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Abstract. For hyperbolic flows over basic sets we study the asymptotic of the number of
closed trajectories γ with periods Tγ lying in exponentially shrinking intervals (x−e−δx, x+
e−δx), δ > 0, x → +∞. A general result is established which concerns hyperbolic flows ad-
mitting symbolic models whose corresponding Ruelle transfer operators satisfy some spectral
estimates. This result applies to a variety of hyperbolic flows on basic sets, in particular to
geodesic flows on manifolds of constant negative curvature and to open billiard flows.

1. Introduction

The purpose of this paper is to study the asymptotic behavior of the number of closed
trajectories for hyperbolic flows ϕt in compact invariant sets. It is known that if π(x) is
the number of closed orbits with primitive period (length) not greater than x, we have the
asymptotic

lim
x→+∞

1

x
log π(x) = hT ,

where hT > 0 is the topological entropy of the flow ϕt. To get more precise results one has
to impose some conditions on the flow. Thus, if ϕt is a weak-mixing Axiom A flow restricted
to a non-trivial basic set, Parry and Pollicott proved [PP] that

π(x) ∼ ehT x

hTx
, x→ +∞. (1.1)

This asymptotic generalizes the classical result of Margulis [M] for geodesic flows on manifolds
of negative sectional curvature.

There are a lot of works concerning the analysis of the errors terms in (1.1) for different
classes of dynamical systems as well as under different restrictions on the type of primitive
closed trajectories considered (see [PP], [PS2], [PS3], [PS4], [L2], [An] and the references
there). For example, if ϕt satisfies an approximative condition related to three primitive
periods, Pollicott and Sharp [PS3] showed that there exists η > 0 such that

π(x) =
ehT x

hTx

(
1 +O

( 1

xη

))
, x→ +∞ .
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On the other hand, for geodesic flows on negatively curved surfaces Pollicott and Sharp
[PS2] proved a much sharper asymptotic:

π(x) = li (ehT x) +O(ecx) , 0 < c < hT , (1.2)

where li (y) =
∫ y

2
1

log u
du. This results is based on estimates of the dynamical zeta function

derived from strong spectral estimates for the iterations of the Ruelle transfer operator [D].
Recently it was shown that (1.2) holds for more general dynamical systems for which strong
spectral estimates for Ruelle transfer operators were established (see [St2], [St3], [St5] and
Sections 7- 9 below).

The purpose of this paper is to examine the number of closed trajectories with primitive
periods lying in exponentially shrinking intervals

(x− e−δx, x+ e−δx) (1.3)

as x→∞, where 0 < δ < hT . This question is closely related to the asymptotic behavior of
sums of the form ∑

σnx=x

ψn(fn(x)) , n→∞ , (1.4)

where ψn(t) (t ∈ R) are functions with exponentially small support as n → ∞, f > 0 is
the so called roof function related to a given symbolic coding of the flow, σ is the shift in
the corresponding symbol space, and fn(x) = f(x) + f(σx) + ... + f(σn−1x). This type of
ergodic sums for hyperbolic flows have been studied by many authors in the case when ψn is
the characteristic function of an interval of the form 1[a

√
n,b
√

n] (central limit theorems), 1[a,b]

or 1[z+pεn,z+qεn] with εn → 0 not very fast (see [DP], [L1], [PS5]). Moreover, in these works
one assumes that

∫
fdν = 0, ν being a probability measure invariant with respect to σ. In

what follows below we simply replace f by g = f −
∫
fdν.

In this paper we deal with functions of the form ψn(t) = 1[z+αn+pεn,z+αn+qεn](t) with
p < q, εn = e−δn, δ > 0. To obtain an asymptotic for (1.4), we apply strong spectral
estimates of the form (1.5) for the iterations of Ruelle transfer operators (see [D], [St2], [St3]
and Sects. 6-9). On the other hand, the estimate (1.2) is based on the analytic continuation
of the dynamical zeta function Z(s) for s0 − ε < Re s ≤ s0, ε > 0, s0 being the abscissa of
absolute convergence of Z(s), and this continuation is obtained exploiting again the estimates
(1.5). The second problem we deal with concerns the asymptotic of the number of primitive
closed orbits. To obtain such an asymptotic is more difficult than estimating the number
of periodic points of shifts maps in abstract symbol spaces. Clearly in this case one has to
estimate rather carefully the number of iterated periodic orbits involved in (1.4).

Strong spectral estimates of the form (1.5) are known to hold for hyperbolic flows on
basic sets under certain additional regularity assumptions concerning the stable and unstable
laminations over the basic set and under a local nonintegrability condition (LNIC) ( see Sect.
9). The latter appears to be a rather weak condition and is expected to be satisfied in most
(if not all) interesting cases. Indeed, it is already known that this condition is satisfied for
contact Anosov flows ([St3]), and for open billiard flows in Rn satisfying a certain additional
regularity assumption ([St4]). In the present paper we show that (LNIC) always holds for
arbitrary basic sets of geodesic flows on hyperbolic manifols of constant negative curvature
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(see Lemma 3 in Sect. 7 which has an independent interest since it implies (1.2)). In the
latter case the stable/unstable laminations are smooth, so no extra regularity assumptions
are necessary and the estimates (1.5) always hold.

To describe our results precisely we need to introduce some notation and definitions. Let
κ0 ≥ 2 be an integer and let A = (A(i, j))κ0

i,j=1 be a κ0 × κ0 aperiodic matrix of 0’s and 1’s.
Consider the one-sided symbol space

Σ+
A = {(ij)∞j=0 : 1 ≤ ij ≤ κ0, A(ij, ij+1) = 1 for all j ≥ 0 }

with the corresponding shift map σ : Σ+
A −→ Σ+

A, and for θ ∈ (0, 1) let Fθ(Σ
+
A) be the space of

dθ-Lispchitz complex-valued functions on Σ+
A with the norms ‖·‖∞, |·|θ and ‖·‖θ = ‖·‖∞+|·|θ

(see Sect. 2 for details). For a real-valued g ∈ Fθ(Σ
+
A) let Pr(g) be the topological pressure of

g with respect to σ (see Sect. 2). Then there exists a unique Pg ∈ R such that Pr(−Pg g) = 0.
Consider the Ruelle operator

(Lgv)(ξ) =
∑
ση=ξ

eg(η)v(η) , ξ ∈ Σ+
A , v ∈ C(Σ+

A) .

When g ∈ Fθ(Σ
+
A), this operator preserves the space Fθ(Σ

+
A) and it is bounded with respect

to each of the norms ‖ · ‖∞ and ‖ · ‖θ. We will denote by ‖Lg‖∞ and ‖Lg‖θ the norm of the
operator Lg with respect to any of these, respectively. Apart from that, given a real-valued
function f ∈ Fθ(Σ

+
A) and a, u ∈ R with u 6= 0, the operator L(a+iu)f is bounded on Fθ(Σ

+
A)

with respect to the norm

‖v‖θ,u = ‖v‖∞ +
|v|θ
|u|

, v ∈ Fθ(Σ
+
A).

Throughout the paper we will need the following

Definition 1. We will say that the Ruelle transfer operators related to a real-valued function
f ∈ Fθ(Σ

+
A) are weakly contracting if for every ε > 0 there exist constants a0 > 0, ρ ∈ (0, 1)

and A > 0 (possibly depending on f and ε) such that

‖Ln
(−Pf+iu) f‖θ,u ≤ Aρn|u|ε , |u| ≥ a0 , (1.5)

for all integers n ≥ 0.

The above property is similar to the so called strong spectral estimates for Ruelle operators
related to basic sets of hyperbolic flows which we discuss in Sect. 9 below. There we also
describe the conditions under which it is known that these estimates hold.

In the following we assume that f(x) > 0 for all x ∈ Σ+
A and set

d0 = min
x∈Σ+

A

f(x), d1 = max
x∈Σ+

A

f(x).

Let m0 be the equilibrium state of −Pf f . Then we have

Pr(−Pf f) = h(m0)− Pf

∫
fdm0 = 0 ,

where h(m0) is the measure-theoretic entropy of m0 with respect to σ.
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Assuming that f is non-lattice (see Section 2), there exists σ0 > 0 such that

d2Pr(−Pff + i u f)

du2

∣∣∣
u=0

= −σ2
0

(see [PP]). Set

α = αf =

∫
f dm0 .

Given a constant δ > 0, let

εn = e−δ n , n = 1, 2, . . . . (1.6)

For p < q and an integer n ≥ 1 set

I(z, p, q; εn) = #{ξ ∈ Σ+
A : there existsm ∈ N with σm(ξ) = ξ and

z + nα + pεn ≤ fm(ξ) ≤ z + nα + qεn} .
Our first main result in this paper is the following

Theorem 1. Assume that the real-valued function f ∈ Fθ(Σ
+
A) is non-lattice and the Ruelle

transfer operators related to f are weakly contracting. Let εn = e−δn with 0 < δ < − log ρ
3

,
where 0 < ρ1 < ρ < 1 is such that (1.5) holds and 0 < ρ1 < 1 is the constant from Lemma 2
in Sect. 3 below. Then for any 0 ≤ z ≤ α and any p < q we have

#{ξ ∈ Σ+
A : σn(ξ) = ξ , z + nα+ pεn ≤ fn(ξ) ≤ z + nα+ qεn} ∼ ePf (z+nα) (q − p)εn√

2πσ0

√
n

(1.7)

as n→∞, uniformly with respect to z.

Here the notation A(n) ∼ B(n) as n → ∞ means that limn→∞
A(n)
B(n)

= 1 or equivalently

A(n) = B(n)(1 + o(1)) with o(1) → 0 as n→∞. We also prove the following

Theorem 2. Under the assumptions of Theorem 1, assume that εn = e−δn with 0 < δ <

− (log ρ)α
3d1

. Then for any 0 ≤ z ≤ α, any p < q and any fixed a > 0, setting r = π
4α

, we have

ePf (z+nα)(q − p)εn
1√
πnσ0

2r

a

(
1 + oa(1)

)
≤ I(z, p, q; εn)

≤ ePf (z+nα)(q − p)εn
2
√

2n√
πσ0

[√ α

d0

−
√
α

d1

+ o(1)
]
, n→∞ . (1.8)

uniformly with respect to z.

The notation oa(1) means that the term oa(1) goes to 0 as n→∞ but the convergence
to 0 depends on a. As a simple consequence of the above results one obtains

Corollary 1. Under the assumptions of Theorem 2 we have

lim
n→∞

1

n
log I(z, p, q; εn) = h(m0)− δ , (1.9)

therefore

lim
δ→0

lim
n→∞

1

n
log I(z, p, q; εn) = h(m0) .
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Remark 1. If in the left-hand-side of (1.8) we take formally r
a

=
√

2n, then we would have
the same order with respect to n in the right-hand-side and in the left-hand-side of (1.8).
However, this leads to a remainder oa(1) for which we have no control as n → ∞ since
a depends of n. In this direction the result of Theorem 1 is sharper, since we study the
summation only over the periodic points x with σnx = x.

The above results have natural consequences for hyperbolic flows. Here we state explicitly
some of them. Given a smooth flow ϕt : M −→ M on a Riemannian manifold M , denote
by P the set of all primitive closed orbits of the flow, and for γ ∈ P let Tγ be the period
(length) of γ.

Let X = Hn+1/Γ be a hyperbolic manifold, where Γ is a convex cocompact Kleinian
group of transformation in Hn+1, and let ϕt : M = S∗(X) −→ M be the geodesic flow
on the unit cosphere bundle of X (see Sect. 7). Fix a Markov family R = {Ri}k

i=1 for ϕt

over Λ consisting of rectangles Ri = [Ui, Si] such that the corresponding roof function τ is
non-lattice, set U = ∪k

i=1Ui and let σ : U −→ U be the naturally defined shift map (see
Sect. 6 for details). Let P = Pτ ∈ R be such that Pr(−P τ) = 0, where Pr is the topological

pressure with respect to σ, and let m0 be the equilibrium state of −P τ . Set α =

∫
U

τ dm0,

and let σ0 > 0 be such that d2Pr(−Pτ+i u τ)
du2

∣∣∣
u=0

= −σ2
0. We then prove the following

Theorem 3. There exists 0 < ρ < 1 such that for every 0 < δ < − log ρ
3

, setting εn = e−δn

(n ∈ N), for any 0 ≤ z ≤ α and any p < q we have

#{x ∈ U : σn(x) = x , z + nα+ pεn ≤ τn(x) ≤ z + nα+ qεn} ∼ eP (z+nα) (q − p)εn√
2πσ0

√
n

(1.10)

as n→∞, uniformly with respect to z. Moreover, an analogue of (1.8) holds with f replaced
by τ , Σ+

A by U and d0 = minx∈U τ(x), d1 = maxx∈U τ(x).

The constant ρ in the above theorem is such that the estimate (6.2) holds with ρ and
1/γ < ρ < 1 (see Sect. 6 for the definition of γ). Notice that for x ∈ U with σn(x) = x,
τn(x) is the length of a periodic trajectory passing through x, if n is the smallest integer
for which we have σn(x) = x. Thus we may derive a lower bound of the number of periodic
trajectories with primitive periods lying in the interval (z+nα+pεn, z+nα+qεn) as n→∞
and we deduce a more precise result applying (1.8).

A similar result holds for general hyperbolic flows over basic sets satisfying some regu-
larity conditions (see Sect. 6).

Our final result concerns open billiard flows in the exterior of several strictly convex do-
mains K1, . . . , Kκ0 in RN , N ≥ 2, satisfying some additional regularity conditions concerning
the unstable and stable laminations through the non-wandering set (see Theorem 4 below
and Sect. 8). Since this flows has a natural coding by using boundary components, in this
case we get in a natural way results similar to Theorems 1 and 2 above. Namely, let A be the
κ0 × κ0 matrix such that A(i, j) = 1 if i 6= j and A(i, j) = 0 otherwise. Consider the space
ΣA of double sequences with entries in {1, . . . , κ0} (see Sect. 2). Given any ξ = (ξj)

∞
j=−∞

there exists a unique billiard trajectory γ(ξ) in Ω = RN \ (K1 ∪ . . . ∪Kκ0) with reflection



6 V. PETKOV AND L. STOYANOV

points Pj(ξ) ∈ ∂Kξj
. Set f(ξ) = ‖P1(ξ) − P0(ξ)‖, and let m0 be the equilibrium state of

−Pf f , where Pr(−Pf f) = 0. Set α = αf =
∫
f dm0. As before, there exists σ0 > 0 such

that
d2Pr(−Pff + i u f)

du2

∣∣∣
u=0

= −σ2
0 .

Finally, let P be the set of primitive closed billiard trajectories and let Pn ⊂ P be the set of
those primitive closed billiard trajectories γ that have exactly n reflection points. Let εn be
defined by (1.6). Set

In(z, p, q; εn) = #{γ ∈ Pn : z + nα + pεn ≤ Tγ ≤ z + nα + qεn} .
Then we have the following

Theorem 4. Assume that the billiard flow ϕt over its non-wandering set Λ has regular
distortion along unstable manifolds, satisfies the condition (LNIC) and the local holonomy
maps along stable laminations through Λ are uniformly Lipschitz (see Sect. 9 below). Then
there exists δ0 such that for 0 < δ < δ0 for any 0 ≤ z ≤ α, and any p < q we have

In(z, p, q; εn) ∼ ePf (z+nα) (q − p)εn√
2πn

√
nσ0

, n→∞ , (1.11)

uniformly with respect to z. Moreover, for any fixed a > 0, setting r = π
4α

, there exist
constants C0 > 0 and C1 > 0 such that

ePf (z+nα)(q − p)εn
C0r

an
√
πnσ0

(
1 + oa(1)

)
≤ #{γ ∈ P : z + nα + pεn ≤ Tγ ≤ z + nα + qεn}

≤ ePf (z+nα)(q − p)εn
1√
πnσ0

[
C1

√
α+ o(1)

]
, n→∞ . (1.12)

In particular, the asymptotic (1.11) and the estimate (1.12) always hold when ϕt satisfies the
pinching condition (P) over Λ (see Sect. 8).

In fact, the condition (LNIC) (stated in Sect. 9 below) follows from the result in [St4]
assuming that the local holonomy maps along stable laminations through Λ are C1 (not just
Lipschitz). The latter is always the case if the pinching condition (P) (stated in Sect. 8
below) is satisfied. As in Theorem 3, the constant δ0 > 0 in the above theorem depends on
ρ ∈ (0, 1) and 1/γ ∈ (0, 1) (see Sect. 6).

A similar result holds for other hyperbolic flows for which estimates similar to (1.5) are
satisfied (see Sect. 9).

Sect. 2 contains a few basic definitions from symbolic dynamics. Sects. 3, 4 and 5 are
the main sections in this paper – they are devoted to the proofs of Theorems 1 and 2. In
Sect. 6 we consider general flows over basic sets (satisfying certain additional conditions)
and prove analogues of Theorems 1 and 2 – see Theorem 5 there. The proof of the latter
is essentially a repetition of the arguments used in Sects. 3-5 with minor changes only.
Theorem 3 is derived as a consequence of Theorem 5 and Lemma 3 established in Sect. 7.
Theorem 5 is also used in Sect. 8, where we prove Theorem 4. In Sect. 9 we describe the
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main result in [St3] concerning strong spectral estimates for Ruelle transfer operators which
is used essentially in Sects. 6-8.

Acknowledgments. Most of this work was accomplished during our stay at the Centre Interfacultaire
Bernoulli, EPFL, Lausanne, as part of the Program ‘Spectral and Dynamical Properties of Quantum Hamil-
tonians’. Thanks are due to the organizers of this Program and to the staff of the Centre Bernoulli for their
hospitality and support. We also grateful to Richard Sharp for the information he provided to us concerning
Lemma 1 below as well as for his remarks on the previous version of the paper.

2. Preliminaries

Let κ0 ≥ 2 be an integer and let A = (A(i, j))κ0
i,j=1 be a κ0×κ0 matrix of 0’s and 1’s which

is aperiodic, i.e. AM has strictly positive entries for some M ≥ 1. Consider the symbolic
space

ΣA = {(ij)∞j=−∞ : 1 ≤ ij ≤ κ0, A(ij, ij+1) = 1 for all j },
with the product topology and the shift map σ : ΣA −→ ΣA given by σ((ij)) = ((i′j)), where
i′j = ij+1 for all j. Given 0 < θ < 1, consider the metric dθ on ΣA defined by dθ(ξ, η) = 0 if
ξ = η and dθ(ξ, η) = θm if ξi = ηi for |i| < m and m is maximal with this property.

In a similar way one deals with the one-sided subshift of finite type

Σ+
A = {(ij)∞j=0 : 1 ≤ ij ≤ κ0, A(ij, ij+1) = 1 for all j ≥ 0 },

where the shift map σ : Σ+
A −→ Σ+

A is defined in a similar way: σ((ij)) = ((i′j)), where

i′j = ij+1 for all j ≥ 0. The metric dθ on Σ+
A is defined as above. Let π : ΣA −→ Σ+

A be the
natural projection.

Let B(Σ+
A) be the space of bounded functions g : Σ+

A −→ C. Given f ∈ B(Σ+
A) the Ruelle

transfer operator Lf : B(Σ+
A) −→ B(Σ+

A) is defined by

Lfg(ξ) =
∑

σ(η)=ξ

ef(η) g(η) , ξ ∈ Σ+
A .

Let Fθ(Σ
+
A) denote the space of dθ-Lipschitz functions g : Σ+

A −→ C with the norm
‖f‖θ = ‖f‖∞ + |f |θ , where

|f |θ = sup

{
|f(ξ)− f(η)|
dθ(ξ, η)

: ξ, η ∈ Σ+
A , ξ 6= η

}
.

If f ∈ Fθ(Σ
+
A), then Lf preserves the space Fθ(Σ

+
A).

Definition 2. We say the function f(x) on Σ+
A is non-lattice if there do not exist constants

γ0 and γ1, a function G ∈ B(Σ+
A) and an integer-valued function Z ∈ B(Σ+

A,N) so that

f(x) = (G ◦ σ)(x)−G(x) + γ0 + γ1Z(x), ∀x ∈ Σ+
A.

Given a real-valued F ∈ Fθ(Σ
+
A) the topological pressure Pr (F ) of F is defined by

Pr(F ) = sup
µ∈Mσ

[
h(µ) +

∫
Σ+

A

F dµ

]
,
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where Mσ is the set of all probability measures on Σ+
A invariant with respect to σ and h(µ)

is the measure-theoretic entropy of µ with respect to σ (see e.g. [PP] for more details).
Notice that for small |u| we may define the pressure Pr(F + iuG) for real-valued functions
F,G ∈ Fθ(Σ

+
A) since the Ruelle operator LF has a simple ”maximal” eigenvalue (see Section

4 and Proposition 4.7 in [PP]).

3. The case of a Markov shift

3.1. Representations of S(n). Let σ : Σ+
A −→ Σ+

A be the shift on Σ+
A and let the real-

valued function f ∈ Fθ(Σ
+
A) for some θ ∈ (0, 1).

Assume that f is non-lattice and that the Ruelle transfer operators related to f are weakly
contracting, so that (1.5) holds. As in Sect. 1, let P = Pf be such that Pr(−P f) = 0, and
let m0 be the equilibrium state of −P f so that

h(m0)− P

∫
f dm0 = Pr(−P f) = 0 .

Below we will write simply P instead of Pf since the function f is fixed in our considerations.
Set α =

∫
f dm0 and consider a sequence {εn}n∈N, εn > 0, εn → 0 such that

εn = e−δn, (3.1)

with 0 < δ < − log ρ
3

, where ρ ∈ (ρ1, 1) is the constant that appears in (1.5) and 0 < ρ1 < 1

is the constant from Lemma 2 below. Let χ : R −→ R+ be a Ck (k ≥ 3), function with
compact support. Set χn(x) = χ(ε−1

n (x−z)) and g = f−
∫
f dm0, and note that

∫
g dm0 = 0.

We will study the behavior of

S(n) :=
∑

x∈Σ+
A , σnx=x

χn(gn(x))

=
1

2π

∫ ∞

−∞

( ∑
σnx=x

eiugn(x)
)
χ̂n(u)du,

where χ̂n(u) = e−izuεnχ̂(εnu) and χ̂(u) is the Fourier transform of χ. Introduce the function
ωn(y) = e−ξyχn(y) with ξ = −P . Then

ω̂n(u) =

∫
e−iuye−ξyχn(y)dy = χ̂n(u− iξ) = εne

−izue−ξzχ̂(εn(u− iξ)),

and

S(n) =
∑

σnx=x

eξgn(x)ωn(gn(x)) =
1

2π

∫ ∞

−∞

( ∑
σnx=x

e(ξ+iu)gn(x)
)
ω̂n(u)du

=
eP (z+nα)εn

2π

∫ ∞

−∞

( ∑
σnx=x

e−Pfn(x)+iugn(x)
)
e−izuχ̂(εn(u− iξ))du

=
eP (z+nα)εn

2π

[∫
|u|<a

+

∫
a≤|u|≤c

+

∫
|u|>c

]
,
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where a > 0 will be chosen sufficiently small and c� 1 sufficiently large. With this partition
we have S(n) = I1,n + I2,n + I3,n.

For periodic points we have the following Lemma which follows from the fact that
Pr(−Pf) = 0 and the proof of the statement (ii) of Theorem 5.5 in [PP].

Lemma 1. There exists 0 < θ1 < 1 and a > 0 such that for |u| ≤ a we have∑
σnx=x

e−Pfn(x)+iugn(x) = enPr(−Pf+iug) +O(nθn
1 ).

Our choice of ξ = −P implies that ξg = −P f + P α and

Ln
(ξ+iu)g = eP nαLn

−P f+iug .

Next we have
dPr(−P f + iug)

du

∣∣∣
u=0

= i

∫
g dm0 = 0 .

Moreover, since g is non-lattice, we deduce

d2Pr(−P f + iug)

du2

∣∣∣
u=0

= −σ2
0

for some σ0 > 0.
The representation of the sum∑

σnx=x

e−Pfn(x)+iugn(x) = e−inα
∑

σnx=x

e(−P+iu)fn(x)

for |u| > a is more complicated and we will use the so called Ruelle’s Lemma in the form
proved in [W]. Let χi be the characteristic function of the cylinder

Ci = {η ∈ Σ+
A : η0 = i} , i = 1, ..., κ0 .

Fix an arbitrary point xi ∈ Ci. Then we have the following

Lemma 2. There exists a constant ρ1 ∈ (0, 1) such for a0 > 0 and b0 > 0 and every ε > 0
there exist constant Cε > 0 so that for |t| ≤ a0, |u| ≥ b0 we have the estimate∣∣∣ ∑

σnx=x

e(t+iu)fn(x) −
κ0∑
i=1

Ln
(t+iu)fχi(xi)

∣∣∣ ≤ Cε|u|
n∑

m=2

(
‖Ln−m

(t+iu)f‖θ ρ
m
1 e

m(ε+Pr(tf))
)

(3.2)

for all n ∈ N.

This lemma was proved in [W] generalizing and completing some points of the proof of
a similar lemma in [PS2] and [N] proved for surfaces and C1 regular foliations. In our case
we treat manifolds with arbitrary dimensions and (3.2) is established in [W] for functions
f ∈ Fθ(Σ

+
A). Notice that in the setting of Sect. 6 we can choose ρ1 = 1/γ, where γ is as in

(6.1).
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4. Asymptotic of S(n)

4.1. Asymptotic for |u| < a. We start with the analysis of I1,n. Choosing a > 0 sufficiently
small and changing the coordinates on (−a, a) to v = σ0u√

2
, we can write

ePr(−Pf+iug) = (1− v2 + iQ(v)) ,

where Q(v) is a real-valued function such that Q(v) = O(|v|3) (see Lemma 1.2 (3) in [PS5]
and Proposition 2.2 in [PS6]).

Modulo terms involving O(nθn
1 ), the term I1,n has the form

I1,n = eP (z+nα) εn
√

2

2πσ0

∫ b

−b

e−iu(v)z
[
(1− v2 + iQ(v))n

]
χ̂(εn(u(v) + iP ))dv

with b = σ0a√
2

and u(v) =
√

2v
σ0
. We have χ̂(εn(u(v)+ i P )) = χ̂(0)+ εnO(1+ |v|) and e−iu(v)z =

1 +Oz(|v|). The leading term of I1,n becomes

eP (z+nα) εn
√

2χ̂(0)

2πσ0

∫ b

−b

(1− v2)ndv = eP (z+nα) εn
√

2χ̂(0)

2πσ0

∫ b2

0

(1− w)n

w1/2
dw .

Next ∫ b2

0

(1− w)n

w1/2
dw =

∫ 1

0

(1− w)n

w1/2
dw +O((1− b2)n) ∼

√
π√
n
.

as n→ +∞. Here we use the formula∫ 1

0

(1− w)nwq/2−1dw =
Γ(n+ 1)Γ(q/2)

Γ(n+ 1 + 1
2
q)

and apply the Stirling approximation for Γ(m).
On the other hand,

|(1− v2 +O(|v|3))n − (1− v2)n| ≤ Const
n∑

j=1

Cn
j (1− v2)n−jaj|v|3j

and we can estimate the integral of the right-hand-side by O( 1
n
). We refer to [PS1] for the

details of this calculation. The integration of the perturbation O(nθn
1 ) yields a negligible

term and we conclude that

I1,n ∼ eP (z+nα) εnχ̂(0)√
2πσ0

√
n

, n→ +∞. (4.1)

Notice that χ̂(0) =
∫
χ(y)dy > 0.
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4.2. Asymptotic for a ≤ |u| ≤ c. First consider the integral

J2,n = eP (z+nα) εn
2π

∫
a<|u|≤c

e−iuz

κ0∑
i=1

Ln
−Pf+iugχi(xi)du

with c� 1 sufficiently large which will be chosen below.
Notice that

Ln
−Pf+iug = e−inuαLn

−Pf+iuf .

Since −Pf is non-lattice, for 0 < a ≤ |u| ≤ c the operator L−Pf+iuf has no eigenvalues
µ, |µ| = 1 (see for instance [PP]) and the spectral radius of L−Pf+iuf is strictly less than 1.
Thus, there exist β = β(a, c), 0 < β < 1 and Ca,c > 0 such that we have

‖Ln
−Pf+iuf‖θ ≤ Ca,cβ

n , a ≤ |u| ≤ c, ∀n ∈ N . (4.2)

On the other hand,

|χ̂(εn(u− iξ))| ≤ Cm
ec0|εnξ|

εmn |u|m
, |u| ≥ a, m ∈ N, m ≤ k , (4.3)

with c0 > 0 depending on the support of χ. Using (4.2) and (4.3) with k = 0, for large n we
get

|J2,n| ≤ Ca,c,χe
P (z+nα)ec0P εn

2π
βn

∫
a≤|u|≤b

du ≤ C ′(a, c, χ)eP (z+nα)εnβ
n.

Next to estimate the sum in the right hand side of (3.2) we choose ε small and we increase
0 < β < 1 , if necessary so that ρ1eε

β
= θ2 < 1. Therefore,

n∑
j=2

‖Ln−j
−Pf+iuf‖θ(ρ1e

ε)j ≤ Ca,cβ
n

n∑
j=2

(ρ1e
ε

β

)j

≤ C ′a,cβ
n

and we repeat the argument for the estimation of J2,n. Finally, we get

I2,n = O
(
eP (z+nα) εn

n

)
. (4.4)

4.3. Asymptotic for |u| > c. We apply lemma 2 with t = −P . In this case Pr(−Pf) = 0
and we must examine

I3,n = eP (z+nα) εn
2π

∫
|u|>c

e−iu(z+nα)χ̂(εn(u− iξ))
[ κ0∑

i=1

Ln
(−P+iu)fχi(xi)

+Oε

(
|u|

n∑
j=2

‖Ln−j
(−P+iu)f‖θ(ρ1e

ε)j
)]
du = Jn,3 +Rn,3 .

It follows from (1.5) that if c is large enough we have for |u| > c and every ν > 0 the
estimates

‖Ln
(−P+iu)f‖∞ +

|Ln
(−P+iu)f |θ
|u|

≤ Aνρ
n|u|ν , ∀n ∈ N. (4.5)
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We choose η > 0 and ν > 0 small enough in order to arrange −δ ≥ log ρ
3+ν

+ η. Then

ε3+ν
n = e−δ(3+ν)n ≥ ρneη(3+ν)n.

For the sum over i = 1, ..., κ0 we apply (4.5) with ν to estimate the ‖.‖∞ norm and for large
n we get

Aνρ
n

∫
|u|>c

|u|ν |χ̂(εn(u− iξ))|du ≤ Aνe
−η(3+ν)n

∫
|u|>c

ε2n|u|χ̂(εn(u− iξ))|du

≤ 1

n

∫
|y||χ̂(y − iεnξ)|dy = O

( 1

n

)
.

The integral involving Oε

(
|u|

∑n
m=j ‖L

n−j
(−P+iu)f‖θ(ρ1e

ε)j
)

is dealt in the same way. First for

ε small we arrange the inequality
ρ1e

ε

ρ
= θ3 < 1

increasing, if it is necessary, 0 < ρ < 1 in (4.5). Then we have

Cε|u|
n∑

j=2

‖Ln−j
(−P+iu)f‖θ(ρ1e

ε)j ≤ Cε,ν |u|2+νρn

n∑
j=2

θj
3 ≤ C ′ε,ν |u|2+νρn.

Consequently,

|Rn,3| ≤ eP (z+nα) εn
2π
C ′ε,ν

∫
|u|≥c

ρn|u|2+ν |χ̂(εn(u− iξ))|du

≤ eP (z+nα) εn
2π
C ′ε,νe

−η(3+ν)n

∫
|u|≥c

εn(εn|u|)2+ν |χ̂(εn(u− iξ))|du

and for large n we get

C ′ε,νe
−η(3+ν)n

∫
|y|2+ν |χ̂(y − iεnξ)|dy = O

( 1

n

)
.

Thus, we conclude that

I3,n = O
(
eP (z+nα) εn

n

)
.

Consequently, for n→ +∞ we obtain the following

Proposition 1. Let f be non-lattice and such that the Ruelle transfer operators related to
f are weakly contracting. Let εn = e−δn, where 0 < δ < − log ρ

3
with 0 < ρ1 < ρ < 1 such that

(4.5) holds. Then

S(n) ∼ eP (z+nα) εn√
2nπσ0

∫
χ(y)dy, n→ +∞. (4.6)

Now it is easy to pass from χ ∈ Ck
0 (R) to an indicator function 1[p,q] of the interval [p, q]

repeating the argument in [PS5]. For completeness we give the proof. Given η > 0, choose
cut-off functions χ−, χ+ so that χ− ≤ 1[p,q] ≤ χ+ and

q − p− η ≤
∫
χ−(x)dx ≤

∫
χ+(x)dx ≤ q − p+ η .
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Using (4.6), we get

lim sup
n→+∞

√
n

enh(m0)εn
#{x ∈ Fix(σn) : z + nα + pεn ≤ fn(x) ≤ z + nα + qεn}

≤ lim sup
n→+∞

√
n

enh(m0)εn

∑
σnx=x

χ+
n (gn(x)) ≤ ePz q − p+ η√

2πσ0

,

lim inf
n→+∞

√
n

enh(m0)εn
#{x ∈ Fix(σn) : z + nα + pεn ≤ fn(x) ≤ z + nα + qεn}

≥ lim inf
n→+∞

√
n

enh(m0)εn

∑
σnx=x

χ−n (gn(x)) ≥ ePz q − p− η√
2πσ0

.

Since η > 0 is arbitrary, we deduce that for any z ∈ R we have

#{x ∈ Fix (σn) : z + nα + pεn ≤ fn(x) ≤ z + nα + qεn} ∼ eP (z+nα) (q − p)εn√
2πσ0

√
n
. (4.7)

Moreover, the asymptotic is uniform for z in a compact interval. This proves Theorem 1.

To study the distribution of primitive periods we need to examine the function

Smin(n) :=
∑

σnx=x, n minimal

1[z+pεn,z+qεn](g
n(x)) ,

where the summation is over all points x ∈ Σ+
A such that n = min{m ∈ N : σmx = x}. For

this purpose observe that

#{x ∈ Fix (σn) : z + nα + pεn ≤ fn(x) ≤ z + nα + qεn}

= Smin(n) +
∑

σmx=x, m minimal
n/m=k∈N, k≥2

1[z+pεn,z+qεn](g
km(x)) = Smin(n) + Sr(n) .

Any x ∈ Fix (σn) defines a periodic n-orbit γ = {σj(x) : 0 ≤ j ≤ n − 1}. We will say
that γ is primitive if n ≥ 1 is the smallest integer with σn(x) = x. The number Tγ = fn(x)
will be called the f -period of γ. Let Pn be the set of all primitive periodic n-orbits.

For the f -periods of primitive periodic n-orbits γ ∈ Pn, we must divide by n since γ
contains n points in Fix (σn). Thus, by (4.7) we get an upper bound

#{γ ∈ Pn : z+nα+pεn ≤ Tγ ≤ z+nα+qεn} ≤ eP (z+nα) (q − p)εn√
2πσ0n

√
n

(1+o(1)), n→∞. (4.8)

To obtain a lower bound, we assume that h(m0) > δ where h(m0) = Pα. Notice that

Smin(n) ≥ eP (z+nα) εn√
2nπσ0

(
(q − p)− o(1)

)
− Sr(n), n→ +∞.

Thus it is sufficient to have an upper bound for Sr(n). Consider a term in Sr(n) having the
form

Gn,m =
∑

σmx=x, m minimal,
n/m=k,k≥2

1[z+pεn,z+qεn](g
km(x)).
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with some fixed divisor m ∈ N of n. Then for σmx = x we get gkm(x) = kfm(x)− kmα and
for large n we have

z

k
+mα− εm ≤ z

k
+mα +

p

k
εn ≤ fm(x) ≤ z

k
+mα +

q

k
εn ≤

z

k
+mα + εm .

We choose η > 0 so that 0 < η < h(m0)− δ. Next we fix an integer k0 ∈ N such that

0 <
h(m0)

k0

< h(m0)− δ − η. (4.9)

Consider two cases: (i) 2 ≤ k ≤ k0, (ii) k > k0. In the case (i) we have m = n
k
≥ n

k0
−→ ∞

as n→∞. Since

1[z+pεn,z+qεn](g
km(x)) ≤ 1[ z

k
−εm, z

k
+εm](g

m(x)) ,

we can apply (4.6) with m replaced by n and p = −1, q = 1. Thus,

Gn,m ≤ eP (z/k+mα) 2εm√
2πσ0

√
m

(1 + o(1)) ≤ ePze(h(m0)−δ)n
2

√
2k0√

πσ0

√
n

(1 + o(1))

≤ ePze(h(m0)−δ)ne−µn

√
2k0√

πσ0

√
n

(1 + o(1)),

where 0 < 2µ < h(m0)− δ. Summing over 2 ≤ k ≤ k0, we obtain∑
2≤k≤k0

Gn,m ≤ eP (z+nα)εne
−µn (k0 − 1)

√
2k0√

πσ0

√
n

(1 + o(1)) (4.10)

≤ Bσ0,k0e
Pnαεn

e−µn

√
n

(1 + o(1)).

Passing to the case (ii), notice that for k > k0 we cannot guarantee that m = n/k goes
to +∞ as n → ∞. For this reason we apply a crude estimate for the number of f -periods
Tγ of periodic rays γ. Namely, since f is non-lattice, we exploit the estimate for the number
of primitive periods

#{Tγ ≤ x} ∼ ehT x

hTx
, x→∞,

where hT > 0 is the topological entropy of the suspended symbolic flow related to f (see
[PP]). This estimate is based on the analysis of the behavior of the following dynamical zeta
function

Z(s) =
∞∑

n=1

1

n

∑
σnx=x

e−sfn(x)

(see for instance, [PP]). Notice that in our case the abscissa of absolute convergence of Z(s)
is exactly hT = Pα. Thus, for 0 ≤ z

k0
≤ α

k0
, qεn ≤ q we get

#{γ : Tγ ≤
z

k
+
n

k
α+ qεn} ≤ Cq,k0

e
P n

k0
α

P n
k0
α

(1 + o(1)) , n→∞ .
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Summing over k0 < k ≤ n/2 and taking into account (4.9), we obtain∑
k0<k≤n/2

Gn,m ≤ k0Cz,q,k0

e
h(m0) n

k0

2h(m0)
(1 + o(1)) ≤ Az,q,k0e

Pnαεne
−nη(1 + o(1)), n→∞. (4.11)

Combining (4.10) and (4.11), we deduce

Smin(n) ≥ eP (z+nα) εn√
2πnσ0

((q − p)− o(1)).

Finally, in Smin(n) every periodic primitive orbit is counted n times and we obtain the
asymptotic (1.11) for 0 < δ < min{− log ρ

3
, h(m0)}.

Remark 2. The analysis in this section follows the approach in [PS5], Section 4. However,
the argument in [PS5] exploits Lemma 4.2 there which is not proved and it seems that in that
form the lemma is not correct. Our arguments are based on Lemmas 1 and 2 above. More-
over, the investigation of the case |u| > c with exponentially decreasing εn seems impossible
without using strong spectral estimates of the form (1.5).

5. Asymptotic of S(n,m)

In this section we study the counting function of primitive periodic orbits related to
σmx = x and having f -periods in the interval [z + nα + pεn, z + nα + qεn], 0 ≤ z ≤ α. Let

d0 = min
x∈Σ+

A

f(x), d1 = max
x∈Σ+

A

f(x).

The non-lattice condition on f implies d0 < d1. We assume in this section that δ in (3.1)
satisfies

0 < δ < −(log ρ)α

3d1

(5.1)

If γ is a primitive periodic orbit with m points such that z+nα+pεn ≤ Tγ ≤ z+nα+qεn,
then md0 ≤ Tγ ≤ md1 and

nα

d1

+O(εn) ≤ z + nα + pεn
d1

≤ m ≤ z + nα + qεn
d0

≤ (n+ 1)α

d0

+O(εn). (5.2)

Introduce the function

χn,m(x) = χ
(
(x− z − nα +mα)ε−1

n

)
and note that χ̂n,m(u) = e−izue−i(n−m)αuεnχ̂(εnu). Next consider the sum

S(n,m) =
∑

σmx=x

χn,m(gm(x)).

Using the notation of the previous section, we get

S(n,m) =
εn
2π

∫ ∞

−∞

( ∑
σmx=x

e(ξ+iu)gm(x)
)
e−i(n−m)αue−iuz−ξze−ξ(n−m)αχ̂(εn(u− iξ))du.

We consider three zones of integration: |u| ≤ a, a < |u| ≤ c, |u| ≥ c, where a is small
enough and c is sufficiently large.
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Repeating the argument of Section 4, we must study for sufficiently small b > 0 the
integral

In,m =

∫ b

−b

[
(1− v2 + iQ(v))me

−i
√

2
σ0

v
e
−i(n−m)α

√
2

σ0
v
χ̂(εn(

√
2

σ0

v − iξ))dv.

The only difference is the presence of the oscillatory factor

e
−i(n−m)α

√
2

σ0
v
. (5.3)

Notice that the leading term becomes

χ̂(0)

∫ b

−b

(1− v2)me−i(n−m)α
√

2
σ

vdv = 2χ̂(0)

∫ b

0

(1− v2)m cos
(
(n−m)α

√
2

σ0

v
)
dv

for m satisfying (5.2). We will obtain a lower bound for number of the periods taking into
account only the f -periods of periodic orbits related to σmx = x for which

|n−m| ≤ π

4αa
.

For such m we get∫ b

0

(1− v2)m cos
(
(n−m)α

√
2

σ0

v
)
dv ≥ 1√

2

∫ b

0

(1− v2)mdv

=
1√
2

[∫ 1

0

(1− v2)mdv −
∫ 1

b

(1− v2)mdv
]

∼
√
π√

2m
+O

(
(1− b2)m

)
, m→∞.

Setting r = π
4α
, we have√

π

2

∑
n− r

a
≤m≤n+ r

a

1√
m
∼
√

2π
[(
n+

r

a

)1/2

−
(
n− r

a

)1/2]

=
√

2πn
[(

1 +
r

an

)1/2

−
(
1− r

an

)1/2]
=

√
2πr

a
√
n

+Oa

( 1

n
√
n

)
, n→∞.

On the other hand, ∑
n− r

a
≤m≤n+ r

a

(1− b2)m ≤ C(r, a) exp(n log(1− b2)).

To obtain an upper bound for Im,n, note that∑
nα
d1
−1≤m≤ (n+1)α

d0
+1

√
π√
m
≤
√
π

∫ (n+1)α
d0

+2

nα
d1
−2

x−1/2dx

≤ 2
√
πn

(√
α

d0

−
√
α

d1

+O
( 1

n

))
, n→∞.
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The analysis of lower order terms goes without any change and we obtain

eP (z+nα)εnχ̂(0)√
πnσ0

2r

a

(
1 +Oa

( 1

n
√
n

))
≤ In,m (5.4)

≤ eP (z+nα)εnχ̂(0)2
√

2n√
πσ0

(√
α

d0

−
√
α

d1

+O
( 1

n

))
.

The integral over b ≤ |v| ≤ c can be treated as in Section 4 since we have a factor εn and
m → ∞. In the analysis of the integral over |v| > c we must take into account that for the
operators Lm−j

−Pf+iuf in (3.2) the estimate (1.5) gives a decay with ρm−j and not with ρn−j.

On the other hand, m ≥ nα
d1

+ O(εn) and the assumption (5.1) imply ρm ≤ Cρ
nα
d1 ≤ ε3ne

−ηn

with some η > 0. Thus the analysis in the previous section goes without change and the
integral over |v| > c yields negligible terms.

To pass to an indicator function, we exploit the same argument as in the previous section
to get

eP (z+nα)εn
(q − p)√
πnσ0

2r

a

(
1 + oa(1)

)
≤ I(z, p, q; εn) (5.5)

≤ eP (z+nα)εn
(q − p)2

√
2n√

πσ0

(√
α

d0

−
√
α

d1

+ o(1)
)
, n→∞.

This completes the proof of Theorem 2.

Now we pass to the analysis of the counting function

Smin(n,m) :=
∑

σmx=x,m minimal

1[z+nα+pεn,z+nα+qεn](f
m(x)).

As in the previous section we write Smin(n,m) = S(n,m) − Sr(n,m) and we will find an
upper bound of Sr(n,m). To do this, we will apply an argument similar to that used in
Section 4 and we sketch below the necessary modifications. Let

σs(x) = x, sminimal, m = ks, s ∈ N, k ≥ 2 ,

and let n = kt+ l, t ∈ N, 0 ≤ l ≤ k− 1. Then fm(x) = kf s(x) and z + nα+ pεn ≤ fm(x) ≤
z + nα + qεn for large n implies

z + lα

k
+ tα− εt ≤ f s(x) ≤ z + lα

k
+ tα+ εt.

We consider two cases: (i) 2 ≤ k ≤ k0, (ii) k > k0 and we choose k0 large enough in order
to have (4.9). In the case (i), for fixed m satisfying (5.2), we consider the divisors s of m
with σs(x) = x and we apply (5.5) with p = −1, q = 1, replacing n by t and z by z+lα

k
. This

is possible since t = n
k
− l

k
≥ n

k0
− 1 →∞ as n→∞. Thus we obtain an upper bound with

order O
(
eh(m0)tεt

)
≤ O

(
e(h(m0)−δ)n

2

)
since t ≤ n/2. Then we repeat the argument in Section
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4 and get a negligible term. For k > k0 we apply again a crude estimate

#{γ : Tγ ≤
z

k
+
n

k
α+

q

k
εn} ≤ Cz,q,k0

e
P n

k0
α

P n
k0
α

(1 + o(1))

and we exploit (4.9). Summing with over 2 ≤ k ≤ (n+1)α
2d0

, and then over m ≤ (n+1)α
d0

we

obtain an upper bound for Sr(n,m) and we conclude that Sr(n,m) yields a negligible term.
Consequently, for Smin(n,m) we deduce the same estimates as in (5.5). For the counting
function of the primitive periodic rays in P we must divide the upper bound of Smin(n,m)

by nα
d1

and the lower bound of Smin(n,m) by (n+1)α
d1

. Thus we obtain the estimates (1.12).

6. General hyperbolic flows over basic sets

Let ϕt : M −→ M be a C2 Axiom A flow on a C2 complete (not necessarily compact)
Riemannian manifold M . A ϕt-invariant closed subset Λ of M is called hyperbolic if Λ
contains no fixed points and there exist constants C > 0 and 0 < λ < 1 such that there
exists a dϕt-invariant decomposition TxM = E0(x) ⊕ Eu(x) ⊕ Es(x) of TxM (x ∈ Λ) into
a direct sum of non-zero linear subspaces, where E0(x) is the one-dimensional subspace
determined by the direction of the flow at x, ‖dϕt(u)‖ ≤ C λt ‖u‖ for all u ∈ Es(x) and
t ≥ 0, and ‖dϕt(u)‖ ≤ C λ−t ‖u‖ for all u ∈ Eu(x) and t ≤ 0. Here ‖ · ‖ is the norm on TxM
determined by the Riemannian metric on M .

A non-empty compact ϕt-invariant hyperbolic subset Λ of M which is not a single closed
orbit is called a basic set for ϕt if ϕt is transitive on Λ and Λ is locally maximal, i.e. there
exists an open neighbourhood V of Λ in M such that Λ = ∩t∈Rϕt(V ). When M is compact
and M itself is a basic set, φt is called an Anosov flow.

Let Λ be a basic set for ϕt. For x ∈ Λ and ε > 0 sufficiently small, let

W s
ε (x) = {y ∈M : d(ϕt(x), ϕt(y)) ≤ ε for all t ≥ 0 , d(ϕt(x), ϕt(y)) →t→∞ 0 } ,

W u
ε (x) = {y ∈M : d(ϕt(x), ϕt(y)) ≤ ε for all t ≤ 0 , d(ϕt(x), ϕt(y)) →t→−∞ 0 }

be the (strong) stable and unstable manifolds of size ε. Then Eu(x) = TxW
u
ε (x) and Es(x) =

TxW
s
ε (x).

Throughout this section we will assume that Λ is a basic set for ϕt such that the local
holonomy maps along stable laminations through Λ are uniformly Lipschitz (see Sect. 9
below). Following [R1], a subset R of Λ will be called a rectangle if it has the form

R = [U, S] = {[x, y] : x ∈ U, y ∈ S} ,
where U and S are admissible subsets of W u

ε (z) ∩ Λ and W s
ε (z) ∩ Λ, respectively, for some

z ∈ Λ (cf. e.g. [D] or Sect. 2 in [St3]). For such R, given ξ = [x, y] ∈ R, we will
denote W u

R(ξ) = {[x′, y] : x′ ∈ U} and W s
R(ξ) = {[x, y′] : y′ ∈ S} ⊂ W s

ε′(x). Denote by
Intu(U) (resp. Ints(Si)) the interior of the set U in W u

ε (z) ∩ Λ (resp. W s
ε (z) ∩ Λ) and set

Int(R) = [Intu(U), Ints(S)]. Similarly, for ξ = [x, y] ∈ R set Intu(W u
R(ξ)) = [Intu(U), y] and

Ints(W usR(ξ)) = [x, Ints(S)].
Let R = {Ri}k

i=1 be a family of rectangles with Ri = [Ui, Si], Ui ⊂ W u
ε (zi) ∩ Λ and

Si ⊂ W s
ε (zi) ∩ Λ, respectively, for some zi ∈ Λ. Set R = ∪k

i=1Ri . The family R is called
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complete if there exists T > 0 such that for every x ∈ Λ, ϕt(x) ∈ R for some t ∈ (0, T ]. The
Poincaré map P : R −→ R related to a complete familyR is defined by P(x) = ϕτ(x)(x) ∈ R,
where τ(x) > 0 is the smallest positive time with ϕτ(x)(x) ∈ R. The function τ is called the
first return time associated with R. Notice that τ is constant on each of the set W s

Ri
(x),

x ∈ Ri. A complete family R = {Ri}k
i=1 of rectangles in Λ is called a Markov family of size

χ > 0 for the flow ϕt if diam(Ri) < χ for all i and:

(a) for any i 6= j and any x ∈ Int(Ri) ∩ P−1(Int(Rj)) we have

P(Ints(W s
Ri

(x))) ⊂ Ints(W s
Rj

(P(x))) , P(Intu(W u
Ri

(x))) ⊃ Intu(W u
Rj

(P(x))) ;

(b) for any i 6= j at least one of the sets Ri ∩ ϕ[0,χ](Rj) and Rj ∩ ϕ[0,χ](Ri) is empty.

The existence of a Markov family R of an arbitrarily small size χ > 0 for ϕt follows from
the construction of Bowen [B] (cf. also Ratner [Ra]).

Let R = {Ri}k
i=1 be a Markov family for ϕt over Λ. Setting U = ∪k

i=1Ui, the shift map
σ : U −→ U is defined by σ = p ◦ P , where p : R −→ U is the projection along the leaves

of local stable manifolds. Let R̂ be the set of all x ∈ R whose orbits do not have common
points with the boundary of R. Set Û = U ∩ R̂. It is well-known ([B]) that R̂ is a residual
subset of R that has full measure with respect to any Gibbs measure on R. The same applies

to Û in U .
Denote by C(U) the space of bounded continuous functions h : U −→ C with the usual

norm ‖h‖∞ = supx∈U |h(x)|. Notice that τ is continuous on Û , however in general τ could be

discontinuous on U . Next, denote by CLip(U) the space of Lipschitz functions v : U −→ C.
For such v let Lip(v) denote the Lipschitz constant of v, and for u ∈ R, u 6= 0, define

‖v‖Lip,u = ‖v‖∞ +
Lip(v)

|u|
, ‖v‖Lip = ‖v‖∞ + Lip(v) .

Remark 3. The function τ is locally Lipschitz on R in the following sense: there exists a
constant Lip(τ) > 0 such that if x, y ∈ Ri for some i and σ(x), σ(y) ∈ Rj for some j, then
|τ(x)− τ(y)| ≤ Lip(τ) d(x, y). The map P has a similar property. Moreover, it is easy to see

that for any h ∈ CLip(U) and any s ∈ C the operator Lh+s τ preserves the space CLip(U).

The hyperbolicity of the flow on Λ implies the existence of constants c0 ∈ (0, 1] and
γ1 > γ > 1 such that

c0γ
m d(u1, u2) ≤ d(σm(u1), σ

m(u2)) ≤
γm

1

c0
d(u1, u2) (6.1)

whenever σj(u1) and σj(u2) belong to the same Uij for all j = 0, 1 . . . ,m.

From now on we will assume that Λ is a fixed basic set for ϕt and R = {Ri}k
i=1 is a fixed

Markov family for ϕt over Λ consisting of rectangles Ri = [Ui, Si]. Let A = (Aij)
k
i,j=1 be the

matrix given by Aij = 1 if P(Int(Ri))∩ Int(Rj) 6= ∅ and Aij = 0 otherwise. It is well-known
([BR]) that the Markov family R can be chosen so that τ is non-lattice. From now on we
will assume that R is chosen in this way.

Given a Markov family R, one defines a natural symbol space ΣA and a natural map
W : ΣA −→ R such that W◦σ = P ◦W , where σ : ΣA −→ ΣA is the shift map. However, in
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general W is not one-to-one and this presents certain difficulties in trying to apply Theorems
1 and 2 to count numbers of periodic orbits in Λ. Instead of using the symbol space ΣA and
the coding map W , here we just use the arguments from the proofs of Theorems 1 and 2 in
a slightly different setting to derive similar results.

Using the setup in Sect. 1, let P = Pτ ∈ R be such that Pr(−P τ) = 0, where Pr is the
topological pressure with respect to σ : U −→ U , and let m0 be the equilibrium state of

−P τ . Since τ is non-lattice, there exists σ0 > 0 such that
d2P (−Pτ + i u τ)

du2

∣∣∣
u=0

= −σ2
0 .

As in Sect. 1, set α =

∫
U

τ dm0 .

In the present setting the analogue of Definition 1 reads the following.

Definition 3. We will say that the Ruelle transfer operators related to a real-valued function
f ∈ CLip(U) are weakly contracting if for every ε > 0 there exist constants a0 > 0, ρ ∈ (0, 1)
and A > 0 (possibly depending on f and ε) such that

‖Ln
(−Pf+iu)f1‖Lip,u ≤ Aρn|u|ε , |u| ≥ a0 , (6.2)

for all integers n ≥ 0.

Set d0 = infx∈U τ(x) and d1 = supx∈U τ(x). The following theorem comprises the ana-
logues of Theorems 1 and 2 in the present setting.

Theorem 5. Assume that the Ruelle transfer operators related to τ are weakly contracting.

(a) Let εn = e−δn with 0 < δ < − log ρ
3

, where 0 < 1/γ < ρ < 1 and (6.2) holds with ρ.
Then for any 0 ≤ z ≤ α and any p < q we have

]{x ∈ U : σn(x) = x , z + nα + pεn ≤ τn(x) ≤ z + nα + qεn} ∼ eP (z+nα) (q − p)εn√
2πσ0

√
n

(6.3)

as n→∞, uniformly with respect to z.

(b) Let εn = e−δn with 0 < δ < − (log ρ)α
3d1

. Then for any 0 ≤ z ≤ α, any p < q and any
fixed a > 0, setting r = π

4α
, we have

eP (z+nα)(q − p)εn
1√
πnσ0

2r

a

(
1 + oa(1)

))
≤ I(z, p, q; εn)

≤ eP (z+nα)(q − p)εn
2
√

2n√
πσ0

[√ α

d0

−
√
α

d1

+ o(1)
]

, n→∞ , (6.4)

uniformly with respect to z.

Proof. This is a repetition of the arguments in Sects. 3, 4 and 5. Here we give a very brief
sketch of these for completeness. In the present setting R plays the role of ΣA and U that
of Σ+

A. Moreover, f = τ , which is constant on stable leaves of rectangles Ri (i.e. f depends
on future coordinates only). In general, τ is not continuous on U , however as mentioned in

Remark 2 above, Lsτ preserves the space CLip(U) for any s ∈ C.
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Next, set g = τ −
∫

U

τ dm0, choose the function χ as in Sect. 3, and define χn, Sn and

ωn as in Sect. 3.1, where hT = P is the topological entropy of ϕt on Λ and ξ = −hT .
Lemma 2 applies in the present setting without change, so we have the inequality (3.2), as
well with ‖L(−Pf+iu)f‖θ replaced by ‖L(−Pf+iu)f‖Lip. The argument at the end of Sect. 3
applies without change.

Next, the analytic arguments in Sect. 4 also apply without change and for f = τ the
argument in Sect. 5 works without any change.

7. Geodesic flows on manifolds of constant negative curvature

Let X be a complete (not necessarily compact) connected Riemannian manifold of con-
stant curvature K = −1 and dimension dim(X) = n+1, n ≥ 1, and let ϕt : M = S∗(X) −→
M be the geodesic flow on the unit cosphere bundle of X. According to a classical result of
Killing and Hopf, any such X is a hyperbolic manifold, i.e. X is isometric to Hn+1/Γ, where

Hn+1 = {(x1, . . . , xn+1) ∈ Rn+1 : x1 > 0}

is the upper half-space in Rn+1 with the Poincaré metric ds2(x) = 1
x2
1
(dx2

1 + . . .+ dx2
n+1) and

Γ is a Kleinian group, i.e. a discrete group of isometries (Möbius transformations) of Hn+1.
See e.g. [Ratc] for basic information on hyperbolic manifolds. Given a hyperbolic manifold
X = Hn+1/Γ, the limit set L(Γ) is defined as the set of accumulation points of all Γ orbits

in ∂Hn+1, the topological closure of ∂Hn+1 = {0} × Rn including ∞.
Throughout this section we will assume that Γ is torsion-free and finitely generated (then

Γ is geometrically finite) and non-elementary, i.e. L(Γ) is infinite (then L(Γ) is a closed non-

empty nowhere dense subset of ∂Hn+1 without isolated points; see e.g. Sect. 12.1 in [Ratc]).
A geometrically finite Kleinian group with no parabolic elements is called convex cocompact.
If X is compact, then Γ is called a cocompact lattice.

The non-wandering set Λ of ϕt : M −→ M (also known as the convex core of X =
Hn+1/Γ) is the image in M of the set of all points of S∗(Hn+1) generating geodesics with end
points in L(Γ). When Γ is convex cocompact, the non-wandering set Λ is compact.

From now on we will assume that Γ is a non-elementary convex cocompact Kleinian
group.

As in Sect. 6, let R = {Ri}k
i=1 be a fixed Markov family for ϕt over Λ consisting of

rectangles Ri = [Ui, Si] such that the corresponding roof function τ is non-lattice. Let
P = Pτ ∈ R be such that Pr(−P τ) = 0, where Pr is the topological pressure with respect to

σ : U −→ U , and let m0 be the equilibrium state of −P τ . Set α =

∫
U

τ dm0, and let σ0 > 0

be such that d2Pr(−Pτ+i u τ)
du2

∣∣∣
u=0

= −σ2
0.

Lemma 3. The Ruelle transfer operators related to τ are weakly contracting.

Now Theorem 3 follows from Lemma 3 and the arguments in Sect. 3-5 as we have
obtained Theorem 5 in the previous section.
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Proof of Lemma 3. We will use an argument from [St5]. Let p : Hn+1 −→ X = Hn+1/Γ
and p̂ : S∗(Hn+1) −→ M = S∗(X) be the natural projections. Consider the geodesic flow
φt : S∗(Hn+1) −→ S∗(Hn+1) on Hn+1. Recall that the geodesics in Hn+1 are either straight
lines perpendicular to ∂Hn+1 = {x ∈ Rn+1 : x1 = 0} or semi-circles with centers in ∂Hn+1

whose planes are perpendicular to ∂Hn+1.
It is known that the non-wandering set Λ ⊂M of ϕt has the form Λ = p̂(Λ̂), where Λ̂ is

the set of those x ∈ S∗(Hn+1) such that both limt→∞ φt(x) and limt→−∞ φt(x) belong to the
limit set L(Γ) of the group Γ. The assumptions made above imply that L(Γ) is a non-empty
Γ-invariant closed subset of ∂Hn+1 without isolated points (see Ch. 12 in [Ratc]).

A horosphere in Hn+1 is either an n-sphere in Hn+1 tangent to ∂Hn+1, or an n-plane in
Hn+1 parallel to ∂Hn+1. Let S be a horosphere and x ∈ S∩Hn+1. If S is an n-sphere, denote
by νS(x) the outward normal to S at x with ‖νS(x)‖ = 1/x1, while if S is an n-plane, set
νS(x) = − 1

x1
e1 = 1

x1
(−1, 0, . . . , 0). The stable and unstable manifolds for z = (x, νS(x)) in

S∗(Hn+1) are given by

W s(x) = {(y,−νS(y)) : y ∈ S ∩Hn+1} , W u(x) = {(y, νS(y)) : y ∈ S ∩Hn+1} ,

so obviously the local stable and unstable foliations are smooth. The projections of the latter
via p̂ give the local stable and unstable foliations in M .

It is also straightforward to check that ϕt has uniform distortion along unstable manifolds
over Λ.

To check this it is again enough to work on the universal cover Hn+1. Let z̃ = (z, ζ) ∈
S∗(Hn+1) and t > 0. Since the isometry group of Hn+1 is both point and direction transitive,
we may assume that z = (1, 0, . . . , 0) and ζ = −e1. Then

W u(z̃) = {(y,−e1) : y1 = 1} , W u(φt(z̃)) = {(w,−e−t e1) : w1 = 1− e−t} .

Obviously, for any smooth curve γ in W u(z̃) of length `γ, the length of φt(γ) is exactly et ·`γ.
Thus, for any x̃, ỹ ∈ W u(z̃) \ {z̃} we have d(z̃,x̃)

d(z̃,ỹ)
= d(φt(z̃),φt(x̃))

d(φt(z̃),φt(ỹ))
. Since p̂ is a local isometry

conjugating the geodesic flows ϕt and φt, it follows that ϕt has uniform distortion along
unstable manifolds over Λ.

It remains to check the condition (LNIC) of Sect. 9 below. Again we will work on the
universal cover Hn+1.

Let θ0 > 0 and assume ε0 ∈ (0, 1). Fix an arbitrary z(0) ∈ Λ̂. Replacing the group

Γ by a conjugate of its, we may assume that z(0) = (x(0),−e1), where x
(0)
1 = 1 and e1 =

(1, 0, . . . , 0) ∈ Hn+1. Then W u
ε0

(z(0)) is a subset of

W = {(x,−e1) ∈ S∗(Hn+1) : x1 = 1} ,

and Eu(z(0)) can be naturally identified with ∂Hn+1 = {0} × Rn.
In what follows for any x = (x1, . . . , xn+1) ∈ Hn+1 we denote x′ = (0, x2, . . . , xn+1) ∈

∂Hn+1.
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Consider an arbitrary ẑ = (x̂,−e1) ∈ Λ̂∩W close to z(0), and let b ∈ ∂Hn+1 be a direction

of Λ̂-density at ẑ, ‖b‖ = 1. Setting

ε = min{ε0/2, θ0/14} < 1

2
, (7.1)

the above implies the existence of (ŷ,−e1) ∈ Λ̂ ∩W \ {ẑ} such that

‖ŷ − x̂‖ < ε ,

∥∥∥∥ ŷ − x̂

‖ŷ − x̂‖
− b

∥∥∥∥ < ε .

Similarly, there exists z̃ = (x̃,−e1) ∈ Λ̂ ∩W \ {ẑ} such that

‖x̃− x̂‖ < ε‖ŷ − x̂‖ ,

∥∥∥∥ x̃− x̂

‖x̃− x̂‖
− b

∥∥∥∥ < ε ‖ŷ − x̂‖ ,

and x̃′ is a fixed point of a hyperbolic (loxodromic) element g̃ of Γ (see e.g. Sect. 12.1 in
[Ratc]). Fix ŷ and z̃ = (x̃,−e1) with the above properties. We then have∥∥∥∥ ŷ − x̃

‖ŷ − x̃‖
− b

∥∥∥∥ < 3ε . (7.2)

Next, changing the coordinate system in Hn+1 if necessary we will assume that x̃ =
(1, 0, . . . , 0). Then g̃ has the form g̃ = k A for some k > 0, k 6= 1, and an orthogonal
transformation A in ∂Hn+1. Replacing g̃ by g̃−1 if necessary, we will assume that k > 1.
Considering the minimal A-invariant linear subspace of ∂Hn+1 = Rn containing b, one derives
that there exists an infinite sequence 1 ≤ m1 < m2 < . . . < mp < . . . of integers such that
Ampb → b as p → ∞. Choose p sufficiently large so that ‖Ampb − b‖ < ε and set m = mp

and q = g̃m(ŷ′). Since ŷ′ ∈ L(Γ) and L(Γ) is Γ-invariant, we have q ∈ L(Γ). We will assume
m = mp is chosen so large that

‖q‖ = km‖ŷ′‖ > 1 .

With this choice of q we have

‖q/‖q‖ − b‖ < 4ε . (7.3)

Indeed, using the choice of m and (7.2) it follows that

‖q/‖q‖ − b‖ ≤ ‖Amŷ′/‖ŷ′‖ − Amb‖+ ‖Amb− b‖ < ‖ŷ′/‖ŷ′‖ − b‖+ ε < 4ε ,

which proves (7.3). Fix m and q with the above properties.
Next, denote by S̃ the horosphere in Hn+1 of radius 1/2 at 0 and by S0 the horosphere

at q externally tangent to S̃. Then x̃ ∈ S̃ and W s
ε0

(z̃) coincides with (a certain part of) the

inward unit (with respect to the Poincaré metric) normal field to S̃. Let R be the radius
of S0 and u be the tangent point of S̃ and S0. Then ỹ = (u, ξ) ∈ W s

ε0
(z̃) for some vector

ξ (assuming that ‖q‖, and therefore R is chosen sufficiently large), and W u
ε0

(ỹ) coincides
locally with the outward unit normal field to S0. Notice that limt→∞ φt(ỹ) = 0 ∈ L(Γ) and

limt→−∞ φt(ỹ) = q ∈ L(Γ), so the definition of Λ̂ implies ỹ ∈ Λ̂.
Set ε′ = ε and consider an arbitrary z = (x,−e1) ∈ W u

ε (z̃); then ‖x′‖ < ε. Let a ∈ ∂Hn+1

and h ∈ R be such that ‖a‖ = 1, 〈a, b〉 ≥ θ0 and |h| < ε. We will now show that (9.1)
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(see Sect. 9 below) holds with δ = θ0

4‖q‖ , ỹ1 = ỹ and ỹ2 = z̃. (Then ∆(expu
z (v), πỹ2(z)) =

∆(expu
z (v), πz̃(z)) = 0.)

Let S be the horosphere of radius 1/2 at x′ ; then locally W s
ε0

(z) coincides with the inward
unit normal field to S (see Figure 1). So, for σ = πỹ(z) = [z, ỹ] = W s

ε0
(z) ∩ φ[−ε,ε](W

u
ε0

(ỹ))
we have σ = (v, η) for some v ∈ S and φt1(σ) ∈ W u

ε0
(ỹ). Thus, if S1 is the horosphere at

x′ tangent to S0 (necessarily at the foot point of φt1(σ)) and r1 is the radius of S1, then
t1 = ln(2r1). On the other hand, by elementary geometry, (R+ r1)

2 = ‖q−x′‖2 +(R− r1)2 ,

so r1 = ‖q − x′‖2/(4R) and therefore ∆(z, ỹ) = t1 = ln ‖q−x′‖2
2R

.

In the same way for ω = expz(ha) = (x + ha,−e1) one obtains ∆(ω, ỹ) = ln ‖q−x′−ha‖2
2R

.
Therefore

t̃ = ∆(expz(ha), πỹ(z)) = ∆(ω, πỹ(z)) = ∆(ω, ỹ)−∆(z, ỹ) = ln
‖q − x′ − ha‖2

‖q − x′‖2
.

Using the fact that | ln(1 + x)| ≥ |x|/2 for |x| < 1, one gets

|t̃| =
∣∣∣∣ln [

1− 2h

‖q − x′‖

〈
q − x′

‖q − x′‖
, a

〉
+

h2

‖q − x′‖2

]∣∣∣∣ ≥ |h|
2‖q − x′‖

∣∣∣∣2 〈
q − x′

‖q − x′‖
, a

〉
− h

‖q − x′‖

∣∣∣∣ .
Now (7.3) implies∥∥∥∥ q − x′

‖q − x′‖
− b

∥∥∥∥ < 4ε+

∥∥∥∥ q − x′

‖q − x′‖
− q

‖q‖

∥∥∥∥ ≤ 4ε+ 2
‖x′‖
‖q‖

< 6ε ,

and using 〈a, b〉 ≥ θ0 we get

2

〈
q − x′

‖q − x′‖
, a

〉
= 2〈b, a〉+ 2

〈
q − x′

‖q − x′‖
− b, a

〉
≥ 2θ0 − 12ε .

Moreover, ‖q − x′‖ ≥ 1 − ε > 1/2, so |h|/‖q − x′‖ < 2ε which combined with the above,
‖q − x′‖ ≤ ‖q‖+ ε < 2‖q‖ and (7.1) gives

|t̃| ≥ |h|
4‖q‖

(2θ0 − 14ε) ≥ θ0

4‖q‖
|h| = δ |h|

for all h with |h| < ε.
This proves that (LNIC) is fulfilled, thus completing the proof of Lemma 3.

8. Open billiard flows

In this section we prove Theorem 4. Let K be a subset of RN (N ≥ 2) of the form
K = K1 ∪K2 ∪ . . .∪Kκ0 ,where Ki are compact strictly convex disjoint domains in RN with

Cr (r ≥ 3) boundaries Γi = ∂Ki and κ0 ≥ 3. Set Ω = RN \K. Throughout this section we
assume that K satisfies the following (no-eclipse) condition:

(H)

{
for every pair Ki, Kj of different connected components of K the convex hull

of Ki ∪Kj has no common points with any other connected component of K.
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With this condition, the billiard flow ϕt defined on the cosphere bundle S∗(Ω) in the standard
way is called an open billiard flow. It has singularities, however its restriction to the non-
wandering set Λ has only simple discontinuities at reflection points. Moreover, Λ is compact,
ϕt is hyperbolic and transitive on Λ, and it follows from [St1] that ϕt is non-lattice and
therefore by a result of Bowen [B], it is topologically weak-mixing on Λ.

Denote by A the κ0×κ0 matrix with entries A(i, j) = 1 if i 6= j and A(i, i) = 0 for all i, and
define ΣA and Σ+

A as in Sect. 1. Given ξ ∈ ΣA, let . . . , P−2(ξ), P−1(ξ), P0(ξ), P1(ξ), P2(ξ), . . .
be the successive reflection points of the unique billiard trajectory in the exterior of K
such that Pj(ξ) ∈ Kξj

for all j ∈ Z. Set f(ξ) = ‖P0(ξ) − P1(ξ)‖ , and define the map
Φ : ΣA −→ Λ∂K = Λ ∩ S∗Λ(Ω) by

Φ(ξ) = (P0(ξ), (P1(ξ)− P0(ξ))/‖P1(ξ)− P0(ξ)‖) .

Then Φ is a bijection such that Φ ◦ σ = B ◦ Φ, where B : Λ∂K −→ Λ∂K is the billiard ball
map. Choosing appropriately θ ∈ (0, 1), we have f ∈ Fθ2(ΣA) (see e.g. [I]).

By Sinai’s Lemma (see e.g. [PP]), there exists a function f̃ ∈ Fθ(ΣA) depending on future

coordinates only and χf ∈ Fθ(ΣA) such that f(ξ) = f̃(ξ) + χf (ξ) − χf (σξ) for all ξ ∈ ΣA.
As in the proof of Sinai’s Lemma, for any k = 1, . . . , k0 choose and fix an arbitrary sequence

η(k) = (. . . , η
(k)
−m, . . . , η

(k)
−1 , η

(k)
0 ) ∈ Σ−a with η

(k)
0 = k. Then for any ξ ∈ ΣA (or ξ ∈ Σ+

A) set

e(ξ) = (. . . , η
(ξ0)
−m , . . . , η

(ξ0)
−1 , η

(ξ0)
0 = ξ0, ξ1, . . . , ξm, . . .) ∈ ΣA .

Then we have

χf (ξ) =
∞∑

n=0

[f(σn(ξ))− f(σne(ξ))] .

As before, let P = Pf ∈ R be such that Pr(−P f̃) = 0 (then Pr(−P f) = 0 as well), let m0

be the equilibrium state of −Pf f̃ , and let α =
∫

Σ+
A
f dm0.

Next, let R = {Ri}k
i=1 be a Markov family of rectangles with Ri = [Ui, Si], Ui ⊂ W u

ε (zi)∩
Λ and Si ⊂ W s

ε (zi)∩Λ, respectively, for some zi ∈ Λ (see Sect. 6 above). Taking χ sufficiently
small, we may assume that each rectangle Ri is ‘between two boundary components’ Γpi

and
Γqi

of K, that is for any x ∈ Ri, the first backward reflection point of the billiard trajectory
γ determined by x belongs to Γpi

, while the first forward reflection point of γ belongs to Γqi
.

Moreover, using the fact that the intersection of Λ with each cross-section to the flow ϕt is
a Cantor set, we may assume that the Markov family R is chosen in such a way that, apart
from the standard properties (a) and (b) in Sect. 6, it also satisfies the following:

(c) for any i = 1, . . . , k we have ∂ΛUi = ∅.

Finally, partitioning every Ri into finitely many smaller rectangles, cutting Ri along some
unstable leaves, and removing some rectangles from the family formed in this way, we may
assume that

(d) for every x ∈ R the billiard trajectory of x from x to P(x) makes exactly one
reflection.
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From now on we will assume that R = {Ri}k
i=1 is a fixed Markov family for ϕt of size

χ < ε0/2 satisfying the conditions (a), (b) from Sect. 6 and the above conditions (c) and
(d). Define U = ∪k

i=1Ui and σ : U −→ U as in Sect. 6. As in Sect. 6, we will assume that
R is chosen so that τ is non-lattice.

Under the conditions in Theorem 4 it follows from Theorem 6 in Sect. 9 below that the
Ruelle transfer operators related to τ are weakly contracting. This allows to apply Theorem
6. One particular case when these conditions are satisfied concerns the following pinching
condition:

(P): There exist constants C > 0 and α > 0 such that for every x ∈ Λ we have

1

C
eαx t ‖u‖ ≤ ‖dϕt(x) · u‖ ≤ C eβx t ‖u‖ , u ∈ Eu(x) , t > 0 ,

for some constants αx, βx > 0 depending on x but independent of u with α ≤ αx ≤ βx and
2αx − βx ≥ α for all x ∈ Λ.

Notice that when N = 2 this condition is always satisfied. For N ≥ 3, (P) follows from
certain estimates on the eccentricity of the connected components Kj of K – see [St4] for a
more precise result. It turns out that for n ≥ 3 the condition (P) is always satisfied when the
minimal distance between distinct connected components of K is relatively large compared
to the maximal sectional curvature of ∂K. According to general regularity results ([H]), (P)
implies that W u

ε (x) and W s
ε (x) are C1+δ in x ∈ Λ for some δ > 0. This and the main result

in [St4] imply the following

Proposition 2. Assume that the billiard flow ϕt satisfies the pinching condition (P) on Λ.

Then the Ruelle transfer operators related to f̃ are weakly contracting.

Proof of Theorem 4. Assume that the conditions of Theorem 4 are satisfied. Then, as
mentioned above, τ is non-lattice and the Ruelle transfer operators related to τ are weakly
contracting, so we can apply Theorem 5 from Sect. 6.

Let A be the matrix defined in Sect. 6 using the Markov family R. As in Sect. 2 in [PeS]
one defines a natural bijection S : Σ+

A −→ Σ+
A which commutes with the shifts. Apart from

that there is a natural map W : U −→ Σ+
A such that σ ◦ W = W ◦ σ. Let Pτ ∈ R be such

that Pr(−Pτ τ) = 0. It is easy to see that Pτ = Pf . Indeed, first notice that the map W
is continuous (and therefore a homeomorphism) when U is considered with the Riemannian
metric and Σ+

A with the metric dθ, so Pr(−Pτ τ ◦W−1) = 0 (see e.g. Theorem 9.8 in [Wal]).
Next, for r = τ ◦ W−1 it follows from (3.4) in Sect.3 in [PeS] that there exists a continuous

function µ : Σ+
A −→ R such that r = f̃ ◦S+µ◦σ−µ. Thus, Pr(a r) = Pr(a f̃) for any a ∈ R

(see e.g. [PP]), so in particular, Pr(−Pτ f̃) = 0, and therefore Pτ = Pf . In a similar way we

see that if m′
0 is the equilibrium state of −Pτ τ on U , then α =

∫
Σ+

A
f̃ dm0 =

∫
U
τ dm′

0.

It remains to notice that if σn(x) = x for some x ∈ U , and if n is the smallest integer
with this property, then x generates a periodic billiard orbit γ with n reflection points and
Tγ = τn(x). Every periodic billiard orbit with n reflection points is obtained in this way,
and we get the same orbit from n different x. With this remark, using Theorem 5 from Sect.
6, we get the estimates (1.11) and (1.12).
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9. Spectral estimates for Ruelle transfer operators

Let again ϕt : M −→ M be a C2 Axiom A flow and Λ be a basic set for φt. For any
x ∈ Λ, T > 0 and δ ∈ (0, ε] set

Bu
T (x, δ) = {y ∈ W u

ε (x) : d(ϕt(x), ϕt(y)) ≤ δ , 0 ≤ t ≤ T} .
We will say that ϕt has a regular distortion along unstable manifolds over the basic set

Λ if there exists a constant ε0 > 0 with the following properties:

(a) For any 0 < δ ≤ ε ≤ ε0 there exists a constant R = R(δ, ε) > 0 such that

diam(Λ ∩Bu
T (z, ε)) ≤ R diam(Λ ∩Bu

T (z, δ))

for any z ∈ Λ and any T > 0.

(b) For any ε ∈ (0, ε0] and any ρ ∈ (0, 1) there exists δ ∈ (0, ε] such that for any z ∈ Λ
and any T > 0 we have diam(Λ ∩Bu

T (z, δ)) ≤ ρ diam(Λ ∩Bu
T (z, ε)) .

Part (a) of the above condition resembles the Second Volume Lemma of Bowen and
Ruelle [BR] about balls in Bowen’s metric; this time however we deal with diameters instead
of volumes. Sect. 8 in [St3] describes a rather general class of flows on basic sets satisfying
this condition. In fact, there are reasons to believe that this may actually hold for all C2

flows on basic sets – see the comments in Sect. 1 in [St3].
In the special case when the flow satisfies the pinching condition (P) over Λ (see Sect.

8, where it is stated for open billiard flows; for general flows on basic sets it is similar), it
follows from Theorem 7.1 in [St3] that ϕt has a regular distortion along unstable manifolds
over Λ. As we mentioned in Sect. 8 above, when the local unstable manifolds are one-
dimensional (P) is always satisfied. For open billiards (see Sect. 8 again) the condition (P)
is always satisfied when the minimal distance between distinct connected components of K
is relatively large compared to the maximal sectional curvature of ∂K. An analogue of the
latter for manifolds M of strictly negative curvature would be to require that the sectional
curvature is between −K0 and −aK0 for some constants K0 > 0 and a ∈ (0, 1). It follows
from the arguments in [HP] that when a = 1/4 the geodesic flow on M satisfies the pinching
condition (P).

In what follows we deal with flows ϕt over basic sets Λ having a regular distortion
along unstable manifolds. Apart from that, we impose an additional local non-integrability
condition (LNIC) which we state below.

It follows from the hyperbolicity of Λ that if ε0 > 0 is sufficiently small, there exists
ε1 > 0 such that if x, y ∈ Λ and d(x, y) < ε1, then W s

ε0
(x) and ϕ[−ε0,ε0](W

u
ε0

(y)) intersect at
exactly one point [x, y] ∈ Λ (cf. [KH]). That is, there exists a unique t ∈ [−ε0, ε0] such that
ϕt([x, y]) ∈ W u

ε0
(y). Setting ∆(x, y) = t, defines the so called temporal distance function. For

x, y ∈ Λ with d(x, y) < ε1, define πy(x) = [x, y] = W s
ε (x)∩ϕ[−ε0,ε0](W

u
ε0

(y)) . Thus, for a fixed
y ∈ Λ, πy : W −→ ϕ[−ε0,ε0](W

u
ε0

(y)) is the projection along local stable manifolds defined on
a small open neighborhood W of y in Λ.

Given z ∈ Λ, let expu
z : Eu(z; ε0) −→ W u

ε0
(z) be the corresponding exponential map.

A vector b ∈ Eu(z) \ {0} will be called tangent to Λ at z if there exist infinite sequences
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{v(m)} ⊂ Eu(z) and {tm} ⊂ R \ {0} such that expu
z (tm v

(m)) ∈ Λ∩W u
ε (z) for all m, v(m) → b

and tm → 0 as m→∞. It is easy to see that a vector b ∈ Eu(z) \ {0} is tangent to Λ at z if
there exists a C1 curve z(t) (0 ≤ t ≤ a) in W u

ε (z) for some a > 0 with z(0) = z and ż(0) = b
such that z(t) ∈ Λ for arbitrarily small t > 0.

The following is the local non-integrability condition for ϕt and Λ mentioned above.

(LNIC): There exist z0 ∈ Λ, ε0 > 0 and θ0 > 0 such that for any ε ∈ (0, ε0], any ẑ ∈
Λ∩W u

ε (z0) and any tangent vector η ∈ Eu(ẑ) to Λ at ẑ with ‖η‖ = 1 there exist z̃ ∈ Λ∩W u
ε (ẑ),

ỹ1, ỹ2 ∈ Λ ∩W s
ε (z̃) with ỹ1 6= ỹ2, δ = δ(z̃, ỹ1, ỹ2) > 0 and ε′ = ε′(z̃, ỹ1, ỹ2) ∈ (0, ε] such that

|∆(expu
z (v), πỹ1(z))−∆(expu

z (v), πỹ2(z))| ≥ δ ‖v‖ (9.1)

for all z ∈ W u
ε′ (z̃) ∩ Λ and v ∈ Eu(z; ε′) with expu

z (v) ∈ Λ and 〈 v
‖v‖ , ηz〉 ≥ θ0, where ηz is the

parallel translate of η along the geodesic in W u
ε0

(z0) from ẑ to z.

One would expect that (LNIC) is satisfied in most interesting cases. For example, it was
shown in [St4] that open billiard flows (in any dimension) with C1 (un)stable laminations
over the non-wandering set Λ always satisfy (LNIC).

If ϕt is a C2 contact flow on M , i.e. there exists a C2 invariant one-form ω such that
ω ∧ (dω)n is a volume form on M , where dim(M) = 2n + 1, then the following condition
(ND) implies (LNIC) (see Proposition 6.1 in [St3]).

(ND): There exist z0 ∈ Λ, ε > 0 and µ0 > 0 such that for any ε ∈ (0, ε0], any ẑ ∈ Λ∩W u
ε (z0)

and any unit vector η ∈ Eu(ẑ) tangent to Λ at ẑ there exist z̃ ∈ Λ ∩W u
ε (ẑ), ỹ ∈ W s

ε (z̃) and
a unit vector ξ ∈ Es(ỹ) tangent to Λ at ỹ with |dωz̃(ξz̃, ηz̃)| ≥ µ0, where ηz̃ is the parallel
translate of η along the geodesic in W u

ε (z̃) from ẑ to z̃, while ξz̃ is the parallel translate of ξ
along the geodesic in W s

ε (z̃) from ỹ to z̃.

Remark. It appears the above condition would become significantly more restrictive if one
requires the existence of a unit vector ξ ∈ Es(z̃) tangent to Λ at z̃ with |dωz̃(ξ, ηz̃)| ≥ µ0.
The reason for this is that in general the set of unit tangent vectors to Λ does not have to be
closed in the bundle Es

Λ. That is, there may exist a point z̃ ∈ Λ, a sequence {zm} ⊂ W s
ε (z̃)∩Λ

and for each m a unit vector ξm tangent to Λ at zm such that zm → z and ξm → ξ as m→∞,
however ξ is not tangent to Λ at z̃. A similar comment can be made about (LNIC), where
requiring ỹ2 = z̃ would replace (9.1) by |∆(expu

z (v), πỹ(z))| ≥ δ ‖v‖ with ỹ = ỹ1, which is
still a rather general non-integrability condition. However in its present form (LNIC) is a
substantially weaker condition.

Given a Lipschitz real-valued function f on U , set g = gf = f − Pτ , where P = Pf ∈ R
is the unique number such that the topological pressure Prσ(g) of g with respect to σ is zero
(cf. e.g. [PP]). For a, b ∈ R, consider the Ruelle transfer operator Lg−(a+ib)τ on the space

CLip(U) of Lipschitz functions g : U −→ C. By Lip(g) we denote the Lipschitz constant of
g and by ‖g‖∞ the standard sup norm of g on U . As in Sect. 6 above, we will use the norm

‖.‖Lip,b on CLip(U) defined by ‖h‖Lip,b = ‖h‖∞ +
Lip(h)

|b| .

The following result from [St3] has been used several times in previous sections.
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Theorem 6. ([St3]) Let ϕt : M −→ M be a C2 Axiom A flow on a C2 complete Riemann
manifold satisfying the condition (LNIC) and having a regular distortion along unstable man-
ifolds over a basic set Λ. Assume in addition that the local holonomy maps along stable
laminations through Λ are uniformly Lipschitz. Then for any Lipschitz real-valued function
F we have the following: for every ε > 0 there exist constants 0 < ρ < 1, a0 > 0 and C > 0
such that if a, b ∈ R satisfy |a| ≤ a0 and |b| ≥ 1/a0, then

‖Lm
F−(P (F )+a+ib)τh‖Lip,b ≤ C ρm |b|ε ‖h‖Lip,b

for every integer m > 0 and every h ∈ CLip(U). In particular the spectral radius of

LF−(P (F )+a+ib)τ on CLip(U) does not exceed ρ.

As an immediate consequence of this theorem we get the following (see [D] or Corollary
3.3 in [St2]):

Corollary 2. Under the assumptions of Theorem 6, the Ruelle transfer operators related to
τ are weakly contracting.
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