RESONANCES FOR NON-TRAPPING TIME-PERIODIC PERTURBATIONS

JEAN-FRANÇOIS BONY AND VESSELIN PETKOV

Abstract

For time-periodic perturbations of the wave equation in $\mathbb{R}_{t} \times \mathbb{R}_{x}^{n}$ given by a potential $q(t, x)$, we obtain an upper bound of the number of the resonances $\left\{z_{j} \in \mathbb{C}:\left|z_{j}\right| \geq \delta>0\right\}$. We establish for $m \in N$ large enough a trace formula relating the iterations of the monodromy operator $U(m T, 0), T>0$, and the sum $\sum_{j} z_{j}^{m}$ of all resonances counted with their multiplicities.

1. Introduction

The purpose of this paper is to study the resonances of the wave equation with time-dependent potentials. Consider the Cauchy problem

$$
\left\{\begin{array}{l}
\partial_{t}^{2} u-\Delta u+q(t, x) u=0,(t, x) \in \mathbb{R} \times \mathbb{R}^{n} \tag{1.1}\\
u(s, x)=f_{0}(x), u_{t}(s, x)=f_{1}(x), x \in \mathbb{R}^{n}
\end{array}\right.
$$

where the potential $q(t, x) \in C^{\infty}\left(\mathbb{R}_{t} \times \mathbb{R}_{x}^{n}\right), n \geq 3, n$ odd, satisfies the conditions:
$\left(H_{1}\right) \quad$ there exists $R>0$ such that $q(t, x)=0$ for $|x| \geq R, \forall t \in \mathbb{R}$,
$\left(H_{2}\right) \quad q(t+T, x)=q(t, x), \forall(t, x) \in \mathbb{R}^{n+1}$ with $T>0$.
The solution of (1.1) is given by the propagator

$$
U(t, s): H_{0} \ni\left(f_{0}, f_{1}\right) \longrightarrow U(t, s)\left(f_{0}, f_{1}\right)=\left(u(t, x), u_{t}(t, x)\right) \in H_{0},
$$

where H_{0} is the energy space $H_{0}=H_{D}\left(\mathbb{R}^{n}\right) \oplus L^{2}\left(\mathbb{R}^{n}\right)$ and $H_{D}\left(\mathbb{R}^{n}\right)$ is the closure of $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ with respect to the norm

$$
\|f\|_{H_{D}}=\left(\int\left|\nabla_{x} f\right|^{2} d x\right)^{1 / 2}
$$

We refer to Chapter V, [13], for the properties of $U(t, s)$ and throughout the paper we will use freely the notations of [13].

Let $U_{0}(t)=e^{i t G_{0}}$ be the unitary group in H_{0} related to the Cauchy problem (1.1) with $q=0$ and let P_{+}^{ρ} (resp. P_{-}^{ρ}) denote the orthogonal projection on the orthogonal complement of the spaces D_{+}^{ρ} (resp. D_{-}^{ρ}) introduced by Lax and Phillips (see [8], [13]) and defined by

$$
D_{ \pm}^{\rho}=\left\{f \in H_{0}: U_{0}(t) f=0 \text { for }|x| \leq \pm t+\rho, \pm t \geq 0\right\}, \rho \geq R .
$$

To define the resonances, we will use the operator

$$
Z^{\rho}(T)=P_{+}^{\rho} U(T, 0) P_{-}^{\rho} .
$$

For non-trapping perturbations the spectrum of $Z^{\rho}(T)$ is formed by eigenvalues with finite multiplicity and for $m \in N$ large enough the operator $Z^{\rho}(m T)$ is compact (see [1], [5], [13]). Moreover, the eigenvalues and their multiplicity are independent of $\rho \geq R$ (see [5] and [13]). Let P denote the time-dependent operator related to the problem (1.1). We define the resonances following
the approach of Lax-Phillips [8] for stationary perturbations and that of Cooper-Strauss [5] for time-periodic ones.
Definition 1. We say that $z \in \mathbb{C} \backslash\{0\}$ is a resonance for P if $z \in \sigma_{\mathrm{pp}} Z^{\rho}(T)$.
Notice that $e^{i \sigma T}$ is an eigenvalue of $Z^{\rho}(T)$ if and only if there exists an outgoing solution $u(t, x)$ of the problem (1.1) with non-vanishing initial data such that $e^{-i \sigma T} u(t, x)$ is periodic with period T. We refer to [13] for the definition of an outgoing solution (see also [5]) as well as for the proof of the above equivalence. The second definition presents a more precise description of the existence of outgoing modes with complex frequencies known in the physical literature.

We denote by Res P the set of resonances of P. In the following we write $Z(T), P_{ \pm}$instead of $Z^{\rho}(T), P_{ \pm}^{\rho}$ if the dependence on ρ is not important and we set

$$
U(T)=U(T, 0), Z_{0}(T)=P_{+} U_{0}(T) P_{-} .
$$

In Section 3 we obtain an upper bound of the number of the resonances

$$
N_{\delta}=\#\{z \in \operatorname{Res} P:|z| \geq \delta\} \leq C_{\epsilon} \delta^{-\epsilon}, 0<\epsilon \leq 1 / 2
$$

which generalizes the known results for time-independent perturbations (see [11], [21], [14], [19] and the papers cited there). To our best knowledge this is the first upper bound for N_{δ} for time-periodic perturbations. Next, using the bound of the resonances, we obtain a trace formula involving the resonances. More precisely, given a function $g(z)=z^{m} h(z)$, holomorphic in a disk containing the resonances, we establish a trace formula involving $g(U(T))$ and the series

$$
\sum_{z_{j} \in \operatorname{Res} P} g\left(z_{j}\right)
$$

in the spirit of trace formulae obtained for stationary perturbations in [2], [11], [15], [22], [16] (see Section 4). In particular, for $h(z)=1$ we have the following
Theorem 1. Let $\chi \in C_{0}^{\infty}\left(B\left(0, r_{1}\right) ;[0,1]\right)$ be such that $\chi=1$ for $|x| \leq R+T$ and let

$$
\begin{equation*}
\chi\left(U(T)-U_{0}(T)\right)=\left(U(T)-U_{0}(T)\right) \chi=U(T)-U_{0}(T) . \tag{1.2}
\end{equation*}
$$

Let the projectors $P_{ \pm}$and the number $k \in \mathbb{N}$ be fixed so that

$$
\begin{equation*}
P_{+} U_{0}(j T) P_{-}=0, j \geq k, P_{ \pm} \chi=\chi P_{ \pm}=\chi \tag{1.3}
\end{equation*}
$$

Then for $m \geq 2 k$ large enough we have

$$
\begin{equation*}
\operatorname{tr}\left(\left(U(k T)-U_{0}(k T)\right) U(m T-2 k T)\left(U(k T)-U_{0}(k T)\right)\right)=\sum_{z_{j} \in \operatorname{Res} P} z_{j}^{m} \tag{1.4}
\end{equation*}
$$

where the summation is over all resonances counted with their multiplicities.
Remarks. 1) The equality (1.2) follows from the finite speed of propagation and the representation

$$
U(T)=U_{0}(T)-\int_{0}^{T} U_{0}(T-s) Q(s) U(s, 0) d s
$$

where

$$
Q(s)=\left(\begin{array}{cc}
0 & 0 \\
q(s, x) & 0
\end{array}\right) .
$$

2) It is clear that we can choose $\psi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ with the property $\psi=1$ for $|x| \leq r_{1}+k T$ so that

$$
\left(U(k T)-U_{0}(k T)\right)(1-\psi)=0
$$

which is a consequence of

$$
\chi U_{0}(j T)(1-\psi)=0, j=0,1, \ldots, k-1
$$

(see equality (4.1)). Thus in the trace formula (1.4) on the right and on the left of $U(m T-2 k T)$ we may put the cut-off function $\Psi=\left(U(k T)-U_{0}(k T)\right) \psi$ acting as a multiplication operator.
Corollary 1. Under the assumptions of Theorem 1 the existence of a sequence $m_{\nu} \in \mathbb{N}, m_{\nu} \nearrow \infty$, such that

$$
\left|\operatorname{tr}\left(\left(U(k T)-U_{0}(k T)\right) U\left(m_{\nu} T\right)\left(U(k T)-U_{0}(k T)\right)\right)\right| \longrightarrow \infty \text { as } m_{\nu} \nearrow \infty
$$

is equivalent to

$$
\operatorname{Res} P \cap\{z \in \mathbb{C}:|z|>1\} \neq \emptyset
$$

The above result says that the existence of resonances $z_{j},\left|z_{j}\right|>1$, associated to solutions whose local energy blows up is connected to the behavior as $m \rightarrow \infty$ of the trace of a cut-off iteration $\Psi U(m T) \Psi$. It is clear that we can choose $b>0$ so that the projectors $P_{ \pm}^{b}$ satisfy $P_{ \pm}^{b} \Psi=\Psi P_{ \pm}^{b}=\Psi$. Then we obtain the property

$$
\operatorname{Res} P \cap\{z \in \mathbb{C}:|z|>1\} \neq \emptyset \Leftrightarrow \overline{\lim }_{m \rightarrow \infty}\left|\operatorname{tr}\left(Z^{b}(m T)\right)\right|=+\infty .
$$

The result of Corollary 1 seems quite natural for time-periodic perturbations. For example, the existence of intervals of instability for the Hill equation

$$
\begin{equation*}
y^{\prime \prime}(t)+p(t) y(t)+\lambda y(t)=0 \tag{1.5}
\end{equation*}
$$

with time-periodic $p(t)$ and $\lambda \in \mathbb{R}$ is determined by the trace

$$
\operatorname{tr} M(\lambda)=y_{1}(T, \lambda)+y_{2}^{\prime}(T, \lambda)
$$

of the Wronskian $M(\lambda)$ given by

$$
\binom{y(T)}{y^{\prime}(T)}=M(\lambda)\binom{y(0)}{y^{\prime}(0)} .
$$

Here $y_{1}(t, \lambda)$ (resp. $y_{2}(t, \lambda)$) is the solution of (1.5) with $y_{1}(0, \lambda)=1, y_{1}^{\prime}(0, \lambda)=0$ (resp. $y_{2}(0, \lambda)=$ $0, y_{2}^{\prime}(0, \lambda)=1$). The intervals of instability are described by the set $\{\lambda:|\operatorname{tr} M(\lambda)|>2\}$ (see for instance, [7]). Moreover, if λ_{0} lies in an interval of instability, there exists an eigenvalue $\mu\left(\lambda_{0}\right),\left|\mu\left(\lambda_{0}\right)\right|>1$, of $M\left(\lambda_{0}\right)$, and we have

$$
\lim _{m \rightarrow \infty}\left|\operatorname{tr} M^{m}\left(\lambda_{0}\right)\right|=\infty .
$$

This phenomenon appears for the so called parametric resonances [6] and if $\lambda=l \frac{\pi^{2}}{T^{2}}$ with suitable $l \in \mathbb{N}$ there exist unbounded solutions.

For stationary perturbations, given by a potential $V(x)$, we have always resonances and some lower bounds for the function counting the number of the resonances have been established (see [4], [3] and the references cited there). In contrast to the stationary case, for time-periodic perturbations, it is possible to construct a potential $q(t, x)$ such that the corresponding operator $P(t)$ has no resonances $z \neq 0$. In Section 5 we treat this problem.

2. Meromorphic continuation of the resolvent $(U(T)-z)^{-1}$

In the following \mathcal{H} will denote the space H_{0}. Given a resonance $z_{0} \in \operatorname{Res} P$, consider the projection

$$
\pi_{z_{0}, Z}=\frac{1}{2 \pi i} \int_{\gamma_{0}}(z-Z(T))^{-1} d z
$$

where $\gamma_{0}=\left\{z \in \mathbb{C}: z=z_{0}+\epsilon e^{i \varphi}, 0 \leq \varphi<2 \pi\right\}$ and $\epsilon>0$ is sufficiently small. The space $\pi_{z_{0}, Z}(\mathcal{H})$ has a finite dimension, independent on ρ, and we define the multiplicity of z_{0} as

$$
m\left(z_{0}\right)=\operatorname{rank} \pi_{z_{0}, Z}(\mathcal{H}) .
$$

Let $C_{0}>0$ be a constant such that $\|U(T)\| \leq C_{0}$ and let the cut-off function χ, the projectors $P_{ \pm}$ and the integer $k \in N$ be fixed as in Theorem 1.

Introduce a number $a_{0}>r_{1}+k T$ and let $\mathcal{H}_{R+a_{0}}$ be the space of the elements of \mathcal{H} which vanish for $|x| \geq R+a_{0}$. Next define the space $\mathcal{H}_{\text {loc }}$ as the space of functions u for which $\psi u \in \mathcal{H}$ for each $\psi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ equal to 1 in a neighborhood of $B\left(0, R+a_{0}\right)$. Then we have the following.

Proposition 1. The operator $(U(T)-z)^{-1}: \mathcal{H}_{R+a_{0}} \longrightarrow \mathcal{H}_{\text {loc }}$ admits a meromorphic continuation from $|z|>C_{0}$ to \mathbb{C}. The poles of this continuation coincide with the resonances Res P and the geometric multiplicities are the same. Moreover, for every $z_{0} \in \operatorname{Res} P$ we have

$$
\begin{equation*}
\pi_{z_{0}, Z}(\mathcal{H})=\pi_{z_{0}, Z}\left(\mathcal{H}_{R+a_{0}}\right)=\pi_{z_{0}, U}\left(\mathcal{H}_{R+a_{0}}\right), \tag{2.1}
\end{equation*}
$$

where

$$
\pi_{z_{0}, U}=\frac{1}{2 \pi i} \int_{\gamma_{0}}(z-U(T))^{-1} d z: \mathcal{H}_{R+a_{0}} \longrightarrow \mathcal{H}_{\mathrm{loc}}
$$

Remark. The above result is similar to Proposition 3.6 in [14], where the resonances for compactly supported perturbations are defined by the method of complex scaling.

Proof. For $|z|>C_{0}$ we have $\chi(Z(T)-z)^{-1} \chi=\chi(U(T)-z)^{-1} \chi$ and the poles of $\chi(U(T)-z)^{-1} \chi$ are included in the set Res P. To prove the inverse, notice that

$$
\begin{equation*}
W(T)=Z_{0}(T)-Z(T)=P_{+}\left(U_{0}(T)-U(T)\right) P_{-}=\chi\left(U_{0}(T)-U(T)\right) \chi=\chi V(T) \chi \tag{2.2}
\end{equation*}
$$

where $V(T)=U_{0}(T)-U(T)$. Next, we have

$$
\begin{array}{r}
(Z(T)-z)^{-1}=(Z(T)-z)^{-1}\left(Z_{0}(T)-Z(T)\right)\left(Z_{0}(T)-z\right)^{-1}+\left(Z_{0}(T)-z\right)^{-1} \\
=\left(Z_{0}(T)-z\right)^{-1}\left(Z_{0}(T)-Z(T)\right)(Z(T)-z)^{-1}\left(Z_{0}(T)-Z(T)\right)\left(Z_{0}(T)-z\right)^{-1} \\
+\left(Z_{0}(T)-z\right)^{-1}\left(Z_{0}(T)-Z(T)\right)\left(Z_{0}(T)-z\right)^{-1}+\left(Z_{0}(T)-z\right)^{-1} \\
=\left(Z_{0}(T)-z\right)^{-1} \chi V(T) \chi(U(T)-z)^{-1} \chi V(T) \chi\left(Z_{0}(T)-z\right)^{-1} \\
\quad+\left(Z_{0}(T)-z\right)^{-1} \chi V(T) \chi\left(Z_{0}(T)-z\right)^{-1}+\left(Z_{0}(T)-z\right)^{-1} . \tag{2.3}
\end{array}
$$

The resolvent $\left(Z_{0}(T)-z\right)^{-1}$ is holomorphic in $\mathbb{C} \backslash\{0\}$ and (2.3) implies that the eigenvalues of $Z(T)$ are inside the poles of $\chi(U(T)-z)^{-1} \chi$. Thus the resonances coincide with the poles of the meromorphic continuation of $\chi(U(T)-z)^{-1} \chi$ and it follows immediately that the geometric multiplicities are the same.

To establish (2.1), notice that according to (2.3), we have

$$
\pi_{z_{0}, Z}=\frac{1}{2 \pi i} \int_{\gamma_{0}}(z-Z(T))^{-1} \chi V(T) \chi\left(Z_{0}(T)-z\right)^{-1} d z
$$

Given $f \in \mathcal{H}$, we write

$$
\chi V(T) \chi\left(Z_{0}(T)-z\right)^{-1} f=\sum_{j=0}^{N_{0}}\left(z-z_{0}\right)^{j} \chi f_{j, 0}+\mathcal{O}_{f}\left(\left(z-z_{0}\right)^{N_{0}+1}\right), z \in \gamma_{0}
$$

and we obtain for $N_{0} \gg 1$

$$
\pi_{z_{0}, Z} f=\frac{1}{2 \pi i} \int_{\gamma_{0}}(z-Z(T))^{-1} \sum_{j=0}^{N_{0}}\left(z-z_{0}\right)^{j} \chi f_{j, 0} d z
$$

On the other hand, as in the paper of Sjöstrand and Zworski [14], we get

$$
\begin{gathered}
\left(z-z_{0}\right)^{j}-\left(Z(T)-z_{0}\right)^{j} \\
=(z-Z(T))\left[\left(z-z_{0}\right)^{j-1}+\left(z-z_{0}\right)^{j-2}(z-Z(T))+\cdots+(z-Z(T))^{j-1}\right]
\end{gathered}
$$

For $j \geq 1$ we replace $\left(z-z_{0}\right)^{j}$ by $\left(Z(T)-z_{0}\right)^{j}$ and we deduce

$$
\pi_{z_{0}, Z} f=\pi_{z_{0}, Z}\left(\sum_{j=0}^{N_{0}}\left(Z(T)-z_{0}\right)^{j}\left(\chi f_{j, 0}\right)\right)
$$

Next we exploit the equality

$$
\begin{gathered}
Z(j T)-Z_{0}(j T) \\
=-\sum_{\nu=0}^{j-1} Z_{0}(\nu T)\left(Z_{0}(T)-Z(T)\right) Z((j-\nu-1) T) .
\end{gathered}
$$

Observing that $Z_{0}(\nu T)=0$ for $\nu \geq k$, we deduce

$$
Z(j T) \chi=Z_{0}(j T) \chi-\sum_{\nu=0}^{k-1} Z_{0}(\nu T) \chi V(T) \chi Z((j-\nu-1) T) \chi
$$

This implies

$$
Z(j T) \chi=P_{+} \Phi, \forall j \in \mathbb{N},
$$

where $\Phi \in C_{0}^{\infty}\left(B\left(0, r_{1}+k T\right) ;[0,1]\right)$ is such that $(1-\Phi) U_{0}(j T) \chi=0$ for $0 \leq j \leq k-1$. Since

$$
\pi_{z_{0}, Z} P_{+} \Phi=P_{+} \pi_{z_{0}, Z} \Phi=\pi_{z_{0}, Z} \Phi
$$

we conclude that

$$
\pi_{z_{0}, Z}(\mathcal{H})=\pi_{z_{0}, Z}(\Phi \mathcal{H}) \subset \pi_{z_{0}, Z}\left(\mathcal{H}_{R+a_{0}}\right)
$$

Finally, if $P_{-}^{\rho} \Phi=\Phi$ we have

$$
\pi_{z_{0}, Z}(\mathcal{H})=\pi_{z_{0}, U}(\Phi \mathcal{H})+\frac{1}{2 \pi i}\left(1-P_{+}^{\rho}\right) \int_{\gamma_{0}}(z-U(T))^{-1} \Phi d z: \mathcal{H}_{R+a_{0}} \longrightarrow \mathcal{H}_{\mathrm{loc}}
$$

The term involving $\left(1-P_{+}^{\rho}\right)$ is independent on the choice of P_{+}^{ρ}, provided $P_{-}^{\rho} \Phi=\Phi$, and it vanishes on every compact set. This completes the proof.

3. UPPER BOUND OF THE NUMBER OF RESONANCES.

In this section, we give a upper bound of the number of resonances lying in the disk

$$
\{z \in \mathbb{C}:|z| \geq \delta\}, \delta>0
$$

We will prove the following.
Theorem 2. Suppose the assumptions $\left(H_{1}\right),\left(H_{2}\right)$ fulfilled. Then the number of the resonances $z \in \operatorname{Res} P(t),|z|>1$ is finite and for each $0<\varepsilon \leq 1 / 2$ there exists a constant $C_{\epsilon}>0$ such that for every $0<\delta \leq 1$ we have

$$
\begin{equation*}
\#\{z \in \operatorname{Res} P:|z| \geq \delta\} \leq C_{\epsilon} \delta^{-\epsilon} \tag{3.1}
\end{equation*}
$$

Remarks. 1. For stationary potentials this result has been obtained by Melrose [11] (see the estimate (44)).
2. The above bound is natural for independent on time perturbations. Indeed, in this case, Melrose [11], Zworski [21], Sjöstrand and Zworski [14], Vodev [19], have proved that

$$
\begin{equation*}
\# \operatorname{Res} P \cap\{\sigma \in \mathbb{C}: \quad|\sigma| \leq r\} \leq C r^{n} . \tag{3.2}
\end{equation*}
$$

Moreover, if P is non-trapping, Vainberg [17] in the classical case and Martinez [10] in the semiclassical framework have showed that for each $N \in \mathbb{N}$ we have

$$
\begin{equation*}
\# \operatorname{Res} P \cap\{\sigma \in \mathbb{C}: \quad|\operatorname{Im} \sigma| \leq N \ln (|\sigma|)\}<\infty . \tag{3.3}
\end{equation*}
$$

This implies
\#Res $P \cap\{\sigma \in \mathbb{C}:|\operatorname{Im} \sigma| \leq r\}$

$$
\begin{align*}
& \leq \# \operatorname{Res} P \cap\{\sigma \in \mathbb{C}: \quad N \ln (|\sigma|) \leq|\operatorname{Im} \sigma| \leq r\}+C_{N} \\
& \leq \# \operatorname{Res} P \cap\left\{\sigma \in \mathbb{C}: \quad|\sigma| \leq e^{r / N}\right\}+C_{N} \leq C_{N}^{\prime} e^{r n / N} \tag{3.4}
\end{align*}
$$

Now, fixing a $T>0$ and setting $z=e^{i \sigma T}$, we obtain the estimate (3.1) with $\epsilon=\frac{n}{T N}$.
Proof. We will exploit the method developed by Melrose [11], [12] for perturbations independent on time (see also Zworski [21] and Vodev [19]). To prove the theorem, it is sufficient to show that there exists $N \in \mathbb{N}$ such that for each $\varepsilon>0$, the eigenvalues of the operator $Z(N T)$ satisfy for all $0<\delta \leq 1$ the estimate

$$
\begin{equation*}
\#\left\{z \in \mathbb{C}: z \in \sigma_{\mathrm{pp}}(Z(N T)),|z| \geq \delta\right\} \leq C_{\epsilon} \delta^{-\varepsilon} \tag{3.5}
\end{equation*}
$$

Given a compact operator S, we denote by $\mu_{j}(S), j=1,2, \ldots$, the characteristic values of S which form a non-increasing sequence of the eigenvalues of $\left(S^{*} S\right)^{1 / 2}$ counted with their multiplicity. Let $\chi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ and $k \in \mathbb{N}$ be fixed as in Theorem 1 so that $Z_{0}(k T)=0$. For $M \in \mathbb{N}$, we have

$$
\begin{align*}
Z((2 k+M) T) & =Z(k T) Z(M T) Z(k T) \\
& =\left(Z(k T)-Z_{0}(k T)\right) Z(M T)\left(Z(k T)-Z_{0}(k T)\right) \\
& =P_{+}\left(U(k T)-U_{0}(k T)\right) U(M T)\left(U(k T)-U_{0}(k T)\right) P_{-} \\
& =P_{+}\left(U(k T)-U_{0}(k T)\right) \chi U(M T) \chi\left(U(k T)-U_{0}(k T)\right) P_{-} . \tag{3.6}
\end{align*}
$$

Since the perturbation of $P(t)$ is given by a potential, the results for the propagation of singularities imply that the operator $\chi U(M T) \chi$ is regularizing for $M \in \mathbb{N}$ large enough (see [5], [1], [13], [18]). Let $\Omega \subset \subset \mathbb{R}^{2 n}$ be a open hypercube, with $\operatorname{supp} \chi \subset \Omega$, and let Δ_{Ω} be the Laplacian in Ω
with Dirichlet boundary condition. It is well known (see for instance, [21], [19]) that for all $m \in \mathbb{N}$, there exists $C_{m}>0$ such that

$$
\mu_{j}\left(\left(I-\Delta_{\Omega}\right)^{-m}\right) \leq C_{m} j^{-2 m / n}, \forall j \in \mathbb{N} .
$$

Consequently, using (3.6) and the inequalities

$$
\begin{aligned}
& \mu_{j}(A B) \leq \mu_{j}(A)\|B\|, \\
& \mu_{j}(A B) \leq \mu_{j}(B)\|A\|,
\end{aligned}
$$

we get, for $m \in \mathbb{N}$,

$$
\begin{align*}
\mu_{j}(Z((2 k+M) T)) & \leq C \mu_{j}(\chi U(M T) \chi) \\
& \leq C \mu_{j}\left(\left(I-\Delta_{\Omega}\right)^{-m}\left(I-\Delta_{\Omega}\right)^{m} \chi U(M T) \chi\right) \\
& \leq C \mu_{j}\left(\left(I-\Delta_{\Omega}\right)^{-m}\right)\left\|\left(I-\Delta_{\Omega}\right)^{m} \chi U(M T) \chi\right\| \\
& \leq C_{m} j^{-2 m / n} \tag{3.7}
\end{align*}
$$

with a new constant $C_{m}>0$.
We choose $N=2 k+M, 2 m>n$ and we order the eigenvalues

$$
\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}, \ldots
$$

of $Z(N T)$ counted with their multiplicities by decreasing modulus. Then

$$
\left|\lambda_{p}\right|^{p} \leq \prod_{j=1}^{p}\left|\lambda_{j}\right| \leq \prod_{j=1}^{p} \mu_{j}(Z(N T)) \leq\left(C_{k}\right)^{p}(p!)^{-k},
$$

where $k \in \mathbb{N}$ can be taken as large as we wish. Thus with a constant C_{k}^{\prime}, we get

$$
\left|\lambda_{p}\right| \leq C_{k}(p!)^{-\frac{k}{p}} \leq C_{k}^{\prime} p^{-k} .
$$

Now for the eigenvalues $\lambda_{1}, \ldots, \lambda_{p}$ with modulus greater than $\delta>0$ we deduce

$$
p \leq C_{k} \delta^{-\frac{1}{k}}
$$

and taking $k=\frac{1}{\epsilon}$, we complete the proof.

4. Trace formula

In this section we prove Theorem 1. Recall that $\chi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, the projectors $P_{ \pm}$and $k \in \mathbb{N}$ are fixed so that (1.2) and (1.3) hold. First notice that

$$
\begin{align*}
U(k T) & -U_{0}(k T)=\sum_{j=0}^{k-1} U(j T)\left(U(T)-U_{0}(T)\right) U_{0}((k-j-1) T) \tag{4.1}\\
& =P_{-}\left(U(k T)-U_{0}(k T)\right)=\left(U(k T)-U_{0}(k T)\right) P_{+} .
\end{align*}
$$

The second and the third equalities follow from the fact that

$$
\left(I-P_{-}\right) U(j T) \chi=\chi U_{0}(j T)\left(I-P_{+}\right)=0, j=0, \ldots, k-1 .
$$

The operator

$$
P_{+} U(m T-2 k T) P_{-}
$$

is trace class for m sufficiently large and the cyclicity of the trace implies

$$
\begin{aligned}
& \operatorname{tr}\left(\left(U(k T)-U_{0}(k T)\right) U(m T-2 k T)\left(U(k T)-U_{0}(k T)\right)\right) \\
& \quad=\operatorname{tr}\left(P_{-}\left(U(k T)-U_{0}(k T)\right) P_{+} U(m T-2 k T) P_{-}\left(U(k T)-U_{0}(k T)\right) P_{+}\right) \\
& \quad=\operatorname{tr}\left(P_{+}\left(U(k T)-U_{0}(k T)\right) P_{-} P_{+} U(m T-2 k T) P_{-} P_{+}\left(U(k T)-U_{0}(k T)\right) P_{-}\right) \\
& \quad=\operatorname{tr}\left(P_{+} U(k T) P_{-} P_{+} U(m T-2 k T) P_{-} P_{+}\left(U(k T) P_{-}\right)\right. \\
& =\operatorname{tr}\left(P_{+} U(m T) P_{-}\right)=\operatorname{tr}(Z(m T)) .
\end{aligned}
$$

Applying Lidsii theorem for the trace of $Z(m T)$, we complete the proof since by Theorem 2 we have

$$
\left|\sum_{j} z_{j}^{m}\right| \leq \sum_{p=1}^{\infty} \sum_{\frac{C}{p+1}<\left|z_{j}\right| \leq \frac{C}{p}}\left|z_{j}^{m}\right| \leq C_{\epsilon} \sum_{p=1}^{\infty}\left(\frac{C}{p}\right)^{m-\epsilon} \leq C_{m}, 0<\epsilon \leq 1 / 2, m \geq 2 .
$$

It is clear that Corollary 1 follows from the following
Lemma 1. Let

$$
A_{m}=\sum_{\left|z_{j}\right| \leq 1} z_{j}^{m}, B_{m}=\sum_{\left|z_{j}\right|>1} z_{j}^{m}, m \in \mathbb{N} .
$$

Then

$$
\left|A_{m}\right| \leq C_{0}, \forall m \geq 1+\epsilon_{0}>1 .
$$

Moreover, if $\{z \in \operatorname{Res} P(t):|z|>1\} \neq \emptyset$, then there exists a sequence $m_{\nu} \nearrow \infty, m_{\nu} \in \mathbb{N}$, such that

$$
\lim _{m_{\nu} \rightarrow \infty}\left|B_{m_{\nu}}\right|=\infty .
$$

Proof. Let $m-\epsilon>1, \epsilon>0$. Using the estimate

$$
\#\left\{z_{j} \in \operatorname{Res} P(t):\left|z_{j}\right| \geq \delta\right\} \leq C_{\epsilon} \delta^{-\epsilon},
$$

we obtain

$$
\left|A_{m}\right| \leq \sum_{k=1}^{\infty} \sum_{\frac{1}{k+1}<\left|z_{j}\right| \leq \frac{1}{k}}\left|z_{j}\right|^{m} \leq C_{\epsilon} \sum_{k=1}^{\infty}\left(\frac{1}{k}\right)^{m}\left(\frac{1}{k+1}\right)^{-\epsilon} \leq C_{\epsilon}^{\prime}
$$

To deal with the sum B_{m}, introduce

$$
\mu=\max \left\{\left|z_{j}\right|: \quad z_{j} \in \operatorname{Res} P(t),\left|z_{j}\right|>1\right\} .
$$

Since we have a finite number of resonances z_{j} with $\left|z_{j}\right|>1$, let

$$
z_{j}=\mu e^{i \varphi_{j}}, j=1, \ldots, p, \varphi_{\nu} \neq \varphi_{j}(\bmod 2 \pi), \nu \neq j
$$

It is sufficient to show that for a suitable sequence $m_{\nu} \nearrow \infty$ we have

$$
\lim _{m_{\nu} \rightarrow \infty}\left|\sum_{j=1}^{p} c_{j} e^{i m_{\nu} \varphi_{j}}\right| \geq \epsilon_{0}>0
$$

where $c_{j} \in \mathbb{N}$ is the multiplicity of the resonance $z_{j}, j=1, \ldots, p$.

Put $a_{j}=e^{i \varphi_{j}}, j=1, \ldots, p$ and assume that

$$
\lim _{m \rightarrow \infty} \sum_{j=0}^{p} c_{j} a_{j}^{m}=0
$$

for some integers $c_{j} \in \mathbb{N}, j=1, \ldots, p$. Obviously,

$$
\sum_{j=0}^{p} a_{j}^{q} c_{j} a_{j}^{m} \longrightarrow_{m \rightarrow \infty} 0 \text { for } q=0,1, \ldots p-1
$$

This implies

$$
\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
a_{1} & a_{2} & \ldots & a_{p} \\
\ldots \ldots & \ldots \ldots & \ldots & \\
a_{1}^{p-1} & a_{2}^{p-2} & \ldots & a_{p}^{p-1}
\end{array}\right)\left(\begin{array}{c}
c_{1} a_{1}^{m} \\
c_{2} a_{2}^{m} \\
\ldots \\
c_{p} a_{p}^{m}
\end{array}\right) \longrightarrow 0
$$

and we deduce that $\left(c_{1} a_{1}^{m}, \ldots, c_{p} a_{p}^{m}\right) \longrightarrow 0$ which is a contradiction. Thus there exists a sequence $m_{\nu} \nearrow \infty$ such that

$$
\sum_{j} c_{j} a_{j}^{m_{\nu}} \longrightarrow \beta \neq 0 \text { as } m_{\nu} \rightarrow \infty
$$

and this completes the proof.
Finally, we may establish a trace formula for the operator

$$
g(U(T))=U((m-2 k) T) \sum_{j=0}^{\infty} b_{j} U(j T),
$$

where the series $h(z)=\sum_{j=0}^{\infty} b_{j} z^{j}$ has a radius of convergence $R_{0}>\|U(T)\|$ and $m \in \mathbb{N}$ is chosen so that $Z((m-2 k) T)$ is a trace class. First notice that

$$
\left\|Z((m-2 k) T) \sum_{j=p}^{p+q} b_{j} Z(j T)\right\|_{\text {tr }} \leq\|Z((m-2 k) T)\|_{\text {tr }} \sum_{j=p}^{p+q}\left|b_{j}\right|\|Z(T)\|^{j} \leq \epsilon
$$

for $p, q \geq N(\epsilon)$. Since the space of trace class operators is complete in trace norm, we deduce that $g(Z(T))$ is trace class and this yields

$$
\operatorname{tr}\left(Z((m-2 k) T) \sum_{j=0}^{N} b_{j} Z(j T)\right) \longrightarrow \operatorname{tr}(g(Z(T)) \text { as } N \rightarrow \infty
$$

Next, the operator

$$
\left(U(k T)-U_{0}(k T)\right) U(m T-2 k T) \sum_{j=0}^{N} b_{j} U(j T)\left(U(k T)-U_{0}(k T)\right)
$$

converges in the operator norm to $\left(U(k T)-U_{0}(k T)\right) g(U(T))\left(U(k T)-U_{0}(k T)\right)$ and

$$
\operatorname{tr}\left(\left(U(k T)-U_{0}(k T)\right) U(m T-2 k T) \sum_{j=0}^{N} b_{j} U(j T)\left(U(k T)-U_{0}(k T)\right)\right) \longrightarrow \operatorname{tr} g(Z(T)) .
$$

Applying the result of Gohberg and Krein (see Chapter 6 in [9]), we obtain the following

Theorem 3. Let $g(z)=z^{m-2 k} h(z)=z^{m-2 k} \sum_{j=0}^{\infty} b_{j} z^{j}$ be a function such that the series $\sum_{j=0}^{\infty} b_{j} z^{j}$ has in \mathbb{C} a radius of convergence $R_{0}>\|U(T)\|$ and let m, k be chosen as in Theorem 1. Then

$$
\operatorname{tr}\left(\left(U(k T)-U_{0}(k T)\right) g(U(T))\left(U(k T)-U_{0}(k T)\right)\right)=\sum_{z_{j} \in \operatorname{Res} P(t)} g\left(z_{j}\right) .
$$

5. Example

In this section we construct a potential $q(t, x)$ such that $Z(T)=0$ which implies that we have no resonances $z \in \operatorname{Res} P \backslash\{0\}$. Assume that $T=t_{1}+t_{0}, t_{1}>0, t_{0}>0$. We choose a potential $q(t, x)$ satisfying the assumptions $\left(H_{1}\right),\left(H_{2}\right)$ such that

$$
\begin{equation*}
q(t, x)=0 \text { for } 0<t_{0} \leq t \leq T, \forall x . \tag{5.1}
\end{equation*}
$$

Moreover, the support of $q(t, x)$ with respect to x is independent of t_{0}, t_{1}. We obtain

$$
\begin{gathered}
U(T, 0)=U\left(t_{1}+t_{0}, 0\right)=U\left(T, t_{0}\right) U\left(t_{0}, 0\right) \\
=U_{0}\left(t_{1}\right)\left[U_{0}\left(t_{0}\right)-\int_{0}^{t_{0}} U_{0}\left(t_{0}-s\right) Q(s) U(s, 0) d s\right]
\end{gathered}
$$

Here we have used the fact that (5.1) implies $U\left(T, t_{0}\right)=U_{0}\left(T-t_{0}\right)=U_{0}\left(t_{1}\right)$. We fix the projectors P_{+}, P_{-}, independently of t_{1}, so that $P_{ \pm} Q(s)=Q(s)$. Next we choose the time t_{1} large enough so that

$$
P_{+} U_{0}\left(t_{1}\right) P_{-}=0 .
$$

This implies

$$
Z(T)=P_{+} U(T, 0) P_{-}=P_{+} U\left(T, t_{0}\right) U\left(t_{0}, 0\right) P_{-}=P_{+} U_{0}\left(t_{1}\right) P_{-} U\left(t_{0}, 0\right) P_{-}=0,
$$

since $\left(I-P_{-}\right) U\left(t_{0}, 0\right) P_{-}=0$.

References

[1] A. Bachelot and V. Petkov, Existence des opérateurs d'ondes pour les systèmes hyperboliques avec un potentiel périodique en temps, Ann. Inst. H. Poincaré (Phys. Théorique), 47 (1987), 383-428.
[2] C. Bardos, J. C. Guillot, J. Ralston, La relation de Poisson pour l'équation des ondes dans un ouvert non borné. Application à la théorie de diffusion, Commun. PDE, 7 (1982), 905-958.
[3] A. Sa Barreto, Remarks on the distribution of resonances in odd dimensional Euclidean scattering, Asymptotic Analysis, 27 (2001), 161-170.
[4] T. Christiansen, Some lower bounds on the number of resonances in Euclidean scattering, Math. Res. Lett. 6 (1999), 203-211.
[5] J. Cooper and W. Strauss, Scattering of waves by periodically moving bodies, J. Funct. Anal. 47 (1982), 180-229.
[6] J. Cooper, Parametric resonance in wave equations with time-periodic potentials, SIAM J. Math. Anal. 31 (2000), 821-835.
[7] H. P. McKean and P. van Moerbeke, The specrum of Hill's equation, Invent. Math. 30 (1975), 217-274.
[8] P. D. Lax and R. S. Phillips, Scattering Theory, Academic Press, New York, 1967..
[9] I. C. Gohberg and I. C. Krein, Introduction à la théorie des opérateurs linéaires non-adjoints, Dunod, Paris, 1971.
[10] A. Martinez, Resonance free domains for non-analytic potentials, Annales H. Poincaré, 4 (2002), 739-756.
[11] R. Melrose, Scattering poles and the trace of the wave group, J. Funct. Anal. 45 (1982), 29-40.
[12] R. Melrose, Polynomial bound on the number of scattering poles, J. Funct. Anal. 53 (1983), 287-303.
[13] V. Petkov, Scattering Theory for Hyperbolic Operators, North Holland, Amsterdam, 1989.
[14] J. Sjöstrand and M. Zworski, Complex scaling and the distribution of scattering poles, J. Amer. Math. Soc. 4 (1991), 7219-769.
[15] J. Sjöstrand and M. Zworski, Lower bounds on the number of the scattering poles, II, J. Funct. Anal. 123 (1995), 135-172.
[16] J. Sjöstrand, A trace formula and review of some estimates for resonances, in Microlocal analysis and spectral theory (Lucca, 1996), 377-437, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 490, Dordrecht, Kluwer Acad. Publ.1997.
[17] B. Vainberg, Asymptotic Methods in Equations of Mathematical Physics, Gordon and Breach, New York, 1988.
[18] B. Vainberg, On the local energy of solutions of exterior mixed problems that are periodic with respet to t, Trans. Moscow Math. Soc. (1993), 191-.
[19] G. Vodev, Sharp bounds on the number of scattering poles for perturbations of the Laplacian, Commun. Math. Phys. 146 (1992), 205-216.
[20] G. Vodev, Sharp bounds on the number of scattering poles in even-dimensional spaces, Duke Math. J. 74 (1994), 1-17.
[21] M. Zworski, Sharp polynomial bounds on the number of scattering poles, Duke Math. J. 59 (1989), 311-323.
[22] M. Zworski, Poisson formulae for resonances, Séminaire EDP, Ecole Polytechnique, Exposé XIII, 1996-1997.
Département de Mathématiques Appliquées, Université Bordeaux I, 351, Cours de la Libération, 33405 Talence, France

E-mail address: bony@@math.u-bordeaux.fr, petkov@@math.u-bordeaux.fr

