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Abstract Let (�+
G,σ ) be a one-sided transitive subshift of finite type, where symbols are

given by a finite spin set S, and admissible transitions are represented by an irreducible
directed graph G⊂ S×S. Let H :�+

G →R be a locally constant function (that corresponds
with a local observable which makes finite-range interactions). Given β > 0, let μβH be the
Gibbs-equilibrium probability measure associated with the observable −βH . It is known,
by using abstract considerations, that {μβH }β>0 converges as β→+∞ to a H -minimizing
probability measure μH

min called zero-temperature Gibbs measure. For weighted graphs with
a small number of vertices, we describe here an algorithm (similar to the Puiseux algorithm)
that gives the explicit form of μH

min on the set of ground-state configurations.

Keywords Zero-temperature Gibbs measures · Ground-state configurations · Puiseux
algorithm

1 Introduction

The purpose of this article is to present, for one-dimensional lattice-gas models, for specific
class of nearest-neighbor interactions H , rigorous results on the convergence of the Gibbs
measure μβH as the temperature T = β−1 of the system goes to zero. The limit measures
thus obtained are called zero-temperature Gibbs measures. For most part of the article, the
dynamical system is represented by a one-dimensional lattice, or more generally by a tran-
sitive subshift of finite type (�+

G,σ ), in which some edges may not follow a given edge,
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Fig. 1 The schematic
Blume-Emery-Griffiths model

or equivalently in which some hardcore exclusions apply. The exclusion rule is given by
an irreducible finite directed graph G ⊂ S × S. The set S of vertices of G represents the
possible states of the system at each site. We say that the interaction energy function H has
infinite range if it depends on the whole configuration; H is then assumed to be Hölder. We
say H has finite range if it depends only on two adjacent sites. Actually, finite range here
means nearest neighbor, but it is well known that, by passing to a higher block presentation,
one can translate general finite-range models into nearest-neighbor models with more spin
states.

Our first goal in Sect. 2 is to improve results on the convergence of Gibbs measures for
a certain class of infinite-range interaction energy functions H . We use there the language
of ergodic optimization theory and dynamical system theory. More precisely, we prove in
Theorem 16 the convergence as β →+∞ of a dual notion VβH , that we call “Gibbs po-
tential”, under the hypothesis that the set of ground-state configurations (or H -minimizing
non-wandering set, Definition 6) �(H) admits a unique irreducible component of maximal
entropy. The Gibbs potential may be seen as an approximate effective potential at positive
temperature following Chou and Griffiths works [12, 18].

Our second aim is to understand the zero-temperature phase diagram for finite-range in-
teraction energy functions. It is known [8, 11, 22] that, for finite-spin finite-range models in
one dimension, the family of Gibbs measures {μβH }β converges to a unique invariant prob-
ability measure called zero-temperature Gibbs measure. We present in Sect. 3 the beginning
of an algorithm, valid for any weighted directed graph, that describes precisely all possible
zero-temperature Gibbs measures. We collect all proofs both for general subshift of finite
type systems and for weighted directed graphs in Sects. 4 and 5. We discuss in Sect. 6 the
complete phase diagram for all nonsymmetric complete graphs on 3 symbols. We discuss in
Sect. 7 the complete phase diagram of zero-temperature Gibbs measures for the BEG model:
a specific model well studied in solid state physics.

We close this introduction by detailing the different phase diagrams we obtain in the case
of the one-dimensional Blume-Emery-Griffiths model. (See also Fig. 1.) The BEG model
was initially developed in order to understand the phase transition of mixed systems with
two isotopes He3 and He4 (see [6]). In particular, it exhibits a tricritical point, separating a
regime of first-order transitions from a regime of second-order transitions. Our purpose in
this introduction is to describe the zero-temperature phase diagram of the one-dimensional
BEG model at the level of ground states. For the one-dimensional Ising models, Georgii [17]
gives a complete discussion of the zero-temperature Gibbs measures. There are also exam-
ples of zero-temperature Gibbs measures for more than one dimension (see, for instance, the
case of the bidimensional Blume-Capel model in [9]).

We consider a one-dimensional spin system with a nearest-neighbor interaction given by
the Hamiltonian

H(x)=−J
∑

〈i,j 〉
xixj −K

∑

〈i,j 〉
x2

i x
2
j +�

∑

i

x2
i ,

where xi ∈ S = {−1,0,+1} represents a possible state at the site i.
For each positive temperature T = β−1, there exists a unique translation-invariant Gibbs

measure, or simply Gibbs measure, μβH , obtained for instance by the Ruelle transfer op-
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erator method. We first write H in terms of a unique energy function per site H0, that is,
H =∑

i∈Z
H0(xi, xi+1), where

H0(x, y)=−Jxy −Kx2y2 + �

2
(x2 + y2).

In the BEG model, a site having a state ±1 represents an atom He4, a site having a state
0 represents He3. The constant J is supposed to be positive for ferromagnetic systems and
negative for antiferromagnetic systems. The constant K takes into account the isotopic in-
teraction, � may be interpreted as a chemical potential. An external magnetic field could be
added and would give an additional term h

∑
i xi in the Hamiltonian. We do not consider

this term in this introduction. Even so, we emphasize that the algorithm to be described ap-
plies without changes in all these cases, ferromagnetic or antiferromagnetic, with or without
external magnetic field.

The Ruelle transfer operator method tells us that the Gibbs measure μβH at temperature
T = β−1 is a Markov chain (πβ,Qβ) on the finite state space S, defined by an irreducible
transition matrix [Qβ(x, y)]x,y∈S and a stationary probability vector [πβ(x)]x∈S ,

Qβ(x, y) := �β(y)

�β(x)
exp

[−β(H0(y, x)− H̄β)
]
,

πβ(x) := �∗β(x)�β(x)
∑

y∈S �∗β(y)�β(y)
.

The factor exp(−βH̄β) denotes the maximal eigenvalue of the transfer operator Lβ , where
Lβ may be described here by a matrix indexed by S × S,

Lβ = [Lβ(x, y)]x,y∈S, Lβ(x, y)= exp(−βH0(x, y)).

The two vectors [�β(x)]x∈S and [�∗β(x)]x∈S denote the left and right eigenvector of Lβ

∑

y∈S

Lβ(x, y)�∗β(y)= e−βH̄β �∗β(x),
∑

x∈S

�β(x)Lβ(x, y)= e−βH̄β �β(y),

normalized by
∑

x∈S �β(x)=∑
x∈S �∗β(x)= 1, �β(x) > 0, �∗β(x) > 0. Notice that in the

definition of Qβ(x, y), the order of (x, y) has been interchanged in H0(y, x). The normal-
izing factor F = H̄β is sometimes called in the physics literature the free energy.

We shall see that H̄β → H̄ as β → +∞, where H̄ (see Definition 5) represents the
ground-state energy density of the chain (or the minimizing ergodic value of H in the lan-
guage of ergodic optimization theory). In order to understand the convergence of μβH , we
rewrite the problem in a framework of bifurcation of singular matrices.

In the BEG model, by numbering the state space S = {s1, s2, s3}, s1 = −1, s2 = 0 and
s3 =+1, and by changing the parameter β to ε = exp(−β), we are left to study a singular
perturbation of a one-parameter family of matrices Mε = [A(x,y)εa(x,y)], where

A=
⎡

⎣
1 1 1
1 1 1
1 1 1

⎤

⎦ and a =
⎡

⎣
−J −K +� 1

2� J −K +�
1
2� 0 1

2�

J −K +� 1
2� −J −K +�

⎤

⎦ .

We summarize the set of possible interactions between two consecutive sites xi and xi+1 by
a (directed) graph G ⊂ S × S weighted by the principal exponent a(x, y) as explained in
Fig. 2. We also indicate in this figure the mean of a along all simple cycles.
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Mean of a along simple cycles

cycles of order 1 0, (−J −K +�)

cycles of order 2 1
2 �, (J −K +�)

cycles of order 3 1
3 (J −K + 2�)

Fig. 2 Graph of interactions and determination of minimizing cycles (a cycle of minimizing mean) in the
BEG model

Fig. 3 Phase diagram of the BEG model at zero temperature for � > 0. The Markov chain structure
(π∞,Q∞) at zero temperature and the Puiseux series expansion of the free energy F = H̄β is shown for
each phase

We shall show that μβH converges to a unique measure μH
min, called zero-temperature

Gibbs measure, which has the structure of a Markov chain characterized by an initial law
π∞ and a transition matrix Q∞. The two Figs. 3 and 4 describe the structure of this Markov
chain with respect to (J,K) for � > 0 fixed.

Each region of the plane (J,K) represents a limit phase: each box indicates the initial
law, the transition matrix and the beginning of the Puiseux series expansion of the free
energy F . The three bidimensional regions correspond to the case where all parameters 0,
1
2�, −J − K + �, J − K + � and 1

3 (J − K + 2�) are distinct: a generic case without
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Fig. 4 Phase diagram of the BEG model at zero temperature for � > 0. Numbers in parentheses indicate
the weight of each indecomposable (ergodic) Markov chain which contributes to the zero-temperature Gibbs
measure

degeneracy. For instance, when J − K + � < 0 and J < 0, corresponding to the upper
left part of the phase diagram, the smallest parameter is J − K +� and μH

min is equal to
the uniform distribution on the configuration . . . ,−1,+1,−1,+1, . . . , or more precisely,
because we fix an origin, it is equal to a periodic probability measure of period 2:

μH
min =

1

2
δ〈···+1|−1+1··· 〉 + 1

2
δ〈···−1|+1−1··· 〉.

The zero-temperature Gibbs measure is pure (or ergodic) and made of atoms with alternate
spins ±1. We show that the initial law πβ , the maximal eigenvalue e−βH̄β and the transition
matrix Qβ admit expansions of the following forms

πβ ∼
⎡

⎣
1/2

2e−2β(−J+K−�/2)

1/2

⎤

⎦→
⎡

⎣
1/2
0

1/2

⎤

⎦ , λβ = e−βH̄β ∼ e−β(J−K+�),

Qβ ∼
⎡

⎣
e2βJ 2e−2β(−J+K−�/2) 1
1/2 e−β(−J+K−�) 1/2
1 2e−2β(−J+K−�/2) e2βJ

⎤

⎦→
⎡

⎣
0 0 1

1/2 0 1/2
1 0 0

⎤

⎦ .
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We notice that, in the region J −K+� > 0 and−J −K+� > 0, independently of the sign
of J , the zero-temperature Gibbs measure is pure with only the presence of He3. We show
in all cases that e−βH̄β ∼ ᾱe−βH̄ , where ln(ᾱ) represents the zero-temperature entropy (or
topological entropy) of the set of ground-state configurations (Definition 6). We see in Fig. 3
that ln(ᾱ) > 0 when J = 0 and K ≥�, that is, when the set of ground-state configurations
is strongly degenerate (coexistence of at least two adjacent minimizing cycles, Fig. 4).

The results we present here are essentially one-dimensional as they rely fundamentally
on the existence of a transfer operator. We use the language of ergodic optimization in dy-
namical system in order to better describe the set of ground-state configurations and the set
of zero-temperature Gibbs measures. For infinite-range Hamiltonians, we point out a general
condition in Sects. 2 and 4 that implies the uniqueness of the zero-temperature Gibbs mea-
sure. For finite-range Hamiltonians, we explain in Sects. 3, 5, 6 and 7 a complete algorithm
that describes the phase diagram of the unique zero-temperature Gibbs measure.

We thank the referee for her/his careful reading and the references [1, 27, 29].

2 A Dynamical System Approach

We consider a one-sided transitive subshift of finite type (�+
G,σ ), where S is a finite set of

vertices (or states) and G⊂ S × S is an irreducible directed graph representing the admis-
sible transitions (or hardcore exclusions) from one vertex to another. A point in �+

G , called
configuration, represents a complete state of half of a chain of atoms compatible with the
transitions given by the graph G,

�+
G =

{
x = (xk)k≥0 ∈ SN : (xk, xk+1) ∈G, ∀ k ∈N

}
.

Recall that �+
G is a compact metric space equipped with the distance d(x, y)= 1 if x0 �= y0

and d(x, y) = ( 1
2 )n if x0 = y0, . . . , xn−1 = yn−1 and xn �= yn. The left shift map σ : �+

G →
�+

G plays the role of the space translation,

σ(x0, x1, x2, . . .)= (x1, x2, x3, . . .), ∀x ∈�+
G.

We prefer to work on the one-sided model instead of the two-sided one in order to use the
transfer operator. The two models are mathematically identical but are restricted solely to
one-dimensional problems.

We consider, in this one-dimensional setting, a unique interaction energy function H :
�+

G → R, and assume that H is Hölder or, in other words, that H has infinite range. The
Gibbs measure at positive temperature T = β−1, that we recall below, will be denoted μβH .
More generally, we allow each transition to have a weight that measures the strength of
the constraint. In order to do that, we consider also another Hölder map E : �+

G → R. We
shall introduce the corresponding Gibbs measure μE+βH . The transitivity of (�+

G,σ ) (or the
irreducibility of G) guarantees the uniqueness of the Gibbs measure μE+βH .

We will use the notation x
G→ y to indicate an admissible transition (x, y) ∈G between

two vertices x, y ∈ S and x0
G→ x1

G→ x2
G→ ·· · G→ xn−1 to indicate an admissible path.

Let Cn(x)= [x0, . . . , xn−1] be the set of configurations x ′ ∈ �+
G whose first n symbols are

prescribed x ′0 = x0, x ′1 = x1, . . . , x ′n−1 = xn−1; we also say that Cn(x) is a cylinder of length
n. Let Cn(G)= {Cn(x) : x ∈�+

G} be the set of all cylinders of length n. Let us recall Ruelle’s
definition of the pressure of an observable 
 (which shall be seen as E + βH ).
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Definition 1 Let 
 :�+
G →R be a continuous observable. We call pressure of 
 and topo-

logical entropy

Pres(
) :=max

{
Ent(μ)−

∫

 dμ : μ ∈M(�+

G,σ )

}
,

Ent(�+
G) :=max

{
Ent(μ) : μ ∈M(�+

G,σ )
}
,

where M(�+
G,σ ) denotes the set of σ -invariant Borel probability measures on �+

G , and
Ent(μ) denotes the Kolmogorov-Sinai entropy of σ with respect to μ,

Ent(μ) := lim
n→+∞

1

n

∑

Cn∈Cn(G)

−μ[Cn] lnμ[Cn].

More generally, for any σ -invariant Borel probability measure μ or σ -invariant compact set
�, we call relative pressure with respect to μ or �, respectively,

Pres(
,μ) := Ent(μ)−
∫


 dμ,

Pres�(
) :=max
{
Pres(
,μ) : μ ∈M(�+

G,σ ) and supp(μ)⊂�
}
.

We say that μ ∈M(�+
G,σ ) has relative maximal pressure in � for 
 if

Pres�(
)= Pres(
,μ) and supp(μ)⊂�.

Definition 2 We call Gibbs measure associated with 
 a σ -invariant Borel probability mea-
sure μ
 on �+

G satisfying

μ
[Cn(x)] � exp

(
−

n−1∑

k=0

[

 ◦ σ k(x)+ Pres(
)

]
)

, ∀x ∈�+
G, ∀n≥ 1.

The notation an(x) � bn(x) is a shorthand for C−1an(x) ≤ bn(x) ≤ Can(x) for some con-
stant C > 0 independent of n and x.

Notice that this definition is a typical dynamical system definition or Sinai-Ruelle-Bowen
definition, in contrast to the Dobrushin-Lanford-Ruelle definition of Gibbs measures, as
given in [17], which immediately works in higher dimensions. For more details on a SRB
definition of Gibbs measures in higher dimensions, we refer the reader to [21].

It is known that, for any given Hölder observable 
 : �+
G → R, there exists a unique

Gibbs measure μ
 , which is also the unique σ -invariant Borel probability measure with
maximal pressure:

Pres(
)= Pres(
,μ
) > Pres(
,μ), ∀μ ∈M(�+
G,σ ) \ {μ
}.

For E,H :�+
G →R Hölder observables, we are interesting in the convergence (with respect

to the weak* topology) of μE+βH as β tends to +∞ (or as T = β−1 → 0).

Question 3 What are the possible weak* limits of μE+βH as β tends to +∞ ? Is there a
unique limit? How can one characterize them in an effective way?
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We collect in this section several general facts for arbitrarily Hölder H . We shall show in
the next section how to improve these results when H has finite range. We begin by adopting
a terminology proposed in the Appendix B of [29].

Definition 4 We call zero-temperature Gibbs measure any weak* limit of μE+βH as β tends
to +∞.

An immediate observation tells us that a zero-temperature Gibbs measure is a minimizing
measure in the following sense.

Definition 5 Let H : �+
G → R be a continuous observable. We call minimizing ergodic

value of H (or ground-state energy density) the quantity

H̄ :=min

{∫
H(x)dμ(x) : μ ∈M(�+

G,σ )

}
.

We call minimizing measure any σ -invariant Borel probability measure μmin realizing the
minimum in the previous equality

∫
H(x)dμmin(x) = H̄ . The set of H -minimizing mea-

sures is denoted by Mmin(�
+
G,σ,H).

From Aizenman and Lieb work [1], it is known that in general dimensions any zero-
temperature limit of Gibbs measures has maximal entropy. Hence it is not a surprise that
here a zero-temperature Gibbs measure μ has maximal pressure Pres(E,μ) (or maximal
entropy Ent(μ) for E = 0) among all minimizing measures. In order to explain this fact, it
is convenient to introduce a set �(H) that plays the role of the set of ground-state configu-
rations but which is called the set of H -minimizing non-wandering configurations in ergodic
optimization.

Definition 6 Let H : �+
G → R be a continuous observable. We define the set of H -

minimizing non-wandering configurations (or ground-state configurations) by

�(H) :=
{

x ∈�+
G : ∀ε > 0, ∃ n≥ 1, ∃ z ∈�+

G s.t.

d(x, z) < ε, d(x,σ n(z)) < ε and

∣∣∣∣∣

n−1∑

k=0

[H ◦ σ k(z)− H̄ ]
∣∣∣∣∣< ε

}
.

It is easy to show that �(H) is compact and completely σ -invariant, σ(�(H))=�(H).
We recognize �(H) as the set of ground-state configurations in the following sense. If
H is Hölder, there exists a Hölder function V : �+

G → R (a calibrated sub-action as in
Proposition 13) such that

{∑n−1
k=0 H ◦ σ k(x)= nH̄ + V ◦ σn(x)− V (x), ∀x ∈�(H), ∀n≥ 1,

∑n−1
k=0 H ◦ σ k(y)≥ nH̄ + V ◦ σn(y)− V (y), ∀y ∈�+

G, ∀n≥ 1.

Therefore, up to a coboundary �(x,y) := V (x)− V (y), the energy
∑n−1

k=0 H ◦ σ k(x) of the
configuration x ∈�(H) on n consecutive sites can only increase

n−1∑

k=0

H ◦ σ k(y)−
n−1∑

k=0

H ◦ σ k(x)≥�(σn(y), σ n(x))−�(y,x), ∀y ∈�+
G.
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Moreover, it follows from the result of Radin and Schulman [27] that, for finite-range inter-
actions, the set of ground-state configurations always has periodic configurations. Actually,
it is easy to show that, when H has finite range, �(H) is exactly the closure of its periodic
configurations.

We state in the following proposition that �(H) contains the support of all minimizing
measures and that any invariant measure whose support belongs to �(H) is minimizing.

Proposition 7 [13] Let H : �+
G → R be a Hölder observable. A σ -invariant Borel proba-

bility measure μ is H -minimizing if, and only if, its support supp(μ) is included into �(H):

Mmin(�
+
G,σ,H)= {μ ∈M(�+

G,σ ) : supp(μ)⊂�(H)}.

From the previous discussion, a zero-temperature Gibbs measure is minimizing and has
a support included in �(H). There may exist several minimizing measures even for a finite-
range interaction H (see Sect. 3). The next proposition states that, by freezing the system,
the Gibbs measures accumulate on minimizing measures satisfying a zero-temperature vari-
ational principle. Similar results have been obtained in other contexts (see, for instance, [4]
or [19, 24]).

Proposition 8 [13, 22] Let E,H : �+
G → R be Hölder observables. Then any zero-

temperature Gibbs measure μ∞ is H -minimizing and has a support in �(H). In addition,
μ∞ achieves the maximum of the pressure among all invariant measures in �(H); if E = 0,
μ∞ achieves the maximum of the entropy in �(H). More precisely,

1. Pres(E,μ∞) = Pres�(H)(E) and
∫

H dμ∞ = H̄ . If �(H) supports a unique measure
μmin with maximal pressure P�(H)(E), then {μE+βH }β converges to μmin.

2. Let be H̄β := − 1
β
P (E + βH). Then β(H̄ − H̄β)→ Pres�(H)(E) as β →+∞. In the

physics literature, H̄β is called the free energy and converges to H̄ with speed 1
β

.

3. As β→+∞,
∫
H dμE+βH → H̄ and Pres(E,μE+βH )→ Pres�(H)(E). In the particular

case E = 0, Ent(μβH )→ Ent(�(H)).

Notice that for a generic interaction energy function, {μE+βH }β converges to a unique
minimizing measure as β→+∞.

Proposition 9 [13] For any α > 0, the set of α-Hölder H admitting a unique H -minimizing
probability measure is generic in Cα . Thus {μE+βH }β converges to a unique μ∞ for generic
α-Hölder H .

The uniqueness of the zero-temperature Gibbs measure, which is the content of the pre-
vious proposition, holds for generic continuous interactions too. It is also important to keep
in mind that there are examples of Hölder interactions for which the convergence {μE+βH }β
does not hold (see [10]).

Gibbs measures have a different functional characterization in terms of the Ruelle trans-
fer operator. They are also called equilibrium measures.

Definition 10 We call Ruelle transfer operator associated with a Hölder observable 
 :
�+

G →R the operator L
 acting on Hölder functions f :�+
G →R as follows

L
f (x)=
∑

y:σ(y)=x

e−
(y)f (y), ∀x ∈�+
G,

where the summation is taken among all preimages of x by σ .



134 E. Garibaldi, P. Thieullen

It is well known that, by extending the standard Perron-Frobenius theory for nonnegative
matrices, the Ruelle transfer operator L
 admits similar “right and left eigenvectors” that
we recall in the following proposition.

Proposition 11 [7, 26, 28] Let 
 : �+
G → R be a Hölder observable. Then there exist a

unique left eigenmeasure, or Borel probability measure ν
 on �+
G , a unique normalized

right eigenfunction, or positive Hölder function �
 :�+
G →R, such that

L∗
ν
 = ePres(
)ν
, L
�
 = ePres(
)�
 and
∫

�
 dν
 = 1.

Moreover, μ
 := �
ν
 is a Gibbs measure and the unique σ -invariant probability that
maximizes the pressure for 
 among all σ -invariant probabilities. We call V
 := − 1

β
ln�


the Gibbs potential associated with 
 .

The Gibbs potential VE+βH = − 1
β

ln�E+βH plays the role, at positive temperature, of
the effective potential introduced by W. Chou and R. B. Griffiths in [12, 18] to study ground
states in the Frenkel-Kontorova model. We shall see below in Proposition 13 and Theo-
rem 16 that indeed, in some cases, the Gibbs potential converges to an effective potential as
β →+∞. We have seen in Proposition 8 that H̄β = − 1

β
P (E + βH) converges to H̄ and

that any weak* limit of {μE+βH }β is H -minimizing. It would be interesting to obtain similar
characterizations for limit points of {VE+βH }β or {νE+βH }β . The first result in that direction
is that any limit point of VE+βH is a calibrated sub-action:

Definition 12 Let H :�+
G →R be a continuous observable. We call sub-action with respect

to H any continuous function V :�+
G →R such that

V ◦ σ(x)− V (x)≤H(x)− H̄ , ∀x ∈�+
G.

We call calibrated sub-action any sub-action V which in addition satisfies

V (y)=min
{
V (x)+H(x)− H̄ : x ∈�+

G,σ (x)= y
}
, ∀y ∈�+

G.

Similarly to Proposition 29 of [13], we obtain easily the following proposition.

Proposition 13 Let E,H :�+
G →R be Hölder observables. Let �E+βH := exp(−βVE+βH )

be the right eigenfunction of LE+βH . Then {VE+βH }β is uniformly bounded and has a uni-
form Hölder norm. Moreover, any accumulation function of {VE+βH }β is a calibrated sub-
action with respect to H .

If �(H) supports a unique probability measure μH
min with relative maximal pressure

Pres�(H)(E), then μE+βH → μH
min although Mmin(�

+
G,σ,H) may not be reduced to a single

measure. We do not know whether a similar result is true for the convergence of {VE+βH }β .
We nevertheless show the “projective” convergence of {VE+βH }β in the particular case where
�(H) can be split into disjoint irreducible components with a unique component of maxi-
mal pressure. The splitting up of �(H) into components uses the following notion of Peierls
barrier in the sense of Mather [14, 23].
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Definition 14 Let H :�+
G →R be a Hölder observable. We call Peierls barrier the function

h(x, y) defined on �+
G ×�+

G by

h(x, y) := lim
ε→0

lim inf
n→+∞ Sε

n(x, y),

where

Sε
n(x, y) := inf

{
n−1∑

k=0

(H − H̄ ) ◦ σ k(z) : d(z, x) < ε and d(σ n(z), y) < ε

}
.

The Peierls barrier may be infinite. If x ∈�(H), h(x, y) is finite and Hölder with respect
to y ∈ �+

G . Notice that �(H) = {x ∈ �+
G : h(x, x) = 0}. Let us recall how the minimizing

non-wandering set �(H) can be partitioned into closed invariant sets, which uniquely char-
acterize sub-actions.

Definition 15 [16] We say that two points x, y of �(H) are equivalent, and we write x ∼ y,
whenever h(x, y)+ h(y, x)= 0. Equivalent classes are called irreducible components. Irre-
ducible components are σ -invariant and compact.

We now state the main result of this section.

Theorem 16 Let E,H :�+
G →R be Hölder observables. Assume that �(H)=�0 ∪�1 ∪

· · · ∪�r admits a finite decomposition into disjoint irreducible components �i and

Pres�(H)(E)= Pres�0(E) > Pres�1(E)≥ · · · ≥ Pres�r (E).

Let �E+βH = exp(−βVE+βH ) be the normalized right eigenfunction of the Ruelle transfer
operator LE+βH . Then uniformly in y ∈�+

G , for any fixed x0 ∈�0,

lim
β→+∞VE+βH (y)− VE+βH (x0)= h(x0, y), ∀y ∈�+

G.

Notice that, in the above theorem, {μE+βH }β may not converge to a unique H -
minimizing measure. Indeed, any weak* limit has a support in �0 which may contain many
minimizing measures. Notice also that the convergence of {VE+βH }β (as a sequence of func-
tions) depends only on the converge of {VE+βH (x0)}β for any fixed x0 ∈�0.

3 A Matrix Approach to Ground-State Theory

We say that the interaction energy function H :�+
G → R has finite range if it only depends

on two consecutive symbols H(x)=H(x0, x1). By allowing a larger number of vertices in
another irreducible finite directed graph G′, an energy function of the form H(x0, . . . , xd−1)

can be described by the framework we are going to develop. The main consequence of this
strong assumption on the energy function is that the problem of zero-temperature phase
diagram is reduced to a problem of singular perturbation of matrices of Puiseux type.

We consider a finite state space S and an irreducible directed graph G⊂ S × S weighted

by an energy function {exp[−βH(x, y)]}
x

G→y
, where x, y are particular states in S and x

G→
y denotes an admissible transition given by the graph G. We prefer to introduce a new
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parameter ε := exp(−β), which goes to zero when β tends to +∞, and a one-parameter
family of transfer matrices [Mε(x, y)](x,y)∈S×S , adapted to G, defined by

{
Mε(x, y) := exp[−βH(x, y)] = εH(x,y), ∀(x, y) ∈G,

Mε(x, y) := 0, ∀(x, y) /∈G.

Notice that Mε is a Perron-Frobenius matrix, that is, a matrix with nonnegative entries.
Let λε := ρspec(Mε) > 0 be its spectral radius. Because of the irreducibility of G, λε is an
eigenvalue of multiplicity 1. Let [Lε(x)]x∈S and [Rε(x)]x∈S be the left and right eigenvector
of Mε for the eigenvalue λε ,

∑

x∈S

Lε(x)Mε(x, y)= λεLε(y), ∀y ∈ S,

∑

y∈S

Mε(x, y)Rε(y)= λεRε(x), ∀x ∈ S,

normalized by
∑

x∈S Lε(x)Rε(x) = 1 and
∑

x∈S Rε(x) = 1. Notice that Lε(x) > 0 and
Rε(x) > 0 for all x ∈ S. Let

πε(x) := Lε(x)Rε(x) and Qε(x, y) :=Mε(x, y)
Rε(y)

Rε(x)λε

, ∀x, y ∈ S.

The Ruelle transfer operator used in the dynamical approach of Sect. 2 is strongly related
to a basic eigenvalue problem that we recall in the following remark.

Remark 17 Assume H(x) = H(x0, x1) has finite range. Let �βH : �+
G → R be the

right eigenfunction of LβH and νβH be the left eigenmeasure of LβH . Let μβH (dx) =
�βH (x)νβH (dx) be the normalized Gibbs-equilibrium measure associated with βH . Then

i. �βH (x)= Lε(x0), ∀ x = (x0, x1, . . .) ∈�+
G .

ii. νβH ([x0])=Rε(x0), ∀ x0 ∈ S.
iii. μβH is a Markov chain on �+

G with initial law πε and transition matrix Qε . For any
cylinder of size d + 1, one has

μβH ([x0, x1, . . . , xd ])= Lε(x0)

[
d−1∏

i=0

Mε(xi, xi+1)

]
Rε(xd)/λ

d
ε .

We are interested in describing the possible limits of {(πε,Qε)}ε→0 that we also call
zero-temperature Gibbs measures. In an equivalent way, we want to describe all possi-
ble limits of the eigenvalue {λε}ε→0 and the projective eigenvectors {Lε(x)/Lε(y)}ε→0 and
{Rε(x)/Rε(y)}ε→0. As in the dynamical system approach, the zero-temperature Gibbs mea-
sures are localized in a minimizing subgraph similar to the minimizing non-wandering set
�(H) recalled in Definition 6. We first begin by restricting the class of the one-parameter
family of matrices we want to study. We introduce the notion of one-parameter family of
Puiseux type in two steps.

Definition 18 Let G⊂ S × S be a (not necessarily irreducible) directed graph and {Mε}ε>0

be a one-parameter family of matrices indexed by S. The graph G is said to be weighted by
Mε if Mε(x, y)= 0 whenever (x, y) /∈G. The weighted graph (G,Mε) is said to be of exact
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Puiseux type if there exist a nonnegative matrix [A(x,y)]x,y∈S and an extended real-valued
matrix [a(x, y)]x,y∈S such that

i. ∀ (x, y) /∈G, A(x,y)= 0, a(x, y)=+∞ and Mε(x, y)= 0.
ii. ∀ (x, y) ∈G, A(x,y) > 0, a(x, y) ∈R and

Mε(x, y)=A(x,y)εa(x,y) + o(εa(x,y)).

We say shortly Mε ∼Aεa .

We call G-path of length n≥ 1 in S any sequence (x0, . . . , xn) such that (xk, xk+1) ∈G,
∀k = 0, . . . , n − 1. The support of a G-path (x0, . . . , xn) is the subset {(xk, xk+1) : k =
0, . . . , n − 1} ⊂ G. A cycle of length n ≥ 1 is a G-path (x0, . . . , xn) in S such that
xn = x0. We call off-diagonal cycle any cycle (x0, x1, . . . , xn) such that xi �= xi+1 for
all i = 0, . . . , n − 1. A simple cycle is a cycle (x0, . . . , xn) such that xi �= xj for all
0≤ i �= j < n. A loop is a cycle (x0, x1) of length 1 where (x0, x1) ∈G and x0 = x1. We call
mean exponent of a cycle the real number 1

n

∑n−1
i=0 a(xi, xi+1).

Definition 19 Suppose that (G,Mε) is an irreducible weighted graph of exact Puiseux type
with Mε ∼Aεa .

i. We call minimizing mean exponent of (G,Mε) the real number

ā :=min

{
1

n

n−1∑

i=0

a(xi, xi+1) : n≥ 1, (x0, . . . , xn) is a cycle

}
.

We call minimizing cycle any cycle of mean exponent ā.
ii. We call minimizing subgraph the graph Gmin ⊂ Smin×Smin, where Smin is the set of states

belonging to some minimizing cycle and Gmin is the union of supports of all minimizing
cycles.

iii. We call dominant spectral coefficient of Mε the spectral radius of Amin

ᾱ := sup{|λ| : λ ∈ spec(Amin)} = ρspec(Amin),

where Amin = [A(x,y)1Gmin(x, y)]x,y∈S . Notice that ᾱ > 0.

Notice that ā may be obtained by minimizing on the finite set of simple cycles. Although
we start with an irreducible graph, Gmin may not be any more irreducible; G is nevertheless
semi-irreducible as explained below.

Definition 20 A graph G ⊂ S × S is said to be semi-irreducible if there exist a partition
S = S1∪ · · · ∪Sd and irreducible subgraphs Gi ⊂ Si ×Si such that G=G1 ∪ · · · ∪Gd . Note
that in G there is no transition from xi ∈ Si to xj ∈ Sj for any 1≤ i �= j ≤ d . The subgraphs
Gi are called the irreducible components of G.

Lemma 21 Let (G,Mε) be an irreducible weighted graph of exact Puiseux type. Then the
minimizing subgraph Gmin is semi-irreducible.

In the language of dynamical system, when (G,Mε) is of exact Puiseux type, Gmin de-
scribes the minimizing non-wandering set �(a) introduced in Definition 6. More precisely:
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Lemma 22 Let G be an irreducible directed graph and E,H : �+
G → R be finite-range

observables. Let Mε =Aεa = [exp(E(x, y))εH(x,y)1G(x, y)]x,y∈S . Then (G,Mε) is of exact
Puiseux type and satisfies:

i. The minimizing mean exponent of (G,Mε) is equal to the minimizing ergodic value of
H , namely, ā = H̄ .

ii. The minimizing non-wandering set �(H) is a subshift of finite type

�(H)= {x ∈�+
G : (xk, xk+1) ∈Gmin, ∀ k ≥ 0} =�+

Gmin
.

iii. The splitting up of �(H) into irreducible components (see Definition 15) corresponds
to the splitting up of Gmin into irreducible components {Gi}di=1:

�(H)=�1(H)∪ · · · ∪�d(H), where

�i(H) := {x ∈�+
G : (xk, xk+1) ∈Gi, ∀k ≥ 0}.

iv. The relative pressure of E to �(H) is related to the dominant spectral coefficient of Mε

by ᾱ = exp[Pres�(H)(E)].

We now complete the notion of one-parameter family of Puiseux type.

Definition 23 Let G⊂ S × S be an irreducible directed graph. We call off-diagonal graph
the subgraph of G defined by Goff := G \ {(x, x) : x ∈ S}. Notice that Goff is again irre-
ducible. If (G,Mε) is a weighted graph, we denote Moff

ε (x, y) :=Mε(x, y)1Goff (x, y).

Definition 24 Following the Definition 18, we say that an irreducible weighted graph
(G,Mε) is of general Puiseux type if

i. The irreducible off-diagonal weighted graph (Goff,Moff
ε ) is of exact Puiseux type. Let

āoff be the minimizing mean exponent of (Goff ,Moff
ε ).

ii. For each (x, y) /∈G, A(x,y)= 0 and a(x, y)=+∞ (by convention).
iii. For all x ∈ S, (x, x) ∈G and one of the two estimates holds

Mε(x, x)= o(εāoff) (by convention: A(x,x)= 0, a(x, x)=+∞) or

Mε(x, x)=A(x,x)εa(x,x) + o(εa(x,x)), A(x, x) > 0, a(x, x)≤ āoff.

Let G∗ :=G \ {(x, x) ∈G : A(x,x)= 0} and M∗
ε (x, y) :=Mε(x, y)1G∗(x, y). Notice that

G∗ is an irreducible directed graph and (G∗,M∗
ε ) becomes a weighted graph of exact

Puiseux type. We call minimizing mean exponent ā of (G,Mε) the minimizing mean ex-
ponent of (G∗,M∗

ε ). Let G∗min be the minimizing subgraph of G∗ and

A∗min := [A(x,y)1G∗min
(x, y)]x,y∈S.

We call dominant spectral coefficient ᾱ the spectral radius of A∗min. We call dominant sub-
graph Ḡ the subgraph of G defined by the union of all irreducible components of G∗min of
dominant spectral coefficient.

Notice that the only difference between the two notions of Puiseux type is that, in the
weakest definition, Mε may possess a diagonal term (positive or not) of the form o(εāoff).
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We will see soon that these terms are negligible in the computation of the spectral radius
of Mε . Notice also that

ā =min{āoff, a(x, x) : x ∈ S}.
From Lemma 21, the minimizing subgraph G∗min is equal to a disjoint union of irreducible

subgraphs: G∗min =G∗1∪· · ·∪G∗d , where S1∪· · ·∪Sd is a partition of S∗min and G∗i ⊂ Si×Si .
By just permutating indices, we may consider that the first r subgraphs G∗i have dominant
spectral coefficient ᾱ. In order to do that, we adapt the notation and we say that Ḡi ⊂ S̄i× S̄i

has dominant spectral coefficient if the restricted matrix Aii
min = [A(x,y)1Ḡi

(x, y)]x,y∈S̄i
has

spectral radius ᾱ.

Main notations 25 Suppose (G,Mε) is an irreducible weighted graph of general Puiseux
type. Let Ḡ1 ⊂ S̄1× S̄1, . . . , Ḡr ⊂ S̄r× S̄r , 1≤ r ≤ d , be the set of irreducible components of
G∗min of dominant spectral coefficient ᾱ. Let Ḡ := Ḡ1 ∪ · · · ∪ Ḡr be the dominant subgraph,
and S̄ := S̄1 ∪ · · · ∪ S̄r be the set of vertices of Ḡ. Denote G0 =G \ Ḡ and S0 = S \ S̄. We
write Mε as a (r + 1)× (r + 1) block matrix in the following way

Mε =
[⊕r

i,j=1 Mij
ε

⊕r

i=1 Mi0
ε⊕r

j=1 M0j
ε M00

ε

]
,

M00
ε = [Mε(x, y)]x,y∈S0 , Mi0

ε = [Mε(x, y)]x∈S̄i ,y∈S0
, M0j

ε = [Mε(x, y)]x∈S0,y∈S̄j
,

and Mij
ε = [Mε(x, y)]x,y∈S̄i×S̄j

, ∀1≤ i, j ≤ r.

We call dominant matrix Ā the diagonal matrix obtained by keeping only the submatrices
Aii

min with dominant spectral radius

Ā := [A(x,y)1Ḡ(x, y)]x,y∈S̄ =
⎡

⎢⎣
Ā11 · · · 0
...

. . .
...

0 · · · Ārr

⎤

⎥⎦ ,

Āii = [A(x,y)1Ḡi
(x, y)]x,y∈S̄i

=Aii
min, ∀i = 1, . . . , r.

By convention all matrices Āij , 1≤ i �= j ≤ r , are equal to 0. Notice that

λε := sup{|λ| : λ ∈ spec(Mε)} = ρspec(Mε)

is an eigenvalue of multiplicity 1 and unique on the circle {|λ| = λε}. Let Lε and Rε be the
left and right eigenvectors of Mε associated with the largest eigenvalue λε

Lε =
r⊕

i=1

Li
ε ⊕L0

ε , Rε =
r⊕

i=1

Ri
ε ⊕R0

ε ,

∑

x∈S

Lε(x)Rε(x)= 1, and
∑

x∈S

Rε(x)= 1,

where Lε is a row vector and Rε a column vector. Consider thus



140 E. Garibaldi, P. Thieullen

πε(x) :=Lε(x)Rε(x), Qε(x, y) := Mε(x, y)Rε(y)

λεRε(x)
,

and με(x, y) := πε(x)Qε(x, y).

For each i = 1, . . . , r , ᾱ = ρspec(Ā
ii ) is an eigenvalue of multiplicity 1 admitting a unique

positive left row eigenvector [L̄i(x)]x∈S̄i
and a unique right column eigenvector [R̄i(x)]x∈S̄i

satisfying

L̄iĀii = ᾱ L̄i , Āii R̄i = ᾱ R̄i ,

∑

x∈S̄i

L̄i (x)R̄i(x)= 1, and
∑

x∈S̄i

R̄i(x)= 1.

Let π̄ i , Q̄ii and μ̄i be defined on Ḡi as follows

π̄ i(x) := L̄i(x)R̄i(x), Q̄ii(x, y) := Āii (x, y)R̄i(y)

ᾱR̄i(x)
,

μ̄i(x, y) := π̄ i(x)Q̄ii(x, y).

We extend μ̄i on G \ Ḡi by 0.

In the language of dynamical system, the main known result in this setting is recalled in
the following theorem.

Theorem 26 [8, 11, 22] Let E,H :�+
G →R be finite-range observables defined on a tran-

sitive subshift of finite type �+
G given by an irreducible directed graph G. Let μE+βH be the

Gibbs measure associated with E + βH . For ε = e−β , consider Mε = [A(x,y)εa(x,y)]x,y∈S

the transfer matrix, where
{

a(x, y)=H(x,y) and A(x,y)= eE(x,y), ∀(x, y) ∈G,

a(x, y)=+∞ and A(x,y)= 0, ∀(x, y) /∈G.

We recall that μE+βH weights each cylinder [x0, . . . , xn] ∈ Cn+1(G) as

μE+βH ([x0, . . . , xn])= Lε(x0)

[
n−1∏

k=0

Mε(xk, xk+1)

]
Rε(xn)/λ

n
ε .

Let Ḡ1, . . . , Ḡr be the dominant irreducible components of Gmin. Let μ̄i be the Gibbs mea-
sure associated with E restricted to �+

Ḡi
,

μ̄i([x0, . . . , xn])= L̄i(x0)

[
n−1∏

k=0

Āii (xk, xk+1)

]
R̄i(xn)/ᾱ

n, ∀[x0, . . . , xn] ∈ Cn+1(Ḡi).

Then, the family {μE+βH }β converges to

μ
E,H
min := lim

β→+∞μE+βH =
r∑

i=1

c
E,H
i μ̄i ,

where c
E,H
i = μ

E,H
min (Ḡi)≥ 0 and

∑r

i=1 c
E,H
i = 1.
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The existence of the limit in Theorem 26 is the main point and was proved by Brémont in
[8] using semi-algebraic techniques. Leplaideur in [22] gave a dynamical proof and has iden-
tified the limit as a barycenter of minimizing measure of maximal pressure. Akian, Bapat
and Gaubert (see [2, 3]) using min-plus methods have obtained similar results. Chazottes,
Gambaudo and Ugalde in [11] gave a more algorithmic proof. Nekhoroshev has obtained
[25] the convergence to a zero-temperature Gibbs measure for generic one-dimensional
spin systems with nearest-neighbors interaction. Chazottes and Hochman in [10] showed
a one-dimensional counterexample for the convergence of Gibbs measures associated with
an infinite-range interaction. They also showed there a tridimensional counterexample for a
finite-range Hamiltonian H .

We intend to partially extend Theorem 26 to the case of irreducible weighted graphs
(G,Mε) of general Puiseux type. We explain the first two steps of an algorithm based on
Puiseux-series expansions. These two steps are enough to describe the limits limε→0 πε =
πmin and limε→0 Qε =Qmin for matrices of small dimension. The main difficulty is to iden-
tify which irreducible components of G∗min support μmin. The first step consists in writing
Mε in a normal form; this step makes use of the notion of correctors (equivalent to the notion
of sub-actions introduced in Definition 12). The second step consists in aggregating all the
states in the same irreducible component, obtaining thus a new weighted graph with a lower
dimension.

Definition 27 Suppose that (G,Mε) is a weighted graph of general Puiseux type, Mε ∼
Aεa , G∗min is the minimizing subgraph of G∗, and ā is the minimizing mean exponent of
(G,Mε). We call corrector any function v : S→R such that

a(x, y)≥ v(y)− v(x)+ ā, ∀ (x, y) ∈G∗.

The corrector is said to be backward or forward calibrated if

v(y)+ ā = min
x:(x,y)∈G∗

{v(x)+ a(x, y)}, ∀y ∈ S (backward),

v(x)− ā = max
y:(x,y)∈G∗

{v(y)− a(x, y)}, ∀x ∈ S (forward).

It is said to be separating if

a(x, y)= v(y)− v(x)+ ā, ∀(x, y) ∈G∗min,

a(x, y) > v(y)− v(x)+ ā, ∀(x, y) ∈G∗ \G∗min.

It is easy to show that separating correctors exist. We just want to make clear that this
notion is a key part to understand the singular perturbations of Perron matrices.

Lemma 28 The notations being given in Definition 27, there exist (not necessarily unique)
backward or forward calibrated correctors. There exist (not necessarily unique) separating
correctors. The difference of two correctors is constant on each irreducible component.

The first step of the algorithm is described below.

Algorithm 29 (I. Reduction to a normal form) Let (G,Mε) be an irreducible weighted
graph of general Puiseux type, Mε ∼ Aεa . From Main notations 25, recall the partition of
S into dominant and non dominant indices: S =⋃r

i=1 S̄i ∪ S0. For v : S→ R a separating
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corrector, denote �ε(v) := diag[εv(x) : x ∈ S] and ã(x, y) := a(x, y)+ v(x)− v(y)− ā ≥ 0
for all (x, y) ∈G∗. Then

• M̃ε :=�ε(v)Mε�ε(v)−1ε−ā =A∗min + Ñε and Ñε = o(1);
• A∗min =

[
Ā 0
0 D

]
, where Ā := diag[Āii : i = 1, . . . , r] is the diagonal matrix of dominant ma-

trices Āii , and D is a nonnegative matrix indexed by S0 such that ρspec(D) < ρspec(Ā
11)=

· · · = ρspec(Ā
rr );

• (Goff , M̃off
ε ) is an irreducible weighted graph of exact Puiseux type;

• ∀(x, y) ∈Goff , M̃ε(x, y)∼A(x,y)εã(x,y), A(x,y) > 0, ã(x, y)≥ 0.

Wa say that (G, M̃ε) is a normal form of (G,Mε). Let L̃ε and R̃ε denote the left and right
eigenvectors of M̃ε for λ̃ε := ρspec(M̃ε). Then λ̃ε = λεε

−ā and

L̃ε(x)= ε−v(x)Lε(x) and R̃ε(x)= εv(x)Rε(x), ∀x ∈ S.

The following proposition extends Proposition 8 in the sense that we admit a more gen-
eral form of transfer matrix.

Proposition 30 Let (G,Mε) be an irreducible weighted graph of general Puiseux type.
Then

i. λε ∼ ᾱεā ;
ii. με(x, y)→ 0 for all (x, y) /∈ Ḡ, πε(x)→ 0 for all x ∈ S0;

iii. any accumulation measure μ̄ of (με)ε>0 is of the form μ̄=∑r

i=1 μ̄(Ḡi)μ̄i .

We recover the fact that, if G∗min admits a unique irreducible component of dominant
spectral coefficient (r = 1), then με → μ̄1, πε(x)→ π̄1(x) for all x ∈ S̄1 and πε(x)→ 0
elsewhere.

The second step of the algorithm is an operation of aggregation.

Algorithm 31 (II. Reduction to an aggregated form) Let (G,Mε) be an irreducible weighted
graph of general Puiseux type. Assume that (G, M̃ε) is a normal form of (G,Mε). We write

M̃ε =
[⊕r

i,j=1 M̃ij
ε

⊕r

i=1 M̃i0
ε⊕r

j=1 M̃0j
ε M̃00

ε

]
=
[
Ā 0
0 D

]
+ Ñε.

(Notice that Ā(x, y)=A(x,y)1ã(x,y)=0 for all x, y ∈ S̄ = S̄1 ∪ · · · ∪ S̄r .) The right eigenvec-
tor R̃ε is solution of the system

{∑r

j=1 M̃ij
ε R̃j

ε + M̃i0
ε R̃0

ε = λ̃εR̃
i
ε, ∀i = 1, . . . , r,

∑r

j=1 M̃0j
ε R̃j

ε + M̃00
ε R̃0

ε = λ̃εR̃
0
ε .

As ρspec(M̃
00
ε )→ ρspec(D) < ᾱ ∼ λ̃ε , R̃0

ε can be written linearly with respect to R̃i
ε . We thus

obtain
r∑

j=1

(
M̃ij

ε + M̃i0
ε (λ̃ε − M̃00

ε )−1M̃0j
ε

)
R̃j

ε = λ̃εR̃
i
ε .

We take the scalar product of each equation by the left eigenvector L̄i . We extract the dom-
inant term Ā and obtain a new weighted graph (G(1),M(1)

ε ) indexed by S(1) := {1, . . . , r}
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defined in the following way. For i �= j , let P(i, j) denote the set of G-admissible paths
x := (x0, . . . , xn) such that n≥ 1, x0 ∈ S̄i , x1, . . . , xn−1 ∈ S0 and xn ∈ S̄j . Then

• for all i �= j , (i, j) ∈G(1) if, and only if, P(i, j) �= ∅;
• for all i = 1, . . . , r , (i, i) ∈G(1) (by convention);

• M(1)
ε (i, j)= L̄i(Ñ ij

ε + M̃i0
ε (λ̃ε − M̃00

ε )−1M̃0j
ε )

R̃
j
ε

L̄j R̃
j
ε

.

The new eigenvalue problem is related to the previous one by

r∑

j=1

M(1)
ε (i, j)R(1)

ε (j)= (λ̃ε − ᾱ)R(1)
ε (i), R(1)

ε (i)= L̄iR̃i
ε, ∀i = 1, . . . , r.

We say that (G(1),M(1)
ε ) is an aggregated form of (G,Mε). Note that

∑r

i=1 R(1)
ε (i) may not

be equal to 1.

Proposition 32 Let (G,Mε) be an irreducible weighted graph of general Puiseux type.
Let (G(1),M(1)

ε ) be its aggregated form defined by the separating corrector v : S → R. If
ã(x, y) = a(x, y) + v(x) − v(y) − ā for all (x, y) ∈ G∗ and x = (x0, . . . , xn) belongs to
P(i, j), denote ã(x) :=∑n−1

i=0 ã(xi, xi+1). Then

i. (G(1)off ,M(1)off
ε ) is an irreducible weighted graph of exact Puiseux type, with M(1)off

ε ∼
A(1)εa(1)

, where, for all (i, j) ∈G(1)off ,

a(1)(i, j) :=min
{
ã(x) : x ∈ P(i, j)

}
and

A(1)(i, j) :=
∑

x=(x0,...,xn)∈P(i,j)

ã(x)=a(1)(i,j)

L̄i(x0)
∏n−1

k=0 A(xk, xk+1)R̄
j (xn)

ᾱn(x)−1
;

ii. for all i = 1, . . . , r and x, y ∈ S̄i ,

Li
ε(x)

Li
ε(y)

∼ εv(x)

εv(y)

L̄i(x)

L̄i(y)
, and

Ri
ε(x)

Ri
ε(y)

∼ ε−v(x)

ε−v(y)

R̄i(x)

R̄i(y)
;

iii. for all i �= j ∈ {1, . . . , r} and x ∈ S̄i ,

Qε(x, y)→ 0, ∀y ∈ S̄j ∪ S0, Qε(x, y)→ Q̄ii(x, y), ∀y ∈ S̄i .

Notice that no estimate is given in the previous proposition for the quotients Ri
ε(x)/Rj

ε (y)

if x ∈ S̄i and y ∈ S̄j .

Algorithm 33 (III. Induction) Assume by induction one can prove

R(1)
ε (i)

R
(1)
ε (j)

∼ γ (1)(i, j)εc(1)(i,j), ∀i = 1, . . . , r,

for some real coefficients γ (1)(i, j) = γ (1)(j, i)−1 > 0 and c(1)(i, j) = −c(1)(j, i). Notice
that Proposition 32.ii easily implies

R̃i
ε(x)

R
(1)
ε (i)

∼ R̄i(x)

L̄iR̄i
= R̄i(x), ∀i = 1, . . . , r, ∀x ∈ S̄i .
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Let G′ be the graph containing either (x, x) for x ∈ S0 or (x0, xn) if (x0, . . . , xn) is a path
of G ∩ (S0 × S0) such that D(xk, xk + 1) > 0. Let M ′

ε = (λε − M̃00
ε )−1. Then (G′,M ′

ε) is a
weighted graph of exact Puiseux type (see Lemma 49). It follows that

R̃0
ε (x)

R
(1)
ε (1)

=
r∑

j=1

(λ̃ε − M̃00
ε )−1M̃0j

ε

R̃j
ε

R
(1)
ε (1)

(x)∼ γ (1)(x)εc(1)(x)

for some coefficients γ (1)(x) > 0 and c(1)(x) ∈R. One thus may obtain

Rε(x)

Rε(y)
∼ γ (x, y)εc(x,y), ∀x, y ∈ S,

for some real coefficients γ (x, y)= γ (y, x)−1 > 0 and c(x, y)=−c(y, x). The normaliza-
tion

∑
x∈S Rε(x)= 1 then implies

Rε(x)= 1
∑

y∈S
Rε(y)

Rε(x)

∼ ρ(x)εr(x), ∀x ∈ S, with

ρ(x) :=
( ∑

y=argmaxc(x,y)

γ (y, x)

)−1

and r(x) :=max
y∈S

c(x, y).

Similar equivalences can be written for Lε(x) and Qε(x, y). In particular, the limits
limε→0 πε(x) and limε→0 Qε(x, y) exist for all x, y ∈ S.

4 Proofs of Results Stated in Sect. 2

We begin by proving the results of Sect. 2 for a transitive subshift of finite type (�+
G,σ )

defined by an irreducible directed graph G on a finite state space S. Let E,H : �+
G → R

be two Hölder functions. Proposition 8 has been noticed many times as in [13, 22]. We
nevertheless give the proof of this proposition in order to point out the following inequalities.

Lemma 34 For any β > 0, Pres�(H)(E) ≤ Pres(E + βH)+ βH̄ ≤ Pres(E). If μE+βH is
the Gibbs-equilibrium measure of E + βH , then

0≤ β

(∫
H dμE+βH − H̄

)
≤ Pres(E)− Pres�(H)(E), and

Pres�(H)(E)≤ Ent(μE+βH )−
∫

E dμE+βH .

Proof On the one hand, if μmin is any H -minimizing probability with relative maximal
pressure in �(H), then

Pres�(H)(E)− βH̄ = Ent(μmin)−
∫

E dμ− βH̄

= Ent(μmin)−
∫

(E + βH)dμmin ≤ Pres(E + βH).
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On the other hand,

Pres(E + βH)= Ent(μE+βH )−
∫

(E + βH)dμE+βH , either

≤ Ent(μE+βH )−
∫

E dμE+βH − βH̄ , or

≤ Pres(E)− β

∫
H dμE+βH ≤ Pres(E)− βH̄ . �

Proof of Proposition 8 We first remark

0≤
∫

H dμE+βH − H̄ ≤ 1

β
[Pres(E)− Pres�(H)(E)]

implies that {∫H dμE+βH }β converges to H̄ as β → +∞ and that any weak* limit of
{μE+βH }β is actually minimizing for H . Let μ∞ be a weak* accumulation probability. We
next observe that the upper semi-continuity of the entropy map β �→ Ent(μE+βH ) implies

Pres�(H)(E)≥ Ent(μ∞)−
∫

E dμ∞

≥ lim sup
β→+∞

(
Ent(μE+βH )−

∫
E dμE+βH

)
≥ Pres�(H)(E).

All inequalities in the previous estimate are therefore equalities and lim sup should be un-
derstood as a limit. �

The rest of this part is now devoted to the proof of Theorem 16. We first give some
complements on the Peierls barrier. As usual, define the Birkhoff sum of an observable

 :�+

G →R as

Sn
(x)=
n−1∑

k=0


 ◦ σ k(x), ∀x ∈�+
G.

Lemma 35 Let h(x, y) be the Peierls barrier introduced in Definition 14.

i. The function h :�+
G ×�+

G →R∪ {+∞} is lower semi-continuous.
ii. If V :�+

G →R is a continuous sub-action, V (y)− V (x)≤ h(x, y).
iii. For any x ∈�(H), h(x, ·) :�+

G →R is Hölder (and finite).
iv. For any x, y, z ∈�+

G , h(x, z)≤ h(x, y)+ h(y, z).
v. For any y ∈�+

G , h(·, y) :�+
G →R∪ {+∞} is a coboundary of H − H̄ ,

(H − H̄ )(x)+ h(σ(x), y)= h(x, y), ∀x, y ∈�+
G.

vi. For any x ∈�+
G , σn(x) ∈�(H)⇒ h(x,σ n(x))= Sn(H − H̄ )(x).

Proof Items i, ii, iii and iv are well known and have been discussed, for instance, in [13, 15,
16].

Item v. Suppose ε ∈ (0,1). If z′ is close to σ(x), d(z′, σ (x)) < ε, one can find z

close to x, d(z, x) < ε/2, such that σ(z)= z′. Hence, if osc1(H,η) := sup{H(x)−H(y) :



146 E. Garibaldi, P. Thieullen

d(x, y)≤ η}, then

S
ε/2
n+1(x, y)≤ (H − H̄ )(x)+ Sε

n(σ (x), y)+ osc1(H, ε/2).

Conversely, if d(z, x) < ε, then d(σ (z), σ (x)) < 2ε. Therefore

Sε
n+1(x, y)≥ (H − H̄ )(x)+ S2ε

n (σ (x), y)− osc1(H, ε).

Item v is proved by taking lim infn→+∞ first and limε→0 afterwards.
Item vi. From the previous item, we have by induction

Sn(H − H̄ )(x)+ h(σn(x), y)= h(x, y).

If y = σn(x) ∈�(H), then h(y, y)= 0 and item vi is proved. �

From now on the minimizing non-wandering set �(H) can be decomposed into a disjoint
union of irreducible components �(H) = �0 ∪ · · · ∪ �r (see Definition 15). Each �i is
necessarily closed and invariant. We fixed once for all x∗i ∈ �i . We recall that �i = {x ∈
�+

G : h(x, x∗i )+ h(x∗i , x)= 0} and that, for any i �= j , h(x∗i , x
∗
j )+ h(x∗j , x

∗
i ) > 0.

Lemma 36 Assume �(H)=�0 ∪ · · · ∪�r is a disjoint union of irreducible components.
Let V :�+

G →R be any continuous sub-action. Then

i. The quantities h̄V (i, j) := h(x∗i , x
∗
j )−V (x∗j )+V (x∗i ) are nonnegative and independent

of the choice of x∗i ∈�i .
ii. h̄V (i, i)= 0 for all i = 0,1, . . . , r .

iii. If h̄V (0, j) = 0 for all j = 1, . . . , r and V is a calibrated sub-action, then V (y) −
V (x)= h(x, y) for all x ∈�0 and y ∈�+

G , that is, V is unique provided V (x0) is known
for some x0 ∈�0.

Proof Item i. Let hV (x, y) := h(x, y)− V (y)+ V (x)≥ 0 for all x, y ∈�+
G . Hence, x ∼ y

if, and only if, hV (x, y)+ hV (y, x) = 0 if, and only if, hV (x, y) = hV (y, x)= 0. Suppose
x, x ′, y, y ′ ∈�(H) satisfy x ∼ x ′ and y ∼ y ′. Because of Lemma 35.iv,

hV (x, y)≤ hV (x, x ′)+ hV (x ′, y)= hV (x ′, y).

Equivalently hV (x ′, y) ≤ hV (x, y) and thus hV (x ′, y) = hV (x, y). For the same reason,
hV (x ′, y)= hV (x ′, y ′). We just have proved hV (x, y)= hV (x ′, y ′).

Item ii. It is immediate from the definition of h̄V .
Item iii. From [5, 15], calibrated sub-actions have the following characterization V (y)=

min{V (x)+ h(x, y) : x ∈ �(H)} for all y ∈ �+
G . Then, for any fixed x0 ∈ �0, on the one

hand,

V (y)= min
j=0,...,r

min
x∈�j

[V (x)+ h(x, y)]

≥ min
j=0,...,r

min
x∈�j

[V (x)− V (x0)+ h(x, x0)] + V (x0)+ h(x0, y)

= V (x0)+ h(x0, y).

On the other hand, because V is a sub-action, h(x0, y) ≥ V (y) − V (x0). We have proved
that V (y)= V (x)+ h(x, y) for all x ∈�0 and y ∈�+

G . �
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Let �E+βH = exp(−βVE+βH ) and νE+βh be, respectively, the eigenfunction and the
eigenmeasure of the Ruelle transfer operator LE+βH , normalized by

∫
�E+βH dνE+βH = 1.

We know that {VE+βH }β has uniform sup-norm and uniform Hölder norm. Let V∞ be any
accumulation point in the C0 topology. Proposition 13 tells us that V∞ is calibrated. We as-
sume that Pres�0(E) > Pres�1∪···∪�r (E). We want to prove that V∞(y)− V∞(x)= h(x, y)

for any x ∈�0 and y ∈�+
G , which will show that, for any fixed x0 ∈�0,

VE+βH (y)− VE+βH (x0)→ V∞(y)− V∞(x0), uniformly in y ∈�+
G.

That convergence will indeed follow from Lemma 36.iii and the next lemma.

Lemma 37 Let V : �+
G → R be any sub-action and h̄V (i, j) be defined as in Lemma 36.

Assume, for any j = 1, . . . , r , there exists i = 0,1, . . . , r , i �= j , such that h̄V (i, j)= 0. Then
h̄V (0, j)= 0 for all j = 1, . . . , r .

Proof Assume by contradiction that h̄V (0, j1) > 0 for some j1 = 1, . . . , r . Define J := {j =
1, . . . , r : h̄V (0, j) > 0}. Notice that if j1 ∈ J and h̄V (j2, j1)= 0 for some j2 = 0,1, . . . , r ,
j2 �= j1, then necessarily j2 �= 0 and j2 ∈ J . By hypothesis, one can therefore construct a
sequence j1, j2, . . . ∈ J such that

· · · = h̄V (j3, j2)= h̄V (j2, j1)= 0 and jk+1 �= jk.

Because the number of irreducible components is finite, there exist two distinct indices
s < t such that h̄V (jt , jt−1) = · · · = h̄V (js+1, js) = 0 and js = jt . We obtain, for instance,
h̄V (js, js+1)= 0= h̄V (js+1, js), which is in contradiction with �js+1 �=�js . �

In order to apply the initial assumption of Lemma 37, we fix from now on j = 1, . . . , r ,
�̃ = �j and �̄ = ⋃

i �=j �i . Clearly, �̄ and �̃ are disjoint closed invariant sets and
Pres�̄(E) > Pres�̃(E). We want to show that

min{h(x, y)− V∞(y)+ V∞(x) : x ∈ �̄ and y ∈ �̃} = 0.

We begin by introducing some notations.

Notations 38 Let V :�+
G →R be any Hölder sub-action. Consider the function

hV (x, y) := h(x, y)− V (y)+ V (x)≥ 0, ∀x, y ∈�+
G,

which is the Peierls barrier of the observable HV :=H − H̄ − V ◦ σ + V ≥ 0. Assume that
�(H) = �̄ ∪ �̃ is a disjoint union of two closed σ -invariant sets with �̃ irreducible. For
ε > 0, denote

KV (�̃, ε) := {x ∈�+
G : ∃ y ∈ �̃ s.t. hV (x, y)≤ ε}.

We will need to approximate Pres�̃(E) by the pressure of E restricted to transitive sub-
shifts of finite type �̃d ⊃ �̃ which decrease to �̃. In order to introduce them, the following
notion will be useful.

Definition 39 A closed σ -invariant set �̃ ⊂ �+
G is said to be quasi-transitive if, for any

x, y ∈ �̃, for any ε > 0, there exist z ∈�+
G and an integer n≥ 0 such that

d(z, x) < ε, d(σ n(z), y) < ε and d(σ k(z), �̃) < ε, ∀k = 0,1, . . . , n.
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Lemma 40 Any isolated irreducible component �̃ of �(H) (there exists an open set Ũ

containing �̃ such that Ũ ∩�(H)= �̃) is quasi-transitive.

Proof Let V be any Hölder separating sub-action, namely, a Hölder sub-action such that
H−1

V (0)=�(H) (for details, see [16]). For ε > 0, let Uε and Ũε be neighborhoods of size
ε of �(H) and �̃, respectively. Assume ε is sufficiently small enough so that if z ∈ Ũε and
k ≥ 1 is the first time such that σ k−1(z) ∈ Ũε and σ k(z) /∈ Ũε , then σ k(z) /∈ Uε . Let η > 0
sufficiently small enough so that {z ∈�+

G :HV (z) < η} ⊂ Uε . Since �̃ is irreducible, given
x, y ∈ �̃, there exist infinitely many positive integers n and points zn ∈�+

G such that

d(zn, x) < ε, d(σ n(zn), y) < ε and SnHV (zn) < η.

Since zn ∈ Ũε and HV ◦ σ k(zn) < η, then σ k(zn) ∈ Ũε , ∀k = 0,1, . . . , n. �

Lemma 41 Let �̃ be a quasi-transitive closed σ -invariant set. Let Ũd be the union of all
cylinders B = [x0, x1, . . . , xd−1] of length d such that B ∩ �̃ �= ∅. Consider �̃d = {x ∈�+

G :
σn(x) ∈ Ũd , ∀ n≥ 0} ⊃ �̃. Then

i. (�̃d, σ ) is bi-Hölder conjugate to a transitive subshift of finite type.
ii. There exists a constant C̃d > 0 such that

C̃−1
d ≤

∑

x∈�̃d
σn(x)=y

exp[−Sn(E + Pres�̃d
(E))(x)] ≤ C̃d , ∀y ∈ �̃d, ∀n≥ 0.

iii. limd→+∞ Pres�̃d
(E)= Pres�̃(E).

Proof Item i. Let S̃(d) be the set of cylinders [x0, . . . , xd−1] which have a non-empty inter-
section with �̃. Let G̃(d)⊂ S̃(d)× S̃(d) be the graph defined by the transitions

[x0, . . . , xd−1] G̃(d)−→ [x ′1, . . . , x ′d ] ⇔ (x1, . . . , xd−1)= (x ′1, . . . , x
′
d−1) and xd−1

G→ x ′d .

Let �+
G̃(d)

be the subshift of finite given by the graph G̃(d). Thus �+
G̃(d)

is transitive

since �̃ is quasi-transitive and �+
G̃(d)

is bi-Hölder conjugate to �̃d by the conjugacy
{[xn

0 , . . . , xn
d−1]}n≥0 �→ {xn

0 }n≥0.
Item ii. This estimate is true for any transitive subshift of finite type, being invariant under

topological conjugacy.
Item iii. Since �̃ ⊂ �̃d , we have on the one hand Pres�̃(E) ≤ Pres�̃d

(E). On the other

hand, if μ̃d denotes the equilibrium measure associated with the observable E : �̃d → R

and μ̃∞ denotes an accumulation point of {μ̃d}d→+∞, then supp(μ̃∞)⊂ �̃ and

lim sup
d→+∞

Pres�̃d
(E)= lim sup

d→+∞

(
Ent(μ̃d)−

∫
E dμ̃d

)

≤ Ent(μ̃∞)−
∫

E dμ̃∞ ≤ Pres�̃(E).

We have proved that Pres�̃d
(E)→ Pres�̃(E). �

Lemma 42 Consider the decomposition �(H)= �̄ ∪ �̃ as in Notations 38. For a Hölder
sub-action V :�+

G →R, assume min{hV (x, y) : x ∈ �̄ and y ∈ �̃}> ε > 0. Then
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i. KV (�̃, ε) is closed, invariant and disjoint from �̄. Moreover,

SnHV (x)≤ ε, ∀x ∈KV (�̃, ε), ∀n≥ 0.

ii. If Ũ ⊃ �̃ is open and disjoint from �̄, then

sup
x∈KV (�̃,ε), n≥1

card{j = 0,1, . . . , n− 1 : σ j (x) /∈ Ũ}<+∞.

(Every orbit of KV (�̃, ε) stays most of the time in Ũ .)
iii. If C̃(n) := sup{∑x∈KV (�̃,ε), σn(x)=y exp[−Sn(E + Pres�̃(E))(x)] : y ∈ �̃} for every n ≥

1, then lim supn→+∞
1
n

ln C̃(n)≤ 0.

Proof For simplicity, denote K̃ =KV (�̃, ε).
Item i. Since h(x, y) is lower semi-continuous and �̃ is compact, we deduce that K̃ is

closed. From Lemma 35.v, we have

hV (σ (x), y)≤HV (x)+ hV (σ (x), y)= hV (x, y), ∀ x, y ∈�+
G.

In particular, hV (x, y) ≤ ε ⇒ hV (σ (x), y) ≤ ε, which shows that K̃ is invariant. Iterating
this last formula, we also obtain

SnHV (x)≤ SnHV (x)+ hV (σ n(x), y)≤ hV (x, y), ∀x, y ∈�+
G.

Hence, SnHV (x) is uniformly bounded on n≥ 0 and x ∈ K̃ .
Item ii. Suppose by contradiction there exist a sequence of points {xn}n≥1 of K̃ such that

card{j = 0,1, . . . , n : σ j (xn) /∈ Ũ }→+∞.

Let η0 > η1 > · · · be a sequence of positive real numbers decreasing to 0. Let {Bi(η0)}i be a
finite cover of K̃ \ Ũ by balls of radius η0. One of these balls contains infinitely many points
of {σ j (xn) : j = 0,1, . . . , n, n ≥ 1}. More precisely, there exist a subsequence {xk0(n)}n≥1

(with k0 :N→N increasing) and a ball Bi0 of radius η0 such that

card{j = 0,1, . . . , k0(n) : σ j (xk0(n)) ∈ Bi0}→+∞.

By covering Bi0 by balls {Bi(η1)}i of radius η1, one can extract a second subsequence
{xk0◦k1(n)}n≥1 (with k1 :N→N increasing) and choose one of these balls Bi1 so that

card{j = 0,1, . . . , k0 ◦ k1(n) : σ j (xk0◦k1(n)) ∈ Bi1}→+∞.

We continue by induction. Let kj (n) = k0 ◦ . . . ◦ kj (n) and z be an accumulation point of
{Bij }j≥0. Let

0= s
j

0 < s
j

1 < · · ·< s
j

rj (n)−1
< s

j

rj (n)
= kj (n)

be the successive times {sj

l }r
j (n)−1

l=1 such that σ s
j
l (xkj (n)) ∈ Bij . By construction

rj (n)→+∞. Notice that

rj (n)−1∑

l=0

S
(s

j
l+1−s

j
l
)
HV ◦ σ s

j
l (xkj (n))= Skj (n)HV (xkj (n))≤ ε.
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Therefore, for infinitely many indices j , one can consider zj := σ s
j
l (xkj (n)) and nj := s

j

l+1−
s
j

l for some l = 1, . . . , rj (n)− 1 in such a way that Snj
HV (zj )→ 0. As zj , σ

nj (zj ), z ∈ Bij

and diam(Bij )→ 0, we have proved that z ∈�(H)= �̄ ∪ �̃. Since z ∈ K̃ \ Ũ and K̃ \ Ũ

is disjoint from �̄ and �̃, we obtain a contradiction.
Item iii. Let S(d) be the set of non-empty cylinders of �+

G of size d and G(d)⊂ S(d)×
S(d) be the graph whose transitions are given by

[x0, . . . , xd−1] G(d)−→ [x ′1, . . . , x ′d ] ⇔ (x1, . . . , xd−1)= (x ′1, . . . , x
′
d−1) and xd−1

G→ x ′d .

Denote the oscillation of the Birkhoff sums of E by

oscn(E) := sup
γ,x,y

{
SnE(|γ x〉)− SnE(|γy〉) :

γ = v−n . . . v−2v−1, v−1
G(d)−→ x and v−1

G(d)−→ y
}
,

where |γ x〉 is the concatenation of a finite G(d)-admissible path γ = v−n . . . v−2v−1 in S(d)

and a point x in �+
G , and v−1

G(d)−→ x just denotes v−1
G(d)−→ [x0, . . . , xd−1]. Hence, if v−i =

[v0
−i , . . . , v

d−1
−i ] ∈ S(d), i = 1, . . . , n, then

|γ x〉 := (v0
−n, . . . , v

0
−1, x0, x1, . . .) ∈�+

G.

More generally, if γ = v−n . . . v−1 and γ ′ = v′−n′ . . . v
′
−1 are G(d)-admissible paths of

length n and n′, we say that γ can be concatenated to γ ′ if v−1
G(d)−→ v′−n′ . Write then

γ γ ′ = v−n . . . v−1v
′
−n′ . . . v

′
−1.

As in the proof of Lemma 41.i, we also consider S̃(d) the set of vertices [x0, . . . , xd−1] ∈
S(d) such that [x0, . . . , xd−1] ∩ �̃ �= ∅ and the subgraph G̃(d) =G(d) ∩ S̃(d)× S̃(d). We
choose once for all a finite set �̃d of G̃(d)-admissible paths which connect all vertices of
S̃(d) to all vertices of S̃(d). Given y ∈ �̃, each inverse branch of order n of y can be

written as x = |γy〉, where γ = v−n . . . v−1 is a G(d)-admissible path and v−1
G(d)−→ v0 :=

[y0, . . . , yd−1]. We partition γ into sub-paths so that alternatively γ2i is a path in S̃(d) and
γ2i+1 is a path in S(d) \ S̃(d). More precisely, we consider γ = γr . . . γ1γ0 as concatenation
of paths γi of length ni (possibly n0 = 0 if v−1 /∈ S̃(d) and γ0 is the empty path) in such a
way that

γ0 = v−(n0) . . . v−(1) is a path in S̃(d),

γ1 = v−(n0+n1) . . . v−(n0+1) is a path in S(d) \ S̃(d),

γ2 = v−(−n0+n1+n2) . . . v−(n0+n1+1) is a path in S̃(d), et cetera.

We associate with each such an inverse branch γ a new path γ̃ in S̃(d) of the form
γ̃ = γ̃r . . . γ̃0, given by the concatenation of paths γ̃i of length ñi such that γ̃2i = γ2i

and each sub-path γ2i+1 outside S̃(d) has been replaced by a sub-path γ̃2i+1 =
ṽ−(ñ0+···+ñ2i+1) . . . ṽ−(ñ0+···+ñ2i+1) in S̃(d) chosen in �̃d so that

ṽ−(ñ0+···+ñ2i+1)

G̃(d)−→ ṽ−(ñ0+...+ñ2i ) and ṽ−(ñ0+···+ñ2i+1+1)

G̃(d)−→ ṽ−(ñ0+...+ñ2i+1).
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Let ñ = ñ0 + ñ1 + · · · + ñr be the length of the path γ̃ . Denote xi = |γiγi−1 . . . γ0y〉 and
x̃i = |γ̃i γ̃i−1 . . . γ̃0y〉. We want to compare

SnE(|γy〉)=
r∑

i=0

Sni
E(xi) and SñE(|γ̃ y〉)=

r∑

i=0

Sñi
E(x̃i).

Either γi corresponds to a path outside S̃(d), then

Sni
E(xi)≥ Sñi

E(x̃i)− (ni + ñi )‖E‖∞,

or γi corresponds to a path inside S̃(d), then γ̃i = γi , x̃i and xi have the same symbols during
a period ni = ñi ,

Sni
E(xi)≥ Sñi

E(x̃i)− oscni
(E).

Let L̃d be the maximal length of paths in �̃d . Then

SnE(|γy〉)≥ SñE(|γ̃ y〉)−
∑

i odd

ni(1+ L̃d)‖E‖∞ −
∑

i even

supn oscn(E).

Since card{i : i even} ≤ card{i : i odd} + 1≤ 2
∑

i odd ni , we obtain

SnE(|γy〉)≥ SñE(|γ̃ y〉)− [(1+ L̃d)‖E‖∞ + 2 supn oscn(E)]
∑

i odd

ni.

We assume from now on that the inverse branch x = |γy〉 belongs to K̃ . From item ii, we
know that

∑
i odd ni ≤ Ñd is bounded by a constant independent of x and n which only

depends on the neighborhood of �̃, Ũd =⋃{C : C ∈ S̃(d)} for d sufficiently large enough.
Notice that

∑

i odd

ñi ≤
∑

i odd

L̃d ≤
∑

i odd

niL̃d ≤ ÑdL̃d .

We obtain in particular ñ=∑r

i=0 ñi ∈ [n− Ñd , n+ ÑdL̃d ].
In the previous construction, we associate with an inverse branch x = |γy〉 ∈ K̃ of length

n of y a new inverse branch x̃ = |γ̃ y〉 of length ñ for the subshift of finite type (�̃d, σ ) as
defined in Lemma 41. Since the association x �→ x̃ is not injective, we want to bound from
above the cardinal of each fiber. Hence, if γ̃ has length ñ≥ 3Ñd , fix a partition Ĩr ∪ · · · ∪ Ĩ0

of {−ñ, . . . ,−1} into r + 1 disjoint consecutive intervals, with r ∈ {1, . . . ,3Ñd}, in order
to determine a decomposition γ̃ = γ̃r . . . γ̃0 such that γ̃i has length card(Ĩi ). The possible
γ = γr . . . γ0 associated with γ̃ = γ̃r . . . γ̃0 must have length n ∈ [ñ − ÑdL̃d , ñ + Ñd ] and
each γ2i+1 has length at most Ñd . The cardinal of each fiber is thus bound from above by

[Ñd(L̃d + 1)+ 1]
(

Ñd∑

k=1

(card(S))k

)Ñd 3Ñd∑

r=1

(
ñ

r

)
≤ C̃ ′dn

3Ñd ,

for some constant C̃ ′d depending only on d . Let

C̃ ′′d := C̃ ′d exp[((1+ L̃d)‖E‖∞ + 2 supn oscn(E))Ñd ].
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Then

∑

x∈K̃,σn(x)=y

exp[−SnE(x)] ≤ C̃ ′′d n3Ñd

n+Ñd L̃d∑

ñ=n−Ñd

∑

x̃∈�̃d ,σ ñ(x̃)=y

exp[−SñE(x̃)].

Denote C̃ ′′′d := C̃ ′′d [Ñd(L̃d + 1)+ 1]C̃d exp[ÑdL̃dPres�̃d
(E)], where C̃d is the positive con-

stant given by Lemma 41.ii. Therefore, we get
∑

x∈K̃,σn(x)=y

exp[−SnE(x)] ≤ C̃ ′′′d n3Ñd exp[nPres�̃d
(E)].

Since Pres�̃d
(E)→ Pres�̃(E), we finally obtain

lim sup
n→+∞

1

n
ln

(
sup

{ ∑

x∈K̃,σn(x)=y

exp[−Sn(E + Pres�̃(E))(x)] : y ∈ �̃

})
≤ 0.

�

In order to prove Theorem 16, we summarize in the following proposition the main tech-
nical result, which consists in relating the pressure of disjoint parts of the minimizing non-
wandering set �(H) and the levels of the Peierls barrier h(x, y) between these parts.

Proposition 43 Let E,H : �+
G → R be Hölder observables. Assume �(H) can be writ-

ten as a disjoint union �(H) = �̄ ∪ �̃ of two closed invariant sets. Assume �̃ is irre-
ducible. Let V∞ be any accumulation point (in the C0 topology) of {VE+βH }β→+∞ where
�E+βH = exp(−VE+βH ) is the right eigenfunction of the Ruelle operator LE+βH normal-
ized by

∫
�E+βH dνE+βH = 1. Then

Pres�̄(E) > Pres�̃(E) =⇒ min
x∈�̄, y∈�̃

h(x, y)− V∞(y)+ V∞(x)= 0.

Proof By contradiction, we suppose that

min
x∈�̄,y∈�̃

hV∞(x, y) > ε > 0.

Let K̃ = KV (�̃, ε) as in Notation 38. We consider �E+βH as an eigenfunction of Ln
E+βH

for some n= n(β) that will be chosen later. Given y ∈ �̃, we thus have

1 =
∑

x∈�+
G

, σn(x)=y

exp[−βSn(H − H̄ − VE+βH ◦ σ + VE+βH )(x)]

× exp[−SnE(x)] exp[−n(Pres(E + βH)+ βH̄ )].
We split this sum into two parts

I ′ =
∑

x∈�+
G
\K̃,σn(x)=y

. . . , I ′′ =
∑

x∈K̃, σn(x)=y

. . . .

We choose β large enough so that ‖VE+βH − V∞‖∞ < 1
4η, with η < ε to be determined.

From Lemma 35.vi, we have SnHV∞(x)= hV∞(x, y), which yields

Sn(H − H̄ − VE+βH ◦ σ + VE+βH )(x)≥ hV∞(x, y)− 2‖VE+βH − V∞‖∞.
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We recall from Lemma 34 the following inequalities

Pres�(H)(E)≤ Pres(E + βH)+ βH̄ ≤ Pres(E).

We also recall how to compute the pressure using a counting argument on inverse branches
(C = exp[2‖VE‖∞])

C−1 exp[nPres(E)] ≤
∑

x∈�+
G

, σn(x)=y

exp[−SnE(x)] ≤ C exp[nPres(E)].

Therefore, the first part can be bounded from above in the following way

I ′ ≤
∑

x∈�+
G
\K̃, σn(x)=y

exp

[
−β

ε

2

]
exp[−SnE(x)] exp[−nPres�(H)(E)],

≤ C exp

[
−β

ε

2

]
exp[n(Pres(E)− Pres�(H)(E))].

The second part is bounded from above using the estimate of Lemma 42.iii

I ′′ ≤
∑

x∈K̃, σn(x)=y

exp

[
β

η

2

]
exp[−SnE(x)] exp[−nPres�(H)(E)],

≤ C̃(n) exp

[
β

η

2

]
exp[n(Pres�̃(E)− Pres�̄(E))].

We now choose η and n= n(β) so that

−β
ε

2
+ n(Pres(E)− Pres�(H)(E)) <−n

η

2
,

β
η

2
− n(Pres�̄(E)− Pres�̃(E)) <−n

η

2
,

that is, η/2 < Pres�̄(E)− Pres�̃(E) and

η/2

Pres�̄(E)− Pres�̃(E)− η/2
<

n

β
<

ε/2

Pres(E)− Pres�(H)(E)+ η/2
.

We thus have obtained, for a subsequence n→+∞,

1= I ′ + I ′′ ≤ (C + C̃(n)) exp

[
−n

η

2

]
→ 0,

which is clearly a contradiction. �

Proof of Theorem 16 As before, we fix an accumulation point V∞ of the sequence
{VE+βH }β→+∞. Let �(H) = �0 ∪ · · · ∪ �r be a disjoint union of irreducible compo-
nents. By hypothesis, Pres�0(E) > Pres�1∪···∪�r (E). For j = 1, . . . , r , denote �̄=⋃

i �=j �i

and �̃ = �j . Since Pres�̄(E) > Pres�̃(E), Proposition 43 implies h̄V∞(i, j) = 0 for some
i �= j . Lemma 37 shows that h̄V∞(0, j) = 0 for all j = 1, . . . , r . Since V∞ is calibrated,
Lemma 36.iii implies finally

h(x0, y)= V∞(y)− V∞(x0), ∀x0 ∈�0, ∀y ∈�+
G.
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If x0 ∈�0 is fixed, the sequence {VE+βH (·)− VE+βH (x0)}β→+∞ has a unique accumulation
point h(x0, ·) and therefore converges. �

5 Proofs of Results Stated in Sect. 3

We study in this section the algorithmic aspects of singular perturbations of Perron matrices
of Puiseux type. We start with a weighted irreducible graph (G,Mε) of (general) Puiseux
type (recall Definition 24) and we write formally Mε ∼Aεa .

The first step of the algorithm consists in conjugating Mε by a diagonal matrix diag[εv(x) :
x ∈ S] so that all entries in S × S \G∗min are negligible with respect to εā . The construction
of the corrector v(x) is performed in two steps: v(x) is a calibrated corrector in the first
step and separating in the second one. A Peierls barrier ha(x, y) between two vertices is
introduced as in Definition 14.

Definition 44 Let G⊂ S × S be an irreducible graph and a :G→ R be a weight on each
edge. The Peierls barrier (associated with a) between two vertices x, y ∈ S is defined by

ha(x, y) := min

{
n−1∑

k=0

(a(xk, xk+1)− ā) : n≥ 1,

(x0, . . . , xn) is a G-admissible path, x0 = x and xn = y

}
.

Notice that it is enough to minimize on simple path: thanks to the choice of the constant
ā, each cycle (x0, . . . , xn) satisfies

∑n−1
k=0(a(xk, xk+1)− ā)≥ 0 and may be eliminated from

the sum.
We summarize several properties of ha(x, y). Item vi of the following lemma gives the

definition of the irreducible components of Gmin and proves Lemma 21.

Lemma 45 Suppose (G,Mε) is an irreducible graph of exact Puiseux type, with Mε ∼Aεa ,
and ha(x, y) is the Peierls barrier associated with a :G→R. Then

i. ∀ (x0, . . . , xn) G-admissible path, ha(x0, xn)≤∑n−1
k=0(a(xk, xk+1)− ā).

ii. ∀ x, y, z ∈ S, ha(x, z)≤ ha(x, y)+ ha(y, z).
iii. ∀ x ∈ S, ha(x, x)≥ 0.
iv. ∀ x ∈ S, ha(x, x)= 0⇔ x ∈ Smin.
v. A cycle has a support in Gmin if, and only if, it is minimizing.

vi. Gmin is semi-irreducible and its irreducible components are given by the equivalence
classes of the relation

∀x, y ∈ Smin, x ∼a y ⇔ ha(x, y)+ ha(y, x)= 0

⇔ x and y belong to the same minimizing cycle.

Proof Items i, ii, iii and iv are obvious from the definition of ha .
Item v. By the definition of Gmin, the support of all minimizing cycle is included in

Gmin. Conversely, let (x0, . . . , xn) be a cycle of Gmin. Each (xk, xk+1) is the initial segment
of a minimizing cycle (zk

0, . . . , z
k
pk

) with pk ≥ 2, zk
0 = xk and zk

1 = xk+1. The union of the
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supports of these minimizing cycles can be written as a union of the supports of two (a priori
not minimizing) cycles (x0, x1, . . . , xn) and

(y0, . . . , yqn)= (zn−1
1 , . . . , zn−1

pn−1
, zn−2

1 , . . . , zn−2
pn−2

, . . . , z0
1, . . . , z

0
p0

)

of length qn = p0 + · · · + pn−1 − n. Since

0=
n−1∑

k=0

pk−1∑

i=0

(a(zk
i , z

k
i+1)− ā)=

n−1∑

k=0

(a(xk, xk+1)− ā)+
qn−1∑

k=0

(a(yk, yk+1)− ā),

both cycles (x0, . . . , xn) and (y0, . . . , yqn) are indeed minimizing.
Item vi. Consider the relation on Smin: x ∼a y if, and only if, x and y belong the support

of the same minimizing cycle of length ≥ 1. Since the union of two minimizing cycles with
a common point is again a minimizing cycle, the previous relation is an equivalence relation.
If x ∼a y, then there exists a minimizing cycle (x0, . . . , xn) such that x = x0 and y = xi for
some 0 < i < n. Therefore,

0≤ ha(x, x)≤ ha(x, y)+ ha(y, x)≤
i−1∑

k=0

(a(xk, xk+1)− ā)+
n−1∑

k=i

(a(xk, xk+1)− ā)= 0,

and ha(x, y) + ha(y, x) = 0. Conversely, suppose ha(x, y) + ha(y, x) = 0. So each min-
imum ha(x, y) or ha(y, x) is reached by a G-admissible path (x0, . . . , xi) or (xi, . . . , xn),
with x0 = x, xi = y and xn = y. Then (x0, . . . , xn) is a minimizing cycle containing both x

and y. �

In the framework of a dynamical system where the weighted graph (G,Mε) is given
by Mε(x, y) = exp(E(x, y))εH(x,y)1G(x, y) for two finite-range potentials E,H : �+

G →
R, we show that the two notions of minimizing non-wandering set �(H) and minimizing
subgraphs coincide. Let a(x, y)=H(x,y) if (x, y) ∈G and a(x, y)=+∞ otherwise.

Proof of Lemma 22 Item i. Let x = (x0, x1, . . .) ∈ �+
G . Since G is irreducible, there is a

G-admissible path joining xn to x0, (xn
0 , xn

1 , . . . , xn
pn

) of length pn at most the cardinal of S.
Then (y0, . . . , yn+pn)= (x0, . . . , xn−1, x

n
0 , . . . , xn

pn
) is a cycle and

H̄ = inf
x∈�+

G

lim inf
n→+∞

1

n

n−1∑

k=0

H ◦ σ k(x)= inf
x∈�+

G

lim inf
n→+∞

1

n+ pn

n+pn−1∑

k=0

a(yk, yk+1)≥ ā.

The converse H̄ ≤ ā is obtained by taking a periodic point x = (x0, . . . , xn)
∞ with

(x0, . . . , xn) a minimizing cycle.
Item ii. Let h(x, y) = limε→0 lim infn→+∞ Sε

n(x, y) be the Peierls barrier introduced in
Definition 14. We first show that h(x, y)≥ ha(x0, y0) for any x, y ∈�+

G . Indeed, for ε suffi-
ciently small, for any z= (z0, z1, . . .) ∈�+

G satisfying d(x, z) < ε and d(σ n(z), y) < ε, we
have z0 = x and zn = y0 and therefore Sε

n(x, y) ≥ ha(x, y). Let x = (x0, x1, . . .) ∈ �(H).
Since 0 = h(x, x) ≥ ha(x0, x0) ≥ 0, x0 ∈ Smin. Hence σn(x) ∈ �(H) implies xn ∈ Smin for
any n. Moreover,

0= h(x, x)= (H − H̄ )(x)+ h(σ(x), x)

≥ (a(x0, x1)− ā)+ ha(x1, x0)≥ ha(x0, x1)+ ha(x1, x0)≥ 0.
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In particular, (a(x0, x1) − ā) + ha(x1, x0) = 0. By choosing a path (y1, . . . , yn) join-
ing x1 to x0 which realizes the minimum in ha(x1, x0), we obtain a minimizing cycle
(x0, x1, y2, . . . , yn). We have just proved (x0, x1) ∈ Gmin and more generally (xk, xk+1) ∈
Gmin. Thus, �(H)⊂�+

Gmin
. Conversely, suppose x ∈�+

Gmin
. Let n≥ 1 and k = 0, . . . , n−1.

Then any (xk, xk+1) is the beginning of a minimizing cycle (xk
0 , x

k
1 , . . . , x

k
pk

) with pk ≥ 2.
Consider zn the periodic point of period qn = p0 + · · · + pn−1 + n given by

zn = (x0, . . . , xn−1, x
n−1
1 , . . . , xn−1

pn−1−1, x
n−2
1 , . . . , xn−2

pn−2−1, . . . , x
0
1 , . . . , x

0
p0

)∞.

Then d(zn, x)→ 0 when n→+∞ and
∑qn−1

k=0 (a(zk, zk+1)− ā)= 0. We have proved that
x ∈�(H).

Item iii. We first show that, if x = (x0, x1, . . .), y = (y0, y1, . . .) ∈ �(H), then x ∼ y if,
and only if, x0 ∼a y0. Indeed, on the one hand,

x ∼ y ⇔ h(x, y)+ h(y, x)= 0 ⇒ ha(x0, y0)+ ha(y0, x0)= 0 ⇔ x0 ∼a y0.

On the other hand, suppose x0 ∼a y0. Since (xk, xk+1), (yk, yk+1) ∈ Gmin for all k =
0, . . . , p − 1, by transitivity we have that xp ∼a y0 and yp ∼a x0. For infinitely many m

and n, one can find a Gmin-cycle of length q = 2p +m+ n containing both (x0, . . . , xp−1)

and (y0, . . . , yp−1) of the following form

(x0, . . . , xp−1, zp, . . . , zp+m−1, y0, . . . , yp−1, z2p+m, . . . , z2p+m+n).

Let z ∈�+
Gmin

be the corresponding periodic point. For any ε > 0, if p is large enough, for
infinitely many m and n, one has

d(z, x) < ε, d(σp+m(z), y) < ε, d(σ 2p+m+n(z), x) < ε,

Sε
p+m(x, y)+ Sε

p+n(y, x)≤
2p+m+n−1∑

k=0

(H − H̄ ) ◦ σ k(z)= 0.

By taking lim inf when m → ∞ and n → ∞ first and lim when ε → 0, one obtains
h(x, y)+ h(y, x)= 0, that is, x ∼ y. Since Gmin is equal to the disjoint union of irreducible
components Gi ⊂ Si × Si with no transition from Si to Sj when i �= j , �(H) = �+

Gmin
is

equal to the disjoint union of �i(H)= �+
Gi

. The equivalence between x ∼ y and x0 ∼a y0

shows that �1(H), . . . ,�d(H) are the irreducible components of �(H).
Item iv. The pressure of E restricted to �(H) is equal to the maximum of the pres-

sure of E restricted on each �i(H). It is well known (see, for instance, [26]) that the
two notions of spectral radius αi of the matrix Aii

min = [eE(x,y)1Gi
(x, y)]x,y∈Si

and the
pressure of E restricted to �+

Gi
coincide: αi = exp[Pres�i(H)(E)] and ᾱ = max1≤i≤d αi =

exp[Pres�(H)(E)]. �

The first step of the algorithm consists in finding a normal form for Mε . This step is done
using a diagonal matrix diag[εv(x) : x ∈ S] where v : S → R is a separating corrector. We
prove the existence of such a corrector.

Proof of Lemma 28 Given z∗ ∈ Smin, consider

u(x) := ha(z
∗, x), ∀x ∈ S,
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where ha is the Peierls barrier associated with a introduced in Definition 44. Items i and ii
of Lemma 45 and the fact that the Peierls barrier between two vertices is realized by a
G-admissible path easily show that u is a backward calibrated corrector. Let G1 ⊂ S1 ×
S1, . . . ,Gd ⊂ Sd × Sd be the irreducible components of the minimizing subgraph Gmin ⊂
Smin × Smin. Denote S0 = S \ (S1 ∪ · · · ∪ Sd). We consider then

ã(x, y) := a(x, y)− u(y)+ u(x)− ā ≥ 0, ∀x, y ∈ S.

Notice that the mean of ã on any minimizing cycle is zero and therefore ã(x, y)= 0 when-
ever (x, y) ∈ Gmin. We introduce a new directed graph. The set of vertices S̃ is made
of classes of two kinds: a class [x] reduced to one point for all x ∈ S0 and d classes
[G1] . . . [Gd ] where all vertices in each Gi are identified into one vertex. For any x ∈ S,
we note by [x] the class containing x. Let G̃ ⊂ S̃ × S̃ be the graph whose transitions are
defined as follows

[x] G̃→[y] ⇐⇒ [x] �= [y] and min{ã(x ′, y ′) : x ′ ∈ [x], y ′ ∈ [y]} = 0.

The main observation is that there is no cycle in G̃ and we can define a decreasing “height”
function η : S→[0, ε] as small as we want so that η is constant on each class [x] and

[x] G̃→[y] ⇐⇒ η(x) > η(y), ∀x, y ∈ S.

We claim that, for ε small enough,

v(x) := u(x)+ η(x), ∀x ∈ S

is a separating corrector for a(x, y) or equivalently η(x) is a separating corrector for ã(x, y).
Indeed, on the one hand, if (x, y) ∈Gmin, x and y belong to the same irreducible component
of G, η(x)= η(y) and ã(x, y)= 0= η(y)− η(x). On the other hand, if (x, y) ∈G \Gmin,
we discuss two cases. In the first case, ([x], [y]) is not an edge of G̃. This implies ã(x, y) > 0
since (x, y) /∈Gmin. We choose then ε > 0 such that ã(x, y) > η(y)− η(x). In the second
case, ([x], [y]) is an edge of G̃. Since η is decreasing along the edges, ã(x, y)≥ 0 > η(y)−
η(x) independently of ε. As S is finite, the number of constraints on ε is finite. �

In order to prove Proposition 30, we recall some notions of entropy and pressure for
graphs weighted by Perron matrices.

Definition 46 Let G ⊂ S × S be a directed graph weighted by a Perron matrix
[M(x,y)]x,y∈S . We call transshipment any a probability measure μ(x, y) on G such that
π(y) :=∑

x∈S μ(x, y)=∑
x∈S μ(y, x), for all y ∈ S. The entropy of a transshipment μ is

given by

Ent(μ) :=
∑

(x,y)∈G

−μ(x, y) ln
μ(x, y)

π(x)
.

We say the transshipment μ is supported by M if M(x,y)= 0 implies μ(x, y)= 0. In this
case, the pressure of M with respect to μ is given by

Pres(M,μ) := Ent(μ)+
∑

(x,y)∈G

μ(x, y) lnM(x,y).
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We recall that, if G is irreducible and λ = ρspec(M), then Pres(M,μ) ≤ lnλ for any trans-
shipment μ supported by M , with equality if, and only if, μ(x, y)= L(x)M(x, y)R(y)/λ,
where [L(x)]x∈S and [R(x)]x∈S are the left and right eigenvectors of M for the eigenvalue λ.

We shall also use a known result on the perturbation of the spectrum of matrices. See
Kato’s monograph [20] for more elaborate statements.

Lemma 47 For any matrix M ∈Mat(n,C), for any ε > 0, there exists η > 0 such that, if
H ∈Mat(n,C) and ‖H‖ < η, then spec(M +H) ⊂ spec(M)+ Bε , where Bε denotes the
disk of radius ε centered at 0. In particular, M �→ ρspec(M) is continuous on Mat(n,C).

Proof of Proposition 30 Notice that it is enough to assume Mε is written in a normal form

Mε = M̂ +Nε, M̂ =
[
Ā 0
0 D

]
, Ā= diag[Ā11, . . . , Ārr ], ᾱ = ρspec(Ā

ii ),

where Āii is nonnegative irreducible, D is nonnegative with ρspec(D) < ᾱ, and Nε = o(1).
We also assume Mε is nonnegative by changing if necessary Mε to Mε − ηεId where ηε =
0∧min{Mε(x, x) : x ∈ S}. Notice that Lε and Rε do not change and that ηε = o(1).

Let thus Ĝ be the subgraph of G defined by (x, y) ∈ Ĝ⇔ Ā(x, y) > 0 or D(x,y) > 0.
Let M̂ε(x, y) =Mε(x, y) if (x, y) ∈ Ĝ, M̂ε(x, y) =M1/2

ε (x, y) if (x, y) ∈ G \ Ĝ. On the
one hand, we remark that

lnλε = Pres(Mε,με)= Pres(M̂ε,με)+
∑

(x,y)∈G\Ĝ
με(x, y) lnM1/2

ε (x, y)

≤ lnρspec(M̂ε)+
∑

(x,y)∈G\Ĝ
με(x, y) lnM1/2

ε (x, y)≤ lnρspec(M̂ε).

Consider now Ḡ1 (an irreducible component of G∗min of dominant spectral coefficient ᾱ)
weighted by M̂11

ε (x, y)=Mε(x, y)1Ḡ1
(x, y). Let μ̂1

ε be the transshipment defined on Ḡ1 by

μ̂1
ε(x, y)= L̂1

ε(x)M̂11
ε (x, y)R̂1

ε (y)/ρspec(M̂
11
ε ),

and extended by 0 on G \ Ḡ1. Then, on the other hand, one has

lnλε ≥ Pres(M̂11
ε , μ̂1

ε)= lnρspec(M̂
11
ε ).

Lemma 47 tells us that ρspec(M̂ε) ∼ ρspec(M̂
11
ε ) ∼ ᾱ. Hence, the two previous inequalities

show that λε ∼ ᾱ (item i), as well as με(x, y)→ 0 whenever (x, y) /∈ Ĝ. They also show
that any accumulation point μ̄ of (με)ε>0 has maximal pressure

ln ᾱ = lim
ε→0

lnλε ≤ lim
ε→0

[
Ent(με)+

∑

(x,y)∈Ĝ

με(x, y) lnMε(x, y)

]
= Pres(M̂, μ̄)≤ ln ᾱ.

(The first inequality comes from the fact that lnMε(x, y) < 0 if (x, y) ∈G \ Ĝ. Notice also
that μ̄ has support on Ĝ.) For Ḡ the dominant subgraph, let μ̄Ḡ and μ̄Ĝ\Ḡ be the induced

transshipments on Ḡ and Ĝ \ Ḡ, respectively. Since
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ln ᾱ = Pres(M̂, μ̄)= μ̄(Ḡ)Pres(Ā, μ̄Ḡ)+ μ̄(Ĝ \ Ḡ)Pres(D, μ̄Ĝ\Ḡ),

we obtain μ̄(Ĝ \ Ḡ)= 0, that is, με(x, y)→ 0 whenever (x, y) /∈ Ḡ (item ii).
Consider π̄ i(x) =∑

y∈S̄i
μ̄(x, y)/μ̄(Ḡi) for any x ∈ S̄i . Let μ̄i be the induced trans-

shipment on Ḡi , μ̄i(x, y) = μ̄(x, y)/μ̄(Ḡi) whenever μ̄(Ḡi) �= 0. The main remark is the
following coboundary property

∑

x∈S̄i

μ̄i (x, y)=
∑

x∈S̄i

μ̄i (y, x), ∀ y ∈ S̄i ⇒
∑

(x,y)∈S̄i×S̄i

μ̄i (x, y) ln

(
R̄i(y)

R̄i(x)

)
= 0.

Then ln ᾱ =∑r

i=1 μ̄(Ḡi)Pres(Āii , μ̄i) and

Pres(Āii , μ̄i)=
∑

x∈S̄i

π̄ i (x)�=0

π̄ i(x)
∑

y∈S̄i

μ̄i (x, y)

π̄ i(x)
ln

(
Āii(x, y)R̄i(y)/R̄i(x)

μ̄i(x, y)/π̄i(x)

)
.

Each sum over y ∈ S̄i is bounded from above by

ln

(∑

y∈S̄i

Āii (x, y)R̄i(y)/R̄i(x)

)
= ln ᾱ,

with equality if, and only if, μ̄i(x, y)/π̄ i(x)= Āii(x, y)R̄i(y)/(ᾱR̄i(x)), ∀y ∈ S̄i . We thus
have proved (whether or not π̄i(x)= 0)

π̄ i(x)

R̄i(x)
Āii(x, y)= ᾱ

μ̄i(x, y)

R̄i(y)
, ∀x, y ∈ S̄i .

By summing over x, using the fact that μ̄i is a transshipment, we obtain that
[π̄ i (x)/R̄i(x)]x∈S̄i

is a left eigenvector of Āii for the eigenvalue ᾱ. In particular, if
π̄ i(x) �= 0 for some x ∈ S̄i , π̄ i(y) �= 0 for all y ∈ S̄i and

π̄ i(y)= L̄i(y)R̄i(y), μ̄i(x, y)= L̄i(x)Āii(x, y)R̄i(y)/ᾱ.

(Item iii is proved.) �

Before proving Proposition 32, we give some complements to the theory of series of
equivalences.

Lemma 48 Let (An)n≥0 be a sequence of positive numbers and (An(ε))n≥0 be a sequence

of functions. We assume that An = O(δn) for some δ ∈ (0,1) and
(
An(ε)/An

)1/n → 1 as
ε→ 0 uniformly in n≥ 0. Then

∑

n≥0

An(ε)∼
∑

n≥0

An.

Proof Denote hn(ε) := (An(ε)/An)
1/n−1. Let η ∈ (0,1) be small enough so that δ(1+η) <

1. Fix a constant C > 0 such that An ≤ Cδn, for all n≥ 0. Choose a positive integer N large
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enough so that

(1− η)
∑

n≥N

An < η
∑

n≥0

An and C
∑

n≥N

δn(1+ η)n < η
∑

n≥0

An.

For ε small enough, one has (1− η)
∑N−1

n=0 An ≤∑N−1
n=0 An(ε)≤ (1+ η)

∑N−1
n=0 An, as well

as hn(ε) < η uniformly in n, which in particular yields

∑

n≥N

An(ε) <
∑

n≥N

An(1+ η)n ≤ C
∑

n≥N

δn(1+ η)n.

Considering all these inequalities, for all ε small enough, we obtain that

(1− 2η)
∑

n≥0

An <
∑

n≥0

An(ε) < (1+ 2η)
∑

n≥0

An.
�

In the following lemma, we extend the notion of weighted graph (G,Mε) of general
Puiseux type to the case in which G is not irreducible and we show that the resolvent is of
exact Puiseux type.

Lemma 49 Let (G,Mε) be a (not necessarily irreducible) weighted graph. Assume Mε =
D +Nε , where D is nonnegative, ρspec(D) < 1, Nε = o(1). Suppose (G,Mε) is of general
Puiseux type in the following sense:

Mε(x, y)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if (x, y) /∈G,

Aε(x, y)εa(x,y) if (x, y) ∈G and x �= y,

Aε(x, y) if (x, x) ∈G, x = y and D(x,x) > 0,

o(1) if (x, x) ∈G, x = y and D(x,x)= 0,

where Aε(x, y)∼ A(x,y) > 0 and a(x, y) ≥ 0 in the second and third cases, and by con-
vention A(x,y) = 0 and a(x, y) = +∞ in the other cases. Let P(x, y) be the set of G-
admissible paths x = (x0, . . . , xn) of length n≥ 1 such that x0 = x and xn = y. Consider the
directed graph

G′ = {
(x, x) : x ∈ S

}∪ {(x, y) ∈ S × S : P(x, y) �= ∅}

and define M ′
ε := (Id−Mε)

−1. Then (G′,M ′
ε) is a weighted graph of exact Puiseux type.

More precisely,

M ′
ε(x, y)= 0 ⇔ (x, y) /∈G′ and M ′

ε(x, y)∼A′(x, y)εa′(x,y) ⇔ (x, y) ∈G′,

with

a′(x, y)=
{

0 if x = y

min{a(x) : x ∈ P(x, y)} if x �= y
, ∀ (x, y) ∈G′,

and

A′(x, y)= 1(x=y) +
∑

x∈P(x,y):a(x)=a′(x,y)

n(x)−1∏

i=0

A(xi, xi+1), ∀(x, y) ∈G′,
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where n(x) is the length of the path x ∈ P(x, y) and a(x) :=∑n(x)−1
i=0 a(xi, xi+1). (By con-

vention A′(x, y)= 0 and a′(x, y)=+∞ for all (x, y) /∈G′.)

Proof Part 1. We first assume that (G,Mε) is of exact Puiseux type,

Mε(x, y)=
{

0 ∀ (x, y) /∈G,

Aε(x, y)εa(x,y) ∀ (x, y) ∈G,

where Aε(x, y) ∼ A(x,y) > 0 and a(x, y) ≥ 0 if (x, y) ∈ G, A(x,y) = 0 and a(x, y) =
+∞ if (x, y) /∈G. Note that D(x,y) > 0 if, and only if, a(x, y)= 0. Since ρspec(Mε) con-
verges to ρspec(D) < 1, (Id−Mε) is invertible and

M ′
ε(x, y)=

∑

n≥0

Mn
ε (x, y)= 1(x=y) +

∑

x∈P(x,y)

n(x)−1∏

i=0

Mε(xi, xi+1).

Since Mε is a nonnegative matrix, M ′
ε is nonnegative too. Moreover,

M ′
ε(x, y)= 0 ⇐⇒ x �= y and P(x, y)= ∅ ⇐⇒ (x, y) /∈G′.

For (x, y) ∈G′, let P(x, y, k) be the subset of paths x ∈ P(x, y) such that

k = card{i = 0, . . . , n(x)− 1 : a(xi, xi+1) > 0}.
If x ∈ P(x, y, k) and k ≥ 1, then a(x) takes a finite number of distinct values ak,l ,

0 < kamin ≤ ak,1 < ak,2 < · · ·< ak,pk
≤ kamax,

with amin := min{a(x, y) : a(x, y) > 0} and amax := max{a(x, y) : a(x, y) < +∞}. Notice
that the set of exponents {ak,l : k ≥ 1, 1 ≤ l ≤ pk} is finite on each bounded interval. Let
P(x, y, k, l) be the subset of paths x ∈ P(x, y, k) such that a(x) = ak,l . By developing all
products Mn

ε , one obtains

M ′
ε(x, y) = 1(x=y) +

∑

x∈P(x,y,0)

n(x)−1∏

i=0

Aε(xi, xi+1)

+
∑

k≥1

pk∑

l=1

( ∑

x∈P(x,y,k,l)

n(x)−1∏

i=0

Aε(xi, xi+1)

)
εak,l .

Let P(x, y,0,0) := P(x, y,0) by convention and Pn(x, y, k, l) be the set of paths x ∈
P(x, y, k, l) of length n(x)= n. Denote

An,k,l(ε) :=
∑

x∈Pn(x,y,k,l)

n−1∏

i=0

Aε(xi, xi+1), An,k,l :=
∑

x∈Pn(x,y,k,l)

n−1∏

i=0

A(xi, xi+1).

We use Lemma 48 to show that
∑

n≥1 An,k,l(ε) ∼∑
n≥1 An,k,l (one only considers terms

(n, k, l) such that Pn(x, y, k, l) �= ∅). Since ρspec(D) < 1, there exists a positive matrix
[D̃(x, y)]x,y∈S such that

ρspec(D̃) < 1 and D̃(x, y) > D(x, y), ∀x, y ∈ S.



162 E. Garibaldi, P. Thieullen

Since A(x,y)=D(x,y) whenever D(x,y) > 0, one obtains

An,k,l ≤
∑

x∈Pn(x,y,k,l)

n−1∏

i=0

D̃(xi, xi+1)

(
maxA

min D̃

)k

≤ D̃n(x, y)

(
maxA

min D̃

)k

.

Choose δ̃ such that ρspec(D̃) < δ̃ < 1. Then D̃n(x, y) = O(δ̃n), and in particular An,k,l =
O(δ̃n). Given η ∈ (0,1), for ε small enough,

(1− η)A(x, y) < Aε(x, y) < (1+ η)A(x, y), ∀(x, y) ∈G.

For all non empty set Pn(x, y, k, l),

(1− η)n <

∑
x∈Pn(x,y,k,l)

∏n−1
i=0 Aε(xi, xi+1)

∑
x∈Pn(x,y,k,l)

∏n−1
i=0 A(xi, xi+1)

< (1+ η)n.

We have thus obtained (An,k,l(ε)/An,k,l)
1/n→ 1 uniformly in n.

We now show that the rest of the series

RK(ε) :=
∑

k≥K

pk∑

l=1

(∑

n≥1

An,k,l(ε)

)
εak,l

is negligible with respect to the first non zero term (
∑

n≥1 An,k,l)ε
ak,l . More precisely, we

show that, for any a > 0, there exists K ≥ 1 such that RK(ε)= o(εa) as ε→ 0. Indeed, let
d be the dimension of the matrix Mε , then pk ≤ d2k and

RK(ε)≤
∑

k≥K

(∑

n≥1

‖D̃n‖
)(

d2 maxA

min D̃
εamin

)k

≤ CKεKamin = o(εa)

as soon as a < Kamin.
Therefore, M ′

ε(x, y)∼A′(x, y)εa′(x,y) for all (x, y) ∈G′.

Part 2. We now assume that (G,Mε) is of general Puiseux type as described in the statement.
We first notice that M ′

ε admits a different expression

M ′
ε =

1

2

(
Id− Id+Mε

2

)−1

where
Id+Mε

2
= Id+D

2
+ Nε

2
,

with ρspec(
1
2 (Id+D)) < 1 and 1

2Nε = o(1). Since (G, 1
2 (Id+Mε)) is of exact Puiseux type,

one obtains from part 1 that (G′,M ′
ε) is of exact Puiseux type.

We now want to determine a′ and A′ in this case. Let �ε be the diagonal matrix built
from the principal diagonal of Nε . Hence,

Nε =�ε + Ñε, Ñε(x, x)= 0, ∀ x ∈ S.

Let M̃ε :=D+ Ñε , G̃ :=G \ {(x, x) :D(x,x)= 0}. Then (G̃, M̃ε) is of exact Puiseux type.
Moreover,

M ′
ε = (Id− M̃ε −�ε)

−1 = (Id− M̃ ′
ε�ε)

−1M̃ ′
ε =

∑

n≥0

(M̃ ′
ε�ε)

nM̃ ′
ε,
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where M̃ ′
ε := (Id− M̃ε)

−1. From part 1, we know that (G̃′, M̃ ′
ε) is of exact Puiseux type. Let

a′ and A′ be defined as in part 1 by using (G̃, M̃ε). Then

M̃ ′
ε(x, y)=A′ε(x, y)εa′(x,y), ∀x, y ∈ S,

with A′ε(x, y) ∼ A′(x, y) > 0 if (x, y) ∈ G̃′ and A′ε(x, y) = 0 if (x, y) /∈ G̃′. Since G and
G̃ have the same off-diagonal entries, G′ = G̃′. We show by induction there exist matrices
(Bn,ε)n≥1 such that

{
(M̃ ′

ε�ε)
nM̃ ′

ε(x, y)= Bn,ε(x, y)εa′(x,y) ∀(x, y) ∈G′

(M̃ ′
ε�ε)

nM̃ ′
ε(x, y)= 0= Bn,ε(x, y) ∀(x, y) /∈G′

and

lim
ε→0

(
Bn,ε(x, y)

)1/n = 0, uniformly in n≥ 1.

Since (M̃ ′
ε�ε)

n+1M̃ ′
ε = (M̃ ′

ε�ε)
nM̃ ′

ε�εM̃
′
ε , for all x, y ∈ S one has

(M̃ ′
ε�ε)

n+1M̃ ′
ε(x, y)=

∑

z∈S

(M̃ ′
ε�ε)

nM̃ ′
ε(x, z)�ε(z, z)M̃

′
ε(z, y)

=
∑

z∈S

Bn,ε(x, z)�ε(z, z)A
′
ε(z, y)εa′(x,z)+a′(z,y).

If (x, y) /∈G′, then (x, z) /∈G′ or (z, y) /∈G′ and the above sum is null. Thus by convention
Bn+1,ε(x, y) = 0. If (x, y) ∈ G′ and z ∈ S is such that (x, z) ∈ G′ and (z, y) ∈ G′, then
a′(x, y)≤ a′(x, z)+ a′(z, y). Let

Bn+1,ε(x, y) :=
∑

z∈S

Bn,ε(x, z)�ε(z, z)A
′
ε(z, y)εa′(x,z)+a′(z,y)−a′(x,y).

By taking the supremum in x, y ∈ S, we obtain

sup
x,y

(
Bn+1,ε(x, y)

)
≤ sup

x,y

(
Bn,ε(x, y)

)
sup
x,y

(
d�ε(x, y)A′(x, y)

)
.

As �ε = o(1), we have proved that (Bn,ε(x, y))1/n→ 0 uniformly in n. Besides,

M ′
ε(x, y)=A′ε(x, y)εa′(x,y)

[
1+

∑

n≥1

Bn,ε(x, y)

A′ε(x, y)

]
∼A′(x, y)εa′(x,y) for all (x, y) ∈G′,

and M ′
ε(x, y)= 0 for all (x, y) /∈G′. �

Proof of Proposition 32 Notice that it is enough to assume (G,Mε) is reduced to a
normal form and Mε = M̃ε is nonnegative (by possibly subtracting ηεId, where ηε :=
0∧min{Mε(x, x) : x ∈ S} is negligible with respect to λε ). We prove item i. at the end.

Item ii. We only prove the equivalence R̃i
ε(x)/R̃i

ε(y) ∼ R̄i(x)/R̄i(y). We consider the
vector space indexed by S̄i . The vectors are supposed to be column vectors. Let us consider
the projector onto R̄i defined by

V �→ (L̄iV )R̄i, (V is a column vector),
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or as a (square) matrix R̄iL̄i . Notice that the kernel {V : L̄iV = 0} is invariant by Āii .
The complementary projector is denoted P̄ ii := Id− R̄iL̄i . We then obtain a decomposition
of Āii

Āii = ᾱR̄i L̄i + D̄ii or D̄ii = P̄ ii Āii = Āii P̄ ii .

Since Āii is irreducible, ᾱ has multiplicity 1 and ρspec(D̄
ii) < ᾱ. By multiplying by P̄ ii the

equation
r∑

j=1

(
M̃ij

ε + M̃i0
ε (λ̃ε − M̃00

ε )−1M̃0j
ε

)
R̃j

ε = λ̃εR̃
i
ε,

one obtains

r∑

j=1

(λ̃ε − D̄ii)−1P̄ ii
(
Ñ ij

ε + M̃i0
ε (λ̃ε − M̃00

ε )−1M̃0j
ε

)
R̃j

ε = P̄ ii R̃i
ε .

(We use the fact that Ñ ij
ε = M̃ij

ε when i �= j and that Āii P̄ ii = D̄ii P̄ ii .) We first claim that
R̃i

ε/L̄
iR̃i

ε is bounded, or equivalently that R̃i
ε(x)/R̃i

ε(y) is bounded for all x, y ∈ S̄i . Notice
that all following terms are nonnegative

M̃ij
ε (x, y)≥ 0 or M̃i0

ε (λ̃ε − M̃00
ε )−1M̃0j

ε (x, y)≥ 0.

(The second inequality follows from lemma 49.) By the irreducibility of Āii , if (x0, . . . , xn)

is a path joining x to y such that Āii (xk, xk+1) > 0, then

R̃i
ε(x0)

R̃i
ε(xn)

≥
∏n−1

k=0 M̃ii
ε (xk, xk+1)

λ̃n
ε

∼
∏n−1

k=0 Āii(xk, xk+1)

ᾱn
> 0.

By reversing x and y, we prove the claim. We now claim that all following terms are negli-
gible

Ñ ij
ε R̃j

ε

L̄i R̃i
ε

= o(1) or
M̃i0

ε (λ̃ε − M̃00
ε )−1M̃0j

ε R̃j
ε

L̄i R̃i
ε

= o(1).

Notice that these terms are nonnegative, except perhaps μ̃i
ε := Ñ ii

ε R̃i
ε/L̄

iR̃i
ε which is neg-

ligible because of the first claim. We conclude by observing that all terms on the left hand
side of the following equality are nonnegative and that the right hand side is negligible

r∑

j=1

L̄i(Ñ ij
ε δ(i �=j) + M̃i0

ε (λ̃ε − M̃00
ε )−1M̃0j

ε )R̃j
ε

L̄i R̃i
ε

= λ̃ε − ᾱ − μ̃i
ε = o(1).

Therefore, we have proved that R̃i
ε

L̄i R̃i
ε
− R̄i = P̄ ii R̃i

ε

L̄i R̃i
ε
= o(1).

Item iii. Let i, j ∈ {1, . . . , r}, x ∈ S̄i and y ∈ S. We have already proved in the first part
that

M̃ii
ε (x, y)R̃i

ε(y)

λ̃εR̃i
ε(x)

∼ Āii(x, y)R̄i(y)

ᾱR̄i(x)
= Q̄ii(x, y), ∀ x, y ∈ S̄i ,

M̃ij
ε (x, y)R̃j

ε (y)

λ̃εR̃i
ε(x)

= o(1), ∀x ∈ S̄i , ∀ y ∈ S̄j , i �= j,



Description of Some Ground States by Puiseux Techniques 165

M̃i0
ε (x, y)R̃0

ε (y)

λ̃εR̃i
ε(x)

= M̃i0
ε (x, y)(

∑r

j=1(λ̃ε − M̃00
ε )−1M̃0j

ε R̃j
ε )(y)

λ̃εR̃i
ε(x)

= o(1).

(In the two last estimates, we use the fact that the sum over y in each case is negligible.) We
then obtain

Qε(x, y)= M̃ε(x, y)R̃ε(y)

λ̃εR̃ε(x)
→

{
Q̄ii(x, y), ∀x, y ∈ S̄i ,

0, ∀x ∈ S̄i , ∀y ∈ S̄j ∪ S0, i �= j.

Item i. Let i �= j , then M(1)
ε (i, j) = L̄i(M̃ij

ε + M̃i0
ε (λ̃ε − M̃00

ε )−1M̃0j
ε )

R̃
j
ε

L̄j R̃
j
ε

. We want to

show that

M(1)
ε (i, j)=

{
0 ∀ (i, j) /∈G(1),

A(1)
ε (i, j)εa(1)(i,j) ∀ (i, j) ∈G(1), i �= j,

where A(1)
ε (i, j)= 0 in the first case and A(1)(i, j)∼A(1)(i, j) > 0 in the second one. From

item ii, we know that R̃j
ε /L̄

j R̃j
ε ∼ R̄j . Since L̄i and R̄j have positive coefficients, it is

enough to determine equivalences to the terms M̃ij
ε (x, y) and M̃i0

ε (λ̃ε − M̃00
ε )−1M̃0j

ε (x, y)

when x ∈ S̄i and y ∈ S̄j . From Lemma 49, we know that the matrix (λε − M̃00
ε )−1 is

of exact Puiseux type on the graph containing either {(x1, x1) : x1 ∈ S0} or {(x1, xn−1) :
(x1, . . . , xn−1) is a path of G̃∩S0×S0}, where G̃ is obtained from G by subtracting all loops
(x, x) such that D(x,x)= 0. We write (λ̃ε−M̃00

ε )−1(x, y)∼ ᾱ−1A′(x, y)εa′(x,y). Therefore,
for x ∈ S̄i and y ∈ S̄j , one has M̃ij

ε (x, y)∼A(x,y)εa(x,y) and

M̃i0
ε (λ̃ε − M̃00

ε )−1M̃0j
ε (x, y)∼

∑

z,w∈S0

A(x, z)
A′(z,w)

ᾱ
A(w,y)εa(x,z)+a′(z,w)+a(w,y).

One can see the previous estimate as a sum over paths x of two kinds. Either there ex-
ists a G-admissible path x = (x, z, y) (for z = w), or there exists a G-admissible path
x = (x0, . . . , xn) of length n ≥ 3, with x0 = x, x1 = z, xn−1 = w, xn = y, such that the
intermediate path (x1, . . . , xn−1) is (G̃ ∩ S0 × S0)-admissible and realizes the minimum in
the definition of a′(z,w). Each one of these terms is of the form

[
n−1∏

k=0

A(xk, xk+1)/ᾱ
n−1

]
ε
∑n−1

k=0 a(xk,xk+1).

The dominant term is obtained by minimizing a(x) over x. �

6 Complete Classification for 3-States Spin Systems

We consider in this section a full weighted graph of exact Puiseux type on 3 states. More
precisely, for S = {1,2,3}, we consider G= S × S weighted by

Mε(x, y)= exp[−βH(x, y)] = εH(x,y), ε = e−β, ∀x, y ∈ S.

We assume (by subtracting H̄ ) that H has been normalized: H̄ = 0. We are interested in
describing the unique zero-temperature Gibbs measure μH

min (notations of Sect. 3) obtained
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as a limit of

(
πε(x),Qε(x, y)

)=
(

Lε(x)Rε(x),
Mε(x, y)Rε(y)

λεRε(x)

)

as ε→ 0. As it will be clear from the computation, the limit depends from the possibility to
expand each quotient Rε(x)/Rε(y) and Lε(x)/Lε(y) into a Puiseux series of an a priori ar-
bitrarily large precision. The algorithm is based on the dimension of the matrix Mε . We will
obtain a finite set of possible μH

min and for each of them we describe the space of parameters
{H(x,y) : x, y ∈ S} which exhibit that zero-temperature Gibbs measure. The dimension of
this space of parameters is a priori 9; we will reduce it to 2 in the following discussion. We
describe each domain according to the number of irreducible components of the minimiz-
ing subgraph. We use Algorithm 29 to conjugate Mε to a simpler matrix M ′

ε =�εMε�
−1
ε ,

which (by possibly permuting {1,2,3}) takes one of the following form.

i. A unique dominant irreducible component.

– When the dominant spectral radius ᾱ is equal to 1, Gmin = Ḡ is irreducible and there
are three possibilities corresponding respectively with S̄ = {1,2,3}, S̄ = {1,2} or
S̄ = {1},

M ′
ε =

⎡

⎣
εa 1 εb′

εc′ εb 1
1 εa′ εc

⎤

⎦ , M ′′
ε =

⎡

⎣
εa 1 εd

1 εb εe

εd ′ εe′ εc

⎤

⎦ ,

M ′′′
ε =

⎡

⎣
1 εa εc

εa′ εb εd

εc′ εd ′ εe

⎤

⎦ .

(Notice that all coefficients a, a′, b, . . . are positive.)
– When ᾱ > 1, Ḡ=Gmin is obtained by replacing in the previous M ′

ε any (but at least
one) a, a′, b, . . . by 0, and in M ′′

ε one of the two coefficients a and/or b by 0 and
leaving c, c′, d, . . . positive. When ᾱ > 1, Ḡ⊂Gmin with two irreducible components
is obtained by replacing a and/or b in M ′′

ε by 0 and c by 0. Notice that we obtain a
finite list of possible ᾱ.

ii. Two irreducible components with equal dominant spectral radius:

ᾱ = 1, M ′
ε =

⎡

⎣
1 εa εb

εa′ εc 1
εb′ 1 εd

⎤

⎦ , or M ′′
ε =

⎡

⎣
1 εa εb

εa′ 1 εc

εb′ εc′ εd

⎤

⎦ .

iii. Three irreducible components with dominant spectral radius 1:

ᾱ = 1, M ′
ε =

⎡

⎣
1 εa εb

εa′ 1 εc

εb′ εc′ 1

⎤

⎦ .

In order to simplify notations, we introduce the following convention

a#b= 1 if a �= b, a#b= 2 if a = b.

In the case of one irreducible component with dominant spectral coefficient (r = 1),
πε(x)→ 0 for all x ∈ S \ S̄ and πε(x)→ π̄1(x) for all x ∈ S̄. For instance, for M ′

ε , M ′′
ε
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and M ′′′
ε , respectively, πε converges to [ 1

3 , 1
3 , 1

3 ], [ 1
2 , 1

2 ,0] and [1,0,0]. We now treat in de-
tail the two remaining cases ii and iii.

6.1 Two Irreducible Components. Part I

We first consider the matrix

Mε =
⎡

⎣
1 εa εb

εa′ εc 1
εb′ 1 εd

⎤

⎦ , a, a′, b, b′, c, d > 0.

We already know that λε ∼ 1, Rε(2)∼Rε(3) and Lε(2)∼ Lε(3). We collapse the two com-
ponents 2 and 3 and obtain for the right eigenvector

M(1)
ε =

[
0 (εaR2 + εbR3)/(R2 +R3)

εa′ + εb′ (εcR2 + εdR3)/(R2 +R3)

]
∼
[

0 a#b
2 εa∧b

a′#b′εa′∧b′ c#d
2 εc∧d

]
.

Note that M(1)
ε is of exact Puiseux type. Let r and ρ be the minimizing mean exponent and

the dominant spectral radius of M(1)
ε . Then λ(1)

ε = λε − 1∼ ρεr ,

r =min

(
c ∧ d,

a ∧ b+ a′ ∧ b′

2

)
,

R1

R3
∼ a#b

ρ
εa∧b−r ,

L1

L3
∼ a′#b′

ρ
εa′∧b′−r .

We thus obtain a complete formula for the transition matrix

Qε ∼
⎡

⎢⎣
1 ρ

a#b
εa−a∧b+r ρ

a#b
εb−a∧b+r

a#b
ρ

εa′+a∧b−r εc 1
a#b
ρ

εb′+a∧b−r 1 εd

⎤

⎥⎦→QH
min =

⎡

⎣
1 0 0
0 0 1
0 1 0

⎤

⎦ ,

and for the zero-temperature Gibbs measure

πε(2)

πε(3)
∼ 1 and

πε(1)

πε(3)
∼ (a#b)(a′#b′)

ρ2
εa∧b+a′∧b′−2r .

We are left to discuss the value of ρ according to the choice of the exponents contributing
in the definition of r . We recall that ρ is the largest eigenvalue of the dominant matrix A

(1)

min.

6.1.1 Case c ∧ d < (a ∧ b+ a′ ∧ b′)/2

In this case, r = c ∧ d ,

A
(1)

min =
[

0 0
0 c#d

2

]
, ρ = c ∧ d

2
, λε = 1+ c ∧ d

2
εc∧d +· · · , μH

min =
[

0,
1

2
,

1

2

]
.

6.1.2 Case c ∧ d > (a ∧ b+ a′ ∧ b′)/2

In this case, r = 1
2 (a ∧ b+ a′ ∧ b′),

A
(1)

min =
[

0 a#b
2

a′#b′ 0

]
, ρ =

√
(a#b)(a′#b′)

2
, μH

min =
[

1

2
,

1

4
,

1

4

]
.
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Fig. 5 Phase diagram for a 3×3 matrix with two irreducible components: part I. In the left diagram, numbers
in parentheses indicate the weight of each irreducible components. In the right diagram, the value of μH

min(1)

is shown for the case c ∧ d = 1
2 (a ∧ b+ a′ ∧ b′)

6.1.3 Case c ∧ d = (a ∧ b+ a′ ∧ b′)/2

In this case, r = c ∧ d ,

AH
min =

[
0 a∧b

2
a′ ∧ b′ c∧d

2

]
, ρ = c#d

4

[
1+

√

1+ 8
(a#b)(a′#b′)

(c#d)2

]

and the zero-temperature Gibbs measure is proportional to

μH
min ∝

⎡

⎣
16(a#b)(a′#b′)/(c#d)2

[1+√
1+ 8(a#b)(a′#b′)/(c#d)2]2

[1+√
1+ 8(a#b)(a′#b′)/(c#d)2]2

⎤

⎦

or μH
min(1)= 4(a#b)(a′#b′)/(c#d)2

1+8(a#b)(a′#b′)/(c#d)2+
√

1+8(a#b)(a′#b′)/(c#d)2
.

We summarize the discussion in Fig. 5.

6.2 Two Irreducible Components. Part II

We consider now the matrix

Mε =
⎡

⎣
1 εa εb

εa′ 1 εc

εb′ εc′ εd

⎤

⎦ , a, a′, b, b′, c, c′, d > 0.

Let [Lε(x)]x=1,2,3 and [Rε(x)]x=1,2,3 be the left and right eigenvector for the largest eigen-
value λε . We eliminate the negligible variable x = 3 by substituting Lε(3) or Rε(3) in the
first two equations. We subtract the dominant term 1 of λε and obtain

L(1)
ε M(1)

ε = λ(1)
ε L(1)

ε , M(1)
ε R(1)

ε = λ(1)
ε R(1)

ε .

We summarize the discussion in Fig. 6.
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Fig. 6 Phase diagram for a 3× 3 matrix with two irreducible components: part II. We assume a < a′ . The
zero-temperature Gibbs measure is a barycenter of the periodic measures δ1 and δ2

6.3 Three Irreducible Components

We consider the matrix

Mε =
⎡

⎣
1 εa εb

εa′ 1 εc

εb′ εc′ 1

⎤

⎦ , a, a′, b, b′, c, c′ > 0.

We know from Propositions 30 and 32 that λε ∼ 1 and Qε → Id. We want to show that
[πε(x)]x=1,2,3 = [Lε(x)Rε(x)]x=1,2,3 converges to some raw vector [μH

min(x)]x=1,2,3 identi-
fied to the zero-temperature Gibbs measure as a barycenter of 3 Dirac masses:

μH
min = μH

min(1)δ〈1∞〉 +μH
min(2)δ〈2∞〉 +μH

min(3)δ〈3∞〉.

Thanks to the special form of the matrix, the steps of Algorithm 31 are immediate:
M(1)

ε =Mε − Id, λ(1)
ε = λε − 1, L(1)

ε = Lε and R(1)
ε = Rε . We want to apply again Algo-
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Mean along the cycles of order 2 and 3

cycles of order 2 cycles of order 3

1
2 (a + a′) 1

3 (a + b′ + c)

1
2 (b+ b′) 1

3 (a′ + b+ c′)
1
2 (c+ c′)

Fig. 7 Graph of interactions and minimizing cycles of Mε − Id

rithm 31 by reducing M(1)
ε to a normal form as in Algorithm 29. We call ā(1) the minimizing

mean exponent of M(1)
ε and A

(1)

min the matrix associated with the graph of minimizing cycles.
Notice that A

(1)

min admits a unique irreducible component. Let v : S→R be a separating cor-
rector and M̃ε :=�ε(v)M(1)

ε �ε(v)−1ε−ā(1) =A
(1)

min + Ñε . Denote L̃ε(x)= ε−v(x)L(1)
ε (x) and

R̃ε(x)= εv(x)R(1)
ε (x). Proposition 32 tells us that

L̃ε(x)

L̃ε(y)
∼ L̄(x)

L̄(y)
,

R̃ε(x)

R̃ε(y)
∼ R̄(x)

R̄(y)
, ∀x, y ∈ S̄, and

L̃ε(x)R̃ε(x)→ 0, ∀x ∈ S0,

where L̄ and R̄ are the left and right eigenvectors of the dominant matrix Ā.
In order to simplify the phase transition diagram, we change the coefficients:

a := 1

2
(a + a′), b := 1

2
(b+ b′),

c := c+ 1

2
(b′ − b)+ 1

2
(a − a′), c′ := c′ + 1

2
(b− b′)+ 1

2
(a′ − a).

Then

c+ c′

2
= c+ c′

2
,

a + b′ + c

3
= a + b+ c

3
,

a′ + b+ c′

3
= a + b+ c′

3
.

We now discuss the different phases according to the coincidence set of multiple order of
minimizing cycles. We discuss only the case c < c′. The purely symmetric case a = a′,
b = b′, c = c′ is done in Sect. 7. We show in Fig. 7 the location of all possible minimizing
cycles.

6.3.1 Case a < min{b, 1
2 (c+ c′), 1

3 (a + b+ c)}

ā(1) = a, A
(1)

min =
⎡

⎣
0 1 0
1 0 0
0 0 0

⎤

⎦ , λ(1)
ε ∼ εa, and μH

min =
[

1

2
,

1

2
,0

]
.



Description of Some Ground States by Puiseux Techniques 171

6.3.2 Case b < min{a, 1
2 (c+ c′), 1

3 (a + b+ c)}

ā(1) = b, A
(1)

min =
⎡

⎣
0 0 1
0 0 0
1 0 0

⎤

⎦ , λ(1)
ε ∼ εb, and μH

min =
[

1

2
,0,

1

2

]
.

6.3.3 Case 1
2 (c+ c′) < min{a, b, 1

3 (a + b+ c)}

ā(1) = 1

2
(c+ c′), A

(1)

min =
⎡

⎣
0 0 0
0 0 1
0 1 0

⎤

⎦ ,

λ(1)
ε ∼ ε(c+c′)/2, and μH

min =
[

0,
1

2
,

1

2

]
.

6.3.4 Case 1
3 (a + b+ c) < min{a, b, 1

2 (c+ c′)}

ā(1) = 1

3
(a + b+ c), A

(1)

min =
⎡

⎣
0 1 0
0 0 1
1 0 0

⎤

⎦ , λ(1)
ε ∼ ε(a+b+c)/3,

L̃ε ∝ [1,1,1], R̃ε ∝ [1,1,1]T , and μH
min =

[
1

3
,

1

3
,

1

3

]
.

Notice that the reverse cycle 1→ 3→ 2→ 1 is negligible against the cycle 1→ 2→ 3→ 1
since its exponent is higher.

6.3.5 Case a = 1
3 (a + b+ c) < min{b, 1

2 (c+ c′)}

ā(1) = a, A
(1)

min =
⎡

⎣
0 1 0
1 0 1
1 0 0

⎤

⎦ , λ(1)
ε ∼ κεa,

L̃ε ∝ [κ2, κ,1], R̃ε ∝ [κ, κ2,1]T , and μH
min = [1+ κ,1+ κ,1]/(3+ 2κ),

where κ is the largest eigenvalue of A
(1)

min and satisfies κ3 − κ − 1= 0.

6.3.6 Case b= 1
3 (a + b+ c) < min{a, 1

2 (c+ c′)}

ā(1) = b, A
(1)

min =
⎡

⎣
0 1 1
0 0 1
1 0 0

⎤

⎦ , λ(1)
ε ∼ κεb,

L̃ε ∝ [κ,1, κ2], R̃ε ∝ [κ2,1, κ]T , and μH
min = [1+ κ,1,1+ κ]/(3+ 2κ).

(A(1)

min admits the same characteristic polynomial as before.)
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6.3.7 Case 1
2 (c+ c′)= 1

3 (a + b+ c) < min{a, b}

ā(1) = a, A
(1)

min =
⎡

⎣
0 1 0
0 0 1
1 1 0

⎤

⎦ , λ(1)
ε ∼ κε(c+c′)/2,

L̃ε ∝ [1, κ2, κ], R̃ε ∝ [1, κ, κ2]T , and μH
min = [1,1+ κ,1+ κ]/(3+ 2κ).

6.3.8 Case a = b < min{ 1
2 (c+ c′), 1

3 (a + b+ c)}

ā(1) = a, A
(1)

min =
⎡

⎣
0 1 1
1 0 0
1 0 0

⎤

⎦ , λ(1)
ε ∼

√
2εa,

L̃ε ∝ [
√

2,1,1], R̃ε ∝ [
√

2,1,1]T , and μH
min =

[
1

2
,

1

4
,

1

4

]
.

6.3.9 Case a = 1
2 (c+ c′) < min{b, 1

3 (a + b+ c)}

ā(1) = 1

2
(c+ c′), A

(1)

min =
⎡

⎣
0 1 0
1 0 1
0 1 0

⎤

⎦ , λ(1)
ε ∼

√
2ε(c+c′)/2,

L̃ε ∝ [1,
√

2,1], R̃ε ∝ [1,
√

2,1]T , and μH
min =

[
1

4
,

1

2
,

1

4

]
.

6.3.10 Case b= 1
2 (c+ c′) < min{a, 1

3 (a + b+ c)}

ā(1) = 1

2
(c+ c′), A

(1)

min =
⎡

⎣
0 0 1
0 0 1
1 1 0

⎤

⎦ , λ(1)
ε ∼

√
2ε(c+c′)/2,

L̃ε ∝ [1,1,
√

2], R̃ε ∝ [1,1,
√

2]T , and μH
min =

[
1

4
,

1

4
,

1

2

]
.

6.3.11 Case a = b= 1
3 (a + b+ c) < 1

2 (c+ c′)

ā(1) = a, A
(1)

min =
⎡

⎣
0 1 1
1 0 1
1 0 0

⎤

⎦ , λ(1)
ε ∼ ρεa,

L̃ε ∝ [ρ,1, ρ], R̃ε ∝ [ρ,ρ,1]T , and μH
min = [ρ,1,1]/(2+ ρ),

where ρ is the positive root of ρ3 − 2ρ − 1= (ρ + 1)(ρ2 − ρ − 1)= 0.
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6.3.12 Case a = 1
2 (c+ c′)= 1

3 (a + b+ c) < b

ā(1) = 1

2
(c+ c′), A

(1)

min =
⎡

⎣
0 1 0
1 0 1
1 1 0

⎤

⎦ , λ(1)
ε ∼ ρε(c+c′)/2,

L̃ε ∝ [ρ,ρ,1], R̃ε ∝ [1, ρ,ρ]T , and μH
min = [1, ρ,1]/(2+ ρ).

6.3.13 Case b= 1
2 (c+ c′)= 1

3 (a + b+ c) < a

ā(1) = 1

2
(c+ c′), A

(1)

min =
⎡

⎣
0 1 1
0 0 1
1 1 0

⎤

⎦ , λ(1)
ε ∼ ρε(c+c′)/2,

L̃ε ∝ [1, ρ,ρ], R̃ε ∝ [ρ,1, ρ]T , and μH
min = [1,1, ρ]/(2+ ρ).

We summarize the preceding discussion in the Fig. 8.

7 Zero-Temperature Phase Diagram for BEG Model

We give in this section a complete description of the zero-temperature phase diagram for the
Blume-Emery-Griffiths model. We apply the algorithm proposed in Sect. 3 to S = {−,0,+},
G= S × S and Mε(x, y)= εH0(x,y) for all x, y ∈ S, where

H0 =
⎡

⎣
−J −K +� 1

2� J −K +�
1
2� 0 1

2�

J −K +� 1
2� −J −K +�

⎤

⎦ .

We discuss the different cases according to the choice of the parameters which contribute to
the minimizing mean exponent ā. In all cases, we have

Mε =
⎡

⎣
εa εb εc

εb 1 εb

εc εb εa

⎤

⎦ , πε =
⎡

⎣
Lε(−)Rε(−)

Lε(0)Rε(0)

Lε(+)Rε(+)

⎤

⎦ ,

Qε =
⎡

⎢⎣

εaRε(−)

λεRε(−)

εbRε(0)

λεRε(−)

εcRε (+)

λεRε(−)
εbRε(−)

λεRε(0)

Rε (0)

λεRε(0)

εbRε(+)

λεRε(0)
εcRε (−)

λεRε(+)

εbRε(0)

λεRε(+)

εaRε(+)

λεRε(+)

⎤

⎥⎦ ,

normalized by
∑

x∈S Lε(x)Rε(x) = 1 and
∑

x∈S Rε(x) = 1. Because of the symmetry of
Mε , Lε =Rε and πε(x)=R2

ε (x)/
∑

x R2
ε (x). We also simplify the computation by noticing

that Rε(−)=Rε(+). We recall that Gmin is the minimizing subgraph and ᾱ is the dominant
spectral coefficient. We only present the details of the computations for � > 0, the other
situations being analogous.
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Fig. 8 Phase diagram for a 3 × 3 matrix with three irreducible components. We assume c < c′ . The ze-
ro-temperature Gibbs measure is a barycenter of the three periodic measures δ〈1∞〉, δ〈2∞〉 and δ〈3∞〉 . The

constants ρ and κ are solutions of ρ2 − ρ − 1= 0 and κ3 − κ − 1= 0. The exact values of these constants

are ρ = 1
2 (1+√5) and κ = 3

√
1
2 (1−√23/27)+ 3

√
1
2 (1+√23/27)

7.1 Case J −K +� < 0, J < 0

Case: c < min(0, a, b). We know that

ā = c, Amin =
⎡

⎣
0 0 1
0 0 0
1 0 0

⎤

⎦ , ᾱ = 1, λε ∼ εc

and Gmin has one irreducible component (−) � (+). We aggregate the two components (±)

by adding Rε(±) :=Rε(−)+Rε(+) and eliminate the negligible term Rε(0). The new sin-
gular eigenvalue problem obtained in Algorithm 31, M(1)

ε R(1)
ε = λ(1)

ε R(1)
ε , is actually reduced
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to a unique equation with unique unknown R(1)
ε :=Rε(±). More precisely,

{
(εa + εc)Rε(±)+ 2εbRε(0)= λεRε(±),

εbRε(±)+Rε(0)= λεRε(0),

Rε(0)= εb

λε − 1
Rε(±)!Rε(±), λ(1)

ε := λε − εc = εa + 2ε2b

λε − 1
,

which yields

Rε ∼
⎡

⎣
1/2
εb−c

1/2

⎤

⎦=
⎡

⎣
1/2

ε−J+K−�/2

1/2

⎤

⎦ , πε ∼
⎡

⎣
1/2

2ε2(−J+K−�/2)

1/2

⎤

⎦ ,

Qε ∼
⎡

⎣
εa−c 2ε2(b−c) 1
1/2 ε−c 1/2
1 2ε2(b−c) εa−c

⎤

⎦=
⎡

⎣
ε−2J 2ε2(−J+K−�/2) 1
1/2 ε−J+K−� 1/2
1 2ε2(−J+K−�/2) ε−2J

⎤

⎦ .

7.2 Case −J −K +� < 0, J > 0

Case: a < min(0, b, c). Gmin has two irreducible components with identical spectral coeffi-
cient, (−)↔ (−) and (+)↔ (+), and as before Rε(0)!Rε(−)=Rε(+). We thus obtain

ā = a, Amin =
⎡

⎣
1 0 0
0 0 0
0 0 1

⎤

⎦ , ᾱ = 1, λε ∼ εa,

Rε ∼
⎡

⎣
1/2
εb−a

1/2

⎤

⎦ , πε ∼
⎡

⎣
1/2

2ε2(b−a)

1/2

⎤

⎦ , Qε ∼
⎡

⎣
1 2ε2(b−a) εc−a

1/2 ε−a 1/2
εc−a 2ε2(b−a) 1

⎤

⎦ .

7.3 Case −J −K +� > 0, J −K +� > 0

Case: 0 < min(a, b, c). Gmin has one irreducible component (0)↔ (0), ᾱ = 1 and Rε(−)=
Rε(+)!Rε(0). We obtain

ā = 0, Amin =
⎡

⎣
0 0 0
0 1 0
0 0 0

⎤

⎦ , ᾱ = 1, λε ∼ 1,

Rε ∼
⎡

⎣
εb

1
εb

⎤

⎦ , πε ∼
⎡

⎣
ε2b

1
ε2b

⎤

⎦ , Qε ∼
⎡

⎣
εa 1 εc

ε2b 1 ε2b

εc 1 εa

⎤

⎦ .

As in Case 7.1, we eliminate the negligible term Rε(±) and get a new graph G(1) reduced to
a singleton

Rε(±)= 2εb

λε − (εa + εc)
Rε(0) and λε − 1= 2ε2b

λε − (εa + εc)
∼ 2ε2b.
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7.4 Case J −K +�= 0, J < 0

Case: c= 0 < min(a, b). We know that

ā = 0, Amin =
⎡

⎣
0 0 1
0 1 0
1 0 0

⎤

⎦ , ᾱ = 1, λε ∼ 1,

and Gmin has two irreducible components (−) � (+) and (0)↔ (0). No state x ∈ S is a
priori negligible. We then aggregate the states (±) by adding Rε(±) :=Rε(+)+Rε(−) and
obtain a new eigenvalue problem M(1)

ε R(1)
ε = λ(1)

ε R(1)
ε , where

M(1)
ε :=

[
εa 2εb

εb 0

]
, R(1)

ε :=
[
Rε(±)

Rε(0)

]
and λ(1)

ε := λε − 1.

We then have to discuss three subcases.

7.4.1 Subcase J <− 1
4� < 0

Subcase: b < a. The minimizing subgraph G
(1)

min has one irreducible component (±) � (0)

with minimizing mean exponent ā(1) = b and dominant spectral coefficient ᾱ(1) =√2. We
obtain

λ(1)
ε ∼

√
2εb, R(1)

ε ∝
[√

2
1

]
, Rε ∝

⎡

⎣
1/
√

2
1

1/
√

2

⎤

⎦ and

λε = 1+√2εb + · · · , πε ∼
⎡

⎣
1/4
1/2
1/4

⎤

⎦ , Qε ∼
⎡

⎣
εa

√
2εb 1

εb/
√

2 1 εb/
√

2
1

√
2εb εa

⎤

⎦ .

7.4.2 Subcase J =− 1
4� < 0

Subcase: a = b. G(1)

min has one irreducible component (±)↔ (±) � (0) with dominant spec-
tral coefficient ᾱ(1) = 2 (the spectral radius of

[ 1 2
1 0

]
), and the right eigenvector R(1)

ε is pro-

portional to
[ 2

1

]
. We obtain λ(1)

ε ∼ 2εb and

λε = 1+ 2εb + · · · , Rε ∼ πε ∼
⎡

⎣
1/3
1/3
1/3

⎤

⎦ , Qε ∼
⎡

⎣
εb εb 1
εb 1 εb

1 εb εb

⎤

⎦ .

7.4.3 Subcase − 1
4 � < J < 0

Subcase: a < b. The minimizing subgraph G
(1)

min has one irreducible component (±) ↔
(±) with dominant spectral coefficient ᾱ(1) = 1. We obtain therefore λ(1)

ε ∼ εa , Rε(0) =
εb−aRε(±)!Rε(±), λε = 1+ εa + · · · and

Rε ∼
⎡

⎣
1/2
εb−a

1/2

⎤

⎦ , πε ∼
⎡

⎣
1/2

2ε2(b−a)

1/2

⎤

⎦ , Qε ∼
⎡

⎣
εa 2ε2b−a 1

εa/2 1 εa/2
1 2ε2b−a εa

⎤

⎦ .
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7.5 Case −J −K +�= 0, J > 0

Case: a = 0 < min(b, c). One then has

ā = 0, Amin =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ , ᾱ = 1, λε ∼ 1.

The minimizing subgraph Gmin has three irreducible components (−)↔ (−), (0)↔ (0) and
(+)↔ (+). Once again we simplify the proof by noticing that Rε(−)= Rε(+), but it is so
far not clear which state dominates. The reduction to an aggregated form consists in simply
eliminating the first term of λε in the Puiseux series:

M(1)
ε =Mε − Id, M(1)

ε R(1)
ε = λ(1)

ε R(2)
ε , R(1)

ε =Rε, λ(1)
ε = λε − 1.

The new graph G(1) has possible minimizing mean exponents ā(1) = borc. Let ᾱ(1) be the
associated dominant spectral coefficient. We discuss three subcases.

7.5.1 Subcase 0 < 1
4 � < J

Subcase: b < c. G(1)

min has one irreducible component (−) � (0) � (+) with ā(1) = b. More-
over,

A
(1)

min =
⎡

⎣
0 1 0
1 0 1
0 1 0

⎤

⎦ , ᾱ(1) =√2, R(1)
ε ∝

⎡

⎣
1√
2

1

⎤

⎦ .

Then λε = 1+√2εb + · · · and

Rε ∝
⎡

⎣
1√
2

1

⎤

⎦ , πε ∼
⎡

⎣
1/4
1/2
1/4

⎤

⎦ , Qε ∼
⎡

⎣
1

√
2εb εc

εb/
√

2 1 εb/
√

2
εc

√
2εb 1

⎤

⎦ .

7.5.2 Subcase 0 < 1
4 �= J

Subcase: c= b. The subgraph G
(1)

min has one irreducible component (−) � (0) � (+) � (−)

and

A
(1)

min =
⎡

⎣
0 1 1
1 0 1
1 1 0

⎤

⎦ , ᾱ(1) = 2, R(1)
ε ∝

⎡

⎣
1
1
1

⎤

⎦ .

We thus obtain

λε = 1+ 2εb + · · · , Rε ∼ πε ∼
⎡

⎣
1/3
1/3
1/3

⎤

⎦ , Qε ∼
⎡

⎣
1 εb εb

εb 1 εb

εb εb 1

⎤

⎦ .
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7.5.3 Subcase 0 < J < 1
4�

Subcase: c < b. G
(1)

min has one irreducible component (−) � (+) with minimizing mean
exponent ā(1) = c and ᾱ(1) = 1. We aggregate the states (±), R(1)

ε (±) :=R(1)
ε (−)+R(1)

ε (+),
and eliminate R(1)

ε (0)!R(1)
ε (±) to obtain a third graph (reduced to a singleton)

{
εcR(1)

ε (±)+ 2εbR(1)
ε (0)= λ(1)

ε R(1)
ε (±),

εbR(1)
ε (±)= λ(1)

ε R(1)
ε (0),

εc + 2ε2b

λ
(1)
ε

= λ(1)
ε .

We get λε = 1+ εc + · · · and

Rε ∼
⎡

⎣
1/2
εb−c

1/2

⎤

⎦ , πε ∼
⎡

⎣
1/2

2ε2(b−c)

1/2

⎤

⎦ , Qε ∼
⎡

⎣
1 2ε2b−c εc

εc/2 1 εc/2
εc 2ε2b−a 1

⎤

⎦ .

7.6 Case J = 0 < � < K

Case: a = c < min(0, b). One has

ā = a, Amin =
⎡

⎣
1 0 1
0 0 0
1 0 1

⎤

⎦ , ᾱ = 2, λε ∼ 2εa.

Gmin has one irreducible component (−)↔ (−) � (+)↔ (+) with minimizing mean ex-
ponent ā = a and dominant spectral coefficient ᾱ = 2. We again aggregate the states (±),
Rε(±) :=Rε(−)+Rε(+), and eliminate Rε(0)!Rε(±) in order to introduce a new singu-
lar eigenvalue problem

{
2εaRε(±)+ 2εR

ε (0)= λεRε(±),

εbRε(±)+Rε(0)= λεRε(0),
2εa + 2ε2b

λε − 1
= λε.

We thus obtain

Rε ∼
⎡

⎣
1/2

εb−a/2
1/2

⎤

⎦ , πε ∼
⎡

⎣
1/2

ε2(b−a)/2
1/2

⎤

⎦ , Qε ∼
⎡

⎣
1/2 ε2(b−a)/2 1/2
1/2 ε−a/2 1/2
1/2 ε2(b−a) 1/2

⎤

⎦ .

7.7 Case J = 0 < �=K

Case: a = c= 0 < b. We have

ā = 0, Amin =
⎡

⎣
1 0 1
0 1 0
1 0 1

⎤

⎦ , ᾱ = 2, λε ∼ 2.

Gmin has two irreducible components with spectral coefficients equal to 1 and 2, whose
graphs are (0)↔ (0) and (−)↔ (−) � (+)↔ (+), respectively. We aggregate (±) into a
unique state Rε(±) :=Rε(−)+Rε(+) and obtain

{
2Rε(±)+ 2εbRε(0)= λεRε(±),

εbRε(±)+Rε(0)= λεRε(0),
2+ 2ε2b

λε − 1
= λε.
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We thus get λε = 2+ 2ε2b + · · · and

Rε ∼
⎡

⎣
1/2
εb

1/2

⎤

⎦ , πε ∼
⎡

⎣
1/2
2ε2b

1/2

⎤

⎦ , Qε ∼
⎡

⎣
1/2 ε2b 1/2
1/4 1/2 1/4
1/2 ε2b 1/2

⎤

⎦ .

We recall that the previous discussion is summarized in Figs. 3 and 4.
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