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Abstract. We examine the location of the eigenvalues of the generator G of
a semi-group V (t) = etG, t ≥ 0, related to the wave equation in an unbounded
domain Ω ⊂ Rd with dissipative boundary condition ∂νu − γ(x)∂tu = 0 on
Γ = ∂Ω. We study two cases: (A) : 0 < γ(x) < 1, ∀x ∈ Γ and (B) : 1 <
γ(x), ∀x ∈ Γ. We prove that for every 0 < ε � 1, the eigenvalues of G in the

case (A) lie in the region Λε = {z ∈ C : |Re z| ≤ Cε(|Im z|
1
2+ε + 1), Re z < 0},

while in the case (B) for every 0 < ε� 1 and every N ∈ N the eigenvalues lie
in Λε ∪RN , where RN = {z ∈ C : |Im z| ≤ CN (|Re z|+ 1)−N , Re z < 0}.

1. Introduction. Let K ⊂ Rd, d ≥ 2, be an open bounded domain and let Ω = Rd \ K̄ be
connected. We suppose that the boundary Γ of Ω is C∞. Consider the boundary problem

(1.1)

8><>:
utt −∆u = 0 in R+

t × Ω,

∂νu− γ(x)∂tu = 0 on R+
t × Γ,

u(0, x) = f1, ut(0, x) = f2

with initial data (f1, f2) ∈ H1(Ω) × L2(Ω) = H. Here ν(x) is the unit outward normal at x ∈ Γ
pointing into Ω and γ(x) ≥ 0 is a C∞ function on Γ. The solution of the problem (1.1) is given
by (u(t, x), ut(t, x)) = V (t)f = etGf, t ≥ 0, where V (t) is a contraction semi-group in H whose
generator

G =
“ 0 1
∆ 0

”
has a domain D(G) which is the closure in the graph norm of functions (f1, f2) ∈ C∞

(0)
(Ω̄)×C∞

(0)
(Ω̄)

satisfying the boundary condition ∂νf1−γf2 = 0 on Γ. For d odd Lax and Phillips [6] proved that
the spectrum of G in Re z < 0 is formed by isolated eigenvalues with finite multiplicity, while the
continuous spectrum of G coincides with iR. We obtain the same result for all dimensions d ≥ 2
under the restriction γ(x) 6= 1 ,∀x ∈ Γ in the case d even by using the Dirichlet-to-Neumann map
N (λ) (see Section 6). Notice that if Gf = λf with f = (f1, f2) 6= 0, Re λ < 0 and ∂νf1 − γf2 = 0
on Γ, we get

(1.2)

(
(∆− λ2)f1 = 0 in Ω,

∂νf1 − λγf1 = 0 on Γ

and V (t)f = eλtf has an exponentially decreasing global energy. Such solutions are called asymp-
totically disappearing and they perturb the inverse scattering problems. Recently it was proved
[2] that if we have at least one eigenvalue λ of G with Re λ < 0, then the wave operators W±
related to the Cauchy problem for the wave equation and the boundary problem (1.1) are not
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complete, that is Ran W− 6= Ran W+. Hence we cannot define the scattering operator S by the

product W−1
+ ◦W−. Notice that if the global energy is conserved in time and the unperturbed

and perturbed problems are associated to unitary groups, the corresponding scattering operator
S(z) : L2(Sd−1) → L2(Sd−1) satisfies the identity

S−1(z) = S∗(z̄), z ∈ C,

if S(z) is invertible at z. Since S(z) and S∗(z) are analytic operator-valued operators in the
”physical” half plane {z ∈ C : Im z < 0} (see [5]) the above relation implies that S(z) is invertible
for Im z > 0. For dissipative boundary problems this relation in general is not true and S(z0)
may have a non trivial kernel for some z0, Im z0 > 0. For odd dimensions d Lax and Phillips
[6] proved that this implies that iz0 is an eigenvalue of G. Thus the analysis of the location of
the eigenvalues ofG is important for the location of the points where the kernel of S(z) is not trivial.

In the scattering theory of Lax-Phillips [6] for odd dimensions d the energy space can be

presented as a direct sum H = D−a ⊕Ka ⊕D+
a , a > 0, and we have the relations

V (t)D+
a ⊂ D+

a , V (t)(Ka) ⊂ Ka ⊕Da+, V (t)D−a ⊂ H, t ≥ 0.

R. Phillips defined a system as non controllable if there exists a state f ∈ Ka such that V (t)f ⊥
D+
a , t ≥ 0. This means that there exist states in the ”black box” Ka which remain undetected

by the scattering process. Majda [7] proved that if we have such state f , then (u(t, x), ut(t, x)) =
V (t)f is a disappearing solution, that is there exists T > 0 depending on f such that u(t, x)
vanishes for all t ≥ T > 0. On the other hand, if γ(x) 6= 1, ∀x ∈ Γ, and the boundary is analytic
there are no disappearing solutions (see [7]). Thus in this case it is natural to search asymp-
totically disappearing solutions. The existence of examples in the case γ ≡ 1 when the point
spectrum of G is empty has been mentioned in [8]. Since we did not found a proof of this result
in the literature, for reader convenience we propose a simple analysis of this question for the ball
B3 = {x ∈ R3 : |x| ≤ 1}. In the Appendix we prove that if γ ≡ 1 and K̄ = B3, the generator G
has no eigenvalues in {z ∈ C : Re z < 0}.

We study in the Appendix also the case when γ ≡ const 6= 1 and K = B3. If 0 < γ < 1, we
show that there are no real eigenvalues of G. On the other hand, for γ > 1 all eigenvalues of G
are real and lie in the interval (−∞,− 1

γ−1
]. Moreover, in this case there are infinite number real

eigenvalues of G and when γ ↘ 1 the eigenvalues of G go to −∞. For arbitrary strictly convex
obstacle K and γ(x) > 1, ∀x ∈ Γ, we obtain a similar result in Theorem 1.3 proving that with
exception of a finite number eigenvalues all other are confined in a very small neighbourhood of
the negative real axis.

If maxx∈Γ |γ(x) − 1| is sufficiently small, the leading term of the back-scattering amplitude
a(λ,−ω, ω), ω ∈ Sn−1, becomes very small for all directions ω ∈ Sn−1 and for γ ≡ 1 this leading
term vanishes for all directions (see [9]). For strictly convex obstacles and γ ≡ 1 the second term
of the back-scattering amplitude does not vanish (see [4]), but it is negligible for the applications
(see Section 5 in [13] for the case of first order systems). The existence of a space with infinite
dimension of eigenfunctions of G implies that one has a large set of initial data for which the
solutions of (1.1) are asymptotically disappearing. Notice that these solutions cannot be outgoing

in the sense of Lax-Phillips (see [7]), that is they have a non-vanishing projection on the space D−a
mentioned above. Moreover, the eigenvalues of G are stable under perturbations of the boundary
and the boundary condition (see [2]).

Now we pass to the description of our results. In [8] Majda examined the location of the
eigenvalues of G and he proved that if sup γ(x) < 1, the eigenvalues of G lie in the region

E1 = {z ∈ C : |Re z| ≤ C1(|Im z|3/4 + 1), Re z < 0},

while if sup γ(x) ≥ 1, the eigenvalues of G lie in E1 ∪ E2, where

E2 = {z ∈ C : |Im z| ≤ C2(|Re z|1/2 + 1), Re z < 0}.

The purpose of this paper is to improve the above results for the location of eigenvalues. We
consider two cases: (A) : 0 < γ(x) < 1, ∀x ∈ Γ, (B) : γ(x) > 1, ∀x ∈ Γ. Our main result is the
following
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Figure 1. Eigenvalues, 0 < γ(x) < 1

Theorem 1.1. In the case (A) for every ε, 0 < ε� 1, the eigenvalues of G lie in the region

Λε = {z ∈ C : |Re z| ≤ Cε(|Im z|
1
2+ε + 1), Re z < 0}.

In the case (B) for every ε, 0 < ε � 1, and every N ∈ N the eigenvalues of G lie in the region
Λε ∪RN , where

RN = {z ∈ C : |Im z| ≤ CN (|Re z|+ 1)−N , Re z < 0}.

For strictly convex obstacles K we prove a better result in the case (B).

Theorem 1.2. Assume that K is strictly convex. In the case (B) there exists R0 > 0 such that
for every N ∈ N the eigenvalues of G lie in the region {z ∈ C : |z| ≤ R0, Re z < 0} ∪ RN .

The eigenvalues ofG are symmetric with respect to the real axis, so it is sufficient to examine the
location of the eigenvalues whose imaginary part is non negative. Introduce in {z ∈ C : Im z ≥ 0}
the sets

Z1 = {z ∈ C : Re z = 1, hδ ≤ Im z ≤ 1}, 0 < h� 1, 0 < δ < 1/2,

Z2 = {z ∈ C : Re z = −1, 0 ≤ Im z ≤ 1}, Z3 = {z ∈ C : |Re z| ≤ 1, Im z = 1}.

We put λ = i
√
z
h

and we use the branch 0 ≤ arg z < 2π with Im
√
z > 0 if Im z > 0. From (1.2)

we deduce that if (u, v) is an eigenfunction of G, then u satisfies the problem

(1.3)

(
(−h2∆− z)u = 0 in Ω,

−ih∂νu− γ
√
zu = 0 on Γ.

The proofs of Theorems 1.1 and 1.2 are based on a semi-classical analysis of the equation

(1.4) Next(z, h)f − γ
√
zf = 0,

where f = u|x∈Γ is the trace of the first component of an eigenfunction of G. Here

Next(z, h)f : Hs
h(Γ) 3 f −→ hDνu|Γ ∈ Hs−1

h (Γ)

is the exterior Dirichlet-to-Neumann map, Dν = −i∂ν and u is the solution of the problem

(1.5)

(
(−h2∆− z)u = 0 in Ω, u ∈ H2

h(Ω),

u|x∈Γ = f.

In the paper we use the semi-classical Sobolev space Hs
h(Γ), s ∈ R, with norm ‖〈hD〉su‖L2(Γ),

where 〈hD〉 = (1 + (hDx)2)1/2. The purpose is to prove that if z ∈ Z1 ∪ Z2 ∪ Z3 lies in some
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Figure 2. Eigenvalues, 1 < γ(x)

regions and h is small enough from (1.4) we get f = 0 which is not possible for an eigenfunc-
tion u. In this direction our strategy is close to that for the analysis of eigenvalues-free regions
for the interior transmission eigenvalues in [19] and [20]. We apply some results for the interior
Dirichlet-to-Neumann map Nint(z, h) established in [19] and [20] for bounded domains which af-
ter modifications and some constructions remain true for the exterior Dirichlet-to-Neumann map
Next(z, h) defined above.

The paper is organized as follows. In Section 2 we collect some results concerning the semi-
classical exterior Dirichlet-to-Neumann map Next(z, h). The eigenvalues-free regions for the case
(A) are discussed in Section 3. In Section 4 we study the case (B), where the arguments for the
case (A) are not applicable for the investigation of eigenvalues close to the negative real axis. The
strictly convex obstacles are examined in Section 5. In Section 6 we discuss the question of the
discreteness of the spectrum of G in {z ∈ C : Re z < 0} for dimensions d ≥ 2. For odd dimensions
d, as it was mentioned above, this result was obtained in the classical paper [6]. For d even we
present a proof based on the properties of the Dirichlet-to-Neumann map Next(λ). Moreover,
we obtain a trace formula for the counting function of the eigenvalues of G in an open domain
ω ⊂ {z ∈ C : Re z < 0}. Finally, in the Appendix we examine the special case when K is unit ball
in R3 and γ is a constant.

2. Dirichlet-to-Neumann map. In our exposition we apply some h-pseudo-differential opera-
tors and we are going to recall some basic facts. Let X be a C∞ smooth compact manifold without
boundary with dimension d − 1 ≥ 1. Let (x, ξ) be the canonical local coordinates in T ∗(X) and
let a(x, ξ, h) ∈ C∞(T ∗(X)). Given m ∈ R, l ∈ R, δ > 0 and a function c(h) > 0, one denotes by

Sl,mδ (c(h)) the set of symbols a(x, ξ, h) such that

|∂αx ∂
β
ξ a(x, ξ, h)| ≤ Cα,β(c(h))−l−δ(|α|+|β|)(1 + |ξ|)m−|β|, (x, ξ) ∈ T ∗(X), ∀α, ∀β.

If c(h) = h, we denote Sl,mδ (c(h)) simply by Sl,mδ and the symbols restricted to a domain where

|ξ| ≤ C will be denoted by a ∈ Slδ(c(h)). We use also symbols a(x, ξ, h) ∈ Sm0,1 satisfying the

estimates

|∂αx ∂
β
ξ a(x, ξ, h)| ≤ Cα,β(1 + |ξ|)m−|β|, (x, ξ) ∈ T ∗(X), ∀α, ∀β.

One defines the h−pseudo-differential operator Oph(a) with symbol a(x, ξ, h) by

(Oph(a)f)(x) = (2πh)−d+1

Z
T∗X

e−i〈x−y,ξ〉/ha(x, ξ, h)f(y)dydξ.
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For the reader convenience we recall two properties of the semi-classical pseudo- differential
operators Oph(a) (see Section 7 of [3] and Proposition 2.1 of [19]). Assume that a ∈ C∞(T ∗(X))
satisfies the bounds

(2.1) |∂αx a(x, ξ, h)| ≤ Cαc0(h)h−|α|/2, ∀(x, ξ) ∈ T ∗(X)

for |α| ≤ d, where c0(h) > 0 is a parameter. Then there exists a constant C > 0 independent of h
such that

(2.2) ‖Oph(a)‖L2(X)→L2(X) ≤ Cc0(h).

Next for 0 ≤ δ < 1/2 we have a calculus and if a ∈ Sl1,m1
δ , b ∈ Sl2,m2

δ , then for s ∈ R we get

‖Oph(a)Oph(b)−Oph(ab)‖Hs(X)→Hs−m1−m2+1(X) ≤ Csh
−l1−l2−2δ+1.

We refer to [3] for more details concerning the calculus. The left hand side of last inequality can be

estimated also in some cases when one of the symbols a or b is in a class Sl,mδ with 0 ≤ δ < 1. For
the precise statements the reader should consult Proposition 2.2 in [19] and Proposition 4.2 in [20].

Let (x′, ξ′) be the coordinates on T ∗(Γ). Denote by r0(x′, ξ′) the principal symbol of the
Laplace-Beltrami operator −∆Γ on Γ equipped with the Riemannian metric induced by the Eu-
clidean metric in Rd. For z ∈ Z1 ∪ Z2 ∪ Z3 let

ρ(x′, ξ′, z) =
p
z − r0(x′, ξ′) ∈ C∞(T ∗Γ)

be the root of the equation

ρ2 + r0(x′, ξ′)− z = 0

with Im ρ(x′, ξ′, z) > 0. For large |ξ′| we have |ρ(x′, ξ′, z)| ∼ |ξ′|, Im ρ(x′, ξ′, z) ∼ |ξ′|. Moreover,
for z ∈ Z1 ∪ Z3 we have

Im ρ(x′, ξ′, z) ≥
|Im z|
2|ρ|

, |ρ| ≥
p
|Im z|,

while for r0 ≥ 2, we have

C1

√
r0 + 1 ≥ 2Im ρ ≥ |ρ| ≥ C2

√
r0 + 1.

For z ∈ Z2 the last equality is true for all (x′, ξ′) (see Lemma 3.1 in [19]).
G. Vodev established for bounded domains K ⊂ Rd, d ≥ 2, the following approximation of the

interior Dirichlet-to-Neumann map Nint(z, h) related to the boundary problem (1.5), where the
equation (−h2∆− z)u = 0 is satisfied in K.

Theorem 2.1 ([19], Theorem 3.3). For every 0 < ε� 1 there exists 0 < h0(ε) � 1 such that for

z ∈ Z1,ε = {z ∈ C : Re z = 1, 1 ≥ Im z ≥ h1/2−ε} and 0 < h ≤ h0 we have

(2.3) ‖Nint(z, h)(f)−Oph(ρ+ hb)f‖H1
h
(Γ) ≤

Chp
|Im z|

‖f‖L2(Γ),

where b ∈ S0
0,1(Γ) does not depend on h and z. Moreover, (2.3) holds for z ∈ Z2 ∪ Z3 with |Im z|

replaced by 1.

The same result remains true for unbounded domains Ω with Nint(z, h) replaced by Next(z, h)
by modifications to the proof in [19] based on the construction of a semi-classical parametrix close
to the boundary. For reader convenience we recall below some facts from [19] and we discuss some
modifications which will be necessary for our exposition. Consider normal geodesic coordinates
(x1, x′) in a neighbourhood of a fixed point x0 ∈ Γ, where x1 = dist(x,Γ). Then −h2∆ − z in
these coordinates has the form

P(z, h) = h2D2
x1

+ r(x, hDx′ ) + q(x, hDx) + h2q̃(x)− z.

with Dx1 = −i∂x1 , Dx′ = −i∂x′ , r(x, ξ
′) = 〈R(x)ξ′, ξ′〉, q(x, ξ) = 〈q(x), ξ〉. Here R(x) is a

symmetric (d − 1) × (d − 1) matrix with smooth real-valued entries and r(0, x′, ξ′) = r0(x′, ξ′).
Let φ(σ) ∈ C∞(R) be a cut-off function such that φ(σ) = 1 for |σ| ≤ 1, φ(σ) = 0 for |σ| ≥ 2. Let
ψ(x′) be a C∞ cut-off function on Γ supported in a small neighbourhood of x0 and ψ(x0) = 1. In
[19], Proposition 3.4 for δ1 > 0 small enough one constructs a semi-classical parametrix

(2.4)

(
ũψ(x) = (2πh)−d+1

R R
e

i
h
ϕ(x,y′,ξ′,z)φ

“
x1
δ1

”
φ

“
x1
δ1ρ1

”
a(x, ξ′, z;h)f(y′)dy′dξ′,

ũψ |x1=0 = ψf,

where ρ1 = 1 if z ∈ Z2 ∪ Z3, ρ1 = |ρ|3 if z ∈ Z1.
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The phase ϕ(x, y′, ξ′, z) is complex-valued and

ϕ = −〈x′ − y′, ξ′〉+

N−1X
k=1

xk1ϕk(x
′, ξ′, z) = −〈x′ − y′, ξ′〉+ ϕ̃,

a =

N−1X
k=0

N−1X
j=0

xk1h
jak,j(x

′, ξ′, z),

N � 1 being a large integer.
Moreover, ϕ1 = ρ, Im ϕ ≥ x1Im ρ/2, 0 ≤ x1 ≤ 2δ1 min{1, ρ1} and the amplitude a satisfies

a
˛̨
x1=0

= ψ(x′). The phase ϕ and the amplitude a are determined so that

e−
iϕ
h P(z, h)e

iϕ
h a = xN1 AN (x, ξ′, z;h) + hNBN (x, ξ′, z;h),

where AN , BN are smooth functions. To describe the behavior of AN , BN , introduce the function
χ(x′, ξ′) = φ(δ0r0(x′, ξ′)), where 0 < δ0 � 1. Following [19], we say that a symbol b ∈ C∞(T ∗Γ)

belongs to Sl1δ1,δ2
(µ1) + Sl2δ3,δ4

(µ2) if

|∂αx′∂
β
ξ′ (χb)| ≤ Cα,β |µ1|l1−δ1|α|−δ2|β|,

|∂αx′∂
β
ξ′ ((1− χ)b)| ≤ Cα,β |µ2|l2−δ3|α|−δ4|β|, ∀α, ∀β.

Therefore,

∂kx1
AN ∈ S2−3N−3k

2,2 (|ρ|) + S2
0,1(|ρ|), ∂kx1

BN ∈ S3−4N−3k
2,2 (|ρ|) + S1−N

0,1 (|ρ|), ∀k ∈ N

uniformly with respect to z, h and 0 ≤ x1 ≤ 2δ1 min{1, ρ1}.
For z ∈ Z1,0 and any integer s ≥ 0, there exist ls, Ns > 0 so that for N ≥ Ns we have the

estimate (see Proposition 3.7 in [19])

(2.5) ‖P(z, h)ũψ‖Hs
h
(Ω) ≤ CNh

−ls
“ √

h

|Im z|

”2N
‖f‖L2(Γ),

while for z ∈ Z2 ∪ Z3 the above estimate holds with |Im z| replaced by 1. Next introduce the
operator

Tψ(z, h)f := Dx1 ũψ
˛̨
x1=0

= Oph(τψ)f

with

τψ = a
∂ϕ

∂x1

˛̨
x1=0

− ih
∂a

∂x1

˛̨
x1=0

= ψρ− ih

N−1X
j=0

hja1,j .

Let GD be the self-adjoin realization of the operator −∆ on L2(Ω) with Dirichlet boundary
condition on Γ. Since the spectrum of GD is the positive real axis, for z ∈ Z1,0 we have the
estimate ‚‚‚“

h2GD − z)−1
‚‚‚
H2k

h
(Ω)→H2k

h
(Ω)

≤
Ck

|Im z|
, ∀k ∈ N,

while for z ∈ Z2∪Z3 the above estimate holds with |Imz| replaced by 1. For k = 0 this estimate is
trivial, and for k ≥ 1 it follows from the coercive estimates for the Dirichlet problem in unbounded
domains (see [5])

‖v‖H2k
h

(Ω) ≤ C′k

“
‖h2GDv‖H2k−2

h
(Ω)

+ ‖v‖
H2k−2

h
(Ω)

”
, v ∈ D(GD) ∩H2k−2

h (Ω).

Now let uψ ∈ H2
h(Ω) be the solution of the problem

P(z, h)uψ = 0 in Ω, uψ |Γ = ψf.

Then

wψ := uψ − ũψ +
“
h2GD − z

”−1
P(z, h)ũψ

will be a solution of (h2GD − z)wψ = 0 in Ω, wψ |Γ = 0. Since for z ∈ Z1,0 ∪ Z2 ∪ Z3 the point

z/h2 is not in the spectrum of GD, one deduces wψ = 0. This implies as in [19] the following

Proposition 2.1. For z ∈ Z1,0 we have the estimate

(2.6) ‖Next(z, h)uψ − Tψ(z, h)f‖H1
h
(Γ) ≤ CNh

−sd

“ √
h

|Im z|

”2N
‖f‖L2(Γ), ∀N ∈ N

with constants CN , sd > 0, independent of f, h and z, and sd independent of N . If z ∈ Z2 ∪ Z3,
then (2.6) holds with |Im z| replaced by 1.
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Choose a partition of unity
PJ
j=1 ψj(x

′) = 1 on Γ and set T (z, h) =
PJ
j=1 Tψj

(z, h). Notice

that the principal symbol of T (z, h) is ρ. By using Proposition 2.1 and repeating without any
change the argument in Section 3 in [19], one concludes that the statement of Theorem 2.1 re-
mains true replacing in (2.3) Nint(z, h) by Next(z, h).

3. Eigenvalues-free regions in the case (A). In this section we suppose that 0 < ε0 ≤ γ(x) ≤
1−ε0, ε0 > 0, ∀x ∈ Γ. If (u, v) 6= 0 is an eigenfunction of G with eigenvalue λ ∈ {z ∈ C : Rez < 0},
then f = u|x∈Γ 6= 0. Indeed, if f = 0 on Γ, then u ∈ H2(Ω) will be eigenfunction of the Dirichlet
problem in Ω and this is impossible. From (1.3) one obtains the equation (1.4).

According to Theorem 2.1 with Next(z, h), for z ∈ Z1, δ = 1/2− ε, we have

(3.1) ‖Oph(ρ)f −
√
zγf‖L2(Γ) ≤ C

hp
|Im z|

‖f‖L2(Γ),

where for z ∈ Z2 ∪ Z3 the above estimate holds with |Im z| replaced by 1. Here we use the fact
that

‖Oph(b)‖L2(Γ)→L2(Ω) ≤ C

which follows from [19], Proposition 2.1. Introduce the symbol

c(x′, ξ′, z) := ρ(x′, ξ′, z)− γ
√
z.

We will show that c(x′, ξ′, z) is elliptic in a suitable class. Write

c(x′, ξ′, z) =
(1− γ2)z − r0(x′, ξ′)

ρ(x′, ξ′, z) + γ
√
z

.

Case I. z ∈ Z1,ε. Set δ = 1/2− ε. The symbol c is elliptic for |ξ′| large enough and it remains
to examine its behavior for |ξ′| ≤ C0. For these values of ξ′ we have |ρ+γ

√
z| ≤ C1. First consider

the set

F = {(x′, ξ′) : |1− r0(x′.ξ′)| ≤
ε20
2
}.

Then Re
“
(1− γ2)z − r0

”
= 1− r0 − γ2 ≤ − ε20

2
. If (x′, ξ′) /∈ F , we get

Im
“
(1− γ2)z − r0

”
= (1− γ2)Im z ≥ (1− γ2)hδ ≥ ε0h

δ .

Consequently, the symbol c is elliptic and

Im (ρ+ γ
√
z) = Im ρ+ γIm

√
z ≥ Chδ .

Hence, for bounded |ξ′| we have |c| ≥ C3hδ , C3 > 0, while for large |ξ′| we have |c| ∼ |ξ′|. As in
Section 2 we use the function χ and define M1 := Z1× suppχ,M2 := (Z1× supp(1−χ))∪ ((Z2 ∪
Z3)× T ∗Γ). Set 〈ξ′〉 = (1 + |ξ′|)1/2. It is easy to see that for (z, x′, ξ′) ∈M1, we have

(3.2)
˛̨
∂αx′∂

β
ξ′ρ

˛̨
≤ Cα,β |Im z|1/2−|α|−|β|, |α|+ |β| ≥ 1,

|ρ| ≤ C, while for (z, x′, ξ′) ∈M2 we have

(3.3)
˛̨
∂αx′∂

β
ξ′ρ

˛̨
≤ Cα,β〈ξ′〉1−|β|.

Thus, we conclude that c = (ρ− γ
√
z) ∈ S0,1

δ .

Now consider the symbol c−1 = ρ+γ
√
z

(1−γ2)z−r0
. Since ρ + γ

√
z ∈ S0,1

δ , it remains to study the

properties of g := ((1− γ2)z − r0)−1. For (x′, ξ′) ∈ F , we get |(1− γ2)z − r0| ≥
ε20
2
> 0 and

|∂αx′∂
β
ξ′g| ≤ Cα,β .

Therefore for (x′, ξ′) ∈ F , we have

(3.4) |∂αx′∂
β
ξ′ (c

−1)| ≤ Cα,β |Im z|1/2−|α|−|β|.

Next for (x′, ξ′) /∈ F notice that for every 0 < δ′ � 1, if |(1− γ2)− r0| ≤ δ′, Im z 6= 0, we have

(3.5)
˛̨
∂αx′∂

β
ξ′g| ≤ Cα,β |Im z|−1−|α|−|β|,

while for |(1− γ2)− r0| ≥ δ′ we get

(3.6)
˛̨
∂αx′∂

β
ξ′g| ≤ Cα,β〈ξ′〉−2−|β|.
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On the other hand, (x′, ξ′) /∈ F yields |1− r0(x′, ξ′)| > ε20
2

and for (x′, ξ′) /∈ F we obtain

(3.7) |∂αx′∂
β
ξ′ρ| ≤ Cα,β〈ξ′〉1−|α|−|β|.

Thus for bounded |ξ′| and (x′, ξ′) /∈ F , we deduce

(3.8) |∂αx′∂
β
ξ′ (c

−1)| ≤ Cα,β |Im z|−1−|α|−|β|.

Combining this with the estimates (3.4), one concludes that |Im z|c−1 ∈ S0,−1
δ .

Case II. z ∈ Z2. We have

Re
“
(1− γ2)z − r0

”
≤ −(1− γ2) ≤ −ε1 < 0.

Consequently, c is elliptic and c ∈ S0,1
0 , c−1 ∈ S0,−1

0 .

Case III. z ∈ Z3. In this case Im z = 1 and one has˛̨
Im

“
(1− γ2)z − r0

”˛̨
= |(1− γ2)| ≥ ε1 > 0.

This implies that c ∈ S0,1
0 is elliptic and c−1 ∈ S0,−1

0 .

Consequently, we get

‖Oph(c−1)g‖L2(Γ) ≤ C|Im z|−1‖g‖L2(Γ)

and, applying (3.1), we deduce

‖Oph(c−1)Oph(c)f‖L2(Γ) ≤ C5
h

|Im z|3/2
‖f‖L2(Γ).

On the other hand, for |α1| + |β1| ≥ 1, |α2| + |β2| ≥ 1 and |ξ′| ≤ C0 according to (3.2), (3.4),
(3.7), (3.8), for (x′, ξ′) ∈ F we get

(3.9)
˛̨̨
∂α1
x′ ∂

β1
ξ′ (c−1(x′, ξ′))∂α2

x′ ∂
β2
ξ′ c(x

′, ξ′)
˛̨̨
≤ Cα1,β1,α2,β2 |Im z|1−(|α1|+|β1|+|α2|+|β2|),

while for (x′, ξ′) /∈ F we have

(3.10)
˛̨̨
∂α1
x′ ∂

β1
ξ′ (c−1(x′, ξ′))∂α2

x′ ∂
β2
ξ′ c(x

′, ξ′)
˛̨̨
≤ Cα1,β1,α2,β2 |Im z|−1−(|α1|+|β1|).

Consider the operator Oph(c−1)Oph(c)−I. Following Section 7 in [3], the symbol of this operator
is given by

NX
j=1

(ih)j

j!

X
|α|=j

Dαξ′ (c
−1)(x′, ξ′)Dαy′c(y

′, η′)
˛̨
x′=y′,ξ′=η′ + b̃N (x′, ξ′)

= bN (x′, ξ′) + b̃N (x′, ξ′),

where

|∂αx′ b̃N (x′, ξ′)| ≤ Cαh
N(1−2δ)−sd−|α|/2.

Applying (2.2), one deduces for N large enough

‖Oph(b̃N )‖L2(Γ)→L2(Γ) ≤ Ch.

On the other hand, the estimates (3.9), (3.10) yield

|∂αx′bN (x′, ξ′)| ≤ Cα
h

|Im z|2
h−δ|α|.

Thus, applying once more (2.2), one gets

‖Oph(c−1)Oph(c)f − f‖L2(Γ) ≤ C6
h

|Im z|2
‖f‖L2(Γ).

A combination of the above estimates implies

(3.11) ‖f‖L2(Γ) ≤ C7

“
h1−2δ + h1− 3

2 δ
”
‖f‖L2(Γ).

Since δ = 1/2− ε, 0 < ε� 1, for 0 < h ≤ h0(ε) small enough (3.8) yields f = 0.

Going back to λ = i
√
z
h
, we have

Re λ = −
Im
√
z

h
, Im λ =

Re
√
z

h
.
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Suppose that z ∈ Z1. Then

|Re λ| ≥ C(h−1)1−δ , |Im λ| ≤ C1h
−1 ≤ C2|Re λ|

1
1−δ .

So if |Reλ| ≥ C3|Imλ|1−δ , Reλ ≤ −C4 < 0 there are no eigenvalues λ = i
√
z
h

of G. For z ∈ Z2∪Z3

there are no eigenvalues λ too if |λ| ≥ R0.
This shows that in the case (A) for every 0 < ε� 1 the eigenvalues of G must lie in the region

Λε defined in Theorem 1.1.

4. Eigenvalues-free region in the case (B). In this section we deal with the case (B). The
analysis of Section 3 works only for z ∈ Z1 ∪ Z3. Indeed for z ∈ Z1 we have

Re ((1− γ2)− r0) ≤ (1− γ2) < −η0 < 0.

The symbol g introduced in the previous section satisfies the estimates (3.5) and c ∈ S0,1
δ , c−1 ∈

S0,−1
δ . For z ∈ Z3 we apply the same argument. Thus for z ∈ Z1 ∪ Z3 we obtain that the

eigenvalues λ = i
√
z
h

of G must lie in Λε. For z ∈ Z2 the argument exploited in the case (A) breaks
down since for Re z = −1, Im z = 0 the symbol

i[1 + r0(x′, ξ′)− γ(x′)]

is not elliptic and it may vanish for some (x′0, ξ
′
0).

In the following we suppose that z ∈ Z2. Therefore Proposition 2.1 yields a better approxima-
tion

(4.1) ‖Next(z, h)(f)− T (z, h)f‖H1(Γ) ≤ CNh
−sd+N‖f‖L2(Γ), ∀N ∈ N.

If f 6= 0 is the trace of an eigenfunction of G, from the equality (1.4) we obtain

|Re 〈T (z, h)f − γ
√
zf, f〉L2(Γ)| ≤ CNh

−sd+N‖f‖L2(Γ).

There exists t with 0 < t < 1 such that

Re 〈
“
T (z, h)− γ

√
z

”
f, f〉L2(Γ) = Re 〈T (−1, h)f, f〉L2(Γ)

−Im zIm
h
〈
“∂T
∂z

(zt, h)− γ
1

2
√
zt

”
f, f〉L2(Γ)

i
(4.2)

with zt = −1 + itIm z ∈ Z2. The next Lemma is an analogue of Lemma 3.9 in [19].

Lemma 4.1. Let z ∈ Z2 and let f = u|Γ be the trace of an eigenfunction u of G with eigenvalue

λ = i
√
z
h
. Then

(4.3)
‚‚‚dT
dz

(z, h)f −Oph

“dρ
dz

(z)
”
f

‚‚‚
L2(Γ)

≤ Ch‖f‖
H−1

h
(Γ)

with a constant C > 0 independent of z, h and f . Moreover,

(4.4) |Re 〈T (−1, h)f, f〉L2(Γ)| ≤ CNh
−sd+N‖f‖L2(Γ), ∀N ∈ N.

Proof. The proof of (4.3) is the same as in [19] since for z ∈ Z2 we get

N−1X
j=0

hj
da1,j

dz
∈ S0,−1

0 .

To establish (4.4), we apply Green’s formula in the unbounded domain Ω. By using the notation

of Section 2, set ũ =
PJ
j=1 ũψ . Then −ih∂ν ũ|Γ = T (z, h)f and for R� 1 the function ũ vanishes

for |x| ≥ R. Thus one obtains

i〈∆ũ, ũ〉L2(Ω) = −i

Z
Ω
|∇ũ|2dx− i〈∂ν ũ, ũ〉L2(Γ).

Multiplying the above equality by h and taking the real part, we deduce

−Im h〈∆ũ, ũ〉L2(Ω) = Re 〈T (z, h)f, f〉L2(Γ).

Therefore,

Re 〈T (−1, h)f, f〉L2(Γ). = −Im h〈(∆− h−2)ũ, ũ〉L2(Ω) = −Im h−1〈P(−1, h)ũ, ũ〉L2(Ω)

and

|Re 〈T (−1, h)f, f〉L2(Γ)| ≤ h−1‖P(−1, h)ũ‖L2(Ω)‖ũ‖L2(Ω).
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It is easy to see that ‖ũ‖L2(Ω) ≤ Ch−sd‖f‖L2(Ω) and combining this with (2.5) for z ∈ Z2, we

obtain (4.4).

Proof of Theorem 1.1, case (B). From (4.2), (4.4) and Im z 6= 0 we have

(4.5) |Im 〈
“∂T
∂z

(zt, h)−
γ

2
√
zt

”
f, f〉L2(Γ)| ≤ CN

h−sd+N

|Im z|
‖f‖L2(Γ).

Consider the operator L := Oph( dρ
dz

(zt))− γ
2
√
zt

and notice that

(4.6)
˛̨̨
Im 〈

“∂T
∂z

(zt, h)−
γ

2
√
zt

”
f, f〉L2(Γ) − Im 〈Lf, f〉L2(Γ)

˛̨̨
≤ Ch‖f‖L2(Γ).

On the other hand,

Im 〈Lf, f〉L2(Γ) =
1

2i
〈(L− L∗)f, f〉L2(Γ)

and the principal symbol of 1
2i

(L− L∗) has the form

s(x′, ξ′; z) :=
1

2
Im

h 1
√
−1 + itIm z − r0

−
γ

√
−1 + itIm z

i
.

Let

zt = yei(π−ϕ), y =
q

1 + t2|Im z|2, |ϕ| ≤ π/4.

Here and below we omit the dependence of y on t. Then 1 ≤ y ≤
√

2 and

√
zt =

√
y sinϕ/2 + i

√
y cosϕ/2, Im

1
√
zt

= −
cosϕ/2
√
y

.

In the same setting

−1 + itIm z − r0 = qei(π−ψ), q =
q

(1 + r0)2 + t2(Im z)2, |ψ| ≤ π/4,

we see that

Im
1

√
−1 + itIm z − r0

= −
cosψ/2
√
q

.

Therefore

s =
1

2
√
yq

“
γ
√
q cosϕ/2−√y cosψ/2

”
=

γ2q cos2 ϕ/2− y cos2 ψ/2

2
√
yq(γ

√
q cosϕ/2 +

√
y cosψ/2)

.

To prove that s is elliptic, it is sufficient to show that

γ2q(1 + cosϕ)− y(1 + cosψ) = γ2q
“
1 +

1

y

”
− y

“
1 +

1 + r0

q

”
=

1

yq

h
γ2q2(1 + y)− y2(1 + q + r0)

i
is elliptic. Consider the function

F (r0) = γ2
“
(1 + r0)2 + t2Im 2z

”
(1 + y)− y2

“
1 +

q
(1 + r0)2 + t2Im 2z + r0

”
.

Clearly,

F (0) = (γ2 − 1)(1 + y)y2 ≥ η1 > 0,

since in the case (B) we have γ2 − 1 ≥ η0 > 0. Next, for γ ≥ 1, r0 ≥ 0 we have

∂F

∂r0
= 2γ2(1 + y)(1 + r0)− y2

“
1 +

1 + r0p
(1 + r0)2 + t2Im 2z

”
≥ 2

“
γ2(1 + y)(1 + r0)− y2

”
≥ 2(1 + y − y2).

On the other hand, it is clear that 1+y−y2 > 0 for 0 ≤ y < 1+
√

5
2

. In our case 1 ≤ y ≤
√

2 < 1+
√

5
2

and we deduce ∂F
∂r0

(r0) > 0 for r0 ≥ 0, 1 ≤ y ≤
√

2. This implies F (r0) > 0 for r0 ≥ 0 and s is

elliptic. Consequently,

Im 〈Lf, f〉L2(Γ) ≥ (η2 − Ch)‖f‖L2(Γ), η2 > 0

and for small h and ‖f‖L2(Γ) 6= 0, Im z 6= 0, we deduce from (4.5) and (4.6)

|Im z| ≤ C′Nh
−sd+N ≤ BNh

N , ∀N ∈ N.
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Going back to λ = i
√
z
h
, we have

Re
√
z = µ1/2 sinϕ/2, Im

√
z = µ1/2 cosϕ/2, µ =

q
1 + (Im z)2 ≤

√
2

and 0 ≤ sinϕ ≤ BNh
N . This implies for h small enough the estimate

|Im λ| =
˛̨̨Re

√
z

h

˛̨̨
≤ 21/4BN (h−1)−N+1 ≤ CN |Re λ|−N .

Thus for z ∈ Z2 and every N ∈ N the eigenvalues λ = i
√
z
h

of G lie in RN and this completes the
proof of Theorem 1.1.

The eigenvalues of G could have accumulation points on iR. For odd dimension d Lax and
Phillips [6] proved that the scattering matrix S(z) is invertible for z = 0. This leads easily to the
following

Proposition 4.1. Assume d odd. The operator G has no a sequence of eigenvalues λj , Reλj < 0
such that limj→∞ λj = iz0, z0 ∈ R.

The proof is the same as that of Proposition 4.11 in [2]. The above proposition does not
exclude the possibility to have eigenvalues λj with |Im λj | → +∞. On the other hand, Theorem
1.2, established in the next section, implies that for strictly convex obstacles and γ(x) > 1 the
imaginary part of all eigenvalues of G is bounded by a constant R0 > 0 and for d odd we can
apply Proposition 4.1.

5. Eigenvalue-free region for strictly convex obstacles in the case (B). In this section
we study the eigenvalues-free regions when K is a strictly convex obstacle. Let 0 < ε� 1/2 be a
small number. Set

χ1(x′, ξ′) = φ
“1− r0(x′, ξ′)

hε/2

”
,

where φ is the function introduced in Section 2. Notice that on the support of 1 − χ1 we have
|1−r0(x′, ξ′)| ≥ hε/2. By a modification of the construction in [19] (see also [14]) we can construct
a semi-classical parametrix ũψ having the form (2.4), where ψf is replaced by Oph(1− χ1)ψf.

Then for |1 − r0(x′, ξ′)| ≥ hε/2 we have |ρ|2 ≥ hε/2 and we can improve the estimate (2.5)
obtaining

(5.1) ‖P(z, h)ũψ‖Hs(Ω) ≤ CNh
−ls

“ h

hε/2|Im z|

”N
‖f‖L2(Γ), |Im z| ≥ h1−ε.

To do this, one repeats without changes the argument in Section 3 of [19] replacing the lower

bound |ρ|2 ≥ |Im z| by |ρ|2 ≥ hε/2. Consequently, the right hand side of (5.1) is estimated by

ON (h−ls+Nε/2) and this yields a semi-classical parametrix

P(z, h)w1 = ON (hN ), w1|x∈Γ = Oph(1− χ1)ψf.

Consider a partition of unity χ−δ + χ0
δ + χ+

δ = 1 on T ∗(Γ), where the functions χ−δ , χ
0
δ , χ

+
δ ∈ S

0
δ,0

are with values in R+ and such that supp χ−δ ⊂ {r0 − 1 ≤ −hδ}, supp χ+
δ ⊂ {r0 − 1 ≥ hδ}, supp

χ0
δ ⊂ {|r0 − 1| ≤ 2hδ}, χ0

δ = 1 on {|r0 − 1| ≤ hδ}. Then, as in [19], [20], we obtain the following

Theorem 5.1 (Theorem 2.1, [20]). For every 0 < ε � 1 there exists h0(ε) > 0 such that for
0 < h ≤ h0(ε), |Im z| ≥ h1−ε, we have

(5.2) ‖Next(z, h)Oph(χ−
ε/2

)−Oph(ρχ−
ε/2

)‖L2(Γ)→L2(Γ) ≤ Ch1/2

and for |Im z| ≤ hε we have the estimate

(5.3) ‖Next(z, h)Oph(χ+
ε/2

)−Oph(ρχ+
ε/2

)‖L2(Γ)→L2(Γ) ≤ Ch1/2.

Thus the problem is to get an estimate for ‖Next(z, h)Oph(χ0
ε/2

)‖L2(Γ)→L2(Γ). We will prove

the following

Theorem 5.2. For h2/3 ≤ Im z ≤ hε we have the estimate

(5.4) ‖Next(z, h)Oph(χ0
ε/2)‖L2(Γ)→L2(Γ) ≤ Chε/2.

Remark 1. By the analysis in [20] we may cover the region h1−ε ≤ Im z ≤ hε but the above

result is sufficient for our analysis since the region 0 < Im z ≤ h2/3 is examined in Chapter 9
and 10 in [17], where a parametrix for the exterior Dirichlet problem is constructed with a precise
estimate of the symbol of Next in small neighbourhood of the glancing set (see (10.31) in [17]).
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Set for simplicity of notation µ = Imz. We will follow closely the construction of a semi-classical
parametrix in Sections 5, 6 in [20]. The only difference is that we deal with an unbounded domain
and the local form of P slightly changes. For the convenience of the reader we are going to recall
the result in [15]. Let Ωδ = {x ∈ Ω : dist(x,Γ) < δ}. Since K is strictly convex, in local normal
geodesic coordinates (x, ξ) ∈ T ∗(Ωδ), considered in Section 2, the principal symbol of P becomes

p(x, ξ) = ξ21 + r0(x′, ξ′) + x1q1(x′, ξ′)− 1− iµ+O(x2
1r0)

with 0 < C1 ≤ q1(x′, ξ′) ≤ C2. Here locally in the interior of K we have x1 > 0, while in the
exterior of K we have x1 < 0. Following [20], denote by R the set of functions a ∈ C∞(T ∗(Ωδ))
satisfying with all derivatives the estimates

a = O(x∞1 ) +O(ξ∞1 ) +O((1− r0)∞)

in a neighbourhood of K := {(x, ξ) : x1 = ξ1 = 1 − r0 = 0}. It was shown in Theorem 3.1 in [15]
that there exists an exact symplectic map χ : T ∗(Ωδ) → T ∗(Ωδ) so that χ(x, ξ) = (y(x, ξ), η(x, ξ))
satisfies

y1 = x1q1(x′, ξ′)−1/3 +O(x2
1) +O(x1(1− r0)),

η1 = ξ1q1(x′, ξ′)1/3 +O(x1) +O(ξ1(1− r0)),

(y′, η′) = (x′, ξ′) +O(x1),

(p ◦ χ(x, ξ)) =
“
q1(x′, ξ′)2/3 +O(x1)

”
(ξ21 + x1 − ζ(x′, ξ′)), (modR)

in a neighbourhood of K with

ζ(x′, ξ′) =
“
q1(x′, ξ′)−2/3 +O(1− r0)

”
(1 + iµ− r0(x′, ξ′)).

Let U ⊂ T ∗(Ωδ) be a small neighbourhood of K. By using a h-Fourier integral operator on Ωδ
associated to the canonical relation

Λ = {(y, η, x, ξ) ∈ T ∗(Ωδ)× T ∗(Ωδ) : (y, η) = χ(x, ξ), (x, ξ) ∈ U},

one transforms P into an operator P ′0 which in the new coordinates denoted again by (x, ξ) has
the form

P ′0 = D2
x1

+ x1 − L1(x′, Dx′ ;h)− iµL2(x′, Dx′ ;h),

where Lj(x
′, ξ′;h) =

P∞
k=0 h

kL
(k)
j (x′, ξ′), j = 1, 2, with

L
(0)
1 (x′, ξ′) =

“
q1(x′, ξ′)−2/3 +O(1− r0)

”
(1− r0(x′, ξ′)),

L
(0)
2 (x′, ξ′) = q1(x′, ξ′)−2/3 +O(1− r0).

By a simple change of variable t = −x1, we pass to the situation when the exterior of K is
presented by t > 0. Next one applies a new symplectic transformation of the tangential variables

(x#, ξ#) = χ#(x′, ξ′) ∈ T ∗(Γ) so that ξ#d = −L(0)
1 (x′, ξ′) (see Section 2 in [20]). Therefore the

operator P ′0 is transformed into

(5.5) P̃0 = D2
t − t+D

x
#
d

− iµq(x#, Dx# ) +Q(x#, Dx# ;µ, h),

where q(x#, ξ#) > 0, q ∈ S0
0 in a neighbourhood of ξ#d = 0 and

Q =
∞X
k=1

hkQk(x
#, ξ#;µ).

The only difference with [20] is the sign (−) in front of t in the form of P̃0.
For simplicity of the notations we denote the coordinates (x#, ξ#) by (y, η) and consider the
operator

P0 = D2
t − t+Dyd − iµq(y,Dy) + hq̃(y,Dy ;µ, h)

with 0 < C1 ≤ q(y, η) ≤ C2, q ∈ S0
0 , q̃ ∈ S0

0 . Notice that we have the term −iµq(y, η) with µ > 0,
while in [20] the model operator involves iµq(y, η) since the sign of µ is not important for the
argument in Sections 5, 6 of [20].

First we will treat the situation examined in Section 6 in [20] when µ > 0 and ηd satisfy the
conditions

(5.6) µ
p
µ+ |ηd| ≥ h1−ε,

(5.7) µ+ |ηd| ≤ O(hε).
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Clearly, if h2/3−ε ≤ µ ≤ hε, the condition (5.6) holds. The same is true also if h2/3 ≤ µ ≤ h2/3−ε

and |ηd| ≥ h1/2−ε. Introduce the function

Φ1(ηd) =

(
φ( ηd
hε ), if µ ≥ h2/3−ε,“

1− φ( ηd

h1/2−ε )
”
φ( ηd
hε ), if h2/3 ≤ µ < h2/3−ε,

where φ is the function introduced in Section 2. Let ρ be the solution of the equation

ρ2 + ηd − iµq(y, η) = 0

with Im ρ > 0. With a minor modifications of the argument in Section 6 in [20] we may construct
a parametrix ũ1 = Oph(A(t))f , where

A(t) = φ
“ t

δ1|ρ|2
”
a(t, y, η;µ, h)e

iϕ(t,y,η:µ)
h

and δ1 > 0 is small enough. We take ϕ and a in the form

ϕ =
MX
k=1

tkϕk, a =
X

0≤k+ν≤M
hktνak,ν ,

where M � 1 and ϕk and ak,ν do not depend on t. We choose a0,0 = Φ1(ηd), ak,0 = 0 for k ≥ 1.
We have the identity

e−iϕ/h(D2
t − t+ ηd − µq(y, η)− ih∂yd )(eiϕ/ha)

= −2ih∂tϕ∂ta− h2∂2
t a− ih∂yda+ ((∂tϕ)2 + ∂ydϕ− t− ρ2)a

= −2ih
X

0≤k+ν≤2M−2

hktν
νX
j=0

(j + 1)(ν + 1− j)ϕν+1−jak,j+1

−h
X

0≤k+ν≤M−1

(ν+1)(ν+2)hktνak−1,ν+2− ih
X

0≤k+ν≤M
hktν∂ydak,ν+((∂tϕ)2 +∂ydϕ− t−ρ

2)a.

The phase ϕ satisfies the eikonal equation

(∂tϕ)2 + ∂ydϕ− t− ρ2 − iµ
MX

|α|=1

(∂αη q)gα(ϕ) = RM (t),

with gα(ϕ) = 1
|α|

Qn−1
j=1 (∂yjϕ)αj and RM (t) = O(tM ). We choose ϕ1 = ρ and one determines

ϕk, k ≥ 2, from the equationX
k+j=K

(k + 1)(j + 1)ϕk+1ϕj+1 + ∂ydϕK + εK = F (ϕ1, ..., ϕK)

with ε1 = −1, εK = 0 for K ≥ 2 and F (ϕ1, ..., ϕK) given by the equality (6.6) in [20]. Next the
functions ak,ν are determined form the equations

2i
νX
j=0

(j + 1)(ν + 1− j)ϕν+1−jak,j+1 + (ν + 1)(ν + 2)ak−1,ν+2 + i∂ydak,ν

=
MX

|α|=0

kX
k′=0

νX
ν′=0

bα,k′,ν,ν′∂
α
y ak′,ν′ .

Therefore Lemma 6.1, 6.2, 6.3, 6.4 in [20] hold without any change since the sign before t in the
form of P0 is not involved. Thus, as in Section 6 of [20], for a neighbourhood Y of a point in Rd−1

we obtain the following

Proposition 5.1. Assume (5.6) and (5.7) fulfilled for η ∈ supp Φ1. Then for all s ≥ 0 we have
the estimates

‖P0ũ1‖Hs(R+×Y ) ≤ Cs,Mh
Mε/2‖f‖L2(Y ),(5.8)

‖Dtũ1|t=0‖L2(Y ) ≤ Chε‖f‖L2(Y ).(5.9)
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To cover the region h2/3 ≤ µ ≤ hε, it remains to study the case when h2/3 ≤ µ < h2/3−ε and
|ηd| ≤ h1/2−ε. For these values of µ and ηd the condition

(5.10) µ(µ+ |ηd|) ≤ h1+ε

is satisfied. We will construct a parametrix for the problem

(5.11)

(
P0u = 0 in R+ × Y,

u = f2 on Y

with f2 = Oph

“
φ( ηd

h1/2−ε )
”
f +O(h∞)f, f ∈ L2(Y ). For the construction we need some estimates

for the Airy function A(z) = Ai(ei2π/3z). Here Ai(z) is the Airy function defined for s ∈ R by

Ai(s) =
1

2π

Z ∞

−∞
ei(st+t

3/3)dt.

In the following the branch −π < arg z < π will be used and z1/2 = |z|1/2ei arg z/2. Notice also
that

Re
√
z ≥

|Im z|
2|z|1/2

, Im
√
z =

Im z

2Re
√
z
.

The function A(z) satisfies the equalities

(5.12) (∂2
z − z)A(k)(z) = kA(k−1)(z), k ∈ N,

where A(k)(z) =
dkA(z)

dzk . It is well known (see [12], [11]) that A(z) has for | arg z− π
3
| ≥ δ > 0 the

representation

A(z) = Ξ(ωz) exp
“2

3
i(−z)3/2

”
,

where ω = e2πi/3 and

Ξ(z) ∼ z−1/4
∞X
j=0

ajz
−3j/2, a0 =

1

4
π−3/4, |z| → ∞.

In the same domain in C one has also an asymptotic expansion for the derivatives of A(z) by
taking in the above expansion differentiation term by term (see [12]). Introduce the function

F (z) =
A′(z)

A(z)
.

Then for | arg z − π/3| ≥ δ > 0 we have

F (z) = z1/2
∞X
k=0

bkz
−k, |z| � 1, b0 6= 0.

For large |z| and Im z < 0 we have the estimate |F (z)| ≤ C|z|1/2, while for bounded |z| and
Im z < 0 one obtains |F (z)| ≤ C1. Consequently,

|F (z) ≤ C0(|z|+ 1)1/2, Im z < 0.

For the derivatives F (k)(z) = ∂kF
∂zk (z) (see Chapter 5 in [11]) we get the following

Lemma 5.3. For Im z < 0 and every integer k ≥ 0 we have the estimate

(5.13) |F (k)(z)| ≤ Ck(|z|+ 1)1/2−k.

Given an integer k ≥ 0, set Φ0(z) = 1,

Φk(z) := A(z)∂kz (A(z)−1) = ∂zΦk−1(z)− F (z)Φk−1(z), k ≥ 1.

Taking the derivatives in the above equality and using (5.13), by induction in k one obtains

Lemma 5.4. For Im z < 0 and all integers k ≥ 1, l ≥ 0, we have the bound

(5.14) |∂lzΦk(z)| ≤ Ck,l

“
|z|+ 1

” k
2−l

.

For t ≥ 0 and Im z < 0, set

Ψk(t, z) :=
A(k)(−t+ z)

A(z)
, Ψ

(l)
k (t, z) := ∂zΨk(t, z).

The next Lemma is an analogue of Lemma 3.3 in [20].



LOCATION OF EIGENVALUES 15

Lemma 5.5. For Im z < 0 and all integers k ≥ 0, l ≥ 0, we have the estimate

(5.15) |Ψ(l)
k (0, z)| ≤ Ck|Im z|−l

“
|z|1/2 + 1

”k
.

For 0 < t ≤ |z|, Im z < 0 and all integers k ≥ 0, l ≥ 0, we have

(5.16) |Ψ(l)
k (t, z)| ≤ Ck,l|Im z|−l(|z|1/2 + |Im z|−1)

“
|z|1/2 + 1

”k
,

while for |t| ≥ |z| one obtains

(5.17) |Ψ(l)
k (t, z)| ≤ Ck,l|Im z|−l(|z|1/2 + |Im z|−1)

“
t1/2 + |Im z|−1

”k
e−t

1/2|Im z|/4.

Proof. Since Ψ(t, z) is analytic for Im z < 0, it is sufficient to establish the above estimates for
l = 0 and to apply Cauchy formula for the derivatives (see Section 3 in [20]). Taking into account
(5.12), (5.13), by induction in k one deduces

|A(k)(z)| ≤ Ck

“
|z|1/2 + 1

”k
|A(z)|

hence

(5.18) |Ψk(t, z)| ≤ Ck

“
t1/2 + |z|1/2 + 1

”k
|Ψ0(t, z)|.

Thus it is sufficient to estimate |Ψ0(t, z)|. The representation of A(z) with phase exp
“
( 2
3
i(−z)3/2

”
mentioned above holds for Im z < 0. Hence˛̨̨A(−t+ z)

A(z)

˛̨̨
≤

˛̨̨Ξ(ω(−t+ z))

Ξ(ωz)

˛̨̨
exp

“
−Im

2

3

“
(t− z)3/2 − (−z)3/2

””
=

˛̨̨Ξ(ω(−t+ z))

Ξ(ωz)

˛̨̨
e−ϕ.

It clear that |Ξ(ω(−t+ z))| ≤ c0. For |z| ≤ C, C � 1 we have˛̨“
Ξ(ωz)

”−1 ˛̨
≤ C1 ≤ C2|Im z|−1,

while for |z| ≥ C we have ˛̨“
Ξ(ωz)

”−1 ˛̨
≤ C3|z|1/4 ≤ C3|z|1/2.

Thus |Ξ(ω(−t+z))
Ξ(ωz)

| ≤ C(|z|1/2 + |Im z|−1).

Next, we get

ϕ =
2

3
Im (t− z)3/2 −

2

3
Im (−z)3/2 =

Z t

0
Im (τ − z)1/2dτ.

= −
Z t

0

Im z

2Re ((τ − z)1/2)
dτ ≥

t|Im z|
2(t1/2 + |z|1/2)

and this shows that for t > 0 we have ϕ > 0. For |t| ≤ |z| the estimate (5.18) implies (5.16). For
|t| ≥ |z| we have

t|Im z|
2(t1/2 + |z|1/2)

≥
t1/2|Im z|

4

and

(5.19) tk/2e−t
1/2|Im z|/4 ≤ Ck|Im z|−k.

If |Im z| ≤ 1 we have 1 ≤ |Im z|−1, while if |Im z| > 1, we get t ≥ |z| > 1. Hence from (5.19) and
(5.18) we deduce (5.17).

For h2/3 ≤ µ ≤ h2/3−ε we will construct a parametrix for (5.11) repeating without any change
the construction in Section 5 of [20]. The parametrix has the form ũ2 = φ(t/hε)Oph(A(t))g, where
g ∈ L2(Y ) can be determined as in Section 5, [20]. Here

A(t) =
MX
k=0

ak(y, η;h, µ)ψk(t, y;h, µ),

ψk = hk/3Ψk

“
−th−2/3, (ηd − iµq(y, η))h−2/3

”
,
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M � 1 is an arbitrary integer, a0 = φ( ηd

h1/2−ε ). Next ak, k ≥ 1, are independent on t and they

can be determined from the equality

(k + 1)ak+1 = −i∂ydak + µh−2/3∂ydqF (ηd − iµq(y, η)h−2/3)ak − µh−1∂ydak−1

+
kX
l=0

kX
|α|=0

“
b
(1)
k,l,α + b

(2)
k,l,α

”
∂αy ak.

We have

P0Oph(A(t)) = Oph

“
(D2

t − t+ ηd − iµq(y, η)− ih∂yd )A(t)
”

−iµq(y,Dy)Oph(A(t)) + iµOph(qA(t)) + hq̃(y,Dy)Oph(A(t)).

On the other hand, (5.12) implies the equality

(D2
t − t+ ηd − iµq(y, η))Ψk

“
−th−2/3, (ηd − iµq(y, η))h−2/3

”
= −kh−2/3Ψk−1

“
−th−2/3, (ηd − iµq(y, η))h−2/3

”
and

(D2
t − t+ ηd − iµq(y, η))A(t) = −h

M−1X
k=0

(k + 1)ak+1ψk.

Next the construction of the parametrix goes without any changes as in Section 5 in [20] applying
Lemmas 5.3, 5.4 and 5.5 instead of Lemmas 3.1, 3.2 and 3.3 in [20]. Thus as an analogue of
Theorem 5.7 in [20] we get the following

Proposition 5.2. For all s ≥ 0, we have the bounds

‖P0ũ2‖Hs(R+×Y ) ≤ Cs,Mh
Mε/2‖f‖L2(Y ),(5.20)

‖ũ2|t=0 −Oph

“
φ(ηdµ/h

1+ε)
”
f‖L2(Y ) ≤ O(h∞)‖f‖L2(Y ),(5.21)

‖Dtũ2|t=0‖L2(Y ) ≤ Chε‖f‖L2(Y ).(5.22)

Combining Proposition 5.1 and Proposition 5.2, we obtain, as in [20], Theorem 5.2.

After this preparation we pass to the analysis of an eigenvalues-free region when

Re z = 1, h2/3 ≤ Im z ≤ hε, 0 < ε� 1.

Let ρ =
√

1− r0 + iIm z. As in the previous section, we examine the equation

Next(z, h)(f)−
√
zγf = 0.

Consider the partition of the unity χ+
ε/2

+ χ0
ε/2

+ χ−
ε/2

= 1 on T ∗(Γ) introduced in the beginning

of this section. Applying Theorem 5.2, we have

‖Next(z, h)(1−Oph(χ0
ε/2))f −

√
zγf‖L2(Γ) ≤ Chε/2‖f‖L2(Γ).

Taking into account Theorem 5.1 for the operators N (z, h)Oph(χ±
ε/2

), one deduces

(5.23) ‖Oph
“
ρ(χ+

ε/2
+ χ−

ε/2
)−

√
zγ

”
f‖L2(Γ) ≤ C1h

ε/2‖f‖L2(Γ).

We write

g1 := ρ(χ+
ε/2

+ χ−
ε/2

)−
√
zγ =

ρ2
h
(χ+
ε/2

)2 + (χ−
ε/2

)2
i
− zγ2

ρ(χ+
ε/2

+ χ−
ε/2

) +
√
zγ

.

Clearly,

Re
“
ρ2

h
(χ+
ε/2

)2 + (χ−
ε/2

)2
i
− zγ2

”
= (1− r0)

h
(χ+
ε/2

)2 + (χ−
ε/2

)2
i
− γ2 ≤ −η0 < 0

since 1 − r0 ≤ 1, supp χ+
ε/2

∩ supp χ−
ε/2

= ∅ and 1 − γ2 ≤ −η0. Thus for bounded |ξ′| we have

|g1| ≥ η2 > 0, while for |ξ′| � 1 we get |g1| ∼ |ξ′|. To estimate g−1
1 , it is necessary to estimate

only ρ(χ+
ε/2

+ χ−
ε/2

) +
√
zγ and one deduces

|∂αx′∂
β
ξ′ (g

−1
1 )| ≤ Cα,βh

− ε
2 (1/2+|α|+β|)(1 + |ξ′|)1−|β|.

The same estimates holds for g1, hence g1 ∈ Sε/4,1ε/2
, g−1

1 ∈ Sε/4,−1
ε/2

and

‖(Oph(g−1
1 )Oph(g1)− I)f‖L2(Γ) ≤ Ch1−ε‖f‖L2(Γ).
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Combining this with (5.23), for small h we conclude as in Section 4, that f = 0.

It remains to study the case

z ∈ D = {z ∈ C : z = 1 + iIm z, 0 < Im z ≤ h2/3}.

The Dirichlet problem for −h2∆ − z with z = 1 + iIm h2/3w, |w| ≤ C0, has been investigated
by Sjöstrand in Chapters 9 and 10 in [17] (see also [1]). For 0 ≤ w ≤ 1 this covers the region D.
In [17] the exterior Dirichlet-to-Neumann map Next(z, h) is defined with respect to the outgoing
solution 1 of the problem (1.5). Notice that for Im z > 0 the outgoing solutions are in H2

h(Ω), so
the exterior Dirichlet-to-Neumann map in [17] coincides with that defined in Section 2. We need
to recall some results in Chapter 10 of [17]. The operator Next(z, h) is a h−pseudo-differential
operator with symbol next(x′, ξ′, h). Introduce the glancing set

G = {(x′, ξ′) ∈ T ∗(Γ) : r0(x′, ξ′) = 1}.

We have γ(x) ≥ 1 + η3 > 1, ∀x ∈ Γ. Choose a small number δ0, 0 < δ0 < η3/2. Then for
|r0(x′, ξ′)− 1| ≥ δ0 the symbol next satisfies the estimates

(5.24) |∂αx′∂
β
ξ′next(x

′, ξ′, h)| ≤ Cα,β〈ξ′〉1−|β|, ∀α, ∀β,

while for |r0(x′, ξ′)− 1| ≤ 2δ0 we have the estimates

(5.25) |∂αx′∂
β
ξ′next(x

′, ξ′, h)| ≤ Cα,β(h2/3 + |r0 − 1|)
1
2−βd , ∀α, ∀β

if r0(x′, ξ′)−1 is transformed into ξd by a tangential Fourier integral operator as it was mentioned
in the beginning of this section. From the estimates near G it follows that for small 0 < h ≤ h0(δ0)
we have a bound ‚‚‚Next(z, h)φ`1− r0(x′, ξ′)

δ0

´‚‚‚
L2(Γ)→L2(Γ)

≤ C(h1/3 + δ
1/2
0 )

with a constant C > 0 independent on h and δ0. Let f 6= 0 be the trace of u|Γ, where (u, v) is an
eigenfunction of G. Consider the equality

− Re
D
Next(z, h)

h
1− φ

`1− r0(x′, ξ′)

δ0

´i
f, f

E
L2(Γ)

+ Re 〈
√
zγf, f〉L2(Γ)

= Re 〈Next(z, h)φ
`1− r0(x′, ξ′)

δ0

´
f, f〉L2(Γ).(5.26)

The above estimate shows that the right hand side in (5.26) is bounded by C1(h1/3+δ
1/2
0 )‖f‖2

L2(Γ)
.

Introduce two functions ψ±(σ) ∈ C∞(R : [0, 1]) such that ψ+(σ) = 0 for σ ≤ 1/2, ψ+(σ) = 1
for σ ≥ 1, ψ−(σ) = ψ+(−σ). We write

Next(z, h)
h
1− φ

`1− r0(x′, ξ′)

δ0

´i
= Next(z, h)χ+ +Next(z, h)χ−,

where

χ±(x′, ξ′) =
h
1− φ

`1− r0(x′, ξ′)

δ0

´i
ψ±

“1− r0(x′, ξ′)

δ0

”
have support in {(x′, ξ′) : 1−r0(x′, ξ′) ≥ δ0/2} and {(x′, ξ′) : 1−r0(x′, ξ′) ≤ −δ0/2}, respectively.
The principal symbols n± of Next(z, h)χ± have the form

n± =
“p

1− r0 + iIm z
”
χ±

and

Re 〈Next(z, h)χ±f, f〉L2(Γ) = 〈Oph(Re (n±))f, f〉L2(Γ) +O(h)‖f‖2
L2(Γ)

.

On the other hand,

|Re n+| = χ+|Re
p

1− r0 + iIm z| ≤ (1 + h2/3)1/2.

In the same way for the principal symbol n− of Next(z, h)χ− we get

|Re n−| = χ−|Re
p

1− r0 + iIm z| ≤ y1/2 sin
ψ

2
,

1the outgoing solutions in the sense of Lax-Phillips [5] are different from the outgoing ones in
[17]. See Section 6 for more details.
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where 1− r0 + iIm z = yei(π−ψ), y > 0, 0 < ψ � 1. Next

y1/2 sin
ψ

2
= y1/2

r
1− cosψ

2
=

1
√

2

p
y − (r0 − 1).

On the support of χ− we have 0 < r0 − 1 < y ≤ (r0 − 1) + h2/3, and this implies y1/2 sin ψ
2
≤

1√
2
h1/3. Combining the above estimates, we conclude that

(5.27) − Re
D
Next(z, h)

h
1− φ

`1− r0(x′, ξ′)

δ0

´i
f, f

E
L2(Γ)

≥ −(1 + C1h
1/3)‖f‖2

L2(Γ)
.

Let
√
z = v + iw, v, w ∈ R. Then v2 = 1 + w2 ≥ 1 yields Re

√
z = v ≥ 1. Consequently,

Re 〈
√
zγf, f〉L2(Γ) ≥ (1 + η3)‖f‖2

L2(Γ)
.

From this estimate and (5.27) one deduces that the left hand side of (5.26) is greater than

(η3 − C1h1/3)‖f‖2
L2(Γ)

. For small h and small δ0 (depending on η3) we obtain a contradic-

tion with the estimate of the right hand side of (5.26). Finally, if Re z = 1, 0 < Im z ≤ h2/3 with

0 < h ≤ h0(η3) there are no eigenvalues λ = i
√
z
h

of G. Combining this with the result of Section
4, completes the proof of Theorem 1.2.

6. Discreteness of the spectrum and trace formula. In this section we will prove the dis-
creteness of the spectrum of G in the left half plane using the Dirichlet-to-Neumann map and we
establish a trace formula which can be useful for the study of the eigenvalues asymptotics. Before
going to the proof of a trace formula for the counting function of the eigenvalues of G, we need to
examine the properties of the Dirichlet-to-Neumann map N (λ) defined below. This map can be
used to prove the discreteness of the spectrum of G in {z ∈ C : Re z < 0}. This result for d odd
was established in [6] and the proof there exploits the fact that the scattering operator S(z) is
invertible for z = 0. For even dimensions d this property of S(z) is not true. We present a proof of
the discreteness of the spectrum of G based on the invertibility of an operator involving N (λ)−1

and it seems that for d even this result is new.

Proposition 6.1. Let γ(x) 6= 1 for all x ∈ Γ. Then for d ≥ 2 the spectrum of the generator G
in {z ∈ C : Re z < 0} is formed by isolated eigenvalues with finite multiplicities.

Proof. Consider for Re λ < 0 the map

N (λ) : Hs(Γ) 3 f −→ ∂νu|Γ ∈ Hs−1(Γ),

where u is the solution of the problem

(6.1)

(
(∆− λ2)u = 0 in Ω, u ∈ H2(Ω),

u = f on Γ.

The condition u ∈ H2(Ω) implies that u is iλ- outgoing which means that there exists R > ρ0
and a function g ∈ L2

comp(Rd) such that

u(x) = (−∆0 + λ2)−1g, |x| ≥ R,

where R0(λ) = (−∆0+λ2)−1 is the outgoing resolvent of the free Laplacian in Rd which is analytic
for Re λ > 0. Recall that R0(λ) has kernel

(6.2) R0(λ, x− y) = −
i

4

“ −iλ

2π|x− y|

”(n−2)/2“
H

(1)
n−2

2
(u)

”˛̨̨
u=−iλ|x−y|

,

where H
(1)
ν (x) is the Hankel function of first kind and we have the asymptotic (see for example,

Chapter 7 in [12])

(6.3) H
(1)
ν (z) =

“ 2

πz

”1/2
ei(z−

νπ
2 −π

4 ) +O(r−3/2), −π < Arg z < 2π, |z| = r → +∞.

Below we present some well known facts for the sake of completeness. The solution of the
Dirichlet problem (6.1) with f ∈ H3/2(Γ) has the representation

u = e(f) + (−∆D + λ2)−1(∆− λ2)(e(f)),
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where e(f) : H3/2(Γ) 3 f → e(f) ∈ H2
comp(Ω) is an extension operator and RD(λ) = (−∆D +

λ2)−1 is the outgoing resolvent of the Dirichlet Laplacian ∆D in Ω which is analytic for Reλ < 0.2

Therefore

N (λ)f = ∂ν(e(f)) + ∂ν
h
(−∆D + λ2)−1(∆− λ2)(e(f))

i
implies that N (λ) is analytic for Re λ < 0. The solution of (6.1) for Re λ < 0 can be written also
as follows (see (2.4) in [10])

u(x;λ) =

Z
∂Ω

h
R0(λ, x− y)(N (λ)f)(y)−

∂R0(λ, x− y)

∂νy
f(y)dy

i
.

Taking the trace on Γ, this implies

C00(λ) + C01(λ)N (λ) = Id,

where

(C00(λ)f)(x) =
f(x)

2
+

Z
Γ

∂R0

∂νy
(λ, x− y)f(y)dy =

f(x)

2
+ (K(λ)f)(x),

(C01(λ)f)(x) = −
Z
Γ
R0(λ, x− y)f(y)dy

are the Calderon operators (see for example, [10]) which are analytic operator-valued functions for
λ ∈ C for d odd and on the logarithmic covering of C for d even. The operators K(λ), C01(λ) are
pseudo-differential operators of order -1

Melrose proved ([10], Section 3) that there exists an entire family PD(λ) of pseudo-differential
operators of order -1 on Γ so that

(−∆Γ + 1)1/2C01(λ) = Id + PD(λ),

∆Γ being the Laplace Beltrami operator on Γ. For Re λ < 0 this implies

N (λ) = (Id + PD(λ))−1(−∆Γ + 1)1/2(
Id

2
−K(λ)).

On the other hand, it is well known that the Neumann problem

(6.4)

(
(∆− λ2)u = 0 in Ω, u ∈ H2(Ω),

∂νu = 0 on Γ

has no non trivial (iλ)-outgoing solutions for Reλ < 0. This implies that for Reλ < 0 the operator
K(λ) has not 1/2 as an eigenvalues and since K(λ) is compact, we deduce that N (λ)−1 is analytic
for Re λ < 0.

Going back to the problem (1.2), we write the boundary condition as follows

N (λ)
“
Id− λN (λ)−1γ

”
f1 = 0, Re λ < 0, x ∈ Γ.

The operator N (λ)−1 : L2(Γ) −→ H1(Γ) is compact and by Theorems 1.2 and Theorem 1.3
there are points λ0, Re λ0 < 0, for which (Id− λ0N (λ0)−1γ) is invertible. Applying the analytic
Fredholm theorem, one concludes that the spectrum of G in the open half-plane Reλ < 0 is formed
by isolated eigenvalues with finite multiplicities.

Remark 2. The assumption γ(x) 6= 1, ∀x ∈ Γ, was used only to apply Theorems 1.2 and 1.3.
For odd dimensions d we can relax this assumption. Indeed, for d odd we have no resonances in
a small neighbourhood of 0 for the Dirichlet and Neumann problems, so we may apply the above
argument in a open domain including a small neighbourhood of 0. For d even this property does
not hold. 3

2Notice that the definition of outgoing solutions in [5] is different from that given above and
the outgoing solutions in our paper correspond to incoming ones in [5]. To avoid misunderstanding
the precise form of R0(λ, x− y) is given in (6.2).

3In [8] one obtains eigenvalues-free regions in the case γ ≥ 1, but in this paper one applies the
result of [6] for d odd.
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Now we pass to a trace formula involving the operator

C(λ) := N (λ)− λγ = N (λ)
“
Id− λN (λ)−1γ

”
,

which by the analysis above is an analytic operator-valued function in {z ∈ C : Re z < 0}, while
C(λ)−1 is meromorphic in the same domain. Our purpose is to find a formula for the trace

(6.5) tr
1

2πi

Z
δ
(λ−G)−1dλ,

where ω ⊂ {Re z < 0} is a domain with boundary a positively oriented curve δ and (G− λ)−1 is
analytic on δ. Since (G− λ)−1 is meromorphic in ω, if λ0 is a pole of (G− λ)−1, the (algebraic)
multiplicity of an eigenvalue λ0 of G is given by

mult (λ0) = rank
1

2πi

Z
|λ−λ0|=ε0

(λ−G)−1dλ,

with ε0 > 0 small enough and {λ ∈ C : |λ − λ0| = ε0} positively oriented. Therefore, (6.5)
is just equal to the number of the eigenvalues of G in ω counted with their multiplicities. Let
(u,w) = (G− λ)−1(f, g). Then we have w = λu+ f and setting q = u|Γ, we get

u = −RD(λ)(g + λf) +K(λ)q.

Here RD(λ) = (−∆D +λ2)−1 is the outgoing resolvent introduced in the proof of Proposition 6.1
and K(λ) satisfies (

(∆− λ2)K(λ) = 0 in Ω,

K(λ) = Id on Γ.

The boundary condition on Γ implies

∂ν
h
−RD(λ)(g + λf) +K(λ)q

i
− γλ

h
−RD(λ)(g + λf) + q

i
− γf = 0, x ∈ Γ

and the term γλ[RD(λ)(g + λf) vanishes. Next N (λ) = ∂νK(λ)|Γ is the Dirichlet-to-Neumann
map, and assuming C−1(λ) invertible, one gets

q = C−1(λ)
“
[∂νRD(λ)(g + λf)] + γf

”
.

Therefore

u =
h
−λRD(λ) + λK(λ)C−1(λ)∂νRD(λ) + C−1(λ)γ

i
f +Xg

w = Y f +
h
λRD(λ) + λK(λ)C−1(λ)∂νRD(λ)

i
g,

where the form of the operators X and Y is not important for the calculus of the trace. Thus we
have the equality

tr

Z
δ
(λ−G)−1dλ = −tr

Z
δ

“
2λK(λ)C−1(λ)∂νRD(λ) + C−1(λ)γ

”
dλ.

The operator C−1(λ) is meromorphic with finite rank singularities near every pole. For the first
term in the integral on the right hand side we apply Lemma 2.2 in [16] to permute the operators
in the integrand combined with the equality

∂N
∂λ

(λ) = ∂ν
∂K

∂λ
(λ)

˛̨̨
Γ

= −2λ∂νRD(λ)K(λ).

Finally, we obtain the following

Proposition 6.2. Assume γ(x) 6= 1, ∀x ∈ Γ. Let δ ⊂ {z ∈ C : Re λ < 0} be a closed positively
oriented curve and let ω be the domain bounded by δ. Assume that C−1(λ) is meromorphic in ω
without poles on δ . Then

(6.6) tr
1

2πi

Z
δ
(λ−G)−1dλ = tr

1

2πi

Z
δ
C−1(λ)

∂C

∂λ
(λ)dλ.

In the Appendix we show that for the ball in R3 and γ ≡ const > 1 we have infinite number
real eigenvalues. We expect that in the case (B) there are infinite number eigenvalues of G lying
in the domain RN and it would be interesting to apply Proposition 6.2 to obtain a Weyl formula
for these eigenvalues following the approach in [16] and [14].
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7. Appendix. In this Appendix we assume that γ ≥ 0 is a constant and d odd. We examine the
existence of the eigenvalues of G for the ball B3 = {x ∈ R3 : |x| ≤ 1}. Consider the Dirichlet
problem for the Helmholtz equation in the exterior of B.

(7.1)

(
(∆− λ2)u = 0 in |x| > 1, u ∈ H2(|x| ≥ 1),

u||x|=1 = f ∈ L2(S2).

Setting λ = iµ, Im µ > 0, it is well known that the outgoing solution of (7.1) in polar coordinates
(r, ω), r ∈ R+, ω ∈ S2 is given by a series

u(x, µ) =
∞X
n=0

nX
m=−n

an,m
h
(1)
n (µr)

h
(1)
n (µ)

Yn,m(ω), |x| = r.

Here Yn,m(ω) are the spherical functions which are eigenfunctions of the Laplace-Beltrami operator
−∆S2 with eigenvalues n(n+ 1) and

h
(1)
n (r) =

H
(1)
n+1/2

(r)

r1/2

are the spherical (modified) Hankel functions of first kind. A classical result of Macdonald says

that the zeros of the function H
(1)
n+1/2

(z) lie in the half plane Im z < 0 (see Theorem 8.2 in [12]).

The boundary condition in (7.1) is satisfied choosing an,m so that

(7.2) f(ω) =
∞X
n=0

nX
m=−n

an,mYn,m(ω).

Now consider the boundary problem

(7.3)

(
(∆− λ2)u = 0 in |x| > 1, u ∈ H2(|x| ≥ 1),

∂ru− λγu = 0 on S2.

We will prove the following

Proposition 7.1. For γ = 1 and Re λ < 0 there are no non trivial solutions of (7.3). For
0 < γ < 1 the eigenvalues of G lie in the region

(7.4)
n
z ∈ C : π/4 < |π −Arg z| < π/2, |z| >

| cos(Arg z)|
(1− γ)| cos(2Arg z)|

o
.

Proof. Introduce the Dirichlet-to-Neumann map N (λ)f = ∂ru||x|=1, where u is the solution of

(7.1). Assume that (u, v) is an eigenfunction of G. Then u satisfies (7.3). Setting u||x|=1 = f ,
λ = iµ, Im µ > 0, the boundary condition implies

(7.5) N (iµ)f − iµγf = 0 on |x| = 1,

and we deduce
∞X
n=0

nX
m=−n

C(n;µ, γ)an,mYn.m(ω) = 0

with

(7.6) C(n;µ, γ) := ∂r
hh(1)

n (µr)

h
(1)
n (µ)

i˛̨̨
r=1

− iµγ, n ∈ N.

It is well known (see [12]) that the functions h
(1)
n (x) have the form

h
(1)
n (x) = (−i)n+1 e

ix

x

nX
m=0

im

m!(2x)m
(n+m)!

(n−m)!
= (−i)n+1 e

ix

x
Rn

“ i

2x

”
with

Rn(z) :=
nX

m=0

zm

m!

(n+m)!

(n−m)!
.

The problem is reduced to show that C(n;µ, γ) 6= 0 for all n ∈ N, if γ = 1 or λ lies in the
region (7.4) in the case 0 < γ < 1.
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In fact this implies that all coefficients an,m vanish , so f = 0. Taking the derivative with
respect to r, one obtains

(7.7) C(n;µ, γ) = iµ(1− γ)−
nX

m=0

(m+ 1)
im

m!(2µ)m
(n+m)!

(n−m)!

“
Rn

“ i

2µ

””−1
.

Setting w = i
2µ

= iµ̄
2|µ|2 , one deduces

(7.8) − C(n;µ, γ) =
1

2w
(1− γ) + (Rn(w))−1 d

dw
(wRn(w)).

Notice that Re iµ̄
|µ|2 > 0 implies Rew > 0, so we wish to prove that C(n;µ, γ) 6= 0 for Rew > 0.

The case n = 0 is trivial because iµ(1− γ)− 1 6= 0. We know that Rn(w) has no roots in the half
plane Rew ≥ 0. This implies that the roots of wRn(w) = 0 lie in the half plane Rew ≤ 0. By the

classical Gauss-Lucas theorem the roots of d
dw

(wRn(w)) = 0 lie in the convex set of the roots of

wRn(w) = 0 and one deduces that d
dw

(wRn(w)) 6= 0 for Re w > 0. Thus for γ = 1 we have no
eigenvalues of G.

For 0 < γ < 1 we must examine the zeros of the function

gn(w) =
1

2w2
(1− γ) +

1

w
+

nX
j=1

1

w − zj
, n ≥ 1,

where zj , Re zj < 0, j = 1, ..., n, are the roots of Rn(w) = 0. If fact, if Rn(w0) = 0, we have

H
(1)
n+1/2

( i
2w0

) = 0 and this implies Re w0 < 0. We obtain

(7.9) Re gn(w) =
(1− γ)((Re w)2 − (Im w)2) + 2Re w|w|2

2|w|4
+

nX
j=1

Re w − Re zj

|w − zj |2
.

If Re gn(w) = 0, we must have

2Re w|w|2 + (1− γ)((Re w)2 − (Im w)2) < 0.

Setting w = − 1
2λ

, the last inequality implies

|Re λ| < |Im λ|, Re λ > (1− γ)((Re λ)2 − (Im λ)2)

and we obtain that the eigenvalues of G belong to the domain (7.4).

Passing to the case γ > 1, we have the following

Proposition 7.2. For γ > 1 all eigenvalues λ for which (7.3) has a non trivial solution are real

and they lie in the interval (−∞,− 1
γ−1

]. Moreover, there is an infinite number of real eigenvalues

of G.

Proof. To prove the existence of real eigenvalues, consider the polynomial

Fn(w) =
h1

2
(1− γ) + w

i
Rn(w) + w2R′n(w).

Clearly, Fn(0) < 0 and Fn(w) → +∞ as w → +∞, so Fn(w) = 0 has at least one root w0 in R+

and C(n;µ0, γ) = 0 for µ0 = i
2w0

.

Now suppose that w0gn(w0) = 0, n ≥ 1 with Re w0 > 0, Im w0 6= 0. Then Im (w0gn(w0)) = 0
implies

(7.10) −
(1− γ)Im w0

2|w0|2
+ Re w0

h
−

nX
j=1

Im w0

|w0 − zj |2
+

nX
j=1

Im zj

|w0 − zj |2
i

+Im w0

nX
j=1

Re w0 − Re zj

|w0 − zj |2
= 0.

On the other hand, if zj with Im zj 6= 0 is a root of Rn(w) = 0, then z̄j is also a root and

Im zj

|w0 − zj |2
−

Im zj

|w0 − z̄j |2
=

Im zj

|w0 − zj |2|w0 − z̄j |2
“
|w0 − z̄j |2 − |w0 − zj |2

”
=

4Im w0(Im zj)
2

|w0 − zj |2|w0 − z̄j |2
.
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Hence we can write (7.10) as follows

(7.11) Im w0

h γ − 1

2|w0|2
−

nX
j=1

Re zj

|w0 − zj |2
+

X
Im zj>0

4Re w0(Im zj)
2

|w0 − zj |2|w0 − z̄j |2
i

= 0.

The term in the brackets [...] is positive, and one concludes that Im w0 = 0. The same argument
works for γ = 1 since zj 6= 0. Thus for γ = 1 we may have only real roots and since wR′n(w) 6= 0
for w > 0 we conclude that there are no roots of gn(w) = 0. This implies again the absence of
eigenvalues for γ ≡ 1.

From Re gn(w0) = 0 , one deduces for the real roots w0 the inequality

2w0 + (1− γ) < 0

and this yields for the eigenvalues λ of G the estimate

λ ≤ −
1

γ − 1
.

It remains to show that we have an infinite number of real eigenvalues. It is not excluded that
for n 6= m the polynomials Fn(w) and Fm(w) have the same real positive root. If we assume
that for Re w > 0 the sequence of polynomials {Fn(w)}∞n=0 has only a finite number of real

roots w1, ..., wN , wj ∈ R+, then there exists an infinite number of polynomials Fnj (w) having
the same root which implies that we have an eigenvalue of G with infinite multiplicity. This is a
contradiction, and the number of real eigenvalues of G is infinite.

Remark 3. With small modifications Propositions 7.1 and 7.2 can be established for the ball
{x ∈ Rd : |x| ≤ 1} and d ≥ 5 odd, by using the modified Hankel functions

H
(1)
n+d/2−1

(r)

rd/2−1

and the eigenfunctions Yn,m(ω) of the Laplace-Beltrami operator −∆Sd−1 with eigenvalues n(n+
d− 2).
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the results in Chapters 9 and 10 of his paper [17]. Finally, I am grateful to the referees for their
careful reading of the manuscript and for the valuable comments and suggestions.

REFERENCES

[1] F. Cardoso, G. Popov and G. Vodev, Asymptotic of the number of resonances in the trans-
mission problem, Comm. PDE, 26 (9 & 10) (2001), 1811-1859.

[2] F. Colombini, V. Petkov and J. Rauch, Spectral problems for non elliptic symmetric systems
with dissipative boundary conditions, J. Funct. Anal. 267 (2014), 1637-1661.
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