
SPECTRAL SHIFT FUNCTION AND RESONANCES FOR NONSEMI-BOUNDED AND STARK HAMILTONIANSMOUEZ DIMASSI AND VESSELIN PETKOVAbstrat. We generalize for non semi-bounded Shr�odinger type operators the result of [8℄ provinga representation of the derivative of the spetral shift funtion �(�; h) related to the semi-lassialresonanes. For Stark Hamiltonians P2(h) = �h2� + �x1 + V (x); � > 0; we obtain the sameresult as well as a loal trae formula. We establish an upper bound O(h�n) for the number ofthe resonanes in a ompat domain 
 � C� and we obtain a Weyl-type asymptotis of �(�; h) forV 2 C1(Rn) with suppx1V � [R; +1[: Finally, we establish the existene of resonanes in everyh-independent omplex neighborhood of E0 if E0 is an analyti singularity of a suitable measurerelated to V .R�esum�e. On g�en�eralise pour des op�erateurs de Shr�odinger non semi-born�es le r�esultat de [8℄en obtenant une repr�esentation de la d�eriv�ee de la fontion de d�ealage spetral �(�; h) assoi�ee auxr�esonanes semi-lassiques. Pour des hamiltoniens de Stark P2(h) = �h2�+�x1+V (x); � > 0; onobtient le même r�esultat et aussi une formule de trae loale. On d�emontre une borne sup�erieureO(h�n) pour le nombre de r�esonanes dans un domaine ompat 
 � C� et on �etablit une asymp-totique de Weyl pour �(�; h) dans le as quand V 2 C1(Rn) a la propri�et�e suppx1V � [R; +1[:Finalement, on d�emontre qu'il existe des r�esonanes dans haque h-ind�ependant voisinage omplexede E0 si E0 est une singularit�e analytique d'une mesure onvenable assoi�ee �a V .MSC: Primary 35P25; seondary 35B34Key words: resonanes, trae formulae, Stark hamiltonian1. IntrodutionThe main problem examined in this work is the relation between the spetral shift funtion�(�; h) and the resonanes for the semilassial Stark hamiltonianP2(h) = �h2�+ �x1 + V (x);where V (x) 2 C1(Rn) is a real-valued potential dereasing as jxj �! +1, h > 0 and � > 0: Thespetrum of P2(h) is absolutely ontinuous and oinides with R (see [1℄, [15℄). Without loss ofgenerality, throughout the paper we suppose that � = 1 and we onsider P2(h) as a perturbationof the operator P1(h) = �h2�+ x1:The ase h = 1 has been studied by many authors (see [1℄, [14℄, [15℄, [17℄, [41℄, [31℄, [32℄,[34℄, [42℄) and the sattering theory has been developed (see e.g. [1℄, [41℄, [31℄). The problem ofresonanes has been examined mainly for � & 0 and only the existene of resonanes lose to a neg-ative eigenvalue E0 of the operator ��+V (x) has been treated (see for instane [33℄, [34℄, [42℄, [22℄).Reently a substantial progress has been given in the analysis of the Shr�odinger operator withlong-range perturbations going to 0 as jxj �! +1 and the works around the trae formulae gener-ated many results on the upper and lower bounds of resonanes, the Breit-Wigner approximation1



2 M. DIMASSI AND V. PETKOVand the Weyl-type asymptotis of the spetral shift funtion (see [39℄, [36℄, [37℄, [26℄, [27℄, [2℄, [3℄,[8℄, [9℄ and the referenes given there). The approah developed in these works annot be applieddiretly to Stark hamiltonians like P2(h), sine the symbol j�j2 + x1 + V (x) does not onverge toj�j2 as jxj ! +1 and the operator P1(h) is not ellipti. The spetral shift funtion (SSF) �(�)assoiated to P1(1) and P2(1) has been studied by Robert and Wang [32℄ for short-range pertur-bations V (x) and by Korotaev and Pushinitski [23℄ for perturbations V (x) with ompat support.Nevertheless, there are no works treating the link between the derivative of SSF and the resonanesvia a loal trae formula in the spirit of Sj�ostrand [36℄ (see also [27℄, [8℄). Moreover, there are noresults on the upper bounds of the (semilassial) resonanes z lying in a ompat domain 
 � Cas well as the works treating the lower bounds of the number of the resonanes produed by ananalyti singularity.In this paper we deal with all these problems studying trapping perturbations of P1(h) in thesemilassial setup without the assumption � & 0. We are inspired by the ideas and tools in [36℄,[37℄, [26℄, [27℄, [8℄. In Setion 3 we generalize in the semilassial \blak box" setup, introdued in[36℄, the result of [8℄ for non semi-bounded operators without any assumption on the spetrum ofthe operators Lj(h) . The novelty in our proof is Lemma 1 based on a omplex analysis argumentrelated to the behavior of the funtions ��(z) in C � . The rest of the proof follows with somemodi�ations that of Theorem 1 in [8℄.In Setion 4 we introdue the SSF �(�; h) for Stark hamiltonians. Our purpose is to obtaina representation of �0(�; h) having the form involved in Theorem 1. The resonanes of P2(h) areintrodued in Setion 5 by the method of analyti distortion applied in the lassial ase (h = 1)as � & 0 in [42℄, [22℄ (see also [14℄, [17℄, [33℄, [34℄). We study the resonanes in a domain
 = 
�;� � fz 2 C : Re z � R� 3�; Im z � �(1 � e��) Im �g;where Im � < 0; 0 < � < 1; � > 0 and R are given by the analyti distortion. The resonanes aredetermined as the eigenvalues of the distorted operator P2;�(h) in 
. Following the approah of[37℄, we onstrut an operator bP2;�(h) so thatP2;�(h)� bP2;�(h) = K has rankO(h�n)and k( bP2;�(h)� z)�1k = O(1), uniformly for z 2 
. This makes it possible to apply the argumentof Theorem 1 and to exploit the estimates of det�I +K(z � bP2)�1� given in [37℄. The main resultonerning the Stark operator P2(h) is Theorem 2 (Setion 6). Moreover, we establish an upperbound #fz 2 Res P2(h); z 2 
g � C(
)h�nwhih seems to be the �rst result of this type for Stark hamiltonians (Proposition 2). In Setion 7we obtain a loal trae formula in the spirit of Sj�ostrand [37℄ (see also [27℄, [8℄). We apply this traeformula to show the existene of O(h�n) resonanes (Theorem 7) in a h-independent neighborhoodof an analyti singularity of suitable measure related to V (see [35℄, [11℄ for similar results) . Forthis purpose we need an asymptoti expansion of the traetr[f(P2(h))� f(P1(h))℄ � 1Xj=0 ajhj�n; h& 0 (1.1)for f 2 C10 (R).



SPECTRAL SHIFT FUNCTION AND RESONANCES 3In the ase, where the operators Pi(h), i = 1; 2 are ellipti, the asymptotis like (1.1) arewell known (see [10℄, [30℄, [20℄ and the referenes ited there). On the other hand, the approahdeveloped in [10℄, [30℄ and [20℄ annot be applied diretly to the ase of non-ellipti operators. Forpotentials V satisfying supp x1 V � [R;+1[; (1.2)our strategy in Setion 7 will be to show thattr�hf(Pj(h))i2j=1� = �trh(�x1V )f( ~P2(h))i +O(h1); (1.3)where ~P2(h) is an ellipti operator. This makes it possible to apply the results for ellipti operators.In Setion 7, we onsider also the ase where f depends on the semi-lassial parameter h and weobtain an asymptoti expansion (Theorem 5). To our best knowledge, suh omplete asymptotisin powers of h for the Stark hamiltonians are new. Combining the representation of �0(�; h) inTheorem 2 with Theorem 5, we are able for the lass of potentials satisfying (1.2) to establish aWeyl-type formula for the spetral shift funtion with remainder O(h1�n): For this purpose weexploit the sum of harmoni measures related to the Breit-Wigner fators following the approahin [8℄, [12℄. We notie that all previous results on Weyl-type asymptotis for Stark hamiltonianshave been obtained in the lassial ase (h = 1) (see [32℄, [23℄). We will disuss the ase of shortrange potentials elsewhere.Aknowledgments. The authors are grateful to V. Bruneau and X. P. Wang for many helpfuldisussions. We are also grateful to J. F. Bony for pointing out some mistakes in a previous versionof the paper. 2. PreliminariesWe start with the abstrat "blak box" sattering assumptions introdued in [39℄, [36℄ and [37℄.The operators Lj(h) = Lj ; j = 1; 2; 0 < h � h0; are de�ned in domains Dj � Hj of a omplexHilbert spae Hj with an orthogonal deompositionHj = HR0;j � L2(Rn n B(0; R0)); B(0; R0) = fx 2 Rn : jxj � R0g; R0 > 0; n � 2:Below h > 0 is a small parameter and we suppose the assumptions satis�ed for j = 1; 2:We supposethat Dj satis�es 1lRnnB(0;R0)Dj = H2(Rn n B(0; R0)); (2.1)uniformly with respet to h in the sense of [36℄. More preisely, equip H2(Rn n B(0; R0)) with thenorm k < hD >2 ukL2 ; < hD >2= 1 + (hD)2, and equip Dj with the norm k(Lj + i)ukHj : Thenwe require that 1lRnnB(0;R0) : Dj �! H2(Rn nB(0; R0)) is uniformly bounded with respet to h andthis map has a uniformly bounded right inverse.Assume that 1lB(0;R0)(Lj + i)�1is ompat (2.2)and (Lju)jRnnB(0;R0) = Qj�ujRnnB(0;R0)�; (2.3)



4 M. DIMASSI AND V. PETKOVwhere Qj is a formally self-adjoint di�erential operatorQju = Xj�j�2aj;�(x;h)(hDx)�u; (2.4)with aj;�(x;h) = aj;�(x) independent of h for j�j = 2 and aj;� 2 C1b (Rn) uniformly bounded withrespet to h.We assume also the following properties:There exists C > 0 suh thatlj;0(x; �) = Xj�j=2aj;�(x)�� � Cj�j2; (2.5)Xj�j�2aj;�(x;h)�� �! j�j2; jxj �! 1 (2.6)uniformly with respet to h.There exists n > n suh that we have���a1;�(x;h) � a2;�(x;h)���� O(1)hxi�n (2.7)uniformly with respet to h. This assumption will guarantee that for every f 2 C10 (R) the operatorf(L1)� f(L2) is \trae lass near in�nity".There exist �0 2℄0; �2 [; � > 0 and R1 > R0 so that the oeÆients aj;�(x;h) of Qj an beextended holomorphially in x to� = fr!; ! 2 C n ; dist (!; Sn�1) < �; r 2 C ; r 2 ei[0;�0℄℄R1;+1[g (2.8)and (2.6), (2.7) extend to �.Let R > R0; T ~R = (R= ~RZ)n; ~R > 2R: SetH#j = HR0;j � L2(T ~R n B(0; R0))and onsider a di�erential operator Q#j = Xj�j�2a#j;�(x;h)(hD)�on T ~R with a#j;�(x;h) = aj;�(x;h) for jxj � R satisfying (2.3), (2.4), (2.5) with Rn replaed by T ~R.Consider a self-adjoint operator L#j : H#j �! H#j de�ned byL#j u = Lj'u+Q#j (1� ')u; u 2 D#j ;with domain D#j = fu 2 H#j : 'u 2 Dj ; (1� ')u 2 H2g;where ' 2 C10 (B(0; R); [0; 1℄) is equal to 1 near B(0; R0):Denote by N(L#j ; [��; �℄) the number of eigenvalues of L#j in the interval [��; �℄. Then weassume that N(L#j ; [��; �℄) = O(� �h2�n#j =2); n#j � n; � � 1: (2.9)



SPECTRAL SHIFT FUNCTION AND RESONANCES 5Given f 2 C10 (R), independent on h, and � 2 C10 (Rn) equal to 1 on B(0; R0), we an de�netrbb[f(Lj)℄2j=1, as in [36℄, [37℄, by the equalitytrbb�f(L2)� f(L1)� = [tr(�f(Lj)�+ �f(Lj)(1 � �) + (1� �)f(Lj)�)℄2j=1+tr[(1� �)f(Lj)(1� �)℄2j=1 :Following [36℄, [37℄, we de�ne the resonanes w 2 C � by the omplex saling method as the eigen-values of the omplex saling operators Lj;�; j = 1; 2. We denote by Res Lj(h); j = 1; 2; the setof resonanes and set n# = maxfn#1 ; n#2 g: In the paper [aj ℄2j=1 means a2 � a1 and C denotes apositive onstant whih may hange from line to line.The spetral shift funtion �(�; h) 2 D0(R) related to L1; L2 is de�ned byh�0(�; h); f(�)i = trbb�f(L2)� f(L1)�; f 2 C10 (R)and our result onerning the derivative of �(�; h) is the following.Theorem 1. Assume that Lj(h); j = 1; 2; satisfy assumptions (2:1) � (2:9): Let
 �� ei℄�2�0;2�0[℄0;+1[; 0 < �0 < �=2;be an open simply onneted set and letW �� 
 be an open simply onneted and relatively ompatset whih is symmetri with respet to R. Assume that J = 
 \ R+ ; I = W \ R+ are intervals.Then for � 2 I we have the representation�0(�; h) = 1� Im r(�; h) + h Xw2Res Lj\
;Imw 6=0 � Imw�j�� wj2 + Xw2Res Lj\J Æ(� � w)i2j=1; (2.10)where r(z; h) = g+(z; h) � g+(z; h); g+(z; h) is a funtion holomorphi in 
 and g+(z; h) satis�esthe estimate jg+(z; h)j � C(W )h�n# ; z 2W (2.11)with C(W ) > 0 independent on h 2℄0; h0℄:3. Representation of the derivative of the spetral shift funtion for nonsemi-bounded operatorsLet Lj; j = 1; 2 be two operators satisfying the assumptions (2.1) - (2.9). Given 0 < � � �0 < �2 ;we hoose 0 < � < 1 so that 2� < ��. Consider the funtions��(z) = (z2 + 1� 2z os(��))m trbbh(Lj � ei��)�m(Lj � e�i��)�m(z � Lj)�1i21; � Im z > 0;where m > n=2 is an integer. We will show below that ��(z) is well de�ned and it is lear that wehave �+(z) = ��(�z); Im z > 0:Let 
 �� ei℄�2�;2�[℄0;+1[ be a simply onneted open relatively ompat set suh that 
\R+ =J is an interval. The spetrum of Lj;� outside of e�2i�[0;+1[ onsists of the negative eigenvalues ofLj and the eigenvalues in e�i[0;2�[℄0;+1[ (see [36℄). We may hoose z0 = e�i��; 0 < � < 1, so thatz0 and �z0 are away from sp (Lj) and sp (Lj;�); j = 1; 2: Given a positive number Æ > 0, a trivial



6 M. DIMASSI AND V. PETKOVmodi�ation of the proof of Proposition 4.1 of Sj�ostrand [37℄, yields that for all z 2 
\fz : Im z � Ægwe have trbbh(Lj � z)�1(Lj � z0)�m(Lj � �z0)�mi2j=1 (3.1)= trbbh(Lj;� � z)�1(Lj;� � z0)�m(Lj;� � �z0)�mi2j=1;where in the de�nition of the omplex saling operators Lj;� the parameter �0 is hosen smallenough.Below we assume Æ and � �xed and we will drop in the notations Lj the index j writing L:when the properties are satis�ed for both operators Lj; j = 1; 2: Following [37℄, Setion 4, thereexists an operator L̂:;� : D: �! H: so thatK:;� = L̂:;� � L:;� has rankO(h�n#)and for all N; M 2 N we have K:;� = O(1) : D(LN: ) �! D(LM: ):Seondly, K:;� is ompatly supported, that is if � 2 C10 (Rn) is equal to 1 on B(0; R) for R � R0large enough, we have K:;� = �K:;�� and, �nally, for every N 2 N we have(L̂:;� � z)�1 = O(1) : D(LN: ) �! D(LN+1: );uniformly for z 2 
: These properties imply for z 2 
 \ fIm z > 0g the representation(L:;� � z)�1 = (L̂:;� � z)�1 + (L:;� � z)�1K:;�(L̂:;� � z)�1: (3.2)The ontributions related to the resolvent (L̂:;� � z)�1 are examined in the following.Proposition 1. There exists a funtion a+(z; h) holomorphi in 
 suh that for z 2 
\fIm z > 0gwe have �+(z) = trh(Lj;� � z)�1Kj;�(L̂j;� � z)�1i2j=1 + a+(z; h): (3.3)Moreover, ja+(z; h)j � C(
)h�n# ; z 2 
 (3.4)with a onstant C(
) independent on h 2℄0; h0℄:Proof. The proof is a modi�ation of that of Proposition 2 in [8℄ and for the sake of ompletenesswe will expose the main steps. Aording to (3.2), for z 2 
 \ fIm z � Æg we have�+(z) = �(z � z0)(z � �z0)�m trbbh(L̂j;� � z)�1(Lj;� � z0)�m(Lj;� � �z0)�mi2j=1+�(z�z0)(z� �z0)�mhtr�(Lj;��z)�1Kj;�(L̂j;��z)�1(Lj;��z0)�m(Lj;�� �z0)�m�i2j=1 = A(z)+B(z):From the resolvent equation we obtain�(z�z0)(z� �z0)�m(Lj;��z0)�m(Lj;�� �z0)�m(Lj;��z)�1 = (Lj;��z)�1� mXk=1(z� �z0)k�1(Lj;�� �z0)�k�(z � �z0)m mXk=1(z � z0)k�1(Lj;� � �z0)�m(Lj;� � z0)�k:



SPECTRAL SHIFT FUNCTION AND RESONANCES 7To treat B(z) we use the yliity of the trae and the above equality and onlude that B(z) isequal to trh(Lj;� � z)�1Kj;�(L̂j;� � z)�1i2j=1 modulo a funtion holomorphi in 
 and bounded byO(h�n#):Now we pass to the analysis of A(z). Our purpose is to show that A(z) is holomorphi in 
 andbounded by O(h�n#): By onstrution, (L̂j;��z)�1 is holomorphi on 
 and for any ut-o� funtion� 2 C10 (Rn); � = 1 on B(0; R0) with supp � � B(0; R1) the operators �(Lj;���z0)�m; (Lj;���z0)�m�are trae lass ones. This implies that the funtion tr�(L̂j;� � z)�1(Lj;� � z0)�m(Lj;� � �z0)�m�� isholomorphi in 
. On the other hand,(Lj;� � �z0)�m(Lj;� � z0)�m(L̂j;� � z)�1 � (L̂j;� � z)�1(Lj;� � z0)�m(Lj;� � �z0)�m (3.5)= (Lj;� � �z0)�m(Lj;� � z0)�m(Lj;� � z)�1Kj;�(L̂j;� � z)�1�(Lj;� � z)�1Kj;�(L̂j;� � z)�1(Lj;� � z0)�m(Lj;� � �z0)�m:Consequently, for Im z > 0 if �1 2 C10 (Rn) is a ut-o� funtion suh that �1 � �, applying theyliity of the trae one more, we gettr��1(L̂j;� � z)�1(Lj;� � z0)�m(Lj;� � �z0)�m(1� �)� = 0:Here and below  � ' means that '(x) = 1 on the support of  (x). Thus it remains to examine�+(z) = trh(1� �1)(L̂j;� � z)�1(1� �)(Lj;� � z0)�m(Lj;� � �z0)�m(1� �)i2j=1:Consider the operator Q:;� = Q:j�� and note that for  2 C1 supported away from B(0; R1) wehave L:;� = Q:;� : Repeating the onstrution of L̂:;� in Setion 4, [37℄, we an �nd an operatorQ̂:;� : H2(��) �! L2(��) so that Q̂:;� �Q:;� has rankO(h�n);the operator Q̂:;� �Q:;� is ompatly supported and for z 2 
 we have(Q̂:;� � z)�1 = O(1) : D(QN: ) �! D(QN+1: ); 8N 2 N:Moreover, for  2 C1 supported away from B(0; R1) we have L̂:;� = Q̂:;� and for � 2 C10 (��)equal to 1 on a suÆiently large set, z 2 
 and �1 � �0 � � we obtain(L̂:;� � z)�1(1� �) = (1� �0)(Q̂:;� � z)�1(1� �)+(L̂:;� � z)�1[Q̂:;�; �0℄(Q̂:;� � z)�1(1� �):As above, we assume that z0 = e�i�� is hosen so that z0 =2 sp (Qj); z0 =2 sp (Qj;�); j = 1; 2: Forsimpliity of the notations below we omit the index �. Repeating the argument of Setion 4 in [8℄,we onlude that there exists a funtion b(z; h), holomorphi in 
, and bounded by O(h�n#), sothat �+(z) = b(z; h) + trh(1� �)(Q̂j � z)�1(Qj � z0)�m(Qj � �z0)�m(1� �)i2j=1: (3.6)We write(Q̂2 � z)�1(Q2 � z0)�m(Q2 � �z0)�m � (Q̂1 � z)�1(Q1 � z0)�m(Q1 � �z0)�m



8 M. DIMASSI AND V. PETKOV= (Q̂2�z)�1h�(Q2�z0)�m�(Q1�z0)�m�(Q2� �z0)�m+(Q1�z0)�m�(Q2� �z0)�m�(Q1� �z0)�m�ih(Q̂2 � z)�1 � (Q̂1 � z)�1i(Q1 � z0)�m(Q1 � �z0)�m = I + II :We treat these terms, as in [8℄, and we onlude that �+(z) is holomorphi in 
 and boundedby O(h�n#): To omplete the proof we use an analyti ontinuation. 2Next we will obtain a representation of the derivative �0(�; h). Let f 2 C10 (R+) and let~f(z) 2 C10 (C ) be an almost analyti extension of f . Setg(z) = f(z)(z2 + 1� 2z os(��))m:Then g(L:) = � 1� Z ��z ~f(z)(z2 + 1� 2z os(��))m (z � L:)�1L(dz);where L(dz) denotes the Lebesgue measure on C : Clearly,f(L:) = (L: � ei��)�m(L: � e�i��)�mg(L:)= � 1� Z ��z ~f(z)(z2 + 1� 2z os(��))m(L: � ei��)�m(L: � e�i��)�m(z � L:)�1L(dz)whih implies trbb�f(L2)� f(L1)� = � 1� Z ��z ~f(z)(z2 + 1� 2z os(��))m (3.7)� trbbh(Lj � ei��)�m(Lj � e�i��)�m(z � Lj)�1i21L(dz):We have ��(z) = O(h�n# j Im zj�2) and ��z ~f = O(j Im zj2) so we may write the right hand side of(3.9) as h�0; fi = trbb�f(L2)� f(L1)�= lim�&0� 1��ZIm z>0 ��z ~f(z)�+(z + i�)L(dz) + ZIm z<0 ��z ~f(z)��(z � i�)L(dz)�:Aording to Proposition 1, the funtion �+(z + i�) (resp. ��(z � i�)) is holomorphi on fz 2 
 :Im z > 0g (resp. fz 2 
 : Im z < 0g ) and applying the Green formula we obtain the followingLemma 1. We have h�0; fi = lim�&0 i2� Z f(�)h�+(�+ i�)� ��(�� i�)id�where the limit is taken in the sense of distributions.Now Theorem 1 follows from the analysis of the singularities of �+(z) for Im z & 0 whih is astraightforward repetition of that in [8℄. This ompetes the proof. 2



SPECTRAL SHIFT FUNCTION AND RESONANCES 94. Spetral shift funtion for Stark HamiltoniansThe Shr�odinger operator desribing the partiles in a homogeneous eletri �eld an be writtenin the form P1(h) = �h2�+ �x1;where � > 0; h > 0 and x = (x1; x0) 2 R � Rn�1 .For a perturbation to the homogeneous eletri �eld, the orresponding Shr�odinger operatorhas the form P2(h) = �h2�+ �x1 + V (x); (4.1)where V (x) is a real-valued C1(Rn) funtion. It is natural to assume that for jxj ! 1 the potentialV (x) is small in omparison with �x1. More preisely, we assume thatj��V (x)j � C�hx1i�s1hx0i�s2 ; 8� (4.2)for some positive onstants s1 > 0; s2 > 0, where hxi = (1 + jxj2)1=2.There are two points of view of onsidering the hamiltonian (4.1). The �rst one, whih isusually used for the study of resonanes in Stark e�et, is to examine P2(h) as a perturbation of�h2�+ V (x); (see [15℄, [17℄). The seond one, is to onsider P2(h) as a perturbation of P1(h) justas in the sattering theory (see [1℄, [22℄, [42℄). Here we will work with the later point of view with� = 1. Under assumption (4.2), it is well known that P2(h) is essentially self-adjoint on C10 (Rn),�(Pj(h)) = R; j = 1; 2 and Pj(h) have no eigenvalues [28℄, [14℄.Lemma 2. Let V satisfy (4:2) with s1 > n+12 and s2 > n� 1.i) For k 2 N large enough the operator(i� P2(h))�k � (i� P1(h))�kis trae lass one and its trae norm is O(h�n).ii) Moreover, for Im z 6= 0 we havek(i� P2(h))�k(z � P2(h))�1 � (i� P1(h))�k(z � P1(h))�1ktr = O� h�nj Im zj2�: (4.3)Proof. Taking (k � 1) derivatives in z in the resolvent identity(z � P2(h))�1 � (z � P1(h))�1 = (z � P2(h))�1V (z � P1(h))�1and setting z = i, we see that (i� P2(h))�k � (i� P1(h))�k is a linear ombination of terms(i� P2(h))�jV (i� P1(h))�(k+1�j)with 1 � j � k: Hene, it suÆes to prove that (i � P2(h))�lV and V (i � P1(h))�l are trae lassones for l large enough. On the other hand, by duality, we must show only that V (i � Pj(h))�l istrae lass.Sine the operators Pj(h); j = 1; 2; are not ellipti, we annot use the h-pseudodi�erentialalulus for the analysis of (i � Pj(h))�l. To overome this diÆulty, we will deompose V (i �Pj(h))�l as a sum of three terms:V (i� Pj(h))�l = gV (i� Pj(h))�l + (1� g)V (1� w(x; hDx))(i� Pj(h))�l



10 M. DIMASSI AND V. PETKOV+(1� g)V w(x; hDx)(i � Pj(h))�l = F1;j(h) + F2;j(h) + F3;j(h):Here g(x1) 2 C1(R) with g(x1) = 1 for x1 � �1 and g(x1) = 0 for x1 � �2, and (x; �) = �x1+j�j2h�i �, where  (t) 2 C10 ([�2; 2℄; [0; 1℄),  (t) = 1 on [�1; 1℄. We denote by w(x; hDx) theh-pseudodi�erential operator with symbol (x; �):On the support of g and (1 � ), we an use the h-pseudodi�erential alulus and prove thatF1;j(h) (resp. F2;j(h)) is an h-pseudodi�erential operator with symbol in S0(m1) (resp. S0(m2)),where m1(x; �) = hx1i�s1hx0i�s2(1 + jx1j+ j�j2)�l;m2(x; �) = hx1i�s1hx0i�s2h�i�l:We denote by S0(m) the lass of symbolsS0(m) = fa 2 C1(R2n) : ��x ��� a = O�;�(m); 8�;8�g;where m is an order funtion (see for instane, [10℄). To justify this it is suÆient to observe thatthe operators (Pj(h) � i) are ellipti for x1 2 supp g and (x; �) 2 supp (1 � ) and to estimatethe prinipal symbols of their inverse. Under our assumptions and for l > n=2 we have mi 2L1(R2n); i = 1; 2. Thus, it follows from Theorem 9.4 in [10℄ that Fi;j(h), i = 1; 2, are trae lassand kFi;j(h)ktr = O(h�n).Next, on the support of  we have jx1+ j�j2j � 2h�i. So we an apply the h-pseudodi�erentaialalulus to V w(x; hDx) and we deduekV ktr � Ch�n Zjx1+j�j2j�2h�ihx1i�s1dx1d� ZRn�1hx0i�s2dx0� Ch�n�Zjx1j<1; j�j�Chx1i�s1dx1d� + Z 11 rn�2s1dr� < +1if s1 > n+12 and s2 > n� 1. Consequently, kF3;j(h)ktr = O(h�n) and this ompletes the proof ofthe �rst part of the lemma.To obtain (4.3), it suÆes to observe that the operator in the left hand side of (4.3) an bewritten in the form�(i� P2(h))�k � (i� P1(h))�k�(z � P2(h))�1 + (i� P1(h))�k�(z � P2(h))�1 � (z � P1(h))�1�= �(i� P2(h))�k � (i� P1(h))�k�(z � P2(h))�1� (z � P1(h))�1(i� P1(h))�k(P2(h)� P1(h))(z � P2(h))�1; (4.4)whih together with the above estimates and the fat that k(z � Pj(h))�1k = O(j Im zj�1) yield(4.3). 2By using Hel�er-Sj�ostrand formula (see (3.9)) and the above lemma, we onlude that fors1 > n+12 and s2 > n� 1, the operator f(P2(h))� f(P1(h)) is trae lass for every f 2 C10 (R). Wedenote by �0(�; h) 2 D0(R) the spetral shift funtion related to the pair (P2(h); P1(h)) and de�nedby h�0(�; h); f(�)i = tr�f(P2(h)) � f(P1(h))�:



SPECTRAL SHIFT FUNCTION AND RESONANCES 115. Analyti distortion and resonanes for Stark hamiltoniansTo de�ne the resonanes, we will suppose that V admits a holomorphi extension in the x1-variable into the region �Æ0;R := fz 2 C : Re z < R; j Im zj � Æ0g; (5.1)for some Æ0 > 0 and R > 0. We also assume that (4.2) remains true on �Æ0; R andj��V (x1; x0)j � C�hjRe x1ji�s1hx0i�s2 ; 8�: (5.2)Let us reall the de�nition of the resonanes for Stark hamiltonians by the method of analytidistortion (for more details we refer to [15℄, [17℄, [42℄). Let �0 2 C1(R) be suh that �0(t) = t fort � �� < 0 and �0(t) = 0 for t � 0. Set v(t) = 1� e�0(t�R0), where R0 < R and for � 2 R de�ne��(x) = (x1 + �v(x1); x0):We denote by J�(x) = det [D��(x)℄ = 1 + �v0(x1) the Jaobian of ��(x). Then, for j�j small, U(�)de�ned by U(�)f(x) = J1=2� (x)f(��(x))is unitary on L2(Rn). A simple alulus shows thatP1;�(h) := U(�)P1(h)U(�)�1 = �h2r�a�(x)r�+ x1 + �v(x1) + h2g�(x);P2;�(h) := U(�)P2(h)U(�)�1 = P1;�(h) + V (��(x)); (5.3)where a�(x) = (a�;i;j(x))i;j is the diagonal matrix given bya�;1;1(x) = (1 + �v0(x1))�2; a�;j;j(x) = 1; j 6= 1;and g�(x) = �2v000(x1)�a�;1;1(x)�3=2 � 54�2v00(x1)2�a�;1;1(x)�2:By the analyti assumption, Pj;�(h) admits a holomorphi extension in � into a omplex diskD(0; �0) � C of enter 0 and radius �0 � Æ0.Below we set G(x) := x1 + V (x); b�(x) := 1� a�(x):The diagonal matrix b�(x) = (b�;i;j(x))ij has the formb�;1;1(x) = �2�v0(x1) + �2v0(x1)2�(1 + �v0(x1))�2 and b�;j;j(x) = 0 if j > 1:Clearly, from the de�nitions of v(x1) and ��, it follows thatsupx2Rn jb�;1;1(x)G(x)j � C0j�j; supx2Rn jb�;1;1(x)j � C1j�j (5.4)and supx2Rn jG(��(x)) �G(x)j � C2j�j; supx2Rn jg�(x)j � C3j�j; (5.5)where C0; C1; C2; C3 are independent on � 2 D(0; �0).Using (5.4) and the exponential deay properties of v0(x1), we obtainkh2r�b�r�uk2 � C1j�j2(kP1(h)uk2 + kuk2 � C0j�j2k(Pj(h) � i)uk2; j = 1; 2 (5.6)for all u 2 C10 (Rn), where C0 is independent on h 2℄0; 1[ and � 2 D(0; �0):



12 M. DIMASSI AND V. PETKOVWe will use the notations P:(h); P:;�(h) for the operators Pj(h); Pj;�(h); j = 1; 2: From (5.5),(5.6) and (5.2) we dedue thatk(P:;�(h) � P:(h))uk2 � Cj�j2k(P:(h)� i)uk2; (5.7)for all u 2 C10 (Rn). Choose �0 small enough so that C�20 < 1, where C is the onstant at the r.h.sof (5.7). Therefore from (5.7) and the results on the perturbation of operators in [21℄ we deduethat P:;�(h) is losed and D(P:;�(h)) = D(P1(h)) =: D for all � 2 D(0; �0). On the other hand, usingthe analyti assumption on V , we onlude that �! P:;�u is analyti for all u 2 D. Consequently,the self-adjoint operator Pj;�, de�ned for � 2 D(0; �0) \ R, extends to an analyti type-A family ofoperators on D(0; �0) with domain D. Moreover, by an approximation it is easy to show that theestimate (5.7) remains true for u 2 D:Now it is easy to see that for �0 small enough and � 2 D(0; �0) we have �i =2 �(P:;�(h)). Indeed,P:;�(h)� i = hI + (P:;�(h) � P:(h))(P:(h) � i)�1i(P:(h) � i):On the other hand, k(P:;�(h)� P:(h))(P:(h)� i)�1uk � Cj�jkuk; 8u 2 L2(Rn) :Thus (P:;�(h) � i) is invertible and the same argument works for (P:;�(h) + i).Fix � 2 D(0; �0) with �0 � Æ0; Im � < 0 and �x the onstants R0 > 0 and � > 0 in the de�nitionof v(x1). Consider an open simply onneted relatively ompat domain
�;� � fz 2 C : Re z � R0 � 3�; Im z � �(1 � e��) Im �g; 0 < � < 1:We assume that 
�;� is independent of h. The domain 
�;� depends on � and � but forsimpliity of notation we will write below 
 instead of 
�;�:Lemma 3. There exist �0 > 0; h0 > 0 small enough suh that for � 2 D(0; �0) with Im � � 0; h 2℄0; h0℄ we havek(z � P1;�)�1k � C0minf�=2; (�1 Im � + Im z � C1h)g ; 1 = 1� e�� > 0; (5.8)uniformly with respet to z 2 
, provided Im z > 1 Im � + C1h: The onstants C0 � 1; C1 > 0depend only on 
:Remark. The estimate (5.8) is similar to that in Lemma 3 in [2℄, where Im z is related to Æand Ch.Proof. Let  20(x1) +  21(x1) = 1, where  0 2 C1(R) is equal to 1 for x1 � R0 � �;  0 = 0 forx1 � R0 � 2�. On the support of  0, we have x1 �Re z > � for all z 2 
. Combining this with thefat that Re a� � 0 for �0 small, we getRe �(P1;� � z) 0u;  0u� � Re �(hrRe a�hr+ x1 �Re z) 0u;  0u��O(h2�)k 0uk2� �k 0uk2 �O(h2�)k 0uk2:Thus for z 2 
 and u 2 D and for � small we deduek(P1;� � z) 0uk � �=2k 0uk; (5.9)uniformly on z 2 
.



SPECTRAL SHIFT FUNCTION AND RESONANCES 13On the support of  1 we havev(x1) = 1� e(x1�R0) � 1� e�� > 0and Im a�;1;1 = �2(Im �) +O(Re � Im �)�e(x1�R0);Im g�(x) = ��(Im �)2 � (Re � Im �)�e(x1�R0):Choosing �0 small, we obtainIm��h2ra�r 1u;  1u� � 0; j Imh2(g� 1u;  1u)j � h2j Im �jk 1uk2On the other hand, for x1 2 supp  1 we getIm �(x1 + �v(x1)� z) 1u;  1u� � �(1(Im �)� Im z) 1u;  1u�:Consequently, for h0, and �0 suÆiently small, we dedue the estimatek(P1;� � z) 1uk � (�1 Im � + Im z � 2h)k 1uk; (5.10)uniformly on z 2 
.Let e j 2 C10 (R) be equal to 1 on the support of r j . Sine[h2r�a�r�;  j ℄ = e j [h2ra�r;  j ℄ = h e j�hr�a�(r j)�+ 2(r j)a�(hr)�;as in the proof of (5.6), we obtaink[h2r�a�r�;  j ℄uk � C2h�k(P1;�(h)� z)uk+ kuk� (5.11)for z 2 
 and u 2 D with a onstant C2 > 0 depending on 
:Combining (5.9), (5.10), (5.11) with the estimatek(P1;�(h)� z)uk2 = 1Xj=0 k j(P1;�(h) � z)uk2� 12 1Xj=0 k(P1;�(h)� z) juk2 � 1Xj=0 k[h2r�a�r�;  j ℄uk2;for h small enough and z 2 
 we dedueC0k(P1;�(h)� z)uk � minf�=2; (�1 Im � + Im z � C1h)gkuk; u 2 D: (5.12)By the same argument, we prove an estimate similar to (5.12) for the adjoint operator P �1;�(h)��z.Sine (P1;�(h) � z) is losed, the operator (P1;�(h) � z) has a zero index, and we onlude that(P1;�(h)� z) is invertible for every z 2 
. Finally, (5.8) follows from (5.12) and this ompletes theproof. 2Now, it is easy to see that the operator P2;�(h)� z; z 2 
; is a Fredholm operator and we havethe following.Lemma 4. Let Im z0 > 1 Im � + C1h; z0 2 
: Then the operator P2;�(h) � z0 is a Fredholm onewith index 0.



14 M. DIMASSI AND V. PETKOVProof. For z 2 
 we haveP2;�(h)�z = �I+�V Æ���(1� z(x))h(P1;�(h)�z)+�V Æ��� z(x)i�1�h(P1;�(h)�z)+�V Æ��� z(x)i;where  z(x) 2 C1(Rn) is a funtion suh that 0 �  z(x) � 1;  z(x) = 0 for jxj � C0;  z(x) = 1 forjxj � C0+1: Choosing C0 > 0 (depending on z) large enough, we may assume that j�V Æ���j z(x)is small, so the operator A1;�(z) = P1;�(h)� z + �V Æ ��� z(x)is invertible for z 2 
. On the other hand,K�(z) = �V Æ ���(1�  z(x))A1;�(z)�1is ompat. Then dimKer (P2;�(h)� z0) = dimKer (I +K�(z0));provided Im z0 > 1 Im � + C1h:A simple argument shows that Im(P2;�(h)� z0) is losed andodim (P2;�(h)� z0) = dimKer (I +K�� (z0)):Thus P2;�(h)� z is a Fredholm operator with index 0 and the proof is omplete. 2Let � 2 D(0; �0); Im � � 0: We say that z 2 C is a resonane of P2;�(h) ifdimKer (P2;�(h)� z) > 0:To examine the dependene on � of the resonanes, we will show that the operator K�(z0) dependsanalytially on � 2 D(0; �0): To do this, it is suÆient to show that the resolvent (P1;�(h) � z0)�1is analyti with respet to �: Fix �1 2 D(0; �0) and writeP1;� � z0 = P1;�1 � z0 � h2r(a� � a�1)r+ (� � �1)v(x1) + h2(g� � g�1)= P1;�1 � z0 +B�;�1 = �I +B�;�1(P1;�1 � z0)�1�(P1;�1 � z0):Here the operator B�;�1 depends analytially on �. On the other hand, it is easy to see that forj� � �1j small enough we may arrangekB�;�1(P1;�1 � z0)�1k � C1(�1; z0)j� � �1j � 1=2:For example, to estimate the terms involving a�; a�1 , we apply the equalityh2�r(a� � a�1)r�(P1;�1 � z0)�1= h2�r(a� � a�1)r�h(P1 � i)�1 + (P1 � i)�1(i� z)(P1;�1 � z0)�1iand we use the bound (5.6). Thus(P1;� � z0)�1 = (P1;�1 � z0)�1�I +B�;�1(P1;�1 � z0)�1��1and we obtain the analytiity for small j���1j: Also let us point out that if the resolvent (P2;��z)�1exists, we have (P2;� � z)�1 = �A1;�(z)��1(I +K�(z))�1:



SPECTRAL SHIFT FUNCTION AND RESONANCES 15For �xed z the invertibility of (I +K�(z)) implies that the inverse operator (I +K�(z))�1 beomesan analyti funtion of �, so the resolvent (P2;� � z)�1 will be also an analyti funtion of �:The resonanes depend on h but they are independent on � 2 D(0; �); Im � < 0: First, Lemma3 implies easily that P2;� has no eigenvalues z 2 
; Im z � a0 > 0; where a0 depends on V and 
.The unitary operators U(�); � 2 R, do not form a group. Nevertheless, the mapsL2(Rn) 3 f �! f(x1 + �; x0); � 2 Rform an unitary group. Then there exists a dense set A � L2(Rn) of analyti vetors so that1Xn=0 �nn! �nf�xn1 ; f 2 Ais onvergent for � 2 D(0; �0): This implies that for �0 small and for f 2 A the funtions U(�)f =J1=2� (x)f(��(x)) admit a holomorphi extension in D(0; �0) . The same is true forU�1� (�)f = J�1=2� (��1� (x))f(��1� (x));sine ��1� (x) = (x1 + �w(�; x); x0) with a funtion w(�; x) holomorphi with respet to �:Now, we will follow an argument similar to that used by Wang [42℄. Take f; g 2 A and let� 2 R be small. For z; Im z � a0; we have(f; (P2 � z)�1g) = (U(�)f; (P2;� � z)�1U(�)g): (5.13)For Im z � a0 and 0 < h � h0 the right-hand side admits an analyti ontinuation for � 2 D(0; �0):Consequently, for every �xed omplex � 2 D(0; �0); Im � < 0, the left-hand side of (5.13) admits ameromorphi ontinuation with respet to z in 
 \ fz 2 C : Im z > 1 Im � + C1hg, hene this istrue for the right-hand side. Let us onsider now the parameter � 2 C satisfying Im �1 � Im � �Im �2 < 0: Introdue the setR�2(P2) = [f;g2Afz : z is a pole of (f; (P2 � z)�1g) and Im z > 1 Im �2 + C1hg:We laim that z 2 R�2(P2)() z 2 \Im �1�Im ��Im �2 �pp (P2;�):If z 2 R�2(P2), then the left-hand side of (5.13) has a pole for some f; g 2 A and we obtain theinlusion R�2(P2) � \Im �1�Im ��Im �2 �pp (P2;�):On the other hand, if z0 is a pole of (P2;� � z)�1, then we an �nd ' 6= 0;  6= 0; so that( ; (P2;� � z)�1') has in a small omplex neighborhood of z0 an isolated singularity at z = z0: Theset A is dense in L2(Rn) and by approximation, we onstrut funtions  m 2 A; 'm 2 A so that m �!  ; 'm �! ': For m large enough ( m; (P2;� � z)�1'm) will have a pole at z = z0. We �xa suh m and setting f = U�1(�) m; g = U�1(�)'m; we dedue that(U(�)f; (P2;� � z)�1U(�)g)has also a singularity at z = z0. This proves the inverse inlusion and the laim is established.This implies immediately that the resonanes z with Im z > 1 Im �2 + C1h are independent on



16 M. DIMASSI AND V. PETKOVthe hoie of Im �1 � Im � � Im �2 < 0: Clearly, the above argument shows also that the operatorP2;�(h) has no resonanes z with Im z > 0:Finally, P2 = P2;�(h) has no resonanes z 2 R\
. For this purpose, we may apply the argumentof Theorem XIII.36 in [28℄. Suppose that � 2 
\R is an eigenvalue for P2;�. Repeating the aboveargument based on the density of A, we an �nd funtions F 6= 0; G 6= 0 so that (F; (P2 � z)�1G)has a pole at z = �. Therefore,lim�&0 i�(F; (P2 � �� i�)�1G) = (F; Pf�gG) 6= 0;Pf�g being the spetral projetor of P2 at �. Consequently, � 2 �pp(P2) and this leads to a ontra-dition with the absene of eigenvalues of P2:We de�ne the multipliity of a resonane z0 bym(z0) = rank 12�i Z�(z0)(z � P2;�)�1dz;where �(z0) = fz = z0 + �ei'; 0 � ' � 2�g and � > 0 is small enough. The operator P2;� is oftype (A), and we onlude that the multipliity m(z0) is an analyti funtion of �: Consequently,m(z0) is independent on � 2 D(0; �0); Im � � Im �2 < 0:6. Representation of �0(�; h) for Stark hamiltoniansLet 
 = 
�;� � �� be the domain introdued in the previous setion and let W be an openrelatively ompat subset of 
. We assume that W and 
 are symmetri with respet to R andindependent of h and we suppose that J = 
\R, I =W \R are intervals. The main result in thissetion is the following.Theorem 2. Assume (5:2) with s1 > n+12 and s2 > n� 1. Then �0(�; h) is real analyti in I andfor � 2 I we have the representation�0(�; h) = 1� Im r(�; h) + X!2Res(P2(h))\
Im! 6=0 � Im!�j�� !j2 ;where r(z; h) is a funtion holomorphi in 
 andjr(z; h)j � C(W )h�n; z 2W (6.1)with C(W ) > 0 independent on h 2℄0; h0[.Below we �x an integer m 2 N large enough so that the statement i) of Lemma 2 holds and wede�ne the funtions��(z) = (z2 + 1)mtrh(P:(h)� i)�m(P:(h) + i)�m(z � P:(h))�1i21; � Im z > 0:For � real the operator (P:(h) � i)�m(P:(h) + i)�m(z � P:(h))�1 is unitary equivalent to(P:;�(h)� i)�m(P:;�(h) + i)�m(z � P:;�(h))�1:



SPECTRAL SHIFT FUNCTION AND RESONANCES 17Consequently, the yliity of the trae yields�+(z) = (z2 + 1)mtrh(P:;�(h)� i)�m(P:;�(h) + i)�m(z � P:;�(h))�1i21; (6.2)for all z 2 
+ = 
 \ fIm z > 0g, � 2 D(0; �0) \ R.Now, �x Æ > 0 and let z 2 
Æ = 
 \ fIm z � Æg. Sine P:;�(h) extends to an analyti type Afamily of operators on D(0; �0), for suÆiently small �0 and z 2 
Æ, the r.h.s of (6.2) extends byanalyti ontinuation in � to the disk D(0; �0). For � 2 D(0; �0) with Im � < 0 , both terms of (6.2)are analyti on 
+, and, onsequently, (6.2) remains true for all z in 
+.From now on, the number � will be �xed in D(0; �0) with Im � < 0. We drop the subsript �most of the time and write P:, (resp. bP:) instead of P:;�(h), (resp. bP:;�(h)).In the Appendix, we will onstrut an operator bP2;�(h) : D ! L2(Rn) with the followingproperties: K = bP2;�(h)� P2;�(h) has rank O(h�n); (6.3)( bP2;�(h)� z)�1 = O(1) : L2(Rn)! D; uniformly on z 2 
: (6.4)Moreover, K is ompatly supported in the sense that K = �K� with � 2 C10 (Rn):Set ~K(z) = K(z � bP2)�1: Then(z � P2) = (I + ~K(z))(z � bP2)and the resonanes z 2 Res P2 oinide with their multipliities with the zeros of the funtionD(z; h) = det(I + ~K(z)):Repeating the argument of [37℄, we obtain easily an upper bound of the number of the resonaneslying in 
: For the sake of ompleteness we present the proof. First, we have the estimatejD(z; h)j � ek ~K(z)ktr � eC0h�n ; z 2 
:Next, for Im z � Æ > 0; z 2 
 we get(I + ~K(z))�1 = (z � bP2)(z � P2)�1;hene k(I + ~K(z))�1k � C1: We write the operator (I + ~K(z))�1 in the form(I + ~K(z))�1 = �I � ~K(z)(I + ~K(z))�1�and we obtain ���det�(I + ~K(z))�1���� � eC2h�n ; Im z � Æwhih implies jD(z; h)j � Ce�C3h�n ; z 2 
 \ fIm z � Æg:Now, applying the Jensen inequality in a slightly larger domain, we obtain the following.Proposition 2. Let 
�;� � C be a ompat having the form given in Setion 5. Then#fz 2 Res P2(h); z 2 
�;�g � C(
�;�)h�n: (6.5)



18 M. DIMASSI AND V. PETKOVUsing the resolvent identity(z � P2)�1 � (z � bP2)�1 = �(z � P2)�1K(z � bP2)�1;we deompose the r.h.s of (6.2) as a sum of two terms I1 + I2, whereI1 = (z2 + 1)mtr�(P2 � i)�m(P2 + i)�m(z � bP2)�1 � (P1 � i)�m(P1 + i)�m(z � P1)�1�;I2 = (z2 + 1)mtr�(P2 � i)�m(P2 + i)�m(P2 � z)�1K(z � bP2)�1�:As in Setion 3, by using the resolvent equation and the yliity of the trae, we show that I2 isequal to tr�(P2� z)�1K( bP2� z)�1� modulo a funtion holomorphi in 
 and bounded by O(h�n).From (5.3) and (6.3), we get bP2 � P1 = K + V Æ ��whih together with the �rst resolvent identity(z � P1)�1 � (z � bP2)�1 = (z � P1)�1(P1 � bP2)(z � bP2)�1;yield I1 = (z2 + 1)mtr��(Pj � i)�m(Pj + i)�m�2j=1(z � bP2)�1�+(z2 + 1)mtr�(P1 � i)�m(P1 + i)�m(z � P1)�1K(z � bP2)�1�+(z2 + 1)mtr�(P1 � i)�m(P1 + i)�m(z � P1)�1�V Æ ���(z � bP2)�1�:Exploiting (6.4) and Lemma 3, all terms on the right hand side of the above equality are holomorphiin 
. Moreover, applying (6.3) and Lemma 2, we see that the �rst and the seond terms are boundedby O(h�n). Sine V Æ � satis�es (5.2), the last term an be estimated in the same way. For thispurpose, it is suÆient to prove that the operator (P1;� � i)�m�V Æ ��� is a trae lass with traenorm bounded by O(h�n): The analysis, given in the proof of Lemma 3, implies that the operatorP1;� � i is ellipti for Im � < 0: Then we deompose (P1;� � i)�m�V Æ��� as a sum of three terms,involving the funtions g(x1) and (x; �), introdued in the proof of Lemma 2, and repeat theargument of Lemma 2. Thus we have proved the following analogue to Proposition 1.Proposition 3. There exists a funtion a+(z; h) holomorphi in 
, suh that for z 2 
+ we have�+(z) = tr�(P2 � z)�1K( bP2 � z)�1�+ a+(z; h): (6.6)Moreover, ja+(z; h)j � C(
)h�n; z 2 
 (6.7)with a onstant C(
) independent on h 2℄0; h0℄:Proof of Theorem 2. We repeat the argument of the proof of Lemma 1 and we geth�0; fi = lim�&0 i2� Z f(�)h�+(�+ i�)� ��(�� i�)id�; (6.8)where the limit is taken in the sense of distributions. Next, we follow the proof of Theorem 1,applying (6.8) and Proposition 3. 2



SPECTRAL SHIFT FUNCTION AND RESONANCES 197. Loal trae formula and spetral asymptotisIn this setion we obtain a loal trae formula in the spirit of [8℄ (see see [27℄ for ompatlysupported perturbations and [36℄, [37℄ for general long-range perturbations). Repeating the proofof Theorem 4 in [8℄, we get the following.Theorem 3. Assume that Pj(h); j = 1; 2 satisfy the assumptions of Setions 4; 5. Let
 = 
�;� � fz 2 C : Re z � R0 � 3�; Im z � �(1 � e��) Im �g; 0 < � < 1be an open, simply onneted, relatively ompat set de�ned in Setion 5 suh that I = 
\R is aninterval. Suppose that f is holomorphi on a neighborhood of 
 and that  2 C10 (R) satis�es (�) = � 0; d(I; �) > 2�;1; d(I; �) < �;where � > 0 is suÆiently small. Thentrh( f)(Pj(h))i2j=1 = Xz2Res P2(h) \ 
 f(z) +E
;f; (h) (7.1)with jE
;f; (h)j �M( ;
)sup fjf(z)j : 0 < d(
; z) � 2� ; Im z � 0gh�n :For the appliations we need an asymptoti development of the trae. For this purpose we willprove the following.Theorem 4. Assume (5:2) satis�ed with s1 > n+12 and s2 > n� 1 and suppose that suppV � fx 2Rn : x1 > Æ1g for some Æ1 2 R. Then for f 2 C10 (R), we havetr(f(P2(h)) � f(P1(h))) � 1Xj=0 ajhj�n; h& 0; (7.2)with a0 = �(2�)�n Z ZR2n(�x1V (x))f(j�j2 + x1 + V (x))dxd� =: h!; fi; a1 = 0:To obtain a Weyl-type asymptotis of �(�; h), we need a expansion for the trae involving thefuntion ��h(�) = (2�h)�1 Z ei� t=h�(t)dtwhih is the semi-lassial Fourier inverse transform of � 2 C10 (R):Theorem 5. In addition to the assumptions of Theorem 4 suppose that p2(x; �) = j�j2+V (x)+x1is not ritial for all � 2 [E0; E1℄. Then there exist C0 > 0 and h0 small enough suh that for� 2 C10 (℄� 1C0 ; 1C0 [; R); � = 1 in a neighborhood of 0, f 2 C10 (℄E0; E1[) and h 2℄0; h0℄ we havetr�h��h(� � Pj(h))f(Pj(h))i2j=1� = (2�h)�n�f(�)N�1Xj=0 j(�)hj +O(hN h�i�m)�; 8m 2 N; 8N 2 N(7.3)uniformly with respet to � 2 R, where0(�) = (2�i)�1 Z ZR2n(�x1V (x))�(� + i0� p2(x; �))�1 � (� � i0� p2(x; �))�1�dxd�:



20 M. DIMASSI AND V. PETKOVThe proof of Theorem 4 is a simple modi�ation of that of Theorem 5, so we will establishbelow (7.3).As we have notied in Setion 1, in the ase where the operators Pi(h) are ellipti, Theorem 4and Theorem 5 are well known (see [10℄, [30℄, [20℄). Our idea is to apply the results of [10℄, [30℄and [20℄ after reduing the study of the left hand side of (7.2) and (7.3) to that of the trae of anellipti operator (see (7.12)).Proof. Let f 2 C10 (℄E0; E1[) and let ~f 2 C10 (C ) be an almost analyti extension of f with��z ~f(z) = O(j Im zj1). We hoose ~f so that supp ~f � fz 2 C ; Re z 2 [E0; E1℄g. Let R1 > 0 be alarge onstant suh that R1 > kV k1 +E1 + jÆ1j+ 3:Introdue a partition of unity  20(x1) +  21(x1) = 1 on [Æ1 � 1;+1[, where  1 2 C10 (R) andsupp  0 � [R1;+1[. Notie that  1(x1) = 1 for Æ1 � 1 � x1 � kV k1 +E1 + jÆ1j+ 3:As it was shown in Lemma 2.4, [32℄, for f 2 C10 (R) we havetr�f(P2(h))� f(P1(h))� = �tr�(�x1V )f(P2(h))�:Applying this to the l.h.s of (7.3) and using the yliity of the trae, we gettr�h��h(� � Pj(h))f(Pj(h))i2j=1� = �trh 0��h(� � P2(h))f(P2(h))(�x1V ) 0i (7.4)�trh 1��h(� � P2(h))f(P2(h))(�x1V ) 1i:Let  2 C10 (R; [0; 1℄) be equal to 1 for jtj < 1 and equal to 0 for jtj > 2 and introdue Y (z) =  � j Im zjY �; Y = �Mh log h;where M is a large onstant whih we will hoose below. Clearly, ( Y ~f)(z) = f(z) for z 2 R andthe funtion z ! ��h(� � z) is analyti. Consequently, the Hel�er-Sj�ostrand formula yieldstrh 1��h(� � P2(h))f(P2(h))(�x1V ) 1i (7.5)= � 1� tr�Z ��z( Y ~f)(z) 1 ��h(� � z)(z � P2(h))�1(�x1V ) 1L(dz)� :Let G 2 C10 (R) with  1 � G. Introdue the operators~P2(h) = �h2�+ V (x) +G(x1)x1; ~P1(h) = �h2�+G(x1)x1and set I = tr� 1h��h(� � P2(h))f(P2(h))� ��h(� � ~P2(h))f( ~P2(h))i(�x1V ) 1�:It follows from (7.5) thatI = � 1� Z ��z( Y ~f)(z)��h(� � z)trh 1�(z � P2(h))�1 � (z � ~P2(h))�1�(�x1V ) 1iL(dz):



SPECTRAL SHIFT FUNCTION AND RESONANCES 21We have ~G := (G� 1)x1 = ~P2(h) � P2(h) = 0 near supp  1 and this implies ~G(z � ~P2)�1 1 =[ ~G; (z� ~P2)�1℄ 1: Let ~ 1 2 C1(R) be a funtion with ~ 1 = 1 near supp ~G and ~ 1 = 0 near supp 1.Then 1�(z � P2(h))�1 � (z � ~P2(h))�1�(�x1V ) 1 = � 1(z � P2(h))�1 ~ 1 ~G(z � ~P2(h))�1 1(�x1V )(7.6)= � 1(z � P2(h))�1 ~ 1(z � ~P2(h))�1[ ~G; ~P2(h)℄(z � ~P2(h))�1 1(�x1V ):Let �1; :::; �N 2 C10 (Rn ; [0; 1℄) with  1 � �1 � ::: � �N and �i[ ~G; ~P2(h)℄ = 0. By using theequalities �1:::�N 1 =  1; �k [ ~G; ~P2(h)℄ = 0, �k�1[�k; P2(h)℄ = 0 and the fat that[�k; (z � P2(h))�1℄ = (z � P2(h))�1[�k; P2(h)℄(z � P2(h))�1;we get [ ~G; ~P2(h)℄(z � ~P2(h))�1 1= [ ~G; ~P2(h)℄(z � ~P2(h))�1[�1; ~P2(h)℄(z � ~P2(h))�1:::[�N ; ~P2(h)℄(z � ~P2(h))�1 1 =: LN (h):Here LN (h) = ON (1)� hNj Im zjN � : Hs�N (Rn)! Hs(Rn);and we equip HN (Rn) with the h-dependent norm khhDiNkL2 . Choosing N > n our assumptionson V and Theorem 9.4 in [10℄ yield��h2�+ 1)��N=2�x1V tr = O(h�n):Then k[ ~G; ~P2℄(z � ~P2)�1 1(�x1V )ktr = kLN (h)�� h2�+ 1�N=2�� h2�+ 1��N=2�x1V ktr (7.7)� Ck�� h2�+ 1��N=2�x1V ktr� hNj Im zjN � � C1� hN�nj Im zjN �:Sine ��z ~f(z) = O(j Im zj1), we have��z( Y ~f)(z) = ~f(z) ��z( Y )(z) +O(h1)and, onsequently, I = � 1� ZY�j Im zj�2Y ( ��z Y )(z) ~f (z)��h(� � z) (7.8)�trh 1�(z � P2(h))�1 � (z � ~P2(h))�1�(�x1V ) 1iL(dz) +O(h1) :Next we take a real-valued funtion K0 2 C10 (R) suh thatK0 = 1 near supp  1; K0 = 0 near supp ~ 1:Put K = �K0, � > 0. By using that K = � near supp  1 and the fat that K = 0 near supp ~ 1,we get in the operator norm 1(z � P2(h))�1 ~ 1 = e�� log 1h eK log 1h 1(z � P2(h))�1(e�K log 1h ) ~ 1 (7.9)= e�� log 1h 1(z � eK log 1hP2(h)e�K log 1h )�1 ~ 1:



22 M. DIMASSI AND V. PETKOVOn the other hand, a simple alulus shows thateK log 1h (z � P2(h))e�K log 1h =�I + �2�h log 1h (rK) � r+O(�h log 1h)�(z � P2(h))�1�(z � P2(h))in the operator norm for h � h(�), h(�) > 0 being a ontinuous funtion.Let us hoose � as � = min� j Im zj~Ch log 1h ; ��;where � > 0 is some arbitrary large and �xed onstant and ~C is suÆiently large.Sine k(rK)r(z�P2(h))�1k = O(j Im zj�1) and �h log 1h j Im zj�1 � 1~C , then for ~C large enoughthe right hand side of (7.9) is O(e�� log 1h j Im zj�1) in L(L2(Rn)). Combining this with (7.6), (7.7),we get for j Im zj � �Mh log h with a new onstant C2 > 0 1�(z � P2(h))�1 � (z � ~P2(h))�1�(�x1V ) 1tr= O(h�nj Im zj�2e�� log 1h ) = O�h�nj Im zj�2max(h� ; e� j Im zjC2h )�:On the other hand, the Paley-Wiener theorem yieldsj��h(� � z)j = O( 1he 1C0h j Im zj);where we have used that supp � �℄� 1C0 ; 1C0 [. We hoose C0 > C2 and the r.h.s of (7.8) beomesI = O(1) Z Y�j Im zj�2YjRe zj�onst: Y �2h�n�1max�h� exp( j Im zjC0h ); exp(�1h j Im zj(C�12 �C�10 ))�L(dz) +O(h1)= O(1)Y �1h�n�1max�h�� 2MC0 ; exp��M(log 1h)(C�12 � C�10 )��+O(h1):First hoosingM suÆiently large and then the power in h� large enough, we see that this expressionis ON (hN ) for any N 2 N and h � h(N):Turning to the study of �rst term in the r.h.s. of (7.4), hoose a real-valued smooth funtionF (x1) satisfying F (x1) = x1 for x1 > R1�1 and F (x1) > R1�2 for all x1 2 R. Using the inequalityR1 > kV k1 +E1 + jÆ1j+ 3, as well as the fat that supp ~f � fz 2 C ; Re z 2 [E0; E1℄g, we getj�j2 + F (x1) + V (x)�Re z > 1 + jÆ1j � 1;uniformly on (x; �) and z 2 supp ~f . Introdue the operator~P = �h2�+ F (x1) + V (x):Clearly, ~P is semi-bounded on C10 (Rn) and we denote also by ~P the selfadjoint extension of ~P : Byonstrution, z ! (z � ~P )�1 exists and is analyti in a neighborhood of supp ~f . Combining thiswith Hel�er-Sj�ostrand formula, we gettrh(�x1V ) 0��h(� � P2(h))f(P2(h)) 0i (7.10)= � 1� tr�Z ��z( Y ~g)(z)��h(� � z)(�x1V ) 0(i� P2(h))�m�(z � P2(h))�1 � (z � ~P )�1� 0L(dz)� ;where ~g(z) = ~f(z)(i � z)m. Here m is �xed so that (�x1V )(i� P2(h))�m is a trae lass operator.



SPECTRAL SHIFT FUNCTION AND RESONANCES 23Sine P2(h)� ~P = x1�F (x1) =: ~F = 0 near supp 0, we an repeat the argument of the proofof (7.6) and get�(z � P2(h))�1 � (z � ~P )�1� 0 = (z � P2(h))�1 ~ 2 ~F (z � ~P2(h))�1 0= (z � P2(h))�1 ~ 2(z � ~P )�1[ ~F ; ~P ℄(z � ~P )�1 0;where ~ 2 2 C1(R) with ~ 2 = 1 near supp ~F and ~ 2 = 0 near supp  0.To estimate the last term, notie that (z � ~P )�1 and (hr)(z � ~P )�1 2 Opwh (S0(1)) uniformlyfor z 2 supp ~f (see the proof of Lemma 2 for the de�nition of S0(1)). Consequently,(z � ~P )�1[ ~F ; ~P ℄(z � ~P )�1 2 Opwh (S0(1)):Sine dist(supp ~ 2, supp  0)> 0, it follows from Lemma 2.1 of [13℄ thatk ~ 2(z � ~P )�1[ ~F ; ~P ℄(z � ~P )�1 0k = O(hN ); 8N 2 N:uniformly on z 2 supp ~f .On the other hand, the argument of the proof of Lemma 2 yieldsk(�x1V )(i� P2(h))�mktr = O(h�n):Combining the above three equalities with the estimate j(z � P2(h))�1k = O(j Im zj�1), we obtaink�(�x1V )(i � P2(h))�m�(z � P2(h))�1 � (z � ~P )�1� 0ktr = O(hN�n=j Im zj):Going bak to the integral in (7.10), and using that ��z( Y ~f)(z) = ~f(z) ��z( Y )(z) + O(h1), wededue trh(�x1V ) 0��h(� � P2(h))f(P2(h)) 0i = O(h1):Summing up, we have proved thattr�h��h(� � Pj(h))f(Pj(h))i2j=1� = �trh(�x1V )��h(� � ~P2(h))f( ~P2(h)) 1i+O(h1): (7.11)In the same way, we obtaintr�hf(Pj(h))i2j=1� = �trh(�x1V )f( ~P2(h)) 1i+O(h1): (7.12)The operator ~P2(h) is a short-range perturbation with dereasing potential V of ~P1(h), soTheorem 4 and Theorem 5 follow from the h-pseudodi�erential alulus and the analysis of elliptioperators in Chapters 8, 9, 12, [10℄ (see also [29℄). The leading term a0 has the forma0 = (2�)�n Z ZR2n�f(j�j2 +G(x1)x1 + V (x)) � f(j�j2 +G(x1)x1)� 1(x1)dxd�= (2�)�n Z ZR2n�f(j�j2 + x1 + V (x))� f(j�j2 + x1)�dxd�;sine the integration with respet to x1 in the seond integral is over the set Æ1 � x1 � E1 + jÆ1j+kV k1 and G(x1) =  1(x1) = 1 on this set. This proves that the leading terms is independent onthe hoie of G; 1: A similar argument implies the independene of the asymptoti expansion (7.2)on the hoie of G; 1, provided that  1(x1) = 1 for Æ1 � 1 � x1 � E1 + jÆ1j+ kV k1 + 3: Next, wehave



24 M. DIMASSI AND V. PETKOVa0 = (2�)�n Z ZR2n�f(j�j2 + x1 + V (x))� f(j�j2 + x1)�dxd�= �(2�)�n Z ZR2n(�x1V )f(j�j2 + x1 + V )dxd�= (2�)�n Z ZR2n Z V0 f 0(j�j2 + x1 + t)dtdxd�: 2Now we will apply Theorems 2, 4, 5 to obtain a lower bounds for the number of the resonanesand a Weyl-type asymptotis for � 2 [E0; E1℄.Theorem 6. Assume the assumptions of Theorem 5 ful�lled and suppose that E1 < Æ1 = inffx1 2R : x1 2 suppx1 V g: Then there exists h0 > 0 small enough suh that for h 2℄0; h0℄ we have�(�; h) = (2�h)�n0(�) +O(h�n+1); (7.13)uniformly on � 2 [E0; E1℄, where0(�) = � 1n!n ZRn �x1V (x)(�� V (x)� x1)n2+dx (7.14)with !n = vol Sn�1: Moreover, if for all N 2 N,Res(P2(h)) \ �[E0; E1℄� i[0; Nh ln(1=h)℄� = ;; 0 < h < h(N));then �0(�; h) � 1Xj=0j(�)hj�n; h& 0with 0(�) = 00(�).Proof. Following [8℄, [12℄, the proof is rather similar to that in these papers and for this reasonwe will present only the main steps. The reader may onsult [8℄, [12℄ for more details. Let 
 � Cbe a ompat domain having the properties desribed in Setion 5 and let [E0; E1℄ � 
 \ R: Weassume that z 2 
 ) Re z < Æ1: Let ' 2 C10 (R); supp ' � [E0 � �; E1 + �℄; � 
 \ R; � > 0:Introdue the funtions M'(�) = � 1� Xw2(Res P2(h)) \
 Z ��1 Imwjw � �j2'(�)d�;G'(�) = 1� Z ��1 '(�) Im r(�; h)d�;r(�; h) being the holomorphi funtion in Theorem 2 related to the domain 
. Applying Theorem2, we get Z ��1 '�0(�)d� =M'(�) +G'(�); � 2 [E0; E1℄:The funtion M'(�) is inreasing and, as in [8℄, [12℄, we may apply a Tauberian theorem based onthe estimates M'(�) = O(h�n); dd� (�̂h �M')(�) = O(h�n):



SPECTRAL SHIFT FUNCTION AND RESONANCES 25The �rst estimate follows from Proposition 2, while for the seond one we exploit Theorem 5 andthe argument of [12℄. Consequently, we haveM'(�) = (�̂h �M')(�) +O(h1�n);G'(�) = (�̂h �G')(�) +O(h1�n):Without loss of the generality, we may assume that every � 2 supp ' is a non-ritial value of thesymbol j�j2 + x1 + V (x): Applying Theorem 5, we dedueZ ��1 '�0(�)d� = �̂h � Z ��1 '�0(�)d�+O(h1�n) = �Z ��1 0(�)d��h�n +O(h1�n);where the funtion 0(�) is given by Theorem 5.Now we hoose C1 = Æ1 � kV k1 and we apply the above argument for a ut-o� funtion '(�)for whih we have supp ' � f� 2 R : � < C1g:For this purpose we hoose a domain 
 as above and observe that j�j2 + x1 + V (x) has no ritialvalues � 2 supp ': It is easy to see that j(�) = 0; j = 0; :::; N � 1 for � < C1; so for suh ut-o�funtion we have Z ��1 '�0(�)d� = O(hN�n); 8N 2 N:Consider a partition of unity '1(�)+'2(�)+'3(�) = 1; 'j(�) 2 C10 (R); j = 1; 2; 3; on the interval[C2; E1 + �℄; E1 + � < Æ1; C2 < C1: We assume that'3 = 1 on [E0; E1℄; supp '3 � [E0 � �; E1 + �℄;supp '1 � ℄�1; C1 � �[; � > 0:For � 2 [E0; E1℄; we get�(�; h) � �(C2; h) = � 1� Xw2(Res P2(h)) \
 Z 1C2 Imwjw � �j2'1(�)d�+1� Z 1C2 '1(�) Im r(�; h)d�+trh'2(Pj)(h)i2j=1 +M'3(�) +G'3(�):For the terms involving '3 and '1 we apply the above argument and we observe thatZ C1��C2 '1�0d� = Z C1���1 '1�0d�� Z C2�1 '1�0d� = O(hN�n); 8N 2 N:Next, we may hoie the value of �(�; h) at one point and we suppose that �(C2; h) = 0. Thus weobtain the asymptotis (7.13). To �nd the oeÆient 0(�), notie that from Theorem 4 and thede�nition of �(�; h) we haveh0; f 0i = Z ZR2n(�x1V (x))f(j�j2 + x1 + V (x))dxd�= 12!n Z 10 ZRn �x1V (x)f(t+ V (x) + x1)tn2�1dtdx= �12!n Z 10 ZRn �x1V (x) Z 1t+V (x)+x1 f 0(�)tn2�1d�dtdx



26 M. DIMASSI AND V. PETKOV= � 1n!n ZR� ZRn �x1V (x)(�� V (x)� x1)n2+f 0(�)d�dx;whih gives (7.14). The seond assertion of Theorem 6 an be established ombining Theorems 2,5 with the argument of the proof of Theorem 3 in [12℄. As in Theorem 3 in [12℄, we show that for� 2 [E0; E1℄ we have ��̂h � � Imwj:� wj2�(�) = � Imwj�� wj2 +O� 1j Imwje� C2h j Imwj�;��̂h � (1� '3(:)) Imwj: � wj2�(�) = (1� '3(�)) Imwj� � wj2 +O(h1);�̂h �G'3 = G'3 +O(h1);where we assume that � = 1 on [� 12C ; 12C ℄: Sine for all resonanes w 2 
 we have the lower boundj Imwj � Nh log(1=h); we may estimate the exponent involving j Imwj. Thus we onlude that�̂h � ('3�0)(�; h) = '3(�)�0(�; h) +O(hNC=2�n�1); 8N 2 Nand this implies easily the seond assertion of Theorem 6. 2Let V; [E0; E1℄ and Æ1 be as in Theorem 6. For f 2 C10 (R), introdue the measureh�; fi = Z �f(x1 + V (x))� f(x1)�dx: (7.15)Sine jh�; fij � sup jf 0j Z jV (x)jdx;� is a distribution of �rst order. We denote by singsuppa � the analyti singular support of �.Theorem 7. Suppose the assumptions of Theorem 4 ful�lled. Let Æ1 > E1 > Æ1 � kV k1 and let� 2℄E0; E1[ \ singsuppa �. Then for every h-independent omplex neighborhood 
 of � there existh0 = h(
) > 0 suÆiently small and C = C(
) > 0 so that for h 2℄0; h0[ we have#fz 2 
 : z 2 Res (P2(h))g � C(
)h�n:Proof. Let  2 C10 (R) be a ut-o� funtion so that  = 1 near [Æ1 � kV k1 � 1; E1 + jÆ1j +kV k1 + 3℄. For f 2 C10 (℄E0; E1[) introdue the distributionsh~�; fi = Z �f( (x1)x1 + V (x))� f( (x1)x1)�dx;h~!; fi = (2�)�n Z �f(j�j2 +  (x1)x1 + V (x))� f(j�j2 +  (x1)x1)�dxd�:Clearly, ~� 2 E 0(R) and ~� = �, ~! = ! on ℄E0; E1[, where the distribution ! has been introduedin Theorem 4. Next the proof follows with minor modi�ations that in [35℄ and we will presentonly the main steps.Denote by WFa(:) the analyti wave front. As it was shown in [35℄, we haveWFa(~�) = WFa(~!):



SPECTRAL SHIFT FUNCTION AND RESONANCES 27Sine ~! is real, it is lear that (�; 1) and (�;�1) are in WFa(~!): From the de�nition of the analytiwave front set by the F.B.I transformation, it follows that there exist sequenes (�j ; �j) ! (�; 1);j % +1 and �j & 0 suh that ��� Z �fj e��(t)e!(t) dt��� � e��jj ; (7.16)where fj(t) = eij (�j�t)�je� j2 (�j�t)2 and e� is a ut-o� funtion supported in a small real neighbor-hood of �; and equal to 1 near �:Let a be a small positive onstant. Set 
0 :=℄�� 2a; �+ 2a[+i℄� 2a2; a2℄ and 
 :=℄�� a; �+a[+i℄� a2; a2℄: By onstrution, there exist C0 > 0 suh that for j large enough we have��fj(t)�� � e� 1C0 j uniformly for t 2 
0 n 
; Im t � 0: (7.17)Let �(t) 2 C10 �℄� � 2a; � + 2a[; [0; 1℄� with �(t) = 1 on ℄� � a; � + a[: For a > 0 suÆiently smallthe inequality (7.16) remains true for e� replaed by �:Applying Theorem 4, we gettr�(�fj)(P2(h))� (�fj)(P1(h))� = (2�h)�n Z ��fj�(t)e!(t) dt+Oj(h1�n): (7.18)Here we have used that we may write the leading term with the ut-o� funtion  (x1) and for thisreason we use the distribution ~!: On the other hand, an appliation of Theorem 3 with f = fj;  = �and 
�;� replaed by 
; yieldstr�(�fj)(P2(h))� (�fj)(P1(h))� = Xz2Res(P2(h))\
� fj(z) +O(1)h�ne� 1C0 j ; (7.19)where 
� = fw 2 
; Im(w) < 0g: Combining (7.18) and (7.19), we getXz2Res(P1(h))\
� fj(z) = (2�h)�n Z ��fj�(t)e!(t) dt+O(h�n)e� 1C0 j +Oj(h1�n);whih together with (7.16) imply��� Xz2Res(P2(h))\
� fj(z)��� � (2�h)�nhe��jj �O(1)e� 1C0 j i+Oj(h1�n):Fixing j large enough and then taking h suÆiently small, we onlude that��� Xz2Res(P2(h))\
� f(z)��� � 1Ch�n; (7.20)where f = fj (with j �xed) is independent of h: Thus we obtain a lower bound on the number ofresonanes in 
� and sine we an hoose 
 as small as we wish, the proof is omplete. 28. AppendixOur purpose is to onstrut an operator bP2;� whih satis�es (6.3) and (6.4). Introdue0 < 0 = 1C0 minf�=2; (�� 1)1 Im �g � minf�=2; (�� 1)1 Im �g;



28 M. DIMASSI AND V. PETKOVwhere C0; 1 are the onstants of Lemma 3, � is given by the analyti distortion and 0 < � < 1 isthe onstant in the de�nition of 
: We assume below all these onstants �xed.Sine �V Æ ��� satis�es (5.2), we may hoose R1 > 0 large enough so thatsupjxj�R1�2����V Æ ������ � 03 : (8.1)We �x below R1 with the above property. Let �0+�1 = 1, where �0 2 C10 (Rn ; [0; 1℄) is equal to 1near B(0; R1) and �0 = 0 for jxj � R1 + 1: Let �j � e�j, where the funtion e�j has a support loseto that of �j.Choose a real-valued smooth funtion f(t) satisfying f(t)� t �M for 0 � t �M , f(t) = t fort > 2M and f(t)� t � 0; f(t) � M > 0 for all t 2 R+ . Here M is a large onstant whih will be�xed in the formula (8.5). Reall that, taking �0 small enough for j�j � �0 we havehRe a�(x)�; �i � 12 j�j2 (8.2)uniformly on x 2 Rn .Introdue the operator eP� := e�0(x)�f(h2D2x)� (hDx)2��0(x) + P2;�:Let  20 +  21 = 1, where  j has the same support properties as �j. We assume that  1 � �1.Combining (8.1) with the estimate (5.9), we obtaink(P2;� � z) 1uk > C1k 1uk; 8u 2 D (8.3)for all z 2 
. On the other hand, sine �0 1 = 0 and �1 1 =  1, we have( eP� � z) 1u = ( eP� � z)�1 1u = (P2;� � z)�1 1u:Then, for z 2 
 and u 2 D, the estimate (8.3) yieldsk( eP� � z) 1uk � C1k 1uk: (8.4)Let e 0 2 C10 (Rn ; [0; 1℄) have support lose to that of  0 and assume  0 � e 0. Let G 2 C1b (R;R)be bounded with all its derivatives. We hoose G so that G(x1) � 2� for x1 � 2� and G(x1�Re z) =x1 �Re z for x1 2 suppx1  0 and z 2 
1.Next, we hoose M so thatf(j�j2)� j�j2 + hRe a�(x)�; �i � supjxj�R1 jV Æ ��(x)j � kGk1 � j�0jkvk1 > (1 + j�j2); (8.5)for some positive onstant  independent on x 2 Rn and z 2 
.We de�ne eP1;�;z := e�0(x)�f(h2D2x)� (hDx)2��0(x)�h2r�a�(x)r�+ G(x1 �Re z) + �V Æ ���(x) e 0(x) + �v(x1)� i Im z + h2g(x1):Clearly, ( eP� � z) 0u = eP1;�;z 0u; 8u 2 D; z 2 
: (8.6)



SPECTRAL SHIFT FUNCTION AND RESONANCES 29Exploiting (8.5), we will show that eP1;�;z is globally ellipti for z 2 
. By using the h-pseudodi�erentialalulus, we will onstrut a parametrix for eP1;�;z and estimate its norm.The prinipal symbol of eP1;�;z has the form~p1;�;z(x; �) :=�f(j�j2)�j�j2��0(x)+ ha�(x)�; �i+G(x1�Re z)+�V Æ���(x) ~ 0(x)+ �v(x1)� i Im z:Obviously, ep1;�;z(x; �) 2 S((1 + j�j2)) andj~p1;�;z(x; �)j � ~j�j2; ~ > 0; j�j >> 1: (8.7)Here we use fairly the notations and the terminology for symbol spaes (see for instane, [10℄). Welaim that jep1;�(x; �; z)j � 2(1 + j�j2); 2 > 0 (8.8)uniformly on z 2 
 and (x; �) 2 R2n . For jxj � R1, we have �0(x) = 1, and from (8.5) we deduejRe ep1;�(x; �; z)j � (1 + j�j2); (8.9)uniformly on z 2 
 and jxj � R1.For jxj � R1 and x1 � R0 > ��, we have x1 �Re z > 2�, sine Re z � R0 � 3� for z 2 
 (hereR0 is given by the de�nition of the set 
 = 
�;�). Combining this with (8.1), (8.2), and using(f(j�j2)� j�j2��0(x) � 0 as well as the inequality G(t) � 2� for t > 2�, we obtainRe ep1;�(x; �; z) = �f(j�j2 � j�j2��0(x) (8.10)+hRe a�(x)�; �i+ G(x1 �Re z) + Re�V Æ ���(x) ~ 0(x) � 3(�+ j�j2); 3 > 0;uniformly on z 2 
, jxj � R1 and x1 �R0 > ��.For jxj � R1 and x1 � R0 � ��, we repeat the arguments of the proof of Lemma 3. Morepreisely, applying the inequalities Im a� � 0; Im � < 0 and Im z � �(1 � e��) Im �, we getj Im ep1;�(x; �; z)j = jhIm a�(x)�; �i (8.11)+ Im�V Æ ���(x) ~ 0(x) + Im �v(x1)� Im zj � 20=3;uniformly on z 2 
; jxj � R1 and x1�R0 � ��. Summing up the estimates (8.7), (8.9), (8.10) and(8.11), we obtain (8.8).Applying a lassial result for ellipti operators, we dedue from (8.8) that for h0 small enoughthe operator eP1;�;z is invertible for h 2℄0; h0℄ and k eP�11;�;zk = O(1), uniformly on z 2 
. Combiningthis with (8.6), we get k( eP� � z) 0uk � C2k 0uk; 8u 2 D; (8.12)uniformly on z 2 
.Taking together (8.4), (8.12), and using an estimate for the ommutator [ j ; eP�℄, similar to(5.11), for z 2 
 and h small we deduek( eP� � z)uk2 = 1Xj=0 k j( eP� � z)uk2 (8.13)



30 M. DIMASSI AND V. PETKOV� 12 1Xj=0 k eP� � z) juk2 � 1Xj=0 k[ j ; eP�℄uk2 � 4kuk2; 4 > 0; u 2 D:Exploiting one more the fat that the Weyl symbol of ~P� � P2;� has ompat support in x and �,we onlude that ~P� � z is a Fredholm operator with index 0. Consequently, we have proved thefollowing.Lemma 5. For h small enough and z 2 
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