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GHOST EFFECT FOR A VAPOR-VAPOR MIXTURE
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ABSTRACT. This paper studies the non linear Boltzmann equation for a two
component gas at the small Knudsen number regime. The solution is found
from a truncated Hilbert expansion. The first order of the fluid equations shows
the ghost effect. The fluid system is solved when the boundary conditions are
close enough to each other. Next the boundary conditions for the kinetic
system are satisfied by adding for the first and the second order terms of the
expansion Knudsen terms. The construction of such boundary layers requires
the study of a Milne problem for mixtures. In a last part the rest term of the
expansion is rigorously controled by using a new decomposition into a low and
a high velocity part.

1. Introduction. This paper is devoted to the rigorous asymptotic analysis of
a kinetic system situated at a small Knudsen number regime with given indata
boundary conditions. The physical model is described in ([29]). It is constituted
by a mixture of vapor situated between two infinite parallel planes. Those two
phases can condense or evaporate on the two infinite parallel planes of condensed
phases kept at fixed temperatures. Moreover this model is supposed to be space
homogeneous in the directions parallel to the planes. Next two remarkable situations
are precisely investigated depending on the jump of the pressure of the total mixture
between the two condensed phases. If this difference is of order O(1), the mixture is
described at the continuum limit by the stationary Euler system corrected on each
boundary by Knudsen layers. Hence the solution of this Euler system is constant
exept at the boundary layers. In a second situation the jump is of the same order as
the Knudsen number. In that case the macroscopic velocity of each specy is of order
one w.r.t the Knudsen number and so disappears when Knudsen number tends to
0. But the continuum level is described by a convection diffusion system where
zero order macroscopic quantites depend on the first order term of the macroscopic
velocity. That means that a perturbation of order ¢ on the kinetic problem gives
a finite effect on the fluid limit. This is an example of the ghost effect. It was
pointed out in the situation of a one component gas in ([26]) and in the situation of
a mixture of a condensable and a non condensable gas in ([1, 4, 3]). In the present
paper, only the second situation is investigated and the solution of the kinetic
system is constructed as an asymptotic expansion around a local Maxwellian. The
Hilbert terms of the expansion are corrected from the first order by Knudsen layers
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in order to satisfy the boundary conditions (1.2, 1.3). The estimate on the rest term
of the expansion remains the most delicate part of the work. The general technique
is to linearize the problem satisfied by the rest term and to obtain the rest as the
limit of a sequence of such linearized problem. But an important difficulty appears
when the equilibrium state is a non local Maxwellian function due to the presence
of third order terms in the velocity variable. If the equilibrium state is a global
Maxwellian, the decomposition of the rest term performed in ([16, 20, 21, 14]) and
in the present paper is not necessary because the third order term disappears. The
first idea to treat this problem has been introduced by Caflish for a time dependant
case and for a space periodic problem in [16]. The idea is to decompose the rest
term into a low and a high velocity part. The method has been generalized in
([20, 21]) for the stationary Boltzmann equation for a single component gas in
presence of a force term when macroscopic quantities satisfy Navier-Stokes system.
But the technique is restricted to boundary conditions of Maxwell diffuse reflection
type. In that case the type of boundary conditions is crucial because they lead to
a normal flux of the distribution function equal to 0 and the approach breaks down
for other types of boundary conditions. In the situation of a mixture this method
has been generalized in ([14]) when one component satisfies boundary conditions
of Maxwell-diffuse type and the other a given indata profile. Remark that when
the equilibrium state of the system is a global Maxwellian function (see [8, 9, 6, 5])
the present decomposition is not useful. Moreover when the same system of kinetic
equations is far from equilibrium the techniques of resolution are totally different. In
that case compactness techniques are used (see [12, 13, 15]) and weak L' solutions
are obtained when small velocities are truncated.

Next we mention some other related results to the present paper. In ([6, 5]),
the authors consider the the Benard problem physically describded in [25]. They
construct by means of perturbative arguments for small Knudsen number, a positive
two dimensional solution to the stationary Boltzmann equations which is shown to
satisfy a stability property for long times. Let us notice that in ([5]), the control of
the rest term is performed thanks to a new spectral inequality. In ([7]) the ghost
effect by curvature intoduced in ([27]) is rigorously analysed from perturbative
arguments. The physical model corresponds to a Couette flow situated between
two coaxial rotating cylinders at the small curvature and small Knudsen number
regime. The comparison of the limiting model with the standard planar Couette
flow shows that an infinitesimal variation on the curvature induces a finite effect on
the solution.

Now let us describe the mathematical model studied in this paper. The molecules
of both species are assumed to be mechanically identical that is the molecular mass
and size are common to species. f4, f& are the distribution functions of the species
A and B, solutions to the stationary Boltzmann equation for a two component gas

((17)

Ean P 0) = QU ) (w0) + 1QUA 17w, v),

Exn P (e,0) = QU I 0) + 1QUP, 17,0,
xe[-1,1, veR? (1.1)
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with
l 1
ﬁK ﬁf and |=———.
2 2 Vord?ng
[ is the mean free path of the vapor molecules in the equilibrium state at rest with
temperature T7 and density ny, K, is the Knudsen number and d corresponds to

the diameter of the molecule. @ is called collision operator of the equation (1.1)
and is defined by ([17], [18])

Qt)w) = [ [ Bw—vw)lfs. - fldwv.
with
f*:f(xav*)a f/:f(:c,v'), f»i:f(x7v>/k)

v, vy and v’, v are the post-collisional and the pre-collisional velocities in an elastic
collision:

V=0 — (v — v, ww, V=0, + (V—vs,w)w.

The velocity v € R3 has for coordinates (£,7,x) and (, ) denotes the Euclidean
scalar product in R?. Let w € S? be represented by the polar angle (with axis along
v — v,) and the azimutal angle ¢. The function B(v — v,,w) = [(v — v,,w)]| is the
collision kernel of the collision operator () considered in the situation of hard-sphere.

The boundary condition for the A and the B components satisfy the following
given indata profile

A 2 A 2
A pr /11 v A prr/Tr1 —v
—1,v) = exp(——), £ > 0, 1,v) = ———=Fexp(—), £ <0, (1.2
[ (=1Lw) (1) p( Tz) 3 [ (1,0) ()2 p( T ), & (1.2)
B 2 B 02
pr/Tr v B pH/TH
fP(=1,0) = 7 exp(— ) >0, fP(Lv) = T exp(—), €< 0. (1.3)
(WTI) (’R’T[[) 2 TI
Ty (resp. Trr) represents the temperature of the condensed phase situated at x = —1

(resp. z = 1) and p¢ is the saturation pressure of the species a at temperature Ty
(resp. Trr). For the sake of simplicity, we take as in [29] 77 = p# = 1. Moreover we
assume that the pressures satisfy the relation p‘I“I =pP+1-pB + %A €, where
A is a nonzero constant of order O(1) giving rise to the ghost-effect.

Next we define the macroscopic quantities n®, u® as the moments of the distri-
bution function f*, a € {A, B} ([29]).

2
f%dv, nuf —/ Ef%v, n®u® / vfdv, po‘:TO‘nazf/ (U—uo‘)Qfo‘dv.
R3 R3 3 Jrs

(1.4)

Moreover the macroscopic quantites associated to the mixture can be defined by

1 1
n=n*+n", nu=n%t+nPuB, p=pr+ gnA(uA —u)? +pP+ gnB(uB —u)?.
(1.5)
A usefull quantity is the concentration X< of specy a defined by
nOL
X% =—. 1.6
d (16)

The main result of this paper is the following existence theorem for the system (1.1,
1.2, 1.3) proved by perturbative arguments.
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Theorem 1.1. For p?, (resp Ty1) close enough to p? (resp T;), and e small enough,
there is a solution (f%, fB) to the system (1.1, 1.2, 1.3) of the form

(A F5) = (Firo +efit + 2 f5 + R, flig +eff +2f5 +*RP)
satisfying

1R loo + [ RZ oo < —

S ;

Remark 1. In the situation investigated in ([14]) the A component satisfies a
given indata profile whereas the B component satisfies Maxwell diffuse boundary
conditions

2

B _ 1 _’U 1 ¢B(_ / /

FP10) = g exp( TI)/MM FP(=10)dv', €3> 0,
B _ _U2
f (171})— T][

el [ €170, ¢ <0

7TT12]
And in this case the proof of Theorem 1.1 still holds. But the proof given in ([14])
cannot be generalized in the situation of the present paper.

This paper is organized as follows. In section 2 an asymptotic expansion in the
parameter ¢ is performed. The lower term of the expansion is shown to be a local
bi-Maxwellian. The next orders have to be corrected by adding Knudsen layers
constructed by from Milne problems for mixtures ([2]). Moreover the construction
of the boundary layers fixes the boundary conditions of some fluid quantities. Some
estimates are also required on the boundary Knudsen terms and are obtained by
arguing as in ([10]). At the end of the section a fluid system is derived and solved
when boundary conditions for f4 and fZ are close enough to each other (Theorem
2.2). Finally section 3 deals with the control the rest term (1.1). The rest term
is shown to satisfy a non linear Boltzmann problem. The estimates are firstly re-
searched on a linearized problem and are obtained thanks to a decomposition into
a low and a high velocity part ([20, 21, 14]). But in ([20, 21, 14]) the boundary con-
ditions are of Maxwell-diffuse reflection type which plays a crucial role. Therefore
the approach has to be modified here because the boundary conditions are different.
Finally we find a decomposition which is working either in the present situation or
in the situation developped in ([14]).

2. Asymptotic expansion. In this section we perform an asymptotic expansions
in the parameter ¢ of the solution of the system (1.1, 1.2, 1.3). The terms of the
Hilbert expansion have to be modified in order to satisfy the boundary conditions
(1.2, 1.3). That is why each term f of the expansion of the distribution function
associated to specy a writes

I = [l + frn + I8, ae{A;B}). (2.7)

In (2.7), f&, is a smooth function depending on = whereas f5, (resp. ful)is a
smooth exponentially fast decaying function depending on the rescaled variable %
(resp. 1_73’) At the end of the section, a fluid system is derived and solved when
the boundary conditions are close to each other (Theorem 2.2).
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2.1. Hilbert expansion. The distribution functions f4 and f? are expanded in
Hilbert series as follows

fﬁ(x,v) = fﬁo(x,v)+5ff}1(x,v)+~--,
fa(xv) = fiole,v) +effi(a,v)+---. (2.8)

Substitute f# and f£ by the expressions given in (2.8) in the equation (1.1) leads
to

0
fa(ff}o+5fﬁ1+"') éQ(ff}0+5fg1+""ff}0+€ffr1+"')

1
+ gQ(ffro‘f'ffﬁl""”af50+5f§1+”')7 (2.9)

0 1
68730 (fgo‘f'ffgl"‘"') gQ(fgo‘f'ffgp e fhotefi o)

1
+ gQ(fgo tefth+-, fllo+efih+--+) (210)
A important Hilbert term is

fu=fa+rE. (2.11)

It corresponds to the sum of the two components and satisfies the relation

f(%(fHo +efmit-) = éQ(fHO +efm+- faotefm+). (2.12)

By using the Hilbert expansions (2.8) for f# and f£ and by identifying formally
the different orders of € in (1.4, 1.5, 1.6), the following relations are obtained on the
macroscopic quantities for « € {A; B}

[, Timtv=rti (m=0.1), [ €fiode = nipou s (213)

(e} @ « « 1 « (e}
/ v frodv = noutg, / EQfHod” = 9 (n%0Ttr0) »(2.14)
R3 R3

v

«

3

Xfo = LHOa / v? fiodv = ”%o(u?,Ho)Q + 517%107 (2.15)
ngo  Jrs

« _ « (6% « (6% [e3 _ o «@ (03 «@
/3 Efmdv = ngous g1 + 51Ut gos /3 vfpdv = ngout gy + 1 vt pe, (2.16)
R3 RY

(e} 3 « (e} « (e} « « « « @
/]Rs v fido = i(nHOTHl +n%1Tro) + 2n%out goutn + 2nH0(u1,H0)2' (2.17)

v

2.2. Determination of the Hilbert terms of the expansion.

2.2.1. Ezpression of ff(o and f5,. The identification of the terms of order —1 in
the equations (2.9) and (2.10) leads to

Q(fi10. fi10) + Q(ffo, fio) =0, (2.18)
Q(fi10. i) + Q(fHo, fHo) = 0. (2.19)

The system (2.18, 2.19) is solved by using the following lemma.
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Lemma 2.1. The solution to the system (2.18-2.19) is

na —uy 2,2, .2

ff}o(xyv) = m exp (-W;{#) s (220)
—u 2 2, 2

FB (z,0) = ﬁexp (—%) (2.21)

A B 3
where (Ngq, 5o, Tro, u1,H0) € RY X R.

The proof of Lemma 2.1 follows from ([2]).
2.2.2. Expression of f#, and f5,. Firstly by inverting the relation
0
§afszo = Q(fno, fu1) + Q(fu1, fuo),
it holds that fri writes

2 2 3T cA(|D])
fm = <nH1+ Q;}»ngJr( v 77) H1 13 (|'UD
nHO HO

where

A(Jv]) is the solution to ([14, 19, 25])

- 5

+oo
LrnEAUT) = ~E6*=3). [ rAmE@yr =0,

where Lr,,, is the linearized Boltzmann operator for a one component gas defined
by

Loy, (Yu1(0)) = /}R3 . E(@*)(¢H1(m,v’) + Y (2,0)) — P (@, 0)
i (z, U*)) B (6. — #|v/Tro, (v — 5, w)v/Tro)

dwd,.
THo

More precisely

n 2u v? 3.7
(2 (3T
NHQ THo HO
is the hydrodynamical part of fz; and corresponds to the projection of fg1 on the
kernel of Lr,,. The term

_EA(Jo) 9
pHo Oz
is the non hydrodynamical part of fg1 and corresponds to the projection of fg1 on
the orthogonal of ker L.

Next (fi1,, f5,) is determined from the identification of the 0 order terms in
(2.9) and (2.10). So

- Tro fro

f fHo = Q(fi1o: fr1) + Q(fii, fro), (2.22)
f fHo = Q(fffo: fr1) + Q(ffhr, fro)- (2.23)
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Therefore (ff},, f5,) can be computed after the inversion of the relations (2.22,
2.23). From ([2]) the kernel of the linear mapping

X:(0a,98) — (Q(&fHo, fi1o) + Q(fro, dafiio)s Q(dfro, fhio) + Q(fro, b8 fi1o))

is ker A = {(a® + B¢ + % af + BE+1?), (ah,aB,B8,7) € RZ x R?}.
(f 1’317 fE,) is split into its hydrodynamical part and its non hydrodynamical part as

A 2 e Al .
fin = fio (pfg,”mgulﬂl v 5 Tm EA(R) 0, £C(0) 9 A>7

+ —_ — - P
Dio Tho (THO 2" Tyo pro Oz 17 NP D" HO
(2.24)
B 2 & ~ Toltx
B B [ PH1 U1,H1 v 5 T EA(|7]) 0 C(W) 0 p
= THL § ge WML (— _2yZHL ST Dy, — = :
Jit1 = Jio (Pgo gTHO (THO 2" Tro pHO O nHPE D" HO
(2.25)

where C' is a solution to the equation ([14, 30, 32])
Q(E(0), E(0)EC(0)) = —EE().
As previously fa, fi, and f5, can be computed in the following form

fr2 = fro(co + 1€+ cav® + ¥r2), fis = fho(ch + 1€ + cav® + Y2 + ¢*), o € {A, B},

where

2
_ pH2 5 (THQ nHlTHl) Uy g1 =9 (Ul,Hz LS u1,H1>
1H2 _ ey =2 B2 U1,H1
To  nzo THo

cp=—"— =
pao 2 \Two mnuoTHO THo

2 2
1 (THQ ni1 T 2“1,111) o Pz O (Tﬁg n‘}}ngl) Ui

0_1’%0 2

A
Tao  n40THO

Cq

"~ Two \Tuwo  nwoTro 3 Tro THo

For the computation of the functions ¥ s and ¢*, we refer to ([11]).

2.3. Study of the boundary conditions for the Hilbert terms. In this sub-
section we show that fﬁo and ff, satisfy the boundary conditions (1.2, 1.3). But
for the other Hilbert terms fi7,, f&,, fiy, [, Knudsen layers must be added at
each boundary and these layers are solutions to Milne problems for mixtures ([2]).

2.3.1. Closure of the system at the O order. (fio, f5,) satisfies (1.2, 1.3) when the
macroscopic quantities p‘;‘m, pf’m, Ty satisfy the boundary conditions

ng(_l) = 17 pflo(_]') = pIB7 THO(_l) = 17
Pgo(l) :ijBI +P[B -1, Pffo(l) = pIBIv Tro(1) = Ty1, (2.26)

and U1,HO = 0.

2.3.2. Knudsen layer at first and second orders. As fjf}l and f5, defined in (2.24)
and (2.25) cannot satisfy the boundary conditions

A
fﬁl(_lav) =0, fﬁl(lvv) = j%mfﬁo(lav)’ fgl(_]-vv) = fgl(]-vv) =0,

Knudsen terms must be added at each boundary.
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By setting 2’ = 2%, 2" = =% the modified Hilbert terms f, f{* and ff are
written as follows

filzv) = fmi(@o) + [ (@ 0) + fi (@ v), (2.27)
fitlew) = file,) + [y (@ o) + fil ( ), (2.28)
le(Q;‘,U) = f51($7v)+le (.’L‘ U>+f ’U) (2'29)
Then we aim to construct the boundary layers le , le , fat and fEF 1 in order

to impose the boundary conditions

fi(=Lv) + f1 (0,0) =0, fH(=1,0)+ f£7 (0,0) =0 for £€>0  (2.30)

and
A A+ 2 A B+
S (L) + i (0,0) = — fH0(1 v), fH1(1 v) + fg1 (0,0) =0, for £ <0.
7TpHo( )
— (2.31)
From here denote M = n%fgo ie
HO
T 1 7i A_ A 7 B_ B 1
M = = exp( ), M?=nzoM and M® =ng,M.
(WTHO)§ THro
Consider as in ([2]), the space H with the scalar product
(fr9) = ((F417)5 (g% B)>
= o [ AW N0+ iy [ 100" 0N (o)
and || ||# the associated Hilbert norm.
Proposition 1. There are boundary conditions in x = —1 for the first order Hibert

terms (fii,, f5) defined by (2.24, 2.25) and Knudsen terms (fy (z',v), f21 (2',v))
solutions to

€L A ) = QUIA (-1L,0), Ty (0 0) + QU (), M(—1,0), (2:32)

o TR ) = QP (1, 0) ey (0 ) + QU (0 0), M(~10)), (239
where M = M4 + M® and fr, = I‘?l_ Jrf}?f.
Moreover the following asymptotic properties hold. f]’?l_ and fgl_ write as
Frer (@' 0) = MA(=10)¢1' " («,0),  f§y (2,0) = MP(=L0)7 (2, 0),
where for x’ tending to infinity qb‘f_ and ¢113_ converge exponentially to 0 as
(1 + o) 2 67~ (@, 0) e < exp(=oa’), (14 [0]) 267 (2, v) | < exp(—oa’)(2.34)

a.e ' > 0 with o < 2v1 where v1 is defined in (3.82).
Moreover the construction of the Knudsen layers le, le , I’?f, K1 define
the boundary conditions for le, pB . and Ty .
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Proof. From [2] there are (b’f‘_, bf‘), (gi‘l_7 g{B_) and (df_, d’lg_) unique solutions
to the Milne problems

aa,bA_(a: v) = M(Q(MA(—LU)M( 1, o) (2, v))
QUML) (@' ), M(~1,0)).
gbe (@v) = M(Q(MB(—LU),M( 1, o)b (2, )
- QUMB (L 0P (', v), M(~1,0),
b= (0, )THi(—l)A(m)’ £>0, bﬂo,mﬂi(_nA(wn, £>0,
g EMA(=1,0)b (2’ v)dv = 0, g EMPB(—1,0)bP~ (', v)dv = 0,
G @) = S QAL M (Lo ()
+ QU= v)gt (o v), M(~1,v)),
G ) = ey QO (1) M (=1 ()
£ QUMP(—1u)gP (@' v), M(~1,0)),
N —£_c(ja) ] —£_c(ja)
97 (0,v) XA (1) £E>0, g7 (0,v)=— XB (1) £€>0
g EMA(=1,v)g{ (', v)dv = 0, g EMB(—1,v)gP~ (2, v)dv = 0
and
€0 = ey QML) M(-1o)d; ()
O QUMA(-L,v)di (o v), M(~1,v)),
Gt @0) = g QU1 ML) ()
+ QMP(=1,0)d] ™ (2, v), M(~1,v))),
d=(0,v) = —2T;)(_1), £>0, dP(0,v) = _2THi(—1)’ £>0,

/ EMA(=1,v)dd (2!, v)dv = 07/ EMB(=1,v)dP~ (', v)dv = 0,
RS RS

with b7 = b1~ + 087, g7 = ¢~ + ¢P~ and dj = d{'~ + dP~. Moreover

A— A— - 2 B— B— - 2
lim b7 (2',0) = b o + b 04 lim b7 (2',v) = b7 g + bl o a¥”s
x/_)+oo bl bl bl bl —>+OO b ) 9 9
/ A— — 2 / B— — 2
lim 91 “(a'v) = 91,00,0 T 91,00,4V"> ,hm 91 “(2'v) = 91,00,0 T 91,00,47"5
z/ —+4o00 —+00
A—( 1 N _ JA— - 2 B—( s N\ _ iB— - 2
lim di~ (2',v) = A 00,0 T A1 00,4075 lim dy ™ (2',v) = dy o0t A1 004?07
x’ —+o00 x’ —+o00
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A— B— - A- B— - A— B— -
where b7 o, 07 .00 01 00,47 91,00,00 91,00,00 100,47 D1,00,00 D1 00,0 BN dy o 4 are

constants. Finally we define fﬁf as

_ uy (=1 _ _ _
fl‘?l (I/,U) = ( ( ) (d114 (:L‘/,’U) - d114,oo,0 - dl,oo,4U2)
TrHo(—1)

0:Tro(—=1) ,a_, A - 2
+ ——F——07 (@, v) = bl oo — Dl eoa?
pHO(_]-) (1 ( ) 1,00,0 1,00,4 )
31PA -1 — — —
7H0£ )(914 (z',v) — 914,00,0 - 91,00,4”2)> fito(—1,v).(2.35)
pro(—1)

So from (2.24), (2.35) it comes that

A v2 1(—
SO0+ fib10) = et (BN s - DT

up g(=1) 4 - 9
- oo +d o0 v
THo(*l)( 1,00,1 10oaV”)

O Tro(=1) 4 _

~ B HT ) A e

pHO(*l) ( 1,00,1 1,00,4 )

3xpﬁo(*1) A— — 2
_— .1 T 0.4V )
pro(—1) (91, 1T 91,004 )

Therefore the boundary condition (2.30) is satisfied when T'1(—1) is defined by the

relation

Tr1(—1) _ uy,p1(—1) n 0:Tro(—1) , _ axpfnl]o(—l)g_ (2.36)
TI%O(—].) /—THO(_l) 1,00,4 pHO(_]-) 1,00,4 pHO(_]-) 1,00,4

and the boundary condition p#},(—1) is defined as

A
P (1) Ul,Hl(*l)( A 5 3
= A1 vo0 T 5THO(=1)dy o 4)

Piro(—1) Tro(—1) o0 27 MO/ hecd
O0xTro(—1) ,, 4 5 _
—_— —THo(—=1)b
pHO(—l) ( 1,00,0 + 2 HO( ) 1’00,4)
Oppio(—1 5
Oeito( D) (a1 Sy~ 1)1 e )

pro(—1) 2

So by using (2.36) p5, (—1) writes

u1,m1(—1) _ 5 _
pin(—=1) = phol— )m( ﬁoo,oJriTHo(*l)dlooz;)
0:Two(—1), 4. 5 _
+ plho(—1)ZER (b 4 STao(—1)b
Pro(—1) pro(—1) (1,00,0 B Ho( )1,00,4)
5

A (_
o) G+ STl 1)g )
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Hence p4,(—1) can be rewritten in function of X#,(—1) as

() o+ T 1))

+ Xipo(=1)0:Tro(—1) (0 w0 +

pin(=1) = Xfo(—Dpmo

5 _
2TH0( )bl,oo,4)

5 _
5TH0(—=1)91 00.4)-

+ Xﬁg(*l)azpé]o(*l)(gf;,o + 5

Next by setting for o € {A, B},

_ 5 _
av _dtlloc0+ 5THo(— )dl,oo,4a aT _b?oo0+ Tro(— )bl,oo,47

2 2
al 5 —
a% =97 w0t QTHO( 1)91 00,45

we get the boundary condition for p4,

ULHl( 1) aAI
—F—ay
THO( )

+ Xigo(=1)0:Tro(~1)ap’ + Xiio(—1)0upize(—1)ak’.

pin(—=1) = Xfo(—Dpuo(-1)

In the same way we define ffl_ as (2.35) and we find the boundary condition for

B
PH1s

phi(—1) = Xﬁo(l)pHo(l)mj{;O((__ll)) 51

+  Xio(=1)0Tro(—1)af" — Xfo(—1)0:ptro(—1)ak.
Finally the boundary condition for py; at ¢ = —1 writes

) uy,g1(—1)

al, + 0, Tro(—1)ak + 0,p5o(—1)dy,  (2.37)
Tro(—1)

pr1(—1) = pro(—1
with

afy = Xfio(=Dap’ + XFo(—1)a’, aT = Xijo(-Dap" + X By (—1)a?’,
aX = XHo(—l)a?(I - XEO(—l)af}I.

In order to satisfy the boundary conditions at z = 1 we proceed as for x = —1. In
that case the Knudsen terms are defined as

« U1,H « o
(o 0) = ( MU (g o) = g — )
Tho(1)
9:THo(1) 0y + + 2
4 GO ok (o ) — bt — b g
pHO(l) (1 ( ) 1 0 1,00,4 )

811)%0(1) o+ 1 a+ + 2 «@ 1 A B
m(% (@",0) = 91 %0 = 91 00a?”) | fR0(L,0), a € {A, B},
where df", b{* and ¢ are solutions to Milne problems and the constants dfF_

A o tr b‘f; 0 0T soas 91500 and g, 4 are defined as previously. Therefore pfy, (1)
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and pB (1) are given by

uy,m1(l
pin() = ko) L Xk (1) 4 2T X1
HO

2
+ Oupiio(Dax " Xi1o(1) + ﬁAv

and

U 1
pBA(1) = plo (1) ) (B1I B (1) 45 Ty (0BT XE (1) — Bupfho (e X B (1)

Tro(1)
with
oll o+ 5 + oll o+ 5 -+
ay ' =di o+ §TH0(1)d1,oo,4a ar =b{ 50t §TH0(1)b1,oo,4>
o 5
aTII = gil_o,o + §THO(1)gi":DO,4'

So adding the two previous equations gives pg1(1) as

Ul,Hl(l) II II A II i
(1)77}10(1)@‘/ + 0. Tro(1)ay + Oupio(l)ay + ﬁAv (2.38)

pr1(1) = pro

with

ay! = Xjzo(Dap'" + Xfjo(1)ay’”, ”—Xﬁ‘ro( Jap!! + Xio(1az!,
a¥ = Xio(ax' — Xfo(1)ag".

O

Like previously fi, and f£, can be defined by identification of the first order
terms ine. ff, and f§, are computed in function of (nfyy, nfiy, Tiy, Thy, uf gy, uf )
which are solutions to a fluid system that can be solved by argumg as in The-
orem 2.2. As for the first order, Knudsen terms sz, sz , fKQ, f}?; must be
added to the Hilbert terms fi, and fZ, in order to satisfy the boundary conditions
f3(=1,0) = f5(1,v) = f8(~1,v) = f8(1,v) = 0. These Knudsen layers are also
constructed by solving Milne problems for mixtures. In the following, we will use
the notations

2 2
A A — _
715 _le( ) 7172_: Kii_(gvv)a 71B,5 :f£1 (771])7

2
B B — A— B—
’71,: = Kf(g’v), M,e = V2e TV2e > 'Yls '715 ""Ylsv

2 2 2
A— A A B— B—
726 = K2(€ U)v 72,:_: K;(gav)v V2,e :fKZ (gvv)v
2 _ A _
2?:_ = 53_(*,’0), 72,5 = 72,6 + 758 ’ 7;5 = 754,: +’Y2B,:_ (239)

2.4. First order fluid equations. In this subsection we consider a fluid system
mixing 0 order and first order terms which is derived from the kinetic system (1.1,
1.2, 1.3) ([29]). As in ([20], [21]), this system is solved for well prepared boundary
conditions closed enough to each other (Theorem 2.2). This assumption is crucial
for obtaining estimates on Knudsen terms given in Lemma 3.1.
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Theorem 2.2. The macroscopic quantities “114,H17 ufle, pgo, pﬁo, Tryo and pH1
satisfy the following fluid system

%pb{o =0, (2.40)

%(ngou{{m) =0, (2.41)

%(ngouﬁm) =0, (2.42)

%%(%(THO)TE]O) = NHOU1,H1 (%THO, (2.43)
T 9

Uy —ubyy = _%ZWHOOHEO %pfm, (2.44)

%le =0, (2.45)

where piyo = nyoTro and pBy = nB Tho.
Moreover this system can be solved as follows. There are 79 > 0 and A > 0 such
that for all T € R satisfying |7| < 70, there are Trr, pP; and A such that

1=Tu| <o |pf —pfi| < A7 Al <7
and such that the system (2.40-2.45) has a unique solution Txy, pﬁo, p1]-3107 PH1,
u yy, uf gy satisfying the boundary conditions (2.26) and (2.37, 2.38).
Moreover there is A > 0, such that (for all x € [—1,1])
Piro(@) = 1 < A7, [piio(@) — p7P| < A7y [Tro(x) — 1| S Ay Jug | < A,
|(pi0)"(@)] < A7, |(PEo)' (2)] < A7, |(Tto0)' ()] < A7 (2.46)
Proof. (Theorem 2.2) The derivation of such a system is performed in ([29]). Next

we focus on its closure. According to (2.41, 2.42) there are two constants #4 and
6B such that 64 = ngou‘ﬁHl and 08 = nfj uf ;. Next we determine 6 defined by

6 =04 +68 = ngour g1. By using that pgi(—1) = pm1(1) together with (2.37,
2.38), it holds that 6 is given by
. 9:Tro()ag' — 0sTro(=1)ag — dupiyo(1)a¥ + dupie(—1)ak + Z=A
Tro(—1)al, — /Truo(1)aif '
According to the previous relation it is equivalent to find € from A instead of
the contrary. Therfore from a given 6, such that |§] < 7, we define A by the

prevous relation. Next in order to determine T, we consider (2.43). By denoting
¢ = 0:Tro(—1), Tho is the solution of the Cauchy problem

D Tuo 1

s = : 2.47
%}(THO -1+ec THo (2.47)
Tro(—1) = 1, (2.48)

0
%THO(*l) = c (2.49)

In order to satisfy the inequalities (2.46) for T an estimate is researched on ¢. By
solving the Cauchy problem (2.47, 2.48, 2.49), it comes that

le| vo ( 20 /CE 1 )
THo — 1] < exp(— ds)+1].
Tro =1l 2|0 p(72 —1VTHo )
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Next in order to get |Tro — 1| < 7, it is enough to take |¢| < 2907 which implies

V2
le] 2 < 20 / o1
exp(— ds)+1) <.

20| Y2 J-1 V1THo
Moreover Ty defined by Tr; = TrHo(1) satisfies |T7; — 1| < 5\7', where ) is a noneg-
ative constant. In order to estimate 9,Tro, we use (2.47) and we chose again |c|
small enough. So |0, THo| < 7. Moreover from (2.40), ngo writes

o

npo = )
THo

where « is a free parameter. Hence the boundary condition pgo(—1) = 1+p? gives

a =1+ pP. In order to determine pfm we look for an equation satisfied by the
concentration X 5. (2.44) can be rewritten

A_ A 300
niofi — nieft = _’YcTﬁO%XHO'
Hence by multiplying the previous equation by T and by deriving we get

0 1o} 3 0
aapgo = *’Yca? (TﬁowXIgo) .

Then dividing by pgg, it holds that X f}o satisfies

1
0 T2, 0
0—Xp, = 0 = x 7). 2.50
8$ HO nHo ax HO) ( )
To find XE,, we proceed like for the resolution of (2.47, 2.48, 2.49). By setting

¢=2XE and d = ZXE (-1), ¢ is solution to the Cauchy problem

0
_’yc%(

9 Th Tiy 0
(0 + e 8x(nH0>)¢+%nHO 5wt = 0
o(-1) = d.

¢ writes

Hence by chosing d such that

Y'on o T?
< vesp ([ I+l D)

L. Tho

¢ satisfies the estimate |¢| < 7. Finally X5, is defined by
B v ‘
Xio = T+ pP +/_1 ¢(s)ds.
This determines p5, and pP = pP (1) satisfying the estimates
pio — 7| < U +pD)7,  Ipfy = PPl < A7 ()| < Ay

X being a nonnegative constant independant of 7. Finally
pio = (1 +pB) — pB, satisfies pr(1) = (1 +p?) — pB, and the estimate

10 (pti0)| < AT
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3. Study of the rest term. This section devoted to the control of the rest term
when p?; (resp.p?;, resp. Tyr) is close to pst (resp.p?, resp.T;) and e is sufficiently
small (Theorem 1.1). We first show that the rest term of the Hilbert expansion
is the solution of a non linear Boltzmann system. Next the idea is to consider
a linearization of such a problem and to estimate the solution of this linearized
problem. Following the ideas of [16] this solution is decomposed into a low and
a high velocity part, solutions to a system of equations. But the decomposition
introduced in [20, 21] and generalized in ([14]) for mixtures has to be modified here.
Indeed in [20, 21] one crucial point is that one of the distribution function satisfies
Maxwell diffuse boundary conditions. So the flux of the solution is equal to zero.
But this property is not true in the present situation of given indata profiles and
the decomposition proposed in [14, 20, 21] has to be modified.

3.1. The rest term. In ([16]) (resp.[20, 21]), the authors solve the time dependant
(resp. stationary) Boltzmann equation by splitting the distribution function into
an asymptotic expansion and a rest term and by controlling the rest term. In [14],
the proof developped in [20, 21] is adapted to the situation of a two component gas
when one component satisfies Maxwell-diffuse boundary conditions. But here due
to the two given indata profiles the decomposition has to be modified. As a result
we obtain a decomposition which allows the control of the rest term in the present
situation and in the situation of [14].

The rest term e3f5 (vesp. e3fE) for f4 (resp. f?) is defined as the difference
of f4 (resp. fP) and its asymptotic expansion as

FAaw) = MAe(fheo) + il (200 + F

+ 2 (fhalw o) + ity (5 o)+ i

,v)+f}?1+(1_x,v)>

1—2z

)

° ,0)) + R4 (z,v), (3.51)

1+

o) = MOt (o) + .

1+ 1—x

+ 2 (fha0) + Fg () + 1R (—

By plugging the expressions (3.51, 3.52) into (1.1) and by taking (2.22, 2.23) into
account, (R, RP) has to satisfy the system

,v)) + 2 RP(z,0).(3.52)

g Rt = H(QOMR)+ QURAMN) + QUL + < B) + QRN fy + <)
+ 2Q(RY,R) +£34, (3.53)

e B = Z(QUIPR)+ QRY, M) + QU + efF, B) + QUR®, fy + <)
+ £’Q(RP,R)+¢£°B, (3.54)

with R = R4 + RE and
0
A = i(-gaxfﬁz+Q(fi4,fz)+Q(f§‘,f1)+6Q(f2“,fz)

+ QUi ('0), ATM) + QATM?, fiey(a',v)
+ QATM, fiif (2", 0)) + QAT M, fy (2", v)

(QUT " ). fra @) + QUET @' v). fi2y v)))) . (3.55)

M | =



16 S. BRULL

B - i(_ € Tha + QUE. ) +QUE, 1)+ 2QUE . )

1

b QU ). A M) £ QUM (el v)

QUL 0. AM) + QAME, ")

+ é(Q( ET(I"W% f};l(xlvv)) + Q(flgl_(xlvv)’ fltl(x”?v)))>’ (356)

with
M- M(-1 MA — MA(-1
A_M: ( ’U),A—MA: ( ’U),
€ 13
A—MB:MB—MB(—LU) A+MB_MB MP(1,v)
€ ’ € ’
A~ M= M(Q,v) A+MA_MA—MA(1,U)

Recall that the quantities f1, fi', f2, fo, f5', f£ are defined by (2.27, 2.28, 2.29).
On the other hand R4 and RP? satisfy the following boundary conditions

A,— A,— A+ A+
71,6 +€’72,8 ’7175 +E,Y275

A _ _ A A _ _ A+
R (—1,v) = = =¢"7,¢£>0, R(1,v) = = =(7T, £€<0,
(3.57)
B,— B,- B+ B,+
5 +€ ) ) “FE ’
RB(—LU)Z—%:CBT £>0, RB(LU)Z—%ZCBﬂ £<0,
(3.58)

where the terms v, , 'yf’e, 7{%’5 vf,;+7 75;77 ’Yf,;r, V2,65 ’Ygtg, W;’;» 7;é+7 ’Yf;»
7237 " are defined by (2.39).

Moreover remark that according to (2.34) we have the estimate on the boundary
terms ¢4, ¢A*, (B~ and (Bt

/

ICA I+ IS+ Pl + 165 < @ exp(cg% (3.59)

for ¢ > 0.

3.2. A linearized problem for the rest term. The solutions (R*, R?) to the
system (3.53, 3.54) are constructed as the respective limits to a sequence of itera-
tions. The generic term of the iteration can be defined as a linear equation of the

type

R = L(QUIAR)+ QR M) + (QUE + </ R) + QUR™ i +212)
+ &2D4, (3.60)
€ RP = QUM R)+QRY M) + (QUL + =i R) + Q(RA, i +12)
+ &°DP, (3.61)

satisfying the boundary conditions (3.57, 3.58). More precisely at the step & of the
iteration, the term (D4, DP) is replaced by

(Q(Ri_, Ri—1) + €A, Q(Ri_1, Ri 1) +€B).
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In the following, the terms R, R4 and RP will be estimated in terms of D, D4, DB
and of the boundary conditions (3.57, 3.58).

3.3. Decomposition of the rest term. The natural way to deal with the lin-
earized Boltzmann equation is to change the operator f +— Q(M, f) into the oper-
ator f — f% (M, M*%f). But when the Maxwellian is not homogeneous, this
procedure produces the term ﬁMféﬁﬁ(M%f) which behaves like |v]? f and has no
sign. So as in [14, 16, 20, 21], R, R* and RP are decomposed into a low and a high
velocity part as follows

R=VMg+/M,h, R*=VMAg*+\/M,h*, RP =vVMBg® +/MhE,
(3.62)
where M, is the global Maxwellian M, (v) = ﬁ exp(—%), with Ty > sup,¢_1,1) Tho(z).
Hence there is ¢ > 0 such that for all (z,v) € [-1,1] x R3, M, > cM, M, > cM4,
M, > cMPB. Since R= R4 + RB,
_V nt 4 + vnP g
Remark that in ([8, 9, 6, 5]) this decomposition is not useful because the equilibrium

state is a global Maxwellian distribution.
In order to control g#, ¢&, h** and h®, the following L? norm is considered

h=h*+ hB, (3.63)

1
2

1l = ( /[11] R3<1+|v|>f2<x,v>dmdv> (3.64)

and is extended to the boundary terms h?, hﬁ, h# and hjﬁ depending only on the
v variable. As basis for the kernel of the linearized Boltzmann operator, we take
Yo = VM, ¢y = &M and ¢y = (v? — %T)\/M. g is next decomposed into its
hydrodynamical part Pg and non hydrodynamical part g. Hence Pg writes

Pg = po(x)o + p1(x)1 + pa(®)is. (3.65)

For a € {A, B} define

Yo =VMe, Y =¢VMe and wg:(UQ—%T)M.

Then (g#,¢?) is split into its hydrodynamical part (P4g#, PBgP) and its non
hydrodynamical part (§A,§B ). PAg# and PPgP are decomposed into

PAgt =gt + gt + 95, PPgP =gl + 9P +4?2, (3.66)
with
g (z,v) = pi ()i (v), i€{0,1,4}, ae{A B}

Remark that according to the expression of the kernel of the linearized Boltzmann
operator, we have pf! = pP and p{' = pP. From now we set p; = p{ = pP and

pa=pi =y
Introduce the quantities
10 10
A_ 1 O A B_ ¢+ 09 B
it = 655 (n(MA), 1 = €52 (n(MP)),
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The couples (g4, h4) and (gZ, hP) are defined as the solutions to the systems

P 1 1
68759‘4 + gt = EEA(gA,g) + LY (g%, 9) + gwal (K2 (h) + KL (R™)), (3.67)

1 1 -
f%hA - gvaf(h) + (v + X, K1)h?* + Nao(h) + No(h?) +e2d* (3.68)
and
a B B B 1 B 1 B 1 —1 B 1 B
§5,9 THY ZEEB(Q ,9) + LE(g »9)+ngUB (KP(h) + Ky (h")), (3.69)
a B 1— B 1 — 1 B NT B 2 1B
where

—1
2

44 = M. :DA, 4B = M. :DB,

Xy(v) =1, for [v] <y, xy(v) =0, for [v[27, and X,=1-x,.

L = (L4, Lp) is the linearized Boltzmann operator for a two component gas defined
by

1

Lala™ 9) = <= (QVATIg", M) +QUIA, Vi), (3.71)
Lo(g®.g) = X/%(Q(VMBQB,MHQ(MB,\/MJ))- (3.72)

Moreover LY, LY, K& KB, NA, NB, N, are defined by

*

£4(a"0) = QWA i+ ef) + QU+ VETg), (373
£h(0".9) = QAT )+ QUP + i Vi), (T
A _ 1 A B _ 1 B
KNP = Zpem VM.f), K! (f) = QM VM.,
Nale) = S QUE + e /ITg), Nawlo) = e QUE + &1, v/3Tg) (.75
N.(g) = JJ\T*Q(\/Egjﬁafz), (3.76)
and Q(M, /M,h®) is decomposed into
1 oy iy 1 «@ a
MQ(M,\/AZh )= (—v+ KHr*, a € {A, B}, (3.77)

where v, called collision frequency is defined by

v(z,v) :/R . (Ve — v, W)M (z,v4)dvsdw.
3% S2
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Remark 2. In ([14]) the decomposition is different. In that case g#, g%, h* and
hB have to solve

9 4 Ar A A 101 SATA A A /a7
1
“Xy0a " (K2 (h) + KL (h) + Lo + 92 90 + 94)
Li(g5 + 92), (3.78)
a A A _A/=A A 1— A 1 — I\ A _
U (" +91) = XK (h)+g(—V+x7K*)h + Nax(o(g1 +9) +h)
+ NAo*@* +gi') + 1, (0P (G° + gF) + 1P))
+ 2d4 (3.79)
and
0 p B/ B By _ 1 1 /7B ..B B
1
+ gxwgl (KP(h)+ K (hP)) + Lp(g8 + g2, 90 +94), (3.80)
a B B _B/-=B B 1— B 1 — 1 B —
e G +97) = XK (h)+g(—V+X7K*)h + Np«(0(g+g1) +h)

+ NP(0P(@G" + gP) + hP) + 24P (3.81)
The operators

NB*(f)a Nf(f)? N*A(.f?g)v Lh(fvg)’ fﬁl4(f)7

are analogous to the operators defined in (3.73, 3.74, 3.75, 3.76) and satisfy the
bounds of Lemma 3.1. But this decomposition breaks down for the control of the
rest term for the problem studied in the present paper. This fact is mainly due
to the presence of the tems g; in the equations defining h* and h®. In ([14]) this
problem is solved because of the boundary conditions which are of Maxwell-diffuse
reflexion type which is not the case here. But the decomposition (3.67, 3.68, 3.69,
3.70) of the present paper can be applied to the case of [20, 21, 14].

Remark 3. In the hard-sphere case, there are two non negative constants vy and
1 such that the collosion frequency v satisfies

vo(1 4+ |v]) < v(z,v) <vi(1+|v]). (3.82)
Moreover g2, h*, g%, hP satisfy the boundary conditions
g (~1,v) =0, £>0, ¢*1,v)=0, £<0,

WA (=10) = CAMIE, €50, WAL = CATMIE, € <0, (3.83)
g% (-1,v) =0, £>0, ¢%(1,0)=0, £<0,
RB(—1,0) = My 2¢B—, € >0, hB(1,0) = MI2¢B+, ¢ <. (3.84)

Define also the functions h?4, hjﬂ, hB and hf as follows
_1 _1

A =M.3A, €>0, Wt =0, €<0, hi=M¢", £<0, hl=0, £€>0,
1 _1

W =M.3¢P7 ¢>0, hP=0, ¢<0, h¥=M2(PF ¢<0, hf=0, ¢>0
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We shall control the rest term (R4, RP) by using the norm

[flrge = sup sup (1+ [o])"|f(z, v)] exp(Bov?), (3.85)
z€[—1,1] veR3

for a suitable By. The same notation will be used for the functions depending only
on the v variable.

3.4. L? estimates on the rest term. Recall that the norm || || had been defined
in (3.64). First we have the following estimates

Lemma 3.1. For 7 defined in Theorem 2.2, the operators, LY, LY, Na., Np.,
N, defined by (3.73, 3.74, 3.75, 3.76) satisfy the inequalities

I+ DT LA DI TASA+ D N+ DT LEEE O < 7FE T+ 7D,
1@+ )T NAI < TIAL 1Q+ )T NacHI < 7L 1@+ o) T N () < 7IIFIL

For the proof of lemma 3.1, we refer to ([14]).
Next we will focus on the control of (R4, RP), solution to the linearized problem
(3.60, 3.61) in the norm || || which is resumed in the following proposition.

Proposition 2. There are eg > 0, 19 and ¢ > 0 such that for alle < ey and 7 < 79,
the solutions to (3.067, 3.68, 3.69, 3.70, 3.83, 3.84) satisfy the estimates

dA dB
hA hB < 3
A4 I8 < el + I )
+eVe(IRA N+ BRI+ IR+ IRE1),  (3.86)
dA dB
—_A —B < 2
I+ < et s+ s
C
+ g(llhi‘ll+Hhﬁ||+||h]_3|\+||hf||), (3.87)
a4 dB
PA A + PB B < +
1P (gD +I1P7 (7)< C€(||(1+|v|)|| ||(1+|U|)||)

Cc
+ g(llh‘i‘llJrHhﬁ||+llh§|\+llhf|l)~ (3.88)

Remark 4. In the case of Maxwell-diffuse reflexion boundary conditions (see [14])
the estimate obtained for ||h*| + ||RZ|| and ||g*|| +||g?|| are of the same order as in
Proposition 2. But for the hydrodynamical part of g, ||gi*|| + ||g7| are of the same
magnitude as [ | + g7 | whereas lggt | + llg2 | + g2 | + | is of the same order
as [|[PA(gM)| + [|[PB(¢®)|. In the situation of a one component gas, the estimate
on g; is even of the same order as h. The reason is explained in Remark 5.



GHOST EFFECT FOR A VAPOR-VAPOR MIXTURE 21

Proof. (Proposition 2). Multiply (3.67) by eg* and (3.69) by e¢g®Z, add the obtained
equation and integrate on [—1,1] x R? leads to

e(Zga +Iym) - /RS /1 (Lalg™ 9)9™ + Lp(9",9)9") dzdv
= /}Rs/ A (PAgh? + 1P (PBgB)?) dadv
+ /}Rd/ A(PAghgh + uP (PPgP)gP) dadu
+ /RS /71 (Lh(9™,9)9™ + Li(9", 9)g") dwdv
+ E/]R3 /_11 (DA\/WgAJrDB\/WgB) dvdz,
with for any o € {4, B},

(g™ (Lv)?dv+ | €(g*(~1,v))* dv.
R3 R3
Recall the spectral inequality ([2]),

(L™, 9%). (g, 9%)) = =mllg™II* + 1g%(1*),  with 71 > 0. (3.89)

We notice that a new spectral estimate involving the term £! has been established
in ([6]). By using the spectral inequality (3.89) we get

e(Tya + Lye) + (g2 + I971%) < er(IPAg 1 + IPPgP 1 + 115712 + 1197 11%)
+ e(IPMlg* I + 1D 1Ng®)
with
D = x 0, (KA (h) + KL(h?)), DP =x,05" (KB(h) + KL(hB)). (3.90)

Then by choosing 7 small enough, it comes that

e(Zga +Zgm) + 1 (Ig1° + 19717 < er(IPg™I* + 1PP9" )

+ e (IPlg™ I+ 1D%lg”1) - (3.91)

In order to control the terms g{' and gf we use the relation
£0, (\/M“g“) = p%g" + VM*£0,9" o€ {A, B}

Multiply (3.67) by VM4, (3.68) by vV MB, integrate in v and use the previous
relation leads to

O ([Lerviria) =L ([ vampra),
0x \ Jps € \Jrs

& (farvama)-
e

R3

VMBEDP dv)
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Hence after integration between —1 and z of the two previous equations, we get

[ ot VATl < | [ i1\ /MAC L)
]R3
+ |/ §§B\/MAdv|+f|/ VMADA du),
R3 g R3
EgPVMBdv| < /ngl,v MB(—1,v)dv
[P VT < | [ P10 ar Lo a
+ |/ ng\/Mde\Jré\/ VMBDE qdu|.
R3 R3

Then
1
[ ot VAol < ¢ (T +18%) + 21071 ).
-
1
[ eaf VATl < (2,0 + 1971 + 21D )
3

and finally we obtain the following estimates on ||g{*|| and ||g?||,

1< (T + 150+ 2IDA1)  afl < (T + 1971+ 2101 . (392

Remark 5. In ([14]) and in ([20, 21]) the terms g1 are controled by using the
Maxwell diffuse boundary conditions. More precisely in ([14]), the B component
satisfying diffuse reflection boundary conditions, its flux satisfies

&(g” + hP)dv = 0. (3.93)
R3

Hence we get the inequality
g Il < 115" Il + 1R P . (3.94)

Moreover due to the expression of the kernel of the linearized Boltzmann operator,
the estimate (3.94) is also satisfied by gi'. In the situation of a one component gas
([20, 21]), the inequality ||g1|| < ||| is obtained from the same arguments. But in
the present case, the relation (3.93) is not true.

Multiply (3.67) by £V MA, (3.69) by &V MP and add the two obtained equations
0
( 2V MAg dv+/ EVMBg dv) =7/ ¢ (DA +DP) do.
Oz € Jrs
Next by setting

g = g EVMAG dv, g5 —/ €2V MB g8 dv,
and after integration in the x variable between —1 and z, it holds that
[ eViigtao s [ & VaPgP a
R3 R3
<| [ @V L+ | € VAP (L u)dol
R3 R3
1 /1
+\/ E(VMAD? + VMBDP) dv| + g'/ & (g2h + g2) daz).
R3 1
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Therefore

93 + g5 + 393" + 397 [l2 < ¢ (I a+ Ty + g4 + g1 + = (IIDA\ + |DB||))

In order to obtain an extimate on ||gft|| + [|gF ||, consider (¢B,¢B) € Ker(L£)*
solution to

(LA(EB), L5(EB)) = (6 — 2)VMA, 67 — 2)VAIE).

¢ B(LLy gives

Hence multiplying (3.67) by B(LL) and (3.69 by —=
f VT AT

]
v 2
Se WA o [ BT S AT

)FEA(Q g)dv+/ }VMBB(J})EB(QB,QMU

+/R3£TB(U|)\/W»CA( ,g)dv+/R$T (\F)Fﬁé(g%)d”

1 |v]
w2 T (T) (VMADA + VMPDP ) du. (3.95)

Moreover £ being self adjoint, we have

/—B('”'w LAl ,gdv+/ S VATEB(EL) 2567, )0
R3 R&

VT VT VT
- /RS(\/WgA +VMEBg? )fT| dv.

Therefore by using the previous relation, (3.95) writes

i(égﬁ(%)ffg dv)—i—a(/ B(\'ﬂ)fﬁg dv)
[ o (S i) (varagt + varsg?) ae

VI OT
1 [ gt VA S
+ [ (S8C5h)) (VAFghie® o) + VAFLh(e® ) do
o [ il (viTDn 4 i) . 390

But
/ €2B(|v])VMAg" dv + / E2B(Jo|)VATBGE dv = ks pa + g + 9B
R3 R3

with

k2=/ §2¢4B(\v|)\/de+/ €24, B([v))VMB dv.
R3 R3
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Moreover by using the spectral inequality (3.89), it comes that ko < 0. Then the
equation (3.96) reads

aax (\}(kzm( )JrgszJrgf;B)) = é(gf2+gf§) +/]R{3 83:(58) (VMADA + VMEDP) du
€ vl
* / <\f (\f)) (FLA(Q ,9) +VMBLL(g 7g)) dv
+ 1 [ €80o) D VAP D?) i, (3.97)
R3

with

sy = [ Vg v, gb = [ &*VMPg"
R R

Next we aim to determine g7, and g¢5,. Multiply (3.67) by |v|>V M4, (3.69) by
|v]2vV MB integrate with respect to the v variable and add the two equations gives

/ §|v|2 \/79 +VMBgP )dvzl/ |v|2<\/WDA+\/ﬁDB>dv.
R3

9

Hence by integrating between —1 and x, there is a nonnegative constant c¢; such
that

1 xT
(9?2"‘952) = 01+g/ |v\2(\/WDA+VMBDB) dv.
1 Jrs

So by plugging the previous expression of g7, + g5, into (3.97), it holds that

%(k4p4($)+9f23+gf§3) = %+/R3§B(\vl) Ek(gAyg)VMAJrﬁ}s(gB,g)vMB) dv
0 ]
- R@“’(ﬁ”ﬁ(“ gt 4+ VMPgP) du

_|_

1 T
7/ ]2 (\/MADA + \/MBDB) dv.
€ 1 R3
Next by setting
1= Fkapa+ g3hp + 9oop

and
D, = /63 (Eix(g“,g)\/m+£13(937g)\/m) dv
- Rm( &) (Varigh + VPP du
+ /58(|@|)(\/WDA+WDB)@, (3.98)
R3

we get the relation
c
Pi(z) = ?1 + D,. (3.99)
By integrating (3.99) between 1 and —1 we get

- - 2c
Pa(—1) — pa(1 :_71+/ Ds(s
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and by integrating (3.99) between 1 and x we get

pa(z) — pa(l) = 71’; 101 +/1w Ds(s) ds.

Then by eliminating ¢; in the previous equation we get for any = € [—1, 1]

_ - z—1 z
pa(z) = pa(1) + (p4( / Do (s > +/ Ds(s) ds. (3.100)
1
Next we aim to control ||Ds||. Firstly

3 |v] 13 |v]
0ol B ) = ~ 77 0T B VT

Hence according to the estimate (2.46) on 9,7, it holds that

§ p vl
10:( =B NN < e

Moreover according to Lemma 3.1, we have

£l

B( )+ =5 B/( =)0, T

| / eB(vD) (Lh(g",g) VAR + L (9", 9)VIIP) dvl < e (g + g ).

So || Ds|| satisfies the estimate

D2 cr(llgo |+ g’ Il + llgit Il + g Il + Ngall + g’ 1 + llg It + 17”1

<
+ (DA + PP
Therefore from relation (3.100) we obtain

gt Il + gl < er (gl + g’ Il + llgi I + g + llga | + g’ 1l) + eCllg™ Il + lg®1)
+ (DY + IDP]).

So by using (3.91) and by taking 7 small enough we get
¢ A B
lga' Il + lgo 11+ Nlgi | + g1l + llga'll + 1o’ || < U2+ D7D

Moreover by using again (3.91), it holds that
1541+ 1371 < e (IDA ]+ IDP ).

Then g and g” have been estimated in terms of | D4 | and | D?||. Hence it remains
to control h* and hP.

Control of h* and h5.

Multiply (3.68) by eh?, (3.70) by eh® and integrate on R3 x [—1,1]. By setting for
a € {A, B},

Tho = | &R (Lv)*dv — | &(h*(=1,0))dv,
R3

R3
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it holds that

e(Tpa +TIys) /R ] / (M2 + (WB)?)dzdv = /R ) / (X, KHh)hAdvda

+/RS /11((X7Ki)hA)hAdvdm+/Ra /71((77Kf)h)h}3d”dm+/ﬂ£3 [1((Y7Ki)h3)h3dvdz

! 1
N, (h™))hA N (hBY\,B
+s/R$ ll(NA*(h)+N*(h Nh dvdstre/Rg [1(NB*(h)+N*(h ))hE dvda

1
+&3 / / (d*h? 4 dBPh®B)dvdz.
R3J—1
From (3.82) and Lemma 3.1, we get

1
(Lo + To) + oI + AP |P) < ‘ || wmintitaes

/ / (X, K h)hA dvdz| + / / (X, KLhP)hP dvdz| + / / (X, KL h)hP dvda
R3 R3 R3

rere([RA |+ IREID AR+ 1RZ 1) + 2 1R+ 12 | 1IRE])-
By continuity of K!, KA and K2, it holds that

4 A1
/ / (X, K h*)h dvdz < ”hH”h ”, |/ / LK2h) A dvdz| < IRZ]iA] ”
Rs R? (1+7)2

|// (o] < VUL
w10 1+

Moreover, according to the boundary conditions (3.83, 3.84) satisfied by h“ and
hEB,

Tpa > —c(|PA)° + 121%), Tas = —c (IR2]7 + [RE)?)

Hence
A2+ B2 12 < ee(IRAP + (BN + IRE N2 + B2 + —— (B4 + 1R5)2)
(1+7)2
A B A 3/nA d* B
h h h
+ ere([[h + [[RZIDNRZ + e (R 7] ||1+| |||+|| | ||1+‘ |||)

and (3.86) follows. After recalling that D4 and D have been defined in (3.90) we
finally get an estimate on | D4 ||+ ||DZ| which leads to the control of PAg4, PBgB,
g* and gB. O

3.5. L*™ estimates on the rest term. This subsection is devoted to the L*°
estimate of the linearized rest term (R#, RP) solution to (3.60, 3.61). This control
is performed by using first a L> bound on ¢4, ¢©, h* and h® with the norm
fle= sup sup L+ [o])"|f(z,0)].
z€[—1,1] veR3

The arguments are the same as the ones developped in [14]. But for the sake of
clarity we will recall some elements. The control is performed by introducing the
following intermediate norm between | |, and || ||

V= s (15 opa)

ze[—1,1
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By considering the exponential formulation of (3.67, 3.69) together with the esti-
mates (3.86, 3.87, 3.88) we obtain the L> estimate

dA dB
A B < H A B
(') +1071) < ovE (I + ) + efm) + 471)
C
+ R+ (B ]+ [RE ]+ [, (3.101)
WAL+ < et =T =L )+ e (p2ad), + B
" e G T L LY SRy L ’ ’
C
+ R+ A2l + (] + [RE]r). (3.102)

As a consequence we get the following bounds on the solution (R4, RP) to the
linearized problem (3.60, 3.61).

Proposition 3. For all r > 3, there are ¢, g, o and By such that for all ¢ < &g
and n < 1o, (R, RB) solutions to (3.60, 3.61) satisfy the estimates

IR0 + |RP|rg, < c2(IDAo1,50 + |1 DPlii1,6,)
c - - A
+ 72(|CA |7‘;50 + |<:B |7‘,50 + |<: +|7‘,ﬂ0 + |CB+|T750)'
13

The proof is analogous to the one given in [14]. It uses the L> bounds on g4,
hA, gB, hB (3.101, 3.102) and the properties on the Boltzmann operator given in
([22], [23]). For more precisions we refer to this paper.

3.6. Convergence of the iterative process. This subsection deals with the rest
terms (R“, RP) of the expansion given in Theorem 1.1. We recall that (R4, RP)
is solutions to the non linear system (3.53, 3.54) and is constructed as the limit of
a sequence of iterations of linearized problems of the type (3.60, 3.61). By using
Proposition 3, this sequence is proved to be a converging sequence and satisfies the
following estimates

Proposition 4. For all r > 3, there is c, ¢/, €9, 0 and By such that for all € < gy,

and T < Tg, the problem (3.53, 3.54) has a unique solution (R4, RB) satisfying

3 C,
|RA|TﬁO + |RB|T750 <c <52 (|A|T,50 + |B|Tﬁo) + eXp(_s)) .

For the proof of Proposition 4 we refer to ([14]). Therefore we deduce Theorem 1.1.

Proof. (Theorem 1.1). By arguing as in ([14]), it can be shown that
(|Alr8, + |Blrg,) = O(Z). For pP; close enough to p¥ and Ty close enough to 1,
the asymptotic expansion

(fijo +efit + 2 + 3RA, fBy + eff + 212 + £RP)

has been determined to define (f4, f%). For ¢ small enough Proposition 4 controls
the rest term (R4, RP) of the expansion. O
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