Problem of evaporation-condensation for a two component gas
in the slab.
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Abstract

This paper studies the non linear Boltzmann equation for a two component gas in the situation
of hard spheres. A Hilbert expansion of the solution is performed. The first order of the fluid
equations shows the ghost effect. The fluid system is solved when the boundary conditions are
close to each other. The boundary conditions for the kinetic system are satisfied by adding for
the first and the second order Knudsen layers. In a last part the rest term is rigorously controled
by using a decomposition into a low part velocity and a high part velocity. This constitutes a
generalization to the case of a two component gas of the results presented in [13, 14].
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1 Introduction.

Consider a mixture constituted by vapor and noncondensable gas whose the stationary behaviour is
studied. The part of the space where the mixture is situated between two phases of a condensed gas
represented by two vertical planes. Suppose that the model is homogeneous in space in the y and in
the z direction. So we can consider that the space variable z belongs to [—1,1]. The vertical planes
are respectively kept at temperatures T; and T7;. Denote ny (resp. nyr) the density of saturation of
the vapor at temperature Tt (resp. T7r). The first component of the gas denoted by A is constituted
by vapor and can condense on each boundary. The other component denoted by B cannot condense.
The molecules of the two gases are supposed mechanically identical i.e they have the same mass
and the same diameter ([24]). The distribution functions f4 and f? are solutions to the stationary
Boltzmann equation for a two component gas ([10])
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[ is the mean free path of the vapor molecules in the equilibrium state at rest with temperature T7
and density ny, K, is the Knudsen number and d corresponds to the diameter of the molecule. @ is
called collision operator and will be defined in the next section.
The boundary conditions for A have a given indatta profile and the boundary conditions for the B
component are of diffuse reflection type.

In the present paper we are in the situation where ¢ is close to 0 and the distribution functions
(f4, fP) of the two gases are researched as an asymptotic expansion plus a rest term. The same



situation has been also considered away from equilibrium. In [B1l, Bw], the author has obtained
existence of weak and renormalized solutions in L' by using entropy flux compactness methods.

As a physical point of view this problem has been already studied in ([3, 1]) where two types of
behaviour were pointed out. In a first situation the macroscopic velocity of the two gases is 0 ([3, 26]).
That means physically that evaporation and condensation stop for the A component. But the Hilbert
term of order 1 of the velocity of the A component keeps an influence at the hydrodynamical level.
This is the ghost effect as defined for a one component gas in ([21]) and for a two component gas in
(3, 26, 25, 8]). In a second case the B component becomes negligeable and accumulates in a thin
layer at the boundaries called Knudsen layer ([4]). In this paper only the first case will be treated
(when the macroscopic velocity is 0). This paper is organized as follows.

Section 2 presents the model and the main result of this paper. Section 3 deals with the asymptotic
expansion of the solutions. At the end of the section, a fluid system mixing 0 order terms and first
order terms is derived and points out the ghost effect ([8, 24, 25]). The fluid system is solved
when boundary conditions for f4 are close to each other Theorem (3.1). Section 4 is devoted to the
boundary conditions of f4 and fZ. We show that Knudsen terms have to be added at first and second
order terms of the Hilbert terms of f4 and f? in order to satisfy the proper boundary conditions.
Section 5 sudies the rest term which is decomposed as in [13, 14] into a high and a low velocity part.
The main difficulty is to extend the approach of [13, 14] to the situation of a two component gas and
to mix two different types of boundary conditions. Finally we control in section 6 the rest term of
the expansion. The rest term of a linearized problem is first controled in a weighted L? norm and in
a weighted L norm. In [13, 14], the authors consider only a one component gas satisfying boundary
conditions of diffuse-reflection types and uses at a crucial point of the control that the total flux of
the solution is zero. In this paper, we are not in this situation and this difficulty is solved thanks to
the structure of the kernel of the linearized Boltzmann operator for a two component gas (see remarks
2, 4). At the end of the section the rest term of the full nonlinear problem is obtained as a limit of a
sequence whose terms are solution to linearized problems (Proposition 6.1). Finally Theorem 2.1 can
be deduced.

2 Presentation of the model.

The collision operator @ of the equation 1.1 is defined by ([10])
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The velocity v € R3 has for coordinates (£,7, x) and (v — v, w) denotes the Euclidean scalar product
in R3. Let w € S? be represented by the polar angle (with axis along v — v,) and the azimutal angle
¢. The function B(v — v.,w) is the collision kernel of the collision operator @ in the situation of
hard-sphere. The boundary condition for the A component is the following given indatta profile

FA-1L0)=M_(v), €>0, fA1,0)= %M+(v), £<0. (2.3)

The boundary condition for the B component is of diffuse reflection type

fB(-1,v) = M,(v)/ 1€ fB(~1,0)dv!, € >0, (2.4)
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where M_ and M, are the normalized Maxwellian distributions
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Moreover the mass m > 0 for the B component is fixed as follows
1
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The main result of this paper is

Theorem 2.1. For ny; close enough to ny, for some Ty; close enough to Tr and € small enough,
there is a solution (f%, fB) to the system (1.1, 2.8, 2.4, 2.5, 2.6) of the form
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3 Asymptotic expansion.

In this section after introducing the macroscopic quantities n, uy, p, T, the distribution functions
f4 and fB are written as Hilbert expansions up to order 2. The Hilbert terms of this expansion are
explicitely determined in section 3.6. At the end of the section, a fluid system mixing 0 order terms
and first order terms is derived and closed for boundary conditions closed to each other (Theorem
3.1).

3.1 Macroscopic quantities.

For all distribution function f, the macroscopic quantities n, u, T et p are defined by ([23])

n= fdv, nu, = Efdv, nu:/ vfdv,
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3.2 Hilbert expansion.

The distribution functions f4 and f? are expanded in Hilbert series as follows

fﬁ(m>v) = féo(x,v)+5ff[1($7v)+-~-,
fi(z,0) = fho(x,0) +effy(z,0) - (32)

Substitute f#; and f£ by the expressions given in (3.2) in the equation (1.1) leads to
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A important Hilbert term is
frn=fa+fi- (3.5)
It corresponds to the sum of the two components and satisfies the relation
0 1
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By using the Hilbert expansions (3.2) for f# and f£ and by identifying formally the different orders
of € in (3.1), the following relations are obtained for o € {A4; B}
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3.3 Study of the terms of order —1.
The identification of the terms of order —1 in the equations (3.3) and (3.4) leads to

Q(ff10: fii0) + Q(fF0, Fit0) =0, (3.11)
Q(ffmv fgo) + Q(fgov fgo) = 0. (3.12)

The system (3.11, 3.12) is solved by using the following lemma.

Lemma 3.1. The solution to the system (3.11-3.12) is

n4 _u 2,2, 2

fﬁo(x,v) = mexp (7%> 5 (313)
B _ 2,20 .2

fho(z,v) = ﬁ exp (—%> ; (3.14)
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where (g, 5o, THo, u1,H0) € RY X R.

The proof of Lemma 3.1 follows from ([2]).

3.4 Study of the 0 order terms.
The identification of the 0 order terms in the equation (3.4) yields

o Fho = QUE Tiha) + QUfke 1) + QUEh. 1) + QUifl 1)

By integrating this equation on R3, it follows
9 B
— ,v)dv = 0.
o /}R3 Efro(w,v)dv

But the boundary conditions for f? being of diffuse reflection type, the total flux at each point of
the boundary is zero. So
nBo(@)ur mo(r) =0, z¢€[-1,1]. (3.15)

Among all the situations represented by (3.15) the following two cases are considered

urgo=0and n5, #0 and n%,=0and U114,H0 # 0. (3.16)

These two situations are interesting because of the fluid equations that they give. In this paper only
the first case (u1,g1 = 0) is considered.



3.5 Fluid equations at zero order.

The identification of the 0 order terms in the equation (3.6) yields

62 o = QUi Firo) + Qo fin),

Multiply (3.17) by & and integrate on R? leads to

p (ne0THO) = 2—PHO = 0.
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3.6 Decomposition of fy, fj;, and f5,.

fr1 is split into its hydrodynamical and non hydrodynamical parts as follows

_ nE1  2U1,H1 v? 3. Tm
fu1 = fHo (nHo + Tiro £+ (THO Q)THO + Y

with g satisfying the orthogonality conditions

/ faoH1dv =0, / Efuaovridv =0, / v? frovidv = 0.
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According to ([19]) ¢ is solution to

Loy Wi (9)) = &0 — )= Dy,

where
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is called linearized Boltzmann operator.
Let £A(|v|) be solution to ([12, 19])
N z o 5 +oo A
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The non hydrodynamical part fgo g1 of fro is then given by the expression

o —EA(J5]) 9
Y1 (0) = om0 (%THO'

Finally fr; writes
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Now let us determin (fi1,, f5,). The identification of the 0 order terms in (3.3) and (3.4) gives the

system

Eonfile = QUi Tin) + QUi fro)
Exnfho = QUfo Tin) +QUEL fro).

(3.22)

(3.23)



From ([2]) the kernel of the mapping

A (da,68) — (Qofuo, fiio) + Q(fro, dafite) Q(éfro, fho) + Q(fro. d5fho)) (3.24)

is ker A = {(a® + B¢+ %, aB + BE+1?), (at,aB,8,7) € RE x R?}.
(f#11, fB,) is split into its hydrodynamical part and its non hydrodynamical part as

A 2
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where (U 4;Upg) € (Ker))* has the expression
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and C' is a solution to the equation ([24, 27])
Q(E(9), E[®)EC(0)) = —EE(D).

3.7 First order fluid equations.

In this subsection we derive a fluid system mixing 0 order and first order terms and we solve it when
the boundary conditions are close to each other.

Theorem 3.1. The macroscopic quantities ngo, ule, ule, p‘;‘[o, pfm, Tho satisfy the following
fluid system

0
b0 = 0, (3.27)
0
%(HHOUI,HI) =0, (3.28)
0,0 1 b
%a*(%(THO)Tﬁo) = —NHU1,H1 %THm (3.29)
1
_ Tho 0 a
Ul H1 = %pﬁonﬂo 5,xPHOa (3.30)

up g =0, (3.31)

where prgo = ngol Ho, pf_‘m = anOTHO and pgo = nEOTHO.

Moreover, this system can be solved as follows

There are 9 and X > 0 such that for all T € R satisfying |7| < 70 and all m > 0 , the system (3.27,
3.28, 3.29, 3.30, 3.31) has a unique solution satisfying the the boundary conditions

nio(=1) =1, Tgo(—=1) =1, nfe(l)=1+7, |Tao(l)—1] < A7, (3.32)
and the constraint 4.48. Moreover there is A > 0 such that (for all x € [-1,1])

|Tro(z) — 1] < A7, \nf_}o(m) — 1 < A7, Jui,m(z)] < AT
(Tro)'(z)| < A7, [(nfo) (@) < A7, [(nfro) ()] < M (3.33)

Remark 1. When the Knudsen number tends to 0, the flow uy g tends also to 0 (ui,go =0). At the
level of the fluid mechanic if Tho satisfies the Fourier law, the right-hand side of the equation (3.29)
should be 0. But it is not the case because the right-hand side of (3.29) is

1
Tho 0 a
NHOW = —Ye—F7 o 0.
HOU1,H1 %pﬁo 8poo #
That means that the flow uy g keeps an influence on the O order term of the temperature at the limit.
This points out the ghost effect as defined in ([21, 8]).



Proof. Derivation of the system (3.27, 3.28, 3.29, 3.30, 3.31).

By considering the terms of order 1 and by integrating (3.6) with respect to 1, £ and v? on R3 we get
the following equations

9 §fmidv | =0, 9 E fmdv | =0, 9 &v? fridv | = 0.
6.’1; ]R% ax R% 61’ ]R%

The first equation can be written by using the relation (3.8)

0
%(nHoul,Hl) =0.
According to ([19]) by setting
Yo = 1 r° A(r) exp(—r=)dr, (3.34)
1572 Jr,
the third equation writes
0 Y2 0 (0 1
—Tgo=—=— | =—TH0)T? | - 3.35
nHOULHI 5L H0 = 5 5 (8x( Ho) HO) (3.35)

Moreover, multiply (3.25) by &, integrate on R?, use that uf 1 = 0 leads to

VT 0 . 4
Ul H1 = —’ycBim—pﬁo, with .= = C(r)yrtexp(—r?)dr. (3.36)
PrronHO ox 3 Ry

Resolution of the system (3.27, 3.28, 3.29, 3.30, 3.31).

The system (3.27, 3.28, 3.29, 3.30, 3.31) is first solved for the boundary conditions n,(—1) = 1,
ngo(1) = 1, Tao(—=1) = 1, Tyo(l) = 1 and the constraint on nB, (4.48). For this system,

m
(Tro, niyg, wr, nhg) = (1, 1,0, ?) is a constant solution. Next a solution to the system is re-

searched for the boundary conditions (3.32) and the constraint on the mass (4.48) as a perturbation
of this constant solution.
First let us determine Tpo. From (3.28) there is a constant  such that

ngoul,H1 = 0. (3.37)

So the equation (3.29) can be written by performing the change of unknown 7' = Tgo — 1,

0T = (T”(l +T)% 4+ (T’)2) |

2 (1+17)3
Denote ¢ = T'(—1). T is the solution to the Cauchy problem
2T ()
Y2 (14+T)z 2(1+7)
T(-1) = 0,
T(-1) = e (3.38)
T satisfies the relation
20 4 ¢
=2 (3.39)
(1+17)2

The Cauchy-Lipschitz Theorem garantees that the solution T to the Cauchy problem (3.38) is global
on [—1,1].

20
A condition on ¢ is now researched in order to get for all x € [—1,1], T'(z) < 7. For — > 0,

V2
T T/
15 T(s) +c
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So for all z € [-1,1], T'(x) < c—(exp(—) — 1) < 7 and by choosing ¢ such that

72 Y2
20
0<ec< %, it holds that T" < 7. Another condition is next researched on ¢ in order to get for
exx)(,y*)*l
2
all z € [-1,1], T'(z) < 7. Divide (3.38) by 7" and integrate on [—1, z] leads to

As 3—3 > 0 (3.39) implies that for all z € [~1,1], T"(z) > 0. Moreover as

/'T ds .
(14T~

and by choosing ¢ such that

40
0<ec<Texp(——),
72
. 20 e
it holds that 7" < 7. The case — < 0 is similar.
72
n4, is next determined. From the equation (3.27) there is a constant « such that
(nf10 +1po)Tro = a. (3.41)
So as for all x € [—-1,1], Tro(z) # 0,
el
nB, = <T - n;‘m> . (3.42)
HO
The equation (3.30) implies that
5 (P}L‘Io)/
0=—-ve—7—rF75. (3.43)
2 c\/THongo
Then by using (3.41),
A N/ A (T;{O - %9\/ THO) 200(
(n3r0)" + N + 5 =
THO 57c(TH0)§
The solution to this equation with the boundary condition nf,(—1) = 1 is
200 [T 1 /w Tt — 2THob )
A HO
ngolz) =1— — ——exp | — —————)ds) | dy.
o) =1- %0 [ e (- [T E 0 ) 4y
The condition n4,(1) = 1+ 7 gives the following relation between a and ¢
T
o= — . (3.44)
20 1 1 1, Tho—2THob
5 f71 (THO)% exp(— fy (%)(s)ds)dy
(4.48) and (3.42) provide another relation between « and 6,
2
o= SR T . (3.45)
1 Twe T % J2 4 (Tro) 3 eXp(fy T ds)dydx

So « and 6 are determined.
An estimate on 6 is next researched by supposing that # > 0, the case # < 0 being analogous. The

relation (3.39) evaluated for z =1 and T < 7 lead to T"(1) = f{—f (Té?jc) <. S0

0< — <27 (3.46)
V2



From the estimate (3.46) applied to the equation (3.43), there is k; € Ry such that |(nf,)’| < ki7.
By differentiating (3.42) there is ky € Ry such that |(nB,)| < ko7. Finally from (3.30) there is
c1 € Ry such that |ug g1] < 7. O

4 Study of the boundary conditions.

In this section we show that fﬁo and fﬁo satisfy the boundary conditions (2.3, 2.4, 2.5). For the
Hilbert terms fi1,, f5,, fit9, f5o, Knudsen layers must be added at each boundary and these layers
are solutions to Milne problems.

4.1 Closure of the system at the 0 order.

Recalling that the boundary conditions for f4 are

fA(_LU) = M,(’U), g >0 fA(l,’U) = M+(v)’§ <0

we restrict ourself to the situation where

DLy, (4.47)
ny

with 7 small enough to be determined. From (2.6) the following constraint on the mass of the B
component

1
/ nPodz =m (4.48)
—1
is imposed, m being a fixed non negative constant. As nfy,(—1) = 1, nf,(1) = 2L, TH,(-1) = 1

and Tf,(1) = T” , [#, satisfies 2.3. For f5,, since

/ L L A
s exp(— v )Jdv = 1,
e<0 (7Tro(—1))3 Tro(—1)
it holds that for £ > 0,
2

(., 1,00 ) expletms) = (1)

The same result being also satisfied in 1, the boundary conditions for fﬁo are of diffuse reflection
type. Hence f#j, and f5, satisfy the boundary conditions (2.3, 2.4, 2.5).

4.2 Knudsen layer at first and second orders.

fi, and f5, defined in (3.25) and (3.26) cannot satisfy the boundary conditions
f(=1,0) = f#,(1,v) =0 and f&,(—1,v) = fE,(1,v) = 0. Then Knudsen terms must be added at

each boundary. By setting #’ = 2, o/ = 1=2 " f, f# and fP are written as follows
filz,v) = fri(z,v) + fr(@'0) +fz<1( " v), (4.49)
filw,v) = finle,v) + fig (@,v) +f { (@), (4.50)
le(va) = fﬁl(l‘,?}) +fK1 (@' )+ f (xuvv) (4.51)
From here denote M = ﬁf?{o ie
Y 1 v? A A 7 B B 77
M=———exp(—-=—), M"=np,M and M~ =ngj,M.
(7THo)?2 T'ro

Consider as in ([2]), the space H with the scalar product
(f9) = (575 (0% B)>

= o [ S N0+ iy [ 10" )N (o)

is introduced. Denote by || || the associated norm.



Proposition 1. There are boundary conditions in x = —1 for the first order Hibert terms (fi,, f5,)
defined by (3.25, 8.26) and Knudsen terms (fiy (', v), f27 (2',v)) solutions to

0

f@f}?f(fﬂ/a”) - Q(MA(f]-an)a ff_(l(xlav)) + Q(f]?l_(x/av)a M(*L”U)),
€ B (@) = QUMP (—1,0) iy &, ) + QU (', 0), M(~1,0)), (45)
where M = M4 + MB and fr, = +f

Moreover the following asymptotic propertzes hold le and le_ write as
ol (@ v) = MA(=1,0)b (', v),  fE7 (2, 0) = MB(=1,0)bP~(2',v),
where for o’ tending to infinity bf‘f and be converge exponentially to 0 as
1L+ o) 07 @' 0) e < exp(=oa’), [|(1+ o) 207 (o, v) | < exp(—oa), (4.53)
a.e ' > 0 with o < 2v1 where vy is defined in (5.33).

Proof. (Proposition 1.)
We adapt here the method developped for a one component gas in [6, 5] to the situation of a two
component gas. From [2] there are (bf*7 vP 7) and (d‘f‘f, a? ) unique solutions to the Milne problems

§6ale( V) = M(Q(MA(—Lv)M(—l,v)bf(m',v))
+ Q(MA(—L’U)b{‘i(l'I,U),M(—L’U))),
1 —
gbe (,v) = m(Q(MB(—Lv),M(—l,v)bl (2',0))

+ QMP(=1,0)b7 ™ (a',0), M(~1,v))),
bf_(ovv) - _\I/fll(_lﬁv)v §>0, b?(ovv) = _\I/gl(_lvv)v §>0,

/ EMA(—1,0)b (', v)dv = 0, / EMB(—1,0)bP~ (', v)dv =0
R3 R3

and
(@) = g QL) M(-1o)d; ()
+ Q(MA(fl,’U)dlA_(l’/,U),M(fl,”U)))’
0 g_ 1
fadB (a',v) = m(Q(MB(*LU)aM( 1,v)dy (2',v))

+ Q(MB(*L’U)d{?_(I,,’U)’M(*l,l}))),
d=(0,0) =0, £ >0, dP7(0,0) =0, £ >0,
/ EMA(=1,v)di (¢, v)dv = 1,/ EMPB(—1,v)dP~ (2, v)dv =1,
R3 R3

with b7 = b{'~ + 0P~ and df = di'~ + d®~. Moreover

" l_lffoo by~ (2! v) = b11400 0T b1 00, 40, l_l)rfrloo by (2! v) = bﬁ;o,o + b;w,4vz,
1
lim df'~(a/,0) = d{‘oo ot §+ di 00, 27 lim df™ (2, 0) = df o+ =€+ di o 407,
x’/——+oo z/ — 400 ,O0, 2 ,O0,

A B— - A B— - >
where by o o, b1 o 05 01 00,40 41 00,00 41 00,0 and dy o, 4 are constants. The boundary conditions at —1
for p&, and TH1 are chosen such that

_ _ 3
T (—1) = 2u1, 51 (—1)dy o 4 + b7 0o 45 ng (—1) = iTHl(_l) + 2uy, 1 (— )d1 00,0 T b1 00,0

10



o (f}g;,f}?;) defined by

f}?l_(xa”) = (2u1 H1( 14 (a',v) — dfl;o 5*dioo,0”2)
+ ( ~ (2, ”U) - b1 00,0 — 01,00,V ))fHOa
w1 (@0) = (2urm (-1)(d7 (2 v) —dYs o — € — di o 40°)
(b ( ) b1 00,0 bim,4v2))f507
satisfy (4.52) and (4.53) ([2]). O
In order to satisfy the boundary conditions in = = 1, we proceed as in x = —1. pf,(1) and Ty (1)
are chosen as
T T
Tn) = (22) (2uamt+ (T2 o). (154)
1 T
A nir\ (3 At Trr\ a4
ng(l) = | — §TH1(1) + 2uy g (1)d7 Y 00,0 T T b1 00,0 (4.55)
nr I
and le , Kl are defined by
W) = Quim()(d] (2" v) —di'l o — & —df g%
+ (0 (2" v) — by 00,0 — 01.00,4v %)) fitos
}?f(x,v) = (2u1 i dB (2’ v) — dﬁ; 0o—¢&— dim74v2)
+ (b7 (2" )_bch?oO 1,00,4V %)) fto-
From here we set
_ _ 2 2
7146 - ;1 (6 U)’ ,Vﬁ:_: I?’Y(g ) 715 _le (77 )’
2 _ _ _
Ta = (C0) e =T ey N =1 F s - (4.56)

As for the first order, fa, fi, and f5, can be defined as

fr2 = fro(co + a1 + cav® +Pm),  fiia = fro(cd + 1€ + eav® + s + ),
By = fro(cl + 16 + cav® + Yua + ©P), (4.57)

with
2
PH2 5(TH2 ng1 T Ui g1

Ui,H2  MHL UL HL
cp =2 — 2 e
PHO 2

01:2(

b
Tro nuo Tho THo Tro  nwuo Tho

cy = L %+HH1TH1+2UH1)
Tro " Tho nuH0LHO  3THO
As for the first order, Knudsen terms f;z , sz , K2 , E; must be added to the Hilbert terms ff}Q
and f5, in order to satisfy the boundary conditions f3'(—1,v) = f3'(1,v) = f2(-1,v) = f£(1,v) = 0.
The macroscopic quantities n4,, n2,, Th,, TE,, uf H1 uf g1 are solutions to a fluid system which
can be solved by reasonning as for the proof of Theorem 3.1. It can be also shown that |Ty1| < e7.
Analogously to (4.56), set

e = G, ot = oo, o = 18 o),
B TR N R S SR L (4.58)
and
A*M:M_]Wg(_l’v),AfMA:MA_]\/iA(_l’v), A7M,B:MB—]\/.QB(—I,U)
A+ M_Aj(l’v),A*MA:MA_AjA(l’U),A*MB:MB_]?B(LU).
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5 Study of the rest term.

In this section we first show that the rest term of the Hilbert expansion is the solution of a non linear
system and we consider a linearized problem. Next we have to extend the method developped in
[13, 14] for a one component gas the situation of a two component gas satisfying different boundary
conditions. The rest term of the expansion is then decomposed into a low and a high velocity part
solutions to a system of equations.

5.1 The rest term.

In ([9]) (resp.[13, 14]), the authors solve the time dependant (resp. stationary) Boltzmann equation
by splitting the distribution function into an asymptotic expansion and a rest term and by controling
the rest term. In the present case, the proof developped in [13, 14] is adapted to the situation of a
two component gas. The rest term e®f# (vesp. €2 fE) for f4 (resp. fP) is defined as the difference
of f4 (resp. fP) and its asymptotic expansion as

1+

e = MA+ () + i RS0 + )

bR (M) + I )+ ) + S, (6
P = 1%+ (o) + 0+ a2 ()

bR () + B 0 B R 0) S B ()

By plugging the expressions (5.1, 5.2) into (1.1) and by taking (4.52, 3.22, 3.23) into account, (f3, f5)
has to satisfy the system

g = (@A, )+ QUA M) + QU+ efit Tn)
+ QU fi+ef) +eQfR, fr) + 74,

18 = (QUIP fr) +QUE M) +QUP + </ In)
+ QUFE fi +efo) +2QUfE, fr) +°B,

with fr = f}‘g —i—fg and

A:

(O

( 6 i+ QUL )+ QUE 1) + QU f)
(/1

+ Qfics (2, 0), A+M)+Q(A+MA Fra (@, v))
+ QIATM, [ (a",0) + QAT MA, [l (2", v))

(QUtT@" ). @' ) +cz<f;31<x',v>,f;1<x",v>>)), (5.3)

M | =

( €2 fha+ QUE. )+ QUE. 1) +2QUE £2)

M | = ™| =

(QUES (00, A% M) + QAT M gy (o 1)
(12

+ QUEF @ v), A M) + QA MP, fy(a” v))))

M | =

(QUEE o) i 0) + QUET () 1 07 00) ) (5.4
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Recall that the quantities f1, f{', f£, fa, f5', f£ are defined by (5.32, 4.50, 4.51). On the other hand
f# and fF satisfy the following boundary conditions

A— L A- At A+
’Yl,s + Y2 £ ’Yl,s + 6’7275

fé(fl,ru)zf ) —, >0, fé(lfu):* 22 , £<0,
VBT eys”
— l,e 2,e
f}?(—l,v):cvRBM,(v)—i62 , £€>0,
B,+ B,+
Ve TEV,
fﬁ(Lv):aEBMAv)—%, §<07

where o and ajp are given by (5.11) and (5.13). Recall that the terms ~; o v o A o A E ,

'yfé_, ’yfg—, Yo e 7;5, 'y;’s_, 'y;j:_, ’yQEfé_, 'yf:' are defined by (4.56, 4.58).

In order to simplify the study of fg , the unknown is changed as in [13] by using the decomposition:
L? =RMP @ (RMB)L. So for all fE € L2, there is A € R such that f§ = AMP + RP. As in [14],
the condition

1
/ fEdvdz =0
—1 R3

determines )
A= —— /RBd:cdv. (5.5)
m

For all function R(x,v), I(R) is defined by

1
I(R) = —— | Rdzdv.
m

By using the change of unknown f = R4, fE = I(RP)ME + RE, (R*, RP) solves the system

S%RA = é (Q(M*, R) + Q(R*, M)) + Na(R) + Na.(R*, RP)
+ &2 (Q )+ I(RP)Q(RA, MP) + EA>, (5.6)
ELRP = L(QUI", )+ QR M) + Ni(R, R)
+ 2(1 ,R) +Q(RP, M")) + Q(R®,R) —|—5B> (5.7)
where R = R4 + RE
Na(R) = Q(ff* +efs'\ R), (5.8)
Nao(RYRP) = QRA fi +efo) + IRP)QU +efst, MP),
Ns(R®,R) = Q(ff +efs,R)+ Q(R”, fi +¢f2)
+ I(RP)|QUIE +eff?, MP)+ QMP, f1 +ef2) — ga%MB . (5.10)
Hence we choose
ags = I(RP)Vr (5.11)

and the boundary conditions for R4 and R? write

RA(-Lv)=¢*", €>0, R*1,v)=¢*, £<0,
RB(—1,0) =¢P~, ¢>0, RB(1,v)=prsM, + (B, €<, (5.12)

: (C‘;’) : (5.13)

with

_ (T
Bre = O‘EB — QpB (Z{II)
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A— A—
CA_ _ _Fyl,s +EP72,£ CA+ ’715 +e Py

g2 g2 ’
B— 756_ + 5723,5_ B+ _ T : + 67
CTETa 572'
As in ([14]), the condition [p5 ERP(1,v)dv = 0 determines fps = [, ERP (1, v)dv+ [._,&(Fdv and
+
S0 ot

5.2 A linearized problem.

The solutions (R#, RP) to the system (5.6, 5.7) are constructed as the respective limits to a sequence
of iterations. First, the following linearized problems are considered

C%RA - é(Q(MA,R) n Q(RA,M)) + Na(R) + N (RA, RB) + £2DA, (5.14)
a%RB = é (QMP,R) + Q(RP, M)) + Ng(R”,R) +°D”, (5.15)

satisfying the boundary conditions (5.12). Recall that the quantities N's (R), Nax (R?, RB), N5(RB, R)
are defined respectively by (5.8, 5.9, 5.10). The terms R, R* and RP will be estimated terms of
D, D4, D® and of the boundary conditions (5.12). The nonlinear case is next considered.

5.3 Decomposition of the rest term.

The natural way to deal with the linearized Boltzmann equation is to change the operator f —
Q(M, f) into the operator f — ——Q(M M_ff) But when the Maxwellian is not homogeneous,

this procedure produces the term &M~ 25 (M f) which behaves like |v|?f and has no sign. So as
in [9, 13, 14, 11], R, R* and R? are decomposed into a low and a high velocity part as follows

R=+VMg++\/M,h, R*=vVMAg* +/M,h*, RE =VMBgE +\/M,hP, (5.16)

where M, is the global Maxwellian M, (v) = T 1 )% xp(— ;—), with T > sup,e;_q,1] Tro(z). Hence
there is ¢ > 0 such that for all (z,v) € [~1,1] x R®, M, > ¢M, M, > cM*, M, > ¢MPB. Since
R=R*+RP,
g= —'g +—'g . h=h*+h". (5.17)
f \/7

The following norm is considered

I fll = (/[_1 1]st(1 + |v|)f2(x,v)dxdv> . (5.18)

This norm is extended to the boundary terms h?, hf, h# and hﬁ depending only on the v variable.
As basis for the kernel of the linearized Boltzmann operator, we take 19 = VM, 11 = &M and
Yy = (v2—3T) VM. gis next decomposed into its hydrodynamical part §+g¢; et non hydrodynamical
part g. g writes

g = po(x)Yo + pa(x)ts. (5.19)
For a € {A, B} define

vg = VITE, o — VI and U — (v — STIVITE

2
(g4, gP) is bpht 1nt0 its hydrodynamical part (4 + g{*,§® + ¢gf) and its non hydrodynamical part
(g4,3%). §* and §® are decomposed into
gt =poed + il 97 =pied +piud (5.20)
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and

gt = piyt,  gf = pPyl. (5.21)

Remark 2. F'mm the expression of the kernel of the linearized Boltzmann equation for a two com-
ponent gas ([2]), pit = pP and p5t = pB. These two equalities are crucial for the proof of Proposition
1.

By uniqueness of the decomposition of g,

ViAo VB VWA VAP VR, Vi,

g= \/Hg Wg’ an = \/»gl+\/ﬁgl7 QZWQ Wg

The couples (g4, h4) and (gZ, hP) are defined as the solutions to the systems

8 A ArA 1 \/714 A
£5,9° +179 - QUYMAGS M) + Q(MT, VMg))
1 _ A - =1 .
+ gxw’Al (K2 (h)+ KL (B™Y) + Liy(3, 9) + LY (67). (5.22)
6 A A A=A A 1— A 1 — 1\ A
E5 0" Tule " +g1) = XKL (h)+g(_V+X7K*)h
+ Nas(o(g1+7)+h)
+ NAOA@G* + i) + 12, (0P (P + ¢P) + 1P))
+ e2dh. (5.23)
and
8 B B~B 1 1 B B
=z - = VMBGB M MB VM
§5,9 THG - 7y QW MPgT, M) + QM. vMg))
1
+ gowl(Kf(h)vLKi(hB))ﬂLLB( ,9) (5.24)
6 B B _B/=B B 1— B 1 — 1 B —
L G° +90) = XK (h)+g(—V+x7K*)h + Np.(o(g+g1) + h)
+ NE(0B(G" + gF) + hP) + 2d”, (5.25)
where 44 = M. EDA, dB = M. iDB,

x7(v) =1, for Jv[<7,  x4(v) =0, for |v[>~, and X, =1-Xx,

Ay 1 A By L B
KN = ZpQMA VLD, KX(f) = 7=QM”, VM.,
Lh@.3") = <= (QUY +eff.VIT) + QAP i +2fy)
- VA ded) @ e 00
n Q(MB,f1+ef2>—f%MB>, (5.26)
Lh(3.9%) = QUWMAGA, fi +ef2) + QU + 25, V). (5.27)
4" = —% \/LQ(ﬁ +eff MP)( [ VAIPP dud), (5.25)
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Narlf) = QU + eV, Noulf) = =QUE +eff VALY, (529

NAGASE) = QUL i+ eh)

R QU +ef3 MB)/ /1 VM, fBdvda (5.30)
m /M, ! 2 R3 J—1 : ’ '
NE(fP) = \/Jl\T*Q(\/ﬁ*fB,meefz)
1 1
- [ VAT dvde) (QUP + erf M)
+ Q(Mvi1+€f2)—§(%MB) (5.31)

and Q(M,/M,h*) is decomposed into

1
VM.

where v, called collision frequency is defined by

Q(M, \/ﬁ*hA) =(-v+ Ki)hA’ (5.32)

v(z,v) = / (Ve — v, wWYM (2, v, )dvsde.
R3 X2
Remark 3. In the hard-sphere case, there are two non negative constants vy and vy such that
vo(1 4 |v]) < v(z,v) < v (14 |v]). (5.33)
Moreover g2, h4, g®, h® satisfy the boundary conditions

g (-1L,v) =0, £>0, g¢*(1,v)=0, £<0,

hA(—1,0) = CA" M2, €50, hA(Lw) =AY MIE, € <0 (5.34)
gB(_lvv) =0, >0, gB(LU) = ﬁgBMJr(U)(MB)_%(LU)a §<0,
hB(_Lv) = M*_%CBi, g > 07 hB(]-a’U) = M*_%(ﬂhBMJr + <B+)’ f < 07 (535)

together with the notations [13, 14]

B0 = | /MPP(0de, po = [ e/BERP (Lo + [ et (5.36)
£>0 £>0 £<0

i = 5o (), o =
Define also the functions h?, h_‘ﬁ, hE and hf as follows
WA= MIPCAT €50, hA=0, £<0, hd=MI2¢M £<0, ht=0, £>0,
BB = MIECE €0, BP=0, £<0, K =M Bt <0, hE=0, £>0.
We shall control the rest term (R*, R®) by using the norm

[flr8o = sup  sup(1+|v])"|f(z,v)] exp(ﬁov2), (5.37)
z€[—1,1] veR3

for a suitable By. The same notation will be used for the functions depending only on the v variable.
First, the following estimate on the solution (R“, RP) to the linearized problem (5.14, 5.15), with
(5.12) is established.
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Proposition 1. For all r > 3, there are ¢, g9, 1o and By such that for all € < g9 and n < o, RA
and RB satisfy the estimates

ce?(|DA)-1,6, + [D|r-15,)
C _ _
U b+ 1€ gy + 1 Ly + €5 o).

And Theorem 2.1 can be deduced

‘RA|7‘ﬁo + |RB|T750

IN

5.4 Exponential form.

In order to estimate g#, g, h and h®, the exponential form of the equations (5.22, 5.23, 5.24, 5.25)
is used. Consider f solution to

0 1 1
— -vf=-G 5.38
Egpf T ovf =26 (5.38)
satisfying the boundary conditions

f(*l,’()):f_, §>07 f(LU):f—H £<0 (539)

From here, we shall use the following notations ([13]),

oy :/ v(z,v)dz,

U.G(z,v) = 5/ G(2',v) exp(— ¢$g Ydz', € >0,
U.G(x,v) = —E/ G(2',v) exp(—d);’gl)dx’, £<0,

Vo™ =Xe>0y [ exp <—¢m’1> and VT = x(ecop [T exp <¢1 I) :

e€ 3

From the exponential form of the equation (5.38, 5.39), its solution can be written as
=V T+ Vo f~ +U.G. The equations (5.22, 5.23, 5.24, 5.25) can be written in the form (5.38).
Namely (5.22) writes

0
§5-9" + - Zgh (KgA +5%4), (5.40)
with
1 _ N A .
§% = QA VM) +xo0 (K0 Kh®) = ept g +eLi(9.9%) +eL3(3%). (5.4D)
The equation (5.23) can be written
0 1 1
5ath + gz/hA = g(vaihA + Z4), (5.42)
with zA = —EMAUA@A—l—gfl)-i-YWKAh—i-ENA*( (G+g1)+h)
+ eNAoM G + M) + h?,0Pg8 + hP) 4+ 3dA. (5.43)
The equation (5.24) writes
0
59"+ g (KgB +8%), (5.44)
1
with  S% = ———=Q(VMg, MP) + x o5 (KBh + K[ 1hB) — ep®4P + eLy(4,6%). (5.45)

v MB
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The equation (5.25) writes

) 1 1
hB + ZuhP = Z (¢ K'nB + 78 5.46
6833 6 E(xy hT+2Z7), (5.46)
with
zP = —epPo”(G” + g7) + X, KPh +eNp.(o(g+ g1) + h)
+ eNB(oP(G® + ¢P) + hP) + 2dP. (5.47)

Multiply the equation (5.22) by v M4 and (5.24) by vV ME and add the two obtained equations. By
using the relations (5.17), it holds that g and h are solutions to the equations

0 1 1
E%nggug—g(ngLS)? (5.48)
with
S =xy0 'K.h —epg +eL' (", 9), (5.49)
L=K-— v,
LYg%,9) = =(Q(fr +efo, VMG) + Q(VMg, fi +f2))

ﬁ\

- < / VAT gded:c)(Q(f1+sf2,MB>+Q<MB,f1+sf2>

)
- faxMB> (5.50)

By adding (3.11) and (3.12) it holds that

0 1 1
o ht vh=—(X, Kb+ 2), (5.51)
with
Z = —cuo(g+g1) +eNu(o(G@+ g1) + h,o?(@° + g7’) + hP) + 34, (5.52)
NS ) = S (QUA+ o VAL + QUM i +12)
—~ %(/ JEdevdw)(Q(fl +efo, MP) + Q(MP, fi +cf2) —68(1MB>~

(5.53)

6 Control of the rest term.

In this section, we first control the rest term of the linearized problem in L? and in L norms. In
[13, 14], the authors consider only a one component gas satisfying boundary conditions of diffuse-
reflection types and uses at a crucial point of the control that the total flux of the solution is zero.
In this paper, we are not in this situation and this difficulty is solved thanks to the structure of the
kernel of the linearized Boltzmann operator for a two component gas (see remarks 2 and 4). At the
end of the section, the rest term of the full nonlinear problem is obtained as a limit of a sequence of
rest terms of linearized problems (Proposition 6.1) and Theorem 2.1 can be deduced.

18



6.1 L? estimates on the rest term.

Recall that the norm || || had been defined in (5.18).

Lemma 6.1. For 7 defined in Theorem 3.1, the operators L', N,, Ly, LYy, LY, Na., Np., NA, NB
defined by (5.50, 5.53, 5.26, 5.27), 5.28, 5.29, 5.30, 5.31) satisfy the inequalities

I+ D) LA LN < A+ IFZ1D, I+ oD T LB D1 < 7+ 121D,
I+ ) T LA SN < 7UA+ 12D, I+ )T LA < 7 £2],

I+ o) T N < 7U 1P, 1A+ )T Nac(HIF < 7l

I+ 1) Np DI < 7L 1@+ DT NAGA SIS U4+ 121D,
1+ o) TINZ (S < 7l £

Proof. (First inequality of Lemma 6.1).
As for all functions (¢, 1) such that (1 + |v])2¢ and (1 + |v|)2¢ € L2

/ QW Mo, VMy)|?
R3

T e s [0 blePa [ bpord

it holds that
0
1A+ )T LA I < (LA + el DU+ 1751 +CIIS%MH (PR

Lemma ?? gives that there is ¢ > 0 such that [[£:2Z M| < cr. In order to estimate |fi], fi is
decomposed as in (4.49). First let us show that

o]l < er. (6.1)

Let £ be defined by
L(¢) = Q(fro®; fro) + Q(fro, fro®)
From (3.17), the function ¢z defined by fu1 = a1 firo is solution to the equation
L(¢m1) = EQM
ox

and the restriction of £ to the orthogonal of its kernel is invertible and such that |[|[£7!]|| = ¢. So
from ([13]), there is ¢ > 0 such that

_1,. 0 0
l£ €M)l < cllg—M].

So by using Theorem 3.1, the non hydrodynamical part of ¢g1 denoted by ¥ satisfies
g1l < 7. According to (3.21), the hydrodynamical part of ¢ equal to

nH1 U1, H1 v 3 THI)
DL 4 ptlfle (U 2yZHL)
(nHo THo EH )

By using Lemma ??, we get for all z € [-1,1], |7 (2)| < 7, [722(z)| < c7 and |%($)| <er. So

o1l < er and frq satisfies (6.1). Recall that fi, writes

Fia 60 = (200 (D (00) = g = € = ) 05 (00) = B = i et? ) i
Let us show that there is ¢ > 0, such that for all 2’ € [0, 2] and all v € R,

1 f5c1 (" )] < er. (6.2)
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From ([7]), together with dy (0,v) = 0 for £ > 0 and [5, &dy (0,v)dv = 1, it holds that |dy (2, v)] <
(vo — 'y)e_QW’ and |d1770070| + \df)oo)4| <1 for all v €]0,v[. As |ug g1(—1)| <7,

121,11 (=1) (dy (&', 0) = dy o 0 = & = di oo a) Fr0l < e

Also from ([7]) together with by (0,v) = ¢g1(0,v) for £ > 0 and [ps &d; (0,v)dv = 0, it comes that
b7 (2, v)| < 7(vo—7)e~ 2" and 161 00,0l T107 00 4| < 7, for all v €]0, 15[. So (6.2) follows. Analogously
the same estimate is obtained on f;gl.

Reasonning in the same way, we show that || f2| is bounded. O

Next we will focus on the control of (R“, R?), solution to the linearized problem (5.14, 5.15) in the
norm || ||.

Proposition 1. There are g9 > 0, 79 and ¢ > 0 such that for all e < g9 and T < 19, the solutions to
(5.22, 5.28, 5.24, 5.25 5.34, 5.35) satisfy the estimates

A B 3 A B
A2+ |7 < ce (H |+l )
(1+[v]) (1+[v])
+evE(IRA] -+ IR+ IRE ]+ 1RE1]), (6.3)
4 B dA dB
g+ g7 < ce +
1571+ 1197 (H(1+| |)H [ (e |)II)
c
g(IIhAIIHIh I+ 1R21 + 1R 1), (6.4)
" B A B
+ + + ||lg
gt Il + lg? 1l + 117211 + 117711 < (H TENED H [ it |)II)
C(IRAN+ 1R+ 1RE )+ [1621). (6.5)

\[

Remark 4. In the situation of a one component gas ([13, 14]) with boundary conditions of diffuse-
reflection type , the terms g1 has the same order in € as the high velocity part h. This fact will be
explained during the proof of Proposition 1 for the control of gi* and gP. This comes from the fact
that for a one component gas, the flur [ £gdv is zero whereas for a two component gas, ng £g4dv
and [5s £g%dv are not zero.

Proof. (Proposition 1.)
First we will obtain a bound on |[g||, [Z]l, llg:']], ll9Z |, ||gA|| and [|gZ|| in terms of ||h4| and ||hB]|
and after we will control ||A*|| and ||h?|. Let us begin by ||g|| and ||g?||. Let A be defined by

A (g4, g8) — (Li(g?, 9P), La(g?, 9P)),

with
1
Li(g*, g") = MAQ(VMAgAvM)‘FW (MA,VMAGY + VMBgP),
1 1
La(g%.97) = Zo=mQVMEGD, M) + —mmQ(MP, VMAGY + VM Eg7).

Let the scalar product (.,.

be defined by

(576497 = [ Pt @ot [ £ @) @y
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Multiply (5.22) by g4, (5.24) by eg”, add the two obtained equation and integrate on [—1,1] x R3,

1
e(Zya +1y5 —/ / L1(g*, g% g dvdx —/ / Lo(g?, gP)gP dvdx
’ I R3 R3 J -1
1
= 6/ / (1 (@) + 1P (3")?) dadv + 6/ / (w'9'g" + 1”575 dwdv
R3 R3
/ / X401 (KR 4+ K2h) g dvda +/ / xy05 (KIhE + KBh)gP dvda
R3
/ / By £ LY (9,5%) g dvda +/ / eL%(g,97)gP dvdz,
R3 R3
with for o € {A, B},
f(ga(l,i}))QdU - g(ga(—l,v))Qd'U_
R3 R3
From (5.20), it follows that u“(§*)? writes as the sum of the terms

S (MA@ ) W), (i) € (0,47

Thebe functlonb being odd in the ¢ variable f]5 G4)%dv = 0. Analogously
Jgs 12 (9%)?dv = 0. From the expression of x and uB and Lemma 6.1, it holds that

1
L] et + 575 dedo| < ex(la 115+ 17 171

Recall the spectral inequality for a two component gas ([2])

(Mg, 97), (g™, 97)) < —(nlg*II? + nllg”)1?)-

Thus (6.6) becomes
£(Zyn +T,) + 5 (17" 17 + 17°1)
< cre(lg g1 + 135 11g°1) + | / 3 / 11 o3 (KA + K2 g  dvde]
[ [ o e kg v
+1 [ Ih@a" + IA@e ol +| [ (.67 ol

R3

By using Remark 2, we obtain the relation

[ Lh@.aN + APt + 5o+ [ Lh0.6°) (6 + 9"
R R

;(/ﬁgdedx>(/ng dv>,

M= _
e(Zon +Zom) + 5 (17717 + 5°11%)

So (6.6) can be simplified into

<erel N1+ 1PN 0 +1 [ [ oot et + g v

1
+| / / X105 (K hP + KPh)gP dvdal
R3

+ere (197 Mlgt’ 1l + Alg™ I+ 197D CAg™ Il + 17 1D) -
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In order to deal with the terms e (g7 ||llg[l + (g1 + 3% ) ([g* |l + lg"))) and
ere(la2 1Ig2 1 + 1165112 1), the following property is used (for all & > 0),

2
lab| < oa® + b— (6.8)
4o

So for all o > 0,
e (1871l Il + (g™ I+ 187D Al Il + 1187 1))
_ _ r2e? X
<a(llglII”> + Ilg*1* + 15°1%) + gy ——(g™1” + 118717

and the inequality (6.7) becomes for ¢ small enough
e(Zya +Iym) + %(II?AII2 +17%117) < I/ /1 X205 (KA + K2h) g dvdz|
+ |/ / X405 (KEhE + KBh)gBdvdz|
+ ol |I* + (|| A7+ 1155 1%).

By continuity of the operators, K!, KA and KZ, it holds that

e(Zya +Iym) + (IIg I+ 1g%1%) < eiR? -+ InZ D Alg™ I+ llg® 1D

+ allg? 1+ er (13711 + 1971%).- (6.9)

From the boundary conditions (5.34) satisfied by g, Z,4 > 0 and by reasonning as in [14], we get
Z,5 > 0. In order to achieve the control of [|[g*| and HgB|| we need to estimate || g7 ||, ||g I, 162 and
[g2]|. Let us begin by |lgi*|| and [|gF||. Recall that from subsection 5.1, we have [5, ERP(z,v)dv = 0.
By splitting R as in (5.16) and by using that [5, £§5dv =0, it holds that

/Rs (£2VMPPE + VMPGP (w,0) + €/ MP ) dv = 0.
So
cpy = —/RB eV MBGP dv — /Rgg\/ﬁ*thv
and it comes that

g || < e(llg® Il + 1R (6.10)

Moreover from the expression of the kernel of the linearized Boltzmann operator for a two component
gas ([2]), pi* = pP. Hence

lgt'll < eClg? || + 1RZ1)). (6.11)

Next in order to estimate ||§*|| and ||¢?], multiply (5.22) by {4 and integrate on [—1,1] x R? yields

0@ = otn- [ [ e (€5 vt ay
s 2 [ (QWAT a0 + QUi Vi) v dudy
+ i/i /R 3o 3 [ K2R+ KAt dudy

n / / (L4 (3. 9%) + £4 (97) € dudy,
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with

:/ /3529Awf‘dvdy-
—1 JR¢

In order to control the term ¢7!(—1) Cauchy-Schwartz inequality is used. So

I\U‘H

[ et craal < (f o @) ([ P10,
(| &(g*(=1,v))%dv)?.
]R3

IN

Then we get for i € {0,4}, [¢(—1)| < (Z'Q/a)l/2 and the same result holds for ¢ (—1). Hence for
i € {0,4} it holds that

e Iy e e e e O e

b erlla + 167 (6.12)
6P@] < (Zye)"* +7lg”l + ZIE% 0+ g+ I+ e

+ (gt + 188 ). (6.13)

The inequalities (6.12, 6.13) give the control of the terms ¢ (x) and ¢P(x) for i € {0,4}. By
reasonning as in [13, 14] it comes that

1 1

1912 < ¢ [ (63 + o3Py do+ clg P 171 < e [ (08P + 10FR) do +cllg” |
From (6.12) and (6.13),

1§4% < Zga + Tl g1 + 5% (g% + g1 + 1412 + 185 1%) + e (191 + 19711%).

15717 < Zys + erl|g®1* + 5% (g% + g1 + 1412 + 185 1%) + e (1912 + 19711).
By adding the two last inequalities and by choosing € and 7 small enough,

1GHZ + 19717 < Tya + Zys + E% (g2 12 + 118" 17 + 14017 + 1RP117) -
By bounding Z,4 + Z,5 from the inequality (6.9) and by choosing ¢ small enough we get
1§47 + 19717 < *||g1 1> + (||hA|| +RZID g™+ g™ 1)
+ ;2 (g2 1 + lg” 12 + 122012 + 1P ]1?) -

According to the inequality (6.10) and by splitting g and ¢g? into g = g{* + §* + g% and ¢f =
gP + P + g% it holds that

R+ IRE D A+ 11321
(IIhAIHIIhBII)(IIgl I+ llg? Il + g1+ g 11)

+ ;2 (g 12 + g% 11 + 11 + [1A5]12)

122 + 18512 < <
&
C

+

Use again the inequalities (6.9, 6.10, 6.11) and choose 7 small enough leads to

c A A _ _
171 < AR+ IRTDAGH + 1971 + er (g1 + 1177 1)

c _ _
+ 5 (P + 1717+ 1A+ 1R2]%) - (6.14)
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Property 6.8 is again applied to the term §(||hAH + IRED 12 + 115]). So

g1+ g 1+ 1R+ 1R ). (6.15)

~A N c
g4+ 11971 < Z(

Now let us show that ||[g||+|/g?| is bounded in terms of ||h*|| and ||| by controling the right-hand
side of (6.9). By using the inequality (6.15) it follows that

AR+ MRE DA+ 171D < =W+ 1REDAgH+ g7 1+ gl + g7’ )

¢
€
ConA B||\2
IR+ R

+
And from (6.10, 6.11), we get that
(IlhAll HRE NG+ 121+ gt I+ ot 1)
< g(IIhAH RPN+ 121+ 1A+ 125 ).
So by using inequality (6.8) to (6.9) it holds that
lg* 1+ g7 < (||hAH +IR7]). (6.16)

and (6.15) leads to

111+ 11371 < (HhAll +IRE]). (6.17)

Now let us control ||h4|| and ||RZ||. Multiply (5.23) by eh?, (5.25) by eh? and integrate on R3 x[1,1].
By setting for a € {A, B},

Ino = | E(h(10))%dv — | &(h*(=1,v))*dv,
R3 R3

it holds that

e(Zpa +Iys) / / (h)?% 4 (hB)? )d:cdvffé:/ / pro (@ + ghAdvdx
R3 R3
+ / / (0, KHh)hAdvde + / / (0, K)h*)hA dvds
R3 J -1 R3 J -1
1
+€/ / Nau(o(g+ g1) + h)h*dvdz
R3 J -1
+€/ / NA (oG + i) + b2, 0P (G° + gP) + hP)hAdvda
]RS
ve [ / Npu(o(g+g1) + h)h” + NP(oP(g” + gP) + hP)hP duda
R3 J -1
1
+&? / / (d*h? 4 dPh®)dvdz.
R3 1
From (5.33) and Lemma 6.1, we get
1
(T + o) A2+ 22 < | [ et
R3 J -1

1 1 1
+ / / (X, K h)h? dvdz| + / / (X, KL1hP)hP dvdz| + / / (X, K2 n)hP dvda
R3 J—-1 R3 J—-1 R3J-1

+ere([gl + lgit Il + 1521+ g% 1+ g |+ IRZ AR+ 125 1)
+e2 (A IRA) + 1?1 1R P ).
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By continuity of K!, KA and K2, it holds that

* 9

A A
R3 BECE R LR R RH

RS ! eI

Moreover, according to the boundary conditions (5.34, 5.35) satisfied by h* and h5,

Tin > —c(IBAIP + 11212), Tun > —c (16uo > + W21 + [AZIP)

Hence
B4+ 1R5012 < eI + 11AL12 + IBE 12 + BRI + (Brz)?)

+ 7;(HhAll2+llhBH )+ ce([P2A[1° + 13 11%) + (Brm)?
(1+7)2

+ CT€(||9A||+H91 I+ 1721+ gl 1l + a2+ IRE DR

dB
RA B

+ + ||k .

([ ||1+| ‘H (Toad H1+|U|H)

It remains to control |G;,z|. By using the exponential form of (5.46) and by reasonning as in [14], £,
satisfies

|Bre| < %, B RPN+ vt ZP0) + (IWE]] + [IRE ). (6.18)

o
Moreover by definition of Z” (5.47) and by using Lemma 6.1, it comes

=28 < ere(lg®ll + llg?' 1) + I, K2R

+ere(lgtl + llg I+ IR+ 121+ Nl | + IIhBII)Jrﬁﬁllmll2

So (6.3) holds. From (6.15, 6.16, 6.11, 6.10) and by taking € and 7 small enough and 7 big enough,
the inegalities (6.4) and (6.5) follow easyly. O

6.2 L estimates on the rest term.

In order to control in L™ of (R4, RB), we shall use the norms

o= s swp ol 20 N = sw ([ feopa)

z€[—1,1] veR3 z€[—1,1]

The aim of this section is to control g4, g%, h*, h® with the norm | |,. First, let us give the two
following propositions whose the proof is in ([13]).

Proposition 2. For allr > 0, there is a constant ¢ such that for all function G such that (1+|v]|)"G €
L, U, satisfies the inequality

G
UGl < c|—|-.
v

Proposition 3. For all function G such that (1 + |v|)"G € L*> and § > 0 and for all r > 2, there is
Cs such that

Cs 1
N(U.G) < 2|~ 2G| + 8|Gl,.

In order to control |g#|, and |gZ|,, we need a bound on |g|,.
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Proposition 4. For all r > 1, there are nonnegative constants ¢ and H., such that
gl < e(N(g™) + N(g")) + Hy(N(h™) + N(h"))

d4 d®

Cc
7+ S (IRZ1 4 IR+ IRE I+ RZD.

Proof. (Proposition 4.)
From the equation (5.48) written in the exponential form,

9=V (g") +U.(Kg+5S), with ¢B* =p,5M, (MP(1,0))"2. (6.19)
Proposition 2 applied to the equation (6.19) leads to
9], Sc|1/*1Kg|r+c’u715|r—|—c|ﬁgs|. (6.20)

The continuity of K gives for all » > 1 ([13]),

‘V_lKg‘r <c sup sup(1+|v))" " tg(x,v)| = clglr_1, (6.21)
z€[—1,1] veR3
piKgy e s [ Plad = (N (6.22)
z€[—1,1] JR3

Then by using (6.20), it holds that
|g|r SC|g|'r71_‘_C|’S"7”_|_C|6QB|' (623)
So, from (6.22) and by induction, it holds that
lgl, < eN(g) +¢ SISl + elBys] < eN(g) + eS|y + clfo . (6.21)
k=0
Let us find a majoration on |S|,. By definition of S (5.49),

191, < oo KR, + (gl + LGP 9)1,). (6.25)

But, by continuity of K,,

|Xy0 'K, h| < sup sup (14 |v]) x40 sup sup |K.h| < H,N(h).
" ze[—1,1] veR3 2€[—1,1] veR3

On the other hand, according to ([9]), we have
1497, 9)], < (3% +13l,) < ¢ (N(§4) + N (37)).-
Moreover the functions (1 + |v|)"¢;(v) being bounded on R? for all i € {0,4}, it holds that

91, < e sup 1](\;Do(ﬂf)l + [pa(2)]) < eN(g).
rxe|—1,

So by using the inequality (6.25)
8], < ez (N(3%) + N(37)) + Hy (N(h*) + N(h7)) . (6.26)
By using the inequality (6.26) in the right-hand side of (6.24),
gl, < eN(g) +c2 (N(G*) + NG™) + Hy (N(b*) + N(h)) + cl By . (627

A bound on N(g) is now researched. From Proposition 3 applied to the equation (5.48) , it holds
that for all 6 > 0,

Cs

TS+ 181, + ey (6.28)

Cs .,
N(g) < Z2lv= K gl + 6|Kgl,
(g)_\/gllv gl + 9| Kgl, +
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But from (6.21) and (6.27), we get
|[Kglr < eN(g) + cs(N(§%) + N(§7)) + Hy(N(h) + N(h7)) + |8y,

Hence by using the previous inequality in (6.28) and by choosing § small enough, it comes that

N(g) < UK gl +es(N(g) + N(§7)) + Hy(N () + N(hP)) + LS|+ clBys .

q |
v —|lv
v Ve
But by continuity of K we have ||v='Kg|| < ¢||g|| and the definition of S (5.49) gives
lv=t S| < CyllRl + ere(lgll + 1157 1)-

Hence

\C;‘illgll +ee(N(g") + N(g%) + Hy(N(hY) + N (h))

+ f||h||+057f(|| A+ 1971) + ¢lBynl-

Moreover by reasonning as in [14] and by using Proposition 1 |3,5] is controled as follows

B

(1 + o]

|Bgs| < cve (II =+l >||> + = (IBAN -+ IR0+ 2]+ [1RE]) - (6.29)

(1 + o))
O

Proposition 5. For all r > 3 there are nonegative constants c and H. such that

B

(9% +19%1:) < c\@(|(1+ e R [

+ (IhA|r+|h lr 4[R2 ] + [RE],).

1+ )|) - cH, (4], + WP,

Proof. (Proposition 5.)
We proceed as for the proof of Proposition 4. The solutions to the equations (5.40) and (5.44) are
written in the exponential form as follows

g4 = U(Kg" +5%), ¢ =V (g"") + U(Kg" + 57), (6.30)
with g8+ defined in (6.19). Reasonning as in the proof of the inequality (6.23), we get
9% < eN(g™) + ¢S, 19|, < eN(gP) + ¢l ST + c|Bys]. (6.31)

The definitions of S4 and S (5.41, 5.45) together with the inequality

Q (VMg M*) | <elgl, (7)),

1
A
lead to

|SA|T < C‘g|r + (|X7021th|7. + ‘X’YaleihA|7') + 7'5|gA|7" +e (|L114(gagA)|7 + ‘L,lal(gB)‘r) s

|SB|T < C|g|r + (|XVU§1K*Bh|T + |X’YU];1KihB|T) + T€|g3|r + 5|LlB(g7gB)|r-

Reasonning as for the proof of the inequality (6.26), it holds that
(57, +187], < clgl, +Cy (N(h) + N (W) + e (N(G*) + N(@"))
So by bounding |g|, thanks to Proposition 4, we get
1540 + 18P < e(N(g?) + N(¢®)) + H ( (%) + N(h"))

A
+ eve(ll I+l

A B
A+ o) )+ (Hh |4+ R4+ |AB] + 1IRE)).

(6.32)

(+\|)
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From (6.31) together with Proposition 4, it follows that

9% + 1971 < e(N(g A)+N(93))+cH( (h*) + N (1))

+ eVl I+l 1)+ (HhAH R+ RE ]+ IRE).
(1 +| ) (1 +\ )
(6.33)
In order to achieve the control of |g|, + [g®|, we need to estimate N(g4) + N(g?).
By using (6.30) and from Proposition 3, it follows that for all § > 0,
Cs .\ _ _
NgH+NG@") < ZvT Kell+ v Kg®l) + (1K g+ 1Kg)r)
+ 3;(1/15A||+|VISB||)+5(5A|r+5Br)-
+ 1By [N (M (MP(1,0))72), (6.34)

Moreover |Kg4|, < clg?],—1 < e¢N(g4) + ¢|S4],, and |KgP|, < c[g®|.—1 < eN(gP) + ¢|SP|,. From
(6.29) and by choosing § > 0 small enough,

Cs . _ _ _ _
N+ N(@g®) < (v 'Kg*|+Ilv " Kg®| + v 'S4 + [lv "5

NG
£BSA ISP + H (V) + N(hP))
A B
A B
+ eVEll !+ )+ s 2+ 120+ 182+ 1),

So by choosing § small enough and by using (6.32)

Cs . _ _ _ _
N(gh+N(g®) < %(HV "Kgl|| + v 1K9B||+||V LA+ ISP

+ Hy(N(hA) + N(hB)) + eva(| 4

<1+| p ! el
SRR I+ B2+ ). (6.35)

=+l

By continuity of K and from Proposition 1,

a4 db
) +
(1+ o)) (1+ v])

and by definitions of S4 and SP (5.41, 5.45) and from Proposition 1, [|[v~1S4|| + |[v~1SB|| satisfies
the same previous estimate as | Kg”| + [|[Kg?||. So (6.35) reads

IEgH + 1K g < ee(l (IIhAII + R+ IRE] + IRE)

Nig") + NP < 6<|gA|r+|gB|r>+ﬁ(|(1+| S+ )
SORA+ W31+ IR+ IR + H (V) + NGP). (636)

From the inequalities (6.33, 6.36)7

b +1e"h < B~ + =L
< CESTILRAIEaT

+ (\IhA||+|Ih I+ IRE N+ IR + Hy (N (h) + N (b))

But for all f such that (1 + |v|)’“f € L™ it holds that for r > 1,

ING)P < sup sup (F(0)(1+ o)) / : SLCR Y

z€[—1,1] vERS 1+ |U|)
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Hence for all » > 1,

N(h*) + N (hP) < e(lh?], + [hP],).

(6.37)

Moreover for all function f such that (1+|v|)f € L? and (14|v])®f € L, it holds that ||f|| < |f|s. O

In order to achieve the control of |g?|, + |¢g?|, it remains to estimate |[h4|, + |hB]|,.
Proposition 6. For all r > 3 there is ¢ > 0 such that

d4 d?
1 I+ 17
(1+ o)) (1+ v])
¢
AL+ B+ B2 4 B2,

WAL+ [RE|, < ee? (| ) +e3 (jv=td?], + v 1dP),)

Proof. (Proposition 6.)
hA et hB can be written as

ht = V(b + V() + Us(x, Kih + 27),
W= V(W) + V(R + Bus My (ML) 72 + Un(x, KLRE + 25).

From Proposition 2, by continuity of K}, K2, KB and by taking |V."h4|, < |h4],,

VR < [k, [V RB|, < |RB|,, |V5+(hf +6hBM+(M*)_%>|T < |h®B|, + ¢|Byz| into account, it

holds that

A4 + [hP

A

< i I+ Al

+ CT@(‘.‘]B|7" + |gl |r + |hB|7 + |9A|r + |gl |r + |hA| )

+ (vt d + vt dP) + (B2 + W+ (BB + R |+ ol Bs .

From the inequalities (6.18, 6.19) and by using Proposition 1, |5),z] is controled as follows

A
ol < ]+ 121+ 20+ 121D + & (I + )

Moreover for all function f such that ||f|| and |f]|, are defined, || f|| < |f|3- So, by choosing 7 and ¢

small enough and v big enough in (6.38) it holds that

WA+ WPl < re(1gP) + 19 + 197 + |9t ])

+ 3 (v td, + B ) + [hAL + R + BB+ [RE-

In order to control the term 7e(|g2|, + |g'|» + [Z ], + |gF],), we use that

‘9A| < |9A‘T+|gi4|r+|gA|r and |QB|T < |gB|r+|ng|r+‘g |, with for all ¢ € {0, 1,4}, ‘9 l» < N (g )

and |9, < N(gP). So,
er(15, + gl + 1751, + 19P11) < (g™, + N(g™) + 1gPl, + N(g7)).

Proposition 5 applied to the inequality (6.36) gives

B

Nigh) + NG?) < cf<||(1+| S+ I

+ (\h"‘l + R + KB + [RE]).

||) (A £ 1P))

Then by choosing ¢ and 7 small enough in the inequality (6.38), Proposition 6 follows.

Proof. (Proposition 1.)
o4 and op being bounded, R4 and R satisfy

1
MZ (IR +|RP) < (104 + clg™| + [hP] + clg?)).
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Recall that M, = ( Tl) exp(—:%i) with T, > THq. Set By = ﬁ

[N

_1 _1
| M. 2RA|T + [ M. 2RB|T < (|hA|T + C|9A|T + |hB|T + C‘gB|T)-

Then Propositions 5 and 6 imply that, for all r» > 3,
[R50 + 1R |rgy < eVE(ldM + [1dP]) + € (v 'dd, + v 'dP),)

Cc
@ Uh2le 4 e+ 2]+ B2

Finally the definition of h#, h4l, h2, h#, d4, dP and the estimates ||d|| < |<|5 and (5.33) lead to the
conclusion. O
6.3 Convergence of the iterative process.

This subsection deals with the rest terms (R4, R) of the non linear problems, solutions to the system
(5.6, 5.7). They are constructed as the limit of a sequence of iterations of linearized problems.

Theorem 6.1. For all v > 3, there is ¢, ¢, €g, 79 and By such that for all € < g, and T < 79, the
problem (5.6, 5.7) has a unique solution (R, RP) satisfying

3 d
R4+ 1R < (Al + Bl + oxn(-) )

Recall that the norm | |, g, is defined by the formula (5.37).

Proof. (Theorem 6.1.)
The solution (R#, R®) to the problem (5.6, 5.7) shall be obtained as the limit to the sequences
(R}, RB) defined by Ry = R =0 and for all k > 1,

LR = LQUEE M)+ QUM R)) + Na(Re) + Noau (B BE)
+ (QRE, Ri) + I(RE.) QR MP)) + 224, (6.38)
G RE = L(QURE M) + QM. Ry)) + Nis(RE, Ry)

+ 2(IRE)Q(MP, Rie1) + Q(RE-,, MP)) + Q(RE, Ry1) )
+ B, (6.39)
satisfying the boundary conditions

RH(-1v)=¢*", €>0,  R{(1,v)=¢", £<0,
Ry (=Lv)=¢P7, €>0,  RP(Lv)=BrpMy +¢PF, <0 (6.40)

From Proposition 1 applied to the equations (6.38, 6.39, 6.40),

A 1 A
B o + 1B gy < (1D ma gy 1D o1 )
C 1 A— A -
g g 1 by + 16+ 1C )

with

DA eA+Q(Ry—1,Ri_y) + I(RF_)Q(MP, R_)),
DP = eB+I(RZ,) (QMP,Ri1) + Q(RY, MP)) + Q(R{ |, Ry 1).

The inequality ([13]),

|M™3Q(R,S)|,—1 < |M~3R|,|M %5, (6.41)
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leads to

QR Remr) + I(RE QR 1, MP),1.5, < (|Ri=1lnpo + IRE 11r60) [ Ri_ 11750
IR )(QMP, Ri—1) + Q(RE_, MP)) + Q(Rp—1, R 1)l -1,
< |RE A lrgo | Ri—1lr.0 + |1 RE 1|2 5, -

So

A A
D418, < elAl—1,8, + (IRi=1lrg0 + [RE-11r80) |RR_ 117505
IDP,_18, < elBlro1,go + (IRk—1lr.0 + [RE 11r80) [RE-1]r,80-

Hence for all £ > 0, R? and RkB satisfy

.80 (‘RI?—I ‘T,ﬁo + |RkB—1|T,/30)

/

3 C C
+ 2 (|4l + |Blrso) + 5 exp(=7)- (6.42)

1
|Rl?|7“750 + |RI?|7"750 < e ‘Rk—l

Therefore we get for € small enough, uniformly in & and for all ¢’ < ¢/,

/!

3 c
|RkA|T’50 + |RkB|Tﬁo < e (lA B0 T |B‘T,ﬁ0) + CeXp(_?) (643)
Moreover by using Lemma 6.1 we get the estimate
1
|A|Tﬁo + ‘Blﬁﬁo = 0(67) (644)

whose proof is left in appendix. Set WA = R4 — RA | and WP = RE — RE |. From (6.38, 6.39),
(WA, WB) satisfies the system

W = L(QUMA, W) + QUVA, M) + Na(We) + o (W, WP)

)

+ 2 (Q(qua Wi) + Q(Wi', Ri—2)

+ IWE)QR,, M) + I(RE QWi M)

EWE = LQUMP, W) + QUVE, M)+ Nis(W3)

+ 2(QURE,Wi1) + QUVE L, Rioz) + IWE)QRE M)
+ I(RE)QVE,, M)
with the boundary conditions

Wi (=1,v) =0, £€>0, W3(1,v)=0, £<0,
WkB(_Lv) =0, f >0, Wk:B(Lv) = 6W§M+7 f <0.

From proposition 1, (W, W) satisfies the majoration

~4 ~
‘Wg"?‘,ﬂo + |WI§|T750 < C\ﬁ“D rBo T |DB|T730)

with
D* = Q(R{L1, Wi) + QWi Rima) + IW)Q(R, MP) + I(RY)QWEy, MP),
DP = Q(R_1, Wi1) + QW1 Ri—2) + IW) QR MP) + I(W,Z QWL MP),
Hence by using the inequality (6.41) and the estimate (6.43), it holds that

cl

3
Wil o + W b0 < v/ (3 (1Al + 1Blso) + exp(= ) ) (Wiilrso + W1 1g0)-

g
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So from (6.44) and by choosing e small enough,

A A
(Willrgo + IWillrp0 < ce(IWililrgo + Wil 11, )-

So by choosing again € small enough, we show that the sequence ((R,’j, RkB )) is a Cauchy sequence
kEN

in a weighted L> x L space and so converges.

Now let us show the uniqueness of the solution to the problem (5.6, 5.7). Let (Rf*, RP) and (R4, RY)
be two solutions to the problem (5.6, 5.7). By considering the quantities Ry — R! and R¥ — RP and
by proceeding like for the existence step, it comes

A A A A
|R2 - Rl |7’,50 + |R2B - R?h’ﬂo < C€(|R2 - Rl |Tﬁo + ‘R2B - R{B|Tﬂo)'

So by choosing ¢ small enough, the uniqueness of the solution follows. O

Proof. (Theorem 2.1.)
For ny; close enough to n; and for some 7T7; close enough to 77, the asymptotic expansion

(fro +efi +2f + 3 (4, By vefB+ 28 +3f8)

has been determined. For e small enough Proposition 6.1 controls the rest term ( f j.tf‘, f E). This shows
Theorem 2.1. O
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A  Proof of 6.44.

For the proof of 6.44, we will give only the estimate of éQ(fﬁf(x', v), I‘?f (2",v)). The other terms
of A and B can be treated analogously. [—1,1] is split as [-1,1] = Q_ UQUQ,, with i small enough
where

Q- =[-1,-14+9 xR Q=[-1-n1-9xR3 Q, =[1-n 1] xR3,
(14 |v|)7"’1M(;%Q( AT (2!, v), f17 (2", v)) will be estimated successively on Q_, Q et Q. The in-

K1
equality (6.41) applied on the domain Q2 writes

Lo (L o) M7 Qfgey (2, v), fief (27, 0)]
z,v)efly

1,
< sup (L4 o) ML Ry (2 0)
(z,v)eQy

xsup [(14 o))" My EMA(L 0)bAT (2, 0)).
(z,v)eQy

By definition of M, there is ¢ > 0 such that M*_% MA(—1,v) < ¢ and M*_% MA(1,v) < . Moreover

1 R
sup | =(1+ [ul)" M. fiy (2, 0)]
(z0)eQy €
1+ 2-9

1+
= |
)

<c sup [(1+ Jv)" e swb‘ff( ,
(z,0)€[—1,1]xR3 €

1
—_eo 7
o)l ze

e osup (14 o) e Eppm (2

(z,v)€[—1,1]xXR3 €

0)]-

But from ([7, 2]), there is ¢ > 0 such that for all v €]0, 1],
1+z

14z

sup (14 [o])" 7= b
(z,v)€[—1,1]xR3 €

)| < e

So there is ¢ > 0 such that

1 1,1 _ -
sup | = (14 o) T M Qfy (@ v), fief (2 )| < @
(z,0)€Qy €

Analogously we show that Q(fe; (z/,v), fai (2", v)) satisfies the same estimate on Q_ and Q. O
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