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Abstract. We obtain global Strichartz estimates for the solutions u of the wave equation (∂2
t −

∆x+V (t, x))u = F (t, x) for time-periodic potentials V (t, x) with compact support with respect to x.
Our analysis is based on the analytic properties of the cut-off resolvent Rχ(z) = χ(U(T )−zI)−1ψ1,

where U(T ) = U(T, 0) is the monodromy operator and T > 0 the period of V (t, x). We show that if
Rχ(z) has no poles z ∈ C, |z| ≥ 1, then for n ≥ 3, odd, we have a exponential decal of local energy.
For n ≥ 2, even, we obtain also an uniform decay of local energy assuming that Rχ(z) has no poles
z ∈ C, |z| ≥ 1, and Rχ(z) remains bounded for z in a small neighborhood of 0.

Keywords: Strichartz estimates, decay of energy, monodromy operator

1. Introduction

Consider the Cauchy problem
{

∂2
t u− ∆xu+ V (t, x)u = F (t, x), (t, x) ∈ R × R

n,

u(τ, x) = f0(x), ut(τ, x) = f1(x), x ∈ R
n,

(1.1)

where the potential V (t, x) ∈ C∞(Rn+1), n ≥ 2, satisfies the conditions:

(H1) there exists R0 > 0 such that V (t, x) = 0 for |x| ≥ R0, ∀t ∈ R,

(H2) V (t+ T, x) = V (t, x), ∀(t, x) ∈ R
n+1 with T > 0.

Consider the homogeneous Sobolev spaces Ḣγ(Rn) = Λ−γL2(Rn), where Λ =
√
−∆ and −∆

is the Laplacian in R
n. Set Ḣγ(R

n) = Ḣγ(Rn) ⊕ Ḣγ−1(Rn) and notice that for γ < n/2 the

multiplication with smooth functions ϕ ∈ C∞
0 (Rn) is continuous from Ḣγ(Rn) to Hγ(Rn) and for

functions with compact support the norms in Ḣγ(Rn) and Hγ(Rn) are equivalent. The solution of
(1.1) with F = 0 is given by the propagator

U(t, τ) : Ḣγ(R
n) ∋ (f0, f1) −→ U(t, τ)(f0, f1) = (u(t, x), ut(t, x)) ∈ Ḣγ(R

n)

and we refer to [12], Chapter V, for the properties of U(t, τ). Let U0(t) = eitG0 be the unitary

group in Ḣγ(R
n) related to the Cauchy problem (1.1) with V = 0, τ = 0 and let U(T ) = U(T, 0).

We have the representation

U(t, τ)f = U0(t− τ)f −
∫ t

τ

U(t, s)Q(s)U0(s− τ)fds,

where

Q(s) =
( 0 0
V (s, x) 0

)

.
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By interpolation it is easy to see that

‖U(t, τ)‖Ḣγ (Rn)→Ḣγ(Rn) ≤ Cγe
κγ |t−τ |, κγ ≥ 0, (1.2)

where κγ is bounded if γ runs in a compact interval. We say that the real numbers 1 ≤ p̃, q̃ ≤ 2 ≤
p, q ≤ +∞, 0 ≤ γ ≤ 1, are admissible for the free wave equation (see [11], [16], [3]) if the following
estimate holds:

Global Minkovski Strichartz estimate. For data (f0, f1) ∈ Ḣγ(R
n), F ∈ Lp̃t (R;Lq̃x(Rn))

and u(t, x) solution of (1.1) with τ = 0, V = 0 we have

‖u‖Lp
t (R; Lq

x(Rn)) + ‖u(t, x)‖Ḣγ (Rn) + ‖∂tu(t, x)‖Ḣγ−1(Rn)

≤ C0

(

‖f0‖Ḣγ(Rn) + ‖f1‖Ḣγ−1(Rn) + ‖F‖
L

p̃
t (R; Lq̃

x(Rn))

)

(1.3)

with a constant C0 = C0(n, p, q, p̃, q̃, γ) > 0 independent of t ∈ R.

We refer to [7], [10], [11], [16] and to the references given there for global Strichartz estimates

for the free wave equation. Notice that if q, q̃′ < 2(n−1)
n−3 , then p, q, p̃, q̃, γ are admissible if the

following conditions hold:

1

p
+
n

q
=
n

2
− γ =

1

p̃
+
n

q̃
− 2, (1.4)

1

p
≤

(n− 1

2

)(1

2
− 1

q

)

,
1

p̃′
≤

(n− 1

2

)(1

2
− 1

q̃′

)

, (1.5)

where 1
p̃

+ 1
p̃′

= 1, 1
q̃

+ 1
q̃′

= 1. From the gap condition (1.4) and the admissibility conditions (1.5),

we deduce
n+ 1

2

(1

2
− 1

q

)

≤ γ ≤ 1 − n+ 1

2

(1

2
− 1

q̃′

)

.

In this paper we deal with the case 0 ≤ γ ≤ 1 and for technical reasons we suppose that
γ ≤ (n − 1)/2. The reader could consult Corollary 3.2 in [10] for more precise conditions on
p, q, p̃, q̃, γ leading to (1.3).

Let χ, ψ1 be functions in C∞
0 (Rn) such that χ(x) = ψ1(x) = 1 for |x| ≤ R0 + T. By a finite

speed of propagation argument we can choose ψ1(x) so that

(1 − ψ1)U(0, s)Q(s) = 0, 0 ≤ s ≤ T. (1.6)

In the following we suppose that ψ1 is fixed. Obviously, for A > 0 large enough and ℑθ ≥ A
the operator (U(T ) − e−iθI) is invertible. In Section 2 we show that the cut-off resolvent

Rχ(θ) = χ(U(T ) − e−iθI)−1ψ1 : Ḣ1(R
n) −→ Ḣ1(R

n)

admits a meromorphic continuation in C for n ≥ 3, odd, and in

C
′ = {θ ∈ C : θ 6= 2πk − iµ, µ ≥ 0, k ∈ Z}

for n even. Introduce the following condition.
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(R) The operator Rψ1
(θ) admits a holomorphic extension from {θ ∈ C : ℑθ ≥ A > 0} to

{θ ∈ C : ℑθ ≥ 0}, for n ≥ 3, odd, and to {θ ∈ C : ℑθ ≥ 0, θ 6= 2πk, k ∈ Z} for n ≥ 2, even.
Moreover, for n even we have

lim
λ→0, λ>0

‖Rψ1
(iλ)‖Ḣ1(Rn)→Ḣ1(Rn) <∞. (1.7)

This condition is independent on the choice of χ and ψ1 and (R) implies a decay of the local
energy. Our main result is the following

Theorem 1. Let the condition (R) be fulfilled and let 1 ≤ p̃, q̃ ≤ 2 ≤ p, q ≤ +∞, 0 ≤ γ ≤
min{1, (n − 1)/2}, p > 2 be admissible for the free wave equation. Moreover, if n is even assume

that p̃ < 2. Then for data (f0, f1) ∈ Ḣγ(R
n), F ∈ Lp̃t (R; Lq̃x(Rn)) and u(t, x) solution of (1.1) with

τ = 0 we have for all t ∈ R the estimate

‖u‖Lp
t (R; Lq

x(Rn)) + ‖u(t, x)‖Ḣγ (Rn
x ) + ‖∂tu(t, x)‖Ḣγ−1(Rn

x )

≤ C
(

‖f0‖Ḣγ(Rn) + ‖f1‖Ḣγ−1(Rn) + ‖F‖
L

p̃
t (R; Lq̃

x(Rn))

)

(1.8)

with a constant C = C(n, p, q, p̃, q̃, γ) > 0 independent of t.

Remark 1. The condition (1.7) is similar to the bound of the norm of the cut-off resolvent

lim
λ→0, λ>0

‖λPχ(iλ)‖L2→L2 <∞

in the stationary case (see [21] for general boundary conditions and [3] for Dirichlet problem). Here
Pχ(λ) = χ(P − λ2)−1χ, ℑλ > 0, and (P − λ2)−1 is the resolvent of a self-adjoint operator P.

The decay of local energy for time dependent perturbations has been investigated in [5], [1],
[12] [20], [19]. The main hypothesis is that the perturbations are non-trapping (see [12] and [20] for
a precise definition related to the propagation of singularities). In contrast to the stationary case,
the non-tapping condition is not sufficient for a local energy decay. In particular, the problem (1.1)
is non-trapping but we may have solutions with exponentially growing local energy. To exclude
the existence of such solutions, we must introduce the resonances and this explains the role of the
condition (R). For n ≥ 3, odd, the exponential decay of local energy have been established in [1],
[12] (see also [5] for moving obstacles) exploiting the spectrum of the operator Zρ(T ) = P ρ+U(T )P ρ−,
where P ρ± are the orthogonal projectors on the Lax-Phillips spaces (see [9])

Dρ
± = {f ∈ Ḣ1(R

n) : U0(t)f = 0 for |x| ≤ ±t+ ρ, ±t ≥ 0}, ρ ≥ R0.

The poles of (Zρ(T )− zI)−1 are called resonances and their independence of ρ has been proved by
Cooper and Strauss [5] (see also Chapter V in [12]). Moreover, for n ≥ 3, odd, it was proved in [2]
that the poles of χ(U(T )−zI)−1ψ1 coincide with their multiplicities with the eigenvalues of the oper-
ator Zρ(T ). Thus for n, odd, the condition (R) means that Zρ(T ) has no eigenvalues z ∈ C, |z| ≥ 1.

In [19], [20] Vainberg proposed a general analysis of problems with time-periodic perturbations
including potentials, moving obstacles and high order operators, provided that the perturbations
are non-trapping. The results of Vainberg [20] cover the case of odd and even dimensions n ≥ 2.
The analysis in [20] is based on the meromorphic continuation of an operator R(θ) (see [20] for a
more precise definition). On the other hand, R(θ) has a complicated form and it seems difficult
to examine its analytic continuation and to find a link between the properties of R(θ) and the
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behavior of the operator Zρ(T ).

The novelty in our approach is that we exploit the meromorphic continuation of Rχ(θ). We
like to mention that in the study of the time-periodic perturbations of the Schrödinger operator
(see [6] and the papers cited there) the resolvent of the monodromy operator (U(T ) − z)−1 plays
a central role. Moreover, the absence of eigenvalues z ∈ C, |z| = 1 of U(T ), and the behavior of
the resolvent near 1, are closely related to the decay of local energy as t → ∞. So our results may
be considered as a natural extension of those for Schrödinger operator. On the other hand, for the
wave equation we may have poles z ∈ C, |z| > 1 of the Rχ(θ), while for the Schrödinger operator
with time-periodic potentials a such phenomenon is excluded. It is interesting to raise the question
when the condition (R) holds. In this direction we have the following result for n odd which follows
directly from Theorem 5.5.3 in [12] and Proposition 1 in [2].

Theorem 2. For n ≥ 3, odd, (R) is equivalent to the following conditions:

(a) for each ϕ(x) ∈ C∞
0 (Rn) we have

lim
t→∞

‖ϕU(t, 0)f‖Ḣ1(Rn) = 0, ∀f ∈ Ḣ1(R
n),

(b) for each f = (0, g) with g ∈ L2(Rn), supp g ⊂ {x : |x| ≤ R0}, there exists a sequence

mj → ∞, mj ∈ N, depending on g, such that

lim
mj→∞

‖ψ(x)U(mjT, 0)f‖Ḣ1(Rn) = 0,

where ψ(x) ∈ C∞
0 (Rn) is a fixed function with ψ(x) = 1 for |x| ≤ 3R0.

We would like to notice that there are many examples, where the condition (a) of the above
theorem is fulfilled (see Theorem 5.1.3 and Examples 5.1.4, 5.1.5 in [12]). The same approach to
the analysis of the local energy decay can be used for non-trapping moving obstacles. On the other
hand, for trapping moving obstacles it seems that the cut-off resolvent Rχ(θ) has no meromorphic
continuation in C even for n odd. It natural to conjecture that Rχ(θ) has a meromorphic continu-
ation for ℑθ ≥ ǫ, ∀ǫ > 0 and this is an interesting open problem.

Global Strichartz estimates for the wave equation with non-trapping stationary perturbations
have been obtained in [16], [3] and the reader may consult the references in these papers for other
works. For hyperbolic equations with coefficients depending only on t, Strichartz estimates have
been studied by Reissig and Yagdjiian [13], [14], [15]. To our best knowledge there are no results
concerning Strichartz estimates for the wave equation with periodic in time perturbations depend-
ing on (t, x). In our analysis the non-trapping condition is replaced by (R) and our approach was
inspired by the work of Burq [3] and the recent progress related to the results of Christ and Kiselev
[4]. The L2 integrability of the local energy (see Section 4) plays an important role in the proof of
Theorem 1. The investigation of the homogeneous Strichartz estimates with F = 0 is simpler and
the corresponding results can be obtained for a larger set of indices p, q, γ.

Acknowledgments. The author is grateful to V. Georgiev and J. F. Bony for many helpful
discussions and for the critical remarks concerning a preliminary version of the paper.
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2. Meromorphic continuation of the cut-off resolvent χ(U(T ) − zI)−1ψ1

Throughout this and the following sections we denote by ‖.‖ the norm in Ḣ1(R
n) and we use

the same notation for the norm of the bounded operators from Ḣ1(R
n) to Ḣ1(R

n). Our purpose is
to prove that for χ, ψ1 ∈ C∞

0 (Rn) the cut-off resolvent

χ(U(T ) − e−iθI)−1ψ1 : Ḣ1(R
n) → Ḣ1(R

n),

admits a meromorphic continuation with respect to θ in C for n ≥ 3, odd, and in

C
′

= {z ∈ C : z 6= 2πk − iµ, µ ≥ 0, k ∈ Z}
for n ≥ 2, even. Let ψ ∈ C∞

0 (Rn) be a fixed cut-off such that ψ(x) = 1 for |x| ≤ R0 +T. By a finite
speed of propagation argument we get

(1 − ψ)U(T, s)Q(s) = 0, Q(s)U0(s)(1 − ψ) = 0, 0 ≤ s ≤ T. (2.1)

For A > 0 large enough and ℑθ ≥ A the resolvents (U0(T ) − e−iθI)−1, (U(T ) − e−iθI)−1 exist
and we have the equality

U(T ) − zI =
[

I − ψ

∫ T

0
U(T, s)Q(s)U0(s)dsψ(U0(T ) − zI)−1

]

(U0(T ) − zI), z = e−iθ.

It is easy to show (see [1], [12]) that the operator

ψ

∫ T

0
U(T, s)Q(s)U0(s)ψds : Ḣ1(R

n) −→ Ḣ1(R
n)

is compact and for ℑθ ≥ A we have

(U0(T ) − zI)−1 = (U(T ) − zI)−1
[

I − ψ

∫ T

0
U(T, s)Q(s)U0(s)dsψ(U0(T ) − zI)−1

]

.

Now let ψ1 ∈ C∞
0 (Rn) be a fixed cut-off function satisfying (1.6) and such that ψ1(x) = 1 on supp

ψ. Take an arbitrary cut-off function χ ∈ C∞
0 (Rn) so that χ = 1 on supp ψ. Multiplying the above

equality by χ and ψ1, we get

χ(U0(T ) − zI)−1ψ1 = χ(U(T ) − zI)−1ψ1

[

I − ψ

∫ T

0
U(T, s)Q(s)U0(s)dsψ(U0(T ) − zI)−1ψ1

]

.

Introduce the operator

K(z) = ψ

∫ T

0
U(T, s)Q(s)U0(s)dsψ(U0(T ) − zI)−1ψ1.

For n ≥ 3, odd, the operator ψ(U0(T ) − e−iθI)−1ψ1 admits an analytic continuation with respect
to θ in C and this follows immediately from the Huygens principle and the expansion

ψ(U0(T ) − e−iθI)−1ψ1 = −
N(ψ,ψ1)

∑

k=0

ψU0(kT )ψ1e
i(k+1)θ

which holds for ℑθ ≥ A > 0. On the other hand, the operator K(z) is compact in Ḣ1(R
n) and an

application of the analytic Fredholm theorem leads to a meromorphic continuation of χ(U(T ) −
e−iθI)−1ψ1 in C. Notice that if z0 is a pole of χ(U(T ) − zI)−1ψ1, then dim Ker (I −K(z0)) > 0.
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Inversely, assume that there exists a function f 6= 0 such that f = K(z0)f. Then (I −K(z))−1 is
meromorphic in a neighborhood of z0 and for |z − z0| small enough we have

(I −K(z))−1 =

m
∑

j=1

Aj
(z − z0)j

+B(z)

with analytic function B(z) and finite rank operators Aj , Am 6= 0. Clearly, ImAm ⊂ Ker(I−K(z0)).
If χ(U(T ) − zI)−1ψ1 is analytic at z0, then

χ(U0(T ) − z0I)
−1ψ1Amg = 0, ∀g ∈ Ḣ1(R

n)

and ψ(U0(T )− z0I)
−1ψ1Amg = 0. Going back to the operator I −K(z0), we conclude immediately

that Am = 0. Proceeding in this way, we obtain Aj = 0, j = 1, ...,m, which is a contradiction.
Consequently, z0 is a pole of χ(U(T ) − z0I)

−1ψ1.

For n even we will apply the same argument in C
′

and for this purpose we must show that
χ(U0(T ) − e−iθI)−1ψ1 can be continued as an analytic function in C

′

. We extent U0(t)(ψ1f) as 0
for t < 0 and consider the Fourier-Block-Gelfand transform

g(θ, s) = (F (U0(t)(ψ1f))(θ, s) =

∞
∑

k=−∞

U0(kT + s)eikθ(ψ1f)

defined for ℑθ ≥ A > 0. In fact, it is easy to see that

g(θ, s) = U0(s)

∞
∑

k=0

U0(kT )eikθ(ψ1f)

= U0(s)e
−iθ(e−iθI − U0(T ))−1(ψ1f).

We refer to [20] for the properties of the Fourier-Block-Gelfand transform. We conclude that the
analytic continuation of χ(U0(T ) − e−iθI)−1ψ1 is reduced to that of χF (U0(t)(ψ1f))(θ, 0). We are
in position to apply Lemma 6 and 7 in [20] saying that χF (U0(t)(ψ1f))(θ, 0) admits an analytic

continuation in C
′

. In fact in [20], Lemma 7, the transformation χF (α(t)U0(t)(ψ1f))(θ, s) is treated,
where α(t) ∈ C∞(R) is such that α(t) = 0 for t ≤ t0, α(t) = 1 for t ≥ t0 + 1, t0 > 0. The analysis
of the term χF ((1 − α(t))U0(t)(ψ1f))(θ, s) is trivial and we obtain the result. Moreover, in a
neighborhood of 0 we have the representation

χ(U0(T ) − e−iθI)−1ψ1 = B0(θ)θ
n−1 ln θ +B1(θ), (2.2)

where B0(θ) and B1(θ) are analytic for |θ| ≤ ǫ0 and ∂jθB0(θ)|θ=0, j ≥ 0, are finite rank operators.

To obtain a meromorphic continuation in C
′

of χ(U(T ) − e−iθI)ψ1, we repeat the argument for n

odd and we deduce that the poles θ ∈ C
′

are independent of the function χ. Thus we can introduce
the following

Definition 1. We say that z0 ∈ C (resp. z0 ∈ C
′) is a pole of χ(U(T ) − zI)−1ψ1 for n odd (resp.

n even), if

dimKer
(

I − ψ

∫ T

0
U(T, s)Q(s)dsψ(U0(T ) − z0I)

−1ψ1

)

> 0.
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Finally, to study the invertibility of the operator (I−K(e−iθ)) in a neighborhood of 0, we apply
Theorem 8 in [20] (see also Lemma 10 in Chapter IX, [18]). Consequently, for |θ| ≤ ǫ0, | arg θ−π/2| <
π, we have

(I −K(e−iθ))−1 = θ−m
∑

j≥0

( θ

P (ln θ)

)j

Pj(ln θ) + C(θ), (2.3)

where m ≥ 0 is an integer, P is a polynomial, Pj is a polynomial of order at most lj, l ≥ 1, the
coefficients of P, Pj are finite rank operators and C(θ) is analytic. Combining (2.2) and (2.3), we
get for |θ| ≤ ǫ0, | arg θ − π/2| < π the representation

χ(U(T ) − e−iθI)−1ψ1 =
∞
∑

k=−m

∞
∑

j=−mk

Rkjθ
k lnj θ. (2.4)

3. Decay of the local energy

In this section we will establish a decay of local energy and we assume the condition (R)
fulfilled. The results are different for n odd and n even. We fix the cut-off functions ψ, ψ1 as in the
previous section and suppose that χ ∈ C∞

0 (Rn) is such that χ(x) = 1 on supp ψ. The argument
of the previous section shows that (R) leads to the absence of poles θ of Rχ(θ) with ℑθ ≥ 0 (resp.
ℑθ ≥ 0, θ 6= 2πk, k ∈ Z) for n odd (resp. n even). On the other hand, the representation (2.2)
yields

ψ(U0(T ) − e−iθI)−1ψ1 = ψψ1(U0(T ) − e−iθI)−1ψ1 = L0 + O(θ), |θ| ≤ ǫ0

with a bounded operator L0. Here and below O(θ) denotes a bounded operator in Ḣ1(R
n) such

that ‖O(θ)‖ ≤ C|θ|, where ‖.‖ is the norm in L(Ḣ1(R
n)). Let

(I −K(e−iθ))−1 =
(

I − ψ

∫ T

0
U(T, s)Q(s)U0(s)ds(L0 + O(θ))

)−1

= θ−m
r

∑

j=0

lnr−j θ
(

Aj + Oj(ln
−1 θ)

)

+
M
∑

k=1

θ−m+k lnqk θ(Fk + Ok(ln
−1 θ)) + F0(θ)

with finite rank operators Aj, A0 6= 0, Fk, k = 1, ...,m, m ≥ 0, r ≥ 0. First assume m > 0. Then
the condition (R) implies

lim
λ→0, λ>0

‖(L0 + O(iλ))((iλ)−m lnr(iλ)A0 + ...)‖ ≤ C0,

and we deduce L0A0 = 0. Here ... denotes a sum of terms with lower order singularity at 0. On the
other hand, for |θ| ≤ ǫ0, ℑθ > 0, we have

(

I − ψ

∫ T

0
U(T, s)Q(s)U0(s)ds(L0 + O(θ))

)

(θ−m lnr θA0 + ...)

= θ−m lnr θA0 + ... = I

and we conclude that A0 = 0. The case m > 0, r < 0 can be treated in the same way and we
conclude that we must have m = 0. Repeating the same argument with m = 0 and r > 0, we
obtain that in the leading term of (I −K(e−iθ))−1 we have m = 0, r ≤ 0. Finally, (R) implies that
(I −K(e−iθ))−1 is bounded for |θ| ≤ ǫ0 and we deduce that Rχ(θ) is bounded for |θ| ≤ ǫ0 for every
χ ∈ C∞

0 (Rn) having the property mentioned above.
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Given a cut-off function ϕ ∈ C∞
0 (Rn), we will estimate the norm ‖ϕU(t, 0)f‖ for functions

f ∈ Ḣ1(R
n), such that f(x) = 0 for |x| ≥ R. For this purpose it is sufficient to estimate the norm

of
∫ t

0
ϕU(t, s)Q(s)U0(s)fds

uniformly with respect to f ∈ C∞
0 (B(0, R))× ∈ C∞

0 (B(0, R)), where B(0, R) = {x : |x| ≤ R}. We
extend U0(s)f as 0 for s < 0 and consider the Fourier-Block-Gelfand transform

g(θ, s) = (F (U0(s)f))(θ, s) =

k=∞
∑

k=−∞

U0(kT + s)eikθf

which is well defined for ℑθ ≥ α > 0. Applying the inverse transform of F (see [20]), we are going
to examine

1

2π

∫ t

−∞
ϕU(t, s)Q(s)

∫

dα

g(θ, s)dθds,

where dα = [iα− π, iα + π] and α > 0 will be chosen large enough below.

Choose an integer m ∈ Z so that t′ = t − mT ∈ [0, T [ and fix m. Changing the variable
s = s′ +mT and using the property U(t+mT, s+mT ) = U(t, s), we obtain

1

2π

∫ t′

−∞
ϕU(t′, s′)Q(s′)

∫

dα

e−imθg(θ, s′)dθds′

=
1

2π

∫ t′

0
ϕU(t′, s′)Q(s′)U0(s

′)

∫

dα

e−imθg(θ, 0)dθds′

+
1

2π

∞
∑

k=0

∫ −kT

−kT−T
ϕU(t′, s′)Q(s′)

∫

dα

e−imθg(θ, s′)dθds′ = I1(t) + I2(t).

The integral I1(t) can be estimated following the argument given below and we will deal with
the infinite sum. Changing the variable s′ = −T − kT + ξ, we get the series

∞
∑

k=0

∫ T

0

∫

dα

ϕU(t′ + T, 0)U(kT )U(0, ξ)ei(k+1)θQ(ξ)e−imθg(θ, ξ)dθdξ. (3.1)

Here we have used the fact that

U(t′ + T + kT, ξ) = U(t′ + T, 0)U(kT )U(0, ξ).

Now choose α > 0 so that the series
∞

∑

k=0

U(kT )ei(k+1)θ = (e−iθI − U(T ))−1

is convergent in the operator norm for θ ∈ dα. For 0 ≤ ξ ≤ T we can find a cut-off function
χ ∈ C∞

0 (Rn) so that χ(x) = 1 on supp ψ and

ϕU(t′ + T, 0)(1 − χ) = 0.
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Notice that the function χ depends on ϕ. According to the properties (1.6), (2.1) of ψ1, ψ, it is
clear that (3.1) can be written in the form

∫

dα

∫ T

0
ϕU(t′ + T, 0)χ(e−iθI − U(T ))−1ψ1U(0, ξ)Q(ξ)U0(ξ)e

−imθψg(θ, 0)dξdθ. (3.2)

First assume that n ≥ 3 is odd. Then (R) implies that Rχ(θ) has no poles with ℑθ ≥ 0 and
we can choose δ > 0 so that Rχ(θ) has no poles θ with ℑθ ≥ −δT, −π < ℜθ ≤ π. Let d−δT =
[−iδT − π,−iδT + π]. Recall that t = mT + t′, so

e−mδT ≤ Ce−δt

with C > 0 independent on m and t. On the other hand,

ψg(θ, 0) = ψ

∞
∑

k=0

U0(kT )eikθf = e−iθψ(e−iθI − U0(T ))−1f, ℑθ > 0

and we conclude that ψg(θ, 0) admits an analytic continuation in C. We shift the contour of the
integration from dα to d−δT and we obtain

‖I2(t)‖ ≤ C1e
−δt‖f‖, t ≥ 0,

where C1 > 0 depends on ϕ and R. To estimate I1(t), we shift again the contour of integration to
d−δT and we obtain the same estimate as that for I2(t). Combining these estimates, we get

‖ϕU(t, 0)f‖ ≤ C2e
−δt‖f‖. (3.3)

Next let 0 ≤ s ≤ t and let s− jT ∈ [0, T [, j ∈ N. Then

‖ϕU(t, s)f‖ = ‖ϕU(t− jT, 0)U(0, s − jT )f‖
≤ C3e

−δ(t−jT )‖U(0, s − jT )f‖ ≤ C4e
−δ(t−s)‖f‖ (3.4)

with a constant C4 depending on ϕ and R+ T . Here we have used the fact that U(0, s− jT )f has
a compact support independent of s.

Passing to the case n even, we will estimate the integral (3.2). Choose again δ > 0 so that
Rχ(θ) has no poles θ lying in

{θ : ℑθ ≥ −δT, −π ≤ ±ℜθ < 0}.

Next choose δ ≥ ǫ0 > 0 so that Rχ(λ) is bounded for |θ| ≤ ǫ0 and consider the contour γ =
Γ1 ∪ ω ∪ Γ2, where

Γ1 = [−iδT − π,−iδT − ν], Γ2 = [−iδT + ν,−iδT + π]

and 0 < ν < ǫ0 is sufficiently small. The contour ω is a curve connecting −iδT − ν and −iδT + ν,
symmetric with respect to the axis ℜθ = 0. The part of ω lying in {θ : ℑθ ≥ 0} is a half-circle
with radius ǫ0 and ω ∩ {±ℜθ > 0, ℑθ ≤ 0} is formed by line segments. Thus ω is included in the
region where we have no poles of Rχ(θ). We shift the integration from dα to the contour γ. The
integrals on Γk, k = 1, 2, can be estimated as in the case n odd. The integral over ω can be handled
following Lemma 7 in Chapter IX, [18]. In fact we must estimate only the integral over a part of
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the circle |θ| = ǫ0. Since (I −K(e−iθ))−1 is bounded for |θ| ≤ ǫ0, the leading term of the singular
part of (I −K(e−iθ))−1 is given by

A0 +

l
∑

k=j

ln−k θAk + o(| ln θ|−l|), j ≥ l ≥ 1,

where Aj are finite rank operators. Then

∫

ω

e−imθ ln−l θdθ = m−1
M
∑

j=1

aj ln−l−jm+ O(m−1 ln−l−M−1m), m→ ∞.

On the other hand, according to (2.2), the leading term of the singular part of χ(U0(T )−e−iθ)−1ψ1

is θn−1 ln θB0(0) and
∫

ω

e−imθθn−1 ln θdθ = a0m
−n + O(m−n ln−1m), m→ ∞.

The integrals of the terms analytic for |θ| ≤ ǫ0 are trivially bounded and summing up all contribu-
tions, we get

‖ϕU(t, 0)f‖ ≤ C5t
−1 ln−2 t‖f‖, t ≥ t0 > 1.

In the same way, as in the case n odd, we obtain

‖ϕU(t, s)f‖ ≤ C6(t− s)−1 ln−2(t− s)‖f‖, t− s ≥ t0 > 1. (3.5)

Finally, for 0 ≤ s ≤ t we get

‖ϕU(t, s)f‖Ḣ1(Rn) ≤ C(n, ϕ,R)p(t− s)‖f‖Ḣ1(Rn), (3.6)

where for t ≥ t0 > 1 we have

p(t) =

{

e−δt, n ≥ 3, odd,

t−1 ln−2 t, n ≥ 2, even.
(3.7)

4. L2-integrability of the local energy

We start with the following

Proposition 1. Assume the condition (R) fulfilled and 0 ≤ γ ≤ min{1, (n − 1)/2}. Let (f0, f1) ∈
Ḣγ(R

n) and let F ∈ L2
t (R; Ḣγ

x (Rn)) be supported in {(t, x) : |x| ≤ R}. Then for every fixed

ϕ ∈ C∞
0 (Rn) the solution u(t, x) of (1.1) with τ = 0 satisfies the estimate

∫ ∞

−∞
‖(ϕu(t, x), ϕ∂tu(t, x))‖2

Ḣγ (Rn)
dt

≤ C
(

‖f0‖Ḣγ(Rn) + ‖f1‖Ḣγ−1(Rn) + ‖F‖L2
t (R;Ḣγ

x (Rn))

)2
(4.1)

with a constant C = C(n, γ, ϕ,R) > 0 depending only on n, γ, ϕ and R.

Proof. First notice that for the free wave equation and f = (f0, f1) ∈ Ḣγ(R
n) we have

∫ ∞

−∞
‖ϕU0(t)f‖2

Ḣγ(Rn)
dt ≤ C1(n, γ, ϕ)‖f‖2

Ḣγ (Rn)
. (4.2)

This result is well known for the energy space Ḣ1(R
n) and n odd. To obtain it for γ ≤ (n − 1)/2,

we can apply a result of Smith and Sogge.
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Lemma 1. ([16], Lemma 2.2) For γ ≤ (n− 1)/2 the following estimate holds
∫ ∞

−∞
‖ϕ

(

e±itΛf
)

‖2
Ḣγ(Rn)

dt ≤ Cn,γ,ϕ‖f‖2
Ḣγ(Rn)

.

In [16] the authors consider only odd dimensions n ≥ 3, but the proof of this lemma goes
without any change for even dimensions. Setting (u0(t, x), ∂u0(t, x)) = (U0(t)f), we have the
representation

u0(t, x) =
sin(tΛ)

Λ
f1(x) + cos(tΛ)f0(x)

and we obtain immediately (4.2).

Passing to the estimate of ϕU(t, 0)f , we write

U(t, 0)f = U0(t)f −
∫ t

0
U(t, s)Q(s)U0(s)fds

and we get

‖ϕU(t, 0)f‖Ḣγ
≤ ‖ϕU0(t)f‖Ḣγ

+
∥

∥

∥

∫ t

t−t0

ϕU(t, s)Q(s)U0(s)fds
∥

∥

∥

Ḣγ

+
∥

∥

∥

∫ t−t0

0
ϕU(t, s)Q(s)U0(s)fds

∥

∥

∥

Ḣγ

.

The estimate (1.2) of ‖U(t, s)‖Ḣγ→Ḣγ
for |t− s| ≤ t0 and 0 ≤ γ ≤ 1 implies

∥

∥

∥

∫ t

t−t0

ϕU(t, s)Q(s)U0(s)fds
∥

∥

∥

Ḣγ

≤ Cek1t0‖ψ2U0(t)f‖Ḣγ
,

where k1 > 0 is independent of t and ψ2 ∈ C∞
0 (Rn) depends only on t0. On the other hand, for

f ∈ Ḣγ(R
n) we get

Q(s)U0(s)f ∈ Ḣγ+1(R
n) ⊂ Ḣ1(R

n), 0 ≤ γ ≤ 1,

and choosing a cut-off function β ∈ C∞
0 (Rn) equal to 1 on suppx V (t, x), we get

∥

∥

∥

∫ t−t0

0
ϕU(t, s)Q(s)U0(s)fds

∥

∥

∥

Ḣγ(Rn)
≤

∥

∥

∥

∫ t−t0

0
ϕU(t, s)βQ(s)U0(s)fds

∥

∥

∥

Ḣ1(Rn)

≤
∫ t−t0

0
‖ϕU(t, s)β‖Ḣ1(Rn)→Ḣ1(Rn)‖Q(s)U0(s)f‖Ḣ1(Rn)ds

≤ C2

(

Y (t− t0)p(t) ∗ ‖Y (t)Q(t)U0(t)f‖Ḣ1(Rn)

)

.

Here Y (t) denotes the Heaviside function and we have used (3.6) with p(t) given by (3.7). It is
clear that Lemma 1 implies

∫ ∞

0
‖Q(t)U0(t)f‖2

Ḣ1(Rn)
dt =

∫ ∞

0
‖V (t, x)u0(t, x)‖2

L2(Rn)dt ≤ C3‖f‖2
Ḣγ(Rn)

. (4.3)

Since Y (t − t0)p(t) ∈ L1(R), an application of the Young inequality for the convolution combined
with (4.3) yield (4.1) with F = 0.
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In the general case (F 6= 0) consider the solution v(t, x) of the problem (1.1) with τ = 0, f0 =

f1 = 0, F ∈ L2
t (R; Ḣγ

x (Rn)). Then

(ϕv(t, x), ϕ∂tv(t, x)) =

∫ t

0
ϕU(t, s)χ(x)(0, F (s, x))ds

with χ ∈ C∞
0 (Rn) such that χ(x) = 1 for |x| ≤ R. Notice that we have

(0, F (t, x)) ∈ L2
t (R; Ḣγ+1(R

n)) ⊂ L2
t (R; Ḣ1(R

n)).

Exploiting the local energy decay of ‖ϕU(t, s)χ‖Ḣ1→Ḣ1
and repeating the above argument, we get

for ϕv(t, x) the estimate (4.1) with f0 = f1 = 0. This completes the proof.

Remark 2. It is natural to obtain the estimate (4.1) under the condition F ∈ L2
t (R; Ḣγ−1

x (Rn)).
To do this, we must use a local energy decay of ‖ϕU(t, s)χ‖Ḣγ→Ḣγ

which can be deduced from a

decay of ‖ϕU(t, s)χ‖Ḣ0→Ḣ0
and interpolation.

We need also a result concerning the non-homogeneous free wave equation.

Proposition 2. Assume 1 ≤ p̃ < 2. Let f = (f0, f1) ∈ Ḣγ(R
n), F ∈ Lp̃t (R; Lq̃x(Rn)) and let u(t, x)

be the solution of (1.1) with V = 0, τ = 0. Then for every ϕ ∈ C∞
0 (Rn) we have

∫ ∞

−∞
‖(ϕu(t, x), ϕ∂tu(t, x))‖2

Ḣγ (Rn)
dt

≤ C(n, p̃, q̃, γ, ϕ)
(

‖f0‖Ḣγ + ‖f1‖Ḣγ−1 + ‖F‖
L

p̃
t (R;Lq̃

x(Rn))

)2
. (4.4)

Proof. It is sufficient to consider the case f0 = f1 = 0. The solution u(t, x) has the form

(u(t, x), ∂tu(t, x)) =

∫ t

0
ei(t−s)G0(0, F (s, x))ds.

Given a fixed t0 > 0, we will estimate the norm
∥

∥

∥

∫ t0

0
ϕei(t−s)G0(0, F (s, x))ds

∥

∥

∥

L2
t (R+;Ḣγ(Rn))

uniformly with respect to t0. Without loss of the generality we may suppose that F (t, x) = 0 for
t < 0. First, according to (4.2), we have

∥

∥

∥
ϕeitG0

∫ t0

0
e−isG0(0, F (s, x))ds

∥

∥

∥

L2
t (R+;Ḣγ(Rn))

≤ C0

∥

∥

∥

∫ t0

0
e−isG0(0, F (s, x))ds

∥

∥

∥

Ḣγ(Rn)
,

with a constant C0 > 0 independent of t0. Since eit0G0 is unitary in Ḣγ(R
n), it is clear that

∥

∥

∥

∫ t0

0
e−isG0(0, F (s, x))ds

∥

∥

∥

Ḣγ(Rn)

=
∥

∥

∥

∫ t0

0
ei(t0−s)G0(0, F (s, x))ds

∥

∥

∥

Ḣγ(Rn)
= ‖(u(t0, x), ∂tu(t0, x))‖Ḣγ (Rn).

Second, the estimate (1.3) yields

‖u(t0, x)‖Ḣγ (Rn) + ‖∂tu(t0, x)‖Ḣγ−1(Rn) ≤ C1‖F‖Lp̃
t (R;Lq̃

x(Rn))
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with a constant C1 > 0 independent of t0. Thus we obtain
∥

∥

∥

∫ t0

0
ϕei(t−s)G0(0, F (s, x))ds

∥

∥

∥

L2(R+;Ḣγ(Rn))
≤ C0C1‖F‖Lp̃

t (R;Lq̃
x(Rn))

. (4.5)

We will apply a version of Christ-Kiselev lemma [4] given in [8] and for the sake of completeness
we state it below (see also [16], Lemma 3.1 and [17], Lemma 3.1).

Lemma 2. ([8], Lemma 8.1) Let X and Y be Banach spaces, and for all s, t ∈ R
+ let K(s, t) :

X −→ Y be an operator-values kernel from X to Y . Suppose we have
∥

∥

∥

∫

0≤s<t0

K(s, t)g(s)ds
∥

∥

∥

Lq([t0,∞); Y )
≤ A‖g‖Lp(R+;X)

for some A > 0, 1 ≤ p < q ≤ ∞, and all t0 ∈ R
+ and g ∈ Lp(R+; X). Then we have

∥

∥

∥

∫

0≤s<t
K(s, t)g(s)ds

∥

∥

∥

Lq(R+; Y )
≤ Cp,qA‖g‖Lp(R+;X),

where Cp,q > 0 depends only on p, q.

In [8] the above result is formulated with R instead of R
+ and s, t, t0 ∈ R, but, as it was

mentioned in [8], the same proof works for other intervals and in particular for R
+. By hypothesis

p̃ < 2, so taking into account (4.5), we deduce from Lemma 2 the estimate

∥

∥

∥

∫ t

0
ϕei(t−s)G0(0, F (s, x))ds

∥

∥

∥

L2(R+;Ḣγ(Rn))
≤ C2‖F‖Lp̃

t (R;Lq̃
x(Rn))

.

In the same way we treat the norm
∥

∥

∥

∫ t

0
ϕei(t−s)G0(0, F (s, x))ds

∥

∥

∥

L2
t (R−;Ḣγ(Rn))

and the proof is complete.

Remark 3. The estimate (4.4) has been proved in [16] for n ≥ 3, odd, and 1 ≤ p̃ ≤ 2. The
restriction p̃ < 2 in Proposition 2 is related to the application of Lemma 2 and it is an open problem
to see if this estimate remains valid for n even and p̃ = 2.

Corollary 1. Assume 1 ≤ p̃ < 2. Let f = (f0, f1) ∈ Ḣγ(R
n), F ∈ Lp̃t (R; Lq̃x(Rn)) and let u(t, x) be

the solution of (1.1) with τ = 0. Then for every ϕ ∈ C∞
0 (Rn) we have

∫ ∞

−∞
‖(ϕu(t, x), ϕ∂tu(t, x))‖2

Ḣγ (Rn)
dt

≤ A(n, p̃, q̃, γ, ϕ)
(

‖f0‖Ḣγ + ‖f1‖Ḣγ−1 + ‖F‖
L

p̃
t (R: Lq̃

x(Rn))

)2
. (4.6)

Proof. We write u = u0 + v, where u0 is the solution of the problem
{

(∂2
t − ∆)u0 = F,

u0|t=0 = f0, ∂tu0|t=0 = f1,

while v is the solution of the problem
{

(∂2
t − ∆ + V )v = −V u0,

v|t=0 = ∂tv|t=0 = 0.
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Applying Proposition 2 for V u0, we obtain the estimate

‖V u0‖L2
t (R; Ḣγ

x (Rn)) ≤ C0

(

‖f0‖Ḣγ + ‖f1‖Ḣγ−1 + ‖F‖
L

p̃
t (R; Lq̃

x(Rn))

)

. (4.7)

In fact, choosing a function β ∈ C∞
0 (Rn) such that β = 1 on suppx V (t, x), we have

‖V (t, x)u0‖Ḣγ
x (Rn) ≤ Cγ,V ‖βu0‖Ḣγ

x (Rn).

Next we write

(ϕv(t, x), ϕ∂tv(t, x)) = −
∫ t

0
ϕU(t, s)(0, V u0(s, x))ds.

Since V u0 ∈ L2
t (R; Ḣγ

x (Rn)), repeating the argument of the proof of Proposition 1, we get (4.6).

5. Global Strichartz estimates

In this section we establish the estimate (1.8) and complete the proof of Theorem 1. We present
the solution of (1.1) as a sum u = u0 + v, where u0 and v are the same as in the proof of Corollary
1. The estimate of ‖u0‖Lp

t (R; Lq
x(Rn)) follows form (1.3). Next we have

v(t, x) = −
∫ t

0

sin((t− s)Λ)

Λ
(V u0 + V v)(s, x)ds.

As in the previous section, for V u0 we have the estimate (4.7). We apply Proposition 1 for V v and
deduce

‖V u0 + V v‖L2
t (R; Ḣγ

x (Rn)) ≤ C1

(

‖f0‖Ḣγ + ‖f1‖Ḣγ−1 + ‖F‖
L

p̃
t (R; Lq̃

x(Rn))

)

. (5.1)

We wish to prove that
∥

∥

∥

∫ t

0

sin((t− s)Λ)

Λ
(V u0 + V v)(s, x)ds

∥

∥

∥

L
p
t (R+; Lq

x(Rn))
≤ C2‖V u0 + V v‖L2

t (R+; Ḣγ
x (Rn)). (5.2)

Let β ∈ C∞
0 (Rn) be the same as in the proof of Corollary 1. An application of Lemma 1 shows

that the operator

T : Ḣ−γ(Rn) ∋ g 7→ βe±itΛg ∈ L2
t (R

+; Ḣ−γ
x (Rn))

is bounded. The adjoint operator

(T ∗G)(x) =

∫ ∞

0
e∓isΛβG(s, x))ds

is bounded as an operator from L2
t (R

+; Ḣγ
x (Rn)) to Ḣγ

x (Rn) and this yields
∥

∥

∥

∫ ∞

0
e±isΛβh(s, x)(s, x)ds

∥

∥

∥

Ḣγ(Rn)
≤ C2‖h‖L2

t (R+; Ḣγ
x (Rn)). (5.3)

Consider the integral operators

J : L2
t (R

+; Ḣγ
x (Rn)) ∋ h(t, x) −→

∫ t

0
K(s, t)h(s, x)ds ∈ Lpt (R

+; Lqx(R
n)),

where K(s, t) = Λ−1 sin((t − s)Λ)β. To apply Christ-Kiselev lemma [4], it is sufficient to have an
estimate for

∥

∥

∥

∫ ∞

0

sin((t− s)Λ)

Λ
βh(s, x)ds

∥

∥

∥

L
p
t (R+;Lq

x(Rn))
.
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By (1.3) and (5.3), we get
∥

∥

∥
e±itΛΛ−1

∫ ∞

0
e±isΛβh(s, x)ds

∥

∥

∥

L
p
t (R+; Lq

x(Rn))

≤ C3

∥

∥

∥

∫ ∞

0
e±isΛβh(s, x)ds

∥

∥

∥

Ḣγ−1(Rn)
≤ C2C3‖h‖L2

t (R+; Ḣγ
x (Rn)).

We take h = V u0 + V v and we use the addition formula for sin((t− s)Λ) to conclude that
∥

∥

∥

∫ ∞

0

sin((t− s)Λ)

Λ
(V u0 + V v)ds

∥

∥

∥

L
p
t (R+;Lq

x(Rn))
≤ C4‖V u0 + V v‖L2

t (R+; Ḣγ
x (Rn)). (5.4)

By hypothesis p > 2, and an application of Christ-Kiselev lemma [4] yields immediately (5.2).
Consequently, (5.1) implies an estimate for ‖v‖Lp

t (R+;Lq
x(Rn)). Similarly, we deal with the norm

‖v‖Lp
t (R−;Lq

x(Rn)). To estimate ‖v(t0, x)‖Ḣγ (Rn
x) uniformly with respect to t0, notice that

∥

∥

∥
e±itΛΛ−1

∫ t0

0
e±isΛ(V u0 + V v)(s, x)ds

∥

∥

∥

Ḣγ(Rn)
≤ C5

∥

∥

∥

∫ t0

0
e±isΛ(V u0 + V v)(s, x)ds

∥

∥

∥

Ḣγ−1(Rn)

with a constant C5 > 0 independent of t0. As above, we can estimate the right hand part by
‖V u0 + V v‖L2

t (R; Ḣγ
x (Rn)) uniformly with respect to t0 and apply (5.1). A similar argument works

for ‖∂tv(t0, x)‖Ḣγ−1(Rn
x). Thus the proof of Theorem 1 is complete.

To obtain homogeneous Strichartz estimates, we need to apply Proposition 1 combined with
the estimate (4.2). Moreover, γ is related only to n, p, q.

Theorem 3. Let the condition (R) be fulfilled. Suppose that 2 ≤ p, q ≤ +∞, 0 ≤ γ ≤ (n−1)/2, p >
2 are such that the solution u0(t, x) of the problem (1.1) with V = 0, F = 0, τ = 0 satisfies the

estimate

‖u0‖Lp
t (R; Lq

x(Rn)) ≤ C
(

‖f0‖Ḣγ(Rn) + ‖f1‖Ḣγ−1(Rn)

)

.

Then the solution u(t, x) of the problem (1.1) with F = 0, τ = 0 satisfies the following estimate

‖u‖Lp
t (R; Lq

x(Rn)) ≤ C1

(

‖f0‖Ḣγ (Rn) + ‖f1‖Ḣγ−1(Rn)

)

.
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