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Abstract

This paper studies the non linear Boltzmann equation for a two component gas in the situation
of hard spheres. A Hilbert expansion of the solution is performed. The first order of the fluid
equations shows the ghost effect. The fluid system is solved when the boundary conditions are
close to each other. The boundary conditions for the kinetic system are satisfied by adding for
the first and the second order Knudsen layers. In a last part the rest term is rigorously controled
by using a decomposition into a low part velocity and a high part velocity. This constitutes a
generalization to the case of a two component gas of the results presented in [13, 14].
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1 Introduction.

Consider a mixture constituted by vapor and noncondensable gas whose the stationary behaviour is
studied. The part of the space where the mixture is situated between two phases of a condensed gas
represented by two vertical planes. Suppose that the model is homogeneous in space in the y and in
the z direction. So we can consider that the space variable x belongs to [−1, 1]. The vertical planes
are respectively kept at temperatures TI and TII . Denote nI (resp. nII) the density of saturation of
the vapor at temperature TI (resp. TII). The first component of the gas denoted by A is constituted
by vapor and can condense on each boundary. The other component denoted by B cannot condense.
The molecules of the two gases are supposed mechanically identical i.e they have the same mass
and the same diameter ([24]). The distribution functions fA and fB are solutions to the stationary
Boltzmann equation for a two component gas ([10])

ξ
∂

∂x
fA(x, v) =

1
ε
Q(fA, fA)(x, v) +

1
ε
Q(fA, fB)(x, v),

ξ
∂

∂x
fB(x, v) =

1
ε
Q(fB , fA)(x, v) +

1
ε
Q(fB , fB)(x, v),

x ∈ [−1, 1], v ∈ R3, (1.1)

with

ε =
√
π

2
Kn =

√
π

2
l

2
and l =

1√
2πd2nI

. (1.2)

l is the mean free path of the vapor molecules in the equilibrium state at rest with temperature TI

and density nI , Kn is the Knudsen number and d corresponds to the diameter of the molecule. Q is
called collision operator and will be defined in the next section.
The boundary conditions for A have a given indatta profile and the boundary conditions for the B
component are of diffuse reflection type.

In the present paper we are in the situation where ε is close to 0 and the distribution functions
(fA, fB) of the two gases are researched as an asymptotic expansion plus a rest term. The same
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situation has been also considered away from equilibrium. In [B1, Bw], the author has obtained
existence of weak and renormalized solutions in L1 by using entropy flux compactness methods.

As a physical point of view this problem has been already studied in ([3, 1]) where two types of
behaviour were pointed out. In a first situation the macroscopic velocity of the two gases is 0 ([3, 26]).
That means physically that evaporation and condensation stop for the A component. But the Hilbert
term of order 1 of the velocity of the A component keeps an influence at the hydrodynamical level.
This is the ghost effect as defined for a one component gas in ([21]) and for a two component gas in
([3, 26, 25, 8]). In a second case the B component becomes negligeable and accumulates in a thin
layer at the boundaries called Knudsen layer ([4]). In this paper only the first case will be treated
(when the macroscopic velocity is 0). This paper is organized as follows.

Section 2 presents the model and the main result of this paper. Section 3 deals with the asymptotic
expansion of the solutions. At the end of the section, a fluid system mixing 0 order terms and first
order terms is derived and points out the ghost effect ([8, 24, 25]). The fluid system is solved
when boundary conditions for fA are close to each other Theorem (3.1). Section 4 is devoted to the
boundary conditions of fA and fB . We show that Knudsen terms have to be added at first and second
order terms of the Hilbert terms of fA and fB in order to satisfy the proper boundary conditions.
Section 5 sudies the rest term which is decomposed as in [13, 14] into a high and a low velocity part.
The main difficulty is to extend the approach of [13, 14] to the situation of a two component gas and
to mix two different types of boundary conditions. Finally we control in section 6 the rest term of
the expansion. The rest term of a linearized problem is first controled in a weighted L2 norm and in
a weighted L∞ norm. In [13, 14], the authors consider only a one component gas satisfying boundary
conditions of diffuse-reflection types and uses at a crucial point of the control that the total flux of
the solution is zero. In this paper, we are not in this situation and this difficulty is solved thanks to
the structure of the kernel of the linearized Boltzmann operator for a two component gas (see remarks
2, 4). At the end of the section the rest term of the full nonlinear problem is obtained as a limit of a
sequence whose terms are solution to linearized problems (Proposition 6.1). Finally Theorem 2.1 can
be deduced.

2 Presentation of the model.

The collision operator Q of the equation 1.1 is defined by ([10])

Q(f, g)(x, v) =
∫

R3

∫
S2
B(v − v∗, ω)[f ′g′∗ − fg∗]dωdv∗,

with

f∗ = f(x, v∗), f ′ = f(x, v′), f ′∗ = f(x, v′∗),
v′ = v − 〈v − v∗, ω〉ω, v′∗ = v∗ + 〈v − v∗, ω〉ω.

The velocity v ∈ R3 has for coordinates (ξ, η, χ) and 〈v− v∗, ω〉 denotes the Euclidean scalar product
in R3. Let ω ∈ S2 be represented by the polar angle (with axis along v − v∗) and the azimutal angle
φ. The function B(v − v∗, ω) is the collision kernel of the collision operator Q in the situation of
hard-sphere. The boundary condition for the A component is the following given indatta profile

fA(−1, v) = M−(v), ξ > 0, fA(1, v) =
nII

nI
M+(v), ξ < 0. (2.3)

The boundary condition for the B component is of diffuse reflection type

fB(−1, v) = M−(v)
∫

ξ′<0

|ξ′|fB(−1, v′)dv′, ξ > 0, (2.4)

fB(1, v) = M+(v)
∫

ξ′>0

|ξ′|fB(1, v′)dv′, ξ < 0, (2.5)

where M− and M+ are the normalized Maxwellian distributions

M−(v) =
1
π

exp(−v2) et M+(v) =
1

π(TII

TI
)2

exp(− v2

TII

TI

).
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Moreover the mass m > 0 for the B component is fixed as follows∫ 1

−1

∫
R3
fB(x, v)dxdv = m. (2.6)

The main result of this paper is

Theorem 2.1. For nII close enough to nI , for some TII close enough to TI and ε small enough,
there is a solution (fA, fB) to the system (1.1, 2.3, 2.4, 2.5, 2.6) of the form

(fA, fB) = (fA
H0 + εfA

1 + ε2fA
2 + ε3fA

R , f
B
H0 + εfB

1 + ε2fB
2 + ε3fB

R )

satisfying

‖fA
R ‖∞ + ‖fB

R ‖∞ ≤ c

ε
5
2
.

3 Asymptotic expansion.

In this section after introducing the macroscopic quantities n, u1, p, T , the distribution functions
fA and fB are written as Hilbert expansions up to order 2. The Hilbert terms of this expansion are
explicitely determined in section 3.6. At the end of the section, a fluid system mixing 0 order terms
and first order terms is derived and closed for boundary conditions closed to each other (Theorem
3.1).

3.1 Macroscopic quantities.

For all distribution function f , the macroscopic quantities n, u, T et p are defined by ([23])

n =
∫

R3
v

fdv, nu1 =
∫

R3
v

ξfdv, nu =
∫

R3
v

vfdv,

p = Tn =
2
3

∫
R3

v

(
(ξ − u1,H1)2 + η2 + χ2

)
fdv. (3.1)

3.2 Hilbert expansion.

The distribution functions fA and fB are expanded in Hilbert series as follows

fA
H(x, v) = fA

H0(x, v) + εfA
H1(x, v) + · · · ,

fB
H (x, v) = fB

H0(x, v) + εfB
H1(x, v) + · · · . (3.2)

Substitute fA
H and fB

H by the expressions given in (3.2) in the equation (1.1) leads to

ξ
∂

∂x
(fA

H0 + εfA
H1 + · · · ) =

1
ε
Q(fA

H0 + εfA
H1 + · · · , fA

H0 + εfA
H1 + · · · )

+
1
ε
Q(fA

H0 + εfA
H1 + · · · , fB

H0 + εfB
H1 + · · · ), (3.3)

ξ
∂

∂x

(
fB

H0 + εfB
H1 + · · ·

)
=

1
ε
Q(fB

H0 + εfB
H1, · · · fA

H0 + εfA
H1 + · · · )

+
1
ε
Q(fB

H0 + εfB
H1 + · · · , fB

H0 + εfB
H1 + · · · ). (3.4)

A important Hilbert term is
fH = fA

H + fB
H . (3.5)

It corresponds to the sum of the two components and satisfies the relation

ξ
∂

∂x
(fH0 + εfH1 + · · · ) =

1
ε
Q(fH0 + εfH1 + · · · , fH0 + εfH1 + · · · ). (3.6)
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By using the Hilbert expansions (3.2) for fA
H and fB

H and by identifying formally the different orders
of ε in (3.1), the following relations are obtained for α ∈ {A;B}∫

R3
v

fα
Hmdv=nα

Hm (m = 0, 1 · · · ),
∫

R3
v

ξfα
H0dv = nα

H0u
α
1,H0,

∫
R3

v

vfα
H0dv = nα

H0u
α
H0, (3.7)∫

R3
v

ξ2fα
H0dv =

1
2

(nα
H0T

α
H0) ,

∫
R3

v

v2fα
H0dv = nα

H0(u
α
1,H0)

2 +
3
2
pα

H0, (3.8)∫
R3

v

ξfα
H1dv = nα

H0u
α
1,H1 + nα

H1u
α
1,H0,

∫
R3

v

vfα
H1dv = nα

H0u
α
1,H1 + nα

H1u
α
1,H0, (3.9)∫

R3
v

v2fα
H1dv =

3
2
(nα

H0T
α
H1 + nα

H1T
α
H0) + 2nα

H0u
α
1,H0u

α
H1 + 2nα

H0(u
α
1,H0)

2. (3.10)

3.3 Study of the terms of order −1.

The identification of the terms of order −1 in the equations (3.3) and (3.4) leads to

Q(fA
H0, f

A
H0) +Q(fB

H0, f
A
H0) = 0, (3.11)

Q(fA
H0, f

B
H0) +Q(fB

H0, f
B
H0) = 0. (3.12)

The system (3.11, 3.12) is solved by using the following lemma.

Lemma 3.1. The solution to the system (3.11-3.12) is

fA
H0(x, v) = nA

H0

π
3
2 (TH0)

3
2

exp
(
− (ξ−u1,H0)

2+η2+χ2

TH0

)
, (3.13)

fB
H0(x, v) = nB

H0

π
3
2 (TH0)

3
2

exp
(
− (ξ−u1,H0)

2+η2+χ2

TH0

)
, (3.14)

where (nA
H0, n

B
H0, TH0, u1,H0) ∈ R∗3+ × R.

The proof of Lemma 3.1 follows from ([2]).

3.4 Study of the 0 order terms.

The identification of the 0 order terms in the equation (3.4) yields

ξ
∂

∂x
fB

H0 = Q(fB
H1, f

A
H0) +Q(fB

H0, f
A
H1) +Q(fB

H1, f
B
H0) +Q(fB

H0, f
B
H1).

By integrating this equation on R3
v, it follows

∂

∂x

∫
R3

v

ξfB
H0(x, v)dv = 0.

But the boundary conditions for fB being of diffuse reflection type, the total flux at each point of
the boundary is zero. So

nB
H0(x)u1,H0(x) = 0, x ∈ [−1, 1]. (3.15)

Among all the situations represented by (3.15) the following two cases are considered

u1,H0 ≡ 0 and nB
H0 6= 0 and nB

H0 ≡ 0 and uA
1,H0 6= 0. (3.16)

These two situations are interesting because of the fluid equations that they give. In this paper only
the first case (u1,H1 ≡ 0) is considered.
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3.5 Fluid equations at zero order.

The identification of the 0 order terms in the equation (3.6) yields

ξ
∂

∂x
fH0 = Q(fH1, fH0) +Q(fH0, fH1), (3.17)

Multiply (3.17) by ξ and integrate on R3
v leads to

∂

∂x
(nH0TH0) =

∂

∂x
pH0 = 0. (3.18)

3.6 Decomposition of fH1, fA
H1 and fB

H1.

fH1 is split into its hydrodynamical and non hydrodynamical parts as follows

fH1 = fH0

(
nH1

nH0
+

2u1,H1

TH0
ξ + (

v2

TH0
− 3

2
)
TH1

TH0
+ ψH1

)
with ψH1 satisfying the orthogonality conditions∫

R3
v

fH0ψH1dv = 0,
∫

R3
v

ξfH0ψH1dv = 0,
∫

R3
v

v2fH0ψH1dv = 0.

According to ([19]) ψH1 is solution to

LTH0(ψH1(ṽ)) = ξ̃(ṽ2 − 5
2
)

1
pH0

∂

∂x
TH0. (3.19)

where

LTH0(ψH1(ṽ)) :=
∫

R3
v∗×S2

E(ṽ∗)
(
ψH1(x, v′) + ψH1(x, v′∗)− ψH1(x, v)

−ψH1(x, v∗)
)
B
(
|ṽ∗ − ṽ|

√
TH0, 〈ṽ∗ − ṽ, ω〉

√
TH0

)
√
TH0

dωdṽ∗

is called linearized Boltzmann operator.
Let ξA(|v|) be solution to ([12, 19])

LTH0(ξ̃A(|ṽ|)) = −ξ̃(ṽ2 − 5
2
),

∫ +∞

0

r4A(r)E(r)dr = 0. (3.20)

The non hydrodynamical part fH0ψH1 of fH0 is then given by the expression

ψH1(ṽ) =
−ξ̃A(|ṽ|)
pH0

∂

∂x
TH0.

Finally fH1 writes

fH1 =

(
nH1

nH0
+

2u1,H1

TH0
ξ + (

v2

TH0
− 3

2
)
TH1

TH0
− ξ̃A(|ṽ|)

pH0

∂

∂x
TH0

)
fH0. (3.21)

Now let us determin (fA
H1, f

B
H1). The identification of the 0 order terms in (3.3) and (3.4) gives the

system

ξ
∂

∂x
fA

H0 = Q(fA
H0, fH1) +Q(fA

H1, fH0) (3.22)

ξ
∂

∂x
fB

H0 = Q(fB
H0, fH1) +Q(fB

H1, fH0). (3.23)
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From ([2]) the kernel of the mapping

λ : (φA, φB) 7→
(
Q(φfH0, f

A
H0) +Q(fH0, φAf

A
H0), Q(φfH0, f

B
H0) +Q(fH0, φBf

B
H0)
)

(3.24)

is kerλ =
{(
αA + βξ + γv2, αB + βξ + γv2

)
, (αA, αB , β, γ) ∈ R2

+ × R2
}
.

(fA
H1, f

B
H1) is split into its hydrodynamical part and its non hydrodynamical part as

fA
H1 = fA

H0

(
pA

H1

pA
H0

+ 2ξ
u1,H1

TH0
+ (

v2

TH0
− 5

2
)
TH1

TH0
+ ΨA

)
(3.25)

fB
H1 = fB

H0

(
pB

H1

pB
H0

+ 2ξ
u1,H1

TH0
+ (

v2

TH0
− 5

2
)
TH1

TH0
+ ΨB

)
, (3.26)

where (ΨA; ΨB) ∈ (Kerλ)⊥ has the expression

ΨA = − ξ̃A(|ṽ|)
pH0

∂

∂x
TH0 −

ξ̃C(ṽ)
nH0pA

H0

∂

∂x
pA

H0, ΨB = − ξ̃A(|ṽ|)
pH0

∂

∂x
TH0 −

ξ̃C(ṽ)
nH0pB

H0

∂

∂x
pB

H0

and C is a solution to the equation ([24, 27])

Q(E(ṽ), E(ṽ)ξ̃C(ṽ)) = −ξ̃E(ṽ).

3.7 First order fluid equations.

In this subsection we derive a fluid system mixing 0 order and first order terms and we solve it when
the boundary conditions are close to each other.

Theorem 3.1. The macroscopic quantities nH0, uA
1,H1, u

B
1,H1, p

A
H0, p

B
H0, TH0 satisfy the following

fluid system

∂

∂x
pH0 = 0, (3.27)

∂

∂x
(nH0u1,H1) = 0, (3.28)

γ2

2
∂

∂x

( ∂
∂x

(TH0)T
1
2

H0

)
= −nH0u1,H1

∂

∂x
TH0, (3.29)

u1,H1 = −γc
T

1
2

H0

pB
H0nH0

∂

∂x
pA

H0, (3.30)

uB
1,H1 = 0, (3.31)

where pH0 = nH0TH0, pA
H0 = nA

H0TH0 and pB
H0 = nB

H0TH0.
Moreover, this system can be solved as follows
There are τ0 and λ > 0 such that for all τ ∈ R satisfying |τ | ≤ τ0 and all m ≥ 0 , the system (3.27,
3.28, 3.29, 3.30, 3.31) has a unique solution satisfying the the boundary conditions

nA
H0(−1) = 1, TH0(−1) = 1, nA

H0(1) = 1 + τ, |TH0(1)− 1| ≤ λτ, (3.32)

and the constraint 4.48. Moreover there is λ > 0 such that (for all x ∈ [−1, 1])

|TH0(x)− 1| ≤ λτ, |nA
H0(x)− 1| ≤ λτ, |u1,H1(x)| ≤ λτ,

|(TH0)′(x)| ≤ λτ, |(nA
H0)

′(x)| ≤ λτ, |(nB
H0)

′(x)| ≤ λτ. (3.33)

Remark 1. When the Knudsen number tends to 0, the flow u1,H tends also to 0 (u1,H0 ≡ 0). At the
level of the fluid mechanic if TH0 satisfies the Fourier law, the right-hand side of the equation (3.29)
should be 0. But it is not the case because the right-hand side of (3.29) is

nH0u1,H1 = −γc
T

1
2

H0

pB
H0

∂

∂x
pA

H0 6= 0.

That means that the flow u1,H keeps an influence on the 0 order term of the temperature at the limit.
This points out the ghost effect as defined in ([21, 8]).
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Proof. Derivation of the system (3.27, 3.28, 3.29, 3.30, 3.31).
By considering the terms of order 1 and by integrating (3.6) with respect to 1, ξ and v2 on R3

v we get
the following equations

∂

∂x

(∫
R3

v

ξfH1dv

)
= 0,

∂

∂x

(∫
R3

v

ξ2fH1dv

)
= 0,

∂

∂x

(∫
R3

v

ξv2fH1dv

)
= 0.

The first equation can be written by using the relation (3.8)

∂

∂x
(nH0u1,H1) = 0.

According to ([19]) by setting

γ2 =
16

15π
1
2

∫
R+

r6A(r) exp(−r2)dr, (3.34)

the third equation writes

nH0u1,H1
∂

∂x
TH0 =

γ2

2
∂

∂x

(
∂

∂x
(TH0)T

1
2

H0

)
. (3.35)

Moreover, multiply (3.25) by ξ, integrate on R3
v, use that uB

1,H1 ≡ 0 leads to

u1,H1 = −γc

√
TH0

pB
H0nH0

∂

∂x
pA

H0, with γc =
4
3

∫
R+

C(r)r4exp(−r2)dr. (3.36)

Resolution of the system (3.27, 3.28, 3.29, 3.30, 3.31).
The system (3.27, 3.28, 3.29, 3.30, 3.31) is first solved for the boundary conditions nA

H0(−1) = 1,
nA

H0(1) = 1, TH0(−1) = 1, TH0(1) = 1 and the constraint on nB
H0 (4.48). For this system,(

TH0, n
A
H0, uH1, n

B
H0

)
=
(
1, 1, 0,

m

2

)
is a constant solution. Next a solution to the system is re-

searched for the boundary conditions (3.32) and the constraint on the mass (4.48) as a perturbation
of this constant solution.
First let us determine TH0. From (3.28) there is a constant θ such that

nH0u1,H1 = θ. (3.37)

So the equation (3.29) can be written by performing the change of unknown T = TH0 − 1,

θT ′ =
γ2

2

(
T ′′(1 + T )

1
2 +

(T ′)2

(1 + T )
1
2

)
.

Denote c = T ′(−1). T is the solution to the Cauchy problem

T ′′ =
2θ
γ2

T ′

(1 + T )
1
2
− (T ′)2

2(1 + T )
.

T (−1) = 0,
T ′(−1) = c. (3.38)

T satisfies the relation

T ′ =
2θ
γ2
T + c

(1 + T )
1
2
. (3.39)

The Cauchy-Lipschitz Theorem garantees that the solution T to the Cauchy problem (3.38) is global
on [−1, 1].

A condition on c is now researched in order to get for all x ∈ [−1, 1], T (x) ≤ τ . For
2θ
γ2

> 0,∫ x

−1

T ′(s)
2θ
γ2
T (s) + c

ds ≤ 2.
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So for all x ∈ [−1, 1], T (x) ≤ c
2θ
γ2

(exp(
4θ
γ2

)− 1) ≤ τ and by choosing c such that

0 < c ≤
τ
2θ
γ2

exp(
4θ
γ2

)−1

, it holds that T ≤ τ . Another condition is next researched on c in order to get for

all x ∈ [−1, 1], T ′(x) ≤ τ . Divide (3.38) by T ′ and integrate on [−1, x] leads to

T ′(x) = c exp
(

2θ
γ2

∫ x

−1

ds

(1 + T )
− 1

2

∫ x

−1

T ′

(1 + T )
ds

)
. (3.40)

As 2θ
γ2
> 0 (3.39) implies that for all x ∈ [−1, 1], T ′(x) > 0. Moreover as∫ x

−1

ds

(1 + T )
≤ 2

and by choosing c such that

0 < c < τ exp(−4θ
γ2

),

it holds that T ′ ≤ τ . The case
2θ
γ2

< 0 is similar.

nA
H0 is next determined. From the equation (3.27) there is a constant α such that

(nA
H0 + nB

H0)TH0 = α. (3.41)

So as for all x ∈ [−1, 1], TH0(x) 6= 0,

nB
H0 =

(
α

TH0
− nA

H0

)
. (3.42)

The equation (3.30) implies that

θ = −5
2
γc

(pA
H0)

′

√
TH0nB

H0

. (3.43)

Then by using (3.41),

(nA
H0)

′ + nA
H0

(T ′H0 − 2
5γc

θ
√
TH0)

TH0
+

2θα
5γc(TH0)

3
2

= 0.

The solution to this equation with the boundary condition nA
H0(−1) = 1 is

nA
H0(x) = 1− 2θα

5

∫ x

−1

1
(TH0)

3
2

exp
(
−
∫ x

y

(
T ′H0 − 2

5TH0θ

TH0
)ds)

)
dy.

The condition nA
H0(1) = 1 + τ gives the following relation between α and θ

α = − τ

2θ
5

∫ 1

−1
1

(TH0)
3
2

exp(−
∫ 1

y
(T ′

H0−
2
5 TH0θ

TH0
)(s)ds)dy

. (3.44)

(4.48) and (3.42) provide another relation between α and θ,

α =
m+ 2∫ 1

−1
dx

TH0
+ 2θ

5

∫ 1

−1

∫ x

−1
1

(TH0)
3
2

exp(
∫ x

y

T ′
H0−

2
5 TH0θ

TH0
ds)dydx

. (3.45)

So α and θ are determined.
An estimate on θ is next researched by supposing that θ > 0, the case θ < 0 being analogous. The
relation (3.39) evaluated for x = 1 and T ′ ≤ τ lead to T ′(1) = 2θ

γ2

(
T (1)+c

2+τ

)
≤ τ . So

0 ≤ 2θ
γ2

≤ 2τ. (3.46)
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From the estimate (3.46) applied to the equation (3.43), there is k̃1 ∈ R+ such that |(nA
H0)

′| ≤ k̃1τ .
By differentiating (3.42) there is k̃2 ∈ R+ such that |(nB

H0)
′| ≤ k̃2τ . Finally from (3.30) there is

c1 ∈ R+ such that |u1,H1| ≤ c1τ .

4 Study of the boundary conditions.

In this section we show that fA
H0 and fB

H0 satisfy the boundary conditions (2.3, 2.4, 2.5). For the
Hilbert terms fA

H1, f
B
H1, f

A
H2, f

B
H2, Knudsen layers must be added at each boundary and these layers

are solutions to Milne problems.

4.1 Closure of the system at the 0 order.

Recalling that the boundary conditions for fA are

fA(−1, v) = M−(v), ξ > 0 fA(1, v) = M+(v), ξ < 0

we restrict ourself to the situation where
nII

nI
= 1 + τ, (4.47)

with τ small enough to be determined. From (2.6) the following constraint on the mass of the B
component ∫ 1

−1

nB
H0dx = m (4.48)

is imposed, m being a fixed non negative constant. As nA
H0(−1) = 1, nA

H0(1) = nII

nI
, TA

H0(−1) = 1
and TA

H0(1) = TII

TI
, fA

H0 satisfies 2.3. For fB
H0, since∫

ξ<0

1
(πTH0(−1))

3
2

exp(− v2

TH0(−1)
)dv = 1,

it holds that for ξ > 0,(∫
ξ<0

|ξ|fB
H0(−1, v)dv

)
exp(− v2

TH0(−1)
) = fB

H0(−1, v).

The same result being also satisfied in 1, the boundary conditions for fB
H0 are of diffuse reflection

type. Hence fA
H0 and fB

H0 satisfy the boundary conditions (2.3, 2.4, 2.5).

4.2 Knudsen layer at first and second orders.

fA
H1 and fB

H1 defined in (3.25) and (3.26) cannot satisfy the boundary conditions
fA

H1(−1, v) = fA
H1(1, v) = 0 and fB

H1(−1, v) = fB
H1(1, v) = 0. Then Knudsen terms must be added at

each boundary. By setting x′ = 1+x
ε , x′′ = 1−x

ε , f1, fA
1 and fB

1 are written as follows

f1(x, v) = fH1(x, v) + f−K1(x
′, v) + f+

K1(x
′ ′, v), (4.49)

fA
1 (x, v) = fA

H1(x, v) + fA−
K1 (x′, v) + fA+

K1 (x′ ′, v), (4.50)
fB
1 (x, v) = fB

H1(x, v) + fB−
K1 (x′, v) + fB+

K1 (x′ ′, v). (4.51)

From here denote M̃ = 1
nA

H0
fA

H0 i.e

M̃ =
1

(πTH0)
3
2

exp(− v2

TH0
), MA = nA

H0M̃ and MB = nB
H0M̃.

Consider as in ([2]), the space H with the scalar product

〈f, g〉 = 〈
(
fA, fB

)
;
(
gA, gB

)
〉

= nA
H0

∫
R3
fA(v)gA(v)M̃(v)dv + nB

H0

∫
R3
fB(v)gB(v)M̃(v)dv

is introduced. Denote by ‖ ‖H the associated norm.
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Proposition 1. There are boundary conditions in x = −1 for the first order Hibert terms (fA
H1, f

B
H1)

defined by (3.25, 3.26) and Knudsen terms (fA−
K1 (x′, v), fB−

K1 (x′, v)) solutions to

ξ
∂

∂x′
fA−

K1 (x′, v) = Q(MA(−1, v), f−K1(x
′, v)) +Q(fA−

K1 (x′, v),M(−1, v)),

ξ
∂

∂x′
fB−

K1 (x′, v) = Q(MB(−1, v)f−K1(x
′, v)) +Q(fB−

K1 (x′, v),M(−1, v)), (4.52)

where M = MA +MB and f−K1 = fA−
K1 + fB−

K1 .
Moreover the following asymptotic properties hold. fA−

K1 and fB−
K1 write as

fA−
K1 (x′, v) = MA(−1, v)bA−1 (x′, v), fB−

K1 (x′, v) = MB(−1, v)bB−1 (x′, v),

where for x′ tending to infinity bA−1 and bB−1 converge exponentially to 0 as

‖(1 + |v|) 1
2 bA−1 (x′, v)‖H ≤ exp(−σx′), ‖(1 + |v|) 1

2 bB−1 (x′, v)‖H ≤ exp(−σx′), (4.53)

a.e x′ > 0 with σ < 2ν1 where ν1 is defined in (5.33).

Proof. (Proposition 1.)
We adapt here the method developped for a one component gas in [6, 5] to the situation of a two
component gas. From [2] there are

(
bA−1 , bB−1

)
and

(
dA−
1 , dB−

1

)
unique solutions to the Milne problems

ξ
∂

∂x′
bA−1 (x′, v) =

1
MA(−1, v)

(
Q(MA(−1, v)M(−1, v)b−1 (x′, v))

+ Q(MA(−1, v)bA−1 (x′, v),M(−1, v))
)
,

ξ
∂

∂x′
bB−1 (x′, v) =

1
MB(−1, v)

(
Q(MB(−1, v),M(−1, v)b−1 (x′, v))

+ Q(MB(−1, v)bB−1 (x′, v),M(−1, v))
)
,

bA−1 (0, v) = −ΨA
H1(−1, v), ξ > 0, bB1 (0, v) = −ΨB

H1(−1, v), ξ > 0,∫
R3
ξMA(−1, v)bA−1 (x′, v)dv = 0,

∫
R3
ξMB(−1, v)bB−1 (x′, v)dv = 0

and

ξ
∂

∂x′
dA−
1 (x′, v) =

1
MA(−1, v)

(
Q(MA(−1, v),M(−1, v)d−1 (x′, v))

+ Q(MA(−1, v)dA−
1 (x′, v),M(−1, v))

)
,

ξ
∂

∂x′
dB−
1 (x′, v) =

1
MB(−1, v)

(
Q(MB(−1, v),M(−1, v)d−1 (x′, v))

+ Q(MB(−1, v)dB−
1 (x′, v),M(−1, v))

)
,

dA−
1 (0, v) = 0, ξ > 0, dB−

1 (0, v) = 0, ξ > 0,∫
R3
ξMA(−1, v)dA−

1 (x′, v)dv = 1,
∫

R3
ξMB(−1, v)dB−

1 (x′, v)dv = 1,

with b−1 = bA−1 + bB−1 and d−1 = dA−
1 + dB−

1 . Moreover

lim
x′→+∞

bA−1 (x′, v) = bA−1,∞,0 + b−1,∞,4v
2, lim

x′→+∞
bB−1 (x′, v) = bB−1,∞,0 + b−1,∞,4v

2,

lim
x′→+∞

dA−
1 (x′, v) = dA−

1,∞,0 +
1
2
ξ + d−1,∞,4v

2, lim
x′→+∞

dB−
1 (x′, v) = dB−

1,∞,0 +
1
2
ξ + d−1,∞,4v

2,

where bA−1,∞,0, b
B−
1,∞,0, b

−
1,∞,4, d

A−
1,∞,0, d

B−
1,∞,0 and d−1,∞,4 are constants. The boundary conditions at −1

for pA
H1 and TH1 are chosen such that

TH1(−1) = 2u1,H1(−1)d−1,∞,4 + b−1,∞,4, nA
H1(−1) =

3
2
TH1(−1) + 2u1,H1(−1)dA−

1,∞,0 + bA−1,∞,0.
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So (fA−
K1 , f

B−
K1 ) defined by

fA−
K1 (x, v) =

(
2u1,H1(−1)(dA−

1 (x′, v)− dA+
1,∞,0 − ξ − d+

1,∞,0v
2)

+ (bA−1 (x′, v)− bA−1,∞,0 − b−1,∞,4v
2)
)
fA

H0,

fB−
K1 (x, v) =

(
2u1,H1(−1)(dB−

1 (x′, v)− dB−
1,∞,0 − ξ − d−1,∞,4v

2)

+ (bB−1 (x′, v)− bB−1,∞,0 − b−1,∞,4v
2)
)
fB

H0,

satisfy (4.52) and (4.53) ([2]).

In order to satisfy the boundary conditions in x = 1, we proceed as in x = −1. pA
H1(1) and TH1(1)

are chosen as

TH1(1) =
(
TII

TI

)(
2u1,H1(1)d+

1,∞,4 +
(
TII

TI

)
b+1,∞,4

)
, (4.54)

nA
H1(1) =

(
nII

nI

)(
3
2
TH1(1) + 2u1,H1(1)dA+

1,∞,0 +
(
TII

TI

)
bA+
1,∞,0

)
(4.55)

and fA+
K1 , fB+

K1 are defined by

fA+
K1 (x, v) =

(
2u1,H1(1)(dA−

1 (x′′, v)− dA+
1,∞,0 − ξ − d+

1,∞,0v
2)

+ (bA−1 (x′′, v)− bA−1,∞,0 − b−1,∞,4v
2)
)
fA

H0,

fB+
K1 (x, v) =

(
2u1,H1(−1)(dB−

1 (x′, v)− dB−
1,∞,0 − ξ − d−1,∞,4v

2)

+ (bB−1 (x′′, v)− bB−1,∞,0 − b−1,∞,4v
2)
)
fB

H0.

From here we set

γA−
1,ε = fA−

K1 (
2
ε
, v), γA+

1,ε = fA+
K1 (

2
ε
, v), γB−

1,ε = fB−
K1 (

2
ε
, v),

γB+
1,ε = fB+

K1 (
2
ε
, v), γ−1,ε = γA−

1,ε + γB−
1,ε , γ

+
1,ε = γA+

1,ε + γB+
1,ε . (4.56)

As for the first order, fH2, fA
H2 and fB

H2 can be defined as

fH2 = fH0(c0 + c1ξ + c4v
2 + ψH2), fA

H2 = fH0(cA0 + c1ξ + c4v
2 + ψH2 + ϕA),

fB
H2 = fH0(cB0 + c1ξ + c4v

2 + ψH2 + ϕB), (4.57)

with

c0 =
pH2

pH0
− 5

2
(
TA

H2

TH0
+
nH1

nH0

TH1

TH0
)−

u2
1,H1

TH0
, c1 = 2(

u1,H2

TH0
+
nH1

nH0

u1,H1

TH0
),

c4 =
1
TH0

(TH2

TH0
+
nH1TH1

nH0TH0
+

2
3
u2

H1

TH0

)
.

As for the first order, Knudsen terms fA−
K2 , fB−

K2 , fA+
K2 , fB+

K2 must be added to the Hilbert terms fA
H2

and fB
H2 in order to satisfy the boundary conditions fA

2 (−1, v) = fA
2 (1, v) = fB

2 (−1, v) = fB
2 (1, v) = 0.

The macroscopic quantities nA
H1, n

B
H1, T

A
H1, T

B
H1, u

A
1,H1, u

B
1,H1 are solutions to a fluid system which

can be solved by reasonning as for the proof of Theorem 3.1. It can be also shown that |TH1| ≤ cτ .
Analogously to (4.56), set

γA−
2,ε = fA+

K2 (
2
ε
, v), γA+

2,ε = fA+
K2 (

2
ε
, v), γB−

2,ε = fB−
K2 (

2
ε
, v),

γB+
2,ε = fB+

K2 (
2
ε
, v), γ−2,ε = γA−

2,ε + γB−
2,ε , γ

+
2,ε = γA+

2,ε + γB+
2,ε . (4.58)

and

∆−M =
M −M(−1, v)

ε
, ∆−MA =

MA −MA(−1, v)
ε

, ∆−MB =
MB −MB(−1, v)

ε

∆+M =
M −M(1, v)

ε
, ∆+MA =

MA −MA(1, v)
ε

, ∆+MB =
MB −MB(1, v)

ε
.
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5 Study of the rest term.

In this section we first show that the rest term of the Hilbert expansion is the solution of a non linear
system and we consider a linearized problem. Next we have to extend the method developped in
[13, 14] for a one component gas the situation of a two component gas satisfying different boundary
conditions. The rest term of the expansion is then decomposed into a low and a high velocity part
solutions to a system of equations.

5.1 The rest term.

In ([9]) (resp.[13, 14]), the authors solve the time dependant (resp. stationary) Boltzmann equation
by splitting the distribution function into an asymptotic expansion and a rest term and by controling
the rest term. In the present case, the proof developped in [13, 14] is adapted to the situation of a
two component gas. The rest term ε3fA

R (resp. ε3fB
R ) for fA (resp. fB) is defined as the difference

of fA (resp. fB) and its asymptotic expansion as

fA(x, v) = MA + ε
(
fA

H1(x, v) + fA−
K1 (

1 + x

ε
, v) + fA+

K1 (
1− x

ε
, v)
)

+ ε2
(
fA

H2(x, v) + fA−
K2 (

1 + x

ε
, v) + fA+

K2 (
1− x

ε
, v)
)

+ ε3fA
R (x, v), (5.1)

fB(x, v) = MB + ε

(
fB

H1(x, v) + fB−
K1 (

1 + x

ε
, v) + fB+

K1 (
1− x

ε
, v)
)

+ ε2
(
fB

H2(x, v) + fB−
K2 (

1 + x

ε
, v) + fB+

K2 (
1− x

ε
, v)
)

+ ε3fB
R (x, v). (5.2)

By plugging the expressions (5.1, 5.2) into (1.1) and by taking (4.52, 3.22, 3.23) into account, (fA
R , f

B
R )

has to satisfy the system

ξ
∂

∂x
fA

R =
1
ε

(
Q(MA, fR) +Q(fA

R ,M)
)

+Q(fA
1 + εfA

2 , fR)

+ Q(fA
R , f1 + εf2) + ε2Q(fA

R , fR) + ε3A,

ξ
∂

∂x
fB

R =
1
ε

(
Q(MB , fR) +Q(fB

R ,M)
)

+Q(fB
1 + εfB

2 , fR)

+ Q(fB
R , f1 + εf2) + ε2Q(fB

R , fR) + ε3B,

with fR = fA
R + fB

R and

A =
1
ε

(
− ξ

∂

∂x
fA

H2 +Q(fA
1 , f2) +Q(fA

2 , f1) + εQ(fA
2 , f2)

+ Q(fA−
K2 (x′, v),∆+M) +Q(∆+MA, f−K2(x

′, v))
+ Q(∆−M,fA+

K2 (x′′, v)) +Q(∆−MA, f+
K2(x

′′, v))

+
1
ε

(
Q(fA+

K1 (x′′, v), f−K1(x
′, v)) +Q(fA−

K1 (x′, v), f+
K1(x

′′, v))
))

, (5.3)

B =
1
ε

(
− ξ

∂

∂x
fB

H2 +Q(fB
1 , f2) +Q(fB

2 , f1) + εQ(fB
2 , f2)

+
1
ε

(
Q(fB−

K2 (x′, v),∆+M) +Q(∆+MB , f−K2(x
′, v))

+ Q(fB+
K2 (x′′, v),∆−M) +Q(∆−MB , f+

K2(x
′′, v))

))
+

1
ε

(
Q(fB+

K1 (x′′, v), f−K1(x
′, v)) +Q(fB−

K1 (x′, v), f+
K1(x

′′, v))
))

. (5.4)
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Recall that the quantities f1, fA
1 , fB

1 , f2, fA
2 , fB

2 are defined by (5.32, 4.50, 4.51). On the other hand
fA

R and fB
R satisfy the following boundary conditions

fA
R (−1, v) = −

γA,−
1,ε + εγA,−

2,ε

ε2
, ξ > 0, fA

R (1, v) = −
γA,+
1,ε + εγA,+

2,ε

ε2
, ξ < 0,

fB
R (−1, v) = α−

RBM−(v)−
γB,−
1,ε + εγB,−

2,ε

ε2
, ξ > 0,

fB
R (1, v) = α+

RBM+(v)−
γB,+
1,ε + εγB,+

2,ε

ε2
, ξ < 0,

where α−
RB and α+

RB are given by (5.11) and (5.13). Recall that the terms γ−1,ε, γ
+
1,ε, γ

A,−
1,ε , γA,+

1,ε ,
γB,−
1,ε , γB,+

1,ε , γ−2,ε, γ
+
2,ε, γ

A,−
2,ε , γA,+

2,ε , γB,−
2,ε , γB,+

2,ε are defined by (4.56, 4.58).
In order to simplify the study of fB

R , the unknown is changed as in [13] by using the decomposition:
L2 = RMB ⊕ (RMB)⊥. So for all fB

R ∈ L2, there is λ ∈ R such that fB
R = λMB + RB . As in [14],

the condition ∫ 1

−1

∫
R3
fB

R dvdx = 0

determines
λ = − 1

m

∫
RBdxdv. (5.5)

For all function R(x, v), I(R) is defined by

I(R) = − 1
m

∫
Rdxdv.

By using the change of unknown fA
R = RA, fB

R = I(RB)MB +RB , (RA, RB) solves the system

ξ
∂

∂x
RA =

1
ε

(
Q(MA, R) +Q(RA,M)

)
+NA(R) + ÑA∗(RA, RB)

+ ε2
(
Q(RA, R) + I(RB)Q(RA,MB) + εA

)
, (5.6)

ξ
∂

∂x
RB =

1
ε

(
Q(MB , R) +Q(RB ,M)

)
+NB(R,RB)

+ ε2
(
I(RB)

(
Q(MB , R) +Q(RB ,MB)

)
+Q(RB , R) + εB

)
(5.7)

where R = RA +RB

NA(R) = Q(fA
1 + εfA

2 , R), (5.8)

ÑA∗(RA, RB) = Q(RA, f1 + εf2) + I(RB)Q(fA
1 + εfA

2 ,M
B), (5.9)

NB(RB , R) = Q(fB
1 + εfB

2 , R) +Q(RB , f1 + εf2)

+ I(RB)
[
Q(fB

1 + εfB
2 ,M

B) +Q(MB , f1 + εf2)− ξ
∂

∂x
MB

]
. (5.10)

Hence we choose
α−

RB = I(RB)
√
π (5.11)

and the boundary conditions for RA and RB write

RA(−1, v) = ζA−, ξ > 0, RA(1, v) = ζA+, ξ < 0,
RB(−1, v) = ζB−, ξ > 0, RB(1, v) = βRBM+ + ζB+, ξ < 0, (5.12)

with

βRB = α+
RB − α−

RB

(
TII

TI

) 1
2
(
nII

nI

)
, (5.13)
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ζA− = −
γA−
1,ε + εγA−

2,ε

ε2
, ζA+ = −

γA+
1,ε + εγB+

2,ε

ε2
,

ζB− = −
γB−
1,ε + εγB−

2,ε

ε2
, ζB+ = −

γB+
1,ε + εγB+

2,ε

ε2
.

As in ([14]), the condition
∫

R3 ξR
B(1, v)dv = 0 determines βRB =

∫
ξ>0

ξRB(1, v)dv+
∫

ξ<0
ξζ+dv and

so α+
RB .

5.2 A linearized problem.

The solutions (RA, RB) to the system (5.6, 5.7) are constructed as the respective limits to a sequence
of iterations. First, the following linearized problems are considered

ξ
∂

∂x
RA =

1
ε

(
Q(MA, R) +Q(RA,M)

)
+NA(R) + ÑA∗(RA, RB) + ε2DA, (5.14)

ξ
∂

∂x
RB =

1
ε

(
Q(MB , R) +Q(RB ,M)

)
+NB(RB , R) + ε2DB , (5.15)

satisfying the boundary conditions (5.12). Recall that the quantitiesNA(R), ÑA∗(RA, RB),NB(RB , R)
are defined respectively by (5.8, 5.9, 5.10). The terms R, RA and RB will be estimated terms of
D,DA, DB and of the boundary conditions (5.12). The nonlinear case is next considered.

5.3 Decomposition of the rest term.

The natural way to deal with the linearized Boltzmann equation is to change the operator f 7→
Q(M,f) into the operator f 7→ − 2

MQ(M,M− 1
2 f). But when the Maxwellian is not homogeneous,

this procedure produces the term ξM− 1
2 ξ ∂

∂x (M
1
2 f) which behaves like |v|3f and has no sign. So as

in [9, 13, 14, 11], R, RA and RB are decomposed into a low and a high velocity part as follows

R =
√
Mg +

√
M∗h, RA =

√
MAgA +

√
M∗h

A, RB =
√
MBgB +

√
M∗h

B , (5.16)

where M∗ is the global Maxwellian M∗(v) = 1

(πT∗)
3
2

exp(− v2

T∗
), with T∗ > supx∈[−1,1] TH0(x). Hence

there is c > 0 such that for all (x, v) ∈ [−1, 1] × R3, M∗ ≥ cM , M∗ ≥ cMA, M∗ ≥ cMB . Since
R = RA +RB ,

g =

√
nA

√
n
gA +

√
nB

√
n
gB , h = hA + hB . (5.17)

The following norm is considered

‖f‖ =

(∫
[−1,1]×R3

(1 + |v|)f2(x, v)dxdv

) 1
2

. (5.18)

This norm is extended to the boundary terms hA
−, hA

+, hA
− and hA

+ depending only on the v variable.
As basis for the kernel of the linearized Boltzmann operator, we take ψ0 =

√
M , ψ1 = ξ

√
M and

ψ4 = (v2− 3
2T )

√
M . g is next decomposed into its hydrodynamical part ĝ+g1 et non hydrodynamical

part g. ĝ writes

ĝ = p0(x)ψ0 + p4(x)ψ4. (5.19)

For α ∈ {A,B} define

ψα
0 =

√
Mα, ψα

1 = ξ
√
Mα and ψα

4 = (v2 − 3
2
T )
√
Mα.

(gA, gB) is split into its hydrodynamical part (ĝA + gA
1 , ĝ

B + gB
1 ) and its non hydrodynamical part

(gA, gB). ĝA and ĝB are decomposed into

ĝA = pA
0 ψ

A
0 + pA

4 ψ
A
4 , ĝB = pB

0 ψ
B
0 + pB

4 ψ
B
4 (5.20)
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and

gA
1 = pA

1 ψ
A
1 , gB

1 = pB
1 ψ

B
1 . (5.21)

Remark 2. From the expression of the kernel of the linearized Boltzmann equation for a two com-
ponent gas ([2]), pA

1 = pB
1 and pA

4 = pB
4 . These two equalities are crucial for the proof of Proposition

1.

By uniqueness of the decomposition of g,

ĝ =

√
nA

√
n
ĝA +

√
nB

√
n
ĝB , g1 =

√
nA

√
n
gA
1 +

√
nB

√
n
gB
1 , g =

√
nA

√
n
gA +

√
nB

√
n
gB .

The couples (gA, hA) and (gB , hB) are defined as the solutions to the systems

ξ
∂

∂x
gA + µAĝA =

1
ε

1√
MA

(Q(
√
MAgA,M) +Q(MA,

√
Mg))

+
1
ε
χγσ

−1
A

(
KA
∗ (h) +K1

∗(h
A)
)

+ L1
A(ĝA, ĝ) + L̃1

A(ĝB), (5.22)

ξ
∂

∂x
hA + µAσA(gA + gA

1 ) =
1
ε
χγK

A
∗ (h) +

1
ε
(−ν + χγK

1
∗)h

A

+ NA∗(σ(g1 + g) + h)

+ ÑA
∗ (σA(gA + gA

1 ) + hA, (σB(gB + gB
1 ) + hB))

+ ε2dA. (5.23)

and

ξ
∂

∂x
gB + µB ĝB =

1
ε

1√
MB

(Q(
√
MBgB ,M) +Q(MB ,

√
Mg))

+
1
ε
χγσ

−1
B

(
KB
∗ (h) +K1

∗(h
B)
)

+ L1
B(ĝB , ĝ) (5.24)

ξ
∂

∂x
hB + µBσB(gB + gB

1 ) =
1
ε
χγK

B
∗ (h) +

1
ε
(−ν + χγK

1
∗)h

B +NB∗(σ(g + g1) + h)

+ ÑB
∗ (σB(gB + gB

1 ) + hB) + ε2dB , (5.25)

where dA = M
− 1

2
∗ DA, dB = M

− 1
2

∗ DB ,

χγ(v) = 1, for |v| ≤ γ, χγ(v) = 0, for |v| ≥ γ, and χγ = 1− χγ ,

KA
∗ (f) =

1√
M∗

Q(MA,
√
M∗f), KB

∗ (f) =
1√
M∗

Q(MB ,
√
M∗f),

L1
B(ĝ, ĝB) =

1√
MB

(Q(fB
1 + εfB

2 ,
√
Mĝ) +Q(

√
MB ĝB , f1 + εf2))

− 1
m

1√
MB

( ∫ √
MB ĝBdvdx

)
(Q(fB

1 + εfB
2 ,M

B)

+ Q(MB , f1 + εf2)− ξ
∂

∂x
MB), (5.26)

L1
A(ĝ, ĝB) =

1√
MA

(
Q(
√
MAĝA, f1 + εf2) +Q(fA

1 + εfA
2 ,
√
Mĝ)

)
, (5.27)

L̃1
A(ĝB) = − 1

m

1√
MA

Q(fA
1 + εfA

2 ,M
B)
( ∫ √

MB ĝBdvdx
)
, (5.28)
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NA∗(f) =
1√
M∗

Q(fA
1 + εfA

2 ,
√
M∗f), NB∗(f) =

1√
M∗

Q(fB
1 + εfB

2 ,
√
M∗f), (5.29)

ÑA
∗ (fA, fB) =

1√
M∗

Q(
√
M∗f

A, f1 + εf2)

− 1
m

1√
M∗

Q(fA
1 + εfA

2 ,M
B)
∫

R3

∫ 1

−1

√
M∗f

Bdvdx, (5.30)

ÑB
∗ (fB) =

1√
M∗

Q(
√
M∗f

B , f1 + εf2)

− 1
m

(
∫

R3

∫ 1

−1

√
M∗f

Bdvdx)
(
Q(fB

1 + εfB
2 ,M

B)

+ Q(MB , f1 + εf2)− ξ
∂

∂x
MB

)
(5.31)

and Q(M,
√
M∗h

A) is decomposed into

1√
M∗

Q(M,
√
M∗h

A) = (−ν +K1
∗)h

A, (5.32)

where ν, called collision frequency is defined by

ν(x, v) =
∫

R3×S2
〈v∗ − v, ω〉M(x, v∗)dv∗dx.

Remark 3. In the hard-sphere case, there are two non negative constants ν0 and ν1 such that

ν0(1 + |v|) ≤ ν(x, v) ≤ ν1(1 + |v|). (5.33)

Moreover gA, hA, gB , hB satisfy the boundary conditions

gA(−1, v) = 0, ξ > 0, gA(1, v) = 0, ξ < 0,

hA(−1, v) = ζA−M
− 1

2
∗ , ξ > 0, hA(1, v) = ζA+M

− 1
2

∗ , ξ < 0 (5.34)

gB(−1, v) = 0, ξ > 0, gB(1, v) = βgBM+(v)(MB)−
1
2 (1, v), ξ < 0,

hB(−1, v) = M
− 1

2
∗ ζB−, ξ > 0, hB(1, v) = M

− 1
2

∗ (βhBM+ + ζB+), ξ < 0, (5.35)

together with the notations [13, 14]

βgB =
∫

ξ>0

ξ
√
MBgB(1, v)dv, βhB =

∫
ξ>0

ξ
√
M∗h

B(1, v)dv +
∫

ξ<0

ξζ+dv, (5.36)

µA = ξ
1
2
∂

∂x
(ln(MA)), σA =

√
MA

M∗
, µB = ξ

1
2
∂

∂x
(ln(MB)), σB =

√
MB

M∗
.

Define also the functions hA
−, hA

+, hB
− and hB

+ as follows

hA
− = M

− 1
2

∗ ζA−, ξ > 0, hA
− = 0, ξ < 0, hA

+ = M
− 1

2
∗ ζA+, ξ < 0, hA

+ = 0, ξ > 0,

hB
− = M

− 1
2

∗ ζB−, ξ > 0, hB
− = 0, ξ < 0, hB

+ = M
− 1

2
∗ ζB+, ξ < 0, hB

+ = 0, ξ > 0.

We shall control the rest term (RA, RB) by using the norm

|f |r,β0 = sup
x∈[−1,1]

sup
v∈R3

(1 + |v|)r|f(x, v)| exp(β0v
2), (5.37)

for a suitable β0. The same notation will be used for the functions depending only on the v variable.
First, the following estimate on the solution (RA, RB) to the linearized problem (5.14, 5.15), with
(5.12) is established.
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Proposition 1. For all r ≥ 3, there are c, ε0, η0 and β0 such that for all ε < ε0 and η < η0, RA

and RB satisfy the estimates

|RA|r,β0 + |RB |r,β0 ≤ cε
1
2 (|DA|r−1,β0 + |DB |r−1,β0)

+
c

ε2
(|ζA−|r,β0 + |ζB−|r,β0 + |ζA+|r,β0 + |ζB+|r,β0).

And Theorem 2.1 can be deduced

5.4 Exponential form.

In order to estimate gA, gB , hA and hB , the exponential form of the equations (5.22, 5.23, 5.24, 5.25)
is used. Consider f solution to

ξ
∂

∂x
f +

1
ε
νf =

1
ε
G, (5.38)

satisfying the boundary conditions

f(−1, v) = f−, ξ > 0, f(1, v) = f+, ξ < 0. (5.39)

From here, we shall use the following notations ([13]),

φx,x′ =
∫ x

x′
ν(z, v)dz,

UεG(x, v) =
1
εξ

∫ x

−1

G(x′, v) exp(−φx,x′

εξ
)dx′, ξ > 0,

UεG(x, v) = − 1
εξ

∫ 1

x

G(x′, v) exp(−φx,x′

εξ
)dx′, ξ < 0,

V −ε f− = χ{ξ>0}f
− exp

(
−φx,−1

εξ

)
and V +

ε f+ = χ{ξ<0}f
+ exp

(
φ1,x

εξ

)
.

From the exponential form of the equation (5.38, 5.39), its solution can be written as
f = V +

ε f+ + V −ε f− + UεG. The equations (5.22, 5.23, 5.24, 5.25) can be written in the form (5.38).
Namely (5.22) writes

ξ
∂

∂x
gA +

ν

ε
gA =

1
ε
(KgA + SA), (5.40)

with

SA =
1√
MA

Q(MA,
√
Mg) + χγσ

−1
A (KA

∗ h+K1
∗h

A)− εµAĝA + εL1
A(ĝ, ĝA) + εL1

A(ĝB). (5.41)

The equation (5.23) can be written

ξ
∂

∂x
hA +

1
ε
νhA =

1
ε
(χγK

1
∗h

A + ZA), (5.42)

with ZA = −εµAσA(gA + gA
1 ) + χγK

A
∗ h+ εNA∗(σ(g + g1) + h)

+ εÑA
∗ (σA(gA + gA

1 ) + hA, σBgB + hB) + ε3dA. (5.43)

The equation (5.24) writes

ξ
∂

∂x
gB +

ν

ε
gB =

1
ε
(KgB + SB), (5.44)

with SB =
1√
MB

Q(
√
Mg,MB) + χγσ

−1
B (KB

∗ h+K1
∗h

B)− εµB ĝB + εL1
B(ĝ, ĝB). (5.45)
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The equation (5.25) writes

ξ
∂

∂x
hB +

1
ε
νhB =

1
ε
(χγK

1
∗h

B + ZB), (5.46)

with

ZB = −εµBσB(gB + gB
1 ) + χγK

B
∗ h+ εNB∗(σ(g + g1) + h)

+ εÑB
∗ (σB(gB + gB

1 ) + hB) + ε3dB . (5.47)

Multiply the equation (5.22) by
√
MA and (5.24) by

√
MB and add the two obtained equations. By

using the relations (5.17), it holds that g and h are solutions to the equations

ξ
∂

∂x
g +

1
ε
νg =

1
ε
(Kg + S), (5.48)

with

S = χγσ
−1K∗h− εµĝ + εL1(ĝB , ĝ), (5.49)

L̃ = K − ν,

L1(ĝB , ĝ) =
1√
M

(Q(f1 + εf2,
√
Mĝ) +Q(

√
Mĝ, f1 + εf2))

− 1
m

1√
M

(∫ √
MB ĝBdvdx

)(
Q(f1 + εf2,M

B) +Q(MB , f1 + εf2)

− ξ
∂

∂x
MB

)
. (5.50)

By adding (3.11) and (3.12) it holds that

ξ
∂

∂x
h+

1
ε
νh =

1
ε
(χγK∗h+ Z), (5.51)

with

Z = −εµσ(g + g1) + εN∗(σ(g + g1) + h, σB(gB + gB
1 ) + hB) + ε3d, (5.52)

N∗(f, fB) =
1√
M∗

(
Q(f1 + εf2,

√
M∗f) +Q(

√
M∗f, f1 + εf2)

)
− 1

m
(
∫ √

M∗f
Bdvdx)

(
Q(f1 + εf2,M

B) +Q(MB , f1 + εf2)− ξ
∂

∂x
MB

)
.

(5.53)

6 Control of the rest term.

In this section, we first control the rest term of the linearized problem in L2 and in L∞ norms. In
[13, 14], the authors consider only a one component gas satisfying boundary conditions of diffuse-
reflection types and uses at a crucial point of the control that the total flux of the solution is zero.
In this paper, we are not in this situation and this difficulty is solved thanks to the structure of the
kernel of the linearized Boltzmann operator for a two component gas (see remarks 2 and 4). At the
end of the section, the rest term of the full nonlinear problem is obtained as a limit of a sequence of
rest terms of linearized problems (Proposition 6.1) and Theorem 2.1 can be deduced.
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6.1 L2 estimates on the rest term.

Recall that the norm ‖ ‖ had been defined in (5.18).

Lemma 6.1. For τ defined in Theorem 3.1, the operators L1, N∗, L1
B, L1

A, L̃1
A, NA∗, NB∗, ÑA

∗ , ÑB
∗

defined by (5.50, 5.53, 5.26, 5.27), 5.28, 5.29, 5.30, 5.31) satisfy the inequalities

‖(1 + |v|)−1L1(f, fB)‖ ≤ τ(‖f‖+ ‖fB‖), ‖(1 + |v|)−1L1
B(f, fB)‖ ≤ τ(‖f‖+ ‖fB‖),

‖(1 + |v|)−1L1
A(f, fA)‖ ≤ τ(‖f‖+ ‖fA‖), ‖(1 + |v|)−1L̃1

A(fB)‖ ≤ τ‖fB‖,
‖(1 + |v|)−1N∗(f, fB)‖ ≤ τ(‖f‖+ ‖fB‖), ‖(1 + |v|)−1NA∗(f)‖ ≤ τ‖f‖,

‖(1 + |v|)−1NB∗(f)‖ ≤ τ‖f‖, ‖(1 + |v|)−1ÑA
∗ (fA, fB)‖ ≤ τ(‖fA‖+ ‖fB‖),
‖(1 + |v|)−1ÑB

∗ (fB)‖ ≤ τ‖fB‖.

Proof. (First inequality of Lemma 6.1).
As for all functions (ϕ,ψ) such that (1 + |v|) 1

2ϕ and (1 + |v|) 1
2ψ ∈ L2

∫
R3

|Q(
√
Mϕ,

√
Mψ)|2

(1 + |v|)M
dv ≤

∫
R3

(1 + |v|)|ϕ|2dv
∫

R3
(1 + |v|)|ψ|2dv,

it holds that

‖(1 + |v|)−1L1(f, fB)‖ ≤ (‖f1‖+ ε‖f2‖)(‖f‖+ ‖fB‖) + c‖ξ ∂
∂x
M‖ ‖fB‖.

Lemma ?? gives that there is c > 0 such that ‖ξ ∂
∂xM‖ ≤ cτ . In order to estimate ‖f1‖, f1 is

decomposed as in (4.49). First let us show that

‖fH1‖ ≤ cτ. (6.1)

Let L be defined by

L(φ) = Q(fH0φ, fH0) +Q(fH0, fH0φ)

From (3.17), the function φH1 defined by fH1 = φH1fH0 is solution to the equation

L(φH1) = ξ
∂

∂x
M.

and the restriction of L to the orthogonal of its kernel is invertible and such that ‖|L−1‖| = c. So
from ([13]), there is c > 0 such that

‖L−1(ξ
∂

∂x
M)‖ ≤ c‖ξ ∂

∂x
M‖.

So by using Theorem 3.1, the non hydrodynamical part of φH1 denoted by ψH1 satisfies
‖ψH1‖ ≤ τ . According to (3.21), the hydrodynamical part of φH1 equal to(

nH1

nH0
+ 2

u1,H1

TH0
ξ + (

v2

TH0
− 3

2
)
TH1

TH0

)
.

By using Lemma ??, we get for all x ∈ [−1, 1], |u1,H1
TH0

(x)| ≤ cτ , |nH1
nH0

(x)| ≤ cτ and |TH1
TH0

(x)| ≤ cτ . So
‖φH1‖ ≤ cτ and fH1 satisfies (6.1). Recall that f−K1 writes

f−K1(x
′, v) =

(
2u1,H1(−1)(d−1 (x′, v)− d−1,∞,0 − ξ − d−1,∞,4v

2) + b−1 (x′, v)− b−1,∞,0 − b−1,∞,4v
2

)
fH0.

Let us show that there is c > 0, such that for all x′ ∈ [0, 2
ε ] and all v ∈ R3,

‖f−K1(x
′, v)‖ ≤ cτ. (6.2)
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From ([7]), together with d−1 (0, v) = 0 for ξ > 0 and
∫

R3 ξd
−
1 (0, v)dv = 1, it holds that |d−1 (x′, v)| ≤

(ν0 − γ)e−2γx′ and |d−1,∞,0|+ |d−1,∞,4| ≤ 1 for all γ ∈]0, ν0[. As |u1,H1(−1)| ≤ τ ,

‖2u1,H1(−1)
(
d−1 (x′, v)− d−1,∞,0 − ξ − d−1,∞,4

)
fH0‖ ≤ cτ.

Also from ([7]) together with b−1 (0, v) = ψH1(0, v) for ξ > 0 and
∫

R3 ξd
−
1 (0, v)dv = 0, it comes that

|b−1 (x′, v)| ≤ τ(ν0−γ)e−2γx′ and |b−1,∞,0|+|b
−
1,∞,4| ≤ τ , for all γ ∈]0, ν0[. So (6.2) follows. Analogously

the same estimate is obtained on f+
K1.

Reasonning in the same way, we show that ‖f2‖ is bounded.

Next we will focus on the control of (RA, RB), solution to the linearized problem (5.14, 5.15) in the
norm ‖ ‖.

Proposition 1. There are ε0 > 0, τ0 and c > 0 such that for all ε < ε0 and τ < τ0, the solutions to
(5.22, 5.23, 5.24, 5.25 5.34, 5.35) satisfy the estimates

‖hA‖+ ‖hB‖ ≤ cε3(‖ dA

(1 + |v|)
‖+ ‖ dB

(1 + |v|)
‖)

+ c
√
ε
(
‖hA
−‖+ ‖hA

+‖+ ‖hB
−‖+ ‖hB

+‖
)
, (6.3)

‖ĝA‖+ ‖ĝB‖ ≤ cε(‖ dA

(1 + |v|)
‖+ ‖ dB

(1 + |v|)
‖)

+
c

ε
3
2

(
‖hA
−‖+ ‖hA

+‖+ ‖hB
−‖+ ‖hB

+‖
)
, (6.4)

‖gA
1 ‖+ ‖gB

1 ‖+ ‖gA‖+ ‖gB‖ ≤ cε2(‖ dA

(1 + |v|)
‖+ ‖ dB

(1 + |v|)
‖)

+
c√
ε

(
‖hA
−‖+ ‖hA

+‖+ ‖hB
−‖+ ‖hB

+‖
)
. (6.5)

Remark 4. In the situation of a one component gas ([13, 14]) with boundary conditions of diffuse-
reflection type , the terms g1 has the same order in ε as the high velocity part h. This fact will be
explained during the proof of Proposition 1 for the control of gA

1 and gB
1 . This comes from the fact

that for a one component gas, the flux
∫
ξgdv is zero whereas for a two component gas,

∫
R3 ξg

Adv

and
∫

R3 ξg
Bdv are not zero.

Proof. (Proposition 1.)
First we will obtain a bound on ‖gA‖, ‖gB‖, ‖gA

1 ‖, ‖gB
1 ‖, ‖ĝA‖ and ‖ĝB‖ in terms of ‖hA‖ and ‖hB‖

and after we will control ‖hA‖ and ‖hB‖. Let us begin by ‖gA‖ and ‖gB‖. Let Λ be defined by

Λ : (gA, gB) 7→ (L1(gA, gB),L2(gA, gB)),

with

L1(gA, gB) =
1√
MA

Q(
√
MAgA,M) +

1√
MA

Q(MA,
√
MAgA +

√
MBgB),

L2(gA, gB) =
1√
MB

Q(
√
MBgB ,M) +

1√
MB

Q(MB ,
√
MAgA +

√
MBgB).

Let the scalar product 〈., .〉 be defined by

〈(fA, fB), (gA, gB)〉 =
∫

R3
fA(v)gA(v)dv +

∫
R3
fB(v)gB(v)dv.
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Multiply (5.22) by εgA, (5.24) by εgB , add the two obtained equation and integrate on [−1, 1]× R3,

ε(IgA + IgB )−
∫

R3

∫ 1

−1

L1(gA, gB)gAdvdx−
∫

R3

∫ 1

−1

L2(gA, gB)gBdvdx

= ε

∫
R3

∫ 1

−1

(
µA(ĝA)2 + µB(ĝB)2

)
dxdv + ε

∫
R3

∫ 1

−1

(
µAĝAgA + µB ĝBgB

)
dxdv

+
∫

R3

∫ 1

−1

χγσ
−1
A (K1

∗h
A +KA

∗ h)g
Advdx+

∫
R3

∫ 1

−1

χγσ
−1
B (K1

∗h
B +KB

∗ h)g
Bdvdx

+
∫

R3

∫ 1

−1

ε(L̃1
A(ĝB) + L1

A(ĝ, ĝA))gAdvdx+
∫

R3

∫ 1

−1

εL1
B(ĝ, ĝB)gBdvdx,

with for α ∈ {A,B},

Igα =
∫

R3
ξ(gα(1, v))2dv −

∫
R3
ξ(gα(−1, v))2dv.

From (5.20), it follows that µA(ĝA)2 writes as the sum of the terms

1
2
ξ
∂

∂x
(ln(MA))pA

i (x)pA
j (x)ψA

i (v)ψA
j (v), (i, j) ∈ {0, 4}2.

These functions being odd in the ξ variable
∫

R3 µ
A(ĝA)2dv = 0. Analogously∫

R3 µ
B(ĝB)2dv = 0. From the expression of µA and µB and Lemma 6.1, it holds that∣∣∣∣∫

R3

∫ 1

−1

(
µAĝAgA + µB ĝBgB

)
dxdv

∣∣∣∣ ≤ cτ(‖ĝA‖‖gA‖+ ‖ĝB‖‖gB‖).

Recall the spectral inequality for a two component gas ([2])

〈Λ(gA, gB), (gA, gB)〉 ≤ −(γ1‖gA‖2 + γ1‖gB‖2).

Thus (6.6) becomes

ε(IgA + IgB ) +
γ1

2
(‖gA‖2 + ‖gB‖2)

≤ cτε(‖ĝA‖‖gA‖+ ‖ĝB‖‖gB‖) + |
∫

R3

∫ 1

−1

χγσ
−1
A (K1

∗h
A +KA

∗ h)g
Advdx|

+ |
∫

R3

∫ 1

−1

χγσ
−1
B (K1

∗h
B +KB

∗ h)g
Bdvdx|

+ |
∫

R3
L1

A(ĝ, ĝA) + L̃1
A(ĝB))gAdv|+ |

∫
R3
L1

B(ĝ, ĝB)gBdv|. (6.6)

By using Remark 2, we obtain the relation∫
R3
L1

A(ĝ, ĝA) + L̃1
A(ĝB))(gA

1 + ĝA)dv +
∫

R3
L1

B(ĝ, ĝB)(gB
1 + ĝB)dv

=
1
m

(∫ √
MB ĝBdvdx

)(∫
R3
gB
1 (ξ

∂

∂x
MB)dv

)
,

So (6.6) can be simplified into

ε(IgA + IgB ) +
γ1

2
(‖gA‖2 + ‖gB‖2)

≤ cτε(‖ĝA‖‖gA‖+ ‖ĝB‖‖gB‖) + |
∫

R3

∫ 1

−1

χγσ
−1
A (K1

∗h
A +KA

∗ h)g
Advdx|

+|
∫

R3

∫ 1

−1

χγσ
−1
B (K1

∗h
B +KB

∗ h)g
Bdvdx|

+ cτε
(
‖ĝB‖‖gB

1 ‖+ (‖ĝA‖+ ‖ĝB‖)(‖gA‖+ ‖gB‖)
)
. (6.7)
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In order to deal with the terms τε
(
‖ĝB‖‖gB

1 ‖+ (‖ĝA‖+ ‖ĝB‖)(‖gA‖+ ‖gB‖)
)

and
cτε(‖ĝA‖‖gA‖+ ‖ĝB‖‖gB‖), the following property is used (for all σ > 0),

|ab| ≤ σa2 +
b2

4σ
. (6.8)

So for all σ > 0,

τε
(
‖ĝB‖‖gB

1 ‖+ (‖ĝA‖+ ‖ĝB‖)(‖gA‖+ ‖gB‖)
)

≤ σ(‖gB
1 ‖2 + ‖gA‖2 + ‖gB‖2) +

τ2ε2

4σ
(‖ĝA‖2 + ‖ĝB‖2)

and the inequality (6.7) becomes for σ small enough

ε(IgA + IgB ) +
γ1

2
(‖gA‖2 + ‖gB‖2) ≤ |

∫
R3

∫ 1

−1

χγσ
−1
A (K1

∗h
A +KA

∗ h)g
Advdx|

+ |
∫

R3

∫ 1

−1

χγσ
−1
B (K1

∗h
B +KB

∗ h)g
Bdvdx|

+ σ‖gB
1 ‖2 +

τ2ε2

4σ
(‖ĝA‖2 + ‖ĝB‖2).

By continuity of the operators, K1
∗ , K

A
∗ and KB

∗ , it holds that

ε(IgA + IgB ) +
γ1

4
(‖gA‖2 + ‖gB‖2) ≤ c(‖hA‖+ ‖hB‖)(‖gA‖+ ‖gB‖)

+ σ‖gB
1 ‖2 + cτε2(‖ĝA‖2 + ‖ĝB‖2). (6.9)

From the boundary conditions (5.34) satisfied by gA, IgA ≥ 0 and by reasonning as in [14], we get
IgB ≥ 0. In order to achieve the control of ‖gA‖ and ‖gB‖, we need to estimate ‖gA

1 ‖, ‖gB
1 ‖, ‖ĝA‖ and

‖ĝB‖. Let us begin by ‖gA
1 ‖ and ‖gB

1 ‖. Recall that from subsection 5.1, we have
∫

R3 ξR
B(x, v)dv = 0.

By splitting RB as in (5.16) and by using that
∫

R3 ξĝ
Bdv = 0, it holds that∫

R3

(
ξ2
√
MBpB

1 + ξ
√
MBgB(x, v) + ξ

√
M∗h

B
)
dv = 0.

So

cpB
1 = −

∫
R3
ξ
√
MBgBdv −

∫
R3
ξ
√
M∗h

Bdv

and it comes that

‖gB
1 ‖ ≤ c(‖gB‖+ ‖hB‖). (6.10)

Moreover from the expression of the kernel of the linearized Boltzmann operator for a two component
gas ([2]), pA

1 = pB
1 . Hence

‖gA
1 ‖ ≤ c(‖gB‖+ ‖hB‖). (6.11)

Next in order to estimate ‖ĝA‖ and ‖ĝB‖, multiply (5.22) by ξψA
i and integrate on [−1, 1]×R3 yields

φA
i (x) = φA

i (−1)−
∫ x

−1

∫
R3
gA(y, v)

(
ξ2

∂

∂y
ψA

i (y, v)
)
dvdy

+
1
ε

∫ x

−1

∫
R3

1√
MA

(
Q(
√
MAgA,M) +Q(MA,

√
Mḡ)

)
ξψA

i dvdy

+
1
ε

∫ x

−1

∫
R3
χγσ

−1
A

[
KA
∗ h+K1

∗h
A
]
ξψA

i dvdy

+
∫ x

−1

∫
R3

(L1
A(ĝ, ĝA) + L̃1

A(ĝB))ξψA
i dvdy,
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with

φA
i (x) =

∫ x

−1

∫
R3
ξ2gAψA

i dvdy.

In order to control the term φA
i (−1) Cauchy-Schwartz inequality is used. So

|
∫

R3
ξ2gA(−1, v)ψA

i (−1, v)dv| ≤ (
∫

R3
ξ(gA(−1, v))2dv)

1
2 (
∫

R3
|ξ|3(ψA

i )2(−1, v)dv)
1
2 ,

≤ c(
∫

R3
ξ(gA(−1, v))2dv)

1
2 .

Then we get for i ∈ {0, 4},
∣∣φA

i (−1)
∣∣ ≤ (IgA

)1/2 and the same result holds for φB
i (−1). Hence for

i ∈ {0, 4} it holds that∣∣φA
i (x)

∣∣ ≤
(
IgA

)1/2 + τ‖gA‖+
c

ε
‖gA‖+

c

ε
‖gB‖+

c

ε
‖hA‖+

c

ε
‖hB‖

+ cτ(‖ĝA‖+ ‖ĝB‖), (6.12)∣∣φB
i (x)

∣∣ ≤
(
IgB

)1/2 + τ‖gB‖+
c

ε
‖gB‖+

c

ε
‖gA‖+

c

ε
‖hA‖+

c

ε
‖hB‖

+ cτ(‖ĝA‖+ ‖ĝB‖). (6.13)

The inequalities (6.12, 6.13) give the control of the terms φA
i (x) and φB

i (x) for i ∈ {0, 4}. By
reasonning as in [13, 14] it comes that

‖ĝA‖2 ≤ c

∫ 1

−1

(
|φA

0 |2 + |φA
4 |2
)
dx+ c‖gA‖2, ‖ĝB‖2 ≤ c

∫ 1

−1

(
|φB

0 |2 + |φB
4 |2
)
dx+ c‖gB‖2

From (6.12) and (6.13),

‖ĝA‖2 ≤ IgA + cτ‖ĝA‖2 +
c

ε2
(
‖gA‖2 + ‖gB‖2 + ‖hA‖2 + ‖hB‖2

)
+ cτ(‖ĝA‖2 + ‖ĝB‖2).

‖ĝB‖2 ≤ IgB + cτ‖ĝB‖2 +
c

ε2
(
‖gA‖2 + ‖gB‖2 + ‖hA‖2 + ‖hB‖2

)
+ cτ(‖ĝA‖2 + ‖ĝB‖2).

By adding the two last inequalities and by choosing ε and τ small enough,

‖ĝA‖2 + ‖ĝB‖2 ≤ IgA + IgB +
c

ε2
(
‖gA‖2 + ‖gB‖2 + ‖hA‖2 + ‖hB‖2

)
.

By bounding IgA + IgB from the inequality (6.9) and by choosing ε small enough we get

‖ĝA‖2 + ‖ĝB‖2 ≤ σ

ε
‖gB

1 ‖2 +
c

ε
(‖hA‖+ ‖hB‖)(‖gA‖+ ‖gB‖)

+
c

ε2
(
‖gA‖2 + ‖gB‖2 + ‖hA‖2 + ‖hB‖2

)
.

According to the inequality (6.10) and by splitting gA and gB into gA = gA
1 + ĝA + gA and gB =

gB
1 + ĝB + gB it holds that

‖ĝA‖2 + ‖ĝB‖2 ≤ c

ε
(‖hA‖+ ‖hB‖)(‖ĝA‖+ ‖ĝB‖)

+
c

ε
(‖hA‖+ ‖hB‖)(‖gA

1 ‖+ ‖gB
1 ‖+ ‖gA‖+ ‖gB‖)

+
c

ε2
(
‖gA‖2 + ‖gB‖2 + ‖hA‖2 + ‖hB‖2

)
.

Use again the inequalities (6.9, 6.10, 6.11) and choose τ small enough leads to

‖ĝA‖2 + ‖ĝB‖2 ≤ c

ε
(‖hA‖+ ‖hB‖)(‖ĝA‖+ ‖ĝB‖) + cτ(‖gA‖2 + ‖gB‖2)

+
c

ε2
(
‖gA‖2 + ‖gB‖2 + ‖hA‖2 + ‖hB‖2

)
. (6.14)
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Property 6.8 is again applied to the term c
ε (‖hA‖+ ‖hB‖)(‖ĝA‖+ ‖ĝB‖). So

‖ĝA‖+ ‖ĝB‖ ≤ c

ε
(‖gA‖+ ‖gB‖+ ‖hA‖+ ‖hB‖). (6.15)

Now let us show that ‖gA‖+‖gB‖ is bounded in terms of ‖hA‖ and ‖hB‖ by controling the right-hand
side of (6.9). By using the inequality (6.15) it follows that

(‖hA‖+ ‖hB‖)(‖ĝA‖+ ‖ĝB‖) ≤ c

ε
(‖hA‖+ ‖hB‖)(‖gA‖+ ‖gB‖+ ‖gA

1 ‖+ ‖gB
1 ‖)

+
c

ε
(‖hA‖+ ‖hB‖)2.

And from (6.10, 6.11), we get that

c

ε
(‖hA‖+ ‖hB‖)(‖gA‖+ ‖gB‖+ ‖gA

1 ‖+ ‖gB
1 ‖)

≤ c

ε
(‖hA‖+ ‖hB‖)(‖gA‖+ ‖gB‖+ ‖hA‖+ ‖hB‖).

So by using inequality (6.8) to (6.9) it holds that

‖gA‖+ ‖gB‖ ≤ c

ε
(‖hA‖+ ‖hB‖). (6.16)

and (6.15) leads to

‖ĝA‖+ ‖ĝB‖ ≤ c

ε2
(‖hA‖+ ‖hB‖). (6.17)

Now let us control ‖hA‖ and ‖hB‖. Multiply (5.23) by εhA, (5.25) by εhB and integrate on R3×[−1, 1].
By setting for α ∈ {A,B},

Ihα =
∫

R3
ξ(hα(1, v))2dv −

∫
R3
ξ(hα(−1, v))2dv,

it holds that

ε(IhA + IhB ) +
∫

R3

∫ 1

−1

ν(hA)2 + (hB)2)dxdv = −ε
∫

R3

∫ 1

−1

µAσA(gA + gA
1 )hAdvdx

+
∫

R3

∫ 1

−1

((χγK
A
∗ )h)hAdvdx+

∫
R3

∫ 1

−1

((χγK
1
∗)h

A)hAdvdx

+ε
∫

R3

∫ 1

−1

NA∗(σ(g + g1) + h)hAdvdx

+ε
∫

R3

∫ 1

−1

ÑA
∗ (σA(gA + gA

1 ) + hA, σB(gB + gB
1 ) + hB)hAdvdx

+ε
∫

R3

∫ 1

−1

NB∗(σ(g + g1) + h)hB + ÑB
∗ (σB(gB + gB

1 ) + hB)hBdvdx

+ε3
∫

R3

∫ 1

−1

(dAhA + dBhB)dvdx.

From (5.33) and Lemma 6.1, we get

ε(IhA + IhB ) + ν0(‖hA‖2 + ‖hB‖2) ≤
∣∣∣∣∫

R3

∫ 1

−1

(χγK
1
∗h

A)hAdvdx

∣∣∣∣
+
∣∣∣∣∫

R3

∫ 1

−1

(χγK
A
∗ h)h

Advdx

∣∣∣∣+ ∣∣∣∣∫
R3

∫ 1

−1

(χγK
1
∗h

B)hBdvdx

∣∣∣∣+ ∣∣∣∣∫
R3

∫ 1

−1

(χγK
B
∗ h)h

Bdvdx

∣∣∣∣
+cτε(‖gA‖+ ‖gA

1 ‖+ ‖hA‖+ ‖gB‖+ ‖gB
1 ‖+ ‖hB‖)(‖hA‖+ ‖hB‖)

+ε3(‖dA‖ ‖hA‖+ ‖dB‖ ‖hB‖).
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By continuity of K1
∗ , K

A
∗ and KB

∗ , it holds that∫ 1

−1

∫
R3

(χγK
1
∗h

A)hdvdx ≤ ‖h‖‖hA‖
(1 + γ)

1
2
, |
∫

R3

∫ 1

−1

(χγK
A
∗ h)h

Advdx| ≤ ‖hA‖‖h‖
(1 + γ)

1
2
,

|
∫

R3

∫ 1

−1

(χγK
B
∗ h)h

Bdvdx| ≤ ‖h‖‖hA‖
(1 + γ)

1
2
,

Moreover, according to the boundary conditions (5.34, 5.35) satisfied by hA and hB ,

IhA ≥ −c(‖hA
−‖2 + ‖hA

+‖2), IhB ≥ −c
(
|βhB |2 + ‖hB

−‖2 + ‖hB
+‖2

)
.

Hence

‖hA‖2 + ‖hB‖2 ≤ c(‖hA
−‖2 + ‖hA

+‖2 + ‖hB
−‖2 + ‖hB

+‖2 + (βhB )2)

+
c

(1 + γ)
1
2
(‖hA‖2 + ‖hB‖2) + cε(‖hA

−‖2 + ‖hA
+‖2) + (βhB )2

+ cτε(‖gA‖+ ‖gA
1 ‖+ ‖gB‖+ ‖gB

1 ‖+ ‖hA‖+ ‖hB‖)‖hA‖

+ ε3(‖hA‖ ‖ dA

1 + |v|
‖+ ‖hB‖ ‖ dB

1 + |v|
‖).

It remains to control |βhB |. By using the exponential form of (5.46) and by reasonning as in [14], βhB

satisfies

|βhB | ≤ c√
ε

(
‖χγK

1
∗h

B‖+ ‖ν−1ZB‖
)

+ (‖hB
−‖+ ‖hB

+‖). (6.18)

Moreover by definition of ZB (5.47) and by using Lemma 6.1, it comes

‖ν−1ZB‖ ≤ cτε(‖gB‖+ ‖gB
1 ‖) + ‖χγK

B
∗ h‖

+ cτε(‖gA‖+ ‖gA
1 ‖+ ‖hA‖+ ‖gB‖+ ‖gB

1 ‖+ ‖hB‖) + ε6‖ dB

(1 + |v|)
‖2.

So (6.3) holds. From (6.15, 6.16, 6.11, 6.10) and by taking ε and τ small enough and γ big enough,
the inegalities (6.4) and (6.5) follow easyly.

6.2 L∞ estimates on the rest term.

In order to control in L∞ of (RA, RB), we shall use the norms

|f |r = sup
x∈[−1,1]

sup
v∈R3

(1 + |v|)r|f(x, v)|, r ≥ 0, N(f) = sup
x∈[−1,1]

(∫
R3
|f(x, v)|2dv

) 1
2

.

The aim of this section is to control gA, gB , hA, hB with the norm | |r. First, let us give the two
following propositions whose the proof is in ([13]).

Proposition 2. For all r ≥ 0, there is a constant c such that for all function G such that (1+|v|)rG ∈
L∞, Uε satisfies the inequality

|UεG|r ≤ c|G
ν
|r.

Proposition 3. For all function G such that (1 + |v|)rG ∈ L∞ and δ > 0 and for all r ≥ 2, there is
Cδ such that

N(UεG) ≤ Cδ√
ε
‖ν− 1

2G‖+ δ|G|r.

In order to control |gA|r and |gB |r, we need a bound on |g|r.
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Proposition 4. For all r ≥ 1, there are nonnegative constants c and Hγ such that

|g|r ≤ c(N(gA) +N(gB)) +Hγ(N(hA) +N(hB))

+ c
√
ε(‖ dA

(1 + |v|)
‖+ ‖ dB

(1 + |v|)
‖) +

c

ε2
(‖hA

−‖+ ‖hA
+‖+ ‖hB

−‖+ ‖hB
+‖).

Proof. (Proposition 4.)
From the equation (5.48) written in the exponential form,

g = V +
ε (gB+) + Uε(Kg + S), with gB+ = βgBM+(MB(1, v))−

1
2 . (6.19)

Proposition 2 applied to the equation (6.19) leads to

|g|r ≤ c
∣∣ν−1Kg

∣∣
r
+ c

∣∣ν−1S
∣∣
r
+ c|βgB |. (6.20)

The continuity of K gives for all r ≥ 1 ([13]),∣∣ν−1Kg
∣∣
r
≤ c sup

x∈[−1,1]

sup
v∈R3

(1 + |v|)r−1|g(x, v)| = c|g|r−1, (6.21)

∣∣ν−1Kg
∣∣2
0
≤ c sup

x∈[−1,1]

∫
R3
g2(x, v)dv = c(N(g))2. (6.22)

Then by using (6.20), it holds that

|g|r ≤ c |g|r−1 + c |S|r + c|βgB |. (6.23)

So, from (6.22) and by induction, it holds that

|g|r ≤ cN(g) + c
r∑

k=0

|S|k + c|βgB | ≤ cN(g) + c|S|r + c|βgB |. (6.24)

Let us find a majoration on |S|r. By definition of S (5.49),

|S|r ≤
∣∣χγσ

−1K∗h
∣∣
r
+ ε(|µĝ|r + |L1(ĝB , ĝ)|r). (6.25)

But, by continuity of K∗,∣∣χγσ
−1K∗h

∣∣
r
≤ sup

x∈[−1,1]

sup
v∈R3

|(1 + |v|)rχγσ
−1| sup

x∈[−1,1]

sup
v∈R3

|K∗h| ≤ HγN(h).

On the other hand, according to ([9]), we have∣∣L1(ĝB , ĝ)
∣∣
r
≤ c(|ĝB |r + |ĝ|r) ≤ c

(
N(ĝA) +N(ĝB)

)
.

Moreover the functions (1 + |v|)rψi(v) being bounded on R3 for all i ∈ {0, 4}, it holds that

|ĝ|r ≤ c sup
x∈[−1,1]

(|p0(x)|+ |p4(x)|) ≤ cN(ĝ).

So by using the inequality (6.25)

|S|r ≤ cε
(
N(ĝA) +N(ĝB)

)
+Hγ

(
N(hA) +N(hB)

)
. (6.26)

By using the inequality (6.26) in the right-hand side of (6.24),

|g|r ≤ cN(g) + cε
(
N(ĝA) +N(ĝB)

)
+Hγ

(
N(hA) +N(hB)

)
+ c|βgB |. (6.27)

A bound on N(g) is now researched. From Proposition 3 applied to the equation (5.48) , it holds
that for all δ > 0,

N(g) ≤ Cδ√
ε
‖ν−1Kg‖+ δ|Kg|r +

Cδ√
ε
‖ν−1S‖+ δ|S|r + c|βgB |. (6.28)
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But from (6.21) and (6.27), we get

|Kg|r ≤ cN(g) + cε(N(ĝA) +N(ĝB)) +Hγ(N(hA) +N(hB)) + c|βgB |.

Hence by using the previous inequality in (6.28) and by choosing δ small enough, it comes that

N(g) ≤ Cδ√
ε
‖ν−1Kg‖+ cε(N(ĝA) +N(ĝB)) +Hγ(N(hA) +N(hB)) +

Cδ√
ε
‖ν−1S‖+ c|βgB |.

But by continuity of K we have ‖ν−1Kg‖ ≤ c‖g‖ and the definition of S (5.49) gives

‖ν−1S‖ ≤ Cγ‖h‖+ cτε(‖ĝA‖+ ‖ĝB‖).

Hence

N(g) ≤ Cδ√
ε
‖g‖+ cε(N(ĝA) +N(ĝB)) +Hγ(N(hA) +N(hB))

+
Cδ√
ε
‖h‖+ Cδτ

√
ε(‖ĝA‖+ ‖ĝB‖) + c|βgB |.

Moreover by reasonning as in [14] and by using Proposition 1 |βgB | is controled as follows

|βgB | ≤ c
√
ε

(
‖ dA

(1 + |v|)
‖+ ‖ dB

(1 + |v|)
‖
)

+
c

ε2
(
‖hA
−‖+ ‖hA

+‖+ ‖hB
−‖+ ‖hB

+‖
)
. (6.29)

Proposition 5. For all r ≥ 3 there are nonegative constants c and Hγ such that

(
|gA|r + |gB |r

)
≤ c

√
ε

(
‖ dA

(1 + |v|)
‖+ ‖ dB

(1 + |v|)
‖
)

+ cHγ(|hA|r + |hB |r)

+
c

ε2
(|hA

−|r + |hA
+|r + |hB

−|r + |hB
+|r).

Proof. (Proposition 5.)
We proceed as for the proof of Proposition 4. The solutions to the equations (5.40) and (5.44) are
written in the exponential form as follows

gA = Uε(KgA + SA), gB = V +
ε (gB+) + Uε(KgB + SB), (6.30)

with gB+ defined in (6.19). Reasonning as in the proof of the inequality (6.23), we get

|gA|r ≤ cN(gA) + c|SA|r, |gB |r ≤ cN(gB) + c|SB |r + c|βgB |. (6.31)

The definitions of SA and SB (5.41, 5.45) together with the inequality∣∣ 1√
MA

Q
(√

Mg,MA
) ∣∣

r
≤ c |g|r ([17]),

lead to

|SA|r ≤ c|g|r + (|χγσ
−1
A KA

∗ h|r + |χγσ
−1
A K1

∗h
A|r) + τε|ĝA|r + ε

(
|LA

1 (ĝ, ĝA)|r + |L1
A(ĝB)|r

)
,

|SB |r ≤ c|g|r + (|χγσ
−1
B KB

∗ h|r + |χγσ
−1
B K1

∗h
B |r) + τε|ĝB |r + ε|L1

B(ĝ, ĝB)|r.

Reasonning as for the proof of the inequality (6.26), it holds that∣∣SA
∣∣
r
+
∣∣SB

∣∣
r
≤ c|g|r + Cγ

(
N(hA) +N(hB)

)
+ cε

(
N(ĝA) +N(ĝB)

)
,

So by bounding |g|r thanks to Proposition 4, we get

|SA|r + |SB |r ≤ c(N(gA) +N(gB)) +Hγ(N(hA) +N(hB))

+ c
√
ε(‖ dA

(1 + |v|)
‖+ ‖ dB

(1 + |v|)
‖) +

c

ε2
(‖hA

−‖+ ‖hA
+‖+ ‖hB

−‖+ ‖hB
+‖).

(6.32)
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From (6.31) together with Proposition 4, it follows that

|gA|r + |gB |r ≤ c(N(gA) +N(gB)) + cHγ(N(hA) +N(hB))

+ c
√
ε(‖ dA

(1 + |v|)
‖+ ‖ dB

(1 + |v|)
‖) +

c

ε2
(‖hA

−‖+ ‖hA
+‖+ ‖hB

−‖+ ‖hB
+‖).

(6.33)

In order to achieve the control of |gA|r + |gB |r, we need to estimate N(gA) +N(gB).
By using (6.30) and from Proposition 3, it follows that for all δ > 0,

N(gA) +N(gB) ≤ Cδ√
ε
(‖ν−1KgA‖+ ‖ν−1KgB‖) + δ(|KgA|r + |KgB |r)

+
Cδ√
ε
(‖ν−1SA‖+ ‖ν−1SB‖) + δ(|SA|r + |SB |r).

+ |βgB |N(M+(MB(1, v))−
1
2 ), (6.34)

Moreover |KgA|r ≤ c|gA|r−1 ≤ cN(gA) + c|SA|r, and |KgB |r ≤ c|gB |r−1 ≤ cN(gB) + c|SB |r. From
(6.29) and by choosing δ > 0 small enough,

N(gA) +N(gB) ≤ Cδ√
ε
(‖ν−1KgA‖+ ‖ν−1KgB‖+ ‖ν−1SA‖+ ‖ν−1SB‖)

+ δ(|SA|r + |SB |r) +Hγ(N(hA) +N(hB))

+ c
√
ε(‖ dA

(1 + |v|)
‖+ ‖ dB

(1 + |v|)
‖) +

c

ε2
(‖hA

−‖+ ‖hA
+‖+ ‖hB

−‖+ ‖hB
+‖).

So by choosing δ small enough and by using (6.32)

N(gA) +N(gB) ≤ Cδ√
ε
(‖ν−1KgA‖+ ‖ν−1KgB‖+ ‖ν−1SA‖+ ‖ν−1SB‖)

+ Hγ(N(hA) +N(hB)) + c
√
ε(‖ dA

(1 + |v|)
‖+ ‖ dB

(1 + |v|)
‖)

+
c

ε2
(‖hA

−‖+ ‖hA
+‖+ ‖hB

−‖+ ‖hB
+‖). (6.35)

By continuity of K and from Proposition 1,

‖KgA‖+ ‖KgB‖ ≤ cε
(
‖ dA

(1 + |v|)
‖+ ‖ dB

(1 + |v|)
‖
)

+
c

ε
3
2
(‖hA

−‖+ ‖hA
+‖+ ‖hB

−‖+ ‖hB
+‖)

and by definitions of SA and SB (5.41, 5.45) and from Proposition 1, ‖ν−1SA‖ + ‖ν−1SB‖ satisfies
the same previous estimate as ‖KgA‖+ ‖KgB‖. So (6.35) reads

N(gA) +N(gB) ≤ δ(|gA|r + |gB |r) +
√
ε

(
‖ dA

(1 + |v|)
‖+ ‖ dB

(1 + |v|)
‖
)

+
c

ε2
(‖hA

−‖+ ‖hA
+‖+ ‖hB

−‖+ ‖hB
+‖) +Hγ(N(hA) +N(hB)). (6.36)

From the inequalities (6.33, 6.36),

|gA|r + |gB |r ≤ c
√
ε(‖ dA

(1 + |v|)
‖+ ‖ dB

(1 + |v|)
‖)

+
c

ε2
(‖hA

−‖+ ‖hA
+‖+ ‖hB

−‖+ ‖hB
+‖) +Hγ(N(hA) +N(hB)).

But for all f such that (1 + |v|)rf ∈ L∞ it holds that for r ≥ 1,

[N(f)]2 ≤ sup
x∈[−1,1]

sup
v∈R3

(f2(x, v)(1 + |v|)2r)
∫

R3

dv

(1 + |v|)2r
≤ |f |2r.
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Hence for all r ≥ 1,

N(hA) +N(hB) ≤ c(|hA|r + |hB |r). (6.37)

Moreover for all function f such that (1+|v|)f ∈ L2 and (1+|v|)3f ∈ L∞, it holds that ‖f‖ ≤ |f |3.

In order to achieve the control of |gA|r + |gB |r it remains to estimate |hA|r + |hB |r.

Proposition 6. For all r ≥ 3 there is c > 0 such that

|hA|r + |hB |r ≤ cε
3
2 ( ‖ dA

(1 + |v|)
‖+ ‖ dB

(1 + |v|)
‖) + ε

5
2 (|ν−1dA|r + |ν−1dB |r)

+
c

ε2
(|hA

−|r + |hA
+|r + |hB

−|r + |hB
+|r).

Proof. (Proposition 6.)
hA et hB can be written as

hA = V −ε (hA
−) + V +

ε (hA
+) + Uε(χγK

1
∗h

A + ZA),

hB = V −ε (hB
−) + V +

ε (hB
+ + βhBM+(M∗)−

1
2 ) + Uε(χγK

1
∗h

B + ZB).

From Proposition 2, by continuity of K1
∗ , K

A
∗ , KB

∗ and by taking |V −ε hA
−|r ≤ |hA

−|r,
|V +

ε hA
+|r ≤ |hA

+|r, |V −ε hB
−|r ≤ |hB

−|r, |V +
ε (hB

+ + βhBM+(M∗)−
1
2 )|r ≤ |hB

+|r + c|βhB | into account, it
holds that

|hA|r + |hB |r ≤ c

1 + γ
|hA|r +

c

1 + γ
|hB |r +

c

1 + γ
|h|r

+ cτε
(
|gB |r + |gB

1 |r + |hB |r + |gA|r + |gA
1 |r + |hA|r

)
+ ε3(|ν−1dA|r + |ν−1dB |r) + |hA

−|r + |hA
+|r + |hB

−|r + |hB
+|r + c|βhB |.

From the inequalities (6.18, 6.19) and by using Proposition 1, |βhB | is controled as follows

|βhB | ≤ c(‖hA
−‖+ ‖hA

+‖+ ‖hB
−‖+ ‖hB

+‖) + ε
5
2

(
‖ dA

(1 + |v|)
‖+ ‖ dB

(1 + |v|)
‖
)
.

Moreover for all function f such that ‖f‖ and |f |r are defined, ‖f‖ ≤ |f |3. So, by choosing τ and ε
small enough and γ big enough in (6.38) it holds that

|hA|r + |hB |r ≤ τε(|gB |r + |gB
1 |r + |gA|r + |gA

1 |r)
+ ε

5
2 (|ν−1dA|r + |ν−1dB |r) + |hA

−|r + |hA
+|r + |hB

−|r + |hB
+|r.

In order to control the term τε(|gA|r + |gA
1 |r + |gB |r + |gB

1 |r), we use that
|gA|r ≤ |gA|r + |gA

1 |r + |ĝA|r and |gB |r ≤ |gB |r + |gB
1 |r + |ĝB |r, with for all i ∈ {0, 1, 4}, |gA

i |r ≤ N(gA
i )

and |gB
i |r ≤ N(gB

i ). So,

ετ(|gA|r + |gA
1 |r + |gB |r + |gB

1 |r) ≤ ετ(|gA|r +N(gA) + |gB |r +N(gB)).

Proposition 5 applied to the inequality (6.36) gives

N(gA) +N(gB) ≤ c
√
ε

(
‖ dA

(1 + |v|)
‖+ ‖ dB

(1 + |v|)
‖
)

+Hγ(|hA|r + |hB |r)

+
c

ε2
(|hA

−|r + |hA
+|r + |hB

−|r + |hB
+|r).

Then by choosing ε and τ small enough in the inequality (6.38), Proposition 6 follows.

Proof. (Proposition 1.)
σA and σB being bounded, RA and RB satisfy

M
− 1

2
∗ (|RA|+ |RB |) ≤ (|hA|+ c|gA|+ |hB |+ c|gB |).
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Recall that M∗ = 1

(πT∗)
3
2

exp(− v2

T∗
) with T∗ > TH0. Set β0 = 1

2T∗
.

|M− 1
2

∗ RA|r + |M− 1
2

∗ RB |r ≤ (|hA|r + c|gA|r + |hB |r + c|gB |r).

Then Propositions 5 and 6 imply that, for all r ≥ 3,

|RA|r,β0 + |RB |r,β0 ≤ c
√
ε(‖dA‖+ ‖dB‖) + ε3

(
|ν−1dA|r + |ν−1dB |r

)
+

c

ε2
(|hA

−|r + |hA
+|r + |hB

−|r + |hB
+|r).

Finally the definition of hA
−, hA

+, hB
−, hB

+, dA, dB and the estimates ‖d‖ ≤ | dν |3 and (5.33) lead to the
conclusion.

6.3 Convergence of the iterative process.

This subsection deals with the rest terms (RA, RB) of the non linear problems, solutions to the system
(5.6, 5.7). They are constructed as the limit of a sequence of iterations of linearized problems.

Theorem 6.1. For all r ≥ 3, there is c, c′, ε0, τ0 and β0 such that for all ε < ε0, and τ < τ0, the
problem (5.6, 5.7) has a unique solution (RA, RB) satisfying

|RA|r,β0 + |RB |r,β0 ≤ c

(
ε

3
2 (|A|r,β0 + |B|r,β0) + exp(−c

′

ε
)
)
.

Recall that the norm | |r,β0 is defined by the formula (5.37).

Proof. (Theorem 6.1.)
The solution (RA, RB) to the problem (5.6, 5.7) shall be obtained as the limit to the sequences
(RA

k , R
B
k ) defined by RA

0 = RB
0 = 0 and for all k ≥ 1,

ξ
∂

∂x
RA

k =
1
ε
(Q(RA

k ,M) +Q(MA, Rk)) +NA(Rk) + ÑA∗(RA
k , R

B
k )

+ ε2
(
Q(RB

k , Rk−1) + I(RB
k−1)Q(RA

k−1,M
B)
)

+ ε3A, (6.38)

ξ
∂

∂x
RB

k =
1
ε
(Q(RB

k ,M) +Q(MB , Rk)) +NB(RB
k , Rk)

+ ε2
(
I(RB

k−1)(Q(MB , Rk−1) +Q(RB
k−1,M

B)) +Q(RB
k−1, Rk−1)

)
+ ε3B, (6.39)

satisfying the boundary conditions

RA
k (−1, v) = ζA−, ξ > 0, RA

k (1, v) = ζA+, ξ < 0,
RB

k (−1, v) = ζB−, ξ > 0, RB
k (1, v) = βRB

k
M+ + ζB+, ξ < 0. (6.40)

From Proposition 1 applied to the equations (6.38, 6.39, 6.40),

|RA
k |r,β0 + |RB

k |r,β0 ≤ cε
1
2 (|DA|r−1,β0 + |DB |r−1,β0)

+
c

ε2
(|ζA−|r,β0 + |ζA+|r,β0 + |ζB−|r,β0 + |ζB+|r,β0),

with

DA = εA+Q(Rk−1, R
A
k−1) + I(RB

k−1)Q(MB , RA
k−1),

DB = εB + I(RB
k−1)

(
Q(MB , Rk−1) +Q(RB

k−1,M
B)
)

+Q(RB
k−1, Rk−1).

The inequality ([13]),

|M− 1
2Q(R,S)|r−1 ≤ |M− 1

2R|r|M− 1
2S|r. (6.41)
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leads to

|Q(RA
k−1, Rk−1) + I(RB

k−1)Q(RA
k−1,M

B)|r−1,β0 ≤ (|Rk−1|r,β0 + |RB
k−1|r,β0)|RA

k−1|r,β0 ,

|I(RB
k−1)(Q(MB , Rk−1) +Q(RB

k−1,M
B)) +Q(Rk−1, R

B
k−1)|r−1,β0

≤ |RB
k−1|r,β0 |Rk−1|r,β0 + |RB

k−1|2r,β0
.

So

|DA|r−1,β0 ≤ ε|A|r−1,β0 +
(
|Rk−1|r,β0 + |RB

k−1|r,β0

)
|RA

k−1|r,β0 ,

|DB |r−1,β0 ≤ ε|B|r−1,β0 +
(
|Rk−1|r,β0 + |RB

k−1|r,β0

)
|RB

k−1|r,β0 .

Hence for all k ≥ 0, RA
k and RB

k satisfy

|RA
k |r,β0 + |RB

k |r,β0 ≤ ε
1
2 |Rk−1|r,β0

(
|RA

k−1|r,β0 + |RB
k−1|r,β0

)
+ cε

3
2
(
(|A|r,β0 + |B|r,β0) +

c

ε2
exp(−c

′

ε

)
. (6.42)

Therefore we get for ε small enough, uniformly in k and for all c′′ < c′,

|RA
k |r,β0 + |RB

k |r,β0 ≤ c1ε
3
2 (|A|r,β0 + |B|r,β0) + c exp(−c

′′

ε
) (6.43)

Moreover by using Lemma 6.1 we get the estimate

|A|r,β0 + |B|r,β0 = O(
1
ε4

) (6.44)

whose proof is left in appendix. Set WA
k = RA

k − RA
k−1 and WB

k = RB
k − RB

k−1. From (6.38, 6.39),
(WA

k ,W
B
k ) satisfies the system

ξ
∂

∂x
WA

k =
1
ε
(Q(MA,Wk) +Q(WA

k ,M)) +NA(Wk) + ÑA∗(WA
k ,W

B
k )

+ ε2
(
Q(RA

k−1,Wk) +Q(WA
k , Rk−2)

+ I(WB
k )Q(RA

k−1,M
B) + I(RB

k−2)Q(WA
k−1,M

B)
)

ξ
∂

∂x
WB

k =
1
ε
(Q(MB ,Wk) +Q(WB

k ,M)) +NB(Wk)

+ ε2
(
Q(RB

k−1,Wk−1) +Q(WB
k−1, Rk−2) + I(WB

k )Q(RB
k−1,M

B)

+ I(RB
k−2)Q(WB

k−1,M
B)
)

with the boundary conditions

WA
k (−1, v) = 0, ξ > 0, WA

k (1, v) = 0, ξ < 0,
WB

k (−1, v) = 0, ξ > 0, WB
k (1, v) = βW B

k
M+, ξ < 0.

From proposition 1, (WA
k ,W

B
k ) satisfies the majoration

|WA
k |r,β0 + |WB

k |r,β0 ≤ c
√
ε(|D̃A|r,β0 + |D̃B |r,β0)

with

D̃A = Q(RA
k−1,Wk) +Q(WA

k , Rk−2) + I(WB
k )Q(RA

k−1,M
B) + I(RB

k−1)Q(WA
k−1,M

B),

D̃B = Q(RB
k−1,Wk−1) +Q(WB

k−1, Rk−2) + I(WB
k )Q(RB

k−1,M
B) + I(WB

k−1)Q(WB
k−1,M

B).

Hence by using the inequality (6.41) and the estimate (6.43), it holds that

|WA
k |r,β0 + |WB

k |r,β0 ≤ c
√
ε
(
ε

3
2 (|A|r,β0 + |B|r,β0) + exp(−c

′

ε
)
)
(|WA

k−1|r,β0 + |WB
k−1|r,β0).
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So from (6.44) and by choosing ε small enough,

|WA
k |r,β0 + |WB

k |r,β0 ≤ cε(|WA
k−1|r,β0 + |WB

k−1|r,β0).

So by choosing again ε small enough, we show that the sequence
(
(RA

k , R
B
k )
)

k∈N
is a Cauchy sequence

in a weighted L∞ × L∞ space and so converges.
Now let us show the uniqueness of the solution to the problem (5.6, 5.7). Let (RA

1 , R
B
1 ) and (RA

2 , R
B
2 )

be two solutions to the problem (5.6, 5.7). By considering the quantities RA
2 −RA

1 and RB
2 −RB

1 and
by proceeding like for the existence step, it comes

|RA
2 −RA

1 |r,β0 + |RB
2 −RB

1 |r,β0 ≤ cε(|RA
2 −RA

1 |r,β0 + |RB
2 −RB

1 |r,β0).

So by choosing ε small enough, the uniqueness of the solution follows.

Proof. (Theorem 2.1.)
For nII close enough to nI and for some TII close enough to TI , the asymptotic expansion

(fA
H0 + εfA

1 + ε2fA
2 + ε3fA

R , f
B
H0 + εfB

1 + ε2fB
2 + ε3fB

R )

has been determined. For ε small enough Proposition 6.1 controls the rest term (fA
R , f

B
R ). This shows

Theorem 2.1.
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A Proof of 6.44.

For the proof of 6.44, we will give only the estimate of 1
εQ(fA−

K1 (x′, v), fA+
K1 (x′′, v)). The other terms

of A and B can be treated analogously. [−1, 1] is split as [−1, 1] = Ω− ∪Ω∪Ω+, with η small enough
where

Ω− = [−1, −1 + η]× R3, Ω = [−1− η, 1− η]× R3, Ω+ = [1− η, 1]× R3.

(1 + |v|)r−1M
− 1

2
0 Q(fA−

K1 (x′, v), fA+
K1 (x′′, v)) will be estimated successively on Ω−, Ω et Ω+. The in-

equality (6.41) applied on the domain Ω+ writes

sup
(x,v)∈Ω+

|(1 + |v|)r−1M
− 1

2
∗ Q(fA−

K1 (x′, v), fA+
K1 (x′′, v))|

≤ sup
(x,v)∈Ω+

|(1 + |v|)rM
− 1

2
∗ fA−

K1 (x′, v)|

× sup
(x,v)∈Ω+

|(1 + |v|)rM
− 1

2
∗ MA(1, v)bA+

1 (x′′, v))|.

By definition of M∗ there is c > 0 such that M− 1
2

∗ MA(−1, v) ≤ c and M− 1
2

∗ MA(1, v) ≤ c. Moreover

sup
(x,v)∈Ω+

|1
ε
(1 + |v|)rM

− 1
2

∗ fA−
K1 (x′, v)|

≤ c sup
(x,v)∈[−1,1]×R3

|(1 + |v|)r eγ 1+x
ε bA−1 (

1 + x

ε
, v)| |1

ε
e−γ 2−η

ε |,

≤ c sup
(x,v)∈[−1,1]×R3

|(1 + |v|)r eγ 1+x
ε bA−1 (

1 + x

ε
, v)|.

But from ([7, 2]), there is c > 0 such that for all γ ∈]0, ν0[,

sup
(x,v)∈[−1,1]×R3

|(1 + |v|)r eγ 1+x
ε bA−1 (

1 + x

ε
, v)| ≤ c.

So there is c̃ > 0 such that

sup
(x,v)∈Ω+

|1
ε
(1 + |v|)r−1M

− 1
2

∗ Q(fA−
K1 (x′, v), fA+

K1 (x′′, v))| ≤ c̃.

Analogously we show that Q(fA−
K1 (x′, v), fA+

K1 (x′′, v)) satisfies the same estimate on Ω− and Ω. �
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