GLOBAL STRICHARTZ ESTIMATES FOR THE WAVE EQUATION WITH
TIME-PERIODIC POTENTIALS

VESSELIN PETKOV

ABSTRACT. We obtain global Strichartz estimates for the solutions u of the wave equation (87 —
Az 4V (t,x))u = F(t, z) for time-periodic potentials V (¢, z) with compact support with respect to x.
Our analysis is based on the analytic properties of the cut-off resolvent R, (2) = x(U(T) — zI) ™ *41,
where U(T) = U(T,0) is the monodromy operator and T' > 0 the period of V (¢, z). We show that if
Ry (z) has no poles z € C, |z| > 1, then for n > 3, odd, we have a exponential decal of local energy.
For n > 2, even, we obtain also an uniform decay of local energy assuming that R, (z) has no poles
z € C, |z| > 1, and Ry (z) remains bounded for z in a small neighborhood of 0.

Keywords: Strichartz estimates, decay of energy, monodromy operator
1. INTRODUCTION
Consider the Cauchy problem
{8t2u — Apu+V(t,x)u = F(t,x), (t,r) € R x R™, (L.1)
u(t,z) = fo(z), w(r, z) = fi(z), z € R",

where the potential V (t,x) € C°(R"*),n > 2, satisfies the conditions:
(Hy) there exists Ry > 0 such that V(¢,x) = 0 for |x| > Ry, Vt € R,
(Hy) V(t+T,z)=V(tx), V(t,z) € R" with T > 0.

Consider the homogeneous Sobolev spaces HY(R™) = A~7YL?*(R"), where A = /—A and —A
is the Laplacian in R". Set H,(R") = HY(R") & H""}(R") and notice that for v < n/2 the
multiplication with smooth functions ¢ € C§°(R") is continuous from H7(R") to H7(R") and for
functions with compact support the norms in H7(R") and HY(R") are equivalent. The solution of
(1.1) with F' = 0 is given by the propagator

U(t77—) : H"/(Rn) = (f07 fl) I U(th)(f()vfl) = (U(t,!l?), ut(tvx)) € H"/(Rn)
and we refer to [12], Chapter V, for the properties of U(t,7). Let Up(t) = €“° be the unitary
group in H,(R") related to the Cauchy problem (1.1) with V' =0, 7 =0 and let U(T) = U(T,0).
We have the representation

Ut,7)f = Uolt —7)f — / U(t, 5)Q(s)Uo(s — 7)fds,
where

@s) = (V(g,x) 8)
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By interpolation it is easy to see that
1T )l (mey s mmy < Owenﬁt_ﬂa Ky 20, (1.2)
v (R™)—H~ (R™)

where ., is bounded if  runs in a compact interval. We say that the real numbers 1 < p,q <2 <
p,q < +00,0 < v <1, are admissible for the free wave equation (see [11], [16], [3]) if the following
estimate holds:

Global Minkovski Strichartz estimate. For data (fo, f1) € H,(R"), F € LP(R; LL(R™))
and u(t,z) solution of (1.1) with 7 =0, V = 0 we have

il s 2y + 1t 2) | gy + 1800t )| s oy
< Co(Ilfoll gy + Ml i1 gy + 1F g 13y ) (1.3)

with a constant Cy = Cy(n,p,q,p,q,7y) > 0 independent of ¢t € R.

We refer to [7], [10], [11], [16] and to the references given there for global Strichartz estimates
2(n—1)

for the free wave equation. Notice that if ¢, ¢ < 5, then p,q,p,q, v are admissible if the

following conditions hold:

1 1
R N L ) (1.4)
p q 2 p g
1 -1 1
;<)) 7= ()E-7) 9
P 2 2
where % + Z% =1, % ; = 1. From the gap condition (1.4) and the admissibility conditions (1.5),
we deduce
(RS Ve YL A}
2 2 q 2 2 q

< 1 and for technical reasons we suppose that

In this paper we deal with the case 0 < v
t Corollary 3.2 in [10] for more precise conditions on

v < (n — 1)/2. The reader could consul
D, 4, P, 4,7 leading to (1.3).

Let x, ¥1 be functions in C§°(R") such that x(x) = ¢1(z) = 1 for |z| < Ry + T. By a finite
speed of propagation argument we can choose ¥;(x) so that

(1 =¢)U(0,5)Q(s) =0, 0 < s <T. (1.6)

In the following we suppose that ¢y is fixed. Obviously, for A > 0 large enough and 36 > A
the operator (U(T) — e~%I) is invertible. In Section 2 we show that the cut-off resolvent

R\(0) = x(U(T) = e~*1) "1 : Hi(R") — H1(R")
admits a meromorphic continuation in C for n > 3, odd, and in
C'={0eC: 0+#2rk—ip, n>0,keZ}

for n even. Introduce the following condition.
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(R) The operator Ry, (#) admits a holomorphic extension from {§ € C : I > A > 0} to
{0 € C: 30 >0}, for n > 3, odd, and to {6 € C : 30 > 0,0 # 27k, k € Z} for n > 2, even.
Moreover, for n even we have

,\_}(i)],qi>o [ Ry (M) [l Ry () < O©- (1.7)

This condition is independent on the choice of x and ¢, and (R) implies a decay of the local
energy. Our main result is the following

Theorem 1. Let the condition (R) be fulfilled and let 1 < p,¢ < 2 < p,q < +o00, 0 < v <
min{l, (n —1)/2}, p > 2 be admissible for the free wave equation. Moreover, if n is even assume
that p < 2. Then for data (fo, f1) € H,(R™), F € LY(R; LL(R™)) and u(t,x) solution of (1.1) with
7 =0 we have for all t € R the estimate

ol 2o 22y + 160 D)y + 1001CEs ) s
< C(I1follgruqamy + Wl g1y + 1P e £y (18)
with a constant C' = C(n,p,q,p,q,7) > 0 independent of t.

Remark 1. The condition (1.7) is similar to the bound of the norm of the cut-off resolvent

AJ3?§>0 | APy (i) || 2 2 < 00
in the stationary case (see [21] for general boundary conditions and [3] for Dirichlet problem). Here
Py(A) = x(P — X?)71x, SA >0, and (P — A?)7! is the resolvent of a self-adjoint operator P.

The decay of local energy for time dependent perturbations has been investigated in [5], [1],
[12] [20], [19]. The main hypothesis is that the perturbations are non-trapping (see [12] and [20] for
a precise definition related to the propagation of singularities). In contrast to the stationary case,
the non-tapping condition is not sufficient for a local energy decay. In particular, the problem (1.1)
is mon-trapping but we may have solutions with exponentially growing local energy. To exclude
the existence of such solutions, we must introduce the resonances and this explains the role of the
condition (R). For n > 3, odd, the exponential decay of local energy have been established in [1],
[12] (see also [5] for moving obstacles) exploiting the spectrum of the operator Z°(T') = PYU(T)P’,
where P{ are the orthogonal projectors on the Lax-Phillips spaces (see [9])

Di = {f € Hi(R™) : Up(t)f = O for |z| < £t + p, £t > 0}, p > Ry.

The poles of (ZP(T) — zI)~! are called resonances and their independence of p has been proved by
Cooper and Strauss [5] (see also Chapter V in [12]). Moreover, for n > 3, odd, it was proved in [2]
that the poles of x (U (T)—zI) 111 coincide with their multiplicities with the eigenvalues of the oper-
ator ZP(T'). Thus for n, odd, the condition (R) means that Z?(T) has no eigenvalues z € C, |z| > 1.

In [19], [20] Vainberg proposed a general analysis of problems with time-periodic perturbations
including potentials, moving obstacles and high order operators, provided that the perturbations
are non-trapping. The results of Vainberg [20] cover the case of odd and even dimensions n > 2.
The analysis in [20] is based on the meromorphic continuation of an operator R(f) (see [20] for a
more precise definition). On the other hand, R(f) has a complicated form and it seems difficult
to examine its analytic continuation and to find a link between the properties of R(#) and the
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behavior of the operator Z#(T).

The novelty in our approach is that we exploit the meromorphic continuation of R, (#). We
like to mention that in the study of the time-periodic perturbations of the Schrédinger operator
(see [6] and the papers cited there) the resolvent of the monodromy operator (U(T) — z)~! plays
a central role. Moreover, the absence of eigenvalues z € C, |z| = 1 of U(T'), and the behavior of
the resolvent near 1, are closely related to the decay of local energy as t — oco. So our results may
be considered as a natural extension of those for Schrédinger operator. On the other hand, for the
wave equation we may have poles z € C, |z| > 1 of the R, (), while for the Schrédinger operator
with time-periodic potentials a such phenomenon is excluded. It is interesting to raise the question
when the condition (R) holds. In this direction we have the following result for n odd which follows
directly from Theorem 5.5.3 in [12] and Proposition 1 in [2].

Theorem 2. Forn > 3, odd, (R) is equivalent to the following conditions:
(a) for each p(z) € C(R"™) we have
Jimn ([ QU (t,0) fll3, gy = 0, Vf € Ha(R™),

(b) for each f = (0,g) with g € L*(R™), supp g C {x : |z| < Ro}, there exists a sequence
m; — 00, mj € N, depending on g, such that

(1@ (T, 0)flly, gy = 0,
J

where Y(z) € C§°(R™) is a fived function with ¢(x) =1 for |x| < 3Ry.

We would like to notice that there are many examples, where the condition (a) of the above
theorem is fulfilled (see Theorem 5.1.3 and Examples 5.1.4, 5.1.5 in [12]). The same approach to
the analysis of the local energy decay can be used for non-trapping moving obstacles. On the other
hand, for trapping moving obstacles it seems that the cut-off resolvent R, (#) has no meromorphic
continuation in C even for n odd. It natural to conjecture that R, () has a meromorphic continu-
ation for 36 > €, Ve > 0 and this is an interesting open problem.

Global Strichartz estimates for the wave equation with non-trapping stationary perturbations
have been obtained in [16], [3] and the reader may consult the references in these papers for other
works. For hyperbolic equations with coefficients depending only on ¢, Strichartz estimates have
been studied by Reissig and Yagdjiian [13], [14], [15]. To our best knowledge there are no results
concerning Strichartz estimates for the wave equation with periodic in time perturbations depend-
ing on (¢,x). In our analysis the non-trapping condition is replaced by (R) and our approach was
inspired by the work of Burq [3] and the recent progress related to the results of Christ and Kiselev
[4]. The L? integrability of the local energy (see Section 4) plays an important role in the proof of
Theorem 1. The investigation of the homogeneous Strichartz estimates with /' = 0 is simpler and
the corresponding results can be obtained for a larger set of indices p, q, .

Acknowledgments. The author is grateful to V. Georgiev and J. F. Bony for many helpful
discussions and for the critical remarks concerning a preliminary version of the paper.
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2. MEROMORPHIC CONTINUATION OF THE CUT-OFF RESOLVENT X (U(T) — zI) 14y

Throughout this and the following sections we denote by ||.|| the norm in H;(R™) and we use
the same notation for the norm of the bounded operators from H;(R™) to H;(R™). Our purpose is
to prove that for x, ¥ € C§°(R") the cut-off resolvent

X(U(T) — e D)"Yy - HY(RY) — Hi(R™),
admits a meromorphic continuation with respect to € in C for n > 3, odd, and in
C={zeC: z#2rk—ip, n>0, keZ}

for n > 2, even. Let ¢ € C§°(R"™) be a fixed cut-off such that ¢(z) =1 for |z| < Ry +T. By a finite
speed of propagation argument we get

(1 —=9)U(T,s)Q(s) =0, Q(s)Up(s)(1 —¢) =0,0<s<T. (2.1)
For A > 0 large enough and 36 > A the resolvents (U(T) — e~ #1)~1, (U(T) — e~*1)~! exist

and we have the equality

T
U(T) — 2I = [I - 1/;/0 U(T, $)Q(s)Uo(s)dso(Up (T) — zI)_l] (Uo(T) — 2I), z = e,

It is easy to show (see [1], [12]) that the operator

T . .
zp/O U(T,s)Q(s)Uy(s)ds : Hi(R") — H1(R")

is compact and for 6 > A we have

T
W) =20 = (OT) == [T = [ UT9Q)Ta(s)dsoU(T) = =1)].

Now let ¢ € C§°(R"™) be a fixed cut-off function satisfying (1.6) and such that 11 (x) = 1 on supp
1. Take an arbitrary cut-off function x € C5°(R™) so that x = 1 on supp 9. Multiplying the above
equality by x and 1, we get

T
W(OH(T) = 2Dy = x(U(T) =21 [T = [ V(T 9)QUVs)dst Ua(T) = =) .

Introduce the operator
T
K(2) = [ VT QU Ui Un(T) - 21) .

For n > 3, odd, the operator )(Up(T) — e~*I)~14); admits an analytic continuation with respect
to 0 in C and this follows immediately from the Huygens principle and the expansion
. N, 1) '
Y(U(T) — e I) "y = — D YU (kT)ipre*H1

k=0

which holds for 36 > A > 0. On the other hand, the operator K (z) is compact in H;(R") and an
application of the analytic Fredholm theorem leads to a meromorphic continuation of x(U(T") —
e~®1)~14y in C. Notice that if zg is a pole of x(U(T) — zI)~ ')y, then dim Ker (I — K(z)) > 0.
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Inversely, assume that there exists a function f # 0 such that f = K(zp)f. Then (I — K(z))~! is
meromorphic in a neighborhood of zy and for |z — 2| small enough we have

(1= K@) =3 s + B

with analytic function B(z) and finite rank operators A;, A,, # 0. Clearly, Im A,, C Ker(I —K(2)).
If x(U(T) — zI)~ 141 is analytic at zg, then

X(Uo(T) — z0I) "1 Appg = 0, Vg € Hi(R™)

and (Uo(T) — 20I) 11 A,,g = 0. Going back to the operator I — K(zg), we conclude immediately
that A,, = 0. Proceeding in this way, we obtain A; = 0, j = 1,...,m, which is a contradiction.
Consequently, zg is a pole of x(U(T) — 2ol) ~11;.

For n even we will apply the same argument in C' and for this purpose we must show that
X(Uo(T) — e=®I)~"4p; can be continued as an analytic function in C'. We extent Up(t)(11 f) as 0
for t < 0 and consider the Fourier-Block-Gelfand transform

9(0,s) = (F(Un(t)(¥1.f))(0 Z Uo(kT + )™ (41 f)

k=—00

defined for 30 > A > 0. In fact, it is easy to see that

9(6,5) ZUO (KT)e™ (41 f)

= Up(s)e™ " (e7T — Up(T)) ' (wr.f).

We refer to [20] for the properties of the Fourier-Block-Gelfand transform. We conclude that the
analytic continuation of x(Uy(T) — eI)~14); is reduced to that of xF(Uy(t)(v1f))(6,0). We are
in position to apply Lemma 6 and 7 in [20] saying that xEF'(Uy(t)(101f))(0,0) admits an analytic
continuation in C'. In fact in [20], Lemma 7, the transformation x F (a(t)Up(t)(¥1.f)) (6, s) is treated,
where a(t) € C*°(R) is such that a(t) =0 for t < tg, a(t) =1 for t > to + 1, to > 0. The analysis
of the term xF((1 — a(t))Uo(t)(¢1£))(8,s) is trivial and we obtain the result. Moreover, in a
neighborhood of 0 we have the representation

x(Uo(T) — e 1) 1py = By(0)0" 1In 6 + By (6), (2.2)

where By(#) and B (6) are analytic for |#| < ¢y and 8§Bo(9)‘9:0, J > 0, are finite rank operators.
To obtain a meromorphic continuation in C" of x(U(T) — e~®I)4;, we repeat the argument for n

odd and we deduce that the poles 6 € C” are independent of the function y. Thus we can introduce
the following

Definition 1. We say that z9 € C (resp. z9 € C') is a pole of x(U(T) — zI)~ 41 for n odd (resp.
n even), if

T
dim Ker (I . ¢/O U(T, $)Q(s)dsy(Up (T) — zof)—lzpl) >0
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Finally, to study the invertibility of the operator (I — K (e~*)) in a neighborhood of 0, we apply
Theorem 8 in [20] (see also Lemma 10 in Chapter IX, [18]). Consequently, for || < €, | arg 0—7/2| <
m, we have

(I - K ) =6 mz( ) (In) + C(6), (2.3)

where m > 0 is an integer, P is a polynomlal, PJ is a polynomial of order at most [j, [ > 1, the
coefficients of P, P; are finite rank operators and C(f) is analytic. Combining (2.2) and (2.3), we
get for |0| < ey, |argf — w/2| < 7 the representation

x(U(T) — e 1)1y = Z Z Ry;0%1nd 0. (2.4)

k=—m j=—my

3. DECAY OF THE LOCAL ENERGY

In this section we will establish a decay of local energy and we assume the condition (R)
fulfilled. The results are different for n odd and n even. We fix the cut-off functions ), 1 as in the
previous section and suppose that xy € C§°(R™) is such that x(z) = 1 on supp . The argument
of the previous section shows that (R) leads to the absence of poles § of R, () with I > 0 (resp.
30 >0, 0 # 21k, k € Z) for n odd (resp. n even). On the other hand, the representation (2.2)
yields

(Uo(T) — e~ 1 = ¢pupr (Up(T) — e 1) "'y = Lo + O(0), [0] < €0
with a bounded operator Lo. Here and below O(f) denotes a bounded operator in H1(R™) such
that ||O(9)|| < C|60], where ||.|| is the norm in £(H;(R"™)). Let

(1K) = (1~ ¢/ (T 9)Q(s)Uo()ds(Lo + O(0))
— 6 mZm’“ Je(A +0;(In~ )+Ze Mk Int 9 (Fj, + O (In~1 0)) + Fo(6)
7=0 k=1

with finite rank operators A;, Ag # 0, Fj, k=1,....,m, m > 0, r > 0. First assume m > 0. Then
the condition (R) implies

lim  [|(Lo + OGA)((IA) ™ In (i) Ag + ...)|| < Co,
A—0, \>0

and we deduce LgAg = 0. Here ... denotes a sum of terms with lower order singularity at 0. On the
other hand, for 0| < ey, IO > 0, we have

(1- ¢/ (T, $)Q(s)Un(s)ds(Lo + O(6)) ) (67" " 649 + ..)

=0"""In" 9140 +..=1

and we conclude that Ag = 0. The case m > 0, r < 0 can be treated in the same way and we
conclude that we must have m = 0. Repeating the same argument with m = 0 and r > 0, we
obtain that in the leading term of (I — K (e~%))~! we have m = 0, r < 0. Finally, (R) implies that
(I — K(e=%®))~1 is bounded for || < ¢y and we deduce that R, (6) is bounded for || < ¢ for every
x € Cg°(R™) having the property mentioned above.
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Given a cut-off function ¢ € C§°(R"), we will estimate the norm ||¢U(¢,0)f|| for functions
f € H1(R™), such that f(z) =0 for |x| > R. For this purpose it is sufficient to estimate the norm
of

/0 oU(t,s)Q(s)Uo(s)fds

uniformly with respect to f € C5°(B(0, R))x € C§°(B(0, R)), where B(0,R) = {z : || < R}. We
extend Up(s)f as 0 for s < 0 and consider the Fourier-Block-Gelfand transform

k=00

9(0,8) = (F(Uo(s)))(0,8) = D Uo(kT + )™’ f

k=—00

which is well defined for 36 > o > 0. Applying the inverse transform of F' (see [20]), we are going

to examine
t

[ wu9ae) / 9(0, )d0ds,

a

2

where dy = [ia — 7,ia + 7] and « > 0 will be chosen large enough below.

Choose an integer m € Z so that ' = t — mT € [0,T[ and fix m. Changing the variable
s = s +mT and using the property U(t + mT,s +mT) = U(t, s), we obtain

t/
% eU(t,s)Q(s) / —imb (9, s")dOds'
t/
% oU(t,s)Q(s")Uy(s") / ~im94(6,0)dlds’
Ly~ Ut,shQ(s' e"™04(0,5")dods’ = I I(t
tar 2 [ PR [ o0 s = o) + o)

The integral I;(t) can be estimated following the argument given below and we will deal with
the infinite sum. Changing the variable s’ = —T — kT + &, we get the series

i/OT/ QU + T,0)UKT)U(0, €)' RV Q(¢)e= M0 (9, £)dOdE. (3.1)

Here we have used the fact that
Ut +T+ kT, &) =U{' +T,0)UKT)U(0,€).

Now choose o > 0 so that the series
ZU kT k+1 ( —i@I_U(T))—l

is convergent in the operator norm for § € d,. For 0 < £ < T we can find a cut-off function
x € C5°(R™) so that x(x) =1 on supp ¢ and

QU (' +T,0)(1 — x) = 0.
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Notice that the function x depends on ¢. According to the properties (1.6), (2.1) of 1, 1, it is
clear that ( can be written in the form

/ / SUE +T,0)x(e~ T — UT)) rU(0,)Q(E)Un (€)™ g(0,0)deds.  (3.2)

First assume that n > 3 is odd. Then (R) implies that R, (f) has no poles with ¢ > 0 and
we can choose § > 0 so that R, (6) has no poles § with S0 > =0T, —7m < RO < 7. Let d_s7 =
[—i0T — 7, —idT + 7]. Recall that t = mT + ¢, so

e—m(ST g Ce—6t

with C' > 0 independent on m and ¢. On the other hand,

bg(0,0) =¥ Y Ug(kT)e™ f = e (e 1 — Uy(T)) "' f, 36 > 0

k=0

and we conclude that 1g(#,0) admits an analytic continuation in C. We shift the contour of the
integration from d, to d_sr and we obtain

I2(t)]| < Cre™ |1 fll, t =0,

where C1 > 0 depends on ¢ and R. To estimate I;(¢), we shift again the contour of integration to
d_sp and we obtain the same estimate as that for I5(¢). Combining these estimates, we get

leU (2, 0) fII < Coe™|| £ (3.3)
Next let 0 < s <t and let s — jT € [0,T[, j € N. Then
leU (L, ) fIl = Ut — jT,0)U(0, s — jT) f||
< Cae*CIDNU(0,5 — 5T) £ < Cae™ | £ (3.4)
with a constant Cy depending on ¢ and R+ T. Here we have used the fact that U(0,s — j7) f has
a compact support independent of s.
Passing to the case n even, we will estimate the integral (3.2). Choose again 6 > 0 so that
R, (#) has no poles 0 lying in
{0:30 > =0T, —m < £R6 < 0}.

Next choose 0 > ¢y > 0 so that R,(\) is bounded for |#| < ¢ and consider the contour v =
I'y Uw UTy, where

Ty = [—i6T — 7, —i0T — v], Ty = [~idT + v, —idT + 7]

and 0 < v < ¢ is sufficiently small. The contour w is a curve connecting —idT — v and —iéT + v,
symmetric with respect to the axis R = 0. The part of w lying in {6 : 30 > 0} is a half-circle
with radius ¢y and w N {£RO > 0, IO < 0} is formed by line segments. Thus w is included in the
region where we have no poles of R, (#). We shift the integration from d, to the contour 7. The
integrals on I'y, k = 1,2, can be estimated as in the case n odd. The integral over w can be handled
following Lemma 7 in Chapter IX, [18]. In fact we must estimate only the integral over a part of
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the circle |0] = €. Since (I — K(e7?))~! is bounded for |f| < €, the leading term of the singular
part of (I — K (e~%))~! is given by
!
Ag+ > I F A +o(|nb| ™), j = 1>1,
k=j

where A; are finite rank operators. Then

M
/ e—z’mé‘ ln—l 0do = m—1 Z a; ]n_l_j m + O(m_l ln_l_M_l ’I’)’L), m — Q.
w j=1

On the other hand, according to (2.2), the leading term of the singular part of x(Up(T) —e ™)1y
is "1 In0By(0) and

/ e—im@en—l Inodo = aom_" + O(m_n ln_l m), m — Q.

The integrals of the terms analytic for |0| < ¢y are trivially bounded and summing up all contribu-
tions, we get
leU(t0)fI| < Cst™ ™2t f], ¢ = to > 1.

In the same way, as in the case n odd, we obtain

leU(t,8)fIl < Colt =) In2(t = s)[|f||, t —s > to > 1. (3.5)
Finally, for 0 < s <t we get

where for £ > tg > 1 we have

—ot
e n > 3, odd
t) = P ’ 3.7
p(t) {t_lln_2 t, n > 2, even. (37)

4. L2—INTEGRABILITY OF THE LOCAL ENERGY
We start with the following

Proposition 1. Assume the condition (R) fulfilled and 0 <~y < min{1, (n —1)/2}. Let (fo, f1) €
Hy(R™) and let F € L}(R; HJ(R™)) be supported in {(t,z) : |z| < R}. Then for every fized
@ € C3°(R™) the solution u(t,x) of (1.1) with T = 0 satisfies the estimate

| gutt, o)ttt ) B oyt

2
< C(Ifollzruqamy + 1l gr-1 amy + 1P s zcany ) (4.1)
with a constant C' = C(n,v, ¢, R) > 0 depending only on n, v, ¢ and R.

Proof. First notice that for the free wave equation and f = (fo, f1) € HV(R”) we have

|1V, gyt < Calon 7. 0SB, (42)

—00

This result is well known for the energy space H;(R™) and n odd. To obtain it for v < (n —1)/2,
we can apply a result of Smith and Sogge.
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Lemma 1. ([16], Lemma 2.2) For v < (n — 1)/2 the following estimate holds

[e.e]
itA
() Byt < ol Ve
In [16] the authors consider only odd dimensions n > 3, but the proof of this lemma goes
without any change for even dimensions. Setting (ug(t,x), dug(t,z)) = (Up(t)f), we have the
representation
sin(tA)

uo(t, ) = 22 fi () + cos(tA) fo(a)

and we obtain immediately (4.2).
Passing to the estimate of pU(¢,0)f, we write

U(t,0)f = Un(t)f — /0 U(t, 5)Q(s)Uo(5) fds

and we get

~

t
U0, < 16Ta(Ofl, + ]| [ cUt )@t fs],,

H [ vt e s,

~y

The estimate (1.2) of ||U(t, S)HH’Y_)H’Y for |t — s| <tpand 0 <~y <1 implies

t
H/t_t @U(t73)Q(3)Uo(s)fds‘ L < O hoUn () f 1,

7,
where k1 > 0 is independent of ¢ and 2 € C§°(R"™) depends only on ty5. On the other hand, for
feH, (R™) we get

Q(s)Uo(s)f € Hy41(R") C H1(R"), 0 <y <1,
and choosing a cut-off function 5 € C§°(R") equal to 1 on supp, V (¢, z), we get

H/Ot—to Ut S)Q(S)Uo(S)de‘ . H/Ot_to eU(t, s)ﬂQ(S)UO(S)de‘

Hoy(RP

Hl(R")
t—to
< [ IV 5) gyt | QU)o

< Co(Y (¢ = t0)p(®) # Y DRV (0 gy o))

Here Y (t) denotes the Heaviside function and we have used (3.6) with p(¢) given by (3.7). It is
clear that Lemma 1 implies

| 1ROV ytt = [ IV 2ot ) gyt < Cll T oy (4)

Since Y (t — to)p(t) € L*(R), an application of the Young inequality for the convolution combined
with (4.3) yield (4.1) with F = 0.
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In the general case (F' # 0) consider the solution v(¢, z) of the problem (1.1) with 7 =0, f, =
fi=0, FeL?R; H](R")). Then

t
(oltsa),pdrolta) = [ Ut s) ()0, Fls.)ds
0
with x € C§°(R"™) such that x(x) =1 for |x| < R. Notice that we have
(0, F(t,z)) € L(R; Hqpa (R™)) C LE(R; Hy (R™)).

Exploiting the local energy decay of [|¢U (¢, S)XHH1—>H1 and repeating the above argument, we get
for pv(t,x) the estimate (4.1) with fy = f; = 0. This completes the proof.

Remark 2. It is natural to obtain the estimate (4.1) under the condition F € L(R; H) ™' (R™)).
To do this, we must use a local energy decay of ||@U (¢, s)xHHW_)H7 which can be deduced from a

decay of ||U (t, s)xll3;, 7, and interpolation.

We need also a result concerning the non-homogeneous free wave equation.

Proposition 2. Assume 1 < p < 2. Let f = (fo, f1) € H,(R"), F € LP(R; LL(R™)) and let u(t, x)
be the solution of (1.1) with V- =0, 7 = 0. Then for every ¢ € C3°(R™) we have

| tgutt,a)onutt o) oyt

—00
2
< C(”aﬁ? 4,7 @)(”fOHHW + Hfl”Hw—l + ”F”Lf(R;Lg(Rn))) : (4’4)
Proof. It is sufficient to consider the case fo = fi = 0. The solution u(t,z) has the form
t
(ultsx), Bt a)) = [ €90, F(s,))ds,
0

Given a fixed tg > 0, we will estimate the norm

H/Oto pe't=9)G0 (0, F (s, :c))ds‘

uniformly with respect to to. Without loss of the generality we may suppose that F(¢,z) = 0 for
t < 0. First, according to (4.2), we have

. to
Hgoe”GO / e %G0(0, F (s, a:))ds‘
0

L (RFH4(R™))

G
) < COH/O e O(O,F(S,l‘))dé" @

L% (R+§H'Y (R™

with a constant Cp > 0 independent of ¢y. Since €0 is unitary in HW(R"), it is clear that

H /0 v e 500 (0, F(s,))ds|

ey (R

to
_ H/O ei(to—s)Go(O’F(s’x))dS‘ Py &™)

= [[(ulto, ), drulto, 2))lly, (mny-
Second, the estimate (1.3) yields

[u(to, @)l gy ey + 10¢w(to, )|l fry—1 gy < OIHFHLf(R;LZ(Rn))
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with a constant C; > 0 independent of ¢y. Thus we obtain

H/Oto pe!(t=3)Go (), F(s,m))ds‘

We will apply a version of Christ-Kiselev lemma [4] given in [8] and for the sake of completeness
we state it below (see also [16], Lemma 3.1 and [17], Lemma 3.1).

Lemma 2. ([8], Lemma 8.1) Let X and Y be Banach spaces, and for all s,t € Rt let K(s,t) :
X — 'Y be an operator-values kernel from X to Y. Suppose we have

H/0<8<t0 K(S’t)g(s)ds‘ L4([tg,00); Y)

for some A>0,1<p<q<oo, and all tyg € RT and g € LP(R"; X). Then we have

H/O<S<tK(s,t)g(s)ds‘

where Cp, 4 > 0 depends only on p,q.

L2(R+;H (R™)) = OOCIHFHLf(R;Lg(Rn)). (4.5)

< Allgll e v+ x)

Li(R+;Y) S OpquHg|’Lp(R+;X)7

In [8] the above result is formulated with R instead of RT and s, t, ty € R, but, as it was
mentioned in [8], the same proof works for other intervals and in particular for R*. By hypothesis
P < 2, so taking into account (4.5), we deduce from Lemma 2 the estimate

H/Ot @' t=9)G0 (0, F (s, a;))ds‘

In the same way we treat the norm

H/Ot gpei(t_S)GO(O,F(s,x))ds‘

L2 (R, (R™)) < Coll Pl g ey

LE(R;Hy(R™))
and the proof is complete.

Remark 3. The estimate (4.4) has been proved in [16] for n > 3, odd, and 1 < p < 2. The
restriction p < 2 in Proposition 2 is related to the application of Lemma 2 and it is an open problem
to see if this estimate remains valid for n even and p = 2.

Corollary 1. Assume 1 < < 2. Let f = (fo, f1) € H,(R"), F € Lf(R; LI(R")) and let u(t,z) be
the solution of (1.1) with 7 = 0. Then for every ¢ € C§°(R™) we have

| teutt,a),onutt o), g it

— 00

< 405,370 (1 foll s + 1l s + 1F N g sy ) (46)
Proof. We write u = ug + v, where wug is the solution of the problem
(0?2 — A)ug = F,
{U0|t:0 = fo, Oruolt=0 = f1,
while v is the solution of the problem
(02 — A+ V)v = —Vuy,
{v|t:0 = Oyvl|i=o = 0.
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Applying Proposition 2 for Vug, we obtain the estimate

IVl e szanyy < Co(Ioll i + 1Al s + 1F N pg, Lagamy)- (47)
In fact, choosing a function § € C§°(R"™) such that 5 =1 on supp, V (¢, ), we have
||V(t,ac)u0||H;(Rn) = C%VHﬁUOHH;(Rn)-
Next we write

(po(t,x), porv(t,x)) = —/0 wU(t,s)(0,Vug(s,x))ds.

Since Vug € L7 (R; H) (R™)), repeating the argument of the proof of Proposition 1, we get (4.6).

5. GLOBAL STRICHARTZ ESTIMATES

In this section we establish the estimate (1.8) and complete the proof of Theorem 1. We present
the solution of (1.1) as a sum u = ug + v, where ug and v are the same as in the proof of Corollary
1. The estimate of [[uo||Lr(r; Lg(rn)) follows form (1.3). Next we have

u(t,z) = —/0 M(Vuo + Vo) (s, x)ds.

As in the previous section, for Vuy we have the estimate (4.7). We apply Proposition 1 for Vv and
deduce

||V’LLO + VUHL%(R; H%(Rn)) < Cl(”fOHH“/ + Hfl”Hv*l + HFHLf(R; Lg(Rn)))‘ (5-1)
We wish to prove that

H/Ot M(Vuo + Vo) (s, x)ds‘

Let 8 € C5°(R") be the same as in the proof of Corollary 1. An application of Lemma 1 shows
that the operator

LY (RT; LE(R™))

T: AR 3 g fetithg € LARY; 7 (R"))

is bounded. The adjoint operator
(T*G)(x) = /0 h eT A 3G (s, x))ds
is bounded as an operator from L?(R*; H)(R")) to HJ(R") and this yields
H/Ow eﬂsAﬁh(S,x)(s,x)dsHm(Rn) < Collhl 2 s ey (5.3)
Consider the integral operators
J: LY (RY; HY(R™)) 5 h(t,z) — /OtK(s,t)h(s,x)ds € LY(RT; LL(R™)),

where K (s,t) = A~ !sin((t — s)A)B. To apply Christ-Kiselev lemma [4], it is sufficient to have an

estimate for -
H/O sm((tA— S)A)ﬁh(s,x)ds‘

Ly (R+;Lg (R™))
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By (1.3) and (5.3), we get
o
He:l:ztAA—l / eiZSAﬁh(S,l‘)dé"
0

L} (RT; Lg(R™))

= 03H/0 eﬂSAﬁh(S’m)d‘SHm—l(Rm < C2Cslhll g+, i1z ey
We take h = Vug + Vv and we use the addition formula for sin((¢ — s)A) to conclude that
((t—s)A
H/ gi—xﬁ—&V +Vud(

By hypothesis p > 2, and an application of Christ-Kiselev lemma [4] yields immediately (5.2).
Consequently, (5.1) implies an estimate for |[v|[zrg+,r9(gn))- Similarly, we deal with the norm

[v]|£p (m~;L8(Rn))- To estimate [[v(to, ac)||HW(Rn) uniformly with respect to ¢y, notice that

@y = GV T Vollpes gy (4)

) to to .
Hei’tAA_lf e N Vg + Vo) (s, x dsH < C’5H/ e (Vg + Vv)(s,:c)dsH ,
0 HY(R™) 0 H = 1(R")
with a constant C5 > 0 independent of ¢{3. As above, we can estimate the right hand part by
|IVug + Vol L2(R; I (R™)) uniformly with respect to ¢y and apply (5.1). A similar argument works

for ||Opv(to, x)|| Ffi-1(rn)- Thus the proof of Theorem 1 is complete.

To obtain homogeneous Strichartz estimates, we need to apply Proposition 1 combined with
the estimate (4.2). Moreover, = is related only to n,p,q.

Theorem 3. Let the condition (R) be fulfilled. Suppose that 2 < p,q < +00,0 < § (n—1)/2,p >
2 are such that the solution ug(t,x) of the problem (1.1) with V =0, F = 0 = 0 satisfies the
estimate

ool e e 22y < C(Ioll i ny + Ml -1 ey )-
Then the solution u(t,z) of the problem (1.1) with F =0, 7 = 0 satisfies the following estimate

lalzp s zagemyy < Cr (1ol gamy + 11l 1oy )-
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