^{-N}, \ \partial_x \circ \psi(H \pm \mathbf{i})^{-N}, \ (H \pm \mathbf{i})\partial_x \circ \psi(H \pm \mathbf{i})^{-N-2}$$
 (1.4)

with $\psi \in C_0^{\infty}(\mathbb{R})$ and $N \geq 2$. The idea is to use the commutators with the operators $\chi_R \partial_x$, where $\chi_R(x,y) = \chi\left(\frac{x}{R},\frac{y}{R}\right)$ and $\chi \in C_0^{\infty}(\mathbb{R}^2)$ is a cut-off such that $\chi = 1$ for $|(x,y)| \leq 1$. One shows that

$$\operatorname{tr}\left(\left[\chi_R \partial_x, H\right] f(H) - \left[\chi_R \partial_x, H_0\right] f(H_0)\right) = 0 \tag{1.5}$$

and next we are going to examine the limit $R \to \infty$ of the trace of the operators in (1.5). The commutators with ∂_x and the presence of magnetic field lead to operators involving $D_x - By$ and this is one of the main difference with the case B = 0. To overcome this difficulty we used in [4] the trace class operators (1.4) which led to technical problems. On the other hand, the operator ∂_x is often used for operators with Stark potential ϵx and this influenced our approach in [4]. One of the goal of this work is to present a new shorter and elegant proof of Theorem 1. The new idea is to apply the shift operator $U_\tau: f(x,y) \longrightarrow f(x+\tau,y)$ instead of ∂_x . In Proposition 1 we show that

$$\operatorname{tr}\left([U_{\tau}, H]f(H) - [U_{\tau}, H]f(H_0)\right) = 0.$$

The proof of the later equality is much easier than that of (1.5) and we don't need the trace class properties of the operators (1.4). Moreover, applying the operator U_{τ} , we may generalize the result of Theorem 1 for Schrödinger operators $(D_x - C(y))^2 + D_y^2 + \epsilon x + V(x, y)$ with variable magnetic filed as well as for operators with magnetic potentials in \mathbb{R}^n , $n \geq 3$.

The second question examined in this work is the existence of embedded real eigenvalues of H. In the physical literature one conjectures that for $\epsilon \neq 0$ there are no embedded eigenvalues. We established in [4] a weaker result saying that in every interval [a, b] we may have at most a finite number of embedded eigenvalues with finite multiplicities. Under the assumption for analytic continuation of V it was proved in [5] that in some finite interval $[\alpha(B, \epsilon), \beta(B, \epsilon)]$ there are no resonances z of $H(B, \epsilon)$ with $\text{Re } z \notin [\alpha(B, \epsilon), \beta(B, \epsilon)]$. Since the real resonances z coincide with the eigenvalues of $H(B, \epsilon)$, we obtain some information for the embedded eigenvalues. We prove in Section 3 without the condition of analytic continuation of V(x, y) that H has no embedded eigenvalues outside an interval $[\alpha(B, \epsilon), \beta(B, \epsilon)]$. Combining this with the result in [4], we conclude that H has at most a finite number of embedded eigenvalues. Finally, applying the representation formula for the derivative of the spectral shift function $\xi_h(\lambda) = \xi_h(\lambda, B, \epsilon)$ related to the operators $H_0(h) = (hD_x - By)^2 + h^2 D_y^2 + \epsilon x$ and $H(h) = H_0(h) + V(x, y)$, we obtain a semiclassical asymptotics of $\xi_h(\lambda)$ as $h \searrow 0$ uniformly with respect to $\lambda \in [E_0, E_1]$ under some assumptions on the critical values of the symbol of H(h).

2. Representation of the spectral shift function

We suppose without loss of generality that $B = \epsilon = 1$. Set $\langle z \rangle = (1 + |z|^2)^{1/2}$. For reader convenience we recall the following lemma proved in [4]

Lemma 1. Let
$$\delta > 0$$
 and let $k_j(x,y) = \langle x \rangle^{-j(1+\delta)} \langle y \rangle^{-j(\frac{1}{2}+\delta)}, j = 1,2$. The operators $G_2 := k_2(H_0 + \mathbf{i})^{-2}, \ G_2^*, \ (resp. \ G_1 := k_1(H_0 + \mathbf{i})^{-1}, \ G_1^*), \ are \ trace \ class \ (resp. \ Hilbert-Schmidt).$

As an application of Lemma 1 recall that Proposition 1 in [4] says that for $g \in C_0^{\infty}(\mathbb{R})$ the operators Vg(H) and $Vg(H_0)$ are trace class. Obviously, the same is true for $V(x+\tau,y)g(H)$ and we will use this fact below. Consider the shift operator

$$U_{\tau}: f(x,y) \longrightarrow f(x+\tau,y).$$

Let
$$H_0 = (D_x - y)^2 + D_y + x$$
, $H = H_0 + V(x, y)$. It is clear that
$$[U_\tau, H_0]u = U_\tau H_0 u - H_0 U_\tau u = U_\tau (xu) - xU_\tau u = \tau U_\tau u$$
,

hence $[U_{\tau}, H_0] = \tau U_{\tau}$. Next

$$[U_{\tau}, V] = U_{\tau}(Vu) - VU_{\tau}u = V(x+\tau)U_{\tau}u - VU_{\tau}u = (V(x+\tau, y) - V(x, y))U_{\tau}u.$$

Thus given a function $f \in C_0^{\infty}(\mathbb{R})$, we get

$$[U_{\tau}, H]f(H) - [U_{\tau}, H_0]f(H_0) = \left[\tau + (V(x + \tau, y) - V(x, y))\right]U_{\tau}f(H) - \tau U_{\tau}f(H_0)$$
$$= \tau U_{\tau} \Big(f(H) - f(H_0)\Big) + \Big(V(x + \tau, y) - V(x, y)\Big)U_{\tau}f(H).$$

Proposition 1. We have the equality

$$\operatorname{tr}\left([U_{\tau}, H]f(H) - [U_{\tau}, H_0]f(H_0)\right) = 0. \tag{2.1}$$

Proof. We write

$$\operatorname{tr} \left[U_{\tau} H f(H) - U_{\tau} H_0 f(H_0) + H_0 U_{\tau} f(H_0) - H U_{\tau} f(H) \right]$$

$$= \operatorname{tr} U_{\tau} \left(H f(H) - H_0 f(H_0) \right) + \operatorname{tr} \left(H_0 U_{\tau} f(H_0) - H U_{\tau} f(H) \right) = (I) + (II).$$

For the term (I), by using the cyclicity of the trace, we have

$$(I) = \operatorname{tr}\left((Hf(H) - H_0f(H_0))U_{\tau}\right) = \operatorname{tr}\left(f(H)H - f(H_0)H_0\right)U_{\tau}.$$
 (2.2)

On the other hand,

$$(II) = \operatorname{tr}\left((H_0 - H)U_{\tau}f(H_0)\right) + \operatorname{tr}\left[HU_{\tau}\left(f(H_0) - f(H)\right)\right] = (II_1) + (II_2).$$

and we justify below the trace class properties of the operators (II_1) and (II_2) . For (II_1) we write

$$-(II_1) = VU_{\tau}f(H_0) = U_{\tau}[U_{\tau}^{-1}VU_{\tau}]f(H_0) = U_{\tau}V(x - \tau, y)f(H_0)$$

and the operator on the right hand side is trace class.

It is easy to see that the operator $(f(H_0) - f(H))(H + \mathbf{i})$ is trace class since

$$(f(H_0) - f(H))(H + \mathbf{i}) = [f(H_0)(H_0 + \mathbf{i}) - f(H)(H + \mathbf{i})] + f(H_0)V,$$

where on the right hand side we have a sum of two trace class operators. The same argument shows that the operator $H(f(H_0) - f(H))$ is trace class. Next we show that the operator $H(f(H_0) - f(H))(H + \mathbf{i})$ is trace class. To do this, we write

$$H(f(H_0) - f(H))(H + \mathbf{i}) = \left(H_0 f(H_0)(H_0 + \mathbf{i}) - H f(H)(H + \mathbf{i})\right) + V f(H_0)(H_0 + \mathbf{i})$$
$$+V f(H_0)V + H_0 f(H_0)V$$

and the four operators on the right hand side are trace class. This implies that $HU_{\tau}(f(H_0) - f(H))(H + \mathbf{i})$ is trace class since the commutator $[H, U_{\tau}]$ is a bounded operator. After these preparations we write

$$(II_2) = HU_{\tau}(f(H_0) - f(H)) = U_{\tau}H(f(H_0) - f(H)) + [H, U_{\tau}](f(H_0) - f(H))$$

which obviously is trace class. Exploiting the trace class properties, we can write

$$(II_2) = \operatorname{tr}\left[HU_{\tau}(f(H_0) - f(H)(H + \mathbf{i})(H + \mathbf{i})^{-1}\right]$$

$$= \operatorname{tr}\left[(H + \mathbf{i})^{-1}HU_{\tau}(f(H_0) - f(H))(H + \mathbf{i})\right]$$

$$= \operatorname{tr}\left((f(H_0) - f(H))(H + \mathbf{i})(H + \mathbf{i})^{-1}HU_{\tau}\right) = \operatorname{tr}\left((f(H_0) - f(H))HU_{\tau}\right).$$

Combining the above expressions, we get

$$(I) + (II_1) + (II_2) = \operatorname{tr}\left((H_0 - H)U_{\tau}f(H_0)\right) + \operatorname{tr}\left(f(H_0)(H - H_0)U_{\tau}\right)$$
$$= \operatorname{tr}\left(-VU_{\tau}f(H_0)\right) + \operatorname{tr}\left(U_{\tau}f(H_0)V\right).$$

It remains to show that $\operatorname{tr}\left(VU_{\tau}f(H_0)\right) = \operatorname{tr}\left(U_{\tau}f(H_0)V\right)$. To do this, choose a function $\chi \in C_0^{\infty}(\mathbb{R}^2)$ such that $\chi = 1$ for $|(x,y)| \leq 1$. For R > 0 set

$$\chi_R(x,y) = \chi\left(\frac{x}{R}, \frac{y}{R}\right)$$

and consider

$$\operatorname{tr}\left(VU_{\tau}f(H_0)\chi_R\right) = \operatorname{tr}\left(U_{\tau}f(H_0)V\chi_R\right).$$

The operator χ_R converges strongly to identity as $R \to \infty$ and applying the well known property of trace class operators (see for instance, Proposition 1 in [4]), we conclude that

$$\operatorname{tr}\left(VU_{\tau}f(H_0)\right) = \operatorname{tr}\left(U_{\tau}f(H_0)V\right)$$

and the proof is complete.

Proof of Theorem 1. According to Proposition 1, we have

$$\operatorname{tr}\left(U_{\tau}(f(H) - f(H_0))\right) = -\operatorname{tr}\left(\frac{V(x + \tau, y) - V(x, y)}{\tau}U_{\tau}f(H)\right). \tag{2.3}$$

We take the limit $\tau \to 0$ and observe that

$$U_{\tau} \longrightarrow I, \ \frac{V(x+\tau,y) - V(x,y)}{\tau} U_{\tau} \longrightarrow \partial_x V$$

strongly. Since $(f(H) - f(H_0))$ is a trace class operator, applying once more the property of trace class operators, we get

$$\lim_{\tau \to 0} \operatorname{tr} \left(U_{\tau}(f(H) - f(H_0)) \right) = \operatorname{tr} \left(f(H) - f(H_0) \right).$$

To treat the limit $\tau \to 0$ in the right hand term of (2.3), consider the function,

$$g_{\delta}(x,y) = \langle x \rangle^{-2-\delta} \langle y \rangle^{-1-\delta}$$

 $\delta > 0$ being the constant of (1.1). Following Lemma 1, the operator $g_{\delta}(H_0 + \mathbf{i})^{-2}$ is trace class. Hence

$$g_{\delta}f(H) = g_{\delta}(f(H) - f(H_0)) + g_{\delta}(H_0 + \mathbf{i})^{-2}(H_0 + \mathbf{i})^2 f(H_0)$$

is also a trace class operator.

To treat the limit $\tau \to 0$, we use the representation

$$\left(\frac{V(x+\tau,y)-V(x,y)}{\tau}g_{\delta}^{-1}\right)\left[g_{\delta}U_{\tau}g_{\delta}^{-1}\right]g_{\delta}f(H).$$

The operators in the brackets (...), [...] converge strongly as $\tau \to 0$ to $(\partial_x V)g_{\delta}^{-1}$ and I, respectively. Letting $\tau \to 0$, we obtain

$$\lim_{\tau \to 0} \operatorname{tr}\left(\frac{V(x+\tau,y) - V(x,y)}{\tau}\right) U_{\tau} f(H) = \operatorname{tr}\left((\partial_x V) f(H)\right)$$

and the proof is complete.

Remark 1. The proof of Theorem 1 works for operators $M = (D_x - C(y))^2 + D_y^2 + \epsilon x + V(x, y)$ with non-linear C(y) assuming that we have an analog of Lemma 1 for H and H_0 replaced by M and $M_0 = (D_x - C(y))^2 + D_y^2 + \epsilon x$, respectively. Also we may examine the operators in \mathbb{R}^3 having the form

$$\left(D_x + \frac{B}{2}y\right)^2 + \left(D_y - \frac{B}{2}x\right)^2 + D_z^2 + \epsilon z + V(x, y, z)$$

applying the shift operator $U_{\tau}: f(x,y,z) \longrightarrow f(x,y,z+\tau)$. Some operators with magnetic potentials and Stark potential in \mathbb{R}^n , $n \geq 3$, can be investigated by the same approach.

Now consider the operators $H_0(h) = (hD_x - By)^2 + h^2D_y^2 + \epsilon x$, $H(h) = H_0(h) + V(x, y)$, h > 0. Under the assumption (1.1) for V(x, y) we have the statement of Lemma 1 for H_0 replaced by $H_0(h)$. Moreover, the operators Vg(H(h)) and $Vg(H_0(h))$ are trace class for every $g \in C_0^{\infty}(\mathbb{R})$. Thus for every $f \in C_0^{\infty}(\mathbb{R})$ the operator $f(H(h)) - f(H_0(h))$ is trace class and we can define the spectral shift function $\xi_h = \xi_h(\lambda, B, \epsilon)$ modulo constant by the formula

$$\langle \xi'_h, f \rangle = \operatorname{tr} \left(f(H(h) - f(H_0)) \right), \ f \in C_0^{\infty}(\mathbb{R}).$$

Under the assumption of Theorem 1, we obtain repeating the proof of (1.2) the representation

$$\operatorname{tr}\left(f(H(h)) - f(H_0(h))\right) = -\frac{1}{\epsilon}\operatorname{tr}\left((\partial_x V)f(H(h))\right). \tag{2.4}$$

3. Embedded eigenvalues of H

In this section we use the notation

$$L = H(0) = (D_x - By)^2 + D_y^2 + \epsilon x.$$

Our purpose is to prove the following

Theorem 2. There exists C > 0 such that H has no eigenvalues λ , $|\lambda| \geq C$.

Proof. First notice that for every function $f \in C_0^{\infty}(\mathbb{R})$ we have

$$f(H)[\partial_x, H]f(H) = \epsilon f^2(H) + f(H)\partial_x V f(H). \tag{3.1}$$

We will show the absence of embedded eigenvalues $\lambda > C > 0$. The case $\lambda < -C$ can be treated by the same argument. Assume that there exists a sequence of eigenvalues $\lambda_n \longrightarrow +\infty$, $\lambda_{n+1} > \lambda_n + 1$, $\forall n$ and let $H\varphi_n = \lambda_n \varphi_n$, $n \in \mathbb{N}$ with $(\varphi_i, \varphi_j) = \delta_{i,j}$. Choose cut-off functions $f_n(t) \in C_0^{\infty}(\mathbb{R})$ so that $f_n(\lambda_n) = 1$, $0 \le f_n(t) \le 1$ and $f_n(t) = 0$ for $|t - \lambda_n| \ge 1/2$. It is clear that $f_n(H)\varphi_n = \varphi_n$ and

$$(\varphi_n, f_n(H)[\partial_x, H]f_n(H)\varphi_n) = 0, \ \forall n \in \mathbb{N}.$$

We wish to prove that for n large enough we have

$$\left| (\varphi_n, f_n(H)\partial_x V f_n(H)\varphi_n) \right| = \left| (\varphi_n, \partial_x V f_n(H)\varphi_n) \right| \le \epsilon/2 \tag{3.2}$$

which leads to a contradiction with (3.1) since $(\varphi_n, f_n^2(H)\varphi_n) = 1$. Consider the operator

$$f_n(H) = -\frac{1}{\pi} \int_{W_n} \bar{\partial} \tilde{f}_n(z) (z - H)^{-1} L(dz),$$

where $\tilde{f}_n(z)$ is an almost analytic continuation of f_n with supp $\tilde{f}_n(z) \subset W_n$, $W_n = \{z \in \mathbb{C} : |z - \lambda_n| \le 2/3\}$ is a complex neighborhood of λ_n and

$$\bar{\partial} \tilde{f}_n(z) = \mathcal{O}(|\operatorname{Im} z|^{\infty})$$

uniformly with respect to n. Here L(dz) is the Lebesgue measure in \mathbb{C} . We write

$$(\varphi_n, \partial_x V f_n(H)\varphi_n) = -\frac{1}{\pi} \int_{W_n \cap \{|\operatorname{Im} z| \le \eta\}} \bar{\partial} \tilde{f}_n(z) (\varphi_n, (\partial_x V)(z - H)^{-1} \varphi_n) L(dz)$$
$$-\frac{1}{\pi} \int_{W_n \cap \{|\operatorname{Im} z| > \eta\}} \bar{\partial} \tilde{f}_n(z) (\varphi_n, (\partial_x V - V_0)(z - H)^{-1} \varphi_n) L(dz)$$

$$-\frac{1}{\pi} \int_{W_n \cap \{|\operatorname{Im} z| > \eta\}} \bar{\partial} \tilde{f}_n(z) (\varphi_n, V_0(z - H)^{-1} \varphi_n) L(dz) = R_n + Q_n + S_n,$$

where $V_0(x,y) \in C_0^{\infty}(\mathbb{R}^2)$. We choose $\eta > 0$ small enough to arrange $|R_n| \le \epsilon/6$ for all $n \in \mathbb{N}$. Next we fix $0 < \eta < 1$ and we will estimate Q_n and S_n . For the resolvent $(z - L)^{-1}$ we will exploit the following

Proposition 2. ([6]) Let f, g be bounded functions with compact support in \mathbb{R}^2 . Then for every compact $\mathcal{K} \subset \mathbb{R} \setminus \{0\}$ we have

$$\lim_{\lambda \to +\infty} \|f(\lambda + \mathbf{i}\gamma - L)^{-1}g\| = 0$$

uniformly for $\gamma \in \mathcal{K}$.

We choose V_0 so that $\|\partial_x V - V_0\|$ is sufficiently small in order to arrange $|Q_n| \le \epsilon/6$, $\forall n \in \mathbb{N}$. Now we pass to the estimation of S_n . We have

$$V_0(z-H)^{-1} = V_0(z-L)^{-1} + V_0(z-L)^{-1}(V-V_1)(z-H)^{-1} + V_0(z-L)^{-1}V_1(z-H)^{-1}.$$
 (3.3)

We replace $V_0(z-H)^{-1}$ in S_n by the right hand side (3.3) choosing $V_1 \in C_0^{\infty}(\mathbb{R}^2)$. For the term involving $(V-V_1)$ in (3.3) we take V_1 so that $||V-V_1||$ is small enough, to obtain a term bounded by $\epsilon/18$. Next we fix the potentials V_0 , V_1 with compact support. By Proposition 2 setting $z = \lambda + \mathbf{i}\gamma$, $\eta \leq |\gamma| \leq 1$, we get

$$\|\bar{\partial}\tilde{f}_n(z)V_0(\lambda+\mathbf{i}\gamma-L)^{-1}V_1(H-z)^{-1}\| \leq C_2\eta^{-1}\|V_0(\lambda+\mathbf{i}\gamma-L)^{-1}V_1\| \leq \frac{9}{4\pi^2}\frac{\epsilon}{18}$$

for Re $z = \lambda \geq C_{\epsilon,\eta}$. We choose $n \geq n_0 = n_0(\epsilon,\eta)$, so that Re $z \geq C_{\epsilon,\eta}$ for $z \in W_n$ and $n \geq n_0$. Thus we can estimate the term involving $V_0(z-L)^{-1}V_1$ in (3.3) by $\epsilon/18$. It remains to deal with the term containing $V_0(z-L)^{-1}$. Let $\psi(x,y) \in C_0^{\infty}(\mathbb{R}^2)$ be a cut-off function such that $\psi = 1$ on the support of V_0 . We write

$$\psi V_0(z-L)^{-1} = V_0(z-L)^{-1}\psi - V_0(z-L)^{-1}[(D_x - By)^2 + D_y^2, \psi](z-L)^{-1}$$
$$= V_0(z-L)^{-1}\psi - V_0(z-L)^{-1}\psi_1[(D_x - By)^2 + D_y^2, \psi](z-L)^{-1},$$

where ψ_1 is a cut-off function equal to 1 on the support of ψ . For n large enough we will have $\operatorname{Re} z = \lambda \geq C'_{\epsilon,\eta}$ for $z \in \operatorname{supp} W_n$ and can treat $V_0(z-L)^{-1}\psi$ and $V_0(z-L)^{-1}\psi_1$ as above. On the other hand,

$$[(D_x - By)^2 + D_y^2, \psi] = -2\mathbf{i}\partial_x \psi (D_x - By) - 2\mathbf{i}\partial_y \psi D_y - \Delta_{x,y} \psi$$
(3.4)

and the operators $\partial_x \psi(D_x - By)(z - L)^{-1}$ and $\partial_y \psi D_y(z - L)^{-1}$ are bounded by $C\eta^{-1}$ for $|\operatorname{Im} z| \ge \eta$. Indeed, we have

$$(z-L) = (\mathbf{i} - L)^{-1}[I + (\mathbf{i} - z)(z-L)^{-1}]$$

and it suffices to show that $\partial_x \psi(D_x - By)(\mathbf{i} - L)^{-1}$ and $\partial_y \psi D_y(\mathbf{i} - L)^{-1}$ are bounded. Next, $(\mathbf{i} - L)^{-1}$ is a pseudodifferential operator and the symbol of the pseudodifferential operator $(D_x - By)(\mathbf{i} - L)^{-1}$ becomes

$$\frac{\xi - By}{\mathbf{i} - (\xi - By)^2 - \eta^2 - \epsilon x} - \frac{\mathbf{i}B\eta}{(\mathbf{i} - (\xi - By)^2 - \eta^2 - \epsilon x)^2}.$$

From the well known results for the L^2 boundedness of pseudodifferential operators (see [1]) we deduce that (3.4) is bounded by $C|\operatorname{Im} z|^{-1}$. Consequently, applying Proposition 2 once more, we can arrange the norm of the operator

$$V_0(z-L)^{-1}\psi_1[(D_x-By)^2+D_y^2,\psi](z-L)^{-1}$$

to be sufficiently small for $z \in W_n$, $|\operatorname{Im} z| \ge \eta$ and $n \ge n_1 > n_0$. Combining this with the previous estimates, we get $|S_n| \le \epsilon/6$, hence $|R_n + Q_n + S_n| \le \epsilon/2$ for n large enough. This implies (3.2) and the proof is complete.

Corollary 1. Assume in addition to (1.1) that $\partial_x^2 V \in C_0(\mathbb{R}^2) \cap L^{\infty}(\mathbb{R}^2)$. Then H has at most finite number of embedded eigenvalues in \mathbb{R} .

This result follows from Theorem 2 and Corollary 1 in [4] which guarantees that H has at most finite number of embedded eigenvalues in every interval $[a, b] \subset \mathbb{R}$. The conjecture is that H has no embedded eigenvalues on \mathbb{R} .

4. Asymptotics of the spectral shift function

Our purpose in this section is to apply Theorem 1 and (2.4) to give a Weyl type asymptotics with optimal remainder estimates for the spectral shift function $\xi_h(\lambda) := \xi(\lambda; H(h), H_0(h))$ corresponding to the operators

$$H(h) = (hD_x - y)^2 + h^2D_y^2 + x$$
, $H_0(h) = H(h) + V(x, y)$, $h > 0$.

For simplicity of the exposition in this section we assume that $B = \epsilon = 1$. Let $p_2(x, y, \zeta, \eta) = (\zeta - y)^2 + \eta^2 + x + V(x, y)$. For the analysis of $\xi_h(\lambda)$ we need the following theorems.

Theorem 3. Let $\psi \in C_0^{\infty}(\mathbb{R}^2)$ and let $f \in C_0^{\infty}(]0, +\infty[; \mathbb{R})$. Then we have

$$\operatorname{tr}\left[\psi f(H(h))\right] \sim \sum_{j=0}^{\infty} a_j h^{j-2}, \ h \searrow 0, \tag{4.1}$$

with

$$a_0 = \frac{1}{(2\pi)^2} \iint \psi(x, y) f(p_2(x, y, \zeta, \eta)) dx dy d\zeta d\eta.$$
(4.2)

Theorem 4. Assume that $\psi \in C_0^{\infty}(\mathbb{R}^2)$. Let $f \in C_0^{\infty}([E_0, E_1[) \text{ and } \theta \in C_0^{\infty}(] - \frac{1}{C_0}, \frac{1}{C_0}[; \mathbb{R}), \ \theta = 1$ in a neighborhood of 0. Assume that if $p_2(x, y, \zeta, \eta) = \tau, \ \tau \in [E_0, E_1]$, then $dp_2 \neq 0$. Then there exists $C_0 > 0$ such that for all $N, m \in \mathbb{N}$ there exists $h_0 > 0$ such that

$$\operatorname{tr}\left(\psi\check{\theta}_{h}(\tau-H(h))f(H(h))\right) = (2\pi h)^{-2}\left(f(\tau)\sum_{j=0}^{N-1}\gamma_{j}(\tau)h^{j} + \mathcal{O}(h^{N}\langle\tau\rangle^{-m})\right),\tag{4.3}$$

uniformly with respect to $\tau \in \mathbb{R}$ and $h \in]0, h_0]$, where

$$\gamma_0(\tau) = -(2\pi \mathbf{i})^{-1} \int \int_{\mathbb{R}^4} \psi(x,y) \Big((\tau + \mathbf{i}0 - p_2(x,y,\zeta,\eta))^{-1} - (\tau - \mathbf{i}0 - p_2(x,y,\zeta,\eta))^{-1} \Big) dx dy d\zeta d\eta.$$

Here

$$\breve{\theta}_h(\tau) = (2\pi h)^{-1} \int e^{i\tau t/h} \theta(t) dt.$$

Proof of Theorem 3 and Theorem 4. Here and below $\psi \prec \varphi$ means that $\varphi(x) = 1$ on the support of ψ . Let $G \in C_0^{\infty}(\mathbb{R}^2)$ with $\psi \prec G$. Introduce the operator

$$\tilde{H}(h) = (hD_x - G(x, y)y)^2 + h^2 D_y^2 + G(x, y)x + V(x, y),$$

and set

$$I = \operatorname{tr} \left[\psi \Big(f(H(h)) - f(\tilde{H}(h)) \Big) \right].$$

Let $\tilde{f}(z) \in C_0^\infty(\mathbb{C})$ be an almost analytic continuation of f with $\bar{\partial}_z \tilde{f}(z) = \mathcal{O}(|\operatorname{Im} z|^\infty)$. From Helffer-Sjöstrand formula it follows that

$$I = \frac{1}{\pi} \int \bar{\partial}_z \tilde{f}(z) \operatorname{tr} \left[\psi \left((z - \tilde{H}(h))^{-1} - (z - H(h))^{-1} \right) \right] L(dz),$$

where L(dz) denotes the Lebesgue measure on \mathbb{C} .

Let $\psi_1 \in C^{\infty}(\mathbb{R}^2)$ be a function with $\psi_1 = 1$ near supp (1 - G) and $\psi_1 = 0$ near supp ψ , and let $\tilde{\psi} \in C_0^{\infty}(\mathbb{R}^2)$ be equal to one near supp $(\nabla \psi_1)$ and $\tilde{\psi} = 0$ near supp ψ . A simple calculus shows that $\tilde{H}(h) - H(h) = \psi_1(\tilde{H}(h) - H(h))$ and $[\tilde{H}(h), \psi_1] = \tilde{\psi}[\tilde{H}(h), \psi_1]\tilde{H}$. Then

$$\psi\Big((z-\tilde{H}(h))^{-1}-(z-H(h))^{-1}\Big)=\psi(z-\tilde{H}(h))^{-1}\psi_1(\tilde{H}(h)-H(h))(z-H(h))^{-1}$$

$$=\psi(z-\tilde{H}(h))^{-1}\tilde{\psi}[\tilde{H}(h),\psi_1](z-\tilde{H}(h))^{-1}(\tilde{H}(h)-H(h))(z-H(h))^{-1}.$$
(4.4)

Let $\chi_1, ..., \chi_N \in C_0^{\infty}(\mathbb{R}^2; [0, 1])$ with $\psi_1 \prec \chi_1 \prec ... \prec \chi_N$ and $\chi_i \tilde{\psi} = 0$, i = 1, ..., N. By using the equalities $\chi_1 \psi_1 = ... = \chi_N \psi_1 = \psi_1$, $\chi_k \tilde{\psi} = 0$, $\chi_{k-1}[\chi_k, \tilde{H}(h)] = 0$ and the fact that

$$[\chi_k, (z - \tilde{H}(h))^{-1}] = (z - \tilde{H}(h))^{-1} [\chi_k, \tilde{H}(h)] (z - \tilde{H}(h))^{-1},$$

we get

$$\psi(z - \tilde{H}(h))^{-1} \tilde{\psi}[\tilde{H}(h), \psi_1]$$

$$= \psi(z - \tilde{H}(h))^{-1} [\chi_1, \tilde{H}(h)] (z - \tilde{H}(h))^{-1} ... [\chi_N, \tilde{H}(h)] (z - \tilde{H}(h))^{-1} \tilde{\psi}[\tilde{H}(h), \psi_1] =: L_N(h).$$
Here

$$L_N(h) = \mathcal{O}_N(1)\left(\frac{h^N}{|\operatorname{Im} z|^N}\right) : H^s(\mathbb{R}^2) \to H^{s+N}(\mathbb{R}^2),$$

where we equip $H^N(\mathbb{R}^2)$ with the h-dependent norm $\|\langle hD\rangle^N u\|_{L^2}$. Choose N>2 and let s=-N. According to Theorem 9.4 of [1], we have

$$\left\| \left(-h^2 \Delta + 1 \right)^{-N/2} \tilde{\psi} \right\|_{\mathrm{tr}} = \mathcal{O}(h^{-2}).$$

Then

$$\|\psi(z - \tilde{H}(h))^{-1}\tilde{\psi}[\tilde{H}(h), \psi_1]\tilde{\psi}\|_{\text{tr}} = \|L_N(h)\Big(-h^2\Delta + 1\Big)^{N/2}\Big(-h^2\Delta + 1\Big)^{-N/2}\tilde{\psi}\|_{\text{tr}}$$

$$\leq C \|\Big(-h^2\Delta + 1\Big)^{-N/2}\tilde{\psi}\|_{\text{tr}}\Big(\frac{h^N}{|\operatorname{Im} z|^N}\Big) \leq C_1\Big(\frac{h^{N-2}}{|\operatorname{Im} z|^N}\Big).$$
(4.5)

Combining this with (4.4) and using the fact that

$$\|(z - \tilde{H}(h))^{-1}(\tilde{H}(h) - H(h))(z - H(h))^{-1}\| = \|(z - \tilde{H}(h))^{-1} - (z - H(h))^{-1}\| = \mathcal{O}(|\operatorname{Im} z|^{-1}),$$

we obtain

$$\left\| \psi \left((z - \tilde{H}(h))^{-1} - (z - H(h))^{-1} \right) \right\|_{\text{tr}} = \mathcal{O}\left(\frac{h^{N-2}}{|\operatorname{Im} z|^{N+1}} \right).$$

Since $\bar{\partial}_z \tilde{f}(z) = \mathcal{O}(|\operatorname{Im} z|^{\infty})$, we have

$$I = \mathcal{O}(h^{\infty}).$$

Summing up, we have proved that

$$\operatorname{tr}\left(\psi f(H(h))\right) = \operatorname{tr}\left(\psi f(\tilde{H}(h))\right) + \mathcal{O}(h^{\infty}). \tag{4.6}$$

In the same way, we obtain

$$\operatorname{tr}\left(\psi\check{\theta}_{h}(\tau-H(h))f(H(h))\right) = \operatorname{tr}\left(\psi\check{\theta}_{h}(\tau-\tilde{H}(h))f(\tilde{H}(h))\right) + \mathcal{O}(h^{\infty}). \tag{4.7}$$

The operator $\tilde{H}(h)$ is elliptic semi-bounded h-pseudodifferential operator, so Theorem 3 and Theorem 4 follow from the h-pseudodifferential calculus and the analysis of elliptic operators in Chapters 8, 9, 12 in [1] (see also [15]). The calculus of the leading terms is given by trivial modification of the argument of Section 7 in [2] and we omit the details.

Remark 2. Notice that $dp_2 \neq 0$ on $p_2 = \tau$ is equivalent to

$$\nabla_{x,y}(x+V(x,y)) \neq 0$$
, on $\{(x,y); x+V(x,y)=\tau\}$. (4.8)

Now we will apply Theorem 3 and Theorem 4 to obtain a Weyl-type asymptotics for $\xi_h(\lambda)$ when $h \searrow 0$.

Theorem 5. Assume that $V \in C_0^{\infty}(\mathbb{R}^2)$ and suppose that (4.8) holds for $\tau = \lambda_1, \lambda_2$. Then there exists $h_0 > 0$ such that for $h \in]0, h_0]$ we have

$$\xi_h(\lambda_2) - \xi_h(\lambda_1) = (2\pi h)^{-2} (c_0(\lambda_2) - c_0(\lambda_1)) + \mathcal{O}(h^{-1}), \tag{4.9}$$

where

$$c_0(\lambda) = -\pi \int_{\mathbb{R}^2} \partial_x V(x, y) (\lambda - x - V(x, y))_+ dx dy. \tag{4.10}$$

Proof. Choose a large constant M such that

$$M \ge \|\partial_x V\|_{\infty} + 1.$$

Let $\psi \in C_0^{\infty}(\mathbb{R}^2; [0,1])$ with $\partial_x V \prec \psi^2$. According to (2.4), by using the cyclicity of the trace, we get

$$\langle \xi_h', f \rangle = \operatorname{tr} \left(f(H(h)) - f(H_0(h)) \right) = -\operatorname{tr} \left((\partial_x V) f(H(h)) \right)$$
$$= \operatorname{tr} \left((M - \partial_x V)^{1/2} \psi f(H(h) \psi (M - \partial_x V)^{1/2}) - M \operatorname{tr} \left(\psi f(H(h)) \psi \right) \right)$$
$$=: \langle \xi_1', f \rangle - \langle \xi_2', f \rangle.$$

Since

$$f \to \operatorname{tr}\left((M - \partial_{x_1} V)^{1/2} \psi f(H(h) \psi (M - \partial_{x_1} V)^{1/2} \right)$$

and

$$f \to M \operatorname{tr} \Big(\psi f(H(h)) \psi \Big)$$

are positive functions for $f \geq 0$, we deduce that the functions $\lambda \to \xi_i(\lambda)$, i = 1, 2 are monotonic.

Consequently, we may apply Tauberian arguments for the analysis of the asymptotics of $\xi_i(\lambda)$, i = 1, 2. We treat below $\xi_2(\lambda)$. Let $\varphi \in C_0^{\infty}(\mathbb{R})$, $\varphi \geq 0$, and suppose that (4.8) holds for all $\tau \in \text{supp } \varphi$. Consider the function

$$F_{\varphi}(\lambda) = \int_{-\infty}^{\lambda} \xi_2'(\mu) \varphi(\mu) d\mu.$$

Applying (4.3) with N=1 and m=2, we obtain

$$\frac{d}{d\lambda}(\breve{\theta}_h * F_{\varphi})(\lambda) = \int \breve{\theta}_h(\lambda - \mu)\xi_2'(\mu)\varphi(\mu)d\mu = (2\pi h)^{-2} \Big(\varphi(\lambda)\gamma_0(\lambda) + \mathcal{O}\Big(\frac{h}{\langle \lambda \rangle^2}\Big)\Big). \tag{4.11}$$

We integrate from $-\infty$ to λ and we get

$$\int \left(\int_{-\infty}^{\lambda} \breve{\theta}_h(\lambda' - \mu) d\lambda' \right) \xi_2'(\mu) \varphi(\mu) d\mu$$

$$= \frac{1}{(2\pi h)^2} \left(\int \int_{p_2 \le \lambda} M \psi^2(x, y) \varphi(p_2) dx dy d\eta d\zeta + \mathcal{O}(h) \right).$$
(4.12)

In the following we choose $\theta \in C_0^{\infty}(\mathbb{R})$ with $\check{\theta}_h \geq 0$. Let $h\check{\theta}_h(0) = \frac{1}{2\pi} \int_{\mathbb{R}} \theta(u) du \geq 2C_1 > 0$. Therefore, it follows that there exist $C_2 > 0$ such that

$$|t| < \frac{h}{C_2} \Longrightarrow h\breve{\theta}_h(t) \ge C_1.$$

Combining this with the fact that $\check{\theta}_h \geq 0$, and using $\langle \xi'_2, f \rangle \geq 0$ for $f \geq 0$, we obtain

$$C_{1} \int_{\{|\lambda-\mu|<\frac{h}{C_{0}}\}} \xi_{2}'(\mu)\varphi(\mu)d\mu \leq h \int_{\{|\lambda-\mu|<\frac{h}{C_{0}}\}} \check{\theta}_{h}(\lambda-\mu)\xi_{2}'(\mu)\varphi(\mu)d\mu$$

$$\leq h \int_{\mathbb{D}} \check{\theta}_{h}(\lambda-\mu)\xi_{2}'(\mu)\varphi(\mu)d\mu = h \frac{d}{d\lambda} (\check{\theta}_{h} * F_{\varphi})(\lambda) = \mathcal{O}(h^{-1}), \tag{4.13}$$

uniformly with respect to $\lambda \in \mathbb{R}$. On the other hand, a simple calculus shows that

$$\int_{-\infty}^{\lambda} \check{\theta}_h(\lambda' - \mu) d\lambda' = \int_{-\infty}^{\frac{\lambda - \mu}{h}} \check{\theta}_1(t) dt = \mathbf{1}_{]-\infty,\lambda[}(\mu) + \mathcal{O}\left(\left\langle \frac{\lambda - \mu}{h} \right\rangle^{-\infty}\right). \tag{4.14}$$

Indeed, for $\mu < \lambda$ and all $k \in \mathbb{N}$ we have

$$\int_{-\infty}^{\frac{\lambda-\mu}{h}} \breve{\theta}_1(t)dt - 1 = -\int_{\frac{\lambda-\mu}{h}}^{\infty} t^k \breve{\theta}_1(t) \frac{1}{t^k} dt$$

and

$$\int_{\frac{\lambda-\mu}{h}}^{\infty} t^k \breve{\theta}_1(t) \frac{1}{t^k} dt \leq \left(\frac{\lambda-\mu}{h}\right)^{-k} \int_{\mathbb{R}} t^k \breve{\theta}_1(t) dt.$$

A similar argument works for $\mu > \lambda$. From (4.13) we have for $k \geq 2$ the estimate

$$\int_{\mathbb{R}} \left\langle \frac{\lambda - \mu}{h} \right\rangle^{-k} \xi_{2}'(\mu) \varphi(\mu) d\mu = \sum_{m = -\infty}^{\infty} \int_{\frac{m}{C_{0}} \leq \frac{\mu - \lambda}{h} < \frac{m+1}{C_{0}}} \left\langle \frac{\lambda - \mu}{h} \right\rangle^{-k} \xi_{2}'(\mu) \varphi(\mu) d\mu \qquad (4.15)$$

$$\leq \sum_{m = 0}^{\infty} \left(1 + \left(\frac{m}{C_{0}} \right)^{2} \right)^{-k/2} \int_{\lambda + \frac{mh}{C_{0}}}^{\lambda + \frac{(m+1)h}{C_{0}}} \xi_{2}'(\mu) \varphi(\mu) d\mu \\
+ \sum_{m = -\infty}^{-1} \left(1 + \left(\frac{|m+1|}{C_{0}} \right)^{2} \right)^{-k/2} \int_{\lambda + \frac{mh}{C_{0}}}^{\lambda + \frac{(m+1)h}{C_{0}}} \xi_{2}'(\mu) \varphi(\mu) d\mu \leq \sum_{m = -\infty}^{\infty} \frac{1}{(C_{0} + |m|)^{k}} \mathcal{O}(h^{-1}),$$

where in the last inequality at the right hand side we used the fact that (4.13) holds uniformly with respect to $\lambda \in \mathbb{R}$ and we can estimate the integrals involving $\xi'_2(\mu)\varphi(\mu)$ by $\mathcal{O}(h^{-1})$ uniformly with respect to m.

Inserting the right hand side of (4.14) in the left hand side of (4.12) and using (4.15), we get

$$F_{\varphi}(\lambda) = (2\pi h)^{-2} \left(\int \int_{p_2 < \lambda} M \psi^2(x, y) \varphi(p_2) dx dy d\eta d\zeta + \mathcal{O}(h) \right).$$

We apply the same argument for $\xi_1(h)$ and introduce the function

$$G_{\varphi}(\lambda) = \int_{-\infty}^{\lambda} \xi_1'(\mu)\varphi(\mu)d\mu.$$

Replacing the function ψ by $(M - \partial_x V)^{1/2} \psi$, we get

$$G_{\varphi}(\lambda) = \frac{1}{(2\pi h)^2} \Big(\int \int_{p_2 \le \lambda} (M - \partial_x V) \psi^2(x, y) \varphi(p_2) dx dy d\eta d\zeta + \mathcal{O}(h) \Big).$$

Since $\xi_h = \xi_1 - \xi_2$, the above results yield

$$M_{\varphi}(\lambda) = \int_{-\infty}^{\lambda} \xi_h'(\mu)\varphi(\mu)d\mu = \frac{1}{(2\pi h)^2} \left(\int \int_{p_2 \le \lambda} -\partial_x V(x,y)\varphi(p_2)dxdyd\eta d\zeta + \mathcal{O}(h) \right). \tag{4.16}$$

Now, we are ready to prove Theorem 5. Assume that $\lambda_1 < \lambda_2$, and let $\epsilon > 0$ be small enough. Let $\varphi_1, \varphi_2, \varphi_3 \in C_0^{\infty}(]\lambda_1 - \epsilon, \lambda_2 + \epsilon[)$ with $\varphi_1 + \varphi_2 + \varphi_3 = 1$ on $[\lambda_1, \lambda_2]$, supp $\varphi_1 \subset]\lambda_1 - \epsilon, \lambda_1 + \epsilon[$, supp $\varphi_2 \subset]\lambda_2 - \epsilon, \lambda_2 + \epsilon[$ and supp $\varphi_3 \subset]\lambda_1, \lambda_2[$. We choose ϵ small enough so that (4.8) holds for all $\tau \in]\lambda_1 - \epsilon, \lambda_1 + \epsilon[\cup]\lambda_2 - \epsilon, \lambda_2 + \epsilon[$. We write

$$\xi_h(\lambda_2) - \xi_h(\lambda_1) = \int_{\lambda_1}^{\lambda_2} (\varphi_1 + \varphi_2 + \varphi_3)(\lambda) \xi_h'(\lambda) d\lambda$$

$$= M_{\varphi_2}(\lambda_2) + M_{\varphi_1}(\lambda_2) - M_{\varphi_2}(\lambda_1) - M_{\varphi_1}(\lambda_1) - \operatorname{tr}(\partial_x V \varphi_3(H)),$$

where for the function φ_3 we have exploited (2.4). Next for the term involving φ_3 we apply Theorem 3 and obtain

$$\operatorname{tr}\left(\partial_x V \varphi_3(H)\right) = \frac{1}{(2\pi h)^2} \int \int \partial_x V \varphi_3(p_2) dx dy d\zeta d\eta + \mathcal{O}(h^{-1}).$$

For $M_{\varphi_1}(\lambda_i)$ and $M_{\varphi_2}(\lambda_i)$, i = 1, 2, we exploit the above argument and we deduce the asymptotics taking into account (4.16). Summing the terms involving φ_j , j = 1, 2, 3, we conclude that

$$\xi_h(\lambda_2) - \xi_h(\lambda_1) = (2\pi h)^{-2} d(\lambda_2, \lambda_1) + \mathcal{O}(h^{-1}).$$

For the leading term we have

$$d(\lambda_2, \lambda_1) = \int \int_{\lambda_1 \le p_2 \le \lambda_2} -\partial_x V(x, y) \Big(\varphi_1(p_2) + \varphi_2(p_2) + \varphi_3(p_2) \Big) dx dy d\zeta d\eta$$
$$= -\int \int_{p_2 \le \lambda_2} \partial_x V(x, y) dx dy d\zeta d\eta + \int \int_{p_2 \le \lambda_1} \partial_x V(x, y) dx dy d\zeta d\eta.$$

Finally, notice that

$$c_0(\lambda) = -\int \int_{p_2 \le \lambda} \partial_x V(x, y) dx dy d\zeta d\eta = -\int_{\mathbb{R}^2} \partial_x V(x, y) \Big(\int_{(\zeta - y)^2 + \eta^2 \le (\lambda - x - V(x, y))_+} d\zeta d\eta \Big) dx dy$$
$$= -\pi \int_{\mathbb{R}^2} \partial_x V(x, y) (\lambda - x - V(x, y))_+ dx dy$$

and the proof of Theorem 5 is complete.

Remark 3. If $\lambda \gg 1$ is large enough (resp. $\lambda \ll -1$) then on supp $(\partial_x V)$, we have

$$(\lambda - x - V)_{+} = \lambda - x - V$$
, (resp. $(\lambda - x - V)_{+} = 0$).

Consequently,

$$c_0(\lambda) = -\pi \int_{\mathbb{P}^2} V(x, y) dx dy$$
, for $\lambda \gg 1$,

and

$$c_0(\lambda) = 0$$
, for $\lambda \ll -1$.

In particular, if we normalize $\xi_h(\lambda)$ by $\lim_{\lambda\to-\infty}\xi_h(\lambda)=0$, we get

$$\xi_h(\lambda) = (2\pi h)^{-2} c_0(\lambda) + \mathcal{O}(h^{-1}).$$

Remark 4. The results of this section can be generalized for potentials V(x,y) for which there exists $\delta_1 \in \mathbb{R}$ such that supp $V \subset \{(x,y) \in \mathbb{R}^2 : x \geq \delta_1\}$ by using the techniques in [2]. For simplicity we treated the case of $V \in C_0^{\infty}(\mathbb{R}^2)$ to avoid the complications caused by the calculus of pseudodifferential operators.

References

- [1] M. Dimassi and J. Sjöstrand, Spectral asymptotics in semiclassical limit, London Mathematical Society, Lecture Notes Series, 268, Cambridge University Press, 1999.
- [2] M. Dimassi and V. Petkov, Spectral shift function and resonances for non-semibounded and Stark hamiltonians, J. Math. Pures et Appl. 82 (2003), 1303-1342.
- [3] M. Dimassi and V. Petkov, Resonances for magnetic Stark hamiltonians in two dimensional case, IMRN, 77 (2004), 4147-4179.
- [4] M. Dimassi and V. Petkov, Spectral shift function for Schrödinger operators with crossed magnetic and electric fields, Rev. Math. Phys. 22 (2010), 355-380.
- [5] C. Ferrari and H. Kovarik, Resonances width in crossed electric and magnetic fields, J. Phys. A: Math. Gen. 37 (2004), 7671-7697.
- [6] C. Ferrari and H. Kovarik, On the exponential decay of magnetic Stark resonances, Rep. Math. Phys. 56 (2005), 197-207.
- [7] V. Ivrii, Analysis and Precise Spectral Asymptotics, Springer Monographs in Mathematics, Springer, Berlin, 1998.
- [8] M. Klein, D. Robert, X. P. Wang, Breit-Wigner formula for the scattering phase in the Stark effect, Comm. Math. Phys. 131 (1990), no. 1, 109–124.
- [9] M. G. Krein, On the trace formula in perturbation theory, Mat. Sb. 33 (1953), 597-626 (in Russian).
- [10] E. Korotyaev, A. Pushnitski, A trace formula and high energy spectral asymptotics for the perturbed Landau Hamiltonian, J. Funct. Anal. 217 (2004), 221-248.
- [11] M. Melgaard and G. Rosenblum, Eigenvalue asymptotics for weakly perturbed Dirac and Schrödinger operators with constant magnetic fields of full rank, Commun. Partial Differential Equations, 28 (2003), 697-736.
- [12] E. Mourre, Absence of singular continuous spectrum for certain self-adjoint operators, Commun. Math. Physics, 78, no. 3 (1981), 391-408.
- [13] G. Raikov and S. Warzel, Quasi-classical versus non-classical spectral asymptotics for magnetic Schrödinger operators with decreasing electric potentials, Rev. Math. Phys. 14 (2002), 1051-1072.
- [14] M. Reed and B. Simon, Methods of Modern Mathematical Physics, IV, Analysis of Operators, Academic Press, New York, 1978.
- [15] D. Robert, Relative time-delay for perturbations of elliptic operators and semicalssical asymptotics, J. Funct. Anal. 126 (1994), 36-82.
- [16] D. Robert and X. P. Wang, Existence of time-delay operators for Stark Hamiltonians, Commun. Partial Differential Equations, 14 (1989), 63-98.
- [17] D. Robert and X. P. Wang, Time-delay and spectral density for Stark Hamiltonians. II. Asymptotics of trace formulae, Chinese Ann. Math. Ser. B, 12 no. 3 (1991), 358–383.

- [18] X. P. Wang, Weak coupling asymptotics of Scrödinger operators with Stark effect, in: Harmonic Analysis, pp. 185–195, Lecture Notes in Math., 1494, Springer, Berlin, 1991.
- [19] D. Yafaev, Mathematical Scattering Theory, Amer. Math. Society, Providence, RI, 1992.

Département de Mathématiques, Université Paris 13, Avenue J.-B. Clement, 93430 Villetaneuse, France

 $E ext{-}mail\ address: dimassi@math.univ-paris13.fr}$

Université Bordeaux I, Institut de Mathématiques de Bordeaux, 351, Cours de la Libération, 33405 Talence, France

 $E ext{-}mail\ address: petkov@math.u-bordeaux1.fr}$