J Stat Phys (2012) 146:125-180
DOI 10.1007/s10955-011-0357-x

Description of Some Ground States by Puiseux
Techniques

Eduardo Garibaldi - Philippe Thieullen

Received: 18 December 2010 / Accepted: 9 September 2011 / Published online: 7 October 2011
© Springer Science+Business Media, LLC 2011

Abstract Let (£, o) be a one-sided transitive subshift of finite type, where symbols are
given by a finite spin set S, and admissible transitions are represented by an irreducible
directed graph G C S x S. Let H : ©; — R be a locally constant function (that corresponds
with a local observable which makes finite-range interactions). Given 8 > 0, let gy be the
Gibbs-equilibrium probability measure associated with the observable —gH. It is known,
by using abstract considerations, that {{1gx}g-0 converges as B — +00 to a H-minimizing
probability measure /. called zero-temperature Gibbs measure. For weighted graphs with
a small number of vertices, we describe here an algorithm (similar to the Puiseux algorithm)
that gives the explicit form of u/. on the set of ground-state configurations.

Keywords Zero-temperature Gibbs measures - Ground-state configurations - Puiseux
algorithm

1 Introduction

The purpose of this article is to present, for one-dimensional lattice-gas models, for specific
class of nearest-neighbor interactions H, rigorous results on the convergence of the Gibbs
measure (gy as the temperature 7 = B! of the system goes to zero. The limit measures
thus obtained are called zero-temperature Gibbs measures. For most part of the article, the
dynamical system is represented by a one-dimensional lattice, or more generally by a tran-
sitive subshift of finite type (Eg, o), in which some edges may not follow a given edge,
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Fig.1 The schematic
Blume-Emery-Griffiths model £

or equivalently in which some hardcore exclusions apply. The exclusion rule is given by
an irreducible finite directed graph G C § x S. The set S of vertices of G represents the
possible states of the system at each site. We say that the interaction energy function H has
infinite range if it depends on the whole configuration; H is then assumed to be Holder. We
say H has finite range if it depends only on two adjacent sites. Actually, finite range here
means nearest neighbor, but it is well known that, by passing to a higher block presentation,
one can translate general finite-range models into nearest-neighbor models with more spin
states.

Our first goal in Sect. 2 is to improve results on the convergence of Gibbs measures for
a certain class of infinite-range interaction energy functions H. We use there the language
of ergodic optimization theory and dynamical system theory. More precisely, we prove in
Theorem 16 the convergence as B — oo of a dual notion Vgg, that we call “Gibbs po-
tential”, under the hypothesis that the set of ground-state configurations (or H-minimizing
non-wandering set, Definition 6) €2 (H) admits a unique irreducible component of maximal
entropy. The Gibbs potential may be seen as an approximate effective potential at positive
temperature following Chou and Griffiths works [12, 18].

Our second aim is to understand the zero-temperature phase diagram for finite-range in-
teraction energy functions. It is known [8, 11, 22] that, for finite-spin finite-range models in
one dimension, the family of Gibbs measures {ugp}g converges to a unique invariant prob-
ability measure called zero-temperature Gibbs measure. We present in Sect. 3 the beginning
of an algorithm, valid for any weighted directed graph, that describes precisely all possible
zero-temperature Gibbs measures. We collect all proofs both for general subshift of finite
type systems and for weighted directed graphs in Sects. 4 and 5. We discuss in Sect. 6 the
complete phase diagram for all nonsymmetric complete graphs on 3 symbols. We discuss in
Sect. 7 the complete phase diagram of zero-temperature Gibbs measures for the BEG model:
a specific model well studied in solid state physics.

We close this introduction by detailing the different phase diagrams we obtain in the case
of the one-dimensional Blume-Emery-Griffiths model. (See also Fig. 1.) The BEG model
was initially developed in order to understand the phase transition of mixed systems with
two isotopes He® and He* (see [6]). In particular, it exhibits a tricritical point, separating a
regime of first-order transitions from a regime of second-order transitions. Our purpose in
this introduction is to describe the zero-temperature phase diagram of the one-dimensional
BEG model at the level of ground states. For the one-dimensional Ising models, Georgii [17]
gives a complete discussion of the zero-temperature Gibbs measures. There are also exam-
ples of zero-temperature Gibbs measures for more than one dimension (see, for instance, the
case of the bidimensional Blume-Capel model in [9]).

We consider a one-dimensional spin system with a nearest-neighbor interaction given by

the Hamiltonian
Hx)=—-J Zx,-xj - K lezxf + A inz,
(i.j) (i,J) i
where x; € S = {—1, 0, +1} represents a possible state at the site i.
For each positive temperature T = B!, there exists a unique translation-invariant Gibbs
measure, or simply Gibbs measure, (145, obtained for instance by the Ruelle transfer op-
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erator method. We first write H in terms of a unique energy function per site Hy, that is,
H =7}, Ho(xi, xi41), where

A
Hy(x,y)=—Jxy — szy2 + E(x2 + yz).

In the BEG model, a site having a state &1 represents an atom He*, a site having a state
0 represents He?. The constant J is supposed to be positive for ferromagnetic systems and
negative for antiferromagnetic systems. The constant K takes into account the isotopic in-
teraction, A may be interpreted as a chemical potential. An external magnetic field could be
added and would give an additional term /), x; in the Hamiltonian. We do not consider
this term in this introduction. Even so, we emphasize that the algorithm to be described ap-
plies without changes in all these cases, ferromagnetic or antiferromagnetic, with or without
external magnetic field.

The Ruelle transfer operator method tells us that the Gibbs measure ugy at temperature
T = B~! is a Markov chain (77, Q) on the finite state space S, defined by an irreducible
transition matrix [Qg(x, y)]y,yes and a stationary probability vector [ (x)] es,

b _
05(r.y) = ¢§§i ; exp[—B(Hoy. x) — Hp)].
p ) i B )P0
P T Y s PP ()

The factor exp(— B Hj) denotes the maximal eigenvalue of the transfer operator £z, where
Lz may be described here by a matrix indexed by S x S,

Lg=1[Lg(x, Y)]xyes: Lp(x,y) =exp(=pHy(x,y)).

The two vectors [®g(x)] es and [dDZ (x)]xes denote the left and right eigenvector of Lg

S Lp. @5 = Phon), D dp()Lsx,y) = PHDL(y),

yeSs xe§

normalized by Y~ .« Pp(x) =" ¢ Py (x) =1, Pg(x) > 0, Pj(x) > 0. Notice that in the
definition of Qg(x,y), the order of (x, y) has been interchanged in Hy(y, x). The normal-
izing factor F = I-_Iﬂ is sometimes called in the physics literature the free energy.

We shall see that I-_Iﬁ — H as B — 400, where H (see Definition 5) represents the
ground-state energy density of the chain (or the minimizing ergodic value of H in the lan-
guage of ergodic optimization theory). In order to understand the convergence of gy, we
rewrite the problem in a framework of bifurcation of singular matrices.

In the BEG model, by numbering the state space S = {s1, 52, 53}, 51 = —1, s, =0 and
s3 = +1, and by changing the parameter B to € = exp(—pf), we are left to study a singular
perturbation of a one-parameter family of matrices M, = [A(x, y)e**], where

111 —J—-K+A A J-K+A
A=|1 1 1| and a= 1A 0 3A
J-K+A 1A —J-K+A

We summarize the set of possible interactions between two consecutive sites x; and x;; by
a (directed) graph G C S x § weighted by the principal exponent a(x, y) as explained in
Fig. 2. We also indicate in this figure the mean of a along all simple cycles.
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Fig. 2 Graph of interactions and determination of minimizing cycles (a cycle of minimizing mean) in the
BEG model
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Fig. 3 Phase diagram of the BEG model at zero temperature for A > 0. The Markov chain structure

(oo, Qo) at zero temperature and the Puiseux series expansion of the free energy F = I-_If; is shown for
each phase

We shall show that ugy converges to a unique measure % | called zero-temperature
Gibbs measure, which has the structure of a Markov chain characterized by an initial law
T and a transition matrix Q... The two Figs. 3 and 4 describe the structure of this Markov
chain with respect to (J, K) for A > 0 fixed.

Each region of the plane (J, K) represents a limit phase: each box indicates the initial
law, the transition matrix and the beginning of the Puiseux series expansion of the free
energy F. The three bidimensional regions correspond to the case where all parameters 0,
A, —J —K+ A, J—K+Aand 1(J — K +2A) are distinct: a generic case without
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Fig. 4 Phase diagram of the BEG model at zero temperature for A > 0. Numbers in parentheses indicate
the weight of each indecomposable (ergodic) Markov chain which contributes to the zero-temperature Gibbs
measure

degeneracy. For instance, when J — K + A <0 and J < 0, corresponding to the upper
left part of the phase diagram, the smallest parameter is / — K + A and 'urlzin is equal to
the uniform distribution on the configuration ..., —1,+1,—1,41, ..., or more precisely,
because we fix an origin, it is equal to a periodic probability measure of period 2:

H 1
Mmin = §5<-~-+1|—1+1-~-> + §5<~-—1\+1—1-~>-
The zero-temperature Gibbs measure is pure (or ergodic) and made of atoms with alternate
spins &1. We show that the initial law 74, the maximal eigenvalue e~ and the transition
matrix Qg admit expansions of the following forms

12 12 )
g~ | 27 PCITK=AD G 0| Ap = e PHp ~ o PU—KFR)
12 12
82;‘3] 26725(7J+K7A/2) 1 0 0 1
05~ |12 etrEkm yploli2 0 12
1 26_2/3(_]+K_A/2) 62/3] 1 0 0
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We notice that, in the region / — K + A > 0 and —J — K + A > 0, independently of the sign
of J, the zero-temperature Gibbs measure is pure with only the presence of He. We show
in all cases that e #7s ~ qePH | where In(@) represents the zero-temperature entropy (or
topological entropy) of the set of ground-state configurations (Definition 6). We see in Fig. 3
that In(@) > 0 when J =0 and K > A, that is, when the set of ground-state configurations
is strongly degenerate (coexistence of at least two adjacent minimizing cycles, Fig. 4).

The results we present here are essentially one-dimensional as they rely fundamentally
on the existence of a transfer operator. We use the language of ergodic optimization in dy-
namical system in order to better describe the set of ground-state configurations and the set
of zero-temperature Gibbs measures. For infinite-range Hamiltonians, we point out a general
condition in Sects. 2 and 4 that implies the uniqueness of the zero-temperature Gibbs mea-
sure. For finite-range Hamiltonians, we explain in Sects. 3, 5, 6 and 7 a complete algorithm
that describes the phase diagram of the unique zero-temperature Gibbs measure.

We thank the referee for her/his careful reading and the references [1, 27, 29].

2 A Dynamical System Approach

We consider a one-sided transitive subshift of finite type ( E;C, o), where S is a finite set of
vertices (or states) and G C S x S is an irreducible directed graph representing the admis-
sible transitions (or hardcore exclusions) from one vertex to another. A point in £, called
configuration, represents a complete state of half of a chain of atoms compatible with the
transitions given by the graph G,

& ={x=iz0 € SV : (e, xi1) € G, Yk e N}

Recall that Eg is a compact metric space equipped with the distance d (x, y) = 1 if xo # yo
and d(x,y) = (%)” if xo = yo, ..., Xy—1 = Yu—1 and x,, # y,. The left shift map o : Zz; —
%2 plays the role of the space translation,

o(xg, X1, X2,...) = (x1,%x2,X3,...), Vxe Zg.

We prefer to work on the one-sided model instead of the two-sided one in order to use the
transfer operator. The two models are mathematically identical but are restricted solely to
one-dimensional problems.

We consider, in this one-dimensional setting, a unique interaction energy function H :
Eg — R, and assume that H is Holder or, in other words, that A has infinite range. The
Gibbs measure at positive temperature T = B~!, that we recall below, will be denoted 1t BH -
More generally, we allow each transition to have a weight that measures the strength of
the constraint. In order to do that, we consider also another Holder map E : E(J; — R. We
shall introduce the corresponding Gibbs measure (g g . The transitivity of (£, o) (or the
irreducibility of G) guarantees the uniqueness of the Gibbs measure (g4 gn.

We will use the notation x — y to indicate an admissible transition (x, y) € G between

. G G G G . ..
two vertices x,y € S and xg — x; = x, — --- — X,_; to indicate an admissible path.
Let C,(x) = [x0, ..., X,_1] be the set of configurations x’ € Eg whose first n symbols are
prescribed x, = xo, X{ = X1, ..., X,_; = X,_1; we also say that C,(x) is a cylinder of length

n.LetC,(G)={C,(x):x € 25’} be the set of all cylinders of length n. Let us recall Ruelle’s
definition of the pressure of an observable W (which shall be seen as E + S H).
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Description of Some Ground States by Puiseux Techniques 131

Definition 1 Let ¥ : =/ — R be a continuous observable. We call pressure of W and topo-
logical entropy

Pres(¥) := max [Ent(u) — / Wdu:pe M(Eg, J)},
Ent(Eé) ‘= max {Ent(u) tu e M(BE, 0)},

where M (X[, o) denotes the set of o-invariant Borel probability measures on > and
Ent(u) denotes the Kolmogorov-Sinai entropy of o with respect to pu,

o1
Ent(u):= lim = > —pu[C,]Inu[C,].
n—+oon
CreCn(G)

More generally, for any o -invariant Borel probability measure p or o -invariant compact set
2, we call relative pressure with respect to w or €2, respectively,

Pres(V, ) := Ent(u) — /\IJ du,
Presq (W) := max {Pres(¥, u) : u € M(E, o) and supp(p) C 2}.
We say that i € M(Z}, o) has relative maximal pressure in 2 for W if

Presq (W) =Pres(W, ) and supp(u) C Q2.

Definition 2 We call Gibbs measure associated with W a o -invariant Borel probability mea-
sure /Ly on T/ satisfying

n—1

nylCy(x)] < exp (— Z [\IJ ock(x)+ Pres(W)]), Vx € Eg, Vn>1.
k=0

The notation a,(x) < b, (x) is a shorthand for C~'a,(x) < b,(x) < Ca,(x) for some con-
stant C > 0 independent of n and x.

Notice that this definition is a typical dynamical system definition or Sinai-Ruelle-Bowen
definition, in contrast to the Dobrushin-Lanford-Ruelle definition of Gibbs measures, as
given in [17], which immediately works in higher dimensions. For more details on a SRB
definition of Gibbs measures in higher dimensions, we refer the reader to [21].

It is known that, for any given Holder observable W : £/ — R, there exists a unique
Gibbs measure py, which is also the unique o-invariant Borel probability measure with
maximal pressure:

Pres(¥) = Pres(W, py) > Pres(W, ), Ve M(ZE, o)\ {1y}

For E, H : Zg — R Holder observables, we are interesting in the convergence (with respect
to the weak™ topology) of (g gy as B tends to +oo (oras T = B~ —=0).

Question 3 What are the possible weak* limits of g as B tends to 400 ? Is there a
unique limit? How can one characterize them in an effective way?

@ Springer



132 E. Garibaldi, P. Thieullen

We collect in this section several general facts for arbitrarily Holder H. We shall show in
the next section how to improve these results when H has finite range. We begin by adopting
a terminology proposed in the Appendix B of [29].

Definition 4 We call zero-temperature Gibbs measure any weak™* limit of (g g as B tends
to +o0.

An immediate observation tells us that a zero-temperature Gibbs measure is a minimizing
measure in the following sense.

Definition 5 Let H : ©; — R be a continuous observable. We call minimizing ergodic
value of H (or ground-state energy density) the quantity

H ::min{fH(x)du(x):,ueM(E&’,o)}.

We call minimizing measure any o -invariant Borel probability measure [y, realizing the
minimum in the previous equality f H(x)dmin(x) = H. The set of H-minimizing mea-
sures is denoted by Muin(Z¢, 0, H).

From Aizenman and Lieb work [1], it is known that in general dimensions any zero-
temperature limit of Gibbs measures has maximal entropy. Hence it is not a surprise that
here a zero-temperature Gibbs measure p has maximal pressure Pres(E, i) (or maximal
entropy Ent(u) for E = 0) among all minimizing measures. In order to explain this fact, it
is convenient to introduce a set €2 (H) that plays the role of the set of ground-state configu-
rations but which is called the set of H-minimizing non-wandering configurations in ergodic
optimization.

Definition 6 Let H : £, — R be a continuous observable. We define the set of H-
minimizing non-wandering configurations (or ground-state configurations) by

It is easy to show that 2 (H) is compact and completely o -invariant, o (2 (H)) = Q(H).
We recognize Q2(H) as the set of ground-state configurations in the following sense. If
H is Holder, there exists a Holder function V : Zg — R (a calibrated sub-action as in
Proposition 13) such that

Q(H) := {xezg:v€>0, In>1,3ze T st

n—1

Y [Hoo"(z) - H]

k=0

d(x,z) <€, d(x,0"(z)) <€ and

" Hook(x)=nH+Voos"(x)—V(x), VxeQ(H), Vn>1,
:;(I)Hoak(y)znl:l—l—Voa”(y)—V(y), Vye Xt va> 1.

Therefore, up to a coboundary A(x, y) := V(x) — V(y), the energy ZZ;(I) H o o*(x) of the
configuration x € Q2 (H) on n consecutive sites can only increase

n—1 n—1
Y Hoo'() =) Hoo'()=A©"(1),0"(x) —A(y.x), VyeZs.
k=0 k=0
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Moreover, it follows from the result of Radin and Schulman [27] that, for finite-range inter-
actions, the set of ground-state configurations always has periodic configurations. Actually,
it is easy to show that, when H has finite range, Q2 (H) is exactly the closure of its periodic
configurations.

We state in the following proposition that €2 (H) contains the support of all minimizing
measures and that any invariant measure whose support belongs to €2 (H) is minimizing.

Proposition 7 [13] Let H : Eg — R be a Hélder observable. A o -invariant Borel proba-
bility measure  is H-minimizing if, and only if, its support supp(u) is included into Q (H):

Muin(2&, 0, H) = {u € M(E§, 0) : supp(n) C Q(H)}.

From the previous discussion, a zero-temperature Gibbs measure is minimizing and has
a support included in 2 (H). There may exist several minimizing measures even for a finite-
range interaction H (see Sect. 3). The next proposition states that, by freezing the system,
the Gibbs measures accumulate on minimizing measures satisfying a zero-temperature vari-
ational principle. Similar results have been obtained in other contexts (see, for instance, [4]
or [19, 24]).

Proposition 8 [13, 22] Let E, H : Eg — R be Hélder observables. Then any zero-
temperature Gibbs measure |1, is H-minimizing and has a support in Q(H). In addition,
Uoo achieves the maximum of the pressure among all invariant measures in Q(H); if E =0,
oo achieves the maximum of the entropy in Q(H). More precisely,

1. Pres(E, o) = Presqu)(E) and f Hdu. = H. If Q(H) supports a unique measure
Mmin witfz maximal pressure Po(E), thgn {M§+,3H},3 converges to [imin-

2. Let be Hp := —%P(E + BH). Then B(H — Hg) — Presq)(E) as B — +00. In the
physics literature, I-_I,_«; is called the free energy and converges to H with speed %

3. As B — Ho00, fH diE+pa — H and Pres(E, WE+pH) = Presqay (E). In the particular
case E =0, Ent(ugy) — Ent(Q(H)).

Notice that for a generic interaction energy function, {ugygn}s converges to a unique
minimizing measure as f — +00.

Proposition 9 [13] For any a > 0, the set of a-Holder H admitting a unique H-minimizing
probability measure is generic in C*. Thus {{tg+pH}p converges to a unique (i for generic
a-Holder H.

The uniqueness of the zero-temperature Gibbs measure, which is the content of the pre-
vious proposition, holds for generic continuous interactions too. It is also important to keep
in mind that there are examples of Holder interactions for which the convergence {1 g1 pm}p
does not hold (see [10]).

Gibbs measures have a different functional characterization in terms of the Ruelle trans-
fer operator. They are also called equilibrium measures.

Definition 10 We call Ruelle transfer operator associated with a Holder observable W :
& — R the operator Ly acting on Holder functions f : £ — R as follows

Ly f(x)= Z e ' f(y), Vxexg,

yio(y)=x

where the summation is taken among all preimages of x by o.
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It is well known that, by extending the standard Perron-Frobenius theory for nonnegative
matrices, the Ruelle transfer operator £y admits similar “right and left eigenvectors” that
we recall in the following proposition.

Proposition 11 [7, 26, 28] Let W : Eé — R be a Holder observable. Then there exist a
unique left eigenmeasure, or Borel probability measure vy on Zg , a unique normalized
right eigenfunction, or positive Holder function @y : Eg — R, such that

Lyvy ="My, Ly®y ="My and / Dy dvg =1.

Moreover, gy := ®yvy is a Gibbs measure and the unique o -invariant probability that
maximizes the pressure for ¥ among all o -invariant probabilities. We call Vy 1= —% Indy
the Gibbs potential associated with V.

The Gibbs potential Vg gy = —% In® g gy plays the role, at positive temperature, of
the effective potential introduced by W. Chou and R. B. Griffiths in [12, 18] to study ground
states in the Frenkel-Kontorova model. We shall see below in Proposition 13 and Theo-
rem 16 that indeed, in some cases, the Gibbs potential converges to an effective potential as
B — +00. We have seen in Proposition § that I:Iﬂ = —%P(E + BH) converges to H and
that any weak™ limit of {{tz4g}p is H-minimizing. It would be interesting to obtain similar
characterizations for limit points of {Vg,gr}s or {ve4pn}g. The first result in that direction
is that any limit point of Vg, gy is a calibrated sub-action:

Definition 12 Let H : £} — R be a continuous observable. We call sub-action with respect
to H any continuous function V : £} — R such that

Voo(x)—V(x)<Hx)—H, VYxeX{.
We call calibrated sub-action any sub-action V which in addition satisfies
V() =min{Vx)+Hx)—H:xe X} ox)=y}, VyexZf.
Similarly to Proposition 29 of [13], we obtain easily the following proposition.

Proposition 13 Let E, H : Eg — R be Holder observables. Let @ g gy :=exp(—BVeipn)
be the right eigenfunction of Lgygn. Then {Vgigulp is uniformly bounded and has a uni-
form Holder norm. Moreover, any accumulation function of (Vg gu}p is a calibrated sub-
action with respect to H.

If Q(H) supports a unique probability measure w  with relative maximal pressure
Presq ) (E), then g e — /Lgin although Mmin(Eg, o, H) may not be reduced to a single
measure. We do not know whether a similar result is true for the convergence of {Ve,gn)s.
We nevertheless show the “projective” convergence of { Vg, gn ) in the particular case where
Q(H) can be split into disjoint irreducible components with a unique component of maxi-
mal pressure. The splitting up of 2 (H) into components uses the following notion of Peierls
barrier in the sense of Mather [14, 23].
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Description of Some Ground States by Puiseux Techniques 135

Definition 14 Let H : £ — R be a Holder observable. We call Peierls barrier the function
h(x, y) defined on Eg X Z&L by

e e e e
oY) = il S ).
where

n—1
Se(x,y) :=inf Z(H —H)oo"(z):d(z,x) <€ and d(c" (2), y) < 6}.

k=0

The Peierls barrier may be infinite. If x € Q (H), h(x, y) is finite and Holder with respect
to y € T. Notice that Q(H) = {x € T : h(x, x) = 0}. Let us recall how the minimizing
non-wandering set 2 (H) can be partitioned into closed invariant sets, which uniquely char-
acterize sub-actions.

Definition 15 [16] We say that two points x, y of Q(H) are equivalent, and we write x ~ y,
whenever h(x, y) + h(y, x) = 0. Equivalent classes are called irreducible components. Irre-
ducible components are o -invariant and compact.

We now state the main result of this section.

Theorem 16 Let E, H : Zg — R be Hélder observables. Assume that Q(H) = Q¢ U 2, U
-+ U Q, admits a finite decomposition into disjoint irreducible components 2; and

Presq () (E) = Presq, (E) > Presq, (E) > --- > Presq, (E).

Let ®pipy =exp(—BVeipu) be the normalized right eigenfunction of the Ruelle transfer
operator Lgygy. Then uniformly in'y € Sk, for any fixed xo € Q,

ﬁETOO Virpu(y) — Verpn (x0) =h(xg, y), Vye Zf.

Notice that, in the above theorem, {(gigr}s may not converge to a unique H-
minimizing measure. Indeed, any weak* limit has a support in €2y which may contain many
minimizing measures. Notice also that the convergence of {Vg,gn}s (as a sequence of func-
tions) depends only on the converge of { Vg gp (x0)}p for any fixed xp € €.

3 A Matrix Approach to Ground-State Theory

We say that the interaction energy function H : Zg — R has finite range if it only depends
on two consecutive symbols H (x) = H (xo, x;). By allowing a larger number of vertices in
another irreducible finite directed graph G’, an energy function of the form H (xo, ..., xq—1)
can be described by the framework we are going to develop. The main consequence of this
strong assumption on the energy function is that the problem of zero-temperature phase
diagram is reduced to a problem of singular perturbation of matrices of Puiseux type.

We consider a finite state space S and an irreducible directed graph G C S x S weighted

by an energy function {exp[—B8 H (x, y)]}x G where x, y are particular states in S and x £
y denotes an admissible transition given by the graph G. We prefer to introduce a new
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parameter € := exp(—p), which goes to zero when f tends to 400, and a one-parameter
family of transfer matrices [M, (x, y)]x,y)esxs» adapted to G, defined by

Mc(x,y) :=exp[-BH(x, )| =", V(x,y)eG,
M.(x,y):=0, V(x,y)¢G.

Notice that M, is a Perron-Frobenius matrix, that is, a matrix with nonnegative entries.
Let A¢ := pspec(Mc) > 0 be its spectral radius. Because of the irreducibility of G, A, is an
eigenvalue of multiplicity 1. Let [L(x)] cs and [R¢(x)].es be the left and right eigenvector
of M, for the eigenvalue A,

D LMo (x,y) =hLe(y), VyeSs,

xes

> Mc(x.)Re(y) =AeRe(x), VxeS,
yeSs

normalized by > _¢Lc(x)Rc(x) =1 and ) ¢ R.(x) = 1. Notice that L.(x) > 0 and

R.(x) >0forall x € S. Let

xeS

R.(y)
Re(X)Ae’

Te(x) :=Le(x)Re(x) and  Qc(x,y):=Mc(x,y) Vx,y€Ss.
The Ruelle transfer operator used in the dynamical approach of Sect. 2 is strongly related
to a basic eigenvalue problem that we recall in the following remark.

Remark 17 Assume H(x) = H(xg, x;) has finite range. Let ®gy : Eg — R be the
right eigenfunction of Lgy and vgy be the left eigenmeasure of Lgy. Let pgp(dx) =
Dy (x)vgr (dx) be the normalized Gibbs-equilibrium measure associated with S H. Then

i ®py(x)=Le(x), ¥V x=(xp,x1,...) € .
ii. vgu([x0]) = Re(x0), YV xo € S.
iii. pgy is a Markov chain on EZ{ with initial law 7. and transition matrix Q.. For any
cylinder of size d + 1, one has

d—1

wpr([xo, X1, ... xq4]) = Le(x0)|:1_[ M. (Xi,xi+1):| Re(xq) /M.

i=0

We are interested in describing the possible limits of {(7., Q¢)}c—o that we also call
zero-temperature Gibbs measures. In an equivalent way, we want to describe all possi-
ble limits of the eigenvalue {)¢}._.o and the projective eigenvectors {L.(x)/L¢(y)}c—0o and
{R:(x)/Rc(y)}e—o0- As in the dynamical system approach, the zero-temperature Gibbs mea-
sures are localized in a minimizing subgraph similar to the minimizing non-wandering set
Q(H) recalled in Definition 6. We first begin by restricting the class of the one-parameter
family of matrices we want to study. We introduce the notion of one-parameter family of
Puiseux type in two steps.

Definition 18 Let G C S x S be a (not necessarily irreducible) directed graph and {M}¢-o

be a one-parameter family of matrices indexed by S. The graph G is said to be weighted by
M. it M (x,y) =0 whenever (x, y) ¢ G. The weighted graph (G, M,) is said to be of exact
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Puiseux type if there exist a nonnegative matrix [A(x, y)], yes and an extended real-valued
matrix [a(x, ¥)]s,yes such that

L. Vx,yéG,Ax,y)=0,a(x,y)=+o0and M.(x,y) =0.
ii. V(x,y)eG, A(x,y)>0,a(x,y)€Rand

Me(x.y) = A(x, y)e™ + o(e"),

We say shortly M, ~ Ae“.

We call G-path of length n > 1 in S any sequence (x, ..., X,) such that (x;, xz+1) € G,
Vk =0,...,n — 1. The support of a G-path (xq,...,x,) is the subset {(x;,x44+1) : k =
0,....,n — 1} C G. A cycle of length n > 1 is a G-path (xg,...,x,) in S such that
Xxn = xo. We call off-diagonal cycle any cycle (xq, Xy, ...,X,) such that x; # x;4; for
all i =0,...,n — 1. A simple cycle is a cycle (xo,...,x,) such that x; # x; for all
0<i# j<n.Aloopisacycle (xg, x;) of length 1 where (x¢, x;) € G and xy = x;. We call
mean exponent of a cycle the real number % Z?;Ol a(x;, Xiy1)-

Definition 19 Suppose that (G, M,) is an irreducible weighted graph of exact Puiseux type
with M, ~ Ae“.

i. We call minimizing mean exponent of (G, M,) the real number

n—1

_ )1 .
a ;= min —E a(x;,xit1):n>1, (xo,...,x,) isacycle ¢.
n
i=0

We call minimizing cycle any cycle of mean exponent a.

ii. We call minimizing subgraph the graph Gin C Smin X Smin, Where Sy is the set of states
belonging to some minimizing cycle and G y;, is the union of supports of all minimizing
cycles.

iii. We call dominant spectral coefficient of M, the spectral radius of A,

@ :=sup{|A| : A € spec(Amin)} = Pspec(Amin)>

where Apin = [A(x, y)1g,,, (X, ¥)]: yes. Notice that & > 0.

Notice that a may be obtained by minimizing on the finite set of simple cycles. Although
we start with an irreducible graph, Gy, may not be any more irreducible; G is nevertheless
semi-irreducible as explained below.

Definition 20 A graph G C S x § is said to be semi-irreducible if there exist a partition
S =S8,U---US, and irreducible subgraphs G; C S; x §; suchthat G = G, U---U G,. Note
that in G there is no transition from x; € §; to x; € §; forany 1 <i # j < d. The subgraphs
G; are called the irreducible components of G.

Lemma 21 Let (G, M.) be an irreducible weighted graph of exact Puiseux type. Then the
minimizing subgraph G, is semi-irreducible.

In the language of dynamical system, when (G, M,) is of exact Puiseux type, Gpin de-
scribes the minimizing non-wandering set €2 (a) introduced in Definition 6. More precisely:
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Lemma 22 Let G be an irreducible directed graph and E, H : £ — R be finite-range
observables. Let M, = Ae® = [exp(E (x, y))eT V1 (x, WNlx,yes- Then (G, M) is of exact
Puiseux type and satisfies:

i. The minimizing mean exponent of (G, M) is equal to the minimizing ergodic value of
H, namely,a = H.
ii. The minimizing non-wandering set Q(H) is a subshift of finite type
Q(H)={x € Z¢: (X%, Xy1) € Gruin, VA= 0} =X& .
iii. The splitting up of Q2(H) into irreducible components (see Definition 15) corresponds
to the splitting up of G, into irreducible components {G,»}le:

QH)=QH)U---UQu(H), where
Qi(H):={x € T} : (x¢, x¢11) € Gy, Yk > 0}.

iv. The relative pressure of E to Q2 (H) is related to the dominant spectral coefficient of M
by & = exp[Presq ) (E)].

We now complete the notion of one-parameter family of Puiseux type.

Definition 23 Let G C S x S be an irreducible directed graph. We call off-diagonal graph
the subgraph of G defined by G := G \ {(x,x) : x € S}. Notice that G is again irre-
ducible. If (G, M.) is a weighted graph, we denote M%7 (x, y) := M (x, y)Lgor (x, ¥).

Definition 24 Following the Definition 18, we say that an irreducible weighted graph
(G, M,) is of general Puiseux type if

i. The irreducible off-diagonal weighted graph (G, M%) is of exact Puiseux type. Let
aofr be the minimizing mean exponent of (G Mfﬁ').
ii. Foreach (x,y) ¢ G, A(x,y) =0and a(x, y) = 400 (by convention).
iii. Forall x € S, (x, x) € G and one of the two estimates holds

M, (x, x) = o(e%in) (by convention: A(x,x) =0, a(x,x)=-+400) or

Mc(x, %) = A(x, )™ +0(e"™0),  Ax,x) > 0, alx, x) < dofr.
Let G* :=G \ {(x,x) e G: A(x,x) =0} and M (x,y) := Mc(x, y)Ls+(x, y). Notice that
G* is an irreducible directed graph and (G*, M}) becomes a weighted graph of exact

Puiseux type. We call minimizing mean exponent a of (G, M.) the minimizing mean ex-
ponent of (G*, M}). Let G}, be the minimizing subgraph of G* and

min
Anin = [AG, M)Lgx (5, Y)]eyes-

We call dominant spectral coefficient & the spectral radius of Af; . We call dominant sub-
graph G the subgraph of G defined by the union of all irreducible components of G}, of
dominant spectral coefficient.

Notice that the only difference between the two notions of Puiseux type is that, in the
weakest definition, M, may possess a diagonal term (positive or not) of the form o(e“fr).
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We will see soon that these terms are negligible in the computation of the spectral radius
of M.. Notice also that

a = min{a.g, a(x,x) : x € S}.

From Lemma 21, the minimizing subgraph Gmln is equal to a disj oint union of irreducible
subgraphs: G*. = G{U---UG}, where S;U---US, is apartition of S7; and G} C S; x §;.

min mm

By just permutating indices, we may consider that the first » subgraphs G; have dominant
spectral coefficient &. In order to do that, we adapt the notation and we say that G; C S; x S;
has dominant spectral coefficient if the restricted matrix Ai;lm [A(x, y)1g, (x, ¥)]; ye5, has
spectral radius &.

Main notations 25 Suppose (G, M) is an irreducible weighted graph of general Puiseux
type.Let G; C §; x 81,..., G, C S, x§,, 1 <r <d,be the set of irreducible components of
G nin_0f dominant spectral coefﬁment @.Let G :=G,U---UG, be the dominant subgraph,

min

and §:= S, U---US, be the set of vertices of G. Denote Go =G\ Gand So=S \ S. We
write M, as a (r + 1) x (r + 1) block matrix in the following way

M= @;.j:l Méj @;:lMéO
QMY M
M® =M Dleyesy MO=IMe D]iegyesye MY = Mc(x. 9)]cgy e, -

and M =[Mc(x, D), yes,x5,, VI<ij=r

We call dominant matrix A the diagonal matrix obtained by keeping only the submatrices

A, with dominant spectral radius

Al .0
=[A(x, )L, Vi yes = - o
o ... AT

AT =[AGx, ))1s, (5, Ve yes, = Ams Vi=1,...,r
By convention all matrices Al 1 <i # j <r, are equal to 0. Notice that
he :=supf|A] : & € spec(Mc)} = pspec(Me)

is an eigenvalue of multiplicity 1 and unique on the circle {|A| = A.}. Let L. and R, be the
left and right eigenvectors of M, associated with the largest eigenvalue A,

L=PLieL), R=PRoR,
i=1 i=1

ZLe(x)RE(x) =1, and ZRE(x) =1,

xeS xeS

where L. is a row vector and R, a column vector. Consider thus
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M (x,y)R.
JTG(X) ::Le(-x)Re(x)» QG(-x»y) ::W,

and  pe(x, y) :=me(x) Qe (x, ¥).

Foreachi=1,...,r,a = ,ospgc(fi"") is an eigenvalue of multiplicity 1 admitting a unique
positive left row eigenvector [L!(x)], <5, and a unique right column eigenvector [ R’ )],e 5,
satisfying

LAl —a I, AR —q R
Y UWR@=1, ad Y Rm=L.
xes; xeS;

Let 7/, Q% and fi; be defined on G; as follows

. - - All(x, y)R!
' (x) ;== L' (x)R'(x), Q" (x,y):= 796 _),1) )
R (x)
fi(x,y) =7 () 0" (x, y).
We extend fi; on G \ G; by 0.

In the language of dynamical system, the main known result in this setting is recalled in
the following theorem.

Theorem 26 [8, 11, 22] Let E, H : ©/; — R be finite-range observables defined on a tran-
sitive subshift of finite type £ given by an irreducible directed graph G. Let g 4pp be the
Gibbs measure associated with E + BH . For € = e™?, consider M. = [A(x, y)e“("*”]x,yes
the transfer matrix, where

a(x,y)=H(x,y) and A(x,y)= eEY v (x, y) € G,
a(x,y) =400 and A(x,y)=0, Vx,y) ¢G.
We recall that (vggu weights each cylinder [xy, ..., x,] € C,1+1(G) as

n—1

ME+gH ([X0, ... X4]) = Le(x0) |: 1_[ M (x, xk+l):| Re(x,) /A7

k=0

Let Gy, ..., G, be the dominant irreducible components of G . Let [i; be the Gibbs mea-
sure associated with E restricted to Eg' ,

n—1

wi([x0, ..., x,]) = ii(xo)[HAii(xkyka)] R (x,)/@", YI[x0, ..., %] € Crs1(G)).

k=0

Then, the family {|Lgpn}g converges to

,
EH._ 1 _ N\ LEH -
Pomin -= ,f;EToo wepn =y _ct" i,

i=1

where ciE’H = /Lfli: (G)>0and Y _, ciE’H =1.
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The existence of the limit in Theorem 26 is the main point and was proved by Brémont in
[8] using semi-algebraic techniques. Leplaideur in [22] gave a dynamical proof and has iden-
tified the limit as a barycenter of minimizing measure of maximal pressure. Akian, Bapat
and Gaubert (see [2, 3]) using min-plus methods have obtained similar results. Chazottes,
Gambaudo and Ugalde in [11] gave a more algorithmic proof. Nekhoroshev has obtained
[25] the convergence to a zero-temperature Gibbs measure for generic one-dimensional
spin systems with nearest-neighbors interaction. Chazottes and Hochman in [10] showed
a one-dimensional counterexample for the convergence of Gibbs measures associated with
an infinite-range interaction. They also showed there a tridimensional counterexample for a
finite-range Hamiltonian H.

We intend to partially extend Theorem 26 to the case of irreducible weighted graphs
(G, M) of general Puiseux type. We explain the first two steps of an algorithm based on
Puiseux-series expansions. These two steps are enough to describe the limits lim._,o 7, =
Tmin and lime_,0 Q. = Qmin for matrices of small dimension. The main difficulty is to iden-
tify which irreducible components of G}, support fimin. The first step consists in writing
M. in a normal form; this step makes use of the notion of correctors (equivalent to the notion
of sub-actions introduced in Definition 12). The second step consists in aggregating all the
states in the same irreducible component, obtaining thus a new weighted graph with a lower
dimension.

Definition 27 Suppose that (G, M,) is a weighted graph of general Puiseux type, M, ~

Ae“, Gy, is the minimizing subgraph of G*, and a is the minimizing mean exponent of

(G, M.). We call corrector any function v : S — R such that
a(x,y) >=v(y) —v(x)+a, V(x,y)eG"
The corrector is said to be backward or forward calibrated if
v(y)+a= xt(gi)rglG*{v(x) +a(x,y)}, VyeS (backward),

v(x) —a= max {v(y) —a(x,y)}, VxeS (forward).
yilx,y)eG*

It is said to be separating if
a(x,y)=v(y) —v(x)+a, V(x,y)€ G

a(x,y)>v(y) —v(x) +a, V(x,y)€G"\ Gy,

It is easy to show that separating correctors exist. We just want to make clear that this
notion is a key part to understand the singular perturbations of Perron matrices.

Lemma 28 The notations being given in Definition 27, there exist (not necessarily unique)

backward or forward calibrated correctors. There exist (not necessarily unique) separating

correctors. The difference of two correctors is constant on each irreducible component.
The first step of the algorithm is described below.

Algorithm 29 (I. Reduction to a normal form) Let (G, M,) be an irreducible weighted

graph of general Puiseux type, M. ~ Ae”. From Main notations 25, recall the partition of
S into dominant and non dominant indices: S = J;_, S; U So. For v : S — R a separating
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corrector, denote A, (v) 1= diag[e’™ :x € S]and a(x,y) :=a(x,y) +v(x) —v(y)—a >0
forall (x,y) € G*. Then
oMe.—A(v)MA(v) lemi = 4 —|—N andN =o(1);

o Al = [0 D], where A := dlag[A” 1i =1, ...,r]is the diagonal matrix of dominant ma-

mm

trices A", ai}d D is a nonnegative matrix indexed by Sy such that pspec(D) < Pspec (A =
= p{pec(Arr)Q
o (G, Mf’f) is an irreducible weighted graph of exact Puiseux type;
o V(x,y) € G¥, M.(x,y) ~ A(x, y)e®™ " A(x,y) >0, a(x, y) > 0.
Wa say that (G, M) isa normal form of (G, Me). Let L. and R, denote the left and right
eigenvectors ofM for k€ = Pspec (M ). Then A =i % and

L.x)=€"@L.(x) and R.(x)=e"PR.(x), VxeS.

The following proposition extends Proposition 8 in the sense that we admit a more gen-
eral form of transfer matrix.

Proposition 30 Let (G, M,) be an irreducible weighted graph of general Puiseux type.
Then

i Ao ~ae®;
. pe(x,y) = 0forall (x,y) ¢ G, m.(x) = 0 for all x € Sy; B
iii. any accumulation measure [ of (l¢)eso is of the form L = Z;:l n(Gi)iL;.

We recover the fact that, if G}, admits a unique irreducible component of dominant
spectral coefficient (r = 1), then p, — fi1, me(x) — 7' (x) for all x € S; and 7. (x) > 0
elsewhere.

The second step of the algorithm is an operation of aggregation.

Algorithm 31 (II. Reduction to an aggregated forrp) Let (G, M.) be an irreducible weighted
graph of general Puiseux type. Assume that (G, M¢) is a normal form of (G, M¢). We write

N r Ml] fMiO n -
i, = [ea i GHA o]+

@] : MOJ M 0

(Notice that A(x, V) =AW, y) L =0 forallx,y € S=8U---US,.) The right eigenvec-
tor R, is solution of the system

{Z, ]M”R’—l—M’ORO kR’ Vi=1,...,r,

Z; MO/R’ —|—M0°R0 e R0
AS Pspec (A;ISO) — Pspec(D) < ~ if, RS can be written linearly with respect to Iéé We thus
obtain

> (W1 + MG — W) MR =R

Jj=1
We take the scalar product of each equation by the left eigenvector L'. We extract the dom-
inant term A and obtain a new weighted graph (G, MV) indexed by SV :={1,...,r}
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defined in the following way. For i # j, let P(i, j) denote the set of G-admissible paths
X :=(xq,...,%,) such thatn > 1, xg € SisX1yeooyXyy € So and x, € S'j. Then
o foralli# j, (i, j) € GV if, and only if, P(i, j) # ¥;
o foralli=1,...,r, (i, i)e GV (by convention);
(Wg: 3\ Ti¢nij o xpi0(3 700y —1 Y70/ _R:
o MO, )= LINI + MPGe = MP) ™' MY) 7.

The new eigenvalue problem is related to the previous one by

> MO HRO ()= Ge —@)RVG), RV =LR., Vi=1.....r
j=1

We say that (G, MV) is an aggregated form of (G, M). Note that > R (i) may not
be equal to 1.

Proposition 32 Let (G, M.) be an irreducible weighted graph of general Puiseux type.
Let (GV, M(V) be its aggregated form defined by the separating corrector v : S — R. If
a(x,y)=a(x,y)+v(x) —v(y) —a forall (x,y) € G* and x = (xo, ..., x,) belongs to
P, j), denote a(x) := Z,n:_ol a(xi, xiy1). Then
i. (G, Ms(')”ﬁf) is an irreducible weighted graph of exact Puiseux type, with MV ~
ADea? here, for all (i, j) € GVF,

a(i, j):==min{a(x) : x € P, j)} and

Z L (x0) [TiZg AGe, Xir DRI (x)

AV, j) = o

X=(X0, - X0 ) EP (i, f)
a@=a,j)

il. foralli:1,...,randx,ye§i,

Li(x) €™ Li(x) Ri(x) €™ Ri(x)
N o~
Li(y) €™ Li(y) Ri(y) €O Ri(y)

iii. foralli#je(l,....,r}andx € S;,
Qc(x,y) =0, VyeS;US,,  Qclx,y)— 0(x,y), VyeS.

Notice that no estimate is given in the previous proposition for the quotients RL(x)/RI(y)
ifxeS;and y €S;.

Algorithm 33 (III. Induction) Assume by induction one can prove

RD (i)
RO (j)

Ny(l)(i!j)éc(l)(i.j)! Vi=1,...,r
for some real coefficients yV(i, j) =y, i)' > 0 and ¢V, j) = —cV(j,i). Notice
that Proposition 32.ii easily implies

Ry Re ]
) RO R, Vi=l.....r ¥x€3.
&y LR
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Let G’ be the graph containing either (x, x) for x € Sy or (xo, Xp) if (xo,...,Xn) is a path
of G N (S x So) such that D(xy, x; +1) > 0. Let M, = (A — MSO)’I. Then (G', M)) is a
weighted graph of exact Puiseux type (see Lemma 49). It follows that

(0~ y P @)e

-, RI
00 —1 370j €
Z()\' M Mf R(l)

R(l)(l) =

for some coefficients yV (x) > 0 and ¢V (x) € R. One thus may obtain

Re(x) clx.y
Ny(x,y)e'(' )

Vx,yes,

for some real coefficients y (x,y) =y (y,x)~' > 0 and c(x, y) = —c(y, x). The normaliza-
tion )" s Re(x) =1 then implies

1
— ~ r(x) :
R.(x) = R0 p(x)e, VxeS, with
ZyeS Re(x)

—1

p(X):=( > y(y,x)> and r(x) i=maxc(x, y).

y=argmax c(x,y)

Similar equivalences can be written for L.(x) and Q.(x,y). In particular, the limits
lim,_om (x) and lim._,g Qc(x, y) exist forall x,y € S.

4 Proofs of Results Stated in Sect. 2

We begin by proving the results of Sect. 2 for a transitive subshift of finite type (X, o)
defined by an irreducible directed graph G on a finite state space S. Let E, H : £} — R
be two Holder functions. Proposition 8 has been noticed many times as in [13, 22]. We
nevertheless give the proof of this proposition in order to point out the following inequalities.

Lemma 34 For any > 0, Presqu)(E) < Pres(E + BH) + BH < Pres(E). If wpipy is
the Gibbs-equilibrium measure of E + BH, then

0< /3(/ Hdpgiga — I-_I> <Pres(E) —Presquy(E), and
Presqm) (E) < Ent(upipm) — / Edugign.

Proof On the one hand, if pny, is any H-minimizing probability with relative maximal
pressure in 2(H), then

Pres i) (E) — BH = Ent(junin) — / Edu-pi
= Ent(,umin) - /(E + ﬂH) d“min =< PFCS(E + IBH)
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On the other hand,
Pres(E + BH) =Ent(igipn) — /(E +BH)dipipn, either
<Ent(upipn) — /Edu5+,sﬂ —BH, or
<Pres(E) — B /HdMHﬁH <Pres(E) — BH. 0
Proof of Proposition 8 We first remark
-1
0< / Hdugipn — H < E[PFCS(E) — Presq ) (E)]

implies that {[H dugipn}s converges to H as B — +oo and that any weak* limit of
{tE+pu}p is actually minimizing for H. Let uo be a weak* accumulation probability. We
next observe that the upper semi-continuity of the entropy map 8 +— Ent(ug1px) implies

Presq ) (E) > Ent(poo) — / Edps

> lim sup (Ent(MHﬁH) - / EdME+ﬂH> > Presqm)(E).
B—>+o0

All inequalities in the previous estimate are therefore equalities and lim sup should be un-
derstood as a limit. ]

The rest of this part is now devoted to the proof of Theorem 16. We first give some
complements on the Peierls barrier. As usual, define the Birkhoff sum of an observable
V:zt—>Ras

n—1
S () =) Wook(x), Vxexzf.
k=0

Lemma 35 Let h(x, y) be the Peierls barrier introduced in Definition 14.

i. The function h: % x T — R U {400} is lower semi-continuous.
ii. IfV: Zg — R is a continuous sub-action, V(y) — V(x) < h(x, y).
iii. Forany x € Q(H), h(x,-): Zg — R is Holder (and finite).
iv. Forany x,y,z € >t h(x,z) < h(x, y)+h(y,z).
v. Forany y € 22, h(-,y): Eg — R U {400} is a coboundary of H — H,

(H— H)(x) +h(o(x),y) =h(x,y), V¥x,yeXf.
vi. Foranyx € %, 0"(x) € Q(H) = h(x,0"(x)) = S,(H — H)(x).
Proof Ttems i, ii, iii and iv are well known and have been discussed, for instance, in [13, 15,
16].

Item v. Suppose € € (0,1). If 7' is close to o(x), d(z/,0(x)) < €, one can find z
close to x, d(z, x) < €/2, such that o (z) = z’. Hence, if osc;(H, n) :=sup{H (x) — H(y) :
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d(x,y) <n}, then

Sy2(x.y) < (H — H)(x) + SE (o (x), y) +osci (H, €/2).

Conversely, if d(z, x) < €, then d(0(z), 0 (x)) < 2¢. Therefore
86 (x,y) = (H—H)(x)+ S (o (x),y) —osci (H, €).

Item v is proved by taking liminf,_, ; « first and lim._,( afterwards.
Item vi. From the previous item, we have by induction

Su(H — H)(x) + h(0" (x), y) = h(x, ).

If y=0"(x) € Q(H), then h(y, y) =0 and item vi is proved. O

From now on the minimizing non-wandering set 2 (H ) can be decomposed into a disjoint
union of irreducible components Q(H) = Qp U --- U Q, (see Definition 15). Each ; is
necessarily closed and invariant. We fixed once for all x;* € ;. We recall that ; = {x €
Eg th(x, x}) +h(x/,x) =0} and that, for any i # j, h(x/, x;‘) + h(x;f,xi*) > 0.

Lemma 36 Assume Q(H) = Qo U ---U Q, is a disjoint union of irreducible components.
Let 'V : Eg — R be any continuous sub-action. Then

i. The quantities hy (i, J)i=h(x}, x}‘) - V(x;‘) + V(x}) are nonnegative and independent
of the choice of x} € ;.
ii. hy(i,iy=0foralli=0,1,...,r.
iti. If hy(0,j) =0 forall j=1,...,r and V is a calibrated sub-action, then V(y) —
V(x)=h(x,y) forallx € Qoyand y € 7, that is, V is unique provided V (xo) is known
for some xy € Q.

Proof Ttemi. Let hy(x,y) :=h(x,y) —V(y)+ V(x)>O0forall x,y e Eg. Hence, x ~ y
if, and only if, hy (x, y) + hy (v, x) =0 if, and only if, hy (x, y) = hy (v, x) = 0. Suppose
x,x',y,y € Q(H) satisfy x ~ x" and y ~ y’. Because of Lemma 35.iv,

hy(x,y) <hy(x,x")+hy(x',y) =hy (X', y).

Equivalently iy (x’,y) < hy(x,y) and thus Ay (x’,y) = hy(x,y). For the same reason,
hy(x',y) =hy(x’,y"). We just have proved hy (x, y) = hy (x', y).

Item ii. It is immediate from the definition of /v .

Item iii. From [5, 15], calibrated sub-actions have the following characterization V (y) =
min{V(x) + h(x,y):x € Q(H)} forall y € Eg. Then, for any fixed xo € €9, on the one
hand,

V(y)= min min[V(x)+ h(x, y)]
j:O,.“,rerj

> min rnsi2n[V(x) — Vi(xo) + h(x,x0)]1+ V(x0) + h(xo, y)

Jj=0,...,rxeQ;
=V (xo0) + h(xo, ).

On the other hand, because V is a sub-action, h(xg, y) > V(y) — V(xo). We have proved
that V(y) =V (x) + h(x,y) forall x € Qpand y € Eg. O
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Let ®gypy = exp(—BVeyipn) and veig, be, respectively, the eigenfunction and the
eigenmeasure of the Ruelle transfer operator Lg g, normalized by f Ppipudveipn = 1.
We know that {Vggn}p has uniform sup-norm and uniform Holder norm. Let V. be any
accumulation point in the C° topology. Proposition 13 tells us that V,, is calibrated. We as-
sume that Presg, (E) > Presg,u..uq, (E). We want to prove that Voo (y) — Voo (x) = h(x, y)
forany x € Qpand y € =T, which will show that, for any fixed xg € Q,

Vg (y) — Veirpn (X0) = Viao(y) — Voo (xo),  uniformly in y € Tf.

That convergence will indeed follow from Lemma 36.iii and the next lemma.

Lemma 37 Let V : Eg — R be any sub-action and hy (i, j) be defined as in Lemma 36.
Assume, forany j=1,...,r thereexistsi =0,1,...,r,i # j, such that hy (i, j) = 0. Then
hy(,j)=0forall j=1,...,r

Proof Assume by contradiction that hy (0, j1) >0forsome j, =1,...,r.Define J :={j =
1,...,r:hy(0, j) > 0}. Notice that if j, € J and Ay (j», j;) =0 for some j, =0,1,...,r,
J2 # J1, then necessarily j, # 0 and j, € J. By hypothesis, one can therefore construct a
sequence ji, jo, ... € J such that

< =hy(s, ) =hy(o, j) =0 and jii1 # ji.

Because the number of irreducible components is finite, there exist two distinct indices

s <t such that hv(j,, jic1) = =hy(js+1, js) =0 and j; = j,. We obtain, for instance,
hv(jv, Js+1)=0= hv(]ﬁq, ]g) Wthh is in contradiction with Q;  # ;.. O
In order to apply the initial assumption of Lemma 37, we fix fromnowon j=1,...,r,

Q=0Q; and Q = | 2j $2i. Clearly, Q and Q are disjoint closed invariant sets and
Presq (E) > Presg (E). We want to show that

min{A(x, y) — Vao(y) + Voo (x) :x € Qand y € Q) =0.
We begin by introducing some notations.
Notations 38 Let V : £ — R be any Holder sub-action. Consider the function
hy(x,y):=h(x,y) = V() +V(x) >0, Vx,yeX{,

which is tl}e Pe~ierls barrier of the observable Hy := H — H—-Voo+ V~z 0. Assume that
Q(H) = QU Q is a disjoint union of two closed o -invariant sets with € irreducible. For
€ > 0, denote

Ky(Q,6):={xeXf:IyeQsthy(x,y) <€)
We will need to approximate Presg (E) by the pressure of E restricted to transitive sub-
shifts of finite type ¥4 O Q which decrease to €. In order to introduce them, the following

notion will be useful.

Definition 39 A closed o-invariant set Q C Eg is said to be quasi-transitive if, for any
x,y €, for any € > 0, there exist z € Zg and an integer n > 0 such that

d(z,x) <k, d(0"(z),y) <€ and dc* (), Q) <e, Vk=0,1,...,n
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Lemma 40 Any isolated irreducible component Q of Q2(H) (there exists an open set U
containing Q2 such that U N Q(H) = Q) is quasi-transitive.

Proof Let V be any Holder separating sub-action, namely, a Holder sub-action such that
Hy, 1(0) = Q(H) (for details, see [16]). For € > 0, let U, and ll be neighborhoods of size
€ of Q(H) and Q, respectively. Assume e is sufficiently small enough so that if z € U, and
k > 1 is the first time such that o*~!(2) € Ue and o¥(z) ¢ Ue, then o*(z) ¢ U,.. Let n > 0
sufficiently small enough so that {z € EZ; : Hy(z) < n} C Ue. Since Q is irreducible, given
X,y € €, there exist infinitely many positive integers n and points z, € Eg such that

d(vax) <€, d(an(ziz)’ )’) <€ and SnHV(Zn) <n.

Since z, € U, and Hy o o¥(z,) <1, then 6*(z,) € U, Vk=0,1,...,n. O

Lemma 41 Let Q be a quasi-transitive closed o -invariant set. Let U, be the union of all
cylinders B =[x, X1, - .., Xq—1] of length d such that B N Q2 # (). Consider £, ={x € T} :
o"(x) €Uy, Yn >0} D Q. Then

i. (24,0) is bi-Holder conjugate to a transitive subshift of finite type.
ii. There exists a constant C4 > 0 such that

C;'< > expl—S,(E +Presg, (E)(x)] < Cs.  Vye 4, Vn 0.

xef)d
o (x)=y

iii. limg— 400 Presid (E) =Presg(E).

Proof Ttem i.~Let S (c~1) be the~ set of gylinders [xo, ..., X4s—1] which have a non-empty inter-
section with Q. Let G(d) C S(d) x S(d) be the graph defined by the transitions

G(d) G
[X0s - ooy Xgo1] —> [x], .o xf] & (X1, Xg-1) = (X, .., x5 ) and x4 — x).

Let Eg( o be the subshift of finite given by the graph G(d). Thus Zg( 4 is transitive

since 2 is quasi-transitive and Zg @
{[xg, - - s Xg_ 1 Buz0 > {xg}uz0-

Item ii. This estimate is true for any transitive subshift of finite type, being invariant under
topological conjugacy.

Item iii. Since 2 C X;, we have on the one hand Presg (E) < Presg (E). On the other

) is bi-Holder conjugate to X, by the conjugacy

hand, if ji; denotes the equilibrium measure associated with the 0bserV~able E : f}d - R
and L, denotes an accumulation point of {{i4}4— 100, then supp(fieo) C 2 and

lim supPresid(E) =limsup (Ent(ﬁd) - / Ed/ld>

d—+o00 d—+00
<Ent(fiee) — /Ed,&Oc < Presg (E).
‘We have proved that Presid (E) — Presg (E). O

Lemma 42 Consider the decomposition Q(H) = S_Z_U Q as in Notations 38. For a Holder
sub-action 'V - Z;f — R, assume min{hy (x,y) :x € Qand y € 2} > € > 0. Then
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i. Ky(2, €) is closed, invariant and disjoint from Q. Moreover,
S,Hy(x) <€, VxeKy(Q,e), Vn=>0.
ii. If UDQis open and disjoint from Q, then

sup card{j:O,l,...,n—lzoj(x)¢l7}<+oo.

xeKy (Q,€), n>1

(Every orbit of Ky ($2, €) stays most of the time in U.) 5
iii. If C(n) := sup{erKV(QG). o (x)=y exp[—S,(E + Presg (E))(x)] : y € Q} for every n >
1, then limsup,_, ., 1 InC(n) <0.

Proof For simplicity, denote K =Ky(Q,e). _ ~
Item i. Since h(x, y) is lower semi-continuous and €2 is compact, we deduce that K is
closed. From Lemma 35.v, we have

hy(o(x),y) < Hy(x) + hy (0 (x), y) =hy(x,y), VYx,yeXi.

In particular, hy (x,y) <€ = hy(o(x), y) < €, which shows that K is invariant. Iterating
this last formula, we also obtain

SpHy (x) < S, Hy (x) +hy (6" (x),y) <hy(x,y), V¥x,y€Xg.

Hence, S, Hy (x) is uniformly bounded on n > 0 and x € K. ~
Item ii. Suppose by contradiction there exist a sequence of points {x,},>; of K such that

card{j =0,1,...,n:07(x,) ¢ U} > +o0.

Let no > n; > --- be a sequence of positive real numbers decreasing to 0. Let {B;(n¢)}; be a
finite cover of K \ U by balls of radius 7y. One of these balls contains infinitely many points
of {6/(x,): j=0,1,...,n, n>1}. More precisely, there exist a subsequence {x,()}n=1
(with ko : N — N increasing) and a ball B;; of radius 1, such that

card{j =0,1,...,ko(n) : o/ (xym)) € Biy} = +00.

By covering B;, by balls {B;(1;)}; of radius 1, one can extract a second subsequence
{Xkgok, () Ju=1 (With k; : N — N increasing) and choose one of these balls B;, so that

card{j =0,1,...,ko o ki(n) : 0/ (Xyok;m)) € Bi,} = +00.

We continue by induction. Let k/(n) =kgo...0k () and z be an accumulation point of
{Bij }jZO' Let

N R i i
O0=s) <51 < <Stim-1 < Srim =k’(n)
L o - J .
be the successive times f{s/}/_{""" such that o¥ (x5, € B;,. By construction

r/(n) — +o0. Notice that

r/(ll)—l .
J
Z S(“Ij}l—szj)HV oo (i y) = S ooy Hv (Xi (my) < €.
1=0
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Therefore, for infinitely many indices j, one can consider z; := ol (Xginy) and nj := s/+1 -
slj forsome !/ =1,...,7/(n) — 1 in such a way that Sn; Hy(z;) — 0.Asz;,0"(zj),z€ B;;
and diam(B,«j) — 0, we have proved that z € Q(H) =QU Q. Since z€ K\ U and K \ U
is disjoint from €2 and €2, we obtain a contradiction.

Item iii. Let S(d) be the set of non-empty cylinders of Eér of size d and G(d) C S(d) x
S(d) be the graph whose transitions are given by

G) G
[X0s - ooy Xgo1] — [x], ..o xf] & (Xp, e Xgm1) = (X, .. x_) and x4 — X

Denote the oscillation of the Birkhoff sums of E by

ose,(E) = sup [ S, E(lyx) = S, E(lyy) :

122

G(d) G(d)
Y =V_...VoVU_1, vy —> xandv_; —> y],

where |y x) is the concatenation of a finite G (d)-admissible path y =v_, ... v_ov_; in S(d)

. . G . G .
and a point x in £, and v_, —(; X just denotes v_; —(; [x0,...,x4—1]. Hence, if v_; =
[°,,...,v"7"1eSd),i=1,...,n, then
. 0 0
lyx) =@, ..., x0,x1,...) € T¢.

More generally, if y =v_,...v_; and y' =0’ ...v", are G(d)-admissible paths of

length n and n’, we say that y can be concatenated to y’ if v_; o4 v’ ,. Write then
Yy =vo,ooopv L0

As in the proof of Lemma 41.i, we also consider S (d) the set of vertices [xg, ..., xs_1] €
S(d) such that [xo, ..., xs_1] N # @ and the subgraph G (d) = G(d) N S(d) x S(d). We
choose once for all a ﬁnlte set Fd of G(d) admissible paths which connect all vertices of

S(d) to all vertices of S (d). Given y € €2, each inverse branch of order n of y can be

written as x = |yy), where y = v_,...v_; is a G(d)-admissible path and v_, G—(di v 1=

[Yoy s ya_1]. We partiti~on y into sub-paths so that alternatively y»; is a path in S (d) and
v2i+1 1s a path in S(d) \ S(d). More precisely, we consider y = y;, ... ¥ as concatenation
of paths y; of length n; (possibly no =0 if v_; ¢ S(d) and y; is the empty path) in such a
way that

Y0 = V—(ng) - - - V—(1) is a path in S(d),
Y1 =V (ugtny) - - V—mos1y 18 @ path in S(d) \ S(d),

Y2 = U_(Cngtni4na) - - - V—(no+n+1) 18 a pathin S(d), et cetera.
We associate with each such an inverse branch y a new path y in S(d) of the form
Y = ¥, ... %, given by the concatenation of paths y; of length 7; such that y,; = y»;

and each sub-path y,;;; outside S(d) has been replaced by a sub-path p4 =
U (g 4-tinis1) + - » V—(iigttiigg +1) i S(d) chosen in Iy so that

G(d) ~ G(d) ~
—(fg+--+ii+1) > U—(iig+...+i;) and - (o+--+iigi+1+1) > U (Ro+... 47 4+1)
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Let n =179+ 1, + --- + 1, be the length of the path y. Denote x; = |y;¥;—1 ... Yy) and
Xi = ¥ivVi-1-.-%y). We want to compare

SE(yy) =) S, E(x) and S;E(7y) =Y S;E).

i=0 i=0
Either y; corresponds to a path outside S(d), then
S, E(x;j) = Si, E(X) — (ni + 1) | Ell oo
or y; corresponds to a path inside S(d), then ¥; = ¥i, X; and x; have the same symbols during
a period n; = n;,
Sp; E(x) = Si, E(X;) — oscy, (E).
Let L, be the maximal length of paths in I'y. Then

S:E(yy) = S E(17y) = Y ni(l+ Lol Ellos — Y sup, osc,(E).

i odd i even

Since card{i : i even} <card{i :i odd} +1 <23, 47, wWe obtain

SE(lyy) = SiE(173)) — [(1 + L) Elloo + 2 5up, 05¢, (E)] Y _ ;.
i odd

We assume from now on that the inverse branch x = |yy) belongs to K. From item ii, we
know that Y, ., < Ny is bounded by a constant independent of x and n which only
depends on the neighborhood of QU= Uf{Cc:Ce S(d)} for d sufficiently large enough.

Notice that
Zfl,‘ < Z Lg< Zniid < NyLg.

i odd i odd i odd

We obtain in particular i = Y ;_,71; € [n — Ng,n+ NgLyl.

In the previous construction, we associate with an inverse branch x = |yy) € K of length
n of y a new inverse branch ¥ = |7 y) of length 7 for the subshift of finite type (34, ) as
defined in Lemma 41. Since the association x — X is not injective, we want to bound from
above the cardinal of each fiber. Hence, if 7 has length 2 > 31%, fix a partition f, U---u fo
of {—n,...,—1} into r 4+ 1 disjoint consecutive intervals, with r € {1, . 3Nd} in order
to determine a decomposition y = ¥, ... such that y; has length card([ ). The possible
Yy = ¥ ... associated with y = y, ...y must have length n € [n — NyLg, 7 + Ny] and
each y,i,1 has length at most N,;. The cardinal of each fiber is thus bound from above by

Ny Ny 3Ng ,~
[Ng(Lg+ 1) + 1](Z(card(5))k) Z <r> <Cn 3Na
k=1 r=1

for some constant C ', depending only on d. Let

CJ == Clexpl((1 + La) | Ellso + 2 sup, 0sc, (E)Ny].
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Then
B n+NdI:d
> expl=SE@)] <N Y > expl=SiE@®)].
xek,d"(x):y ﬁ:n—Nd ieid,oﬁ(i):y

Denote C~“’1” = C‘Z;[Nd(id + 1D +11Cy exp[ﬁdl:dPresid (E)], where C, is the positive con-
stant given by Lemma 41.ii. Therefore, we get

3 expl— S, E(0)] < € n* explnPress, (E).
xef,a"(x):y
Since Presg (E) — Presg(E), we finally obtain

lim sup ! 1n<supl Z exp[—S,(E 4 Presg(E))(x)]: y € Q}) <0.

n—+oo N -
xeK,o"(x)=y D

In order to prove Theorem 16, we summarize in the following proposition the main tech-
nical result, which consists in relating the pressure of disjoint parts of the minimizing non-
wandering set 2 (H) and the levels of the Peierls barrier 2 (x, y) between these parts.

Proposition 43 Let E, H : Zé — R be Holder observables. Assume Q2(H) can be writ-
ten as a disjoint union Q(H) = QU Q of two closed invariant sets. Assume Q is irre-
ducible. Let V, be any accumulation point (in the C° topology) of {(VE1pH}p—+00 Where
D pn = exp(—Vieipn) is the right eigenfunction of the Ruelle operator L gy normal-
ized by [ ®pipndveipy = 1. Then

Presg(E) > Presg(E) = min _ h(x,y) — Voo (¥) + Vo (x) =0.
xeQ, yeQ

Proof By contradiction, we suppose that

min Ay, (x,y) >e€>0.
xeQ,yeQ

Let K = Ky (Q, €) as in Notation 38. We consider ® gy as an eigenfunction of L’}EWH

for some n = n(B) that will be chosen later. Given y € 2, we thus have

I= Y exp[—BS.(H—H—Viipnoo+Veipn)x)]

erz;. o't (x)=y
x exp[—S, E(x)]exp[—n(Pres(E + BH) + BH)].

We split this sum into two parts

I = Z I = Z

xe):g\le,o”(x):y xel%, ol (x)=y

We choose B large enough so that || Veigy — Vol < %n, with n < € to be determined.
From Lemma 35.vi, we have S, Hy, (x) = hy, (x, y), which yields

Se(H — H — Vi g 00 + Verpn)(X) = hv (6, 9) = 2 Vespn — Vaolloo
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We recall from Lemma 34 the following inequalities
Presq ) (E) < Pres(E 4+ BH) + BH < Pres(E).

We also recall how to compute the pressure using a counting argument on inverse branches
(C =exp[2]| VoD

c™! exp[nPres(E)] < Z exp[—S, E(x)] < Cexp[nPres(E)].

xezg, ot (x)=y

Therefore, the first part can be bounded from above in the following way

, €
I' < Z exp[—ﬂi] exp[—3S, E(x)]exp[—nPresq ) (E)],

xeXé\Ie, ot (x)=y
€
<C exp[—ﬁ §i| exp[n(Pres(E) — Presq ) (E))].
The second part is bounded from above using the estimate of Lemma 42.iii

I//

IA

> exp[ﬂg]exp[—SnE<x>]exp[—nPresmH)(E)],

xek, ot (x)=y
< C‘(n) exp [ﬂg} exp[n(Presg (E) — Presq(E))].
We now choose 1 and n = n(f) so that

€
—,35 + n(Pres(E) — Presq)(E)) < —ng,

ﬁg —n(Presg(E) — Presg (E)) < —ng,
that is, n/2 < Presg (E) — Presg(E) and
n/2 n €/2
<—< .
Presq(E) —Presg(E) —n/2 B Pres(E) — Presqm)(E) +n/2

We thus have obtained, for a subsequence n — 00,
Il=I'+1"<(C+ é(n))exp[—ng} -0,
which is clearly a contradiction. a

Proof of Theorem 16 As before, we fix an accumulation point V., of the sequence
{(Vetpr}p>too. Let Q(H) = Qo U --- U Q, be a disjoint union of irreducible compo-
nents. By hypothesis, Presq, (E) > Presq,u..uq, (E). For j =1, ...,r, denote Q= U#j Q;
and Q = ;. Since Presg (E) > Presg (E), Proposition 43 implies f_lvoo (i, j) =0 for some
i # j. Lemma 37 shows that hy_(0, j) =0 forall j =1,...,r. Since V, is calibrated,
Lemma 36.iii implies finally

h(x0,¥) = Voo (y) — Vo (x0),  Vxo € 0, Vy € .
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If xo € Q is fixed, the sequence {Vgigu(-) — Ve4pu (X0)}p—+oo has a unique accumulation
point A (x, -) and therefore converges. ]

5 Proofs of Results Stated in Sect. 3

We study in this section the algorithmic aspects of singular perturbations of Perron matrices
of Puiseux type. We start with a weighted irreducible graph (G, M,) of (general) Puiseux
type (recall Definition 24) and we write formally M, ~ Ae“.

The first step of the algorithm consists in conjugating M, by a diagonal matrix diag[e*™ :
x € S] so that all entries in S x S\ G*. are negligible with respect to €4. The construction
of the corrector v(x) is performed in two steps: v(x) is a calibrated corrector in the first
step and separating in the second one. A Peierls barrier &,(x, y) between two vertices is

introduced as in Definition 14.

Definition 44 Let G C S x S be an irreducible graph and a : G — R be a weight on each
edge. The Peierls barrier (associated with a) between two vertices x, y € S is defined by

n—1

ha(x,y) :=min{ > (a(re, xep1) — @) in > 1,
k=0

(xg, ..., Xx,) is a G-admissible path, xo = x and x,, = y}.

Notice that it is enough to minimize on simple path: thanks to the choice of the constant
a, each cycle (xo, ..., x,) satisfies ZZ;(') (a(xy, x¢+1) — @) > 0 and may be eliminated from
the sum.

We summarize several properties of &, (x, y). Item vi of the following lemma gives the
definition of the irreducible components of G, and proves Lemma 21.

Lemma 45 Suppose (G, M) is an irreducible graph of exact Puiseux type, with M, ~ A€,
and h,(x, y) is the Peierls barrier associated with a : G — R. Then

i. V (xo,...,x,) G-admissible path, h,(xy, x,) < ZZ;(])(G(Xk, Xpt1) — @).
VX, y,2 €8, ha(x,2) < ha(x, ) + ha(y, 2).
ili. Vx e, h,(x,x)>0.
iv. Vx eS8, h,(x,x) =0< x € Spin.
v. A cycle has a support in Gy, if, and only if, it is minimizing.
Vi. Guin is semi-irreducible and its irreducible components are given by the equivalence
classes of the relation

VX, Y €Smins, X~ayY & ha(x,y)+h,(y,x)=0
< x and y belong to the same minimizing cycle.
Proof Items i, ii, iii and iv are obvious from the definition of 4.
Item v. By the definition of G, the support of all minimizing cycle is included in

G min- Conversely, let (xo, ..., x,) be a cycle of G, Each (xg, xi11) is the initial segment
of a minimizing cycle (zf, ..., zk,) with pe > 2, 2z = x¢ and z} = x41. The union of the
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supports of these minimizing cycles can be written as a union of the supports of two (a priori
not minimizing) cycles (xg, x1, ..., Xx,) and

_ . n—1 n—1 n—2 n—2 0 0
Do+ Vg ) =@ oo 2y 2 e 2y e 2 T)

of length ¢, = po+ -+ + pn—1 — n. Since

n—1 pr—1 n—1 qn—1
0=> Y (aG, ) —a) =Y (@l xc1) —a@) + »_ (@ yer1) — @),
k=0 i=0 k=0 k=0
both cycles (xo, ..., x,) and (yo, ..., y,,) are indeed minimizing.

Item vi. Consider the relation on Sy, x ~, y if, and only if, x and y belong the support
of the same minimizing cycle of length > 1. Since the union of two minimizing cycles with
a common point is again a minimizing cycle, the previous relation is an equivalence relation.
If x ~, y, then there exists a minimizing cycle (xo, ..., x,) such that x = xo and y = x; for
some 0 < i < n. Therefore,

i—1 n—1

0<ha(x,x) <hs(x,y)+he(y,x) < Z(a(xkaxk-H) —a)+ Z(a(xk,ka) —a) =0,
=0 .

and h,(x,y) + h,(y,x) = 0. Conversely, suppose h,(x,y) + h,(y,x) = 0. So each min-

imum h,(x,y) or h,(y, x) is reached by a G-admissible path (xo, ..., x;) or (x;,...,X,),
with xo = x, x; =y and x,, = y. Then (x, ..., x,) iS a minimizing cycle containing both x
and y. O

In the framework of a dynamical system where the weighted graph (G, M,) is given
by M.(x,y) = exp(E(x, y)e®?15(x, y) for two finite-range potentials E, H : £} —
R, we show that the two notions of minimizing non-wandering set Q2 (H) and minimizing
subgraphs coincide. Let a(x, y) = H(x, y) if (x, y) € G and a(x, y) = 400 otherwise.

Proof of Lemma 22 Ttem i. Let x = (xg, x,...) € Eg. Since G is irreducible, there is a

G-admissible path joining x, to xo, (xg, x{, ..., x}, ) of length p, at most the cardinal of S.
Then (Yo, . .., Yatpy) = (X05 -+« Xue1, X() ...,x;‘,n) is a cycle and
1 n—1 n+pp—1
H = inf liminf— Y H oo*(x) = inf liminf a(y, yer1) = a.
XEZE n—+oo n kX:(; xe):g n—+o0o p + D kXZ(; +
The converse H < a is obtained by taking a periodic point x = (xo, ..., x,)* with

(x0, ..., X,) aminimizing cycle.

Item ii. Let h(x, y) = lim._,liminf,_, .o S;(x, y) be the Peierls barrier introduced in
Definition 14. We first show that i (x, y) > h,(xg, yo) for any x, y € Ez;r. Indeed, for € suffi-
ciently small, for any z = (2o, 21,...) € Zg satisfying d(x, z) <€ and d(6"(2),y) <€, we
have zp = x and z, = yo and therefore Sy (x,y) > h,(x,y). Let x = (xo, x1,...) € Q(H).
Since 0 = h(x, x) > h,(xg, x0) > 0, X9 € Smin- Hence 6" (x) € Q(H) implies x,, € S, for
any n. Moreover,

0=h(x,x)=(H — H)(x)+ h(o(x), x)

> (a(xo, x1) —a) + ha(x1, x0) = ha(x0, x1) + ha(x1, X0) = 0.
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In particular, (a(xp,x;) — a) + h,(x;,x9) = 0. By choosing a path (y;,...,y,) join-
ing x; to xo which realizes the minimum in /4,(x;, xo), we obtain a minimizing cycle
(X0, X1, Y2, -+, Yu). We have just proved (xo,x;) € G, and more generally (xy, Xx41) €
Gmin. Thus, Q(H) C Ez;min. Conversely, suppose x € Egmin. Letn>1andk=0,...,n—1.
Then any (x;, X11) is the beginning of a minimizing cycle (x§, x{, ..., x5 ) with p > 2.
Consider z,, the periodic point of period g, = po + - - - + p,—1 + n given by
Zn = (X0, .- .,xn,l,x?_l, .. .,xz;llfl,xf_z, .. .,xzn_frl, .. .,x?, .. .,xgo)c’o.

Then d(z,, x) — 0 when n — +00 and ZZ”:BI (a(zx, zk+1) — a) = 0. We have proved that
x € Q(H).

Item iii. We first show that, if x = (xg, x1,...), ¥y = (Vo, Y1, ...) € Q(H), then x ~ y if,
and only if, xo ~, yo. Indeed, on the one hand,

x~y & h(x,y)+h(y,x)=0 = hu(xo, yo) +ha(yo,X0) =0 <& X9~ Yo.

On the other hand, suppose x¢ ~, yo. Since (xg, Xr+1), (Vks Yk+1) € Gmin for all k =
0,..., p — 1, by transitivity we have that x, ~, yo and y, ~, xo. For infinitely many m
and n, one can find a Gpin-cycle of length g =2p + m + n containing both (xo, ..., x,_1)
and (yo, ..., yp—1) of the following form

(X(), s Xp—15Zps ooy Tptm—15Y0s -+ -5 Yp—15L2p4m>» - - - 722p+m+n)-

Letz e ngin be the corresponding periodic point. For any € > 0, if p is large enough, for
infinitely many m and n, one has

dz,x)<e,  d@"™(@),y)<e,  d@T""(2),x) <e,
2p+m+n—1 _
S @) +85, (1)< Y (H—H)oo*(z)=0.
k=0

By taking liminf when m — oo and n — oo first and lim when € — 0, one obtains
h(x,y)+h(y,x) =0, thatis, x ~ y. Since G, is equal to the disjoint union of irreducible
components G; C §; x §; with no transition from §; to S; wheni # j, Q(H) = ngm is
equal to the disjoint union of Q;(H) = X gi. The equivalence between x ~ y and x¢ ~, Yo
shows that Q;(H), ..., Qy(H) are the irreducible components of Q2(H).

Item iv. The pressure of E restricted to Q2(H) is equal to the maximum of the pres-
sure of E restricted on each 2;(H). It is well known (see, for instance, [26]) that the
two notions of spectral radius o; of the matrix AY, = [e£* 15, (x, y)]y yes; and the
pressure of E restricted to Eg,- coincide: o; = exp[Presg, () (E)] and & = max;<j<q; =
exp[Presq ) (E)]. O

The first step of the algorithm consists in finding a normal form for M.. This step is done
using a diagonal matrix diag[e”™ : x € S] where v: S — R is a separating corrector. We
prove the existence of such a corrector.

Proof of Lemma 28 Given z* € Sy;n, consider

u(x):=hy,(z",x), Vxes,
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where £, is the Peierls barrier associated with a introduced in Definition 44. Items i and ii
of Lemma 45 and the fact that the Peierls barrier between two vertices is realized by a
G-admissible path easily show that u is a backward calibrated corrector. Let G| C S; X
S1,...,Gg C Sq x S, be the irreducible components of the minimizing subgraph G, C
Smin X Smin. Denote So =S\ (S; U---U S;). We consider then

a(x,y):=alx,y)—u(y)+ux)—a=>0, Vx,yeS.

Notice that the mean of a on any minimizing cycle is zero and therefore a(x, y) = 0 when-
ever (x,y) € Guin- We introduce a new directed graph. The set of vertices S is made
of classes of two kinds: a class [x] reduced to one point for all x € Sy and d classes
[G1]...[G4] where all vertices in each G; are identified into one vertex. For any x € S,
we note by [x] the class containing x. Let G C § x § be the graph whose transitions are

defined as follows

k13D e I£D] and minfac’, y):x € [x],y € [y]} =0,

The main observation is that there is no cycle in G and we can define a decreasing “height”
function n : S — [0, €] as small as we want so that 7 is constant on each class [x] and

G
[x]=> D] <= nx)>n0), Vx,yeSs.
We claim that, for € small enough,
v(x):=ulx)+nx), VxeS

is a separating corrector for a(x, y) or equivalently n(x) is a separating corrector for a(x, y).
Indeed, on the one hand, if (x, y) € Gun, x and y belong to the same irreducible component
of G, n(x) =n(y) and a(x, y) = 0=n(y) — n(x). On the other hand, if (x,y) € G \ Gun,
we discuss two cases. In the first case, ([x], [y]) is not an edge of G. This implies a(x,y) >0
since (x, y) ¢ Gmin. We choose then € > 0 such that a(x, y) > n(y) — n(x). In the second
case, ([x], [y]) is an edge of G. Since n is decreasing along the edges, a(x, y) > 0> n(y) —
n(x) independently of €. As S is finite, the number of constraints on € is finite. ]

In order to prove Proposition 30, we recall some notions of entropy and pressure for
graphs weighted by Perron matrices.

Definition 46 Let G C S x S be a directed graph weighted by a Perron matrix
[M(x,y)]s yes. We call transshipment any a probability measure w(x, y) on G such that
T(y) = csm(x,y) =" ou(y,x), for all y € S. The entropy of a transshipment p is
given by
nix, y)
Ent(u):= ) —pu(x.y)h :

(x.y)eG ()

We say the transshipment w is supported by M if M (x, y) =0 implies p(x, y) = 0. In this
case, the pressure of M with respect to u is given by

Pres(M, ) :=Ent(u) + ) p(x, ) InM(x.y).
(x,y)€G

@ Springer



158 E. Garibaldi, P. Thieullen

We recall that, if G is irreducible and A = pgpec (M), then Pres(M, 1) < InA for any trans-
shipment p supported by M, with equality if, and only if, u(x, y) = L(x)M (x, y)R(y)/A,
where [L(x)] s and [R(x)],es are the left and right eigenvectors of M for the eigenvalue A.

We shall also use a known result on the perturbation of the spectrum of matrices. See
Kato’s monograph [20] for more elaborate statements.

Lemma 47 For any matrix M € Mat(n, C), for any € > 0, there exists n > 0 such that, if
H e Mat(n,C) and |H|| < 1, then spec(M + H) C spec(M) + B, where B, denotes the
disk of radius € centered at 0. In particular, M+ pgpec(M) is continuous on Mat(n, C).

Proof of Proposition 30 Notice that it is enough to assume M, is written in a normal form

M.=M + N., M:[g g],A:diag[fi“,...,A”],&:pspeC(A”),

where A’ is nonnegative irreducible, D is nonnegative with pgpec(D) < &, and N, = o(1).
We also assume M, is nonnegative by changing if necessary M, to M, — n.Id where n. =
0 A min{M, (x x) :x € §}. Notice that L, and R, do not change and that n. = o(1).

Let thus G be the subgraph of G defined by (x, y) € G & A(x, y) > 0or D(x y) > 0.
LetM(x y) = M.(x,y) if (x, y)eG M(x y) = M1/2(x y) if (x, y)eG\G On the
one hand, we remark that

Ine = Pres(Mc, jue) =Pres(Me. i)+ Y pe(x, y) In M} (x, y)
(x,7)€G\G

SpgeeM)+ Y e, ) In M (x,y) <1In pgpec (M),
(x.»)€G\G

Consider now G, (an irreducible component of G*. of dominant spectral coefficient &)

mll'l

weighted by M (x, y) = M. (x, ¥)1g,(x,y). Let i} be the transshipment defined on G by
Al(x.y) = L) M G, )R/ pupec (M),
and extended by 0 on G \ G . Then, on the other hand, one has
Inxe > Pres(M!", 1) =1In popec (M ).

Lemma 47 tells us that pspec(ll;lg) ~ pspec(M 11y ~ &. Hence, the two previous inequalities
show that A, ~ & (item i), as well as u.(x, y) — O whenever (x, y) ¢ G. They also show
that any accumulation point i of ()¢~ has maximal pressure

Ina = ling)ln)»E < ling) |:Ent(,u6) + Z He(x,y)In M, (x, y)] = Pres(M, n) <Ina.
(x.»)eG

(The first inequality comes from the fact that In M. (x,y) < 0if (x,y) € G\ G. Notice also
that o has support on G. ) For G the dominant subgraph, let e and TN be the induced

transshipments on G and G \ G, respectively. Since
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In& =Pres(M, ji) = i(G)Pres(A, jig) + i(G \ G)Pres(D, jig\ ).

we obtain /:L(é \ G) =0, that is, He(x, y) — 0 whenever (x y) ¢ G (item ii).
Consider 7/ (x) = Z»es n(x, y)/;L(G ) for any x € S;. Let ;i be the induced trans-

shipment on Gy, jui(x,y) = ii(x, y)/u(G ) whenever ji(G;) # 0. The main remark is the
following coboundary property

- Rl
Zu,(x y)= Zm(y x), VyeS§ = Z ﬂi(x’y)ln(léigc;):Q

xes; (x,y)€8; x§;

Then Ina = Y__, i(G;)Pres(A", f1;) and

T )= A y) (AT ) R()/R ()
Pres(A", jt;) = Z ' (x )Z 7i(x) < i (x, )/ (x) )

gei )GS
7' (0)#0

Each sum over y € S; is bounded from above by

ln< Y AT, )R (/R (x)) =Ia,

yes;

with equality if, and only if, fi;(x, y)/7 (x) = A (x, y) R (y)/ (@R’ (x)), Vy € S;. We thus
have proved (whether or not 77; (x) = 0)

W Zirg =gl )

— s Vx,)re Sh
Ri(x ) R (y)

By summing over x, using the fact that f; is a transshipment, we obtain that
[7'(x)/R'(x)],c5 is a left eigenvector of A" for the eigenvalue @. In particular, if
7' (x) #0 for some x € §;, 7 (y) # 0 forall y € S; and

7'(y) =L (»R(y), fi(x,y) =L (x)A" (x, y)R'(y)/a.
(Item iii is proved.) O

Before proving Proposition 32, we give some complements to the theory of series of
equivalences.

Lemma 48 Let (A,),>0 be a sequence of positive numbers and (A, (€)),>0 be a sequence

of functions. We assume that A, = O(8") for some § € (0, 1) and (An (e)/An)l/" — 1 as
€ — 0 uniformly inn > 0. Then

D A~ A,

n>0 n>0

Proof Denote h,(€) := (A, (€)/A,)"/"—1.Let n € (0, 1) be small enough so that §(1+17) <
1. Fix a constant C > 0 such that A, < C§", for all n > 0. Choose a positive integer N large
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enough so that

(l—n)ZA,l <nZA,1 and CZ8”(1+77)” <nZA,,.

n>N n>0 n>N n>0

For € small enough, one has (1 — ) Y"1 A, <YM 1A, ) <1+ YV A, as well

as h,(e) < n uniformly in n, which in particular yields

D Aue) <Y A4 <CY 84"

n>N n>N n>N

Considering all these inequalities, for all € small enough, we obtain that

A=2m) Y Ay <D Ae) <1 +2m) ) A,

n>0 n>0 n>0

d

In the following lemma, we extend the notion of weighted graph (G, M,) of general
Puiseux type to the case in which G is not irreducible and we show that the resolvent is of
exact Puiseux type.

Lemma 49 Let (G, M,.) be a (not necessarily irreducible) weighted graph. Assume M, =
D + N, where D is nonnegative, pspec(D) < 1, Ne = o(1). Suppose (G, M.) is of general
Puiseux type in the following sense:

0 if(x,y)¢G,

M, (x.y) = Ac(x, y)e*™)  if(x,y) e Gand x # y,
Ac(x,y) if(x,x)e G, x=yand D(x,x) >0,
o(1) if(x,x)eG, x=yand D(x,x) =0,

where Ac(x,y) ~ A(x,y) >0 and a(x,y) > 0 in the second and third cases, and by con-
vention A(x,y) =0 and a(x,y) = +0o0 in the other cases. Let P(x,y) be the set of G-
admissible paths x = (xq, ..., X,) of length n > 1 such that xo = x and x, = y. Consider the
directed graph

G ={(x,x):xeStU{x,y)eSxS: P,y #0}

and define M. := (1d — M.)™'. Then (G', M)) is a weighted graph of exact Puiseux type.
More precisely,

M(x,y)=0 & (x,»)¢G" and M.(x,y)~ A'(x, y)e“,(x’y) & (x,y) el

with
0 ifx =
Ay =1 2=y yiyea,
min{a(x) :x € P(x, y)} fx#y
and
n(x)—1
A'(x,y) =TLgemy) + > [] AGi.xi), Yy €@,

xeP(x,y)a(x)=ad (x,y) i=0
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where n(x) is the length of the path x € P(x,y) and a(x) := Z?SO)_I a(x;, xiy1). (By con-

vention A'(x,y) =0 and a'(x, y) = 400 forall (x,y) ¢ G'.)
Proof Part 1. We first assume that (G, M,) is of exact Puiseux type,

V(x,y) G,

M. (x,y)= ’
=0 4 e V() €6

where Ac(x,y) ~ A(x,y) >0 and a(x,y) >0if (x,y) € G, A(x,y) =0 and a(x,y) =
+o0if (x,y) ¢ G. Note that D(x, y) > 0 if, and only if, a(x, y) = 0. Since pgpec (M) con-
verges to Pspec(D) < 1, (Id — M,) is invertible and

n(x)—1

M (x, ) =Y M'&N=Tap+ >, [] MG xip).

n=0 xeP(x,y) i=0
Since M. is a nonnegative matrix, M is nonnegative too. Moreover,
M.(x,y)=0 <<= x#y and Px,y)=0 << (x,y)¢G.
For (x, y) € G/, let P(x, y, k) be the subset of paths x € P(x, y) such that
k=card{i =0,...,n(x) — 1 :a(x;, x;41) > 0}.
If x e P(x,y,k) and k > 1, then a(x) takes a finite number of distinct values ay /,
0 <kamin < a1 <arr < < agp, < kamax,

with apmi, := min{a(x, y) : a(x, y) > 0} and anax ;= max{a(x, y) : a(x, y) < 400}. Notice
that the set of exponents {a;; : k> 1, 1 <[ < p;} is finite on each bounded interval. Let
P(x,y,k,l) be the subset of paths x € P(x, y, k) such that a(x) = a;,;. By developing all
products M, one obtains

n(x)—1

Me/(‘x7 )’) = ]]-(x:y) + Z 1_[ Aé(xia xi+l)

xeP(x,y,0) i=0

n(x)—1

P
+ZZ< Z l_[ Ae(xiaxi+1)>6“k'l.

k>1 I=1 NxeP(x,y.kl) i=0

Let P(x,y,0,0) := P(x,y,0) by convention and P,(x, y, k,[) be the set of paths x €
P(x,y,k,l) of length n(x) = n. Denote

n—1 n—1

Avcr@ = Y JJAc@ixi),  Aua= Y. []AGxi0).

XEPy (x,y,k,1) i=0 XEPy(x,y,k,1) i=0

We use Lemma 48 to show that »_ _ A, x(€) ~ > ., A,x, (one only considers terms
(n,k,1) such that P,(x,y, k,[) # ). Since pgpec(D) < 1, there exists a positive matrix
[D(x, y)]s.yes such that

Popec(D) <1 and D(x,y) > D(x,y), Vx,y€S.
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Since A(x, y) = D(x, y) whenever D(x, y) > 0, one obtains
n—1

- max A\* max A\
YHYEEED D ]‘[D(x,-,xl-m( [)) fD"(x,y)( )

XE€Py (x,y.k,1) i=0 min min D

Choose § such that pspec([)) <§ < 1. Then D"(x, y) = 0 ("), and in particular A, ; =
O(S”). Given n € (0, 1), for € small enough,

(IT=mAlx,y) <Aclx,y) <(T+nAlx,y), V(x y)eG.

For all non empty set P, (x, y, k, 1),

n—1
Z{GPV, (x,y,k,0) l_[i:O AE (xi ) xi«H)

— <A +n)".
Z{EPn(x,y,k.l) Hi:O A(X,‘, 'xiJr])

I=n"<

We have thus obtained (A, s ;(€)/A,+.,)"/" — 1 uniformly in 7.
‘We now show that the rest of the series

Pk
Rg(e):=) Z(ZAn,k,l(e)e%'

k>K I=1 n>1

is negligible with respect to the first non zero term (3_, ., A, x)€%!. More precisely, we
show that, for any a > 0, there exists K > 1 such that R (¢) = 0(e?) as € — 0. Indeed, let
d be the dimension of the matrix M, then p; < d* and

. A k
Ri() < Z(Z 15" ||) (dzﬁe“mm) < CreKmn = o(e?)
ok \nm1 min D

as soon as a < Kayp.
Therefore, M/ (x, y) ~ A'(x, y)e? ™ for all (x, y) € G'.

Part 2. We now assume that (G, M,) is of general Puiseux type as described in the statement.
We first notice that M admits a different expression

n¢:1<M—

2

Id+ M\ Id+M. 1d+D N.
where — = > +7,

with pspec(%(ld + D)) <1and %Ne =o(1). Since (G, %(Id + M,)) is of exact Puiseux type,
one obtains from part 1 that (G’, M) is of exact Puiseux type.

We now want to determine a’ and A’ in this case. Let A, be the diagonal matrix built
from the principal diagonal of N.. Hence,

N.=A.+N., N.(x,x)=0, VxeS.

Let M. := D+ N., G := G \ {(x, x) : D(x, x) = 0}. Then (G, M,) is of exact Puiseux type.
Moreover,

M =(1d=M.— A" =1d—M.A)"' M= (M/A)" M,

n>0
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where Mf’ :=(Id— M.)~'. From part 1, we know that (G, 117[;) is of exact Puiseux type. Let
a’ and A’ be defined as in part 1 by using (G, M,). Then

M (x,y) =AL(x, y)e’®) Vx,yes,

with A/g(-XH y) ~ A/(x7 y) >0 if (X, y) IS G/ and A;(X, y) =0 if (X, y) ¢ é/. Since G and
G have the same off-diagonal entries, G’ = G’. We show by induction there exist matrices
(Bp.¢)n>1 such that

(M!A)" M (x,y) = Byc(x, )€’ V(x,y) € G’ d
~ ~ an
(M/A)'M/(x,y) =0=B,.(x,y) V(x,y)¢G

lin(l) (Bn,e(x, y))l/" =0, uniformlyinn > 1.
€—
Since (M!A)"t'M! = (M!A)"M!A M., for all x, y € S one has

(MA)"™ ' M(x,y) =Y (M.A)"M](x,2)Ac(z, 2)M/(2, y)

ze$§

= Buc(x, DAz, DAL(, y)e I,

z€eS§

If (x,y) ¢ G/, then (x,z) ¢ G’ or (z, y) ¢ G’ and the above sum is null. Thus by convention
Bujie(x,y) =0.1If (x,y) € G' and z € § is such that (x,z) € G’ and (z,y) € G', then
a'(x,y) <ad'(x,2)+d'(z,y). Let

Buy1e(x.y)i= Y By o(x,2)Ac(z, 2) AL(z, y)e IT @ en),

(4N

By taking the supremum in x, y € S, we obtain

sup (B (v, 3)) = sup By, ) ) sup (4, () A'Cx, )

X,y X,y
As A, = o(1), we have proved that (B, .(x, ¥))"/* — 0 uniformly in n. Besides,

M i —A ’ a'(x,y) 1
()= Acx. e (DD

n>1

:| ~ A(x, y)e“/(“'y) for all (x,y) € G/,

and M/ (x,y) =0forall (x,y) ¢ G". g

Proof of Proposition 32 Notice that it is enough to assume (G, M.) is reduced to a
normal form and M. = M, is nonnegative (by possibly subtracting n.Id, where 7. :=
0 A min{M,(x, x) : x € S} is negligible with respect to A.). We prove item i. at the end.

Item ii. We only prove the equivalence 1%@ (x)/ R’é (y) ~ R'(x)/R!(y). We consider the
vector space indexed by S;. The vectors are supposed to be column vectors. Let us consider
the projector onto R’ defined by

V> (L'V)R', (V is a column vector),
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or as a (square) matrix R'L’. Notice that the kernel {V : L'V = 0} is invariant by A"
The complementary projector is denoted Pi:=1d — R'L'. We then obtain a decomposition
of A’
Al —GRLI+ D or Di=piiAii — Al pii.

Since A’ is irreducible, & has multiplicity 1 and pgpec (D) < &. By multiplying by P the
equation

S+ 60— M) )R =

j=1

one obtains
> G = D) P (R 4 ML G = M) MY )R] = PURL.
j=1

(We use the fact that N/ = M"/ when i # j and that A" P’/ = D'/ P/’ ) We first claim that
R./L'R! is bounded, or equivalently that R, (x)/R.(y) is bounded for all x, y € S;. Notice
that all following terms are nonnegative

M(x,y)>0 or MG —M*)"'MY(x,y)>0.

(The second inequality follows from lemma 49.) By the irreducibility of A if (xo, ...y Xn)
is a path joining x to y such that A% (x;, x;41) > 0, then

- e .
R (x0) - oo MY (X, Xp41) N o A (k, Xeq1) -

~ e = = 0.
Ri(x,) Al ar

By reversing x and y, we prove the claim. We now claim that all following terms are negli-
gible
RIR)
Lk

MG — M%) "' MY R
LiRi

=o(l) or =o(1).

Notice that these terms are nonnegative, except perhaps fii ;= N Rl /L' Ri which is neg-

ligible because of the first claim. We conclude by observing that all terms on the left hand
side of the following equality are nonnegative and that the right hand side is negligible

r

Z LI (N84 + M (he — M®)"' M) R]

=k —a— il =o(1).
LR ‘

j=1

Therefore, we have proved that ;12%" — R = Z’gf =o(1).
Item iii. Let i, j € {1,...,r}, x € S; and y € S. We have already proved in the first part
that

M (x, MR A, Ry
AeRi(x) aRi(x)

MY (x, y)R/(Y) C S i
— " =0(l), Vx€S§,VyeS;, i#j,
e Ri(x) !

=Q0"(x,y), VYx,yeS,
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MG, DROy) MO0, ) (e — M)~ MY RD)(y)
heRi(x) Y Ri (x)

=o(1).

(In the two last estimates, we use the fact that the sum over y in each case is negligible.) We
then obtain

Qm):w% {Q”oc,y), Vi, yes§,

R.(x) 0, Vx €S, VyeS;US, i #j.

Item i. Let i # j, then MV (i, j) = L' (MY + M°(%, — MSO)‘IA;IB/')%. We want to
show that ‘

. . 1
MG, j=1° b YEDEGY,
¢ AV, eGP Y (1, j)e GV, i # ],

where A (i, j) = 0 in the first case and AV (i, j) ~ AV (i, j) > 0 in the second one. From
item ii, we know that ﬁg /LI Rg ~ RJ. Since L' and R/ have positive coefficients, it is
enough to determine equivalences to the terms M (x, y) and M°(h.. — M*)~'M% (x, y)
when x € §; and y € S ;. From Lemma 49, we know that the matrix (A, — MSO)’I is
of exact Puiseux type on the graph containing either {(x,x;) : x; € So} or {(x1, x,—1) :
(x1,...,Xx,—1) is a path of GnN So X So}, where G is obtained from G by subtracting all loops
(x, x) such that D(x, x) = 0. We write (A — M?)~! (x, y) ~ @' A’(x, y)e” @) Therefore,
for x € §; and y € §;, one has MY (x, y) ~ A(x, y)e*™?) and

~ o o~ ~ 1 ~0 A’z,w - /(, ).y
WO~ W) 0 )~ 3 A0 A, et o,

Z,weSy

One can see the previous estimate as a sum over paths x of two kinds. Either there ex-
ists a G-admissible path x = (x, z,y) (for z = w), or there exists a G-admissible path
x = (xg,...,x,) of length n > 3, with xo = x, x; =z, x,_; = w, x, =y, such that the
intermediate path (xq,...,x,_1) is (G NSy x Sp)-admissible and realizes the minimum in
the definition of a’(z, w). Each one of these terms is of the form

n—1
|:1_[ A(xg, xk+l)/0_5nl:|622—(g“("k’xk+l)'

k=0

The dominant term is obtained by minimizing a(x) over x. O

6 Complete Classification for 3-States Spin Systems

We consider in this section a full weighted graph of exact Puiseux type on 3 states. More
precisely, for S = {1, 2, 3}, we consider G = S x § weighted by

Mc(x,y) =exp[—BH(x, )] =€V, e=eF Vx,yes.

We assume (by subtracting H) that H has been normalized: H = 0. We are interested in
describing the unique zero-temperature Gibbs measure /. (notations of Sect. 3) obtained
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as a limit of

M.(x,y)R. (y))
AeRc(x)

as € — 0. As it will be clear from the computation, the limit depends from the possibility to
expand each quotient R, (x)/R.(y) and L.(x)/L.(y) into a Puiseux series of an a priori ar-
bitrarily large precision. The algorithm is based on the dimension of the matrix M.. We will
obtain a finite set of possible /. and for each of them we describe the space of parameters
{H(x,y):x,y e S} which exhibit that zero-temperature Gibbs measure. The dimension of
this space of parameters is a priori 9; we will reduce it to 2 in the following discussion. We
describe each domain according to the number of irreducible components of the minimiz-
ing subgraph. We use Algorithm 29 to conjugate M, to a simpler matrix M/ = A.M A",
which (by possibly permuting {1, 2, 3}) takes one of the following form.

(”G(x)! Qe(xa y)) = <LE(-X)R6(X)7

i. A unique dominant irreducible component.

— When the dominant spectral radius « is equal to 1, Gy, = Gis irreduciple and there
are three possibilities corresponding respectively with S = {1,2,3}, § = {1,2} or

§={1},
I e 1 €
M =|e' e 1], M'=|1 € €|,
’ ’ N
i 1 6a’ € Ed €® €€
1 € ¢
!
M"=|e" € €
i I ed’ e

(Notice that all coefficients a, a’, b, ... are positive.)

— When & > 1, G = Gy, is obtained by replacing in the previous M any (but at least
one) a,a’,b,... by 0, and in M/ one of the two coefficients @ and/or b by 0 and
leaving ¢, ¢/, d, ... positive. When & > 1, G C G i With two irreducible components
is obtained by replacing a and/or b in M by 0 and ¢ by 0. Notice that we obtain a

finite list of possible &.

ii. Two irreducible components with equal dominant spectral radius:

1 et €b] ! €’ b
- ! . ’
a=1, M.=|e" € 1|, or M!=]|¢€" 1 €
/ / J
e 1 € e’ e

In order to simplify notations, we introduce the following convention
a#tb=1 ifa#b, a#th=2 ifa=>.

In the case of one irreducible component with dominant spectral coefficient (r = 1),
T (x) = 0 for all x € S\ § and m.(x) — 7'(x) for all x € S. For instance, for M., M
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and M, respectively, m. converges to [%, %, %], [%, % 0] and [1, 0, 0]. We now treat in de-
tail the two remaining cases ii and iii.

6.1 Two Irreducible Components. Part I

‘We first consider the matrix
M. =|e* € 1|, a,d,bb,c,d>0.
d

We already know that A, ~ 1, R.(2) ~ R.(3) and L.(2) ~ L.(3). We collapse the two com-
ponents 2 and 3 and obtain for the right eigenvector

yo—| 0 (€“Ry+€"R3)/(Ry + Ry)| 0 ab gand
© T le"+€ (eRy+€‘R)/(Ry+ Ry | |[a#ber NV Ddeend |

Note that MV is of exact Puiseux type. Let 7 and p be the minimizing mean exponent and
the dominant spectral radius of MV, Then A" =4, — 1 ~ pe”,

anb+a A Ry ai#b L a'#b’
r:min(c/\d, +7> i anb—r LR
2 R3 P Lj P
We thus obtain a complete formula for the transition matrix
N /1 ﬁea—‘a/\bﬁ—r ﬁéb—a/\b+r 1 0 0
Qe ~ aTEa +anb—r €€ 1 . Qgin =10 0 1 ,
a’#eb/ﬁ—aAb—r 1 6d 0 1 0
and for the zero-temperature Gibbs measure
7 (2) ~1 and . (1) - (a#b)(a'#b') canbra b =2
7e(3) e (3) 02

We are left to discuss the value of p according to the choice of the exponents contributing
in the definition of r. We recall that p is the largest eigenvalue of the dominant matrix A"

min*
6.1.1 Casecnd <(anb+a AD")/2
In this case, r =c A d,
o 0 0 cnd cnd 11
Amin=|:0 %}, P=5 )\6=1+T€Ad+"', [t = 075,5-

6.1.2 CasecAnd > (anb+a AD)/2

In this case, r = %(a Ab+ad AD),

ai#tb 141/
1 0 Rl (a#b)(a'#b") 111
AfninZ[a/#b/ 6]7 T =)
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a'Ab’!

BN
o4
c#d cAd " __ 2 " _1
Ac=1+——e" .. i =537 i (1)=3
O
2(cAd) I
©
16
S0 @ ol 1= 17fVT7 ol V=331 53
v/
1 & )
(112) c 1
@ & =0 w ==l N\ =2
1/2) 9 - ++ +v5
1 ( 76) o
H
T d
0 anb T e ut (=2
min 75 min 7ﬁ
Nera) P B
#b ") Lanbran c
A=1+ Mez‘ el X a#b a=b

Fig.5 Phase diagram for a 3 x 3 matrix with two irreducible components: part I. In the left diagram, numbers
in parentheses indicate the weight of each irreducible components. In the right diagram, the value of p.gin(l)

is shown for the case ¢ Ad = %(aAb-i—a’Ab’)

6.1.3 Casecnd=(anb+a AD)/2

In this case, r =c A d,

anb #d #b) (a'#D'
Al :|: 0 2j|! p:c—[l—l— 1—}—8(61)(7“)}

min anb % 4 (C#d)2

and the zero-temperature Gibbs measure is proportional to

16(a#b)(a'#b') [ (c#d)>
pli o | [14 /14 8(attb) (a'#b') [ (c#d)?T*
[1 4 /1 + 8(a#b) (a'#b') [ (c#d)*]?

H 4(a#tb)(a'#b')/ (ctd)?
or u. (1) = .

Homin (D 1-+8(a#b) (@' #b') [ (c#d)2+~/ 14+8(atb) (a'#b') | (cHd)?
We summarize the discussion in Fig. 5.

6.2 Two Irreducible Components. Part II

We consider now the matrix

1 € €
’ .
M, =|¢€ 1 €|, a,a,bb,c,c,d>0.
’ N
b €€ Ed

Let [Lc(x)]i=123 and [R.(x)],=1 23 be the left and right eigenvector for the largest eigen-
value .. We eliminate the negligible variable x = 3 by substituting L.(3) or R.(3) in the
first two equations. We subtract the dominant term 1 of A, and obtain

1 D _3(Mya D p) _ (1) pd
LOMOY =200 MORD = RD.

We summarize the discussion in Fig. 6.
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A =1+t 4
§ =12, 10
V min 2’2;
Q
1;’ A=1+2€""+
Hpin=[3.5.0]
a'—gla+a’) A=1+y2e a2y
H _11 1
“min_[7’ 52 0]
A=1+pet 22
w,.=l1,1+p,0]/(2+p)
A =142+,
H _r1 2
”min_[g’ ;,0]
A=1+26"+...
H _r1 1
Honin _[E’ E’O] (ata')/2 <2c
] R . T
4la+d)
LA %(gggr) H,I,,{i,,:[l,l+p,0]/(2+ﬂ)\ a' b
__g; r’l : [~\ 2h vil( ‘_*_ r) 5 >
“ F 29 A =14+ (1442)e b+ a’'—zlata A=1+€+...
- ! H
4 umin:[%’%’ 0] I"Zin:[o’l’o]

Fig. 6 Phase diagram for a 3 x 3 matrix with two irreducible components: part II. We assume a < a’. The
zero-temperature Gibbs measure is a barycenter of the periodic measures 81 and &

6.3 Three Irreducible Components

We consider the matrix
o I / /
M,=|¢€® 1 e, a,ad,b,b,c,c >0.

We know from Propositions 30 and 32 that A, ~ 1 and Q. — Id. We want to show that
[ (x)]x=123 = [Le(x)Re(x)]x=1,2,3 converges to some raw vector [,uzm(x)]x:l,z,g identi-
fied to the zero-temperature Gibbs measure as a barycenter of 3 Dirac masses:

Hanin = Hain (1D8(120) + 17550 (282 + iy (3)8 50

Thanks to the special form of the matrix, the steps of Algorithm 31 are immediate:
MDY =M, —1d, AV =i, — 1, LV = L, and R\ = R.. We want to apply again Algo-
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Mean along the cycles of order 2 and 3
cycles of order 2 cycles of order 3

a//a' ¢\ ¢ %(u-ﬁ-a/) %(a+b/+c)
SICED) @' +b+0)
1 /
slc+c)

@ = 2
®
-
b ’

Fig. 7 Graph of interactions and minimizing cycles of M¢ — Id

rithm 31 by reducing MV to a normal form as in Algorithm 29. We call @ the minimizing
mean exponent of M) and Af;i)n the matrix associated with the graph of minimizing cycles.
Notice that Af;i)n admits a unique irreducible component. Let v : S — R be a separating cor-
rector and M, := A, (V)M A, ) temd" = AD 4 N,. Denote L (x) =€ @ LD (x) and

Re(x) = €™ RW (x). Proposition 32 tells us that

Lx) L& R R N
Ly Ly R Ry 7

L.(x)R.(x) >0, VxeS,,

where L and R are the left and right eigenvectors of the dominant matrix A.
In order to simplify the phase transition diagram, we change the coefficients:

1 1
a:= z(a-f—a/), QI: E(b‘f'b/),

+1(b/ b)-i-l( ) ' /+1(b b/)-l-l(/ )
ci=c+ =0 — —(a—a), =+ =(b- —(a' —a).
- 2 2 - 2 2

Then

c+c e+ at+b +c a+b+c a+b+c a+b+c
2 2 3 3 3 3

We now discuss the different phases according to the coincidence set of multiple order of
minimizing cycles. We discuss only the case ¢ < ¢’. The purely symmetric case a = d’,
b=">', c = is done in Sect. 7. We show in Fig. 7 the location of all possible minimizing
cycles.

6.3.1 Case a <minb, }(c+¢), Ya+b+0)

0 1 0 {
= AD={1 0 0f e wg g, =[550]
0 0 0
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6.3.2 Case b <min{a, }(c+¢), 2@a+b+0)}

0 0 1
aV=p AV =]0 0 0|, iV~ and M,'.Z’in=[
1 0 0

0
aV = ~(c+¢), Apn=10
0
)\S) N 6(g+£’>/2, and M,Fnlin = |:

6.3.4 Case %(g—i—b +¢) < min{a, b, %(g +)}

min

— o O
S O =
o = O

1
aV=z@+bto,  Ay=

Leoc[1,1,1],  Reoc[1,1,117, and un’iﬁ[

1) o cat+b+o)/3
)Lé € a c)/ ,

|

111
3’3’3

1

Ea

0,

1
2

_].

Notice that the reverse cycle | — 3 — 2 — 1 is negligible against thecycle ] -2 — 3 — 1

since its exponent is higher.

6.3.5 Case a=(a+b+c) <minfb, 5(c+¢)}

a —

Le oc[i?, 1, 11,

@)

where « is the largest eigenvalue of A,

6.3.6 Case b= 1(a+b+c) <minfa, 3(c+ )}

ah=p  AD =

min

Lo o[k, 1,17,

(Af]li)n admits the same characteristic polynomial as before.)

0 1 0
a, AV =1 0 1], AW ~kes
1 0 0

and satisfies k> —xk — 1 =0.

0 1 1
0 0 1|, aW~ke
1 0 0

Reoclic, k117, and  pf =[14k,14x,11/3 +2¢),

Reoc[ic®, 1,kl”, and pfl =[14x 1,141/ +2).
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6.3.7 Case 3(c+c') = 3(a+ b+ c) < min{a, b}

0 1 0
aV=a, AN =10 0 1|, AV ~pelt?
11 0

Leoc[1,6% k], Reoc[lk,6®1", and  pf =114k, 1+K]/(3+2).

6.3.8 Casea=b <min{3(c+¢), 5@@a+b+0)}

0 1 1
aV=a, AN =1 0 0|, aP~V2e
1 0 0

- - 1 11
Leox[V2,1,11,  Reoc[v2, 1,117, and pf =|= - —|
2 4 4
6.3.9 Case a=3(c+c) <min{b, (a+b+ o)}
1 0O 1 O
aV=c(etc)  Ag=|1 0 1| AP~V
0O 1 0
- . . " 111
Looc[1,v/2,11,  Reoc[1,v/2,117, and pf = 757

6.3.10 Case b= 3(c+¢) <min{a, }(@+b+0)}

2D ~ 22,

O = =

g 1 ,
aV=2etd) A=

- o O
- o O

- - 111
Leoc[1,1,¥2],  Reoc[1,1,v2]",  and “gi":[lz’z]'

6.3.11 Casea=b=73(a+b+c) <5(c+c)

)Lil) ~ ped,

Lex[p,1,pl,  Reoclp,p, 117, and uf =[p,1,11/2+ p),

where p is the positive root of p> —2p —1=(p+ 1)(p> —p — 1) =0.
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6.3.12 Casea=3(c+c)=3(a+b+c)<b

1 0 1 0
aV=std), A=l 0 11 Al peler,
1 1 0

Leoc[p,p. 11, Reo[l,p,pl", and plt =I[1,p,11/Q2+ p).

6.3.13 Case b= %(g—i—g’) = %(g-ﬁ-é-f—g) <a

1 c+c) /2
= , )\2 )~ p6(<_+£)/ ,

. 01 1
aV=-(c+o), A =10 0 1
110

Looc[l,p,pl,  Reexlp,1,pl", and wpf =[1,1,01/2+ p).

We summarize the preceding discussion in the Fig. 8.

7 Zero-Temperature Phase Diagram for BEG Model

We give in this section a complete description of the zero-temperature phase diagram for the
Blume-Emery-Griffiths model. We apply the algorithm proposed in Sect. 3to S = {—, 0, +},
G=SxSand M. (x,y) =Y forall x, y € S, where

—J—K+A A J-K+A
Hy= IA 0 1A
J-K+A A —J-K+A

We discuss the different cases according to the choice of the parameters which contribute to
the minimizing mean exponent a. In all cases, we have

[e & e Le(—)Re(-)
M, = e 1 €& , Te=| Le(O)R0) |,
| e € e Lo(H)Rc(+)
M €Re(=) bR €Re(4)
)»gRe(—) AeRe(—) )»;Re(—)
Q — | €R) Re(0) €”Re(+)
€ )»gRe(O) )»;RE(O) Le Re (0) ’
€ERe(=)  €’Re(0)  €’Re(+)
L AeRe(+) Ae Re (+) AeRe(+)

normalized by ers L.(x)R.(x) =1 and ers R.(x) = 1. Because of the symmetry of
M., L. =R, and . (x) = Rf(x) />, Rf(x). We also simplify the computation by noticing
that R, (—) = R.(+). We recall that Gy, is the minimizing subgraph and « is the dominant
spectral coefficient. We only present the details of the computations for A > 0, the other
situations being analogous.
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(c+c")2

b |A=1+V2€ A=1+e™ T
H
Ho_f11 1 © Hpin=10,2, 1]
ﬁ umin [4’ 5’ 4] (\i] 2°2
: o
_1+p€(c+c )/2+... E _1+K€(c+c’)/2+
) L) =114k, 14 )/(3+2K)
cw :
1 (o .
A=1+ke“+... | OXO,/Q _1+p€<c+c>/z+m
uh ={1 1,14, 1) (3+24) s v Ll =l plietp)
‘ 6,
o A :1+€(a+lz+§)/3+ Oj{?
A=l+e+] 2/ TR (c+c)2 <b
wh=lt o) & 3
d 1 ‘A _(c+c)2
v : A=14+y2€ 4
= a 1 > H _r1 1 1
HA =l+pe+.. L@We\ Hmm—[;,;,g]
c|l ; A=1+ke™ ...
i ut [1+K,1,1+K]/(3+2K) 4
. - >
4% ¢ (ctch/2 ¢
© A=1+V2e"+...
H _11 1 1
umin [E Z Z]

Fig. 8 Phase diagram for a 3 x 3 matrix with three irreducible components. We assume ¢ < ¢’. The ze-
ro-temperature Gibbs measure is a barycenter of the three periodic measures §(jc0y, 800y and §(300y. The

constants p and « are solutions of /o2 —p—1=0and k3 — k — 1 =0. The exact values of these constants

are p = %(1 ++/5) and k = \3/%(1 —J23/27) + \3/%(1 +/23/27)

7.1 Case - K+A<0,J <0

Case: ¢ < min(0, a, b). We know that

a= c, Amin =

—_— O O
S OO
S O =

=J]

I

—_

>

m

2

™

and G i, has one irreducible component (—) = (+). We aggregate the two components (%)
by adding R.(%£) := R.(—) + R.(+) and eliminate the negligible term R.(0). The new sin-
gular eigenvalue problem obtained in Algorithm 31, MV R = AV R(M is actually reduced
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to a unique equation with unique unknown R := R, (&). More precisely,

(€ + €)Re(%) + 26" R (0) = A Re (£),
ébRe (:i:) + R. (0) = AcR. (0)7

Gb W 262b

Re(0)=)\'é_lRe(:t) K Re(d), Ae 3=le—66=6”+A6_1,
which yields
1/2 172 1/2
RE ~ 617—(‘ — €—J+K—A/2 e ~ 262(—J+K—A/2)
12 172 172
ed—¢ 262(bfc) 1 6721 262(7J+K7A/2) 1
O~ | 1/2 €¢ 12 | =1 1/2 e~/HK-A 1/2
1 262(17—5) ed—¢ 1 262(—J+K—A/2) 6—2]

72 Case —J —K+A<0,J>0

Case: a < min(0, b, ¢). Gy has two irreducible components with identical spectral coeffi-
cient, (=) <> (=) and (+) <> (+), and as before R.(0) < R.(—) = R.(+). We thus obtain

1 00
a=a, Amn=10 0 0], a=1, he ~ €9,
0 0 1
1/2 1/2 1 2620 gema
R.~ | e, e ~ | 2e20= || Q.~ | 1/2 € 1/2
1/2 1/2 e 2e2bma

73 Case —J —K+A>0,J—K+A>0

Case: 0 < min(a, b, ¢). Gpnin has one irreducible component (0) <> (0), @ =1 and R.(—) =
R.(+) < R.(0). We obtain

0 0 O
a=0, Ann=10 1 0], a=1, re~ 1,
0 0 O
6b 6217 a 1 c
R.~| 11, T~ 1, Qc~|e? 1 &%
6b EZb c 1 a

As in Case 7.1, we eliminate the negligible term R, (=) and get a new graph GV reduced to
a singleton

2¢b 2e%h
R(xt)=——R.(0) and Xi.—1

= 2b
he — (" +€°) ke — (74 €9) '

~2
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74 Case J— K+A=0,J <0

Case: ¢ =0 < min(a, b). We know that

0 1
1 0], a=1, Ae~ 1,
0 0

Q1
I
L
S
ES
=
Il
- o O

and G, has two irreducible components (—) = (+) and (0) <> (0). No state x € S is a
priori negligible. We then aggregate the states (£) by adding R.(£) := R.(+) + R.(—) and
obtain a new eigenvalue problem MM RV = AV RWM | where

€t 2¢b R.(%)
Mél)z:[e" 0}’ Rél):[RZ(O) and A0 =2 — 1.

We then have to discuss three subcases.

7.4.1 Subcase J < —%A <0

Subcase: b < a. The minimizing subgraph G;L)n has one irreducible component (£) = (0)
with minimizing mean exponent @ = b and dominant spectral coefficient &P = /2. We
obtain

1/v2
A ~ V2eb, RV o [\{f} , R, x 1 and
1/v2
1/4 e V2
Ae=1+vV2e"+-.., T~ |1/2], Qc~ | /N2 1 e?/V2 .
1/4 1 ﬁeb €

7.4.2 Subcase J =—1A <0

Subcase: a = b. Gfii)n has one irreducible component (£) <> (£) = (0) with dominant spec-
tral coefficient &'V = 2 (the spectral radius of | : 3]), and the right eigenvector R is pro-

portional to [f] We obtain AD ~ 2¢” and

1/3 e e 1
he=142e"+---, Re~me~|1/3], Qc~|e 1 €
1/3 1 € €

7.4.3 Subcase —%A <J <0

Subcase: a < b. The minimizing subgraph Ggi)n has one irreducible component (+) <
(£) with dominant spectral coefficient @) = 1. We obtain therefore AV ~ €%, R.(0) =
e’ R () K R.(£), Ae=1+€%+--- and

1/2 1/2 e 2
R.~ | et=e |, T ~ | 2e20-9 || O~ | €2 1 €/2
1/2 1/2 1 2e¥e e
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75 Case —J —K+A=0,J>0

Case: a = 0 < min(b, ¢). One then has
1 00
a=0, Amn=10 1 0|, a=1, de ~ 1.
0 0 1

The minimizing subgraph Gy, has three irreducible components (—) <> (—), (0) <> (0) and
(+) <> (+). Once again we simplify the proof by noticing that R.(—) = R.(+), but it is so
far not clear which state dominates. The reduction to an aggregated form consists in simply
eliminating the first term of A in the Puiseux series:

MP=M.-1d, M RY=21"R®,  RY=R., V=i -1

The new graph GV has possible minimizing mean exponents @’ = borc. Let &'V be the
associated dominant spectral coefficient. We discuss three subcases.

7.5.1 Subcase 0 < %A <J

Subcase: b < c. Ggi)n has one irreducible component (—) = (0) = (+) with @’ = b. More-
over,

010 1
AV =11 0 1 a®=v2, RY«|+2
010

1

Thenk€=1+\/§eb+~-~ and

1 1/4 1 V2 e
R x \/E , e ™~ 1/2 , Qc~ 6b/\/E 1 Eb/\/§
1 1/4 e 2 1

7.5.2 Subcase 0 < %A =J

Subcase: ¢ = b. The subgraph G'”) has one irreducible component (—) = (0) = (+) = (—)

min
and
01 1 1
AV =1 0 1|, aV=2, RVY«|1
1 1 0
We thus obtain
1/3 1 e €
Ae=142eb 4.0, Ri~me~|1/3], O.~|e 1 €
1/3 e’ e 1
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7.5.3 Subcase 0 < J < iA
Subcase: ¢ < b. Gfrfi)n has one irreducible component (—) = (4) with minimizing mean
exponent @'V = ¢ and @'V = 1. We aggregate the states (£), R\ (£) := RV (—) + RV (+),
and eliminate RV (0) < R (L) to obtain a third graph (reduced to a singleton)

€“RM () +2¢?RIV (0) = AV R (1), < 2% o
e’ RI (&) =2V RI(0), AT
WegetA.=1+4+€“+--- and
1/2 1/2 1 2e¥c ¢
R~ | e~ |, e ~ | 262079 | | Q.~ | €2 1 €2
1/2 1/2 € 2ePa ]
76 Case J=0< A <K
Case: a = ¢ < min(0, b). One has
1 0 1
a=a, Apin=|0 0 0], a=2, Ae ~ 2€°.
1 01

G min has one irreducible component (—) <> (—) = (4+) <> (+) with minimizing mean ex-
ponent a = a and dominant spectral coefficient @ = 2. We again aggregate the states (+),
Rc(£) := R.(—) + R.(+), and eliminate R, (0) < R, (%) in order to introduce a new singu-
lar eigenvalue problem

26 R (£) + 2€X(0) = Ac R (1), 2e?b
2¢ + = Ae.
€’Re(£) + Rc(0) = AR (0), re—1
‘We thus obtain
1/2 1/2 1/2 b=9/2 172
R~ |e™/2 |, T~ | 20D /2 |, O~ | 1/2 €2 1)2
1/2 1/2 172 &b-o 172
77 Case J=0< A=K
Case: a =c=0 < b. We have
1 0 1
a=0, Apn=10 1 0], a=2, Ae ~2
1 0 1

Gnmin has two irreducible components with spectral coefficients equal to 1 and 2, whose
graphs are (0) <> (0) and (—) <> (=) = (+) <> (+), respectively. We aggregate (%) into a
unique state R.(%) := R.(—) + R.(+) and obtain

2RE (:l:) + ZGbRe (0) = )"e Re (:t)a 2€2h
ebRe (+) + Re (0) =XeRe (0)7 Ae —1
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We thus get A, =2 +2¢?* 4 ... and

1/2 1/2 12 € 1)2
Ro~|e |, mo~|2|, Qc~|1/4 172 1/4
1/2 1/2 12 € 1)2

We recall that the previous discussion is summarized in Figs. 3 and 4.
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