
RESONANCES FOR NON-TRAPPING TIME-PERIODIC PERTURBATIONSJEAN-FRANC�OIS BONY AND VESSELIN PETKOVAbstrat. For time-periodi perturbations of the wave equation in Rt � Rnx given by a potentialq(t; x), we obtain an upper bound of the number of the resonanes fzj 2 C : jzj j � Æ > 0g. Weestablish for m 2 N large enough a trae formula relating the iterations of the monodromy operatorU(mT; 0); T > 0; and the sum Pj zmj of all resonanes ounted with their multipliities.1. IntrodutionThe purpose of this paper is to study the resonanes of the wave equation with time-dependentpotentials. Consider the Cauhy problem(�2t u��u+ q(t; x)u = 0; (t; x) 2 R � Rn ;u(s; x) = f0(x); ut(s; x) = f1(x); x 2 Rn ; (1.1)where the potential q(t; x) 2 C1(Rt � Rnx ); n � 3; n odd, satis�es the onditions:(H1) there exists R > 0 suh that q(t; x) = 0 for jxj � R; 8t 2 R;(H2) q(t+ T; x) = q(t; x); 8(t; x) 2 Rn+1 with T > 0:The solution of (1:1) is given by the propagatorU(t; s) : H0 3 (f0; f1) �! U(t; s)(f0; f1) = (u(t; x); ut(t; x)) 2 H0;where H0 is the energy spae H0 = HD(Rn)� L2(Rn) and HD(Rn) is the losure of C10 (Rn) withrespet to the norm kfkHD = �Z jrxf j2dx�1=2:We refer to Chapter V, [13℄, for the properties of U(t; s) and throughout the paper we will usefreely the notations of [13℄.Let U0(t) = eitG0 be the unitary group in H0 related to the Cauhy problem (1:1) with q = 0and let P �+ (resp. P ��) denote the orthogonal projetion on the orthogonal omplement of the spaesD�+ (resp. D��) introdued by Lax and Phillips (see [8℄, [13℄) and de�ned byD�� = ff 2 H0 : U0(t)f = 0 for jxj � �t+ �; �t � 0g; � � R:To de�ne the resonanes, we will use the operatorZ�(T ) = P �+U(T; 0)P ��:For non-trapping perturbations the spetrum of Z�(T ) is formed by eigenvalues with �nite multi-pliity and for m 2 N large enough the operator Z�(mT ) is ompat (see [1℄, [5℄, [13℄). Moreover,the eigenvalues and their multipliity are independent of � � R (see [5℄ and [13℄). Let P denotethe time-dependent operator related to the problem (1:1). We de�ne the resonanes following1



2 J. F. BONY, V. PETKOVthe approah of Lax-Phillips [8℄ for stationary perturbations and that of Cooper-Strauss [5℄ fortime-periodi ones.De�nition 1. We say that z 2 C n f0g is a resonane for P if z 2 �pp Z�(T ):Notie that ei�T is an eigenvalue of Z�(T ) if and only if there exists an outgoing solution u(t; x)of the problem (1.1) with non-vanishing initial data suh that e�i�Tu(t; x) is periodi with periodT . We refer to [13℄ for the de�nition of an outgoing solution (see also [5℄) as well as for the proof ofthe above equivalene. The seond de�nition presents a more preise desription of the existeneof outgoing modes with omplex frequenies known in the physial literature.We denote by Res P the set of resonanes of P: In the following we write Z(T ); P� instead ofZ�(T ); P �� if the dependene on � is not important and we setU(T ) = U(T; 0); Z0(T ) = P+U0(T )P�:In Setion 3 we obtain an upper bound of the number of the resonanesNÆ = #fz 2 Res P : jzj � Æg � C�Æ��; 0 < � � 1=2whih generalizes the known results for time-independent perturbations (see [11℄, [21℄, [14℄, [19℄ andthe papers ited there). To our best knowledge this is the �rst upper bound for NÆ for time-periodiperturbations. Next, using the bound of the resonanes, we obtain a trae formula involving theresonanes. More preisely, given a funtion g(z) = zmh(z), holomorphi in a disk ontaining theresonanes, we establish a trae formula involving g(U(T )) and the seriesXzj2Res P g(zj)in the spirit of trae formulae obtained for stationary perturbations in [2℄, [11℄, [15℄, [22℄, [16℄ (seeSetion 4). In partiular, for h(z) = 1 we have the followingTheorem 1. Let � 2 C10 (B(0; r1); [0; 1℄) be suh that � = 1 for jxj � R+ T and let�(U(T )� U0(T )) = (U(T )� U0(T ))� = U(T )� U0(T ): (1.2)Let the projetors P� and the number k 2 N be �xed so thatP+U0(jT )P� = 0; j � k; P�� = �P� = �: (1.3)Then for m � 2k large enough we havetr�(U(kT ) � U0(kT ))U(mT � 2kT )(U(kT ) � U0(kT ))� = Xzj2Res P zmj ; (1.4)where the summation is over all resonanes ounted with their multipliities.Remarks. 1) The equality (1:2) follows from the �nite speed of propagation and the represen-tation U(T ) = U0(T )� Z T0 U0(T � s)Q(s)U(s; 0)ds;where Q(s) = � 0 0q(s; x) 0� :



RESONANCES FOR TIME-PERIODIC PERTURBATIONS 32) It is lear that we an hoose  2 C10 (Rn) with the property  = 1 for jxj � r1+kT so that(U(kT ) � U0(kT ))(1 �  ) = 0whih is a onsequene of �U0(jT )(1 �  ) = 0; j = 0; 1; : : : ; k � 1(see equality (4:1)). Thus in the trae formula (1:4) on the right and on the left of U(mT � 2kT )we may put the ut-o� funtion 	 = (U(kT ) � U0(kT )) ating as a multipliation operator.Corollary 1. Under the assumptions of Theorem 1 the existene of a sequene m� 2 N; m� %1;suh that ���tr�(U(kT )� U0(kT ))U(m�T )(U(kT )� U0(kT ))���� �!1 as m� %1is equivalent to Res P \ fz 2 C : jzj > 1g 6= ;:The above result says that the existene of resonanes zj ; jzj j > 1, assoiated to solutions whoseloal energy blows up is onneted to the behavior as m ! 1 of the trae of a ut-o� iteration	U(mT )	. It is lear that we an hoose b > 0 so that the projetors P b� satisfy P b�	 = 	P b� = 	:Then we obtain the propertyRes P \ fz 2 C : jzj > 1g 6= ; , limm!1 jtr(Zb(mT ))j = +1:The result of Corollary 1 seems quite natural for time-periodi perturbations. For example, theexistene of intervals of instability for the Hill equationy00(t) + p(t)y(t) + �y(t) = 0 (1.5)with time-periodi p(t) and � 2 R is determined by the traetrM(�) = y1(T; �) + y02(T; �)of the Wronskian M(�) given by �y(T )y0(T )� =M(�)�y(0)y0(0)� :Here y1(t; �) (resp. y2(t; �)) is the solution of (1:5) with y1(0; �) = 1; y01(0; �) = 0 (resp. y2(0; �) =0; y02(0; �) = 1). The intervals of instability are desribed by the set f� : jtrM(�)j > 2g (seefor instane, [7℄). Moreover, if �0 lies in an interval of instability, there exists an eigenvalue�(�0); j�(�0)j > 1; of M(�0), and we havelimm!1���trMm(�0)��� =1:This phenomenon appears for the so alled parametri resonanes [6℄ and if � = l �2T 2 with suitablel 2 N there exist unbounded solutions.For stationary perturbations, given by a potential V (x), we have always resonanes and somelower bounds for the funtion ounting the number of the resonanes have been established (see[4℄, [3℄ and the referenes ited there). In ontrast to the stationary ase, for time-periodi pertur-bations, it is possible to onstrut a potential q(t; x) suh that the orresponding operator P (t) hasno resonanes z 6= 0: In Setion 5 we treat this problem.



4 J. F. BONY, V. PETKOV2. Meromorphi ontinuation of the resolvent (U(T )� z)�1In the following H will denote the spae H0. Given a resonane z0 2 Res P , onsider theprojetion �z0; Z = 12�i Z0(z � Z(T ))�1dz;where 0 = fz 2 C : z = z0+ �ei'; 0 � ' < 2�g and � > 0 is suÆiently small. The spae �z0; Z(H)has a �nite dimension, independent on �, and we de�ne the multipliity of z0 asm(z0) = rank �z0;Z(H):Let C0 > 0 be a onstant suh that kU(T )k � C0 and let the ut-o� funtion �, the projetors P�and the integer k 2 N be �xed as in Theorem 1.Introdue a number a0 > r1+kT and let HR+a0 be the spae of the elements of H whih vanishfor jxj � R+ a0. Next de�ne the spae Hlo as the spae of funtions u for whih  u 2 H for eah 2 C10 (Rn) equal to 1 in a neighborhood of B(0; R+ a0): Then we have the following.Proposition 1. The operator (U(T )� z)�1 : HR+a0 �! Hlo admits a meromorphi ontinuationfrom jzj > C0 to C . The poles of this ontinuation oinide with the resonanes Res P and thegeometri multipliities are the same. Moreover, for every z0 2 Res P we have�z0;Z(H) = �z0;Z(HR+a0) = �z0;U(HR+a0); (2.1)where �z0;U = 12�i Z0(z � U(T ))�1dz : HR+a0 �! Hlo:Remark. The above result is similar to Proposition 3.6 in [14℄, where the resonanes for om-patly supported perturbations are de�ned by the method of omplex saling.Proof. For jzj > C0 we have �(Z(T )� z)�1� = �(U(T )� z)�1� and the poles of �(U(T )� z)�1�are inluded in the set Res P: To prove the inverse, notie thatW (T ) = Z0(T )� Z(T ) = P+(U0(T )� U(T ))P� = �(U0(T )� U(T ))� = �V (T )�; (2.2)where V (T ) = U0(T )� U(T ). Next, we have(Z(T )� z)�1 = (Z(T )� z)�1(Z0(T )� Z(T ))(Z0(T )� z)�1 + (Z0(T )� z)�1= (Z0(T )� z)�1(Z0(T )� Z(T ))(Z(T )� z)�1(Z0(T )� Z(T ))(Z0(T )� z)�1+(Z0(T )� z)�1(Z0(T )� Z(T ))(Z0(T )� z)�1 + (Z0(T )� z)�1= (Z0(T )� z)�1�V (T )� (U(T )� z)�1�V (T )�(Z0(T )� z)�1+(Z0(T )� z)�1�V (T )�(Z0(T )� z)�1 + (Z0(T )� z)�1: (2.3)The resolvent (Z0(T ) � z)�1 is holomorphi in C n f0g and (2.3) implies that the eigenvalues ofZ(T ) are inside the poles of �(U(T ) � z)�1�: Thus the resonanes oinide with the poles of themeromorphi ontinuation of �(U(T ) � z)�1� and it follows immediately that the geometri mul-tipliities are the same.



RESONANCES FOR TIME-PERIODIC PERTURBATIONS 5To establish (2.1), notie that aording to (2.3), we have�z0;Z = 12�i Z0(z � Z(T ))�1�V (T )�(Z0(T )� z)�1dz:Given f 2 H, we write�V (T )�(Z0(T )� z)�1f = N0Xj=0(z � z0)j�fj;0 +Of ((z � z0)N0+1); z 2 0and we obtain for N0 � 1�z0;Zf = 12�i Z0(z � Z(T ))�1 N0Xj=0(z � z0)j�fj;0dz:On the other hand, as in the paper of Sj�ostrand and Zworski [14℄, we get(z � z0)j � (Z(T )� z0)j= (z � Z(T ))h(z � z0)j�1 + (z � z0)j�2(z � Z(T )) + � � �+ (z � Z(T ))j�1i:For j � 1 we replae (z � z0)j by (Z(T )� z0)j and we dedue�z0;Zf = �z0;Z� N0Xj=0(Z(T )� z0)j(�fj;0)�:Next we exploit the equality Z(jT )� Z0(jT )= � j�1X�=0Z0(�T )(Z0(T )� Z(T ))Z((j � � � 1)T ):Observing that Z0(�T ) = 0 for � � k, we dedueZ(jT )� = Z0(jT )� � k�1X�=0Z0(�T )�V (T )�Z((j � � � 1)T )�:This implies Z(jT )� = P+�; 8j 2 N;where � 2 C10 (B(0; r1 + kT ); [0; 1℄) is suh that (1� �)U0(jT )� = 0 for 0 � j � k � 1: Sine�z0;ZP+� = P+�z0;Z� = �z0;Z�;we onlude that �z0;Z(H) = �z0;Z(�H) � �z0;Z(HR+a0):Finally, if P ��� = � we have�z0;Z(H) = �z0;U (�H) + 12�i (1� P �+)Z0(z � U(T ))�1�dz : HR+a0 �! Hlo:The term involving (1�P �+) is independent on the hoie of P �+, provided P ��� = �, and it vanisheson every ompat set. This ompletes the proof. �



6 J. F. BONY, V. PETKOV3. Upper bound of the number of resonanes.In this setion, we give a upper bound of the number of resonanes lying in the diskfz 2 C : jzj � Æg; Æ > 0:We will prove the following.Theorem 2. Suppose the assumptions (H1); (H2) ful�lled. Then the number of the resonanesz 2 ResP (t); jzj > 1 is �nite and for eah 0 < " � 1=2 there exists a onstant C� > 0 suh that forevery 0 < Æ � 1 we have #fz 2 Res P : jzj � Æg � C�Æ��: (3.1)Remarks. 1. For stationary potentials this result has been obtained by Melrose [11℄ (see theestimate (44)).2. The above bound is natural for independent on time perturbations. Indeed, in this ase,Melrose [11℄, Zworski [21℄, Sj�ostrand and Zworski [14℄, Vodev [19℄, have proved that#Res P \ f� 2 C : j�j � rg � Crn: (3.2)Moreover, if P is non-trapping, Vainberg [17℄ in the lassial ase and Martinez [10℄ in the semi-lassial framework have showed that for eah N 2 N we have#Res P \ f� 2 C : jIm�j � N ln(j�j)g <1: (3.3)This implies#Res P \ f� 2 C : jIm�j � rg � #Res P \ f� 2 C : N ln(j�j) � jIm�j � rg+ CN� #Res P \ f� 2 C : j�j � er=Ng+ CN � C 0Nern=N : (3.4)Now, �xing a T > 0 and setting z = ei�T , we obtain the estimate (3:1) with � = nTN :Proof. We will exploit the method developed by Melrose [11℄, [12℄ for perturbations independenton time (see also Zworski [21℄ and Vodev [19℄). To prove the theorem, it is suÆient to show thatthere exists N 2 N suh that for eah " > 0, the eigenvalues of the operator Z(NT ) satisfy for all0 < Æ � 1 the estimate #fz 2 C : z 2 �pp(Z(NT )); jzj � Æg � C�Æ�": (3.5)Given a ompat operator S, we denote by �j(S), j = 1; 2; : : : ; the harateristi values of Swhih form a non-inreasing sequene of the eigenvalues of (S�S)1=2 ounted with their multipliity.Let � 2 C10 (Rn) and k 2 N be �xed as in Theorem 1 so that Z0(kT ) = 0. For M 2 N, we haveZ((2k +M)T ) = Z(kT )Z(MT )Z(kT )= �Z(kT )� Z0(kT )�Z(MT )�Z(kT )� Z0(kT )�= P+�U(kT )� U0(kT )�U(MT )�U(kT )� U0(kT )�P�= P+�U(kT )� U0(kT )��U(MT )��U(kT )� U0(kT )�P�: (3.6)Sine the perturbation of P (t) is given by a potential, the results for the propagation of singu-larities imply that the operator �U(MT )� is regularizing for M 2 N large enough (see [5℄, [1℄, [13℄,[18℄). Let 
 �� R2n be a open hyperube, with supp � � 
, and let �
 be the Laplaian in 




RESONANCES FOR TIME-PERIODIC PERTURBATIONS 7with Dirihlet boundary ondition. It is well known (see for instane, [21℄, [19℄) that for all m 2 N,there exists Cm > 0 suh that�j�(I ��
)�m� � Cmj�2m=n; 8j 2 N:Consequently, using (3.6) and the inequalities�j(AB) � �j(A)kBk;�j(AB) � �j(B)kAk;we get, for m 2 N,�j�Z((2k +M)T )� � C�j��U(MT )��� C�j�(I ��
)�m(I ��
)m�U(MT )��� C�j�(I ��
)�m�(I ��
)m�U(MT )�� Cmj�2m=n (3.7)with a new onstant Cm > 0.We hoose N = 2k +M , 2m > n and we order the eigenvalues�1; �2; :::; �p; :::of Z(NT ) ounted with their multipliities by dereasing modulus. Thenj�pjp � pYj=1 j�jj � pYj=1�j(Z(NT )) � (Ck)p(p!)�k;where k 2 N an be taken as large as we wish. Thus with a onstant C 0k, we getj�pj � Ck(p!)� kp � C 0kp�k:Now for the eigenvalues �1; :::; �p with modulus greater than Æ > 0 we deduep � CkÆ� 1kand taking k = 1� , we omplete the proof. �4. Trae formulaIn this setion we prove Theorem 1. Reall that � 2 C10 (Rn), the projetors P� and k 2 N are�xed so that (1:2) and (1:3) hold. First notie thatU(kT )� U0(kT ) = k�1Xj=0 U(jT )(U(T ) � U0(T ))U0((k � j � 1)T ) (4.1)= P�(U(kT )� U0(kT )) = (U(kT )� U0(kT ))P+:The seond and the third equalities follow from the fat that(I � P�)U(jT )� = �U0(jT )(I � P+) = 0; j = 0; :::; k � 1:The operator P+U(mT � 2kT )P�



8 J. F. BONY, V. PETKOVis trae lass for m suÆiently large and the yliity of the trae impliestr�(U(kT )� U0(kT ))U(mT � 2kT )(U(kT ) � U0(kT ))�=tr�P�(U(kT )� U0(kT ))P+U(mT � 2kT )P�(U(kT ) � U0(kT ))P+�=tr�P+(U(kT )� U0(kT ))P�P+U(mT � 2kT )P�P+(U(kT )� U0(kT ))P��=tr�P+U(kT )P�P+U(mT � 2kT )P�P+(U(kT )P��=tr�P+U(mT )P�� = tr(Z(mT )):Applying Lidsii theorem for the trae of Z(mT ), we omplete the proof sine by Theorem 2 wehave ���Xj zmj ��� � 1Xp=1 XCp+1<jzj j�Cp jzmj j � C� 1Xp=1�Cp �m�� � Cm; 0 < � � 1=2; m � 2: �It is lear that Corollary 1 follows from the followingLemma 1. Let Am = Xjzj j�1 zmj ; Bm = Xjzj j>1 zmj ; m 2 N:Then jAmj � C0; 8m � 1 + �0 > 1:Moreover, if fz 2 ResP (t) : jzj > 1g 6= ;, then there exists a sequene m� %1; m� 2 N; suh thatlimm�!1 jBm� j =1:Proof. Let m� � > 1; � > 0: Using the estimate#fzj 2 Res P (t) : jzj j � Æg � C�Æ��;we obtain jAmj � 1Xk=1 X1k+1<jzjj� 1k jzj jm � C� 1Xk=1�1k�m� 1k + 1��� � C 0�:To deal with the sum Bm, introdue� = maxfjzj j : zj 2 Res P (t); jzj j > 1g:Sine we have a �nite number of resonanes zj with jzj j > 1, letzj = �ei'j ; j = 1; :::; p; '� 6= 'j (mod 2�); � 6= j:It is suÆient to show that for a suitable sequene m� %1 we havelimm�!1��� pXj=1 jeim�'j ��� � �0 > 0;where j 2 N is the multipliity of the resonane zj ; j = 1; :::; p:



RESONANCES FOR TIME-PERIODIC PERTURBATIONS 9Put aj = ei'j ; j = 1; :::; p and assume thatlimm!1 pXj=0 jamj = 0for some integers j 2 N; j = 1; :::; p: Obviously,pXj=0 aqjjamj �!m!1 0 for q = 0; 1; : : : p� 1:This implies 0BB� 1 1 : : : 1a1 a2 : : : ap: : : : : : : : : : : : : : :ap�11 ap�22 : : : ap�1p 1CCA0BB�1am12am2:::pamp 1CCA �! 0and we dedue that (1am1 ; : : : ; pamp ) �! 0 whih is a ontradition. Thus there exists a sequenem� %1 suh that Xj jam�j �! � 6= 0 as m� !1and this ompletes the proof. �Finally, we may establish a trae formula for the operatorg(U(T )) = U((m� 2k)T ) 1Xj=0 bjU(jT );where the series h(z) =P1j=0 bjzj has a radius of onvergene R0 > kU(T )k and m 2 N is hosenso that Z((m� 2k)T ) is a trae lass. First notie thatkZ((m� 2k)T ) p+qXj=p bjZ(jT )ktr � kZ((m� 2k)T )ktr p+qXj=p jbj jkZ(T )kj � �for p; q � N(�): Sine the spae of trae lass operators is omplete in trae norm, we dedue thatg(Z(T )) is trae lass and this yieldstr�Z((m� 2k)T ) NXj=0 bjZ(jT )� �! tr(g(Z(T )) asN !1:Next, the operator(U(kT )� U0(kT ))U(mT � 2kT ) NXj=0 bjU(jT )(U(kT ) � U0(kT ))onverges in the operator norm to (U(kT ) � U0(kT ))g(U(T ))(U(kT ) � U0(kT )) andtr�(U(kT )� U0(kT ))U(mT � 2kT ) NXj=0 bjU(jT )(U(kT ) � U0(kT ))� �! tr g(Z(T )):Applying the result of Gohberg and Krein (see Chapter 6 in [9℄), we obtain the following



10 J. F. BONY, V. PETKOVTheorem 3. Let g(z) = zm�2kh(z) = zm�2kP1j=0 bjzj be a funtion suh that the seriesP1j=0 bjzjhas in C a radius of onvergene R0 > kU(T )k and let m; k be hosen as in Theorem 1. Thentr�(U(kT )� U0(kT ))g(U(T ))(U(kT ) � U0(kT ))� = Xzj2Res P (t) g(zj):5. ExampleIn this setion we onstrut a potential q(t; x) suh that Z(T ) = 0 whih implies that we haveno resonanes z 2 Res P n f0g . Assume that T = t1 + t0; t1 > 0; t0 > 0: We hoose a potentialq(t; x) satisfying the assumptions (H1); (H2) suh thatq(t; x) = 0 for 0 < t0 � t � T; 8x: (5.1)Moreover, the support of q(t; x) with respet to x is independent of t0; t1: We obtainU(T; 0) = U(t1 + t0; 0) = U(T; t0)U(t0; 0)= U0(t1)hU0(t0)� Z t00 U0(t0 � s)Q(s)U(s; 0)dsi:Here we have used the fat that (5.1) implies U(T; t0) = U0(T � t0) = U0(t1): We �x the projetorsP+; P�, independently of t1, so that P�Q(s) = Q(s). Next we hoose the time t1 large enough sothat P+U0(t1)P� = 0:This impliesZ(T ) = P+U(T; 0)P� = P+U(T; t0)U(t0; 0)P� = P+U0(t1)P�U(t0; 0)P� = 0;sine (I � P�)U(t0; 0)P� = 0: Referenes[1℄ A. Bahelot and V. Petkov, Existene des op�erateurs d'ondes pour les syst�emes hyperboliques ave un potentielp�eriodique en temps, Ann. Inst. H. Poinar�e (Phys. Th�eorique), 47 (1987), 383-428.[2℄ C. Bardos, J. C. Guillot, J. Ralston, La relation de Poisson pour l'�equation des ondes dans un ouvert non born�e.Appliation �a la th�eorie de di�usion, Commun. PDE, 7 (1982), 905-958.[3℄ A. Sa Barreto, Remarks on the distribution of resonanes in odd dimensional Eulidean sattering, AsymptotiAnalysis, 27 (2001), 161-170.[4℄ T. Christiansen, Some lower bounds on the number of resonanes in Eulidean sattering, Math. Res. Lett. 6(1999), 203{211.[5℄ J. Cooper and W. Strauss, Sattering of waves by periodially moving bodies, J. Funt. Anal. 47 (1982), 180-229.[6℄ J. Cooper, Parametri resonane in wave equations with time-periodi potentials, SIAM J. Math. Anal. 31 (2000),821-835.[7℄ H. P. MKean and P. van Moerbeke, The sperum of Hill's equation, Invent. Math. 30 (1975), 217-274.[8℄ P. D. Lax and R. S. Phillips, Sattering Theory, Aademi Press, New York, 1967..[9℄ I. C. Gohberg and I. C. Krein, Introdution �a la th�eorie des op�erateurs lin�eaires non-adjoints, Dunod, Paris,1971.[10℄ A. Martinez, Resonane free domains for non-analyti potentials, Annales H. Poinar�e, 4 (2002), 739-756.[11℄ R. Melrose, Sattering poles and the trae of the wave group, J. Funt. Anal. 45 (1982), 29-40.[12℄ R. Melrose, Polynomial bound on the number of sattering poles, J. Funt. Anal. 53 (1983), 287-303.[13℄ V. Petkov, Sattering Theory for Hyperboli Operators, North Holland, Amsterdam, 1989.[14℄ J. Sj�ostrand and M. Zworski, Complex saling and the distribution of sattering poles, J. Amer. Math. So. 4(1991), 7219-769.[15℄ J. Sj�ostrand and M. Zworski, Lower bounds on the number of the sattering poles, II, J. Funt. Anal. 123 (1995),135-172.
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