RESONANCES FOR NON-TRAPPING TIME-PERIODIC PERTURBATIONS

JEAN-FRANCOIS BONY AND VESSELIN PETKOV

ABSTRACT. For time-periodic perturbations of the wave equation in R; x R given by a potential
q(t,x), we obtain an upper bound of the number of the resonances {z; € C: |z;| > § > 0}. We
establish for m € N large enough a trace formula relating the iterations of the monodromy operator
U(mT,0), T > 0, and the sum Zj zj" of all resonances counted with their multiplicities.

1. INTRODUCTION

The purpose of this paper is to study the resonances of the wave equation with time-dependent
potentials. Consider the Cauchy problem

O?u — Au+q(t,z)u =0, (t,7) € R x R",
u(s,z) = fo(z), wi(s,z) = fi(z), = € R",
where the potential g(¢,z) € C®(R; x R}),n > 3, n odd, satisfies the conditions:

(1.1)

(Hy) there exists R > 0 such that ¢(¢,2) = 0 for |z| > R, Vi € R,
(Hs) q(t+T,2)=q(t,z), ¥(t,z) € R**! with T' > 0.

The solution of (1.1) is given by the propagator

U(t,s) : Ho > (fo, f1) —> U(t,s)(fo, f1) = (u(t,z), w(t,z)) € Ho,
where Hj is the energy space Hy = Hp(R") @ L?(R") and Hp(R") is the closure of C§°(R") with

respect to the norm
5, \1/2
£y = ([ 1924172) "

We refer to Chapter V, [13], for the properties of U(t,s) and throughout the paper we will use
freely the notations of [13].

Let Uy(t) = €'%0 be the unitary group in Hy related to the Cauchy problem (1.1) with ¢ = 0
and let Pﬁ (resp. P”) denote the orthogonal projection on the orthogonal complement of the spaces
D? (resp. D”) introduced by Lax and Phillips (see [8], [13]) and defined by

Df ={f € Hy: Uy(t)f =0for|z| < £t+p, £t >0}, p> R.
To define the resonances, we will use the operator
Z°(T) = PLU(T,0)P".
For non-trapping perturbations the spectrum of Z?(T) is formed by eigenvalues with finite multi-
plicity and for m € N large enough the operator Z#(mT) is compact (see [1], [5], [13]). Moreover,
the eigenvalues and their multiplicity are independent of p > R (see [5] and [13]). Let P denote

the time-dependent operator related to the problem (1.1). We define the resonances following
1
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the approach of Lax-Phillips [8] for stationary perturbations and that of Cooper-Strauss [5] for
time-periodic ones.

Definition 1. We say that z € C\ {0} is a resonance for P if z € op, ZP(T).

Notice that e” is an eigenvalue of Z?(T) if and only if there exists an outgoing solution wu(t, z)
of the problem (1.1) with non-vanishing initial data such that e **7u(t, ) is periodic with period
T. We refer to [13] for the definition of an outgoing solution (see also [5]) as well as for the proof of
the above equivalence. The second definition presents a more precise description of the existence
of outgoing modes with complex frequencies known in the physical literature.

We denote by Res P the set of resonances of P. In the following we write Z(T'), Py instead of
ZP(T), P if the dependence on p is not important and we set

U(T) = U(T,0), Z(T) = PUy(T)P-.
In Section 3 we obtain an upper bound of the number of the resonances
Ns=#{z€ResP: |z| >0} <C “,0<e<1/2

which generalizes the known results for time-independent perturbations (see [11], [21], [14], [19] and
the papers cited there). To our best knowledge this is the first upper bound for Nj for time-periodic
perturbations. Next, using the bound of the resonances, we obtain a trace formula involving the
resonances. More precisely, given a function g(z) = 2™h(z), holomorphic in a disk containing the
resonances, we establish a trace formula involving ¢(U(T")) and the series

> glz)
zj€Res P

in the spirit of trace formulae obtained for stationary perturbations in [2], [11], [15], [22], [16] (see
Section 4). In particular, for hA(z) = 1 we have the following

Theorem 1. Let x € C§°(B(0,71); [0,1]) be such that x =1 for || < R+ T and let

x(U(T) — Up(T)) = (U(T) — Uo(T))x = U(T) — Uo(T). (1.2)
Let the projectors Py and the number k € N be fized so that
PyU(jT)P- =0, j > k, Pyx = xPy = x. (1.3)
Then for m > 2k large enough we have
tr((U(kT) ~ Up(kT))U(mT — 2kT)(U (KT — Uo(kT))> = 3 (1.4)
2;€Res P

where the summation is over all resonances counted with their multiplicities.

Remarks. 1) The equality (1.2) follows from the finite speed of propagation and the represen-
tation

T
Wﬂ—%@%AlMTﬂWMWMMa

Q@:@£m8>

where
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2) It is clear that we can choose ¢ € C§°(R") with the property ¢ = 1 for |z| < r; + kT so that
WU(kT) — Uo(ET))(1 — ) =0
which is a consequence of
xUo(4T)(1 —4) =0, 7=0,1,...,k—1

(see equality (4.1)). Thus in the trace formula (1.4) on the right and on the left of U(mT — 2kT)
we may put the cut-off function ¥ = (U(kT) — Uy(kT))v acting as a multiplication operator.

Corollary 1. Under the assumptions of Theorem 1 the existence of a sequence m, € N, m, oo,
such that

tr((U(kT) — Up(KT))U (my T)(U (KT — Ug(kT))) \ s s0as my oo

18 equivalent to

ResPN {z€ C:|z| > 1} #0.

The above result says that the existence of resonances z;, |z;| > 1, associated to solutions whose
local energy blows up is connected to the behavior as m — oo of the trace of a cut-off iteration
WU (mT)W. It is clear that we can choose b > 0 so that the projectors Pi satisfy Pi\If = \IfPi =V,
Then we obtain the property

Res PN {z €C: 2] > 1} £ 0 & oo [tr(Z2°(mT))| = +oc.

The result of Corollary 1 seems quite natural for time-periodic perturbations. For example, the
existence of intervals of instability for the Hill equation

y"(t) + p(t)y(t) + Ay(t) =0 (1.5)
with time-periodic p(t) and A € R is determined by the trace
tr M(X) = y1 (T, A) + y5(T, A)

of the Wronskian M ()\) given by
() =0 (540}

Here yi(t, A) (resp. ya(t, ) is the solution of (1.5) with y1(0,\) =1, y{(0, \) = 0 (resp. y2(0,\) =
0, y5(0,A) = 1). The intervals of instability are described by the set {X : [tr M ()| > 2} (see
for instance, [7]). Moreover, if ¢ lies in an interval of instability, there exists an eigenvalue
w(Xo), [1(Xo)| > 1, of M(Ao), and we have

lim ‘tr Mm(,\o)‘ = .

m—o0

72

This phenomenon appears for the so called parametric resonances [6] and if A = 7= with suitable
[ € N there exist unbounded solutions.

For stationary perturbations, given by a potential V' (z), we have always resonances and some
lower bounds for the function counting the number of the resonances have been established (see
[4], [3] and the references cited there). In contrast to the stationary case, for time-periodic pertur-
bations, it is possible to construct a potential ¢(¢, ) such that the corresponding operator P(t) has
no resonances z # (. In Section 5 we treat this problem.
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2. MEROMORPHIC CONTINUATION OF THE RESOLVENT (U(T) — z) !
In the following H will denote the space Hy. Given a resonance z; € Res P, consider the
projection
1

211 o

(z = Z(T))"'dz,

TrZOaZ =

where v9 = {2 € C: 2 = 29+ €', 0 < ¢ < 21} and € > 0 is sufficiently small. The space 7, 7(H)
has a finite dimension, independent on p, and we define the multiplicity of zy as

m(zyp) = rank m,, 7z (H).

Let Cy > 0 be a constant such that ||U(T)| < Cy and let the cut-off function x, the projectors Py
and the integer £ € N be fixed as in Theorem 1.

Introduce a number ag > 1 + kT and let H g4, be the space of the elements of 7 which vanish
for |z| > R + ag. Next define the space Hj,. as the space of functions u for which ¢u € H for each
1 € C3°(R™) equal to 1 in a neighborhood of B(0, R + ag). Then we have the following.

Proposition 1. The operator (U(T) —2) ' : Hryay — Hioe admits a meromorphic continuation
from |z| > Cy to C. The poles of this continuation coincide with the resonances Res P and the
geometric multiplicities are the same. Moreover, for every zg € Res P we have

WZO,Z(H) = WZO,Z(HR‘}’GO) = 71-Z[J,U(/’L[I‘H»an)a (21)

where
1

T2V = o

/ (z=U(T)) Ydz : Hpriay — Hioe-
Y0

Remark. The above result is similar to Proposition 3.6 in [14], where the resonances for com-
pactly supported perturbations are defined by the method of complex scaling.

Proof. For |z| > Cy we have x(Z(T) — z) 'x = x(U(T) — z) 'x and the poles of x(U(T) — z) 'x
are included in the set Res P. To prove the inverse, notice that

W(T) = Z(T) = Z(T) = Py (Us(T) = U(T))P- = x(Us(T) = U(T))x = xV(T)x. (2.2)
where V(T) = Uy(T) — U(T). Next, we have
(Z(T) — 2)~"' = (Z(T) — 2)” ' (Z(T) — Z(T)) (Z(T) - 2)
= (Zo(T) — 2)"(Zo(T) — Z(D)(Z(T) — 2)" ' (Zo(T) — Z(T))(Zo(T) — 2)~"
+H(Zo(T) = 2)~(Zo(T) = Z(T)(Z(T) — 2)~" + (Z(T) — 2)
= (Z(T) = 2)"'xV(T)x (U(T) = 2)"'xV(T)x(Z(T) ~ 2)
+(Zo(T) = 2)"'xV(T)x(Zo(T) = 2)~" + (Zo(T) = 2) " (2.3)

The resolvent (Zo(T) — z)~ ' is holomorphic in C\ {0} and (2.3) implies that the eigenvalues of
Z(T) are inside the poles of x(U(T) — z)~'x. Thus the resonances coincide with the poles of the
meromorphic continuation of x(U(T) — z)~'x and it follows immediately that the geometric mul-
tiplicities are the same.

(Zo(T) — 2) "' +(Zo(T) — 2
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To establish (2.1), notice that according to (2.3), we have
1

Mo,z = 5— | (2= Z(T)) 'xV(T)x(Zo(T) = 2) " 'dz.
., 70
Given f € H, we write
No ‘
XV(T)x(Zo(T) — 2) ' f = (2~ 20)'xfj0 + Of((z — 20)"°™), z €
Jj=0
and we obtain for Ny > 1
1 No .
Moot = g [ (2= 2N 'Y~ a0V oz
0 g =

On the other hand, as in the paper of Sjostrand and Zworski [14], we get

(z — z0) — (Z(T) — z)
=(z—Z(T)) [(z —20) (2 20) 22— Z(T) 4+ (2 Z(T)) .

For j > 1 we replace (z — 29)? by (Z(T) — 2)’ and we deduce

No

To0,2f = a0,z (Z(Z(T) - Zo)j(ij,o))-

§=0
Next we exploit the equality
Z(jT) — Zo(§T)

J—1
= Z Zo(wT)(Zo(T) — Z(1)Z((j —v — 1)T).
v=0

Observing that Zy(vT) = 0 for v > k, we deduce
k—1

Z(iT)x = Z(iT)x = Y Zo(wT)xV (T)xZ((j — v — 1)T)x.
v=0

This implies
Z(jT)x = P+, Vj €N,
where ® € C§°(B(0,m + kT); [0,1]) is such that (1 — ®)Uy(jT)x =0 for 0 < j < k — 1. Since
Mo, 2 Py ® = Pymy 7@ = my 79,
we conclude that
To0,2(H) = T2, 2(PH) C 729, 2(HR+ay)-
Finally, if P’® = ® we have

1
7r207z(7'[) = WZO’(](@H) + 2—71'2(1 — P_f_) / (Z — U(T))i]@dz : HR+(L0 — H]oc-
770

The term involving (1 — PY) is independent on the choice of PY, provided P’ ® = ®, and it vanishes
on every compact set. This completes the proof. ]
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3. UPPER BOUND OF THE NUMBER OF RESONANCES.

In this section, we give a upper bound of the number of resonances lying in the disk
{z€C: |z| > 6}, 0 >0.
We will prove the following.
Theorem 2. Suppose the assumptions (Hy), (Hs) fulfilled. Then the number of the resonances
z € Res P(t), |z| > 1 is finite and for each 0 < € < 1/2 there exists a constant Ce > 0 such that for

every 0 < 6 <1 we have
#{z€ResP: |z| >} <C °. (3.1)

Remarks. 1. For stationary potentials this result has been obtained by Melrose [11] (see the
estimate (44)).

2. The above bound is natural for independent on time perturbations. Indeed, in this case,
Melrose [11], Zworski [21], Sjostrand and Zworski [14], Vodev [19], have proved that

#Res PN{oceC: |0/ <r}<Cr". (3.2)

Moreover, if P is non-trapping, Vainberg [17] in the classical case and Martinez [10] in the semi-
classical framework have showed that for each N € N we have

#ResPN{o € C: |lmo| < Nln(lo|)} < oc. (3.3)
This implies
#ResPN{o e C: |[Imo| <r}
<#ResPN{oc € C: Nln(lo|]) <|lmo| <r}+Cy
<#ResPN{oeC: |o| <™} 4+ Cy < Che™N. (3.4)

T

Now, fixing a 7' > 0 and setting z = €’””, we obtain the estimate (3.1) with e = .

Proof. We will exploit the method developed by Melrose [11], [12] for perturbations independent
on time (see also Zworski [21] and Vodev [19]). To prove the theorem, it is sufficient to show that
there exists N € N such that for each € > 0, the eigenvalues of the operator Z(NT') satisfy for all
0 < 6 <1 the estimate

#{z€C: z€0p,(Z(NT)), |z| >0} < Ccb°. (3.5)

Given a compact operator S, we denote by 1;(S), j = 1,2,..., the characteristic values of S

which form a non-increasing sequence of the eigenvalues of (§*S)'/2 counted with their multiplicity.
Let x € C§°(R™) and k € N be fixed as in Theorem 1 so that Zy(kT) = 0. For M € N, we have

Z((2k + M)T) = Z(kT)Z(MT)Z(kT)
= (Z(kT) = Zo(kT)) Z(MT)(Z(kT) — Zo(KkT))
=P, (UKT) — Up(kT))U(MT) (U (KT) — Up(kT)) P-
= P (U(KT) — Up(kT))xU(MT)x(U(KT) — Uy(kT)) P-. (3.6)

Since the perturbation of P(t) is given by a potential, the results for the propagation of singu-
larities imply that the operator xU(MT)y is regularizing for M € N large enough (see [5], [1], [13],
[18]). Let © CC R?" be a open hypercube, with supp x C €, and let Ag be the Laplacian in
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with Dirichlet boundary condition. It is well known (see for instance, [21], [19]) that for all m € N,
there exists C}, > 0 such that
i (I~ Da)™™) < Cuj >/, Vj €N
Consequently, using (3.6) and the inequalities
i (AB) < pji(A)|BI,
i (AB) < pj(B)[[Al,

we get, for m € N,

i (Z((2k + M)T)) < Cpj(xU(MT)x
SCMj((I*A )""(I — Aa)"xU(MT)x)
< Cuy((1— Ba) ™) [T~ Ag)"xU(MT)x|
< Cj 2" (3.7)

with a new constant C,, > 0.
We choose N =2k + M, 2m > n and we order the eigenvalues

Al A2,y Apy e
of Z(NT) counted with their multiplicities by decreasing modulus. Then

MV<HMKHM < (C)P(p) 7,

where k£ € N can be taken as large as we wish. Thus with a constant Cj, we get
[Apl < Ci(p!) ; < Cpp e
Now for the eigenvalues Ay, ..., A\, with modulus greater than § > 0 we deduce
p< Gy
and taking k = -, we complete the proof. ]

4. TRACE FORMULA

In this section we prove Theorem 1. Recall that xy € C§°(R"), the projectors Py and k € N are
fixed so that (1.2) and (1.3) hold. First notice that

U(ET) — Uy(kT) = ZUJT — Uo(T))Up((k — j — 1)T) (4.1)

— P_(U(KT) = Up(kT)) = (U(KT) — Up(KT)) Ps
The second and the third equalities follow from the fact that
(I = POUGT)x = xUs(GT)I = Py) =0, 5 = 0, — 1.

The operator
P.U(mT — 2kT)P_
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is trace class for m sufficiently large and the cyclicity of the trace implies
tr((U(kT) ~ Up(kT))U(mT — 2kT) (U (KT) — Ug(kT))>
—tr( P_(U(KT) — Uy (kT))PLU (mT — 2kT)P_(U (kT) — Ug(kT))P+)
=tr( P (U(kT) — Ug(kT))P_P U (mT — 2kT)P_P, (U (kT) — Ug(k)T)).FL)

—tr( PLU(KT)P_P.U(mT — 2kT)P,P+(U(kT)P,)

N 7N N

:tr(P+U(mT)P,) — t2(Z(mT)).

Applying Lidsii theorem for the trace of Z(mT), we complete the proof since by Theorem 2 we

have
‘Z ‘<Z D |ZT|§CFZ(%)mE§Cm,0<6§1/2,m22.
p=1

c
p= 1 m<‘27‘<

It is clear that Corollary 1 follows from the following

A, = Zz}-n,Bm: Zz?‘,mEN.

|21 <1 |zj|>1

Lemma 1. Let

Then
|Am| < Cyp, Vm>1+¢ > 1.
Moreover, if {z € Res P(t) : |z| > 1} # 0, then there exists a sequence m,, ,/* 0o, m, € N, such that

lim |B,,, | =0

my —00
Proof. Let m —e > 1, € > 0. Using the estimate
#{z; € Res P(t) : |zj| > 0} < Ccd °,
we obtain
o o
m Lym 1 —¢ /
Al <Y Y 5™ < C€Z<E> (k—+1) < Ce.
k=1 e <lzl<y k=1
To deal with the sum B,,, introduce
p = max{|zj| : zj € Res P(t), [2;| > 1}.
Since we have a finite number of resonances z; with |z;| > 1, let
Zj = Meina J=1..p v 7& Py (mOd 27‘—)’ v 7& J-

It is sufficient to show that for a suitable sequence m, * oc we have

P
lim ‘ E cje’Mr i
my —00| 4 . -

where ¢; € N is the multiplicity of the resonance z;, j = 1,...,p.

2€0>03
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Put a; = €%, j =1,...,p and assume that
P
li gt =
Jj=0
for some integers c; € N, 7 = 1,..., p. Obviously,
P

Za;cjagn —mooo 0 forg=0,1,...p— 1.
Jj=0

This implies

1 1 1 c16]
al a9 a (&)
P 2 s 0
p—1 p—2 p—1 m
ay ay P Cplp
and we deduce that (ciaf’,... ,cpa;”) — 0 which is a contradiction. Thus there exists a sequence

m, /" oo such that

207 v — B #0 as my, = o0
J
and this completes the proof. [l

Finally, we may establish a trace formula for the operator

g(U(T)) = —2k)T Zb U(5T),

where the series h(z) = >3, b;z’ has a radius of convergence Ry > ||[U(T)|| and m € N is chosen
so that Z((m — 2k)T) is a trace class. First notice that

p+q p+q
1Z((m — 28)T) > " b Z(GT) e < || Z((m — 2k)T ||TrZ|b\HZ )V < e
Jj=p

for p, ¢ > N(e). Since the space of trace class operators is complete in trace norm, we deduce that
g(Z(T)) is trace class and this yields

tr( m — 2k)T ZbZ]T) — tr(g(Z(T)) as N — oo.
Next, the operator

N
U(T) — V(KDY U (T — 247) S bUGT) (U (KT) — Ty(kT))
Jj=0
converges in the operator norm to (U(kT') — Uy(kT))g(U(T))(U(kT) — Uy(kT)) and

N
tr((U(kT) — Up(kT))U (mT — 2kT) > b;U (5T)(U (KT) — UO(kT))) — trg(Z(T)).
j=0

Applying the result of Gohberg and Krein (see Chapter 6 in [9]), we obtain the following
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Theorem 3. Let g(z) = 2™ 2 h(z) = 2™~ % >0 b;27 be a function such that the series >0 bz’
has in C a radius of convergence Ry > ||U(T)| and let m, k be chosen as in Theorem 1. Then

tr((U(KT) = Ug(KT))g(U(T)(UKT) = Uo(KT))) = > g(z)).
zj€Res P(t)

5. EXAMPLE

In this section we construct a potential ¢(¢,z) such that Z(T) = 0 which implies that we have
no resonances z € Res P\ {0} . Assume that 7' = t; + ¢, ¢ > 0, tg > 0. We choose a potential
q(t, z) satisfying the assumptions (H;), (Hs) such that

q(t,z) =0 for 0 <ty <t < T, V. (5.1)
Moreover, the support of ¢(¢,z) with respect to z is independent of ¢y, t;. We obtain
U(T7 0) = U(tl + t[]a 0) = U(Tﬂ tU)U(th 0)

= Uy(t1) [Un(to) — /Oto Uo(to — 8)Q(s)U(s,0)ds|.

Here we have used the fact that (5.1) implies U (T, o) = Uy(T — to) = Uo(t1). We fix the projectors
Py, P_, independently of ¢1, so that P+Q(s) = Q(s). Next we choose the time #; large enough so
that

P.Uy(t)P- = 0.

This implies
Z(T)= P U(T,0)P- = P U(T,ty)U(ty,0)P_ = P,Uy(t1)P-U(ty,0)P- = 0,
since (I — P_)U(ty,0)P- = 0.
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