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We consider the three-dimensional Schrddinger operator with constant magnetic field of strength b > 0, and
with smooth electric potential. The weak asymptotics of the Spectral Shift Function with respectto b /* 400
is studied. First, we fix the distance to the Landau levels, then the distance to Landau levels tends to infinity as
b /' +oo. In particular we give explicitly the leading terms in the asymptotics and in some case we obtain full
asymptotics expansions.

1 Introduction

The three-dimensional Schr odinger operator with electric and constant magnetic fi elds can be written as:

b b 0

= HO(b) + V(x,y, Z),

where b represents the strength of the magnetic fi elds. We assumethat V € C°(R?; R) and there exists p > 2,
s > 1 such that

1020707V (2, y,2)| < Ca,pq(x,y) P(2) " (1.2)

Here (X) = (1 + | X|?)1/2.

It iswell known [1], [15] that the spectrum of H((b) is absolutely continuous, equalsto [b, +oo[, and has an
infi nite set of thresholds bA, = b(2¢ — 1), ¢ > 1 (called Landau levels). By the Weyl criterion the essential
spectrum of Hy(b) and Hy(b) are the same.

There are many papers dealing with different aspects of the spectral theory of H1(b). In particular, the asymp-
totics of the counting function of the number of eigenvalues of H;(b) inthe gap | — oo, b] have been studied by
many authors in different aspects. We refer to [1],[18], [19],[16], [15], [26], [10], [20] and the references given
there.

Theassumption (1.1) impliesthat the spectral shift function (SSF for short) (A, b) related to H; (b) and Hy ()
iswell defi ned in the sense of distribution :

(€(,0). 7)) = tr(F(HL () = F(Ho ), f € CF(R). (12)

The SSF may be considered as a generalization of the eigenval ues counting function. Under suitable assump-
tions it can be identifi ed with the scattering phase. For more details, we refer to [27] or to the survey paper [22].
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4 V. Bruneau and M. Dimassi: Weak asymptotics of the SSF

For continuousproperties of £ away from Landau levels, werefer to [7]. Let usremark that according to Theorem
5.1 of [1], the operator H could have embedded eigenvalues and then the derivative of the SSF could be locally
aDirac distribution.

Recently a substantial progress has been given in the analysis of the spectral shift function and the works
around trace formula. Many results on the upper and lower bounds of resonances can be obtained easily by
proving an asymptotic expansion of the right hand side of (1.2) and combining it with a representation of the
derivative of the SSF related to the resonances[5], [23], [24], [6], [12], [4], [25].... For thisreason, it is natural to
study the asymptotic behavior of the right hand side of (1.2) asb — +oc.

Since the distance between two Landau levels growsto infi nity asb — oo and since the external potentia is
uniformly bounded with respect to b, the effect caused by the potential V' will be located near the Landau levels.

To simplify the notation and the exposition of this paper we only consider the fi rst Landau level bA; = b and
we refer to Remark 1.4 for the other Landau levels bA,4, ¢ > 2. We should say that throughout this article we
have opted for ease of exposition over generality.

Our fi rst result isthe following :

Theorem 1.1 Fix § in |0, +oo[, and let b — «(b) be a non-negative bounded function. We assume that either,
r(b)b — oo when b tends to infinity or x(b) = &. For f € C§°(] — 6, +6[; R), there exists by > 0 such that for
all b > by, we have

trp o) (S (50 (1 (6) = 0)) = F(5(0) (Ho (b) 1)) ) = (13

where

-1

_ wrr b w e
Q™Y :=D*+ V™ (b 1Dy,y7z)+T(Aw,yV) (b"'D,,y, 2). (1.4)

Here and in the following, tr i denote the trace on £(E). For a symbol a, a® denote the Weyl quantization (see
Section 2 and Appendix).

Using Theorem 1.1 and the b~ -pseudodifferential calculus, we provein section 3 the following asymptotics :

Theorem 1.2 (Asymptotics near bA,). Let f € C§°(R). We assume that the support of f is independent of b.
Under the assumption (1.1), the following asymptotic holds :

(€ +b,0), £()) = traams) ( FHL(B) = b) = [ (Ho(b) — b)) (L5)

= (f) +7(f) +O0™Y), b— +oo,
with )
n() =57 [ [ trwem (D24 Vi(wy2) = F(D2)dady,

70(]0) = % / /R2 trL2(1:Lz) (Aw,yv(xa Y, Z)f/(Dz + V((E, Y, Z)))dxdy+

2i / / gz (T@O:V.0,V) — T(0,V.0,)) (. y)dwdy,
™ R2

where T is the operator valued function of two operators defined by (3.5).

Theorem 1.3 (Asymptotics away from bA;). Let f and x(b) be as in Theorem 1.1 and Theorem 1.2. In
addition, we assume that «(b) — 0 as b tends to infinity. We have the following asymptotics expansion: for all
M,N eN

1

B € Gy + 00 FO) = sy (S5 (L 0) =) = F(=O)(Ho(B) ~ 1)) =
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N M
b K0T+ K0) T Far(f)+O(min(b k(b)) br(b)N T k(0)MF), b — +oo, (16)
k=0 k=0

with

Bo(f) = #///R V(x,y,z)dzdydz x /OOO f'(r*)dr.

Notice that, in the case where b~ = O(k(b)>°), Theorem 1.3 gives a full asymptotic expansion in powers of
x(b) given by thefi rst sumin (1.6).

Let us introduce the (z, y)-dependent spectral shift function ¢, ,(A) corresponding to the pair (—A, +
V(z,y,2), —A.). Then~,(f) can be expressed in term of &7, ()):

n(f) =0 [ [ig,0.1) dody

Let f bein C§°(]0, d[). By achange of variables, we have:

ﬂo(f):2(2—lﬂ_)2/Rf(t)t*%dt// - V(z,y, z)dzdydz.

The asymptotics (1.5) and (1.6) tell usthat the following asymptoticsholdin D’ asb — oo:
(2rb~ e (t + b, b) — / / &y (t) dady,

t

%(%)3/25’(L+b,b)—>(2(27r)2)‘1// . V(x,y, z)dzdydz.

k(D)

To our best knowledge, there is only two results concerning the spectral shift function corresponding to
(H1(b), Ho(b)) for large b. The fi rst one is due to [7], and the second is the recent paper of L. Michel [17].
In[7], thefi rst term of the asymptotic (in the strong sense) of

A1 DX — EA+bA, + Eb,b)

is given for £ = 0 (near the Landau levels) or £ > 0 (far from the Landau levels) without remainder estimate

(under weaker assumption on V). Here A; is some compact (b-independent) interval in (0, +oc0). In[17], the

Schr’odinger operator with constant magnetic fi eld is considered in all dimension. For energy far from Landau
levels and under weak assumptionson V, L. Michel [17] obtainsthe fi rst term of the asymptotic of the scattering

amplitude and complete asymptotic expansion of the scattering phase (which can be identifi ed with the SSF).

For b fi xed, the behavior of the SSF is also studied into two directions: In [13], the behavior of £(A + bA,) is
considered as A — 0 and in [8] the high energy asymptoticsis discussed.

In the 2D dimensional case, a Weyl type asymptotic with optimal remainder estimate for the counting func-
tion of eigenvalues was obtained in [10]. In our case the situation is more complicated, since our operator are
L(L?*(R.,))-valued symbol. Thisquestionwill betreated el sawhere. On the other hand, for the weak asymptotics,
our proofsare very simple. We don’t need the construction of Grushin problem asin [10].

Remark 1.4 Similar techniques could be applied near other Landau levels. In this case we prove the same
asymptotics expansions and the leading terms of the weak asymptoticsnear bA , and away from bA, areindepen-
dent of q.

The paper is organized as follows: In the next section, we introduce some notations and prove Theorem 1.1.
In section 3, we develop some b~ !-pseudodifferential calculus and prove Theorem 1.2 and Theorem 1.3. In an
appendix, we recall some results on h-pseudodifferential calculus with operator valued symbol.
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2 The strong field reduction

Throughout this section we assume that the assumptions of Theorem 1.1 are satisfi ed and we prove Theorem 1.1.
In this work we will use the standard notations for symbols and pseudodifferential operators (see [21], [11],
[25]).
Letm : R?? — [0, oo[ be an order function (see Defi nition 7.5 in [11]), we defi ne the class of semi-classical
symbolson T*R% = R2%:

(R, m) = {a(, & h) € O (R*'x]0,1)); Vo, 8 € N, 3 C .

020 a(w, & h)| < Cagm(,€)}. (2.1)

In the special case when m = 1 we will write S(R>2?) instead of S(R2%;1).

If a = a(w, &\, h) depends also on some parameter \ € 2, we say that a € S(R24,m), if the constant C., s
in (2.1) isindependent of A € Q.

When the symbol « is an operator in L(K, L), (K, L being subspaces of a Hilbert space), |.| denote the norm
in £(K, L) and the associated class of symbolswill be denoted by S(R2¢,m; L(K, L)).

Leta(z, & h) € S(R%4,m). Wesay that a(z, &; h) hasan asymptotic expansionin powersof i in S(R2?, m),
and we write -

a(x,&h) ~ Zaj(x,ﬁ)hj in S(R*, m),
=0

if forevery N € N, h~(N+1 (g — Z;V:O a;jh?) € S(R? m).

We will use the standard Weyl quantization of symbols. More precisely, if P(x,¢) is afunction on T*R¢
satisfying suitable estimates, P (y, D,,) isthe operator defi ned by

w —-n i(y—y')- + '
P D) = 20 [ [ P gy iy,

for u € S(RY), the class of rapidly decreasing functions. Sometimes we will quantize a function P(z,y, &)
only with respect to the variable (y,n): in this case we will denote by P* (x,y, &, D,,) the operator obtained as
above by considering (x, £) as aparameter.

Finally, when P(z, &) isafunction on T*R< (possibly operator valued), we denote by P (z, hD,,) the semi-
classical quantization obtained as above by quantizing P(x, h&). In an appendix, we recall some results on
h-pseudodifferential calculus.

By using a symplectic change of variables (see[14], [15]), we have :

Proposition 2.1 There exits a unitary operator I/ € £(L?(R?)) such that:
UHU* = Hy+b,  UHU =H +b
where
Hy = b(D? 4+ 2?) ® I, + Iy ® D? — bl,,., (2.2)

Hy=Hy+V"(b 2Dy +b"'D,,y —b 2z, 2), (2.3)

are the self-adjoint operators with domain D := B?(R,) ® L*(R,) ® H?(R.), B*(R,) being the domain of
the Harmonic Oscillator (D2 + x2).

For the simplicity of the notation we will note V* instead of V¥ (b=2 D, + b~'Dy,y — b=2z,z). Let f,,
n € N* be the n-th normalized Hermite function:

(D% + 22 fr = Apfrn, Ap=2n—1 | fullz2=1.
We then introduce the following operators :

Ir - LQ(Rg) - LQ(Rg)vU = <U(.7y,2),f1>f1(33),



mn header will be provided by the publisher 7

where (., .) denotes the scalar product on L?(R.,).
Obvioudly,
oIl =11

From now on, we denote :
M:=1-T, H;=0HI, =01

The following lemmais a simple consequence of the spectral theorem, the fact that V'™ is uniformly bounded
with respect to b as well asthe fact that o(ﬁo) = [2b, +00.

Lemma 2.2 Fix ¢ in]0, +oo[, and let b — «(b) =: x be a non-negative bounded function. We assume that
either, kb — oo when b tends to infinity or k = % There exists by > 0, such that for all b > b, the operators

~\ 1
E;j(\ k) = (A—/.;Hj) o, j=01 (2.4)

are well defined, holomorphic for A € D(0,4) := {z € C; |2| < §}, and
125 (A, k)]l = O((kb) ™), (2.5)

uniformly with respectto A € D(0,5 — n) and b € [bg, +oo[. Here 7 is some constant in ]0, d[.
Lemma 2.3 Under the assumptions of Lemma 2.2, there exists cq > 0 and by > 0, such that for all b > b,

1L, V¥](z)*] = O(b~1/2), (2.6)
and
(cob+ D2 E;(\, k) = O(k™1), 2.7)

uniformly with respectto A € D(0,5 — 7).
Moreover, the operator [II, V] E; (A, ) is trace class one, and

(L kVHIE; (A, K) [ = O(1), (28)
uniformly with respectto A € D(0,d — ). Here [.,.] denotes the commutator: [A, B] := AB — BA.
Proof. First, we claim that
b2 [IL, V] € Op™ (S(R (b7 n,y)) # (@)™ ()7 () ™).
Here, by a(z) = (z) 7> wemean a(z) = (z) % fordl g € N.

To seethis, chooseafunction f € C5°(]0, 3[; [0, 1]) suchthat f(z) = 1 near z = 1. Obvioudly, f(D2 +2?) ®
I, = II, and according to Theorem 8 in [11], we have

I € Op™ (S(R; ()~ (€)™)).
On the other hand, from (1.1) and the expression of V™, we have
V" e Op (SR (b~ e+ b7y — b Fa) 7 (2) 7).
By observing that

(b2 + b1,y — b7 22)) P < C((b~ L, y)) P 22)P (b 2E)P < C{(b™ 1, ) P ()P ()P,

the claim follows from the composition formula of pseudodifferential operators (see Theorem A1) and the as-
sumption (1.1). Notice that, the term /2 comes from the expression of V' and the fact that we are working
with a commutator operator.
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Now applying Theorem A2 to the claim we obtain (2.6).
Since o (Hy) C [2b, o0, it follows from the assumption on «(b) that : there exists ¢ > 0 and by >> 1 such
that for b > by,

R((kD? + br(D2 + 2*) — kb — %A)ﬁu, Tu) >k (D2 + cob)Tlu, Tiw).

From thiswe deduce (2.7) for j = 0. Thecase j = 1 follows by using resolvent equation, estimate (2.5) and that
[[V*|| is uniformly bounded with respect to b.
Notice that, for s > 1 the operator

(2)7*(cob+ D2)7": L*(R) — L*(R)

istrace classoneand || (z) ~*(cob + D?) ™! ||t = O(b~'/2). Combining this with the claim and using (2.6), (2.7)
aswell as Theorem A3 in the Appendix we get (2.8). O

Lemma 2.4 Assume that V' satisfies (1.1). For all N € N there exists a b~!-pseudodifferential operator
(independent of z),

N
Qn(y:b" Dy, 2) = ql(y,b™ ' Dy, 2)b 7,

=0

such that
VYT = QN (y, b~ Dy, 2)IT + b~ VTV Ry (b)),
with )
SUPpeqr ool RN (D) < +00,  supyep toofl|RN(B)(KDZ 4+ 1) iy = O(br2).

Moreover,

1
QO(ya m, Z) = V(T}a Y, Z)) q1 (y7 m, Z) = Z(Ar,yv)(TL Y, Z)

Proof. Noticethat, wecanview V' asab!-pseudodifferential operator on (y, z) with £(L?(R.,))-operator
valued symbol. Its symbol is given by :

Vg, n) ==V (n+b"2D,y — b2z, 2).
On the other hand, by Taylor’s formula (see also the proof of Proposition 2.5in [10]), we can write
‘7(%77) =V(n,y,z)+ bil/QanV(my, z) Dy — bil/QayV(n, Y, 2) T+ .
Combining thiswith the fact that

(@07 fi, fidr2m.) =0, for I+ m+1€2N,

27—1

(D2 £ ey = (@250 fi) ey = 5
aswell asthe fact that 0 f;(z) = O(e=*"/3) for any m € N, we get the lemma. The trace class estimate is
obtained repesating the arguments of the proof of (2.8). O

Lemma 2.5 The following estimate holds uniformly for A € D(0, ¢)

ITEA — £ H)) 7ML= By ()l = O(072[IA 7). (29)
Proof. Making use of the fact that IIIT = 0, I12 = I, [II, Ho] = 0 and II2 = TI, we obtain

V™11 = T[T, V], (2.10)

(A — kHy) ' = —II(A — kHy) "I £V¥)(A — kHy) "I, (2.11)
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(A — kHy)Ey (A, k) = 11 — II[IL, kV) By (A, 5). (2.12)
Thelast equality impliesthat
(A — wHy) 'L = Ey (A, k) + (A — kHy) " [, V) By (A, K). (2.13)
Next, the left hand side of (2.11) can be written as
(A — kHy) "' =TI\ — s Hy) "ML V)N — wHy) ' (2.14)
+II(A — £ Hy) 'O £VP)(A — kHy) "M = (1) + (2).
From (2.5), (2.6) and (2.13) we deduce
1) = OB*2ISA|72). (215
Substituting ﬁ(/\ — ﬁHl)*lﬂ in (2) by theright hand side of (2.14), and using the rough estimate
ITE(A — wHy) 7T = O /2|3A %)
(which follows from (2.6) and (2.11)), we obtain
1)l = O®=2/2IAI). (2.16)
Putting together (2.15), (2.16), (2.8) we get (2.9). O
Now, let f € Cg°(] — 6,0]) and let f € C3°(D(0,)) be an almost analytic extension of f such that
AT = O(ISA). (217)

By Helffer-§ ostrand formula (see for instance [11]), we have :
FOeE) = f(ctlo) = = [ TF) (0 = ) = (A o) ) (L)

where L(d\) denotes the L ebesgue measure on C.

Recall that IT commuteswith Hy. Then II(A — kHy )~ 1 = TI(A — xI1HoII) 11 = Ey(), &) isholomorphic
for A € D(0,6). Combining this with Lemma 2.5, Lemma 2.2 and using the cyclicity of the trace and the fact
that 9y f(\) = O(|SA|>°) we obtain :

Proposition 2.6 Let 6 and b — x(b) be asin Lemma 2.2. For all f € C5°(] — 4, d]), we have :

~

tr (R (n( F(kHy) — f(,@ﬁo))ﬁ) =t (ro) (ﬁ f(ﬁﬁl)ﬁ) = OB3/?). (2.18)

w JE— ~
Hy = Ho + IV"IL

Proposition 2.7 Under the assumption of Proposition 2.6, we have
trpao) (I (o) = )T = OB 612). (2.19)

Proof. Theideasof the proof is quite similar to the onein Lemma2.5 and that is why we omit some details.
Making use of the resolvent equation and taking into account (2.10), we obtain

H(/\ k)T - (A — /{Fl)_l)ﬂ = I\ — k)" RIVYII(N — kHy) "M (2.20)

=TI\ — kH 1) 'kIVPII(A — kH1) "' = II(A — £H) ' HeVYIIA — Hy) " "MIkVPII(A — kHy) "I
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= —TI(\ — kH ) "I, £VO)TI(A — £ Hy) " [V, TN — £H )~

where we used that IT(\ — xH )11 = [I(A — xH;) I = 0.

Next, by observing that TI(\ — xHy) I = II(A — xD?)~'1I, and repeating the arguments in the proof of
(2.8), we get

TN — kH 1) "I V)0 = O(ISA 72 (b)1/?). (2.21)
On the other hand, (2.5), (2.6) and (2.13) yield
ITEA = wHy) 7ML, 6V) || = O(ISA~5b73/2),

which together with (2.20) and (2.21) gives

||H(/\ k)T - (A — Hﬁl)—l)nntr = OB~ k2|3 70).

Now, applying the Helffer-Sj ‘ostrand formula and using the above estimate as well as the fact that & f(\)
O(|SA|?°), we obtain (2.19).

o

Let us now givethe proof of Theorem 1.1.
Proof. Using the cyclicity of the trace, Proposition 2.1, as well as the fact that ITII = 0, we obtain

trpaqs) ((FOCHL(B) = B) = FR(Ho(8) = B)) ) = trams) (£ (o) = f(5To) ) =

-~ -~

trpaqs) (TP Ge) = FOeHo)I) + trpagrs) (I (5 F) = f(rHo)IT),
which together with Proposition 2.6, Proposition 2.7 leads to:
trrae) (((5(H1(6) = b)) — F(s(Ho(b) = b)) = trrame) (T(F () — f(sHo))TT) +O(b™"51/2).

Moreover by Lemma 2.4 and Theorem A3 we have
72 (R (H( F(wH)) — f(nﬁo))l'[) -

trr2(rs) (H(f(/ﬂffo + wIIgYTL + kb~ TIg ) — f(/ﬂffo))ﬂ) + O 1k12).

Since IT commutes with Hy, qo and ¢; (werecall that ¢, and ¢, are independent of (z, £)), we have I1f (r(Hy —
b)) = I1f (kIL(Ho — b)ID)IT = f(xD?)I and

I1f (kHy + kgL T+ kb TGP TIT = f(kD? + kgl + kb~ 1gP)IL

Summing up we have proved Theorem 1.1. O

3 Proofs of Theorem 1.2 and Theorem 1.3

From now on, we denote h = b1, and we assume (1.1). We recall that

h
Q(h) = Dz + Vw(hDy,y, Z) + Z(Aw,yv)w(hDyaya Z)
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Theorem 3.1 For every f € C§°(R), the following full asymptotic expansion holds as & \, 0 :

tr(f(Q(h) = f(D2) ~ D e (f) W (31)
§=0
In particular,
1) = 5= [ [t (702 + Via.2) - 102 dwdy (32)
a(f) = SLW//R2 trLz(Rz)(Az,yV(x,y,z)f’(Dg + V(x,y,z)))dwdy 3.3)
1
g [ ] e (TO2.0,1) = T0,V.0.1)) (0. dzdy. (34)
where (A, B) — T'(A, B) is defined by
T(4,B) = limy [2% / £(0) (G(t +ie) — G(t — ie)) dt} (3.5)

with
G(t+ie)= (t+ie—D?>—V) YAt +ie—D?>-V) 'B(t+ie—D?*-V)"L

Proof. The proof of Theorem is quite standard, and uses the h-pseudodifferential calculus of operator with
operator valued symbol. We only mimic the proof in [10] (see also [9], [11]).
Let f € C5°(C) be an amost analytic extension of f with

NFA) = O(ISAI®). (3.6)
By Helffer-§“ostrand formula, we have

£@0) - 102 = —3 [ BFN [ - QU - (A= D2 (@), 37
From the resolvent equation, we have
(= QU™ = (A= D)™ = (A= QU)W (WA - D),

where h
W(h) = Vw(hDyvya Z) + Z(Aw,yv)w(hDgnya Z)

Under assumption (1.1) it follows from Theorem A3 that W (h)(\ — D?)~! isatrace class operator with
[W(R)(A = D2) e = O(AHSAITH). (3.8)

Recalling that, we can view Q(h) as an h-pseudodifferential operator with £(H?2, L?)-valued symbol. Hence,
for every N € N, we can construct a symbol (see[9], [11], [2])

C(ya m, >\a h) = EO(y7 m, /\) + hEl (y7 m, /\) + ...+ hNEN(y7 m, A)
such that
(A= Q(h) ™" = ¢”(y,hDy, A, h) + O(RNTI=22)), (39)

uniformly for {\ € C; |3\ > h°}, where § is somefi xed constant in |0, 1/2[. The symbol E;(y, n, A) isafi nite
sum of terms of the form

(A=D2=V(n,y,2)) b1y, n,2)(A = D2 = V(n,y,2)) " ..b(y,m,2)(A = D2 = V(n,y,2)) ",
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1 <k <2j+1andb; dependson V' and their derivatives.
On the other hand, the composition formula of h-pseudodifferential calculus shows that

(A= Q)" W(h)(A = D)~ = (3.10)
EY (y,hDy,A) + hEY (y, hDy, M) + ... + BN EN (y, hD,y, A) + O(hN (1 =29),
where E; has the same propertiesas E;. In particular,

Eo(yﬂ% )‘) = (>‘ - Dz - V("Lyaz))ilv(nﬂywz)()‘ - Dz)71 = (/\ - Dg - V(nay7z))7l - (/\ - D§)717
~ 1 _ _
El(yﬂ%)\) = Z(/\ - Dg - V(n7y72)) 1A1;yv(n7yaz)(>‘ - Di - V(nay72)) !

—% (T(amv, d,V) —T(d,V, 800‘/)) (0,9, 2),

T(A7B) = (>‘ - Dz - V(my,z))flA(/\ - Dz - V(naywz))ilB(/\ - Dz - V(naywz))il' (311)

Using Theorem A3 we check easily that trace norm of the remainder is also O(hN(1=20)-1),
Next, fi x 4 in]0, 1/2[. We decompose the right hand side of (3.7) as a sum of two terms

@) -1y =1 [ afw[a-eu) - (=D L@y (312
{ISAI<hS}

1 / N[ = Q) = (= D) LN = 1 + 1.
{ISA[2h%}

If follows from (3.6) and (3.8) that I; = O(h*°). Inserting the right hand side of (3.10) in I; and using Theorem
A3 weget (3.1).

Formula (3.2) (resp. (3.3)-(3.4)) follows from the expression of Eq(y, 7, \) (resp. E1(y,n, \)), the cydlicity
of the trace and the Cauchy formula (see[9]). O

Set Q(h, k) = £Q(h).
Theorem 3.2 Assume that £ < C'and x — 0 as h tends to 0. For f € C°(R), the following full asymptotic
expansion holds as h \, 0 :

tr(f(Q(h, k) — f(kD?)) Zch f) r2 iRkt (3.13)
k=0 j=0
In particular,
2 <,
Co.0 = W/o f(r*)dr // - Vix,y, z)dedydz. (3.19)

Proof. Helffer-§ostrand formulayields

£@h) = F602) = =2 [ BFN [ Q) = (A= kD2 L@, (319
From the resolvent equation, we obtain :
N .
(A — Q(h, k) Znﬂ{ — kD?)" W(h)] (A — kD?)"L
7=0

FRV = QU ) W) [ - kDD W] (4 - kD)
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Consequently,
A=Q(h,k) ' —=(A=kD?) ! = (3.16)
N
3w [(A — kD?) W(h)} (A — kD?)
j=1
+RN T = Q(h, 1) W (R) [( ~ kD2)” W(h)] (A= D)™
N
=D AW
7j=1
Clearly, || BO) ||t = O(xN SN~ (V42 =1 which together with (3.6) implies
I [ 95 FOVBO) L@ e = O 7).

Forj=0,1,..., &t
I = _% /@f(A) tr(A;(A)) L(dA).

In view of (3.15), (3.16) and the above estimate, it suffi ces to show that J; has an asymptotic expansion like the
right hand side of (3.13).
Fix § in]0,1/2[. From (3.6) and (3.8), we obtain

| et NFNA;N) L(dN) e = O(->h7).
Fix N in N. By the h-pseudodifferential calculus (see [11] chapters 7,8), there exists A(y, 1, z, k, A\, k, h) €
S (R4 {y,m) 7P (2)~ (k)2 such that
Aj(N) = A®(y, hDy, 2, k2 D2, A, ki, h) + O(k 2 1201
uniformly for A € Q5 := {\ € C; |SA| > k2 } in thetrace norm class. Moreover
Aly,m, 2z, ko Nk h) ~ S Ay, n, 2, k)L in 54(R4;<y7n>_”<2>_5<k>_2)
7,0=0
where A4, ;(y, n, z, k) isafi nite sum of terms of the form
al(k)()‘ - k2)7m7iilgi(y7 , Z)a

with a, (k) isahomogeneouspolynomial of degree: and g; arefunctionsdependingon V, W and their derivatives.
In particular,

AO,O(y7 n, 2, k) = ()‘ - kz)_QV(n7 Y, Z) (317)

Since a;(—k) = —a;(k) for ¢ odd, it follows from the above discussion that n%Ij has an asymptotic expansion
in powersof . It remainsto prove (3.14).
Applying the following formula

——/8f (z—p)~? L(dz) = f'(u), fordlpueR,

to 1o = Apo(y, 1, 2, k) and using Theorem A3 we get (3.14). O

At last, combining Theorem 1.1 with Theorem 3.1 (resp. Theorem 3.2) we deduce Theorem 1.2 (resp. Theo-
rem 1.3).
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4 Appendix: Operator valued pseudo-differential operators

Here, we recall some results about operator valued pseudodifferential operators. Concerning the proofs, we refer
to [2] and [11]. Let K, L be two subspaces of a Hilbert space H. Let m : R2? — [0, oo be an order function
(see Defi nition 7.5in [11]). We introducethe class of symbols S(R?*?, m; L(K, L)) defi ned by the set of operator
valued functionsa € C>=(R>2?, £(K, L)) such that for any (o, 3) € N2, we have:

10205 a(x, ) 2k 1) = O (ml,6))
In the special cases when m = 1 we will write S(R?%; £(K, L)) instead of S(R2?,1; L(K, L)), and when

K = L = H wewill write S(R?¢,m) ingtead of S(R?¢, m; L(H)).
Fora € S(R??, m; L(K, L)) we defi ne the Weyl quantization, ¢*(z, hD,,) := Op¥(a) by:

O (@ule) = gy [ [ e e a( T uty)dys

whenu € S(R?, K) the class of rapidly decreasing functions.
Asin the case of scalar symbols, we have the following composition Theorem.

Theorem A 1 [2] Leta € S(R??,mq; L(K, L)) and b € S(R?4, my; L(L, H)). Then there exists c(h) €
S(R2? myma; L(K, H)) such that
Opj, (a)oOpj) (b) = Opj; (c(h)).
The symbol c(h) is given by:

ih
e(w,€h) = (exp(5(De Dy = Dy Da))a(@, (w1 )| —(r.e)

The L2-boundedness can be established exactly asin the scalar case:

Theorem A 2 [2] Fora € S(R??,1; L(K, L)) the operator a(z, h.D,.) can be extended to a bounded operator
from L2(R¢, K) to L?(R¢, L) and there exist C; > 0, P; € N such that

la(z, hDg)l 22 me k), L2R4,0)) < Ca  sup . I\ﬁﬁafa(w,€)||c<K,L>-

We have also trace class properties for such operators:

Theorem A 3 [2] Suppose that the injection K — H is of the Schatten class o1, 0 < v < 1 (in particular
this injection is of trace class). For a € S(R?*, m;L(K, L)), with m € L'(R??), the bounded operator
a(z,hD,) € L(L*(R%, H)) is of trace class and there exists C; > 0 such that for any integer P > <, we have

la(, hD,) i < Cah™ Y / / 1020%a(z, €) | dide,

lef+B]<2P

tr(a(x,hD (2h)~ / / a(z, €))dwde

where the trace in the LHS is in £(L?(R%, H)) and the trace in the RHS is in £(H).
At last, we give acharacterization of pseudo-differential operatorsdue to Beals [3] (see also section 8 of [11]).

Theorem A 4 Let A = Ay, be an operator from S(R%, K) to S'(R%, H), 0 < h < hg. The following two
statements are equivalent:

(1) A, = Op¥(a(h)) for some a(h) € S(R??,1; L(K, H)).

(2) For every N € N and for every sequence I (z,€), - - - , Ix(z, ) of linear forms on R24, the operators

[l1(z, hDy) [lo(2, hDy) [ - - [In (2, hD2), An] - -]1],

belongs to £(L?(R%, K), L*(R%, H)) and is of norm O(h") in that space. Here [.,.] denote the commutator:
[A, B] == AB — BA.

The proof of thisresult for operator valued symbolsfollows the proof of the scalar case (see section 8 of [11]).
The main differenceis that the numerical functions ®(z), ¥(z) € S(R*) arereplaced by ®(z)f € S(R?, K),
U(x)g € S(RY, H) (for f € K, g € H)andtheproduct &(z) ¥ (&)a(x, £) becomes® ()W (&) (a(z, &) f, g) o -
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